Sample records for alginate scaffold including

  1. Magnesium Oxide Nanoparticles Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Improved Physical Properties

    PubMed Central

    Mantilaka, M. M. M. G. P. G.; Goh, K. L.; Ratnayake, S. P.; Amaratunga, G. A. J.; de Silva, K. M. Nalin

    2017-01-01

    Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol) (PVA) polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm) at a predetermined concentration (10% (w/w)), is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P < 0.05). In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues. PMID:28694826

  2. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds.

    PubMed

    Kim, Min Seong; Kim, GeunHyung

    2014-12-19

    Micro/nanofibrous scaffolds have been used widely in biomedical applications because the micro/nano-scale fibres resemble natural extracellular matrix and the high surface-to-volume ratio encourages cellular activities (attachment and proliferation). However, poor mechanical properties, low controllability of various shapes and difficulties in obtaining controllable pore structure have been obstacles to their use in hard-tissue regeneration. To overcome these shortcomings, we suggest a new composite system, which uses a combination method of wet electrospinning, rapid prototyping and a physical punching process. Using the process, we obtained polycaprolactone (PCL)/alginate composite scaffolds, consisting of electrospun PCL/alginate fibres and micro-sized PCL struts, with mean pore sizes of 821 ± 55 μm. To show the feasibility of the scaffolds for hard-tissue regeneration, the scaffolds were assessed not only for physical properties, including hydrophilicity, water absorption, and tensile and compressive strength, but also in vitro cellular responses (cell viability and proliferation) and osteogenic differentiation (alkaline phosphatase (ALP) activity, and mineralisation) by culturing with pre-osteoblasts (MC3T3-E1 cells). With the reinforcing micro-sized PCL struts, the elastic modulus of the PCL/alginate scaffold was significantly improved versus a pure PCL scaffold. Additionally, due to the alginate component in the fibrous scaffold, they showed significantly enhanced hydrophilic behaviour, water absorption (∼8-fold) and significant biological activities (∼1.6-fold for cell viability at 7 days, ∼2.3-fold for ALP activity at 14 days and ∼6.4-fold for calcium mineralisation at 14 days) compared with those of a pure PCL fibrous scaffold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.

    PubMed

    Amir Afshar, Hamideh; Ghaee, Azadeh

    2016-10-20

    The chemical nature of biomaterials play important role in cell attachment, proliferation and migration in tissue engineering. Chitosan and alginate are biodegradable and biocompatible polymers used as scaffolds for various medical and clinical applications. Amine groups of chitosan scaffolds play an important role in cell attachment and water adsorption but also associate with alginate carboxyl groups via electrostatic interactions and hydrogen bonding, consequently the activity of amine groups in the scaffold decreases. In this study, chitosan/alginate/halloysite nanotube (HNTs) composite scaffolds were prepared using a freeze-drying method. Amine treatment on the scaffold occurred through chemical methods, which in turn caused the hydroxyl groups to be replaced with carboxyl groups in chitosan and alginate, after which a reaction between ethylenediamine, 1-ethyl-3,(3-dimethylaminopropyl) carbodiimide (EDC) and scaffold triggered the amine groups to connect to the carboxyl groups of chitosan and alginate. The chemical structure, morphology and mechanical properties of the composite scaffolds were investigated by FTIR, CHNS, SEM/EDS and compression tests. The electrostatic attraction and hydrogen bonding between chitosan, alginate and halloysite was confirmed by FTIR spectroscopy. Chitosan/alginate/halloysite scaffolds exhibit significant enhancement in compressive strength compared with chitosan/alginate scaffolds. CHNS and EDS perfectly illustrate that amine groups were effectively introduced in the aminated scaffold. The growth and cell attachment of L929 cells as well as the cytotoxicity of the scaffolds were investigated by SEM and Alamar Blue (AB). The results indicated that the aminated chitosan/alginate/halloysite scaffold has better cell growth and cell adherence in comparison to that of chitosan/alginate/halloysite samples. Aminated chitosan/alginate/halloysite composite scaffolds exhibit great potential for applications in tissue engineering, ideally in

  4. Efficacy of chitosan and sodium alginate scaffolds for repair of spinal cord injury in rats

    PubMed Central

    Yao, Zi-ang; Chen, Feng-jia; Cui, Hong-li; Lin, Tong; Guo, Na; Wu, Hai-ge

    2018-01-01

    Spinal cord injury results in the loss of motor and sensory pathways and spontaneous regeneration of adult mammalian spinal cord neurons is limited. Chitosan and sodium alginate have good biocompatibility, biodegradability, and are suitable to assist the recovery of damaged tissues, such as skin, bone and nerve. Chitosan scaffolds, sodium alginate scaffolds and chitosan-sodium alginate scaffolds were separately transplanted into rats with spinal cord hemisection. Basso-Beattie-Bresnahan locomotor rating scale scores and electrophysiological results showed that chitosan scaffolds promoted recovery of locomotor capacity and nerve transduction of the experimental rats. Sixty days after surgery, chitosan scaffolds retained the original shape of the spinal cord. Compared with sodium alginate scaffolds- and chitosan-sodium alginate scaffolds-transplanted rats, more neurofilament-H-immunoreactive cells (regenerating nerve fibers) and less glial fibrillary acidic protein-immunoreactive cells (astrocytic scar tissue) were observed at the injury site of experimental rats in chitosan scaffold-transplanted rats. Due to the fast degradation rate of sodium alginate, sodium alginate scaffolds and composite material scaffolds did not have a supporting and bridging effect on the damaged tissue. Above all, compared with sodium alginate and composite material scaffolds, chitosan had better biocompatibility, could promote the regeneration of nerve fibers and prevent the formation of scar tissue, and as such, is more suitable to help the repair of spinal cord injury. PMID:29623937

  5. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering.

    PubMed

    Erol, M M; Mouriňo, V; Newby, P; Chatzistavrou, X; Roether, J A; Hupa, L; Boccaccini, Aldo R

    2012-02-01

    The aim of this study was to synthesize and characterize new boron-containing bioactive glass-based scaffolds coated with alginate cross-linked with copper ions. A recently developed bioactive glass powder with nominal composition (wt.%) 65 SiO2, 15 CaO, 18.4 Na2O, 0.1 MgO and 1.5 B2O3 was fabricated as porous scaffolds by the foam replica method. Scaffolds were alginate coated by dipping them in alginate solution. Scanning electron microscopy investigations indicated that the alginate effectively attached on the surface of the three-dimensional scaffolds leading to a homogeneous coating. It was confirmed that the scaffold structure remained amorphous after the sintering process and that the alginate coating improved the scaffold bioactivity and mechanical properties. Copper release studies showed that the alginate-coated scaffolds allowed controlled release of copper ions. The novel copper-releasing composite scaffolds represent promising candidates for bone regeneration. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Generation of Stable Co-Cultures of Vascular Cells in a Honeycomb Alginate Scaffold

    PubMed Central

    Yamamoto, Masaya; James, Daylon; Li, Hui; Butler, Jason; Rafii, Shahin

    2010-01-01

    Scaffold-guided vascular tissue engineering has been investigated as a means to generate functional and transplantable vascular tissue grafts that increase the efficacy of cell-based therapeutic strategies in regenerative medicine. In this study, we employed confocal microscopy and three-dimensional reconstruction to assess the engraftment and growth potential of vascular cells within an alginate scaffold with aligned pores. We fabricated honeycomb alginate scaffolds with aligned pores, whose surface was immobilized with fibronectin and subsequently coated with matrigel. Endothelial cells were seeded into aligned pore scaffolds in the presence and absence of human smooth muscle cells. We showed that endothelial cells seeded into alginate scaffolds attach on the surface of aligned pores in vitro, giving rise to stable co-cultures of vascular cells. Moreover, the three-dimensional alginate depots containing the cells were exposed to laminar flow in order to recapitulate physiological shear stress found in the vasculature in vivo. After the flow exposure, the scaffold remained intact and some cells remained adherent to the scaffold and aligned in the flow direction. These studies demonstrate that alginate scaffolds provide a suitable matrix for establishing durable angiogenic modules that may ultimately enhance organ revascularization. PMID:19705957

  7. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing.

    PubMed

    Castilho, Miguel; Rodrigues, Jorge; Pires, Inês; Gouveia, Barbara; Pereira, Manuel; Moseke, Claus; Groll, Jürgen; Ewald, Andrea; Vorndran, Elke

    2015-01-06

    The development of polymer-calcium phosphate composite scaffolds with tailored architectures and properties has great potential for bone regeneration. Herein, we aimed to improve the functional performance of brittle ceramic scaffolds by developing a promising biopolymer-ceramic network. For this purpose, two strategies, namely, direct printing of a powder composition consisting of a 60:40 mixture of α/β-tricalcium phosphate (TCP) powder and alginate powder or vacuum infiltration of printed TCP scaffolds with an alginate solution, were tracked. Results of structural characterization revealed that the scaffolds printed with 2.5 wt% alginate-modified TCP powders presented a uniformly distributed and interfusing alginate TCP network. Mechanical results indicated a significant increase in strength, energy to failure and reliability of powder-modified scaffolds with an alginate content in the educts of 2.5 wt% when compared to pure TCP, as well as to TCP scaffolds containing 5 wt% or 7.5 wt% in the educts, in both dry and wet states. Culture of human osteoblast cells on these scaffolds also demonstrated a great improvement of cell proliferation and cell viability. While in the case of powder-mixed alginate TCP scaffolds, isolated alginate gels were formed between the calcium phosphate crystals, the vacuum-infiltration strategy resulted in the covering of the surface and internal pores of the TCP scaffold with a thin alginate film. Furthermore, the prediction of the scaffolds' critical fracture conditions under more complex stress states by the applied Mohr fracture criterion confirmed the potential of the powder-modified scaffolds with 2.5 wt% alginate in the educts as structural biomaterial for bone tissue engineering.

  8. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.

    PubMed

    Kundu, Joydip; Shim, Jin-Hyung; Jang, Jinah; Kim, Sung-Won; Cho, Dong-Woo

    2015-11-01

    Regenerative medicine is targeted to improve, restore or replace damaged tissues or organs using a combination of cells, materials and growth factors. Both tissue engineering and developmental biology currently deal with the process of tissue self-assembly and extracellular matrix (ECM) deposition. In this investigation, additive manufacturing (AM) with a multihead deposition system (MHDS) was used to fabricate three-dimensional (3D) cell-printed scaffolds using layer-by-layer (LBL) deposition of polycaprolactone (PCL) and chondrocyte cell-encapsulated alginate hydrogel. Appropriate cell dispensing conditions and optimum alginate concentrations for maintaining cell viability were determined. In vitro cell-based biochemical assays were performed to determine glycosaminoglycans (GAGs), DNA and total collagen contents from different PCL-alginate gel constructs. PCL-alginate gels containing transforming growth factor-β (TGFβ) showed higher ECM formation. The 3D cell-printed scaffolds of PCL-alginate gel were implanted in the dorsal subcutaneous spaces of female nude mice. Histochemical [Alcian blue and haematoxylin and eosin (H&E) staining] and immunohistochemical (type II collagen) analyses of the retrieved implants after 4 weeks revealed enhanced cartilage tissue and type II collagen fibril formation in the PCL-alginate gel (+TGFβ) hybrid scaffold. In conclusion, we present an innovative cell-printed scaffold for cartilage regeneration fabricated by an advanced bioprinting technology. Copyright © 2013 John Wiley & Sons, Ltd.

  9. A computational modeling approach for the characterization of mechanical properties of 3D alginate tissue scaffolds.

    PubMed

    Nair, K; Yan, K C; Sun, W

    2008-01-01

    Scaffold guided tissue engineering is an innovative approach wherein cells are seeded onto biocompatible and biodegradable materials to form 3-dimensional (3D) constructs that, when implanted in the body facilitate the regeneration of tissue. Tissue scaffolds act as artificial extracellular matrix providing the environment conducive for tissue growth. Characterization of scaffold properties is necessary to understand better the underlying processes involved in controlling cell behavior and formation of functional tissue. We report a computational modeling approach to characterize mechanical properties of 3D gellike biomaterial, specifically, 3D alginate scaffold encapsulated with cells. Alginate inherent nonlinearity and variations arising from minute changes in its concentration and viscosity make experimental evaluation of its mechanical properties a challenging and time consuming task. We developed an in silico model to determine the stress-strain relationship of alginate based scaffolds from experimental data. In particular, we compared the Ogden hyperelastic model to other hyperelastic material models and determined that this model was the most suitable to characterize the nonlinear behavior of alginate. We further propose a mathematical model that represents the alginate material constants in Ogden model as a function of concentrations and viscosity. This study demonstrates the model capability to predict mechanical properties of 3D alginate scaffolds.

  10. Culture of hESC-derived pancreatic progenitors in alginate-based scaffolds.

    PubMed

    Formo, Kjetil; Cho, Candy H-H; Vallier, Ludovic; Strand, Berit L

    2015-12-01

    The effect of alginate-based scaffolds with added basement membrane proteins on the in vitro development of hESC-derived pancreatic progenitors was investigated. Cell clusters were encapsulated in scaffolds containing the basement membrane proteins collagen IV, laminin, fibronectin, or extracellular matrix-derived peptides, and maintained in culture for up to 46 days. The cells remained viable throughout the experiment with no signs of central necrosis. Whereas nonencapsulated cells aggregated into larger clusters, some of which showed signs of morphological changes and tissue organization, the alginate matrix stabilized the cluster size and displayed more homogeneous cell morphologies, allowing culture for long periods of time. For all conditions tested, a stable or declining expression of insulin and PDX1 and an increase in glucagon and somatostatin over time indicated a progressive reduction in beta cell-related gene expression. Alginate scaffolds can provide a chemically defined, xeno-free and easily scalable alternative for culture of pancreatic progenitors. Although no increase in insulin and PDX1 gene expression after alginate-immobilized cell culture was seen in this study, further optimization of the matrix physicochemical and biological properties and of the medium composition may still be a relevant strategy to promote the stabilization or maturation of stem cell-derived beta cells. © 2015 Wiley Periodicals, Inc.

  11. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering.

    PubMed

    Luo, Yongxiang; Lode, Anja; Wu, Chengtie; Chang, Jiang; Gelinsky, Michael

    2015-04-01

    Composite scaffolds, especially polymer/hydroxyapatite (HAP) composite scaffolds with predesigned structures, are promising materials for bone tissue engineering. Various methods including direct mixing of HAP powder with polymers or incubating polymer scaffolds in simulated body fluid for preparing polymer/HAP composite scaffolds are either uncontrolled or require long times of incubation. In this work, alginate/nano-HAP composite scaffolds with designed pore parameters and core/shell structures were fabricated using 3D plotting technique and in situ mineralization under mild conditions (at room temperature and without the use of any organic solvents). Light microscopy, scanning electron microscopy, microcomputer tomography, X-ray diffraction, and Fourier transform infrared spectroscopy were applied to characterize the fabricated scaffolds. Mechanical properties and protein delivery of the scaffolds were evaluated, as well as the cell response to the scaffolds by culturing human bone-marrow-derived mesenchymal stem cells (hBMSC). The obtained data indicate that this method is suitable to fabricate alginate/nano-HAP composite scaffolds with a layer of nano-HAP, coating the surface of the alginate strands homogeneously and completely. The surface mineralization enhanced the mechanical properties and improved the cell attachment and spreading, as well as supported sustaining protein release, compared to pure alginate scaffolds without nano-HAP shell layer. The results demonstrated that the method provides an interesting option for bone tissue engineering application.

  12. Synthesis and characterization of chitosan-alginate scaffolds for seeding human umbilical cord derived mesenchymal stem cells.

    PubMed

    Kumbhar, Sneha G; Pawar, S H

    2016-01-01

    Chitosan and alginate are two natural and accessible polymers that are known to be biocompatible, biodegradable and possesses good antimicrobial activity. When combined, they exhibit desirable characteristics and can be created into a scaffold for cell culture. In this study interaction of chitosan-alginate scaffolds with mesenchymal stem cells are studied. Mesenchymal stem cells were derived from human umbilical cord tissues, characterized by flow cytometry and other growth parameters studied as well. Proliferation and viability of cultured cells were studied by MTT Assay and Trypan Blue dye exclusion assay. Besides chitosan-alginate scaffold was prepared by freeze-drying method and characterized by FTIR, SEM and Rheological properties. The obtained 3D porous structure allowed very efficient seeding of hUMSCs that are able to inhabit the whole volume of the scaffold, showing good adhesion and proliferation. These materials showed desirable rheological properties for facile injection as tissue scaffolds. The results of this study demonstrated that chitosan-alginate scaffold may be promising biomaterial in the field of tissue engineering, which is currently under a great deal of examination for the development and/or restoration of tissue and organs. It combines the stem cell therapy and biomaterials.

  13. RGDfK-Peptide Modified Alginate Scaffold for Cell Transplantation and Cardiac Neovascularization.

    PubMed

    Sondermeijer, Hugo P; Witkowski, Piotr; Seki, Tetsunori; van der Laarse, Arnoud; Itescu, Silviu; Hardy, Mark A

    2018-05-01

    Cell implantation for tissue repair is a promising new therapeutic strategy. Although direct injection of cells into tissue is appealing, cell viability and retention are not very good. Cell engraftment and survival following implantation are dependent on a sufficient supply of oxygen and nutrients through functional microcirculation as well as a suitable local microenvironment for implanted cells. In this study, we describe the development of a porous, biocompatible, three-dimensional (3D) alginate scaffold covalently modified with the synthetic cyclic RGDfK (Arg-Gly-Asp-D-Phe-Lys) peptide. Cyclic RGDfK peptide is protease resistant, highly stable in aqueous solutions, and has high affinity for cellular integrins. Cyclic RGDfK-modified alginate scaffolds were generated using a novel silicone sheet sandwich technique in combination with freeze-gelation, resulting in highly porous nonimmunogenic scaffolds that promoted both human and rodent cell survival in vitro, and neoangiogenesis in vivo. Two months following implantation in abdominal rectus muscles in rats, cyclic RGDfK-modified scaffolds were fully populated by host cells, especially microvasculature without an overt immune response or fibrosis, whereas unmodified control scaffolds did not show cell ingrowth. Importantly, modified scaffolds that were seeded with human mesenchymal precursor cells and were patched to the epicardial surface of infarcted myocardium induced myocardial neoangiogenesis and significantly improved cardiac function. In summary, purified cyclic RGDfK peptide-modified 3D alginate scaffolds are biocompatible and nonimmunogenic, enhance cell viability, promote angiogenesis, and may be used as a means to deliver cells to myocardial infarct areas to improve neovascularization and cardiac function.

  14. Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds.

    PubMed

    Florczyk, Stephen J; Kim, Dae-Joon; Wood, David L; Zhang, Miqin

    2011-09-15

    Fabrication of porous polymeric scaffolds with controlled structure can be challenging. In this study, we investigated the influence of key experimental parameters on the structures and mechanical properties of resultant porous chitosan-alginate (CA) polyelectrolyte complex (PEC) scaffolds, and on proliferation of MG-63 osteoblast-like cells, targeted at bone tissue engineering. We demonstrated that the porous structure is largely affected by the solution viscosity, which can be regulated by the acetic acid and alginate concentrations. We found that the CA PEC solutions with viscosity below 300 Pa.s yielded scaffolds of uniform pore structure and that more neutral pH promoted more complete complexation of chitosan and alginate, yielding stiffer scaffolds. CA PEC scaffolds produced from solutions with viscosities below 300 Pa.s also showed enhanced cell proliferation compared with other samples. By controlling the key experimental parameters identified in this study, CA PEC scaffolds of different structures can be made to suit various tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.

  15. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.

    PubMed

    Lee, Gil-Su; Park, Jeong-Hui; Shin, Ueon Sang; Kim, Hae-Won

    2011-08-01

    This study reports the preparation of novel porous scaffolds of calcium phosphate cement (CPC) combined with alginate, and their potential usefulness as a three-dimensional (3-D) matrix for drug delivery and tissue engineering of bone. An α-tricalcium phosphate-based powder was mixed with sodium alginate solution and then directly injected into a fibrous structure in a Ca-containing bath. A rapid hardening reaction of the alginate with Ca(2+) helps to shape the composite into a fibrous form with diameters of hundreds of micrometers, and subsequent pressing in a mold allows the formation of 3-D porous scaffolds with different porosity levels. After transformation of the CPC into a calcium-deficient hydroxyapatite phase in simulated biological fluid the scaffold was shown to retain its mechanical stability. During the process biological proteins, such as bovine serum albumin and lysozyme, used as model proteins, were observed to be effectively loaded onto and released from the scaffolds for up to more than a month, proving the efficacy of the scaffolds as a drug delivering matrix. Mesenchymal stem cells (MSCs) were isolated from rat bone marrow and then cultured on the CPC-alginate porous scaffolds to investigate the ability to support proliferation of cells and their subsequent differentiation along the osteogenic lineage. It was shown that MSCs increasingly actively populated and also permeated into the porous network with time of culture. In particular, cells cultured within a scaffold with a relatively high porosity level showed favorable proliferation and osteogenic differentiation. An in vivo pilot study of the CPC-alginate porous scaffolds after implantation into the rat calvarium for 6 weeks revealed the formation of new bone tissue within the scaffold, closing the defect almost completely. Based on these results, the newly developed CPC-alginate porous scaffolds could be potentially useful as a 3-D matrix for drug delivery and tissue engineering of bone

  16. Enhancing cell migration in shape-memory alginate-collagen composite scaffolds: In vitro and ex vivo assessment for intervertebral disc repair.

    PubMed

    Guillaume, Olivier; Naqvi, Syeda Masooma; Lennon, Kerri; Buckley, Conor Timothy

    2015-04-01

    Lower lumbar disc disorders pose a significant problem in an aging society with substantial socioeconomic consequences. Both inner tissue (nucleus pulposus) and outer tissue (annulus fibrosus) of the intervertebral disc are affected by such debilitating disorders and can lead to disc herniation and lower back pain. In this study, we developed an alginate-collagen composite porous scaffold with shape-memory properties to fill defects occurring in annulus fibrosus tissue of degenerated intervertebral discs, which has the potential to be administered using minimal invasive surgery. In the first part of this work, we assessed how collagen incorporation on preformed alginate scaffolds influences the physical properties of the final composite scaffold. We also evaluated the ability of annulus fibrosus cells to attach, migrate, and proliferate on the composite alginate-collagen scaffolds compared to control scaffolds (alginate only). In vitro experiments, performed in intervertebral disc-like microenvironmental conditions (low glucose and low oxygen concentrations), revealed that for alginate only scaffolds, annulus fibrosus cells agglomerated in clusters with limited infiltration and migration capacity. In comparison, for alginate-collagen scaffolds, annulus fibrosus cells readily attached and colonized constructs, while preserving their typical fibroblastic-like cell morphology with spreading behavior and intense cytoskeleton expression. In a second part of this study, we investigated the effects of alginate-collagen scaffold when seeded with bone marrow derived mesenchymal stem cells. In vitro, we observed that alginate-collagen porous scaffolds supported cell proliferation and extracellular matrix deposition (collagen type I), with secretion amplified by the local release of transforming growth factor-β3. In addition, when cultured in ex vivo organ defect model, alginate-collagen scaffolds maintained viability of transplanted mesenchymal stem cells for up to 5

  17. Low intensity pulse ultrasound stimulate chondrocytes growth in a 3-D alginate scaffold through improved porosity and permeability.

    PubMed

    Guo, Gepu; Lu, Lu; Ji, Hongfei; Ma, Yong; Dong, Rui; Tu, Juan; Guo, Xiasheng; Qiu, Yuanyuan; Wu, Junru; Zhang, Dong

    2015-04-01

    A 3-D scaffold culture system has been used to promote in producing functional chondrocytes for repairing damaged cartilage. In the present study, the low intensity pulse ultrasound (LIPUS) (P(-)=0, 0.055, 0.085 and 0.11 MPa) was applied to improve the porosity and permeability of a 3-D alginate scaffold which was beneficial for the nutrition supply and metabolism during cell growth in 3-D alginate scaffold. The porosity and permeability of the scaffold was quantitatively analyzed based on scanning electron microscopy examination and fluorescence image observation. The results suggest that, for the scaffold exposed to LIPUS, its porosity and permeability could be significantly enhanced by the increasing LIPUS amplitude, which might be induced by the microstreaming shear stress generated by ultrasound-driven microbubble oscillations. Furthermore, the assessments of cell proliferation and collagen II expression confirmed that chondrocytes growth could be effectively promoted in 3-D alginate scaffolds treated by LIPUS, because of the improved scaffold porosity and permeability might benefit cell growth space and nutrition supply. It should also be noticed that appropriate LIPUS driving parameters should be adapted to achieve optimized chondrocytes culture effect in 3-D alginate scaffold. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Evaluation of PBS Treatment and PEI Coating Effects on Surface Morphology and Cellular Response of 3D-Printed Alginate Scaffolds.

    PubMed

    Mendoza García, María A; Izadifar, Mohammad; Chen, Xiongbiao

    2017-11-01

    Three-dimensional (3D) printing is an emerging technology for the fabrication of scaffolds to repair/replace damaged tissue/organs in tissue engineering. This paper presents our study on 3D printed alginate scaffolds treated with phosphate buffered saline (PBS) and polyethyleneimine (PEI) coating and their impacts on the surface morphology and cellular response of the printed scaffolds. In our study, sterile alginate was prepared by means of the freeze-drying method and then, used to prepare the hydrogel for 3D printing into calcium chloride, forming 3D scaffolds. Scaffolds were treated with PBS for a time period of two days and seven days, respectively, and PEI coating; then they were seeded with Schwann cells (RSC96) for the examination of cellular response (proliferation and differentiation). In addition, swelling and stiffness (Young's modulus) of the treated scaffolds was evaluated, while their surface morphology was assessed using scanning electron microscopy (SEM). SEM images revealed significant changes in scaffold surface morphology due to degradation caused by the PBS treatment over time. Our cell proliferation assessment over seven days showed that a two-day PBS treatment could be more effective than seven-day PBS treatment for improving cell attachment and elongation. While PEI coating of alginate scaffolds seemed to contribute to cell growth, Schwann cells stayed round on the surface of alginate over the period of cell culture. In conclusion, PBS-treatment may offer the potential to induce surface physical cues due to degradation of alginate, which could improve cell attachment post cell-seeding of 3D-printed alginate scaffolds.

  19. Novel alginate biphasic scaffold for osteochondral regeneration: an in vivo evaluation in rabbit and sheep models.

    PubMed

    Filardo, Giuseppe; Perdisa, Francesco; Gelinsky, Michael; Despang, Florian; Fini, Milena; Marcacci, Maurilio; Parrilli, Anna Paola; Roffi, Alice; Salamanna, Francesca; Sartori, Maria; Schütz, Kathleen; Kon, Elizaveta

    2018-05-26

    Current therapeutic strategies for osteochondral restoration showed a limited regenerative potential. In fact, to promote the growth of articular cartilage and subchondral bone is a real challenge, due to the different functional and anatomical properties. To this purpose, alginate is a promising biomaterial for a scaffold-based approach, claiming optimal biocompatibility and good chondrogenic potential. A previously developed mineralized alginate scaffold was investigated in terms of the ability to support osteochondral regeneration both in a large and medium size animal model. The results were evaluated macroscopically and by microtomography, histology, histomorphometry, and immunohistochemical analysis. No evidence of adverse or inflammatory reactions was observed in both models, but limited subchondral bone formation was present, together with a slow scaffold resorption time.The implantation of this biphasic alginate scaffold provided partial osteochondral regeneration in the animal model. Further studies are needed to evaluate possible improvement in terms of osteochondral tissue regeneration for this biomaterial.

  20. Optimization of alginate purification using polyvinylidene difluoride membrane filtration: Effects on immunogenicity and biocompatibility of three-dimensional alginate scaffolds

    PubMed Central

    Sondermeijer, Hugo P; Witkowski, Piotr; Woodland, David; Seki, Tetsunori; Aangenendt, Frank J; van der Laarse, Arnoud; Itescu, Silviu; Hardy, Mark A

    2017-01-01

    Sodium alginate is an effective biomaterial for tissue engineering applications. Non-purified alginate is contaminated with protein, lipopolysaccharide, DNA, and RNA, which could elicit adverse immunological reactions. We developed a purification protocol to generate biocompatible alginate based on (a) activated charcoal treatment, (b) use of hydrophobic membrane filtration (we used hydrophobic polyvinylidene difluoride membranes to remove organic contaminants), (c) dialysis, and finally (d) ethanol precipitation. Using this approach, we could omit pre-treatment with chloroform and significantly reduce the quantities of reagents used. Purification resulted in reduction of residual protein by 70% down to 0.315 mg/g, DNA by 62% down to 1.28 μg/g, and RNA by 61% down to less than 10 μg/g, respectively. Lipopolysaccharide levels were reduced by >90% to less than 125 EU/g. Purified alginate did not induce splenocyte proliferation in vitro. Three-dimensional scaffolds generated from purified alginate did not elicit a significant foreign body reaction, fibrotic overgrowth, or macrophage infiltration 4 weeks after implantation. This study describes a simplified and economical alginate purification method that results in alginate purity, which meets clinically useful criteria. PMID:27114440

  1. Magnetic alginate microfibers as scaffolding elements for the fabrication of microvascular-like structures.

    PubMed

    Sun, Tao; Shi, Qing; Huang, Qiang; Wang, Huaping; Xiong, Xiaolu; Hu, Chengzhi; Fukuda, Toshio

    2018-01-15

    Traditional cell-encapsulating scaffolds may elicit adverse host responses and inhomogeneity in cellular distribution. Thus, fabrication techniques for cellular self-assembly with micro-scaffold incorporation have been used recently to generate toroidal cellular modules for the bottom-up construction of vascular-like structures. The micro-scaffolds show advantage in promoting tissue formation. However, owing to the lack of annular cell micro-scaffolds, it remains a challenge to engineer micro-scale toroidal cellular modules (micro-TCMs) to fabricate microvascular-like structures. Here, magnetic alginate microfibers (MAMs) are used as scaffolding elements, where a winding strategy enables them to be formed into micro-rings as annular cell micro-scaffolds. These micro-rings were investigated for NIH/3T3 fibroblast growth as a function of surface chemistry and MAM size. Afterwards, micro-TCMs were successfully fabricated with the formation of NIH/3T3 fibroblasts and extracellular matrix layers on the three-dimensional micro-ring surfaces. Simple non-contact magnetic assembly was used to stack the micro-TCMs along a micro-pillar, after which cell fusion rapidly connected the assembled micro-TCMs into a microvascular-like structure. Endothelial cells or drugs encapsulated in the MAMs could be included in the microvascular-like structures as in vitro cellular models for vascular tissue engineering, or as miniaturization platforms for pharmaceutical drug testing in the future. Magnetic alginate microfibers functioned as scaffolding elements for guiding cell growth in micro-scale toroidal cellular modules (micro-TCMs) and provided a magnetic functionality to the micro-TCMs for non-contact 3D assembly in external magnetic fields. By using the liquid/air interface, the non-contact spatial manipulation of the micro-TCMs in the liquid environment was performed with a cost-effective motorized electromagnetic needle. A new biofabrication paradigm of construct of microvascular

  2. Three-dimensional plotted hydroxyapatite scaffolds with predefined architecture: comparison of stabilization by alginate cross-linking versus sintering.

    PubMed

    Kumar, Alok; Akkineni, Ashwini R; Basu, Bikramjit; Gelinsky, Michael

    2016-03-01

    Scaffolds for bone tissue engineering are essentially characterized by porous three-dimensional structures with interconnected pores to facilitate the exchange of nutrients and removal of waste products from cells, thereby promoting cell proliferation in such engineered scaffolds. Although hydroxyapatite is widely being considered for bone tissue engineering applications due to its occurrence in the natural extracellular matrix of this tissue, limited reports are available on additive manufacturing of hydroxyapatite-based materials. In this perspective, hydroxyapatite-based three-dimensional porous scaffolds with two different binders (maltodextrin and sodium alginate) were fabricated using the extrusion method of three-dimensional plotting and the results were compared in reference to the structural properties of scaffolds processed via chemical stabilization and sintering routes, respectively. With the optimal processing conditions regarding to pH and viscosity of binder-loaded hydroxyapatite pastes, scaffolds with parallelepiped porous architecture having up to 74% porosity were fabricated. Interestingly, sintering of the as-plotted hydroxyapatite-sodium alginate (cross-linked with CaCl2 solution) scaffolds led to the formation of chlorapatite (Ca9.54P5.98O23.8Cl1.60(OH)2.74). Both the sintered scaffolds displayed progressive deformation and delayed fracture under compressive loading, with hydroxyapatite-alginate scaffolds exhibiting a higher compressive strength (9.5 ± 0.5 MPa) than hydroxyapatite-maltodextrin scaffolds (7.0 ± 0.6 MPa). The difference in properties is explained in terms of the phase assemblage and microstructure. © The Author(s) 2015.

  3. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering.

    PubMed

    Yan, Jingxuan; Miao, Yuting; Tan, Huaping; Zhou, Tianle; Ling, Zhonghua; Chen, Yong; Xing, Xiaodong; Hu, Xiaohong

    2016-06-01

    Injectable and biodegradable alginate-based composite gel scaffolds doubly integrated with hydroxyapatite (HAp) and gelatin microspheres (GMs) were cross-linked via in situ release of calcium cations. As triggers of calcium cations, CaCO3 and glucono-D-lactone (GDL) were fixed as a mass ratio of 1:1 to control pH value ranging from 6.8 to 7.2 during gelation. Synchronously, tetracycline hydrochloride (TH) was encapsulated into GMs to enhance bioactivity of composite gel scaffolds. The effects of HAp and GMs on characteristics of gel scaffolds, including pH value, gelation time, mechanical properties, swelling ratio, degradation behavior and drug release, were investigated. The results showed that HAp and GMs successfully improved mechanical properties of gel scaffolds at strain from 0.1 to 0.5, which stabilized the gel network and decreased weight loss, as well as swelling ratio and gelation time. TH could be released from this composite gel scaffold into the local microenvironment in a controlled fashion by the organic/inorganic hybrid of hydrogel network. Our results demonstrate that the HAp and GMs doubly integrated alginate-based gel scaffolds, especially the one with 6% (w/v) HAp and 5% (w/v) GMs, have suitable physical performance and bioactive properties, thus provide a potential opportunity to be used for bone tissue engineering. The potential application of this gel scaffold in bone tissue engineering was confirmed by encapsulation behavior of osteoblasts. In combination with TH, the gel scaffold exhibited beneficial effects on osteoblast activity, which suggested a promising future for local treatment of pathologies involving bone loss. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Anisotropic Shape-Memory Alginate Scaffolds Functionalized with Either Type I or Type II Collagen for Cartilage Tissue Engineering.

    PubMed

    Almeida, Henrique V; Sathy, Binulal N; Dudurych, Ivan; Buckley, Conor T; O'Brien, Fergal J; Kelly, Daniel J

    2017-01-01

    Regenerating articular cartilage and fibrocartilaginous tissue such as the meniscus is still a challenge in orthopedic medicine. While a range of different scaffolds have been developed for joint repair, none have facilitated the development of a tissue that mimics the complexity of soft tissues such as articular cartilage. Furthermore, many of these scaffolds are not designed to function in mechanically challenging joint environments. The overall goal of this study was to develop a porous, biomimetic, shape-memory alginate scaffold for directing cartilage regeneration. To this end, a scaffold was designed with architectural cues to guide cellular and neo-tissue alignment, which was additionally functionalized with a range of extracellular matrix cues to direct stem cell differentiation toward the chondrogenic lineage. Shape-memory properties were introduced by covalent cross-linking alginate using carbodiimide chemistry, while the architecture of the scaffold was modified using a directional freezing technique. Introducing such an aligned pore structure was found to improve the mechanical properties of the scaffold, and promoted higher levels of sulfated glycosaminoglycans (sGAG) and collagen deposition compared to an isotropic (nonaligned) pore geometry when seeded with adult human stem cells. Functionalization with collagen improved stem cell recruitment into the scaffold and facilitated more homogenous cartilage tissue deposition throughout the construct. Incorporating type II collagen into the scaffolds led to greater cell proliferation, higher sGAG and collagen accumulation, and the development of a stiffer tissue compared to scaffolds functionalized with type I collagen. The results of this study demonstrate how both scaffold architecture and composition can be tailored in a shape-memory alginate scaffold to direct stem cell differentiation and support the development of complex cartilaginous tissues.

  5. Friction of sodium alginate hydrogel scaffold fabricated by 3-D printing.

    PubMed

    Yang, Qian; Li, Jian; Xu, Heng; Long, Shijun; Li, Xuefeng

    2017-04-01

    A rapid prototyping technology, formed by three-dimensional (3-D) printing and then crosslinked by spraying Ca 2+ solution, is developed to fabricate a sodium alginate (SA) hydrogel scaffold. The porosity, swelling ratio, and compression modulus of the scaffold are investigated. A friction mechanism is developed by studying the reproducible friction behavior. Our results show that the scaffold can have 3-D structure with a porosity of 52%. The degree of swelling of the SA hydrogel scaffold is 8.5, which is nearly the same as bulk SA hydrogel. SA hydrogel exhibits better compressive resilience than bulk hydrogel despite its lower compressive modulus compared to bulk hydrogel. The SA hydrogel scaffold exhibits a higher frictional force at low sliding velocity (10 -6 to 10 -3  m/s) compared to bulk SA hydrogel, and they are equal at high sliding velocity (10 -2 to 1 m/s). For a small pressure (0.3 kPa), the SA hydrogel scaffold shows good friction reproducibility. In contrast, bulk SA hydrogel shows poor reproducibility with respect to friction behavior. The differences in friction behaviors between the SA hydrogel scaffold and bulk SA hydrogel are related to the structure of the scaffold, which can keep a stable hydrated lubrication layer.

  6. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering.

    PubMed

    Sharma, Chhavi; Dinda, Amit Kumar; Potdar, Pravin D; Chou, Chia-Fu; Mishra, Narayan Chandra

    2016-07-01

    A novel nano-biocomposite scaffold was fabricated in bead form by applying simple foaming method, using a combination of natural polymers-chitosan, gelatin, alginate and a bioceramic-nano-hydroxyapatite (nHAp). This approach of combining nHAp with natural polymers to fabricate the composite scaffold, can provide good mechanical strength and biological property mimicking natural bone. Environmental scanning electron microscopy (ESEM) images of the nano-biocomposite scaffold revealed the presence of interconnected pores, mostly spread over the whole surface of the scaffold. The nHAp particulates have covered the surface of the composite matrix and made the surface of the scaffold rougher. The scaffold has a porosity of 82% with a mean pore size of 112±19.0μm. Swelling and degradation studies of the scaffold showed that the scaffold possesses excellent properties of hydrophilicity and biodegradability. Short term mechanical testing of the scaffold does not reveal any rupturing after agitation under physiological conditions, which is an indicative of good mechanical stability of the scaffold. In vitro cell culture studies by seeding osteoblast cells over the composite scaffold showed good cell viability, proliferation rate, adhesion and maintenance of osteoblastic phenotype as indicated by MTT assay, ESEM of cell-scaffold construct, histological staining and gene expression studies, respectively. Thus, it could be stated that the nano-biocomposite scaffold of chitosan-gelatin-alginate-nHAp has the paramount importance for applications in bone tissue-engineering in future regenerative therapies. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.

    PubMed

    Bendtsen, Stephanie T; Quinnell, Sean P; Wei, Mei

    2017-05-01

    Three-dimensional printed biomaterials used as personalized tissue substitutes have the ability to promote and enhance regeneration in areas of defected tissue. The challenge with 3D printing for bone tissue engineering remains the selection of a material with optimal rheological properties for printing in addition to biocompatibility and capacity for uniform cell incorporation. Hydrogel biomaterials may provide sufficient printability to allow cell encapsulation and bioprinting of scaffolds with uniform cell distribution. In this study, a novel alginate-polyvinyl alcohol (PVA)-hydroxyapatite (HA) hydrogel formulation with optimal rheological properties for 3D bioprinting of mouse calvaria 3T3-E1 (MC3T3) cells into scaffolds of high shape fidelity has been developed. A systematic investigation was conducted to determine the effect of varying concentrations of alginate, phosphate, calcium, and the PVA-HA suspension in the formulation on the resulting viscosity and thus printability of the hydrogel. HA, the main mineral component in natural bone, was incorporated into the hydrogel formulation to create a favorable bone-forming environment due to its excellent osteoconductivity. Degradation studies in α-MEM cell culture media showed that the 3D printed alginate-PVA-HA scaffolds remained in-tact for 14 days. MC3T3 cells were well distributed and encapsulated throughout the optimal hydrogel formulation and expressed high viability through the completion of the 3D printing process. Thus, the development of this novel, osteoconductive, biodegradable, alginate-PVA-HA formulation and its ability to 3D bioprint tissue engineered scaffolds make it a promising candidate for treating personalized bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1457-1468, 2017. © 2017 Wiley Periodicals, Inc.

  8. 3D porous calcium-alginate scaffolds cell culture system improved human osteoblast cell clusters for cell therapy.

    PubMed

    Chen, Ching-Yun; Ke, Cherng-Jyh; Yen, Ko-Chung; Hsieh, Hui-Chen; Sun, Jui-Sheng; Lin, Feng-Huei

    2015-01-01

    Age-related orthopedic disorders and bone defects have become a critical public health issue, and cell-based therapy is potentially a novel solution for issues surrounding bone tissue engineering and regenerative medicine. Long-term cultures of primary bone cells exhibit phenotypic and functional degeneration; therefore, culturing cells or tissues suitable for clinical use remain a challenge. A platform consisting of human osteoblasts (hOBs), calcium-alginate (Ca-Alginate) scaffolds, and a self-made bioreactor system was established for autologous transplantation of human osteoblast cell clusters. The Ca-Alginate scaffold facilitated the growth and differentiation of human bone cell clusters, and the functionally-closed process bioreactor system supplied the soluble nutrients and osteogenic signals required to maintain the cell viability. This system preserved the proliferative ability of cells and cell viability and up-regulated bone-related gene expression and biological apatite crystals formation. The bone-like tissue generated could be extracted by removal of calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation, and exhibited a size suitable for injection. The described strategy could be used in therapeutic application and opens new avenues for surgical interventions to correct skeletal defects.

  9. Jellyfish collagen and alginate: Combined marine materials for superior chondrogenesis of hMSC.

    PubMed

    Pustlauk, W; Paul, B; Gelinsky, M; Bernhardt, A

    2016-07-01

    Marine, hybrid constructs of porous scaffolds from fibrillized jellyfish collagen and alginate hydrogel are mimicking both of the main tissue components of cartilage, thus being a promising approach for chondrogenic differentiation of human mesenchymal stem cells (hMSC). Investigating their potential for articular cartilage repair, the present study examined scaffolds being either infiltrated with an alginate-cell-suspension (ACS) or seeded with hMSC and embedded in alginate after cell adhesion (EAS). Hybrid constructs with 2×10(5) and 4.5×10(5)hMSC/scaffold were compared to hMSC encapsulated in pure alginate discs, both chondrogenically stimulated for 21days. Typical round, chondrocyte-like morphology was observed in pure alginate gels and ACS scaffolds, while cells in EAS were elongated and tightly attached to the collagen pores. Col 2 gene expression was comparable in all scaffold types examined. However, the Col 2/Col 1 ratio was higher for pure alginate discs and ACS scaffolds compared to EAS. In contrast, cells in EAS scaffolds displayed higher gene expression of Sox 9, Col 11 and ACAN compared to ACS and pure alginate. Secretion of sulfated glycosaminoglycans (sGAG) was comparable for ACS and EAS scaffolds. In conclusion hybrid constructs of jellyfish collagen and alginate support hMSC chondrogenic differentiation and provide more stable and constructs compared to pure hydrogels. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment.

    PubMed

    Kievit, Forrest M; Florczyk, Stephen J; Leung, Matthew C; Veiseh, Omid; Park, James O; Disis, Mary L; Zhang, Miqin

    2010-08-01

    Despite recent advances in the understanding of its cell biology, glioma remains highly lethal. Development of effective therapies requires a cost-effective in vitro tumor model that more accurately resembles the in vivo tumor microenvironment as standard two-dimensional (2D) tissue culture conditions do so poorly. Here we report on the use of a three-dimensional (3D) chitosan-alginate (CA) scaffold to serve as an extracellular matrix that promotes the conversion of cultured cancer cells to a more malignant in vivo-like phenotype. Human U-87 MG and U-118 MG glioma cells and rat C6 glioma cells were chosen for the study. In vitro tumor cell proliferation and secretion of factors that promote tumor malignancy, including VEGF, MMP-2, fibronectin, and laminin, were assessed. The scaffolds pre-cultured with U-87 MG and C6 cells were then implanted into nude mice to evaluate tumor growth and blood vessel recruitment compared to the standard 2D cell culture and 3D Matrigel matrix xenograft controls. Our results indicate that while the behavior of C6 cells showed minimal differences due to their highly malignant and invasive nature, U-87 MG and U-118 MG cells exhibited notably higher malignancy when cultured in CA scaffolds. CA scaffolds provide a 3D microenvironment for glioma cells that is more representative of the in vivo tumor, thus can serve as a more effective platform for development and study of anticancer therapeutics. This unique CA scaffold platform may offer a valuable alternative strategy to the time-consuming and costly animal studies for a wide variety of experimental designs. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Delivery of Alginate Scaffold Releasing Two Trophic Factors for Spinal Cord Injury Repair

    PubMed Central

    Grulova, I.; Slovinska, L.; Blaško, J.; Devaux, S.; Wisztorski, M.; Salzet, M.; Fournier, I.; Kryukov, O.; Cohen, S.; Cizkova, D.

    2015-01-01

    Spinal cord injury (SCI) has been implicated in neural cell loss and consequently functional motor and sensory impairment. In this study, we propose an alginate -based neurobridge enriched with/without trophic growth factors (GFs) that can be utilized as a therapeutic approach for spinal cord repair. The bioavailability of key GFs, such as Epidermal Growth factor (EGF) and basic Fibroblast Growth Factor (bFGF) released from injected alginate biomaterial to the central lesion site significantly enhanced the sparing of spinal cord tissue and increased the number of surviving neurons (choline acetyltransferase positive motoneurons) and sensory fibres. In addition, we document enhanced outgrowth of corticospinal tract axons and presence of blood vessels at the central lesion. Tissue proteomics was performed at 3, 7 and 10 days after SCI in rats indicated the presence of anti-inflammatory factors in segments above the central lesion site, whereas in segments below, neurite outgrowth factors, inflammatory cytokines and chondroitin sulfate proteoglycan of the lectican protein family were overexpressed. Collectively, based on our data, we confirm that functional recovery was significantly improved in SCI groups receiving alginate scaffold with affinity-bound growth factors (ALG +GFs), compared to SCI animals without biomaterial treatment. PMID:26348665

  12. Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: Experimental and numerical approaches.

    PubMed

    Naghieh, Saman; Karamooz-Ravari, Mohammad Reza; Sarker, M D; Karki, Eva; Chen, Xiongbiao

    2018-04-01

    Tissue scaffolds fabricated by three-dimensional (3D) bioprinting are attracting considerable attention for tissue engineering applications. Because the mechanical properties of hydrogel scaffolds should match the damaged tissue, changing various parameters during 3D bioprinting has been studied to manipulate the mechanical behavior of the resulting scaffolds. Crosslinking scaffolds using a cation solution (such as CaCl 2 ) is also important for regulating the mechanical properties, but has not been well documented in the literature. Here, the effect of varied crosslinking agent volume and crosslinking time on the mechanical behavior of 3D bioplotted alginate scaffolds was evaluated using both experimental and numerical methods. Compression tests were used to measure the elastic modulus of each scaffold, then a finite element model was developed and a power model used to predict scaffold mechanical behavior. Results showed that crosslinking time and volume of crosslinker both play a decisive role in modulating the mechanical properties of 3D bioplotted scaffolds. Because mechanical properties of scaffolds can affect cell response, the findings of this study can be implemented to modulate the elastic modulus of scaffolds according to the intended application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Proliferation and enrichment of CD133(+) glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds.

    PubMed

    Kievit, Forrest M; Florczyk, Stephen J; Leung, Matthew C; Wang, Kui; Wu, Jennifer D; Silber, John R; Ellenbogen, Richard G; Lee, Jerry S H; Zhang, Miqin

    2014-11-01

    Emerging evidence implicates cancer stem cells (CSCs) as primary determinants of the clinical behavior of human cancers, representing an ideal target for next-generation anti-cancer therapies. However CSCs are difficult to propagate in vitro, severely limiting the study of CSC biology and drug development. Here we report that growing cells from glioblastoma (GBM) cell lines on three dimensional (3D) porous chitosan-alginate (CA) scaffolds dramatically promotes the proliferation and enrichment of cells possessing the hallmarks of CSCs. CA scaffold-grown cells were found more tumorigenic in nude mouse xenografts than cells grown from monolayers. Growing in CA scaffolds rapidly promoted expression of genes involved in the epithelial-to-mesenchymal transition that has been implicated in the genesis of CSCs. Our results indicate that CA scaffolds have utility as a simple and inexpensive means to cultivate CSCs in vitro in support of studies to understand CSC biology and develop more effective anti-cancer therapies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Alginate/Gelatin scaffolds incorporated with Silibinin-loaded Chitosan nanoparticles for bone formation in vitro.

    PubMed

    Leena, R S; Vairamani, M; Selvamurugan, N

    2017-10-01

    Silibinin is a plant derived flavonolignan known for its multiple biological properties, but its role in the promotion of bone formation has not yet been well studied. Moreover, the delivery of Silibinin is hindered by its complex hydrophobic nature, which limits its bioavailability. Hence, in this study, we fabricated a drug delivery system using chitosan nanoparticles loaded with Silibinin at different concentrations (20μM, 50μM, and 100μM). They were then incorporated into scaffolds containing Alginate and Gelatin (Alg/Gel) for the sustained and prolonged release of Silibinin. The Silibinin-loaded chitosan nanoparticles (SCN) were prepared using the ionic gelation technique, and the scaffolds (Alg/Gel-SCN) were synthesized by the conventional method of freeze drying. The scaffolds were subjected to physicochemical and material characterization studies. The addition of SCN did not affect the porosity of the scaffolds, yet increased the protein adsorption, degradation rates, and bio-mineralization. These scaffolds were biocompatible with mouse mesenchymal stem cells. The scaffolds loaded with 50μM Silibinin promoted osteoblast differentiation, which was determined at cellular and molecular levels. Recent studies indicated the role of microRNAs (miRNAs) in osteogenesis and we found that the Silibinin released from scaffolds regulated miRNAs that control the bone morphogenetic protein pathway. Hence, our results suggest the potential for sustained and prolonged release of Silibinin to promote bone formation and, thus, these Alg/Gel-SCN scaffolds may be candidates for bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Strategies for neurotrophin-3 and chondroitinase ABC release from freeze-cast chitosan-alginate nerve-guidance scaffolds.

    PubMed

    Francis, Nicola L; Hunger, Philipp M; Donius, Amalie E; Wegst, Ulrike G K; Wheatley, Margaret A

    2017-01-01

    Freeze casting, or controlled unidirectional solidification, can be used to fabricate chitosan-alginate (C-A) scaffolds with highly aligned porosity that are suitable for use as nerve-guidance channels. To augment the guidance of growth across a spinal cord injury lesion, these scaffolds are now evaluated in vitro to assess their ability to release neurotrophin-3 (NT-3) and chondroitinase ABC (chABC) in a controlled manner. Protein-loaded microcapsules were incorporated into C-A scaffolds prior to freeze casting without affecting the original scaffold architecture. In vitro protein release was not significantly different when comparing protein loaded directly into the scaffolds with release from scaffolds containing incorporated microcapsules. NT-3 was released from the C-A scaffolds for 8 weeks in vitro, while chABC was released for up to 7 weeks. Low total percentages of protein released from the scaffolds over this time period were attributed to limitation of diffusion by the interpenetrating polymer network matrix of the scaffold walls. NT-3 and chABC released from the scaffolds retained bioactivity, as determined by a neurite outgrowth assay, and the promotion of neurite growth across an inhibitory barrier of chondroitin sulphate proteoglycans. This demonstrates the potential of these multifunctional scaffolds for enhancing axonal regeneration through growth-inhibiting glial scars via the sustained release of chABC and NT-3. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Enhanced Healing of Rat Calvarial Defects with MSCs Loaded on BMP-2 Releasing Chitosan/Alginate/Hydroxyapatite Scaffolds

    PubMed Central

    He, Xiaoning; Liu, Yang; Yuan, Xue; Lu, Li

    2014-01-01

    In this study, we designed a chitosan/alginate/hydroxyapatite scaffold as a carrier for recombinant BMP-2 (CAH/B2), and evaluated the release kinetics of BMP-2. We evaluated the effect of the CAH/B2 scaffold on the viability and differentiation of bone marrow mesenchymal stem cells (MSCs) by scanning electron microscopy, MTS, ALP assay, alizarin-red staining and qRT-PCR. Moreover, MSCs were seeded on scaffolds and used in a 8 mm rat calvarial defect model. New bone formation was assessed by radiology, hematoxylin and eosin staining 12 weeks postoperatively. We found the release kinetics of BMP-2 from the CAH/B2 scaffold were delayed compared with those from collagen gel, which is widely used for BMP-2 delivery. The BMP-2 released from the scaffold increased MSC differentiation and did not show any cytotoxicity. MSCs exhibited greater ALP activity as well as stronger calcium mineral deposition, and the bone-related markers Col1α, osteopontin, and osteocalcin were upregulated. Analysis of in vivo bone formation showed that the CAH/B2 scaffold induced more bone formation than other groups. This study demonstrates that CAH/B2 scaffolds might be useful for delivering osteogenic BMP-2 protein and present a promising bone regeneration strategy. PMID:25084008

  17. Dispensing of very low volumes of ultra high viscosity alginate gels: a new tool for encapsulation of adherent cells and rapid prototyping of scaffolds and implants.

    PubMed

    Gepp, Michael M; Ehrhart, Friederike; Shirley, Stephen G; Howitz, Steffen; Zimmermann, Heiko

    2009-01-01

    We present a tool for dispensing very low volumes (20 nL or more) of ultra high viscosity (UHV) medical-grade alginate hydrogels. It uses a modified piezo-driven micrometering valve, integrated into a versatile system that allows fast prototyping of encapsulation procedures and scaffold production. Valves show excellent dispensing properties for UHV alginate in concentrations of 0.4% and 0.7% and also for aqueous liquids. An optimized process flow provides excellent handling of biological samples under sterile conditions. This technique allows the encapsulation of adherent cells and structuring of substrates for biotechnology and regenerative medicine. A variety of cell lines showed at least 70% viability after encapsulation (including cell lines that are relevant in regenerative medicine like Hep G2), and time-lapse analysis revealed cells proliferating and showing limited motility under alginate spots. Cells show metabolic activity, gene product expression, and physiological function. Encapsulated cells have contact with the substrate and can exchange metabolites while being isolated from macromolecules in the environment. Contactless dispensing allows structuring of substrates with alginate, isolation and transfer of cell-alginate complexes, and the dispensing of biological active hydrogels like extracellular matrix-derived gels.

  18. Cell-secreted extracellular matrix formation and differentiation of adipose-derived stem cells in 3D alginate scaffolds with tunable properties.

    PubMed

    Guneta, Vipra; Loh, Qiu Li; Choong, Cleo

    2016-05-01

    Three dimensional (3D) alginate scaffolds with tunable mechanical and structural properties are explored for investigating the effect of the scaffold properties on stem cell behavior and extracellular matrix (ECM) formation. Varying concentrations of crosslinker (20 - 60%) are used to tune the stiffness, porosity, and the pore sizes of the scaffolds post-fabrication. Enhanced cell proliferation and adipogenesis occur in scaffolds with 3.52 ± 0.59 kPa stiffness, 87.54 ± 18.33% porosity and 68.33 ± 0.88 μm pore size. On the other hand, cells in scaffolds with stiffness greater than 11.61 ± 1.74 kPa, porosity less than 71.98 ± 6.25%, and pore size less than 64.15 ± 4.34 μm preferentially undergo osteogenesis. When cultured in differentiation media, adipose-derived stem cells (ASCs) undergoing terminal adipogenesis in 20% firming buffer (FB) scaffolds and osteogenesis in 40% and 60% FB scaffolds show the highest secretion of collagen as compared to other groups of scaffolds. Overall, this study demonstrates the three-way relationship between 3D scaffolds, ECM composition, and stem cell differentiation. © 2016 Wiley Periodicals, Inc.

  19. 3D-Printed Atsttrin-Incorporated Alginate/Hydroxyapatite Scaffold Promotes Bone Defect Regeneration with TNF/TNFR Signaling Involvement.

    PubMed

    Wang, Quan; Xia, Qingqing; Wu, Yan; Zhang, Xiaolei; Wen, Feiqiu; Chen, Xiaowen; Zhang, Shufang; Heng, Boon Chin; He, Yong; Ouyang, Hong-Wei

    2015-08-05

    High expression levels of pro-inflammatory tumor necrosis factor (TNF)-α within bone defects can decelerate and impair bone regeneration. However, there are few available bone scaffolds with anti-inflammatory function. The progranulin (PGRN)-derived engineered protein, Atsttrin, is known to exert antagonistic effects on the TNF-α function. Hence, this study investigates whether 3D-printed Atsttrin-incorporated alginate(Alg)/hydroxyapatite(nHAp) scaffolds can facilitate bone healing through affecting the TNF/TNFR signaling. A 3D bioprinting system is used to fabricate Atsttrin-Alg/nHAp composite scaffolds, and the Atsttrin release from this scaffold is characterized, followed by evaluation of its efficacy on bone regeneration both in vitro and in vivo. The 3D-printed Atsttrin-Alg/nHAp scaffold exhibits a precisely defined structure, can sustain Atsttrin release for at least 5 days, has negligible cytotoxicity, and supports cell adhesion. Atsttrin can also attenuate the suppressive effects of TNF-α on BMP-2-induced osteoblastic differentiation in vitro. The 3D-printed Atsttrin-Alg/nHAp scaffold significantly reduces the number of TNF-α positive cells within wound sites, 7 days after post-calvarial defect surgery. Additionally, histological staining and X-ray scanning results also show that the 3D-printed Atsttrin-Alg/nHAp scaffold enhances the regeneration of mice calvarial bone defects. These findings thus demonstrate that the precise structure and anti-inflammatory properties of 3D-printed Atsttrin-Alg/nHAp scaffolds may promote bone defect repair. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of strontium addition and chitosan concentration variation on cytotoxicity of chitosan-alginate-carbonate apatite based bone scaffold

    NASA Astrophysics Data System (ADS)

    Perkasa, Rilis Eka; Umniati, B. Sri; Sunendar, Bambang

    2017-09-01

    Bone scaffold is one of the most important component in bone tissue engineering. Basically, bone scaffold is a biocompatible structure designed to replace broken bone tissue temporarily. Unlike conventional bone replacements, an advanced bone scaffold should be bioactive (e.g: supporting bone growth) and biodegradable as new bone tissue grow, while retain its mechanical properties similarity with bone. It is also possible to add more bioactive substrates to bone scaffold to further support its performance. One of the substrate is strontium, an element that could improve the ability of the bone to repair itself. However, it must be noted that excessive consumption of strontium could lead to toxicity and diseases, such as osteomalacia and hypocalcemia. This research aimed to investigate the effect of strontium addition to the cytotoxic property of chitosan-alginate-carbonate apatite bone scaffold. The amount of strontium added to the bone scaffold was 5% molar of the carbonate apatite content. As a control, bone scaffold without stronsium (0% molar) were also made. The effect of chitosan concentration variation on the cytotoxicity were also observed, where the concentration varies on 1% and 3% w/v of chitosan solution. The results showed an optimum result on bone scaffold sample with 5% molar of strontium and 3% chitosan, where 87.67% cells in the performed MTS-Assay cytotoxicity testing survived. This showed that the use of up to 5% molar addition of strontium and 3% chitosan could enhance the survivability of the cell.

  1. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing.

    PubMed

    Reed, Stephanie; Lau, Grace; Delattre, Benjamin; Lopez, David Don; Tomsia, Antoni P; Wu, Benjamin M

    2016-01-07

    While many tissue-engineered constructs aim to treat cartilage defects, most involve chondrocyte or stem cell seeding on scaffolds. The clinical application of cell-based techniques is limited due to the cost of maintaining cellular constructs on the shelf, potential immune response to allogeneic cell lines, and autologous chondrocyte sources requiring biopsy from already diseased or injured, scarce tissue. An acellular scaffold that can induce endogenous influx and homogeneous distribution of native stem cells from bone marrow holds great promise for cartilage regeneration. This study aims to develop such an acellular scaffold using designed, channeled architecture that simultaneously models the native zones of articular cartilage and subchondral bone. Highly porous, hydrophilic chitosan-alginate (Ch-Al) scaffolds were fabricated in three-dimensionally printed (3DP) molds designed to create millimeter scale macro-channels. Different polymer preform casting techniques were employed to produce scaffolds from both negative and positive 3DP molds. Macro-channeled scaffolds improved cell suspension distribution and uptake overly randomly porous scaffolds, with a wicking volumetric flow rate of 445.6 ± 30.3 mm(3) s(-1) for aqueous solutions and 177 ± 16 mm(3) s(-1) for blood. Additionally, directional freezing was applied to Ch-Al scaffolds, resulting in lamellar pores measuring 300 μm and 50 μm on the long and short axes, thus creating micrometer scale micro-channels. After directionally freezing Ch-Al solution cast in 3DP molds, the combined macro- and micro-channeled scaffold architecture enhanced cell suspension uptake beyond either macro- or micro-channels alone, reaching a volumetric flow rate of 1782.1 ± 48 mm(3) s(-1) for aqueous solutions and 440.9 ± 0.5 mm(3) s(-1) for blood. By combining 3DP and directional freezing, we can control the micro- and macro-architecture of Ch-Al to drastically improve cell influx into and distribution within the scaffold

  2. Variations in chondrogenesis of human bone marrow-derived mesenchymal stem cells in fibrin/alginate blended hydrogels

    PubMed Central

    Ma, Kun; Titan, Ashley L.; Stafford, Melissa; Zheng, Chun hua; Levenston, Marc E.

    2012-01-01

    Fibrin and alginate hydrogels have been widely used to support chondrogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs) for articular cartilage and fibrocartilage tissue engineering, with distinct advantages and disadvantages to each material. Attempting to produce a gel scaffold exhibiting beneficial characteristics of both materials, we fabricated fibrin/alginate blended hydrogels at various blend ratios and evaluated the gel morphology, mechanical properties and their support for BM-MSC chondrogenesis. Results show that when the fibrin/alginate ratio decreased, the fibrin architecture transitioned from uniform to interconnected fibrous and finally to disconnected islands against an alginate background, with opposing trends in the alginate architecture. Fibrin maintained gel extensibility and promoted cell proliferation, while alginate improved the gel biostability and better supported glycosaminoglycan and collagen II production and chondrogenic gene expression. Blended gels had physical and biological characteristics intermediate between fibrin and alginate. Of the blends examined, FA 40:8 (40 mg/mL fibrinogen blended with 8 mg/mL alginate) was found to be the most appropriate group for future studies on tension-driven BM-MSC fibrochondrogenesis. As BM-MSC differentiation appeared to vary between fibrin and alginate regions of blended scaffolds, this study also highlighted the potential to develop spatially heterogeneous tissues through manipulating the heterogeneity of scaffold composition. PMID:22750738

  3. Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration.

    PubMed

    Sapir, Yulia; Kryukov, Olga; Cohen, Smadar

    2011-03-01

    Cardiac tissue engineering aims to repair damaged myocardial tissues by applying heart patches created in vitro. Herein, we explored the possible role of a combination of two matrix-attached peptides, the adhesion peptide G(4)RGDY and heparin-binding peptide G(4)SPPRRARVTY (HBP) in cardiac tissue regeneration. Neonatal rat cardiac cells were seeded into unmodified, single peptide or double peptide-attached alginate scaffolds, all having the same physical features of porosity, hydrogel forming and matrix stiffness. The cardiac tissue developed in the HBP/RGD-attached scaffolds revealed the best features of a functional muscle tissue, as judged by all studied parameters, i.e., immunostaining of cardiac cell markers, histology, western blot of protein expressions and metabolic activity. By day 7, well-developed myocardial fibers were observed in these cell constructs. At 14 days the HBP/RGD-attached constructs presented an isotropic myofiber arrangement, while no such arrangement was seen in the other constructs. The expression levels of α-actinin, N-cadherin and Connexin-43, showing preservation and an increase in Connexin-43 expression (Cx-43) with time, further supported the formation a contractile muscle tissue in the HBP/RGD-attached scaffolds. Collectively, the attachment of combinatorial peptides representing different signaling in ECM-cell interactions proved to play a key role, contributing to the formation of a functional cardiac muscle tissue, in vitro. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Alginate: A Versatile Biomaterial to Encapsulate Isolated Ovarian Follicles.

    PubMed

    Vanacker, Julie; Amorim, Christiani A

    2017-07-01

    In vitro culture of ovarian follicles isolated or enclosed in ovarian tissue fragments and grafting of isolated ovarian follicles represent a potential alternative to restore fertility in cancer patients who cannot undergo cryopreservation of embryos or oocytes or transplantation of frozen-thawed ovarian tissue. In this regard, respecting the three-dimensional (3D) architecture of isolated follicles is crucial to maintaining their proper follicular physiology. To this end, alginate hydrogel has been widely investigated using follicles from numerous animal species, yielding promising results. The goal of this review is therefore to provide an overview of alginate applications utilizing the biomaterial as a scaffold for 3D encapsulation of isolated ovarian follicles. Different methods of isolated follicle encapsulation in alginate are discussed in this review, as its use of 3D alginate culture systems as a tool for in vitro follicle analysis. Possible improvements of this matrix, namely modification with arginine-glycine-aspartic acid peptide or combination with fibrin, are also summarized. Encouraging results have been obtained in different animal models, and particularly with isolated follicles encapsulated in alginate matrices and grafted to mice. This summary is designed to guide the reader towards development of next-generation alginate scaffolds, with enhanced properties for follicle encapsulation.

  5. Graphene Oxide-A Tool for the Preparation of Chemically Crosslinking Free Alginate-Chitosan-Collagen Scaffolds for Bone Tissue Engineering.

    PubMed

    Kolanthai, Elayaraja; Sindu, Pugazhendhi Abinaya; Khajuria, Deepak Kumar; Veerla, Sarath Chandra; Kuppuswamy, Dhandapani; Catalani, Luiz Henrique; Mahapatra, D Roy

    2018-04-18

    Developing a biodegradable scaffold remains a major challenge in bone tissue engineering. This study was aimed at developing novel alginate-chitosan-collagen (SA-CS-Col)-based composite scaffolds consisting of graphene oxide (GO) to enrich porous structures, elicited by the freeze-drying technique. To characterize porosity, water absorption, and compressive modulus, GO scaffolds (SA-CS-Col-GO) were prepared with and without Ca 2+ -mediated crosslinking (chemical crosslinking) and analyzed using Raman, Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy techniques. The incorporation of GO into the SA-CS-Col matrix increased both crosslinking density as indicated by the reduction of crystalline peaks in the XRD patterns and polyelectrolyte ion complex as confirmed by FTIR. GO scaffolds showed increased mechanical properties which were further increased for chemically crosslinked scaffolds. All scaffolds exhibited interconnected pores of 10-250 μm range. By increasing the crosslinking density with Ca 2+ , a decrease in the porosity/swelling ratio was observed. Moreover, the SA-CS-Col-GO scaffold with or without chemical crosslinking was more stable as compared to SA-CS or SA-CS-Col scaffolds when placed in aqueous solution. To perform in vitro biochemical studies, mouse osteoblast cells were grown on various scaffolds and evaluated for cell proliferation by using MTT assay and mineralization and differentiation by alizarin red S staining. These measurements showed a significant increase for cells attached to the SA-CS-Col-GO scaffold compared to SA-CS or SA-CS-Col composites. However, chemical crosslinking of SA-CS-Col-GO showed no effect on the osteogenic ability of osteoblasts. These studies indicate the potential use of GO to prepare free SA-CS-Col scaffolds with preserved porous structure with elongated Col fibrils and that these composites, which are biocompatible and stable in a biological medium, could be used for

  6. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue. PMID:27600217

  7. Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications.

    PubMed

    Diaz-Rodriguez, P; Garcia-Triñanes, P; Echezarreta López, M M; Santoveña, A; Landin, M

    2018-09-01

    The search for an ideal bone tissue replacement has led to the development of new composite materials designed to simulate the complex inorganic/organic structure of bone. The present work is focused on the development of mineralized calcium alginate hydrogels by the addition of marine derived calcium carbonate biomineral particles. Following a novel approach, we were able to obtain calcium carbonate particles of high purity and complex micro and nanostructure dependent on the source material. Three different types of alginates were selected to develop inorganic/organic scaffolds in order to correlate alginate composition with scaffold properties and cell behavior. The incorporation of calcium carbonates into alginate networks was able to promote extracellular matrix mineralization and osteoblastic differentiation of mesenchymal stem cells when added at 7 mg/ml. We demonstrated that the selection of the alginate type and calcium carbonate origin is crucial to obtain adequate systems for bone tissue engineering as they modulate the mechanical properties and cell differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Gelatinized Copper–Capillary Alginate Gel Functions as an Injectable Tissue Scaffolding System for Stem Cell Transplants

    PubMed Central

    Willenberg, Bradley Jay; Zheng, Tong; Meng, Fan-Wei; Meneses, Juan Carlos; Rossignol, Candace; Batich, Christopher D.; Terada, Naohiro; Steindler, Dennis A.; Weiss, Michael D.

    2013-01-01

    In severe hypoxic–ischemic brain injury, cellular components such as neurons and astrocytes are injured or destroyed along with the supporting extracellular matrix. This presents a challenge to the field of regenerative medicine since the lack of extracellular matrix and supporting structures makes the transplant milieu inhospitable to the transplanted cells. A potential solution to this problem is the use of a biomaterial to provide the extracellular components needed to keep cells localized in cystic brain regions, allowing the cells to form connections and repair lost brain tissue. Ideally, this biomaterial would be combined with stem cells, which have been proven to have therapeutic potentials, and could be delivered via an injection. To study this approach, we derived a hydrogel biomaterial tissue scaffold from oligomeric gelatin and copper–capillary alginate gel (GCCAG). We then demonstrated that our multipotent astrocytic stem cells (MASCs) could be maintained in GCCAG scaffolds for up to 2 weeks in vitro and that the cells retained their multipotency. We next performed a pilot transplant study in which GCCAG was mixed with MASCs and injected into the brain of a neonatal rat pup. After a week in vivo, our results showed that: the GCCAG biomaterial did not cause a significant reactive gliosis; viable cells were retained within the injected scaffolds; and some delivered cells migrated into the surrounding brain tissue. Therefore, GCCAG tissue scaffolds are a promising, novel injectable system for transplantation of stem cells to the brain. PMID:20699061

  9. Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering.

    PubMed

    Jaikumar, Dhanya; Sajesh, K M; Soumya, S; Nimal, T R; Chennazhi, K P; Nair, Shantikumar V; Jayakumar, R

    2015-03-01

    Injectable, biodegradable scaffolds are required for soft tissue reconstruction owing to its minimally invasive approach. Such a scaffold can mimic the native extracellular matrix (ECM), provide uniform distribution of cells and overcome limitations like donor site morbidity, volume loss, etc. So, here we report two classes of biocompatible and biodegradable hydrogel blend systems namely, Alginate/O-carboxymethyl chitosan (O-CMC) and Alginate/poly (vinyl alcohol) (PVA) with the inclusion of fibrin nanoparticles in each. The hydrogels were prepared by ionic cross-linking method. The developed hydrogels were compared in terms of its swelling ratio, degradation profile, compressive strength and elastic moduli. From these preliminary findings, it was concluded that Alginate/O-CMC formed a better blend for tissue engineering applications. The potential of the formed hydrogel as an injectable scaffold was revealed by the survival of adipose derived stem cells (ADSCs) on the scaffold by its adhesion, proliferation and differentiation into adipocytes. Cell differentiation studies of fibrin incorporated hydrogel scaffolds showed better differentiation was confirmed by Oil Red O staining technique. These injectable gels have potential in soft tissue regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening.

    PubMed

    Wang, Jian-Zheng; Zhu, Yu-Xia; Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-guang; Meng, Yue-Zhong

    2016-05-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose-lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Design of a Novel Two-Component Hybrid Dermal Scaffold for the Treatment of Pressure Sores.

    PubMed

    Sharma, Vaibhav; Kohli, Nupur; Moulding, Dale; Afolabi, Halimat; Hook, Lilian; Mason, Chris; García-Gareta, Elena

    2017-11-01

    The aim of this study is to design a novel two-component hybrid scaffold using the fibrin/alginate porous hydrogel Smart Matrix combined to a backing layer of plasma polymerized polydimethylsiloxane (Sil) membrane to make the fibrin-based dermal scaffold more robust for the treatment of the clinically challenging pressure sores. A design criteria are established, according to which the Sil membranes are punched to avoid collection of fluid underneath. Manual peel test shows that native silicone does not attach to the fibrin/alginate component while the plasma polymerized silicone membranes are firmly bound to fibrin/alginate. Structural characterization shows that the fibrin/alginate matrix is intact after the addition of the Sil membrane. By adding a Sil membrane to the original fibrin/alginate scaffold, the resulting two-component scaffolds have a significantly higher shear or storage modulus G'. In vitro cell studies show that dermal fibroblasts remain viable, proliferate, and infiltrate the two-component hybrid scaffolds during the culture period. These results show that the design of a novel two-component hybrid dermal scaffold is successful according to the proposed design criteria. To the best of the authors' knowledge, this is the first study that reports the combination of a fibrin-based scaffold with a plasma-polymerized silicone membrane. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Efficient functionalization of alginate biomaterials.

    PubMed

    Dalheim, Marianne Ø; Vanacker, Julie; Najmi, Maryam A; Aachmann, Finn L; Strand, Berit L; Christensen, Bjørn E

    2016-02-01

    Peptide coupled alginates obtained by chemical functionalization of alginates are commonly used as scaffold materials for cells in regenerative medicine and tissue engineering. We here present an alternative to the commonly used carbodiimide chemistry, using partial periodate oxidation followed by reductive amination. High and precise degrees of substitution were obtained with high reproducibility, and without formation of by-products. A protocol was established using l-Tyrosine methyl ester as a model compound and the non-toxic pic-BH3 as the reducing agent. DOSY was used to indirectly verify covalent binding and the structure of the product was further elucidated using NMR spectroscopy. The coupling efficiency was to some extent dependent on alginate composition, being most efficient on mannuronan. Three different bioactive peptide sequences (GRGDYP, GRGDSP and KHIFSDDSSE) were coupled to 8% periodate oxidized alginate resulting in degrees of substitution between 3.9 and 6.9%. Cell adhesion studies of mouse myoblasts (C2C12) and human dental stem cells (RP89) to gels containing various amounts of GRGDSP coupled alginate demonstrated the bioactivity of the material where RP89 cells needed higher peptide concentrations to adhere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering

    PubMed Central

    Ko, Hsu-Feng; Sfeir, Charles; Kumta, Prashant N.

    2010-01-01

    Recent developments in tissue engineering approaches frequently revolve around the use of three-dimensional scaffolds to function as the template for cellular activities to repair, rebuild and regenerate damaged or lost tissues. While there are several biomaterials to select as three-dimensional scaffolds, it is generally agreed that a biomaterial to be used in tissue engineering needs to possess certain material characteristics such as biocompatibility, suitable surface chemistry, interconnected porosity, desired mechanical properties and biodegradability. The use of naturally derived polymers as three-dimensional scaffolds has been gaining widespread attention owing to their favourable attributes of biocompatibility, low cost and ease of processing. This paper discusses the synthesis of various polysaccharide-based, naturally derived polymers, and the potential of using these biomaterials to serve as tissue engineering three-dimensional scaffolds is also evaluated. In this study, naturally derived polymers, specifically cellulose, chitosan, alginate and agarose, and their composites, are examined. Single-component scaffolds of plain cellulose, plain chitosan and plain alginate as well as composite scaffolds of cellulose–alginate, cellulose–agarose, cellulose–chitosan, chitosan–alginate and chitosan–agarose are synthesized, and their suitability as tissue engineering scaffolds is assessed. It is shown that naturally derived polymers in the form of hydrogels can be synthesized, and the lyophilization technique is used to synthesize various composites comprising these natural polymers. The composite scaffolds appear to be sponge-like after lyophilization. Scanning electron microscopy is used to demonstrate the formation of an interconnected porous network within the polymeric scaffold following lyophilization. It is also established that HeLa cells attach and proliferate well on scaffolds of cellulose, chitosan or alginate. The synthesis protocols reported

  14. Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering.

    PubMed

    Luo, Zuyuan; Yang, Yue; Deng, Yi; Sun, Yuhua; Yang, Hongtao; Wei, Shicheng

    2016-07-01

    Good bioactivity and osteogenesis of three-dimensional porous alginate scaffolds (PAS) are critical for bone tissue engineering. In this work, alginate and bone-forming peptide-1 (BFP-1), derived from bone morphogenetic protein-7 (BMP-7), have been combined together (without carbodiimide chemistry treatment) to develop peptide-incorporated PAS (p-PAS) for promoting bone repairing ability. The mechanical properties and SEM images show no difference between pure PAS and p-PAS. The release kinetics of the labeled peptide with 6-carboxy tetramethyl rhodamine from the PAS matrix suggests that the peptide is released in a relatively sustained manner. In the cell experiment, p-PAS show higher cell adhesion, spreading, proliferation and alkaline phosphatase (ALP) activity than the pristine PAS group, indicating that the BFP-1 released from p-PAS could significantly promote the aggregation and differentiation of osteoblasts, especially at 10μg/mL of trapped peptide concentration (p-PAS-10). Furthermore, p-PAS-10 was implanted into Beagle calvarial defects and bone regeneration was analyzed after 4 weeks. New bone formation was assessed by calcein and Masson's trichrome staining. The data reveal that p-PAS group exhibits significantly enhanced oseto-regenerative capability in vivo. The peptide-modified PAS with promoted bioactivity and osteogenic differentiation in vitro as well as bone formation ability in vivo could be promising tissue engineering materials for repairing and regeneration of bone defects. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Novel control of gel fraction and enhancement of bonding strength for constructing 3D architecture of tissue engineering scaffold with alginate tubular fiber.

    PubMed

    Li, Yu; Liu, Yuanyuan; Li, Shuai; Liang, Gang; Jiang, Chen; Hu, Qingxi

    2016-01-01

    Alginate tubular fiber has been successfully prepared via coaxial fluid crosslink mode, which is potentially used for the construction of vascularized tissue engineering scaffolds (VTES). However, its elastic and smooth surface is negative for the adhesion of fibers. In this study, the gel fractions were controlled in a novel way of two-step crosslink process in order to meet the needs of each processing link. Based on such consideration, an appropriate formulation was selected to direct write single fiber, which ensured the tubular structure with enough gel portion as well as adhesion between fibers with the reserved sol. Finally, the integrity of the scaffolds had a further development within the 2nd crosslink bath process, which would help to solve the question of poor shear resistance for hydrogel scaffolds. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Three-dimensional plotting of a cell-laden alginate/methylcellulose blend: towards biofabrication of tissue engineering constructs with clinically relevant dimensions.

    PubMed

    Schütz, Kathleen; Placht, Anna-Maria; Paul, Birgit; Brüggemeier, Sophie; Gelinsky, Michael; Lode, Anja

    2017-05-01

    Biofabrication of tissue engineering constructs with tailored architecture and organized cell placement using rapid prototyping technologies is a major research focus in the field of regenerative therapies. This study describes a novel alginate-based material suitable for both cell embedding and fabrication of three-dimensional (3D) structures with predefined geometry by 3D plotting. The favourable printing properties of the material were achieved by using a simple strategy: addition of methylcellulose (MC) to a 3% alginate solution resulted in a strongly enhanced viscosity, which enabled accurate and easy deposition without high technical efforts. After scaffold plotting, the alginate chains were crosslinked with Ca 2+ ; MC did not contribute to the gelation and was released from the scaffolds during the following cultivation. The resulting constructs are characterized by high elasticity and stability, as well as an enhanced microporosity caused by the transient presence of MC. The suitability of the alginate/MC blend for cell embedding was evaluated by direct incorporation of mesenchymal stem cells during scaffold fabrication. The embedded cells showed high viability after 3 weeks of cultivation, which was similar to those of cells within pure alginate scaffolds which served as control. Maintenance of the differentiation potential of embedded cells, as an important requirement for the generation of functional tissue engineering constructs, was proven for adipogenic differentiation as a model for soft tissue formation. In conclusion, the temporary integration of MC into a low-concentrated alginate solution allowed the generation of scaffolds with dimensions in the range of centimetres without loss of the positive properties of low-concentrated alginate hydrogels with regard to cell embedding. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Preparation of in situ hardening composite microcarriers: Calcium phosphate cement combined with alginate for bone regeneration

    PubMed Central

    Park, Jung-Hui; Lee, Eun-Jung; Knowles, Jonathan C

    2014-01-01

    Novel microcarriers consisting of calcium phosphate cement and alginate were prepared for use as three-dimensional scaffolds for the culture and expansion of cells that are effective for bone tissue engineering. The calcium phosphate cement-alginate composite microcarriers were produced by an emulsification of the composite aqueous solutions mixed at varying ratios (calcium phosphate cement powder/alginate solution = 0.8–1.2) in an oil bath and the subsequent in situ hardening of the compositions during spherodization. Moreover, a porous structure could be easily created in the solid microcarriers by soaking the produced microcarriers in water and a subsequent freeze-drying process. Bone mineral-like apatite nanocrystallites were shown to rapidly develop on the calcium phosphate cement–alginate microcarriers under moist conditions due to the conversion of the α-tricalcium phosphate phase in the calcium phosphate cement into a carbonate–hydroxyapatite. Osteoblastic cells cultured on the microspherical scaffolds were proven to be viable, with an active proliferative potential during 14 days of culture, and their osteogenic differentiation was confirmed by the determination of alkaline phosphatase activity. The in situ hardening calcium phosphate cement–alginate microcarriers developed herein may be used as potential three-dimensional scaffolds for cell delivery and tissue engineering of bone. PMID:23836845

  18. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices.

    PubMed

    Westhrin, Marita; Xie, Minli; Olderøy, Magnus Ø; Sikorski, Pawel; Strand, Berit L; Standal, Therese

    2015-01-01

    Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering.

  19. Osteogenic Differentiation of Human Mesenchymal Stem Cells in Mineralized Alginate Matrices

    PubMed Central

    Westhrin, Marita; Xie, Minli; Olderøy, Magnus Ø.; Sikorski, Pawel

    2015-01-01

    Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering. PMID:25769043

  20. Calcium-Alginate Hydrogel-Encapsulated Fibroblasts Provide Sustained Release of Vascular Endothelial Growth Factor

    PubMed Central

    Hunt, Nicola C.; Shelton, Richard M.; Henderson, Deborah J.

    2013-01-01

    Vascularization of engineered or damaged tissues is essential to maintain cell viability and proper tissue function. Revascularization of the left ventricle (LV) of the heart after myocardial infarction is particularly important, since hypoxia can give rise to chronic heart failure due to inappropriate remodeling of the LV after death of cardiomyocytes (CMs). Fibroblasts can express vascular endothelial growth factor (VEGF), which plays a major role in angiogenesis and also acts as a chemoattractant and survival factor for CMs and cardiac progenitors. In this in vitro model study, mouse NIH 3T3 fibroblasts encapsulated in 2% w/v Ca-alginate were shown to remain viable for 150 days. Semiquantitative reverse transcription–polymerase chain reaction and immunohistochemistry demonstrated that over 21 days of encapsulation, fibroblasts continued to express VEGF, while enzyme-linked immunosorbent assay showed that there was sustained release of VEGF from the Ca-alginate during this period. The scaffold degraded gradually over the 21 days, without reduction in volume. Cells released from the Ca-alginate at 7 and 21 days as a result of scaffold degradation were shown to retain viability, to adhere to fibronectin in a normal manner, and continue to express VEGF, demonstrating their potential to further contribute to maintenance of cardiac function after scaffold degradation. This model in vitro study therefore demonstrates that fibroblasts encapsulated in Ca-alginate provide sustained release of VEGF. PMID:23082964

  1. 3D Porous Chitosan-Alginate Scaffolds as an In Vitro Model for Evaluating Nanoparticle-Mediated Tumor Targeting and Gene Delivery to Prostate Cancer.

    PubMed

    Wang, Kui; Kievit, Forrest M; Florczyk, Stephen J; Stephen, Zachary R; Zhang, Miqin

    2015-10-12

    Cationic nanoparticles (NPs) for targeted gene delivery are conventionally evaluated using 2D in vitro cultures. However, this does not translate well to corresponding in vivo studies because of the marked difference in NP behavior in the presence of the tumor microenvironment. In this study, we investigated whether prostate cancer (PCa) cells cultured in three-dimensional (3D) chitosan-alginate (CA) porous scaffolds could model cationic NP-mediated gene targeted delivery to tumors in vitro. We assessed in vitro tumor cell proliferation, formation of tumor spheroids, and expression of marker genes that promote tumor malignancy in CA scaffolds. The efficacy of NP-targeted gene delivery was evaluated in PCa cells in 2D cultures, PCa tumor spheroids grown in CA scaffolds, and PCa tumors in a mouse TRAMP-C2 flank tumor model. PCa cells cultured in CA scaffolds grew into tumor spheroids and displayed characteristics of higher malignancy as compared to those in 2D cultures. Significantly, targeted gene delivery was only observed in cells cultured in CA scaffolds, whereas cells cultured on 2D plates showed no difference in gene delivery between targeted and nontarget control NPs. In vivo NP evaluation confirmed targeted gene delivery, indicating that only CA scaffolds correctly modeled NP-mediated targeted delivery in vivo. These findings suggest that CA scaffolds serve as a better in vitro platform than 2D cultures for evaluation of NP-mediated targeted gene delivery to PCa.

  2. Hydrogel-laden paper scaffold system for origami-based tissue engineering

    PubMed Central

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S.

    2015-01-01

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca2+. This procedure ensures the formation of alginate hydrogel on the paper due to Ca2+ diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs. PMID:26621717

  3. Hydrogel-laden paper scaffold system for origami-based tissue engineering.

    PubMed

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S

    2015-12-15

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs.

  4. Use of Interim Scaffolding and Neotissue Development to Produce a Scaffold-Free Living Hyaline Cartilage Graft.

    PubMed

    Lau, Ting Ting; Leong, Wenyan; Peck, Yvonne; Su, Kai; Wang, Dong-An

    2015-01-01

    The fabrication of three-dimensional (3D) constructs relies heavily on the use of biomaterial-based scaffolds. These are required as mechanical supports as well as to translate two-dimensional cultures to 3D cultures for clinical applications. Regardless of the choice of scaffold, timely degradation of scaffolds is difficult to achieve and undegraded scaffold material can lead to interference in further tissue development or morphogenesis. In cartilage tissue engineering, hydrogel is the highly preferred scaffold material as it shares many similar characteristics with native cartilaginous matrix. Hence, we employed gelatin microspheres as porogens to create a microcavitary alginate hydrogel as an interim scaffold to facilitate initial chondrocyte 3D culture and to establish a final scaffold-free living hyaline cartilaginous graft (LhCG) for cartilage tissue engineering.

  5. Development of collagen-hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering.

    PubMed

    Quinlan, Elaine; López-Noriega, Adolfo; Thompson, Emmet; Kelly, Helena M; Cryan, Sally Ann; O'Brien, Fergal J

    2015-01-28

    The spatiotemporally controlled delivery of the pro-osteogenic factor rhBMP-2 would overcome most of the severe secondary effects linked to the products delivering this protein for bone regeneration. With this in mind, the aim of the present work was to develop a controlled rhBMP-2 release system using collagen-hydroxyapatite (CHA) scaffolds, which had been previously optimized for bone regeneration, as delivery platforms to produce a device with enhanced capacity for bone repair. Spray-drying and emulsion techniques were used to encapsulate bioactive rhBMP-2 in alginate and PLGA microparticles, with a high encapsulation efficiency. After incorporation of these microparticles into the scaffolds, rhBMP-2 was delivered in a sustained fashion for up to 28days. When tested in vitro with osteoblasts, these eluting materials showed an enhanced pro-osteogenic effect. From these results, an optimal rhBMP-2 eluting scaffold composition was selected and implanted in critical-sized calvarial defects in a rat model, where it demonstrated an excellent healing capacity in vivo. These platforms have an immense potential in the field of tissue regeneration; by tuning the specific therapeutic molecule to the tissue of interest and by utilizing different collagen-based scaffolds, similar systems can be developed for enhancing the healing of a diverse range of tissues and organs. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A Semi-Degradable Composite Scaffold for Articular Cartilage Defects

    PubMed Central

    Scholten, Paul M.; Ng, Kenneth W.; Joh, Kiwon; Serino, Lorenzo P.; Warren, Russell F.; Torzilli, Peter A.; Maher, Suzanne A.

    2010-01-01

    Few options exist to replace or repair damaged articular cartilage. The optimal solution that has been suggested is a scaffold that can carry load and integrate with surrounding tissues; but such a construct has thus far been elusive. The objectives of this study were to manufacture and characterize a non-degradable hydrated scaffold. Our hypothesis was that the polymer content of the scaffold can be used to control its mechanical properties, while an internal porous network augmented with biological agents can facilitate integration with the host tissue. Using a two-step water-in-oil emulsion process a porous poly-vinyl alcohol (PVA) hydrogel scaffold combined with alginate microspheres was manufactured. The scaffold had a porosity of 11–30% with pore diameters of 107–187 μm, which readily allowed for movement of cells through the scaffold. Alginate microparticles were evenly distributed through the scaffold and allowed for the slow release of biological factors. The elastic modulus (Es) and Poisson’s ratio (υ), Aggregate modulus (Ha) and dynamic modulus (ED) of the scaffold were significantly affected by % PVA, as it varied from 10% to 20% wt/vol. Es and υ were similar to that of articular cartilage for both polymer concentrations, while Ha and ED were similar to that of cartilage only at 20% PVA. The ability to control scaffold mechanical properties, while facilitating cellular migration suggest that this scaffold is a potentially viable candidate for the functional replacement of cartilage defects. PMID:21308980

  7. Preparation and characterization of hydroxyapatite/sodium alginate biocomposites for bone implant application

    NASA Astrophysics Data System (ADS)

    Kanasan, Nanthini; Adzila, Sharifah; Suid, Mohd Syafiq; Gurubaran, P.

    2016-07-01

    In biomedical fields, synthetic scaffolds are being improved by using the ceramics, polymers and composites materials to avoid the limitations of allograft. Ceramic-polymer composites are appearing to be the most successful bone graft substitute in human body. The natural bones itself are well-known as composite of collagen and hydroxyapatite. In this research, precipitation method was used to synthesis hydroxyapatite (HA)/sodium alginate (SA) in various parameters. This paper describes the hydroxyapatite/sodium alginate biocomposite which suitable for use in bone defects or regeneration of bone through the characterizations which include FTIR, FESEM, EDS and DTA. In FTIR, the characteristi peaks of PO4-3 and OH- groups which corresponding to hydroxyapatite are existed in the mixing powders. The needle-size particle of hydroxyapatite/ alginate (HA/SA) are observed in FESEM in the range of 15.8nm-38.2nm.EDS confirmed the existence of HA/SA composition in the mixing powders. There is an endothermic peak which corresponds to the dehydration and the loss of physically adsorbed water molecules of the hydroxyapatite (HA)/sodium alginate (SA) powder which are described in DTA.

  8. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    PubMed

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  9. PVA-chitosan composite hydrogel versus alginate beads as a potential mesenchymal stem cell carrier for the treatment of focal cartilage defects.

    PubMed

    Dashtdar, Havva; Murali, Malliga Raman; Abbas, Azlina Amir; Suhaeb, Abdulrazzaq Mahmod; Selvaratnam, Lakshmi; Tay, Liang Xin; Kamarul, Tunku

    2015-05-01

    To investigate whether mesenchymal stem cells (MSCs) seeded in novel polyvinyl alcohol (PVA)-chitosan composite hydrogel can provide comparable or even further improve cartilage repair outcomes as compared to previously established alginate-transplanted models. Medial femoral condyle defect was created in both knees of twenty-four mature New Zealand white rabbits, and the animals were divided into four groups containing six animals each. After 3 weeks, the right knees were transplanted with PVA-chitosan-MSC, PVA-chitosan scaffold alone, alginate-MSC construct or alginate alone. The left knee was kept as untreated control. Animals were killed at the end of 6 months after transplantation, and the cartilage repair was assessed through Brittberg morphological score, histological grading by O'Driscoll score and quantitative glycosaminoglycan analysis. Morphological and histological analyses showed significant (p < 0.05) tissue repair when treated with PVA-chitosan-MSC or alginate MSC as compared to the scaffold only and untreated control. In addition, safranin O staining and the glycosaminoglycan (GAG) content were significantly higher (p < 0.05) in MSC treatment groups than in scaffold-only or untreated control group. No significant difference was observed between the PVA-chitosan-MSC- and alginate-MSC-treated groups. PVA-chitosan hydrogel seeded with mesenchymal stem cells provides comparable treatment outcomes to that of previously established alginate-MSC construct implantation. This study supports the potential use of PVA-chitosan hydrogel seeded with MSCs for clinical use in cartilage repair such as traumatic injuries.

  10. Encapsulation of Mesenchymal Stem Cells Improves Vascularization of Alginate-Based Scaffolds.

    PubMed

    Steiner, Dominik; Lingens, Lara; Fischer, Laura; Köhn, Katrin; Detsch, Rainer; Boccaccini, Aldo R; Fey, Tobias; Greil, Peter; Weis, Christian; Beier, Justus P; Horch, Raymund E; Arkudas, Andreas

    2018-05-09

    Vascularization of bioartificial tissues can be significantly enhanced by the generation of an arteriovenous (AV) loop. Besides the surgical vascularization, the choice of the scaffold and the applied cells are indispensable cofactors. The combination of alginate dialdehyde and gelatin (ADA-GEL) and mesenchymal stem cells (MSCs) is a promising approach with regard to biocompatibility, biodegradation, as well as de novo tissue formation. In this study, we targeted the investigation of the vascularization of ADA-GEL with and in the absence of encapsulated MSCs in the AV loop model. A Teflon chamber filled with ADA-GEL microcapsules was placed in the groin of Lewis rats and an AV loop was placed into the chamber. Group A encompassed the ADA-GEL without MSCs, whereas group B contained 2 × 10 6 DiI-labeled MSCs/mL ADA-GEL. Four weeks postoperatively, tissue formation and vascularization were investigated by histology and microcomputed tomography. We were able to prove vascularization originating from the AV loop in both groups with statistically significant more vessels in group B containing MSCs. Moreover, encapsulated MSCs promoted biodegradation of the ADA-GEL microcapsules. In the present study, we were able to demonstrate for the first time, the successful vascularization of ADA-GEL microcapsules by means of the AV loop. Furthermore, ADA-GEL displayed a good biocompatibility and encapsulation of MSCs into ADA-GEL microcapsule-enhanced vascularization as well as biodegradation.

  11. Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness.

    PubMed

    Shi, Pujiang; Laude, Augustinus; Yeong, Wai Yee

    2017-04-01

    In this article, mouse fibroblast cells (L929) were seeded on 2%, 5%, and 10% alginate hydrogels, and they were also bio-printed with 2%, 5%, and 10% alginate solutions individually to form constructs. The elastic and viscous moduli of alginate solutions, their interior structure and stiffness, interactions of cells and alginate, cell viability, migration and morphology were investigated by rheometer, MTT assay, scanning electron microscope (SEM), and fluorescent microscopy. The three types of bio-printed scaffolds of distinctive stiffness were prepared, and the seeded cells showed robust viability either on the alginate hydrogel surfaces or in the 3D bio-printed constructs. Majority of the proliferated cells in the 3D bio-printed constructs weakly attached to the surrounding alginate matrix. The concentration of alginate solution and hydrogel stiffness influenced cell migration and morphology, moreover the cells formed spheroids in the bio-printed 10% alginate hydrogel construct. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1009-1018, 2017. © 2017 Wiley Periodicals, Inc.

  12. 3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel

    PubMed Central

    Habib, Ahasan; Sathish, Venkatachalem; Mallik, Sanku; Khoda, Bashir

    2018-01-01

    Three-dimensional (3D) bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC) is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a potential biomaterial in 3D bioprinting process and the outlined characterization techniques open an avenue directing reproducible printability and shape fidelity. PMID:29558424

  13. Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospinning.

    PubMed

    Xu, Weihong; Shen, Renzhe; Yan, Yurong; Gao, Jie

    2017-01-01

    Scaffolds made by biomaterials offer favorite environment for cell grow and show a wide potential application in tissue engineering. Novel biocompatibility materials polylatic acid (PLA) nanofiber membranes with favorable biocompatibility and good mechanical strength could serve as an innovative tissue engineering scaffold. Sodium alginate (SA) could be used in biomedical areas because of its anti-bacterial property, hydrophilicity and biocompatibility. In this article, we chose PLA as continuous phase and SA as dispersion phase to prepare a W/O emulsion and then electrospun it to get a SA/PLA composite nanofiber membranes. The CLSM images illustrated that the existence of SA was located on the surface of composite fibers and the FTIR results confirmed the result. A calcium ion replacement step was used as an after-treatment for SA/PLA nanofiber membranes in order to anchor the alginic ion in a form of gelated calcium alginate (CA). The single fiber tensile test shows a good mechanical property of CA/PLA nanofiber membranes, and the nanofiber membranes are beneficial for cell proliferation and differentiation owing to MTT array as well as Alizarin red S (ARS) staining test. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Synthesis of Thermogelling Poly(N-isopropylacrylamide)-graft-chondroitin Sulfate Composites with Alginate Microparticles for Tissue Engineering

    PubMed Central

    Christiani, Thomas R.; Toomer, Katelynn; Sheehan, Joseph; Nitzl, Angelika; Branda, Amanda; England, Elizabeth; Graney, Pamela; Iftode, Cristina; Vernengo, Andrea J.

    2016-01-01

    Injectable biomaterials are defined as implantable materials that can be introduced into the body as a liquid and solidify in situ. Such materials offer the clinical advantages of being implanted minimally invasively and easily forming space-filling solids in irregularly shaped defects. Injectable biomaterials have been widely investigated as scaffolds for tissue engineering. However, for the repair of certain load-bearing areas in the body, such as the intervertebral disc, scaffolds should possess adhesive properties. This will minimize the risk of dislocation during motion and ensure intimate contact with the surrounding tissue, providing adequate transmission of forces. Here, we describe the preparation and characterization of a scaffold composed of thermally sensitive poly(N-isopropylacrylamide)-graft-chondroitin sulfate (PNIPAAM-g-CS) and alginate microparticles. The PNIPAAm-g-CS copolymer forms a viscous solution in water at RT, into which alginate particles are suspended to enhance adhesion. Above the lower critical solution temperature (LCST), around 30 °C, the copolymer forms a solid gel around the microparticles. We have adapted standard biomaterials characterization procedures to take into account the reversible phase transition of PNIPAAm-g-CS. Results indicate that the incorporation of 50 or 75 mg/ml alginate particles into 5% (w/v) PNIPAAm-g-CS solutions quadruple the adhesive tensile strength of PNIPAAm-gCS alone (p<0.05). The incorporation of alginate microparticles also significantly increases swelling capacity of PNIPAAm-g-CS (p<0.05), helping to maintain a space-filling gel within tissue defects. Finally, results of the in vitro toxicology assay kit, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and Live/Dead viability assay indicate that the adhesive is capable of supporting the survival and proliferation of encapsulated Human Embryonic Kidney (HEK) 293 cells over 5 days. PMID:27805604

  15. 3D printing facilitated scaffold-free tissue unit fabrication.

    PubMed

    Tan, Yu; Richards, Dylan J; Trusk, Thomas C; Visconti, Richard P; Yost, Michael J; Kindy, Mark S; Drake, Christopher J; Argraves, William Scott; Markwald, Roger R; Mei, Ying

    2014-06-01

    Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing microdroplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit microdroplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell-cell adhesion, tissue formation and maturation.

  16. Anti-inflammatory effects of sodium alginate/gelatine porous scaffolds merged with fucoidan in murine microglial BV2 cells.

    PubMed

    Nguyen, Van-Tinh; Ko, Seok-Chun; Oh, Gun-Woo; Heo, Seong-Yeong; Jeon, You-Jin; Park, Won Sun; Choi, Il-Whan; Choi, Sung-Wook; Jung, Won-Kyo

    2016-12-01

    Microglia are the immune cells of the central nervous system (CNS). Overexpression of inflammatory mediators by microglia can induce several neurological diseases. Thus, the underlying basic requirement for neural tissue engineering is to develop materials that exhibit little or no neuro-inflammatory effects. In this study, we have developed a method to create porous scaffolds by adding fucoidan (Fu) into porous sodium alginate (Sa)/gelatine (G) (SaGFu). For mechanical characterization, in vitro degradation, stress/strain, swelling, and pore size were measured. Furthermore, the biocompatibility was evaluated by assessing the adhesion and proliferation of BV2 microglial cells on the SaGFu porous scaffolds using scanning electron microscopy (SEM) and lactate dehydrogenase (LDH) assay, respectively. Moreover, we studied the neuro-inflammatory effects of SaGFu on BV2 microglial cells. The effect of gelatine and fucoidan content on the various properties of the scaffold was investigated and the results showed that mechanical properties increased porosity and swelling ratio with an increase in the gelatine and fucoidan, while the in vitro biodegradability decreased. The average SaGFu diameter attained by fabrication of SaGFu ranged from 60 to 120μm with high porosity (74.44%-88.30%). Cell culture using gelatine 2.0% (SaG2Fu) and 4.0% (SaG4Fu), showed good cell proliferation; more than 60-80% that with Sa alone. Following stimulation with 0.5μg/mL LPS, microglia cultured in porous SaGFu decreased their expression of nitric oxide (NO), prostaglandin E2 (PGE2), and reactive oxygen species (ROS). SaG2Fu and SaG4Fu also inhibited the activation and translocation of p65 NF-κB protein levels, resulting in reduction of NO, ROS, and PGE2 production. These results provide insights into the diverse biological effects and opens new avenues for the applications of SaGFu in neuroscience. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Production of new 3D scaffolds for bone tissue regeneration by rapid prototyping.

    PubMed

    Fradique, R; Correia, T R; Miguel, S P; de Sá, K D; Figueira, D R; Mendonça, A G; Correia, I J

    2016-04-01

    The incidence of bone disorders, whether due to trauma or pathology, has been trending upward with the aging of the worldwide population. The currently available treatments for bone injuries are rather limited, involving mainly bone grafts and implants. A particularly promising approach for bone regeneration uses rapid prototyping (RP) technologies to produce 3D scaffolds with highly controlled structure and orientation, based on computer-aided design models or medical data. Herein, tricalcium phosphate (TCP)/alginate scaffolds were produced using RP and subsequently their physicochemical, mechanical and biological properties were characterized. The results showed that 60/40 of TCP and alginate formulation was able to match the compression and present a similar Young modulus to that of trabecular bone while presenting an adequate biocompatibility. Moreover, the biomineralization ability, roughness and macro and microporosity of scaffolds allowed cell anchoring and proliferation at their surface, as well as cell migration to its interior, processes that are fundamental for osteointegration and bone regeneration.

  18. Human Periodontal Ligament- and Gingiva-derived Mesenchymal Stem Cells Promote Nerve Regeneration When Encapsulated in Alginate/Hyaluronic Acid 3D Scaffold.

    PubMed

    Ansari, Sahar; Diniz, Ivana M; Chen, Chider; Sarrion, Patricia; Tamayol, Ali; Wu, Benjamin M; Moshaverinia, Alireza

    2017-12-01

    Repair or regeneration of damaged nerves is still a challenging clinical task in reconstructive surgeries and regenerative medicine. Here, it is demonstrated that periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) isolated from adult human periodontal and gingival tissues assume neuronal phenotype in vitro and in vivo via a subcutaneous transplantation model in nude mice. PDLSCs and GMSCs are encapsulated in a 3D scaffold based on alginate and hyaluronic acid hydrogels capable of sustained release of human nerve growth factor (NGF). The elasticity of the hydrogels affects the proliferation and differentiation of encapsulated MSCs within scaffolds. Moreover, it is observed that PDLSCs and GMSCs are stained positive for βIII-tubulin, while exhibiting high levels of gene expression related to neurogenic differentiation (βIII-tubulin and glial fibrillary acidic protein) via quantitative polymerase chain reaction (qPCR). Western blot analysis shows the importance of elasticity of the matrix and the presence of NGF in the neurogenic differentiation of encapsulated MSCs. In vivo, immunofluorescence staining for neurogenic specific protein markers confirms islands of dense positively stained structures inside transplanted hydrogels. As far as it is known, this study is the first demonstration of the application of PDLSCs and GMSCs as promising cell therapy candidates for nerve regeneration. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sodium alginate/gelatin with silica nanoparticles a novel hydrogel for 3D printing

    NASA Astrophysics Data System (ADS)

    Soni, Raghav; Roopavath, Uday Kiran; Mahanta, Urbashi; Deshpande, A. S.; Rath, S. N.

    2018-05-01

    Sodium alginate/gelatin hydrogels are promising materials for 3D bio-printing due to its good biocompatibility and biodegradability. Gelatin is used for thermal crosslinking and its cell adhesion properties. Hence patient specific sodium alginate/gelatin hydrogel scaffolds can be bio-fabricated in a temperature range of 4-14 oC. In this study we made an attempt to introduce silica (SiO2) nanoparticles in the polymer network of sodium alginate (2.5%)/gelatin (8%) hydrogel at different concentrations (w/v) as 0%, 1.25%, 2.5%, 5%, and 7.5%. The effect of silica nanoparticles on viscosity, swelling behavior, and degradation rate are analyzed. Hydrogels with 5% silica nanoparticles show significantly less swelling and degradation when compared to other concentrations. The viscosity of the hydrogels gradually increases up to 5% addition of silica nanoparticles enhancing the stability of 3D printed structures.

  20. Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery

    PubMed Central

    Bennet, Devasier; Marimuthu, Mohana; Kim, Sanghyo; An, Jeongho

    2012-01-01

    Antioxidant (quercetin) and hypoglycemic (voglibose) drug-loaded poly-D,L-lactideco-glycolide nanoparticles were successfully synthesized using the solvent evaporation method. The dual drug-loaded nanoparticles were incorporated into a scaffold film using a solvent casting method, creating a controlled transdermal drug-delivery system. Key features of the film formulation were achieved utilizing several ratios of excipients, including polyvinyl alcohol, polyethylene glycol, hyaluronic acid, xylitol, and alginate. The scaffold film showed superior encapsulation capability and swelling properties, with various potential applications, eg, the treatment of diabetes-associated complications. Structural and light scattering characterization confirmed a spherical shape and a mean particle size distribution of 41.3 nm for nanoparticles in the scaffold film. Spectroscopy revealed a stable polymer structure before and after encapsulation. The thermoresponsive swelling properties of the film were evaluated according to temperature and pH. Scaffold films incorporating dual drug-loaded nanoparticles showed remarkably high thermoresponsivity, cell compatibility, and ex vivo drug-release behavior. In addition, the hybrid film formulation showed enhanced cell adhesion and proliferation. These dual drug-loaded nanoparticles incorporated into a scaffold film may be promising for development into a transdermal drug-delivery system. PMID:22888222

  1. Delivering MC3T3-E1 cells into injectable calcium phosphate cement through alginate-chitosan microcapsules for bone tissue engineering*

    PubMed Central

    Qiao, Peng-yan; Li, Fang-fang; Dong, Li-min; Xu, Tao; Xie, Qiu-fei

    2014-01-01

    Objective: To deliver cells deep into injectable calcium phosphate cement (CPC) through alginate-chitosan (AC) microcapsules and investigate the biological behavior of the cells released from microcapsules into the CPC. Methods: Mouse osteoblastic MC3T3-E1 cells were embedded in alginate and AC microcapsules using an electrostatic droplet generator. The two types of cell-encapsulating microcapsules were then mixed with a CPC paste. MC3T3-E1 cell viability was investigated using a Wst-8 kit, and osteogenic differentiation was demonstrated by an alkaline phosphatase (ALP) activity assay. Cell attachment in CPC was observed by an environment scanning electron microscopy. Results: Both alginate and AC microcapsules were able to release the encapsulated MC3T3-E1 cells when mixed with CPC paste. The released cells attached to the setting CPC scaffolds, survived, differentiated, and formed mineralized nodules. Cells grew in the pores concomitantly created by the AC microcapsules in situ within the CPC. At Day 21, cellular ALP activity in the AC group was approximately four times that at Day 7 and exceeded that of the alginate microcapsule group (P<0.05). Pores formed by the AC microcapsules had a diameter of several hundred microns and were spherical compared with those formed by alginate microcapsules. Conclusions: AC microcapsule is a promising carrier to release seeding cells deep into an injectable CPC scaffold for bone engineering. PMID:24711359

  2. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo.

    PubMed

    Martínez Ávila, Héctor; Feldmann, Eva-Maria; Pleumeekers, Mieke M; Nimeskern, Luc; Kuo, Willy; de Jong, Willem C; Schwarz, Silke; Müller, Ralph; Hendriks, Jeanine; Rotter, Nicole; van Osch, Gerjo J V M; Stok, Kathryn S; Gatenholm, Paul

    2015-03-01

    Tissue engineering provides a promising alternative therapy to the complex surgical reconstruction of auricular cartilage by using ear-shaped autologous costal cartilage. Bacterial nanocellulose (BNC) is proposed as a promising scaffold material for auricular cartilage reconstruction, as it exhibits excellent biocompatibility and secures tissue integration. Thus, this study evaluates a novel bilayer BNC scaffold for auricular cartilage tissue engineering. Bilayer BNC scaffolds, composed of a dense nanocellulose layer joined with a macroporous composite layer of nanocellulose and alginate, were seeded with human nasoseptal chondrocytes (NC) and cultured in vitro for up to 6 weeks. To scale up for clinical translation, bilayer BNC scaffolds were seeded with a low number of freshly isolated (uncultured) human NCs combined with freshly isolated human mononuclear cells (MNC) from bone marrow in alginate and subcutaneously implanted in nude mice for 8 weeks. 3D morphometric analysis showed that bilayer BNC scaffolds have a porosity of 75% and mean pore size of 50 ± 25 μm. Furthermore, endotoxin analysis and in vitro cytotoxicity testing revealed that the produced bilayer BNC scaffolds were non-pyrogenic (0.15 ± 0.09 EU/ml) and non-cytotoxic (cell viability: 97.8 ± 4.7%). This study demonstrates that bilayer BNC scaffolds offer a good mechanical stability and maintain a structural integrity while providing a porous architecture that supports cell ingrowth. Moreover, bilayer BNC scaffolds provide a suitable environment for culture-expanded NCs as well as a combination of freshly isolated NCs and MNCs to form cartilage in vitro and in vivo as demonstrated by immunohistochemistry, biochemical and biomechanical analyses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Alginate foam-based three-dimensional culture to investigate drug sensitivity in primary leukaemia cells.

    PubMed

    Karimpoor, Mahroo; Yebra-Fernandez, Eva; Parhizkar, Maryam; Orlu, Mine; Craig, Duncan; Khorashad, Jamshid S; Edirisinghe, Mohan

    2018-04-01

    The development of assays for evaluating the sensitivity of leukaemia cells to anti-cancer agents is becoming an important aspect of personalized medicine. Conventional cell cultures lack the three-dimensional (3D) structure of the bone marrow (BM), the extracellular matrix and stromal components which are crucial for the growth and survival of leukaemia stem cells. To accurately predict the sensitivity of the leukaemia cells in an in vitro assay a culturing system containing the essential components of BM is required. In this study, we developed a porous calcium alginate foam-based scaffold to be used for 3D culture. The new 3D culture was shown to be cell compatible as it supported the proliferation of both normal haematopoietic and leukaemia cells. Our cell differential assay for myeloid markers showed that the porous foam-based 3D culture enhanced myeloid differentiation in both leukaemia and normal haematopoietic cells compared to two-dimensional culture. The foam-based scaffold reduced the sensitivity of the leukaemia cells to the tested antileukaemia agents in K562 and HL60 leukaemia cell line model and also primary myeloid leukaemia cells. This observation supports the application of calcium alginate foams as scaffold components of the 3D cultures for investigation of sensitivity to antileukaemia agents in primary myeloid cells. © 2018 The Author(s).

  4. Design and Fabrication of Anatomical Bioreactor Systems Containing Alginate Scaffolds for Cartilage Tissue Engineering

    PubMed Central

    Gharravi, Anneh Mohammad; Orazizadeh, Mahmoud; Ansari-Asl, Karim; Banoni, Salem; Izadi, Sina; Hashemitabar, Mahmoud

    2012-01-01

    The aim of the present study was to develop a tissue-engineering approach through alginate gel molding to mimic cartilage tissue in a three-dimensional culture system. The perfusion biomimetic bioreactor was designed to mimic natural joint. The shear stresses exerting on the bioreactor chamber were calculated by Computational Fluid Dynamic (CFD). Several alginate/bovine chondrocyte constructs were prepared, and were cultured in the bioreactor. Histochemical and immunohistochemical staining methods for the presence of glycosaminoglycan(GAG), overall matrix production and type II collagen protein were performed, respectively. The dynamic mechanical device applied a linear mechanical displacement of 2 mm to 10 mm. The CFD modeling indicated peak velocity and maximum wall shear stress were 1.706×10−3 m/s and 0.02407 dyne/cm 2, respectively. Histochemical and immunohistochemical analysis revealed evidence of cartilage-like tissue with lacunas similar to those of natural cartilage and the production of sulfated GAG of matrix by the chondrons, metachromatic territorial matrix-surrounded cells and accumulation of type II collagen around the cells. The present study indicated that when chondrocytes were seeded in alginate hydrogel and cultured in biomimetic cell culture system, cells survived well and secreted newly synthesized matrix led to improvement of chondrogenesis. PMID:23408660

  5. 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development.

    PubMed

    Hunt, Nicola C; Hallam, Dean; Karimi, Ayesha; Mellough, Carla B; Chen, Jinju; Steel, David H W; Lako, Majlinda

    2017-02-01

    No treatments exist to effectively treat many retinal diseases. Retinal pigmented epithelium (RPE) and neural retina can be generated from human embryonic stem cells/induced pluripotent stem cells (hESCs/hiPSCs). The efficacy of current protocols is, however, limited. It was hypothesised that generation of laminated neural retina and/or RPE from hiPSCs/hESCs could be enhanced by three dimensional (3D) culture in hydrogels. hiPSC- and hESC-derived embryoid bodies (EBs) were encapsulated in 0.5% RGD-alginate; 1% RGD-alginate; hyaluronic acid (HA) or HA/gelatin hydrogels and maintained until day 45. Compared with controls (no gel), 0.5% RGD-alginate increased: the percentage of EBs with pigmented RPE foci; the percentage EBs with optic vesicles (OVs) and pigmented RPE simultaneously; the area covered by RPE; frequency of RPE cells (CRALBP+); expression of RPE markers (TYR and RPE65) and the retinal ganglion cell marker, MATH5. Furthermore, 0.5% RGD-alginate hydrogel encapsulation did not adversely affect the expression of other neural retina markers (PROX1, CRX, RCVRN, AP2α or VSX2) as determined by qRT-PCR, or the percentage of VSX2 positive cells as determined by flow cytometry. 1% RGD-alginate increased the percentage of EBs with OVs and/or RPE, but did not significantly influence any other measures of retinal differentiation. HA-based hydrogels had no significant effect on retinal tissue development. The results indicated that derivation of retinal tissue from hESCs/hiPSCs can be enhanced by culture in 0.5% RGD-alginate hydrogel. This RGD-alginate scaffold may be useful for derivation, transport and transplantation of neural retina and RPE, and may also enhance formation of other pigmented, neural or epithelial tissue. The burden of retinal disease is ever growing with the increasing age of the world-wide population. Transplantation of retinal tissue derived from human pluripotent stem cells (PSCs) is considered a promising treatment. However, derivation of

  6. Engineering Microvascularized 3D Tissue Using Alginate-Chitosan Microcapsules.

    PubMed

    Zhang, Wujie; Choi, Jung K; He, Xiaoming

    2017-02-01

    Construction of vascularized tissues is one of the major challenges of tissue engineering. The goal of this study was to engineer 3D microvascular tissues by incorporating the HUVEC-CS cells with a collagen/alginate-chitosan (AC) microcapsule scaffold. In the presence of AC microcapsules, a 3D vascular-like network was clearly observable. The results indicated the importance of AC microcapsules in engineering microvascular tissues -- providing support and guiding alignment of HUVEC-CS cells. This approach provides an alternative and promising method for constructing vascularized tissues.

  7. Development of a Multi-Functional Biopolymer Scaffold for Neural Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Francis, Nicola Louise

    Spinal cord injury (SCI) affects approximately 270,000 people in the U.S., with approximately 12,000 new cases occurring every year. Several strategies have been investigated to enhance axonal regeneration after SCI, however, the resulting growth can be random and disorganized. Bioengineered scaffolds provide a physical substrate for the guidance of regenerating axons towards their targets, and can be produced by freeze casting. This technique involves the controlled directional solidification of an aqueous solution or suspension, resulting in a linearly aligned porous structure caused by ice templating. In this thesis, freeze casting was used to create novel porous chitosan-alginate (C/A) scaffolds with longitudinally aligned channels and a compressive modulus (5.08 ± 0.61 kPa) comparable to that of native spinal cord tissue. These C/A scaffolds supported the viability, attachment, and directionally oriented growth of chick dorsal root ganglia (DRG) neurites in vitro, with surface adsorptions of polycations and laminin promoting significantly longer neurite growth than the uncoated scaffolds (p<0.001). In order to integrate therapeutic biomolecules within the scaffolds for sustained release, alginate and chitosan microcapsules produced by spray drying were used to encapsulate brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), and the enzyme chondroitinase ABC (chABC) prior to scaffold incorporation. BDNF and NT-3 were released from the C/A scaffolds in a sustained manner for 8 weeks in vitro, while chABC was released for up to 35 days. However, up to 85% of biomolecules emained entrapped within the scaffold walls, due to limitation of diffusion by the scaffold wall mesh size. Release of bioactive chABC and neurotrophins from the multifunctional scaffolds promoted the growth of DRG neurites through an in vitro barrier of chondroitin sulfate proteoglycans, a main inhibitory component of the growth-inhibiting glial scar in the injured spinal cord

  8. Transplantation of an alginate-matrigel matrix containing isolated ovarian cells: first step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells.

    PubMed

    Vanacker, Julie; Luyckx, Valérie; Dolmans, Marie-Madeleine; Des Rieux, Anne; Jaeger, Jonathan; Van Langendonckt, Anne; Donnez, Jacques; Amorim, Christiani A

    2012-09-01

    For women diagnosed with leukemia, transplantation of cryopreserved ovarian tissue after disease remission is not advisable. Therefore, to restore fertility in these patients, we aim to develop a biodegradable artificial ovary that offers an environment where isolated follicles and ovarian cells (OCs) can survive and grow. Four NMRI mice were ovariectomized and their ovaries used to isolate OCs. Groups of 50,000 OCs were embedded in an alginate-matrigel matrix for further fixation (fresh controls), one week of in vitro culture (IVC) or heterotopic autografting. OC proliferation (Ki67), apoptosis (TUNEL), scaffold degradation, vessel formation (CD34) and inflammation (CD45) were analyzed. Ki67-positive OCs were found in 2.3%, 9.0% and 15.5% cells of cases in fresh, IVC and grafted beads respectively, while cells were TUNEL-positive in 0%, 1.5% and 6.9% of cases. After IVC or grafting, the beads degraded, losing their original round aspect, and infiltrating blood capillaries could be observed in the grafted beads. CD34-positive cells and 22% CD45-positive cells were found around and inside the matrix. In conclusion, our results demonstrate that an alginate-based matrix is a promising proposition to graft isolated OCs. After transplantation, this matrix was able to degrade, allowed vascularization and elicited a low inflammatory response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds.

    PubMed

    Costantini, Marco; Colosi, Cristina; Mozetic, Pamela; Jaroszewicz, Jakub; Tosato, Alessia; Rainer, Alberto; Trombetta, Marcella; Święszkowski, Wojciech; Dentini, Mariella; Barbetta, Andrea

    2016-05-01

    In the design of scaffolds for tissue engineering applications, morphological parameters such as pore size, shape, and interconnectivity, as well as transport properties, should always be tailored in view of their clinical application. In this work, we demonstrate that a regular and ordered porous texture is fundamental to achieve an even cell distribution within the scaffold under perfusion seeding. To prove our hypothesis, two sets of alginate scaffolds were fabricated using two different technological approaches of the same method: gas-in-liquid foam templating. In the first one, foam was obtained by insufflating argon in a solution of alginate and a surfactant under stirring. In the second one, foam was generated inside a flow-focusing microfluidic device under highly controlled and reproducible conditions. As a result, in the former case the derived scaffold (GF) was characterized by polydispersed pores and interconnects, while in the latter (μFL), the porous structure was highly regular both with respect to the spatial arrangement of pores and interconnects and their monodispersity. Cell seeding within perfusion bioreactors of the two scaffolds revealed that cell population inside μFL scaffolds was quantitatively higher than in GF. Furthermore, seeding efficiency data for μFL samples were characterized by a lower standard deviation, indicating higher reproducibility among replicates. Finally, these results were validated by simulation of local flow velocity (CFD) inside the scaffolds proving that μFL was around one order of magnitude more permeable than GF. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Platelet lysate embedded scaffolds for skin regeneration.

    PubMed

    Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Ferrari, Franca; Mori, Michela; Cervio, Marila; Riva, Federica; Liakos, Ioannis; Athanassiou, Athanassia; Saporito, Francesca; Marini, Lara; Caramella, Carla

    2015-04-01

    The work presents the development of acellular scaffolds extemporaneously embedded with platelet lysate (PL), as an innovative approach in the field of tissue regeneration/reparation. PL embedded scaffolds should have a tridimensional architecture to support cell migration and growth, in order to restore skin integrity. For this reason, chondroitin sulfate (CS) was associated with sodium alginate (SA) to prepare highly porous systems. The developed scaffolds were characterized for chemical stability to γ-radiation, morphology, hydration and mechanical properties. Moreover, the capability of fibroblasts and endothelial cells to populate the scaffold was evaluated by means of proliferation test 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and confocal laser scanning microscopy study. The scaffolds, not altered by sterilization, were characterized by limited swelling and high flexibility, by foam-like structure with bubbles that formed a high surface area and irregular texture suitable for cell adhesion. Cell growth and scaffold population were evident on the bubble surface, where the cells appeared anchored to the scaffold structure. Scaffold network based on CS and SA demonstrated to be an effective support to enhance and to allow fibroblasts and endothelial cells (human umbilical vein endothelial cells, HUVEC) adhesion and proliferation. In particular, it could be hypothesized that cell adhesion was facilitated by the synergic effect of PL and CS. Although further in vivo evaluation is needed, on the basis of in vitro results, PL embedded scaffolds seem promising systems for skin wound healing.

  11. Alginate: properties and biomedical applications

    PubMed Central

    Lee, Kuen Yong; Mooney, David J.

    2011-01-01

    Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers. PMID:22125349

  12. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors.

    PubMed

    Ansari, Sahar; Chen, Chider; Xu, Xingtian; Annabi, Nasim; Zadeh, Homayoun H; Wu, Benjamin M; Khademhosseini, Ali; Shi, Songtao; Moshaverinia, Alireza

    2016-06-01

    Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p < 0.05). Altogether, our findings confirmed that GMSCs encapsulated in RGD-modified alginate hydrogel with multiple growth factor delivery capacity is a promising

  13. Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo.

    PubMed

    Chou, A I; Akintoye, S O; Nicoll, S B

    2009-10-01

    Intervertebral disc (IVD) degeneration is a major health concern in the United States. Replacement of the nucleus pulposus (NP) with injectable biomaterials represents a potential treatment strategy for IVD degeneration. The objective of this study was to characterize the extracellular matrix (ECM) assembly and functional properties of NP cell-encapsulated, photo-crosslinked alginate hydrogels in comparison to ionically crosslinked alginate constructs. Methacrylated alginate was synthesized by esterification of hydroxyl groups with methacrylic anhydride. Bovine NP cells were encapsulated in alginate hydrogels by ionic crosslinking using CaCl(2) or through photo-crosslinking upon exposure to long-wave UV light in the presence of a photoinitiator. The hydrogels were evaluated in vitro by gross and histological analysis and in vivo using a murine subcutaneous pouch model. In vivo samples were analyzed for gene expression, ECM localization and accumulation, and equilibrium mechanical properties. Ionically crosslinked hydrogels exhibited inferior proteoglycan accumulation in vitro and were unable to maintain structural integrity in vivo. In further studies, photo-crosslinked alginate hydrogels were implanted for up to 8 weeks to examine NP tissue formation. Photo-crosslinked hydrogels displayed temporal increases in gene expression and assembly of type II collagen and proteoglycans. Additionally, hydrogels remained intact over the duration of the study and the equilibrium Young's modulus increased from 1.24+/-0.09 kPa to 4.31+/-1.39 kPa, indicating the formation of functional matrix with properties comparable to those of the native NP. These findings support the use of photo-crosslinked alginate hydrogels as biomaterial scaffolds for NP replacement.

  14. Nanocomposite scaffolds with tunable mechanical and degradation capabilities: co-delivery of bioactive agents for bone tissue engineering.

    PubMed

    Cattalini, Juan P; Roether, Judith; Hoppe, Alexander; Pishbin, Fatemeh; Haro Durand, Luis; Gorustovich, Alejandro; Boccaccini, Aldo R; Lucangioli, Silvia; Mouriño, Viviana

    2016-10-21

    Novel multifunctional nanocomposite scaffolds made of nanobioactive glass and alginate crosslinked with therapeutic ions such as calcium and copper were developed for delivering therapeutic agents, in a highly controlled and sustainable manner, for bone tissue engineering. Alendronate, a well-known antiresorptive agent, was formulated into microspheres under optimized conditions and effectively loaded within the novel multifunctional scaffolds with a high encapsulation percentage. The size of the cation used for the alginate crosslinking impacted directly on porosity and viscoelastic properties, and thus, on the degradation rate and the release profile of copper, calcium and alendronate. According to this, even though highly porous structures were created with suitable pore sizes for cell ingrowth and vascularization in both cases, copper-crosslinked scaffolds showed higher values of porosity, elastic modulus, degradation rate and the amount of copper and alendronate released, when compared with calcium-crosslinked scaffolds. In addition, in all cases, the scaffolds showed bioactivity and mechanical properties close to the endogenous trabecular bone tissue in terms of viscoelasticity. Furthermore, the scaffolds showed osteogenic and angiogenic properties on bone and endothelial cells, respectively, and the extracts of the biomaterials used promoted the formation of blood vessels in an ex vivo model. These new bioactive nanocomposite scaffolds represent an exciting new class of therapeutic cell delivery carrier with tunable mechanical and degradation properties; potentially useful in the controlled and sustainable delivery of therapeutic agents with active roles in bone formation and angiogenesis, as well as in the support of cell proliferation and osteogenesis for bone tissue engineering.

  15. Identification of enzymes responsible for extracellular alginate depolymerization and alginate metabolism in Vibrio algivorus.

    PubMed

    Doi, Hidetaka; Tokura, Yuriko; Mori, Yukiko; Mori, Kenichi; Asakura, Yoko; Usuda, Yoshihiro; Fukuda, Hiroo; Chinen, Akito

    2017-02-01

    Alginate is a marine non-food-competing polysaccharide that has potential applications in biorefinery. Owing to its large size (molecular weight >300,000 Da), alginate cannot pass through the bacterial cell membrane. Therefore, bacteria that utilize alginate are presumed to have an enzyme that degrades extracellular alginate. Recently, Vibrio algivorus sp. SA2 T was identified as a novel alginate-decomposing and alginate-utilizing species. However, little is known about the mechanism of alginate degradation and metabolism in this species. To address this issue, we screened the V. algivorus genomic DNA library for genes encoding polysaccharide-decomposing enzymes using a novel double-layer plate screening method and identified alyB as a candidate. Most identified alginate-decomposing enzymes (i.e., alginate lyases) must be concentrated and purified before extracellular alginate depolymerization. AlyB of V. algivorus heterologously expressed in Escherichia coli depolymerized extracellular alginate without requiring concentration or purification. We found seven homologues in the V. algivorus genome (alyB, alyD, oalA, oalB, oalC, dehR, and toaA) that are thought to encode enzymes responsible for alginate transport and metabolism. Introducing these genes into E. coli enabled the cells to assimilate soluble alginate depolymerized by V. algivorus AlyB as the sole carbon source. The alginate was bioconverted into L-lysine (43.3 mg/l) in E. coli strain AJIK01. These findings demonstrate a simple and novel screening method for identifying polysaccharide-degrading enzymes in bacteria and provide a simple alginate biocatalyst and fermentation system with potential applications in industrial biorefinery.

  16. A new holistic 3D non-invasive analysis of cellular distribution and motility on fibroin-alginate microcarriers using light sheet fluorescent microscopy

    PubMed Central

    Pierini, Michela; Bevilacqua, Alessandro; Torre, Maria Luisa; Lucarelli, Enrico

    2017-01-01

    Cell interaction with biomaterials is one of the keystones to developing medical devices for tissue engineering applications. Biomaterials are the scaffolds that give three-dimensional support to the cells, and are vectors that deliver the cells to the injured tissue requiring repair. Features of biomaterials can influence the behaviour of the cells and consequently the efficacy of the tissue-engineered product. The adhesion, distribution and motility of the seeded cells onto the scaffold represent key aspects, and must be evaluated in vitro during the product development, especially when the efficacy of a specific tissue-engineered product depends on viable and functional cell loading. In this work, we propose a non-invasive and non-destructive imaging analysis for investigating motility, viability and distribution of Mesenchymal Stem Cells (MSCs) on silk fibroin-based alginate microcarriers, to test the adhesion capacity of the fibroin coating onto alginate which is known to be unsuitable for cell adhesion. However, in depth characterization of the biomaterial is beyond the scope of this paper. Scaffold-loaded MSCs were stained with Calcein-AM and Ethidium homodimer-1 to detect live and dead cells, respectively, and counterstained with Hoechst to label cell nuclei. Time-lapse Light Sheet Fluorescent Microscopy (LSFM) was then used to produce three-dimensional images of the entire cells-loaded fibroin/alginate microcarriers. In order to quantitatively track the cell motility over time, we also developed an open source user friendly software tool called Fluorescent Cell Tracker in Three-Dimensions (F-Tracker3D). Combining LSFM with F-Tracker3D we were able for the first time to assess the distribution and motility of stem cells in a non-invasive, non-destructive, quantitative, and three-dimensional analysis of the entire surface of the cell-loaded scaffold. We therefore propose this imaging technique as an innovative holistic tool for monitoring cell

  17. Control of Alginate Core Size in Alginate-Poly (Lactic-Co-Glycolic) Acid Microparticles

    NASA Astrophysics Data System (ADS)

    Lio, Daniel; Yeo, David; Xu, Chenjie

    2016-01-01

    Core-shell alginate-poly (lactic-co-glycolic) acid (PLGA) microparticles are potential candidates to improve hydrophilic drug loading while facilitating controlled release. This report studies the influence of the alginate core size on the drug release profile of alginate-PLGA microparticles and its size. Microparticles are synthesized through double-emulsion fabrication via a concurrent ionotropic gelation and solvent extraction. The size of alginate core ranges from approximately 10, 50, to 100 μm when the emulsification method at the first step is homogenization, vortexing, or magnetic stirring, respectively. The second step emulsification for all three conditions is performed with magnetic stirring. Interestingly, although the alginate core has different sizes, alginate-PLGA microparticle diameter does not change. However, drug release profiles are dramatically different for microparticles comprising different-sized alginate cores. Specifically, taking calcein as a model drug, microparticles containing the smallest alginate core (10 μm) show the slowest release over a period of 26 days with burst release less than 1 %.

  18. 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications.

    PubMed

    Ning, Liqun; Sun, Haoying; Lelong, Tiphanie; Guilloteau, Romain; Zhu, Ning; Schreyer, David J; Chen, Daniel Xiongbiao

    2018-06-18

    Three-dimensional (3D) bioprinting of biomaterials shows great potential for producing cell-encapsulated scaffolds to repair nerves after injury or disease. For this, preparation of biomaterials and bioprinting itself are critical to create scaffolds with both biological and mechanical properties appropriate for nerve regeneration, yet remain unachievable. This paper presents our study on bioprinting Schwann cell-encapsulated scaffolds using composite hydrogels of alginate, fibrin, hyaluronic acid, and/or RGD peptide, for nerve tissue engineering applications. For the preparation of composite hydrogels, suitable hydrogel combinations were identified and prepared by adjusting the concentration of fibrin based on the morphological spreading of Schwann cells. In bioprinting, the effects of various printing process parameters (including the air pressure for dispensing, dispensing head movement speed, and crosslinking conditions) on printed structures were investigated and, by regulating these parameters, mechanically-stable scaffolds with fully interconnected pores were printed. The performance of Schwann cells within the printed scaffolds were examined in terms of viability, proliferation, orientation, and ability to produce laminin. Our results show that the printed scaffolds can promote the alignment of Schwann cells inside scaffolds and thus provide haptotactic cues to direct the extension of dorsal root ganglion neurites along the printed strands, demonstrating their great potential for applications in the field of nerve tissue engineering. © 2018 IOP Publishing Ltd.

  19. Generation of a scaffold free cartilage-like implant from a small amount of starting material.

    PubMed

    Stoddart, M J; Ettinger, L; Häuselmann, H J

    2006-01-01

    An autologous cellular based treatment of a traumatic cartilage injury requires a procedure whereby a biopsy of healthy cartilage is removed from the patient and the cells isolated and expanded by monolayer passage. This increases the cell number to required levels but also leads to a de-differentiation of the cells. We aim to produce a scaffold-free, de-novo implant from a biopsy of cartilage. Bovine chondrocytes were isolated from a small biopsy and expanded. The chondrocytic phenotype of the monolayer expanded cells was recovered during a period of culture in alginate and the effect of factors such as IGF1, TFGbeta1 and dexamethasone was investigated. During the alginate culture period a pre-treatment with IGF1 and dexamethasone was shown to have little effect. IGF1 however increased the glycosaminoglycan/DNA (GAG/DNA) content on day 14 to 84.95+/-5 ng/ng compared with 37.3+/-1.8 ng/ng in the controls (P<0.001). 35S labeling demonstrated an increased GAG synthesis in the presence of IGF1 (P<0.001). IGF1 also induced a increase of DNA content 1383+/-314 ng/bead compared to 512+/-19 ng/bead in the controls (P<0.001). The cells were released from the alginate and cultured in a silicon mould for a further 14 days to obtain a three dimensional implant. Releasing the cells from the alginate and casting in a mould produced an implant of defined shape which contained no foreign material. After 31 days of culture the implants contained 152.4+/-13.14 ng/ng GAG/DNA and 42.93+/-10.23 ng/ng collagen II. We believe alginate released chondrocytes provide a real alternative to artificial scaffolds.

  20. Marine macromolecules cross-linked hydrogel scaffolds as physiochemically and biologically favorable entities for tissue engineering applications.

    PubMed

    Sumayya, A S; Muraleedhara Kurup, G

    2017-06-01

    Marine biopolymer composite materials provide a technological platform for launching biomedical applications. Biomaterials demand good biocompatibility without the possibility of inflammation or foreign body reactions. In this study, we prepared two biocomposite hydrogels namely; HAC (hydroxyapatite, alginate & chitosan) and HACF (hydroxyapatite, alginate, chitosan & fucoidan) followed by calcium chloride cross linking. The prepared scaffolds were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Porosity measurement, swelling, biodegradation, hemolysis, RBC aggregation, plasma protein adsorption and cytotoxicity studies were also done. The hydrogel scaffold HACF possessed a well-defined porous architecture, sufficient water holding capacity, better hemocompatibility and biodegradability. The biocompatibility was confirmed through in vitro cytotoxicity studies such as MTT assay, Neutral red uptake, DAPI staining, Trypan blue dye exclusion test and direct contact assay in L929 mouse fibroblast cells. In addition, immunomodulatory and anti-inflammatory properties of both of these scaffolds were revealed by the mRNA expressions of major inflammatory marker genes in cytotoxic condition such as TNF-α, IL-6 and NF-κB. The physiochemical characterization and biological responses of HACF hydrogel signifies its suitability for various tissue engineering applications.

  1. Design and Fabrication of Complex Scaffolds for Bone Defect Healing: Combined 3D Plotting of a Calcium Phosphate Cement and a Growth Factor-Loaded Hydrogel.

    PubMed

    Ahlfeld, Tilman; Akkineni, Ashwini Rahul; Förster, Yvonne; Köhler, Tino; Knaack, Sven; Gelinsky, Michael; Lode, Anja

    2017-01-01

    Additive manufacturing enables the fabrication of scaffolds with defined architecture. Versatile printing technologies such as extrusion-based 3D plotting allow in addition the incorporation of biological components increasing the capability to restore functional tissues. We have recently described the fabrication of calcium phosphate cement (CPC) scaffolds by 3D plotting of an oil-based CPC paste under mild conditions. In the present study, we have developed a strategy for growth factor loading based on multichannel plotting: a biphasic scaffold design was realised combining CPC with VEGF-laden, highly concentrated hydrogel strands. As hydrogel component, alginate and an alginate-gellan gum blend were evaluated; the blend exhibited a more favourable VEGF release profile and was chosen for biphasic scaffold fabrication. After plotting, two-step post-processing was performed for both, hydrogel crosslinking and CPC setting, which was shown to be compatible with both materials. Finally, a scaffold was designed and fabricated which can be applied for testing in a rat critical size femur defect. Optimization of CPC plotting enabled the fabrication of highly resolved structures with strand diameters of only 200 µm. Micro-computed tomography revealed a precise strand arrangement and an interconnected pore space within the biphasic scaffold even in swollen state of the hydrogel strands.

  2. Biphasic Scaffolds from Marine Collagens for Regeneration of Osteochondral Defects.

    PubMed

    Bernhardt, Anne; Paul, Birgit; Gelinsky, Michael

    2018-03-13

    Collagens of marine origin are applied increasingly as alternatives to mammalian collagens in tissue engineering. The aim of the present study was to develop a biphasic scaffold from exclusively marine collagens supporting both osteogenic and chondrogenic differentiation and to find a suitable setup for in vitro chondrogenic and osteogenic differentiation of human mesenchymal stroma cells (hMSC). Biphasic scaffolds from biomimetically mineralized salmon collagen and fibrillized jellyfish collagen were fabricated by joint freeze-drying and crosslinking. Different experiments were performed to analyze the influence of cell density and TGF-β on osteogenic differentiation of the cells in the scaffolds. Gene expression analysis and analysis of cartilage extracellular matrix components were performed and activity of alkaline phosphatase was determined. Furthermore, histological sections of differentiated cells in the biphasic scaffolds were analyzed. Stable biphasic scaffolds from two different marine collagens were prepared. An in vitro setup for osteochondral differentiation was developed involving (1) different seeding densities in the phases; (2) additional application of alginate hydrogel in the chondral part; (3) pre-differentiation and sequential seeding of the scaffolds and (4) osteochondral medium. Spatially separated osteogenic and chondrogenic differentiation of hMSC was achieved in this setup, while osteochondral medium in combination with the biphasic scaffolds alone was not sufficient to reach this ambition. Biphasic, but monolithic scaffolds from exclusively marine collagens are suitable for the development of osteochondral constructs.

  3. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Potassium alginate is...

  4. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Calcium alginate is prepared by...

  5. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate is prepared by the...

  6. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium alginate. 184.1724 Section 184.1724 Food and... Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate is...

  7. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Yukie; Ochiai, Akihito; Mikami, Bunzo

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit.more » Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.« less

  8. Bio-composites composed of a solid free-form fabricated polycaprolactone and alginate-releasing bone morphogenic protein and bone formation peptide for bone tissue regeneration.

    PubMed

    Kim, MinSung; Jung, Won-Kyo; Kim, GeunHyung

    2013-11-01

    Biomedical scaffolds should be designed with highly porous three-dimensional (3D) structures that have mechanical properties similar to the replaced tissue, biocompatible properties, and biodegradability. Here, we propose a new composite composed of solid free-form fabricated polycaprolactone (PCL), bone morphogenic protein (BMP-2) or bone formation peptide (BFP-1), and alginate for bone tissue regeneration. In this study, PCL was used as a mechanical supporting component to enhance the mechanical properties of the final biocomposite and alginate was used as the deterring material to control the release of BMP-2 and BFP-1. A release test revealed that alginate can act as a good release control material. The in vitro biocompatibilities of the composites were examined using osteoblast-like cells (MG63) and the alkaline phosphatase (ALP) activity and calcium deposition were assessed. The in vitro test results revealed that PCL/BFP-1/Alginate had significantly higher ALP activity and calcium deposition than the PCL/BMP-2/Alginate composite. Based on these findings, release-controlled BFP-1 could be a good growth factor for enhancement of bone tissue growth and the simple-alginate coating method will be a useful tool for fabrication of highly functional biomaterials through release-control supplementation.

  9. * Central Growth Factor Loaded Depots in Bone Tissue Engineering Scaffolds for Enhanced Cell Attraction.

    PubMed

    Quade, Mandy; Knaack, Sven; Akkineni, Ashwini Rahul; Gabrielyan, Anastasia; Lode, Anja; Rösen-Wolff, Angela; Gelinsky, Michael

    2017-08-01

    Tissue engineering, the application of stem and progenitor cells in combination with an engineered extracellular matrix, is a promising strategy for bone regeneration. However, its success is limited by the lack of vascularization after implantation. The concept of in situ tissue engineering envisages the recruitment of cells necessary for tissue regeneration from the host environment foregoing ex vivo cell seeding of the scaffold. In this study, we developed a novel scaffold system for enhanced cell attraction, which is based on biomimetic mineralized collagen scaffolds equipped with a central biopolymer depot loaded with chemotactic agents. In humid milieu, as after implantation, the signaling factors are expected to slowly diffuse out of the central depot forming a gradient that stimulates directed cell migration toward the scaffold center. Heparin, hyaluronic acid, and alginate have been shown to be capable of depot formation. By using vascular endothelial growth factor (VEGF) as model factor, it was demonstrated that the release kinetics can be adjusted by varying the depot composition. While alginate and hyaluronic acid are able to reduce the initial burst and prolong the release of VEGF, the addition of heparin led to a much stronger retention that resulted in an almost linear release over 28 days. The biological activity of released VEGF was proven for all variants using an endothelial cell proliferation assay. Furthermore, migration experiments with endothelial cells revealed a relationship between the degree of VEGF retention and migration distance: cells invaded deepest in scaffolds containing a heparin-based depot indicating that the formation of a steep gradient is crucial for cell attraction. In conclusion, this novel in situ tissue engineering approach, specifically designed to recruit and accommodate endogenous cells upon implantation, appeared highly promising to stimulate cell invasion, which in turn would promote vascularization and finally new

  10. Alginate Lyase (AlgL) Activity Is Required for Alginate Biosynthesis in Pseudomonas aeruginosa

    PubMed Central

    Albrecht, Mark T.; Schiller, Neal L.

    2005-01-01

    To determine whether AlgL's lyase activity is required for alginate production in Pseudomonas aeruginosa, an algLΔ::Gmr mutant (FRD-MA7) was created. algL complementation of FRD-MA7 restored alginate production, but algL constructs containing mutations inactivating lyase activity did not, demonstrating that the enzymatic activity of AlgL is required for alginate production. PMID:15901714

  11. Alginate and DNA Gels Are Suitable Delivery Systems for Diabetic Wound Healing.

    PubMed

    Tellechea, Ana; Silva, Eduardo A; Min, Jianghong; Leal, Ermelindo C; Auster, Michael E; Pradhan-Nabzdyk, Leena; Shih, William; Mooney, David J; Veves, Aristidis

    2015-06-01

    Diabetic foot ulcers (DFU) represent a severe health problem and an unmet clinical challenge. In this study, we tested the efficacy of novel biomaterials in improving wound healing in mouse models of diabetes mellitus (DM). The biomaterials are composed of alginate- and deoxyribonucleic acid (DNA)-based gels that allow incorporation of effector cells, such as outgrowth endothelial cells (OEC), and provide sustained release of bioactive factors, such as neuropeptides and growth factors, which have been previously validated in experimental models of DM wound healing or hind limb ischemia. We tested these biomaterials in mice and demonstrate that they are biocompatible and can be injected into the wound margins without major adverse effects. In addition, we show that the combination of OEC and the neuropeptide Substance P has a better healing outcome than the delivery of OEC alone, while subtherapeutic doses of vascular endothelial growth factor (VEGF) are required for the transplanted cells to exert their beneficial effects in wound healing. In summary, alginate and DNA scaffolds could serve as potential delivery systems for the next-generation DFU therapies. © The Author(s) 2015.

  12. Enhancing the mechanical and in vitro performance of robocast bioglass scaffolds by polymeric coatings: Effect of polymer composition.

    PubMed

    Motealleh, Azadeh; Eqtesadi, Siamak; Pajares, Antonia; Miranda, Pedro

    2018-08-01

    The effect of different polymeric coatings, including natural and synthetic compositions, on the mechanical performance of 45S5 bioglass robocast scaffolds is systematically analyzed in this work. Fully amorphous 45S5 bioglass robocast scaffolds sintered at 550 °C were impregnated with natural (gelatin, alginate, and chitosan) and synthetic (polycaprolactone, PCL and poly-lactic acid, PLA) polymers through a dip-coating process. Mechanical enhancement provided by these coatings in terms of both compressive strength and strain energy density was evaluated. Natural polymers, in general, and chitosan, in particular, were found to produce the greater reinforcement. The effect of these coatings on the in vitro bioactivity and degradation behavior of 45S5 bioglass robocast scaffolds was also investigated through immersion tests in simulated body fluid (SBF). Coatings from natural polymers, especially chitosan, are shown to have a positive effect on the bioactivity of 45S5 bioglass, accelerating the formation of an apatite-like layer. Besides, most coating compositions reduced the degradation (weight loss) rate of the scaffold, which has a positive impact on the evolution of their mechanical properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown...

  14. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown...

  15. Addition of perfluorocarbons to alginate hydrogels significantly impacts molecular transport and fracture stress.

    PubMed

    White, Joseph C; Stoppel, Whitney L; Roberts, Susan C; Bhatia, Surita R

    2013-02-01

    Perfluorocarbons (PFCs) are used in biomaterial formulations to increase oxygen (O(2) ) tension and create a homogeneous O(2) environment in three-dimensional tissue constructs. It is unclear how PFCs affect mechanical and transport properties of the scaffold, which are critical for robustness, intracellular signaling, protein transport, and overall device efficacy. In this study, we investigate composite alginate hydrogels containing a perfluorooctyl bromide (PFOB) emulsion stabilized with Pluronic(®) F68 (F68). We demonstrate that PFC addition significantly affects biomaterial properties and performance. Solution and hydrogel mechanical properties and transport of representative hydrophilic (riboflavin), hydrophobic (methyl and ethyl paraben), and protein (bovine serum albumin, BSA) solutes were compared in alginate/F68 composite hydrogels with or without PFOB. Our results indicate that mechanical properties of the alginate/F68/PFOB hydrogels are not significantly affected under small strains, but a significant decrease fracture stress is observed. The effective diffusivity D(eff) of hydrophobic small molecules decreases with PFOB emulsion addition, yet the D(eff) of hydrophilic small molecules remained unaffected. For BSA, the D(eff) increased and the loading capacity decreased with PFOB emulsion addition. Thus, a trade-off between the desired increased O(2) supply provided by PFCs and the mechanical weakening and change in transport of cellular signals must be carefully considered in the design of biomaterials containing PFCs. Copyright © 2012 Wiley Periodicals, Inc.

  16. Falsirhodobacter sp. alg1 Harbors Single Homologs of Endo and Exo-Type Alginate Lyases Efficient for Alginate Depolymerization

    PubMed Central

    Takahashi, Mami; Tanaka, Reiji; Miyake, Hideo; Shibata, Toshiyuki; Chow, Seinen; Kuroda, Kouichi; Ueda, Mitsuyoshi; Takeyama, Haruko

    2016-01-01

    Alginate-degrading bacteria play an important role in alginate degradation by harboring highly efficient and unique alginolytic genes. Although the general mechanism for alginate degradation by these bacteria is fairly understood, much is still required to fully exploit them. Here, we report the isolation of a novel strain, Falsirhodobacter sp. alg1, the first report for an alginate-degrading bacterium from the family Rhodobacteraceae. Genome sequencing reveals that strain alg1 harbors a primary alginate degradation pathway with only single homologs of an endo- and exo-type alginate lyase, AlyFRA and AlyFRB, which is uncommon among such bacteria. Subsequent functional analysis showed that both enzymes were extremely efficient to depolymerize alginate suggesting evolutionary interests in the acquirement of these enzymes. The exo-type alginate lyase, AlyFRB in particular could depolymerize alginate without producing intermediate products making it a highly efficient enzyme for the production of 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH). Based on our findings, we believe that the discovery of Falsirhodobacter sp. alg1 and its alginolytic genes hints at the potentiality of a more diverse and unique population of alginate-degrading bacteria. PMID:27176711

  17. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae...

  18. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae...

  19. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae...

  20. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae...

  1. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae...

  2. Ag/alginate nanofiber membrane for flexible electronic skin

    NASA Astrophysics Data System (ADS)

    Hu, Wei-Peng; Zhang, Bin; Zhang, Jun; Luo, Wei-Ling; Guo, Ya; Chen, Shao-Juan; Yun, Mao-Jin; Ramakrishna, Seeram; Long, Yun-Ze

    2017-11-01

    Flexible electronic skin has stimulated significant interest due to its widespread applications in the fields of human-machine interactivity, smart robots and health monitoring. As typical elements of electrical skin, the fabrication process of most pressure sensors combined nanomaterials and PDMS films are redundant, expensive and complicated, and their unknown biological toxicity could not be widely used in electronic skin. Hence, we report a novel, cost-effective and antibacterial approach to immobilizing silver nanoparticles into-electrospun Na-alginate nanofibers. Due to the unique role of carboxyl and hydroxyl groups in Na-alginate, the silver nanopaticles with 30 nm size in diameter were uniformly distributed inside and outside the alginate nanofibers, which obtained pressure sensor shows stable response, including an ultralow detection limited (1 pa) and high durability (>1000 cycles). Notably, the pressure sensor fabricated by these Ag/alginate nanofibers could not only follow human respiration but also accurately distinguish words like ‘Nano’ and ‘Perfect’ spoke by a tester. Interestingly, the pixelated sensor arrays based on these Ag/alginate nanofibers could monitor distribution of objects and reflect their weight by measuring the different current values. Moreover, these Ag/alginate nanofibers exhibit great antibacterial activity, implying the great potential application in artificial electronic skin.

  3. Physicochemical properties of marine collagen-alginate biomaterial

    NASA Astrophysics Data System (ADS)

    Soon, K. S.; Hii, S. L.; Wong, C. L.; Leong, L. K.; Woo, K. K.

    2017-12-01

    Collagen base biomaterials are widely applied in the field of tissue engineering. However, these fibrous proteins in animal connective tissues are insufficient to fulfill the mechanical properties for such applications. Therefore, alginate as a natural polysaccharide was incorporated. In this study, Smooth wolf herring skins was collected from the local fish ball processing industry for collagen extraction using acid solubilisation method. On the other hand, alginate from brown seaweed (Sargassum polycystum) was extracted with calcium carbonate at 50 °C. The composite films of different collagen and alginate ratio were prepared by lyophilisation with pure collagen film as control. The effects of alginate on swelling behaviour, porosity, collagenase degradation and tensile strength of the composite films were investigated. Swelling behaviour increased with alginate content, 50 % alginate film achieved 1254.75 % swelling after 24 h. All composite films achieved more than 80 % porosity except the film with 80 % collagen (65.41 %). Porosity was highest in 100 % alginate (94.30 %). Highest tensile strength (1585.87 kPa) and young modulus (27.05 MPa) was found in 50 % alginate film. In addition, resistance to collagenase degradation was improved with alginate content, lowest degradation rate was determined in 80 % alginate film. Results indicated alginate is efficient in improving some mechanical properties of the composite film.

  4. Applications of Alginate-Based Bioinks in 3D Bioprinting.

    PubMed

    Axpe, Eneko; Oyen, Michelle L

    2016-11-25

    Three-dimensional (3D) bioprinting is on the cusp of permitting the direct fabrication of artificial living tissue. Multicellular building blocks (bioinks) are dispensed layer by layer and scaled for the target construct. However, only a few materials are able to fulfill the considerable requirements for suitable bioink formulation, a critical component of efficient 3D bioprinting. Alginate, a naturally occurring polysaccharide, is clearly the most commonly employed material in current bioinks. Here, we discuss the benefits and disadvantages of the use of alginate in 3D bioprinting by summarizing the most recent studies that used alginate for printing vascular tissue, bone and cartilage. In addition, other breakthroughs in the use of alginate in bioprinting are discussed, including strategies to improve its structural and degradation characteristics. In this review, we organize the available literature in order to inspire and accelerate novel alginate-based bioink formulations with enhanced properties for future applications in basic research, drug screening and regenerative medicine.

  5. Applications of Alginate-Based Bioinks in 3D Bioprinting

    PubMed Central

    Axpe, Eneko; Oyen, Michelle L.

    2016-01-01

    Three-dimensional (3D) bioprinting is on the cusp of permitting the direct fabrication of artificial living tissue. Multicellular building blocks (bioinks) are dispensed layer by layer and scaled for the target construct. However, only a few materials are able to fulfill the considerable requirements for suitable bioink formulation, a critical component of efficient 3D bioprinting. Alginate, a naturally occurring polysaccharide, is clearly the most commonly employed material in current bioinks. Here, we discuss the benefits and disadvantages of the use of alginate in 3D bioprinting by summarizing the most recent studies that used alginate for printing vascular tissue, bone and cartilage. In addition, other breakthroughs in the use of alginate in bioprinting are discussed, including strategies to improve its structural and degradation characteristics. In this review, we organize the available literature in order to inspire and accelerate novel alginate-based bioink formulations with enhanced properties for future applications in basic research, drug screening and regenerative medicine. PMID:27898010

  6. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures.

    PubMed

    Tabriz, Atabak Ghanizadeh; Hermida, Miguel A; Leslie, Nicholas R; Shu, Wenmiao

    2015-12-21

    Different bioprinting techniques have been used to produce cell-laden alginate hydrogel structures, however these approaches have been limited to 2D or simple three-dimension (3D) structures. In this study, a new extrusion based bioprinting technique was developed to produce more complex alginate hydrogel structures. This was achieved by dividing the alginate hydrogel cross-linking process into three stages: primary calcium ion cross-linking for printability of the gel, secondary calcium cross-linking for rigidity of the alginate hydrogel immediately after printing and tertiary barium ion cross-linking for long-term stability of the alginate hydrogel in culture medium. Simple 3D structures including tubes were first printed to ensure the feasibility of the bioprinting technique and then complex 3D structures such as branched vascular structures were successfully printed. The static stiffness of the alginate hydrogel after printing was 20.18 ± 1.62 KPa which was rigid enough to sustain the integrity of the complex 3D alginate hydrogel structure during the printing. The addition of 60 mM barium chloride was found to significantly extend the stability of the cross-linked alginate hydrogel from 3 d to beyond 11 d without compromising the cellular viability. The results based on cell bioprinting suggested that viability of U87-MG cells was 93 ± 0.9% immediately after bioprinting and cell viability maintained above 88% ± 4.3% in the alginate hydrogel over the period of 11 d.

  7. Self-disinfecting Alginate vs Conventional Alginate: Effect on Surface Hardness of Gypsum Cast-An in vitro Study.

    PubMed

    Madhavan, Ranjith; George, Navia; Thummala, Niharika R; Ravi, S V; Nagpal, Ajay

    2017-11-01

    For the construction of any dental prosthesis, accurate impressions are necessary. Hence, we undertook the present study to evaluate and compare the surface hardness of gypsum casts poured from impressions made using conventional alginate and self-disinfecting alginate. A total of 30 impressions of stainless steel die were made, out of which 15 impressions were made with conventional alginate and 15 were made with self-disinfecting alginate and poured using Type III dental stone. Thirty stone specimens were subjected for hardness testing. Data were analyzed using independent samples t-test to compare the mean surface hardness. Difference in surface hardness was statistically insignificant (p > 0.05). Surface hardness of gypsum casts poured using impressions made from self-disinfecting alginate and conventional alginates were comparable. Self-disinfecting alginates may be employed in clinical practice as safe and effective materials to overcome the infection control issues without compromising on the properties of the material.

  8. Role of alginate in antibacterial finishing of textiles.

    PubMed

    Li, Jiwei; He, Jinmei; Huang, Yudong

    2017-01-01

    Antibacterial finishing of textiles has been introduced as a necessary process for various purposes especially creating a fabric with antimicrobial activities. Currently, the textile industry continues to look for textiles antimicrobial finishing process based on sustainable biopolymers from the viewpoints of environmental friendliness, industrialization, and economic concerns. This paper reviews the role of alginate, a sustainable biopolymer, in the development of antimicrobial textiles, including both basic physicochemical properties of alginate such as preparation, chemical structure, molecular weight, solubility, viscosity, and sol-gel transformation property. Then different processing routes (e.g. nanocomposite coating, ionic cross-linking coating, and Layer-by-Layer coating) for the antibacterial finishing of textiles by using alginate are revised in some detail. The achievements in this area have increased our knowledge of alginate application in the field of textile industry and promoted the development of green textile finishing. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Boron nitride nanotubes included thermally cross-linked gelatin-glucose scaffolds show improved properties.

    PubMed

    Şen, Özlem; Culha, Mustafa

    2016-02-01

    Boron nitride nanotubes (BNNTs) are increasingly investigated for their medical and biomedical applications due to their unique properties such as resistance to oxidation, thermal and electrical insulation, and biocompatibility. BNNTs can be used to enhance mechanical strength of biomedical structures such as scaffolds in tissue engineering applications. In this study, we report the use of BNNTs and hydroxylated BNNTs (BNNT-OH) to improve the properties of gelatin-glucose scaffolds prepared with electrospinning technique. Human dermal fibroblast (HDF) cells are used for the toxicity assessment and cell seeding studies. It is found that the addition of BNNTs into the scaffold does not influence cell viability, decreases the scaffold degradation rate, and improves cell attachment and proliferation compared to only-gelatin scaffold. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Murine pluripotent stem cells derived scaffold-free cartilage grafts from a micro-cavitary hydrogel platform.

    PubMed

    He, Pengfei; Fu, Jiayin; Wang, Dong-An

    2016-04-15

    By means of appropriate cell type and scaffold, tissue-engineering approaches aim to construct grafts for cartilage repair. Pluripotent stem cells especially induced pluripotent stem cells (iPSCs) are of promising cell candidates due to the pluripotent plasticity and abundant cell source. We explored three dimensional (3D) culture and chondrogenesis of murine iPSCs (miPSCs) on an alginate-based micro-cavity hydrogel (MCG) platform in pursuit of fabricating synthetic-scaffold-free cartilage grafts. Murine embryonic stem cells (mESCs) were employed in parallel as the control. Chondrogenesis was fulfilled using a consecutive protocol via mesoderm differentiation followed by chondrogenic differentiation; subsequently, miPSC and mESC-seeded constructs were further respectively cultured in chondrocyte culture (CC) medium. Alginate phase in the constructs was then removed to generate a graft only comprised of induced chondrocytic cells and cartilaginous extracellular matrix (ECMs). We found that from the mESC-seeded constructs, formation of intact grafts could be achieved in greater sizes with relatively fewer chondrocytic cells and abundant ECMs; from miPSC-seeded constructs, relatively smaller sized cartilaginous grafts could be formed by cells with chondrocytic phenotype wrapped by abundant and better assembled collagen type II. This study demonstrated successful creation of pluripotent stem cells-derived cartilage/chondroid graft from a 3D MCG interim platform. By the support of materials and methodologies established from this study, particularly given the autologous availability of iPSCs, engineered autologous cartilage engraftment may be potentially fulfilled without relying on the limited and invasive autologous chondrocytes acquisition. In this study, we explored chondrogenic differentiation of pluripotent stem cells on a 3D micro-cavitary hydrogel interim platform and creation of pluripotent stem cells-derived cartilage/chondroid graft via a consecutive

  11. Fabrication of micro-alginate gel tubes utilizing micro-gelatin fibers

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Katsuhisa; Arai, Takafumi; Shimizu, Tatsuya; Umezu, Shinjiro

    2017-05-01

    Tissues engineered utilizing biofabrication techniques have recently been the focus of much attention, because these bioengineered tissues have great potential to improve the quality of life of patients with various hard-to-treat diseases. Most tissues contain micro-tubular structures including blood vessels, lymphatic vessels, and bile canaliculus. Therefore, we bioengineered a micro diameter tube using alginate gel to coat the core gelatin gel. Micro-gelatin fibers were fabricated by the coacervation method and then coated with a very thin alginate gel layer by dipping. A micro diameter alginate tube was produced by dissolving the core gelatin gel. Consequently, these procedures led to the formation of micro-alginate gel tubes of various shapes and sizes. This biofabrication technique should contribute to tissue engineering research fields.

  12. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is generally...

  13. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is generally...

  14. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is generally...

  15. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is generally...

  16. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is generally...

  17. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is generally...

  18. Effect of alginate composition on profile release and characteristics of chitosan-alginate microparticles loaded with mangosteen extract

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Halimah, Nur; Krisanti, Elsa

    2017-03-01

    Preparation of mangostin-loaded chitosan-alginate microparticles, chemical and physical characterization of the particles, and mangostin release profiles, are described herein. Mangostin rich fraction was obtained from Garcinia mangostana L. pericarp by extraction followed by fractionation. Mangostin-loaded chitosan-alginate microparticles were prepared by ionic gelation method using tripolyphosphate as the linking agent and various concentration of alginate. Mangostin was effectively loaded in all microparticle formulations, resulting in ˜97% encapsulation efficiencies. The loading of mangostin and the in-vitro release profiles in simulated gastrointestinal fluids were affected by the chitosan to alginate ratios used in the preparation of the microparticles. Increased alginate concentration resulted in lowered release of mangostin from microparticles immersed in simulated gastric fluid (pH 1.2) up to two hours. Low release of mangostin in acidic fluid but high release in simulated colon fluid, indicated that the chitosan-alginate microparticles are prospective carrier for extended release of active compound in gastrointestinal system.

  19. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized as...

  20. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized as...

  1. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized as...

  2. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized as...

  3. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized as...

  4. Quantification of alginate by aggregation induced by calcium ions and fluorescent polycations.

    PubMed

    Zheng, Hewen; Korendovych, Ivan V; Luk, Yan-Yeung

    2016-01-01

    For quantification of polysaccharides, including heparins and alginates, the commonly used carbazole assay involves hydrolysis of the polysaccharide to form a mixture of UV-active dye conjugate products. Here, we describe two efficient detection and quantification methods that make use of the negative charges of the alginate polymer and do not involve degradation of the targeted polysaccharide. The first method utilizes calcium ions to induce formation of hydrogel-like aggregates with alginate polymer; the aggregates can be quantified readily by staining with a crystal violet dye. This method does not require purification of alginate from the culture medium and can measure the large amount of alginate that is produced by a mucoid Pseudomonas aeruginosa culture. The second method employs polycations tethering a fluorescent dye to form suspension aggregates with the alginate polyanion. Encasing the fluorescent dye in the aggregates provides an increased scattering intensity with a sensitivity comparable to that of the conventional carbazole assay. Both approaches provide efficient methods for monitoring alginate production by mucoid P. aeruginosa. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A novel bio electro active alginate-aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study.

    PubMed

    Atoufi, Zhale; Zarrintaj, Payam; Motlagh, Ghodratollah Hashemi; Amiri, Anahita; Bagher, Zohreh; Kamrava, Seyed Kamran

    2017-10-01

    In this study, synthesis of a novel biocompatible stimuli-responsive conducting hydrogel based on agarose/alginate-aniline tetramer with the capability of a tailored electrically controlled drug-release for neuroregeneration is investigated. First, aniline tetramer is synthesized and grafted onto sodium alginate. Then, this material is added to agarose as an electrical conductivity modifier to obtain Agarose/alginate-aniline tetramer hydrogel. The synthesized materials are characterized by H NMR and FTIR. The hydrogels are prepared with varying content of aniline tetramer and their swelling-deswelling and shape memory behavior is evaluated. The electroactivity and ionic conductivity of hydrogels against temperature is measured. The sample with 10% aniline tetramer (AT10) reveals the highest ionic conductivity. In MTT and SEM assays, AT10 shows the best cell viability and cell proliferation due to its highest ionic conductivity highlighting the fact that electrical stimuli cell signaling. Hydrogels also represent great potentials for passive and electro-stimulated dexamethasone release. These results demonstrate that the newly developed conducting hydrogels are promising materials for neuroregenerative medicine.

  6. Magneto-responsive alginate capsules.

    PubMed

    Degen, Patrick; Zwar, Elena; Schulz, Imke; Rehage, Heinz

    2015-05-20

    Upon incorporation of magnetic nanoparticles (mNPs) into gels, composite materials called ferrogels are obtained. These magneto-responsive systems have a wide range of potential applications including switches and sensors as well as drug delivery systems. In this article, we focus on the properties of calcium alginate capsules, which are widely used as carrier systems in medicine and technology. We studied the incorporation of different kinds of mNPs in matrix capsules and in the core and the shell of hollow particles. We found out that not all particle-alginate or particle-CaCl2 solution combinations were suitable for a successful capsule preparation on grounds of a destabilization of the nanoparticles or the polymer. For those systems allowing the preparation of switchable beads or capsules, we systematically studied the size and microscopic structure of the capsules, their magnetic behavior and mechanical resistance.

  7. In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration.

    PubMed

    Boga, João C; Miguel, Sónia P; de Melo-Diogo, Duarte; Mendonça, António G; Louro, Ricardo O; Correia, Ilídio J

    2018-05-01

    The incidence of fractures and bone-related diseases like osteoporosis has been increasing due to aging of the world's population. Up to now, grafts and titanium implants have been the principal therapeutic approaches used for bone repair/regeneration. However, these types of treatment have several shortcomings, like limited availability, risk of donor-to-recipient infection and tissue morbidity. To overcome these handicaps, new 3D templates, capable of replicating the features of the native tissue, are currently being developed by researchers from the area of tissue engineering. These 3D constructs are able to provide a temporary matrix on which host cells can adhere, proliferate and differentiate. Herein, 3D cylindrical scaffolds were designed to mimic the natural architecture of hollow bones, and to allow nutrient exchange and bone neovascularization. 3D scaffolds were produced with tricalcium phosphate (TCP)/alginic acid (AA) using a Fab@home 3D printer. Furthermore, graphene oxide (GO) was incorporated into the structure of some scaffolds to further enhance their mechanical properties. The results revealed that the scaffolds incorporating GO displayed greater porosity, without impairing their mechanical properties. These scaffolds also presented a controlled swelling profile, enhanced biomineralization capacity and were able to increase the Alkaline Phosphatase (ALP) activity. Such characteristics make TCP/AA scaffolds functionalized with GO promising 3D constructs for bone tissue engineering applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Novel macro-microporous gelatin scaffold fabricated by particulate leaching for soft tissue reconstruction with adipose-derived stem cells.

    PubMed

    Phull, Manraj K; Eydmann, Trevor; Roxburgh, Judy; Sharpe, Justin R; Lawrence-Watt, Diana J; Phillips, Gary; Martin, Yella

    2013-02-01

    The restoration of body contours as shaped by adipose tissue remains a clinical challenge specifically in patients who have experienced loss of contour due to trauma, surgical removal of tumours or congenital abnormalities. We have developed a novel macro-microporous biomaterial for use in soft tissue re-bulking and augmentation. Alginate beads provided the pore template for the construct. Incorporation, and subsequent dissolution, of the beads within a 7 % (w/v) gelatin matrix, produced a highly porous scaffold with an average pore size of 2.01 ± 0.08 mm. The ability of this scaffold to support the in vitro growth and differentiation of human adipose-derived stem cells (ADSCs) was then investigated. Histological analysis confirmed that the scaffold itself provided a suitable environment to support the growth of ADSCs on the scaffold walls. When delivered into the macropores in a fibrin hydrogel, ADSCs proliferated and filled the pores. In addition, ADSCs could readily be differentiated along the adipogenic lineage. These results therefore describe a novel scaffold that can support the proliferation and delivery of ADSCs. The scaffold is the first stage in developing a clinical alternative to current treatment methods for soft tissue reconstruction.

  9. Multi-material poly(lactic acid) scaffold fabricated via fused deposition modeling and direct hydroxyapatite injection as spacers in laminoplasty

    NASA Astrophysics Data System (ADS)

    Syuhada, Ghifari; Ramahdita, Ghiska; Rahyussalim, A. J.; Whulanza, Yudan

    2018-02-01

    Nowadays, additive manufacturing method has been used extensively to realize any product with specific attributes rather than the conventional subtractive manufacturing method. For instance, the additive manufacturing has enable us to construct a product layer-by-layer by successively depositing several materials in one session and one platform. This paper studied the properties of a 3D printed scaffold fabricated through Poly(Lactic-acid) (PLA) deposition modelling in combination with injectable hydroxyapatite (HA)/alginate as cell carrier. The scaffold was designed to serve as a spacer in cervical laminoplasty. Therefore, a series of test were conducted to elaborate the mechanical property, porosity and in-vitro toxicity testing. The results showed that the method is reliable to fabricate the scaffold as desired although the toxicity test needs more confirmation.

  10. In vivo evaluation of EPO-secreting cells immobilized in different alginate-PLL microcapsules.

    PubMed

    Ponce, S; Orive, G; Hernández, R M; Gascón, A R; Canals, J M; Muñoz, M T; Pedraz, J L

    2006-11-01

    Alginates are the most employed biomaterials for cell encapsulation due to their abundance, easy gelling properties and apparent biocompatibility. However, as natural polymers different impurities including endotoxins, proteins and polyphenols can be found in their composition. Several purification protocols as well as different batteries of assays to prove the biocompatibility of the alginates in vitro have been recently developed. However, little is known about how the use of alginates with different purity grade may affect the host immune response after their implantation in vivo. The present paper investigates the long-term functionality and biocompatibility of murine erythropoietin (EPO) secreting C2C12 cells entrapped in microcapsules elaborated with alginates with different properties (purity, composition and viscosity). Results showed that independently of the alginate type employed, the animals presented elevated hematocrit levels until day 130, remaining at values between 70-87%. However, histological analysis of the explanted devices showed higher overgrowth around non-biomedical grade alginate microcapsules which could be directly related with higher impurity content of this type of alginate. Although EPO delivery may be limited by the formation of a fibrotic layer around non-biomedical grade alginate microcapsules, the high EPO secretion of the encapsulated cells together with the pharmacodynamic behaviour and the angiogenic and immune-modulatory properties of EPO result in no direct correlation between the biocompatibility of the alginate and the therapeutic response obtained.

  11. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Propylene glycol alginate. 172.858 Section 172.858... Propylene glycol alginate. The food additive propylene glycol alginate (CAS Reg. No. 9005-37-2) may be used... the act: (1) The name of the additive, “propylene glycol alginate” or “propylene glycol ester of...

  12. Enzyme immobilization in novel alginate-chitosan core-shell microcapsules.

    PubMed

    Taqieddin, Ehab; Amiji, Mansoor

    2004-05-01

    Alginate-chitosan core-shell microcapsules were prepared in order to develop a biocompatible matrix for enzyme immobilization, where the protein is retained either in a liquid or solid core and the shell allows permeability control over substrates and products. The permeability coefficients of different molecular weight compounds (vitamin B2, vitamin B12, and myoglobin) were determined through sodium tripolyphosphate (Na-TPP)-crosslinked chitosan membrane. The microcapsule core was formed by crosslinking sodium alginate with either calcium or barium ions. The crosslinked alginate core was uniformly coated with a chitosan layer and crosslinked with Na-TPP. In the case of calcium alginate, the phosphate ions of Na-TPP were able to extract the calcium ions from alginate and liquefy the core. A model enzyme, beta-galactosidase, was immobilized in the alginate core and the catalytic activity was measured with o-nitrophenyl-beta-D-galactopyranoside (ONPG). Change in the activity of free and immobilized enzyme was determined at three different temperatures. Na-TPP crosslinked chitosan membranes were found to be permeable to solutes of up to 17,000Da molecular weight. The enzyme loading efficiency was higher in the barium alginate core (100%) as compared to the calcium alginate core (60%). The rate of ONPG conversion to o-nitrophenol was faster in the case of calcium alginate-chitosan microcapsules as compared to barium alginate-chitosan microcapsules. Barium alginate-chitosan microcapsules, however, did improve the stability of the enzyme at 37 degrees C relative to calcium alginate-chitosan microcapsules or free enzyme. This study illustrates a new method of enzyme immobilization for biotechnology applications using liquid or solid core and shell microcapsule technology.

  13. Raman probing of molecular interactions of alginate biopolymers with cells

    NASA Astrophysics Data System (ADS)

    Chourpa, Igor; Carpentier, Philippe; Maingault, Philippe; Fetissoff, Franck; Dubois, Pierre

    2000-05-01

    The biological polymers extracted from brown algae, alginates, are novel materials in biotechnology and biomedicine. Their ability to form viscous gels is used to immobilize or encapsulate yeast, enzymes, living cells and drugs. Calcium-alginate fibers are extensively used in wound dressings since exhibit antihaemostatic and healing properties. The problem with alginate-made dressings in surgery is their slow biodegradability: if entrapped within tissues, they can induce a local cellular recruitment with an inflammatory response contemporaneous to the resorption phase. In part, this problem is a consequence of poor solubility of the calcium alginates in water. Although calcium alginate fibers can exchange calcium ions with sodium ions from the wound exudate to create a calcium/sodium alginate fibers, the residual alginates are thought to be not totally degradable in vivo. Rapid and non- destructive characterization of series of the crude alginates and calcium alginate fibers has been performed using Raman spectroscopy with near IR excitation. Study of structural organization of the polymeric chains within calcium alginate fibers have been previously reported as made by confocal Raman multispectral imaging (CRMSI) in visible. Here, the Raman approach has been used to monitor the ion exchange reactions for different types of alginates and their salts in vitro. For in vivo evaluation, histological sections of alginate-treated rat tissue have been analyzed by light microscopy and CRMSI. The in vitro Raman modeling and the histochemical mapping were a necessary precursor for application of the Raman microprobe to follow in a non-invasive way the alginate-cell molecular interactions in rat tissue.

  14. Controlling the size of alginate gel beads by use of a high electrostatic potential.

    PubMed

    Klokk, T I; Melvik, J E

    2002-01-01

    The effect of several parameters on the size of alginate beads produced by use of an electrostatic potential bead generator was examined. Parameters studied included needle diameter, electrostatic potential, alginate solution flow rate, gelling ion concentration and alginate concentration and viscosity, as well as alginate composition. Bead size was found to decrease with increasing electrostatic potential, but only down to a certain level. Minimum bead size was reached at between 2-4 kV/cm for the needles tested. The smallest alginate beads produced (using a needle with inner diameter 0.18 mm) had a mean diameter of approximately 300 microm. Bead size was also found to be dependent upon the flow rate of the fed alginate solution. Increasing the gelling ion concentration resulted in a moderate decrease in bead size. The concentration and viscosity of the alginate solution also had an effect on bead size as demonstrated by an increased bead diameter when the concentration or viscosity was increased. This effect was primarily an effect of the viscosity properties of the solution, which led to changes in the rate of droplet formation in the bead generator. Lowering the flow rate of the alginate solution could partly compensate for the increase in bead size with increased viscosity. For a constant droplet size, alginates with a low G block content (F(GG) approximately 0.20) resulted in approximately 30% smaller beads than alginates with a high G block content (F(GG) approximately 0.60). This is explained as a result of differences in the shrinking properties of the beads.

  15. Physicochemical characterization and biocompatibility of alginate-polycation microcapsules designed for islet transplantation

    NASA Astrophysics Data System (ADS)

    Tam, Susan Kimberly

    diabetic mice. To achieve these aims, extensive physicochemical analyses of the alginates and microcapsules were carried out. Among the properties of the alginates that were investigated include their purity (LAL assay, microBCA), chemical composition (nuclear magnetic resonance, NMR), elemental composition (x-ray photoelectron spectroscopy, XPS), and hydrophilicity (contact angle technique). As for the microcapsules, we also examined their surface chemical composition (XPS), hydrophilicity, as well as alginate-polycation interactions (Fourier transform infrared spectroscopy, FTIR), and membrane strength (osmotic swelling). The results of this research led to a number of important conclusions about the biocompatibility of alginates and alginate-based microcapsules. First of all, purifying an alginate does not guarantee its biocompatibility. Indeed, we provided evidence that both the alginate chemical composition (i.e. relative content of mannuronate and guluronate) and its intrinsic viscosity influence the extent of host cell adhesion to alginate gel beads. Using a biocompatible alginate, we then provided evidence that microcapsule biocompatibility is greatly compromised by its polycationic membrane. We showed that this membrane is responsible for the adsorption of opsonizing proteins in vitro and the adhesion of immune cells in vivo. That said, the severity of inflammatory response to the membrane can vary, and this depended on the microcapsule design, including the choice of alginate and polycation type. Results of our physicochemical analyses suggested that the most important factor determining biocompatibility is the ability of the polycation to diffuse into, and subsequently bind to, the alginate gel core. Moreover, adding a final coating of alginate had no significant effect on reversing the effects of the membrane on various microcapsule properties (surface composition, hydrophobicity, stability), nor did this coating reduce its immunogenicity. Although we

  16. Scaffolds in Tendon Tissue Engineering

    PubMed Central

    Longo, Umile Giuseppe; Lamberti, Alfredo; Petrillo, Stefano; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Tissue engineering techniques using novel scaffold materials offer potential alternatives for managing tendon disorders. Tissue engineering strategies to improve tendon repair healing include the use of scaffolds, growth factors, cell seeding, or a combination of these approaches. Scaffolds have been the most common strategy investigated to date. Available scaffolds for tendon repair include both biological scaffolds, obtained from mammalian tissues, and synthetic scaffolds, manufactured from chemical compounds. Preliminary studies support the idea that scaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potential. However, available data are lacking to allow definitive conclusion on the use of scaffolds for tendon augmentation. We review the current basic science and clinical understanding in the field of scaffolds and tissue engineering for tendon repair. PMID:22190961

  17. Three-dimensional plotted alginate fibers embedded with diclofenac and bone cells coated with chitosan for bone regeneration during inflammation.

    PubMed

    Lin, Hsin-Yi; Chang, Tsang-Wen; Peng, Tie-Kun

    2018-06-01

    Alginate hydrogel fibers embedded with bone cells and diclofenac were coated with a layer of chitosan hydrogel and made into a porous scaffold by three-dimensional (3D) printing for drug release and bone regeneration. It was hypothesized that the chitosan coating could improve the scaffold's drug retention and release properties and biocompatibility. Macrophage cells were stimulated and cocultured with the scaffold. Tests were conducted to show how the chitosan coating affected the scaffold's drug release efficacy and how the release efficacy affected the cellular activities of stimulated macrophages and bone cells. The bone cells encapsulated in the coated scaffold demonstrated good viability after the acidic/basic coating process. The coating improved the retention and release efficacy of diclofenac and hence significantly inhibited interleukin-6 and tumor necrosis factor-α secretion from macrophages (p < 0.05). The bone cells in the coated sample mineralized more extensively than the control (p < 0.01). They also more actively expressed genes that produce proteins for extracellular matrix remodeling, MMP13, and interacting with the mineral matrix, OPN (both p < 0.01). It is believed that on days 7 and 10, when diclofenac was depleted and the concentrations of inflammatory compounds surged, the coating effectively blocked the harmful compounds and protected the bone cells within the fibers. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1511-1521, 2018. © 2018 Wiley Periodicals, Inc.

  18. Magnetically actuated tissue engineered scaffold: insights into mechanism of physical stimulation

    NASA Astrophysics Data System (ADS)

    Sapir-Lekhovitser, Yulia; Rotenberg, Menahem Y.; Jopp, Juergen; Friedman, Gary; Polyak, Boris; Cohen, Smadar

    2016-02-01

    Providing the right stimulatory conditions resulting in efficient tissue promoting microenvironment in vitro and in vivo is one of the ultimate goals in tissue development for regenerative medicine. It has been shown that in addition to molecular signals (e.g. growth factors) physical cues are also required for generation of functional cell constructs. These cues are particularly relevant to engineering of biological tissues, within which mechanical stress activates mechano-sensitive receptors, initiating biochemical pathways which lead to the production of functionally mature tissue. Uniform magnetic fields coupled with magnetizable nanoparticles embedded within three dimensional (3D) scaffold structures remotely create transient physical forces that can be transferrable to cells present in close proximity to the nanoparticles. This study investigated the hypothesis that magnetically responsive alginate scaffold can undergo reversible shape deformation due to alignment of scaffold's walls in a uniform magnetic field. Using custom made Helmholtz coil setup adapted to an Atomic Force Microscope we monitored changes in matrix dimensions in situ as a function of applied magnetic field, concentration of magnetic particles within the scaffold wall structure and rigidity of the matrix. Our results show that magnetically responsive scaffolds exposed to an externally applied time-varying uniform magnetic field undergo a reversible shape deformation. This indicates on possibility of generating bending/stretching forces that may exert a mechanical effect on cells due to alternating pattern of scaffold wall alignment and relaxation. We suggest that the matrix structure deformation is produced by immobilized magnetic nanoparticles within the matrix walls resulting in a collective alignment of scaffold walls upon magnetization. The estimated mechanical force that can be imparted on cells grown on the scaffold wall at experimental conditions is in the order of 1 pN, which

  19. Properties of alginate fiber spun-dyed with fluorescent pigment dispersion.

    PubMed

    Wang, Ping; Tawiah, Benjamin; Tian, Anli; Wang, Chunxia; Zhang, Liping; Fu, Shaohai

    2015-03-15

    Spun-dyed alginate fiber was prepared by the spun-dyeing method with the mixture of fluorescent pigment dispersion and sodium alginate fiber spinning solution, and its properties were characterized by SEM, TGA, DSC, and XRD. The results indicate that fluorescent pigment dispersion prepared with esterified poly (styrene-alt maleic acid) had excellent compatibility with sodium alginate fiber spinning solution, and small amount of fluorescent pigment could reduce the viscosity of spun-dyed spinning solutions. SEM photo of spun-dyed alginate fiber indicated that fewer pigment particles deposited on its surface. TGA, DSC, and XRD results suggested that thermal properties and crystal phase of spun-dyed alginate fibers had slight changes compared to the original alginate fibers. The fluorescence intensity of spun-dyed alginate fiber reached its maximum when the content of fluorescent pigment was 4%. The spun-dyed alginate fiber showed excellent rubbing and washing fastness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Rapid 3D Printing of Multifunctional Calcium Alginate Gel Pipes using Coaxial Jet Extruder

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Konrad; Damle, Viraj

    2014-11-01

    Calcium alginate (CA) forms when solution containing sodium alginate (SA) comes in contact with a CaCl2 solution. The resulting gel is biocompatible as well as edible and is used in production of bio-scaffolds, artificial plant seeds, and edible substances. In the latter application, referred to in the culinary world as ``spherification,'' flavored liquids are mixed with the SA and dripped into CaCl2 solution to form gel encapsulated flavored ``marbles.'' Previously, crude 3D printing of CA structures has been achieved by stacking of such flavored liquid filled marbles. In turn, solid CA rods have been fabricated by properly mixing flow of the two solutions using a microfluidic device. Here we show that by using two circular cross-section coaxial nozzles to produce coaxial jets of the SA and CaCl2 solutions, liquid filled CA micro-to-mili scale gel pipes can be produced at speeds around ~ 150 mm/s. Such extrusion rate is compatible with most commercially available 3D printers, facilitating adoption of the CA pipe coaxial jet extruder. Here, the impact of inner and outer liquid properties and flow speeds on the gel pipe extrusion process is discussed. KR acknowledges startup funding from ASU.

  1. Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone.

    PubMed

    Weinand, Christian; Pomerantseva, Irina; Neville, Craig M; Gupta, Rajiv; Weinberg, Eli; Madisch, Ijad; Shapiro, Frederic; Abukawa, Harutsugi; Troulis, Maria J; Vacanti, Joseph P

    2006-04-01

    Trabecular bone is a material of choice for reconstruction after trauma and tumor resection and for correction of congenital defects. Autologous bone grafts are available in limited shapes and sizes; significant donor site morbidity is another major disadvantage to this approach. To overcome these limitations, we used a tissue engineering approach to create bone replacements in vitro, combining bone-marrow-derived differentiated mesenchymal stem cells (MSCs) suspended in hydrogels and 3-dimensionally printed (3DP) porous scaffolds made of beta-tricalcium-phosphate (beta-TCP). The scaffolds provided support for the formation of bone tissue in collagen I, fibrin, alginate, and pluronic F127 hydrogels during culturing in oscillating and rotating dynamic conditions. Histological evaluation including toluidine blue, alkaline phosphatase, and von Kossa staining was done at 1, 2, 4, and 6 weeks. Radiographic evaluation and high-resolution volumetric CT (VCT) scanning, expression of bone-specific genes and biomechanical compression testing were performed at 6 weeks. Both culture conditions resulted in similar bone tissue formation. Histologically collagen I and fibrin hydrogels specimens had superior bone tissue, although radiopacities were detected only in collagen I samples. VCT scan revealed density values in all but the Pluronic F127 samples, with Houndsfield unit values comparable to native bone in collagen I and fibrin glue samples. Expression of bone-specific genes was significantly higher in the collagen I samples. Pluronic F127 hydrogel did not support formation of bone tissue. All samples cultured in dynamic oscillating conditions had slightly higher mechanical strength than under rotating conditions. Bone tissue can be successfully formed in vitro using constructs comprised of collagen I hydrogel, MSCs, and porous beta-TCP scaffolds.

  2. Controlled release of metronidazole from composite poly-ε-caprolactone/alginate (PCL/alginate) rings for dental implants.

    PubMed

    Lan, Shih-Feng; Kehinde, Timilehin; Zhang, Xiangming; Khajotia, Sharukh; Schmidtke, David W; Starly, Binil

    2013-06-01

    Dental implants provide support for dental crowns and bridges by serving as abutments for the replacement of missing teeth. To prevent bacterial accumulation and growth at the site of implantation, solutions such as systemic antibiotics and localized delivery of bactericidal agents are often employed. The objective of this study was to demonstrate a novel method of controlled localized delivery of antibacterial agents to an implant site using a biodegradable custom fabricated ring. The study involved incorporating a model antibacterial agent (metronidazole) into custom designed poly-ε-caprolactone/alginate (PCL/alginate) composite rings to produce the intended controlled release profile. The rings can be designed to fit around the body of any root form dental implants of various diameters, shapes and sizes. In vitro release studies indicate that pure (100%) alginate rings exhibited an expected burst release of metronidazole in the first few hours, whereas Alginate/PCL composite rings produced a medium burst release followed by a sustained release for a period greater than 4 weeks. By varying the PCL/alginate weight ratios, we have shown that we can control the amount of antibacterial agents released to provide the minimal inhibitory concentration (MIC) needed for adequate protection. The fabricated composite rings have achieved a 50% antibacterial agent release profile over the first 48 h and the remaining amount slowly released over the remainder of the study period. The PCL/alginate agent release characteristic fits the Ritger-Peppas model indicating a diffusion-based mechanism during the 30-day study period. The developed system demonstrates a controllable drug release profile and the potential for the ring to inhibit bacterial biofilm growth for the prevention of diseases such as peri-implantitis resulting from bacterial infection at the implant site. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Antibacterial Performance of Alginic Acid Coating on Polyethylene Film

    PubMed Central

    Karbassi, Elika; Asadinezhad, Ahmad; Lehocký, Marian; Humpolíček, Petr; Vesel, Alenka; Novák, Igor; Sáha, Petr

    2014-01-01

    Alginic acid coated polyethylene films were examined in terms of surface properties and bacteriostatic performance against two most representative bacterial strains, that is, Escherichia coli and Staphylococcus aureus. Microwave plasma treatment followed by brush formation in vapor state from three distinguished precursors (allylalcohol, allylamine, hydroxyethyl methacrylate) was carried out to deposit alginic acid on the substrate. Surface analyses via various techniques established that alginic acid was immobilized onto the surface where grafting (brush) chemistry influenced the amount of alginic acid coated. Moreover, alginic acid was found to be capable of bacterial growth inhibition which itself was significantly affected by the brush type. The polyanionic character of alginic acid as a carbohydrate polymer was assumed to play the pivotal role in antibacterial activity. The cell wall composition of two bacterial strains along with the substrates physicochemical properties accounted for different levels of bacteriostatic performance. PMID:25196604

  4. Effect of alginate in patients with GERD hiatal hernia matters.

    PubMed

    Vardar, R; Keskin, M; Valitova, E; Bayrakci, B; Yildirim, E; Bor, S

    2017-10-01

    Alginate-based formulations are frequently used as add-on proton pump inhibitor (PPI) therapy to help control of heartburn and regurgitation. There are limited data regarding the mechanisms and effects of alginate-based formulations. We aimed to evaluate the effects of the sodium alginate intake and its likely temporal relations on intraesophageal reflux events by MII-pH in patients with and without hiatal hernia (HH). Fifty GERD patients (18 with HH, 32 without HH) with heartburn or regurgitation once a week or more common were included. After combined multichannel intraluminal impedance and pH-metry (MII-pH) had been performed, all patients were asked to eat the same standard meal (double cheeseburger, 1 banana, 100 g regular yoghurt, and 200 mL water with total energy value of 744 kcal: 37.6% of carbohydrates, 21.2% of proteins, and 41.2% of lipids) during two consecutive days. On separate random two consecutive days, all patients took 10 mL of sodium alginate (GA; Gaviscon Advance; Reckitt Benckiser Healthcare, Hull, UK) or 10 mL of water, 30 minutes after the refluxogenic meal. After eating refluxogenic meal, patients were examined ½ hour for basal conditions, 1 hour in upright, and 1 hour in supine positions. Alginate significantly decreased acid reflux after intake at the first hour in comparison to water in patients with HH (6.1 vs. 13.7, P = 0.004) and without HH (3.5 vs. 5.5, P = 0.001). Weakly acid reflux were increased at the first hour in patients with HH (3.4 vs. 1.3, P = 0.019) and without HH (1.7 vs. 5, P = 0.02) compared to water. There was no distinctive effect of alginate on the height of proximal migration of reflux events in patients with HH and without HH. Alginate decreases acid reflux events within a limited time period, especially at the first hour both in patients with and without HH. Alginate has no effect on the height of reflux events along the esophagus both in patients with and without HH. © The Authors 2017. Published by Oxford

  5. Magnetically actuated tissue engineered scaffold: insights into mechanism of physical stimulation

    PubMed Central

    Sapir-Lekhovitser, Yulia; Rotenberg, Menahem Y.; Jopp, Juergen; Friedman, Gary; Polyak, Boris; Cohen, Smadar

    2016-01-01

    Providing the right stimulatory conditions resulting in efficient tissue promoting microenvironment in vitro and in vivo is one of the ultimate goals in tissue development for regenerative medicine. It has been shown that in addition to molecular signals (e.g. growth factors) physical cues are also required for generation of functional cell constructs. These cues are particularly relevant to engineering of biological tissues, within which mechanical stress activates mechano-sensitive receptors, initiating biochemical pathways which lead to the production of functionally mature tissue. Uniform magnetic fields coupled with magnetizable nanoparticles embedded within three dimensional (3D) scaffold structures remotely create transient physical forces that can be transferrable to cells present in close proximity to the nanoparticles. This study investigated the hypothesis that magnetically responsive alginate scaffold can undergo reversible shape deformation due to alignment of scaffold’s walls in a uniform magnetic field. Using custom made Helmholtz coil setup adapted to an Atomic Force Microscope we monitored changes in matrix dimensions in situ as a function of applied magnetic field, concentration of magnetic particles within the scaffold wall structure and rigidity of the matrix. Our results show that magnetically responsive scaffolds exposed to an externally applied time-varying uniform magnetic field undergo a reversible shape deformation. This indicates on possibility of generating bending/stretching forces that may exert a mechanical effect on cells due to alternating pattern of scaffold wall alignment and relaxation. We suggest that the matrix structure deformation is produced by immobilized magnetic nanoparticles within the matrix walls resulting in a collective alignment of scaffold walls upon magnetization. The estimated mechanical force that can be imparted on cells grown on the scaffold wall at experimental conditions is in the order of 1 pN, which

  6. Performance evaluation of bipolar and tripolar excitations during nozzle-jetting-based alginate microsphere fabrication

    NASA Astrophysics Data System (ADS)

    Herran, C. Leigh; Huang, Yong; Chai, Wenxuan

    2012-08-01

    Microspheres, small spherical (polymeric) particles with or without second phase materials embedded or encapsulated, are important for many biomedical applications such as drug delivery and organ printing. Scale-up fabrication with the ability to precisely control the microsphere size and morphology has always been of great manufacturing interest. The objective of this work is to experimentally study the performance differences of bipolar and tripolar excitation waveforms in using drop-on-demand (DOD)-based single nozzle jetting for alginate microsphere fabrication. The fabrication performance has been evaluated based on the formability of alginate microspheres as a function of materials properties (sodium alginate and calcium chloride concentrations) and operating conditions. The operating conditions for each excitation include voltage rise/fall times, dwell times and excitation voltage amplitudes. Overall, the bipolar excitation is more robust in making spherical, monodispersed alginate microspheres as good microspheres for its wide working range of material properties and operating conditions, especially during the fabrication of highly viscous materials such as the 2% sodium alginate solution. For both bipolar and tripolar excitations, the sodium alginate concentration and the voltage dwell times should be carefully selected to achieve good microsphere formability.

  7. Alginate-based hybrid aerogel microparticles for mucosal drug delivery.

    PubMed

    Gonçalves, V S S; Gurikov, P; Poejo, J; Matias, A A; Heinrich, S; Duarte, C M M; Smirnova, I

    2016-10-01

    The application of biopolymer aerogels as drug delivery systems (DDS) has gained increased interest during the last decade since these structures have large surface area and accessible pores allowing for high drug loadings. Being biocompatible, biodegradable and presenting low toxicity, polysaccharide-based aerogels are an attractive carrier to be applied in pharmaceutical industry. Moreover, some polysaccharides (e.g. alginate and chitosan) present mucoadhesive properties, an important feature for mucosal drug delivery. This feature allows to extend the contact of DDS with biological membranes, thereby increasing the absorption of drugs through the mucosa. Alginate-based hybrid aerogels in the form of microparticles (<50μm) were investigated in this work as carriers for mucosal administration of drugs. Low methoxyl pectin and κ-carrageenan were co-gelled with alginate and further dried with supercritical CO2 (sc-CO2). Spherical mesoporous aerogel microparticles were obtained for alginate, hybrid alginate/pectin and alginate/κ-carrageenan aerogels, presenting high specific surface area (370-548m(2)g(-1)) and mucoadhesive properties. The microparticles were loaded with ketoprofen via adsorption from its solution in sc-CO2, and with quercetin via supercritical anti-solvent precipitation. Loading of ketoprofen was in the range between 17 and 22wt% whereas quercetin demonstrated loadings of 3.1-5.4wt%. Both the drugs were present in amorphous state. Loading procedure allowed the preservation of antioxidant activity of quercetin. Release of both drugs from alginate/κ-carrageenan aerogel was slightly faster compared to alginate/pectin. The results indicate that alginate-based aerogel microparticles can be viewed as promising matrices for mucosal drug delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effect of gamma-irradiation on degradation of alginate.

    PubMed

    Lee, Dong Wook; Choi, Won Seok; Byun, Myung Woo; Park, Hyun Jin; Yu, Yong-Man; Lee, Chong M

    2003-07-30

    The aqueous solution of alginate was irradiated by 60Co gamma-rays in the dose range of 10-500 kGy. To assess the effect of irradiation on the degradation of alginate, the irradiation-induced changes in the viscosity, molecular weight, color, monomer composition, and sequence were measured. The molecular weight of raw alginate was reduced from 300000 to 25000 when irradiated at 100 kGy. The degradation rate decreased and the chain breaks per molecule increased with increasing irradiation dose. The viscosity of irradiated alginate solution reached a near minimum as low as at 10 kGy. No appreciable color changes were observed in the samples irradiated at up to 100 kGy, but intense browning occurred beyond 200 kGy. The 13C NMR spectra showed that homopolymeric blocks, MM and GG, increased and the M/G ratio decreased with irradiation. Considering both the level of degradation and the color change of alginate, the optimum irradiation dose was found to be 100 kGy.

  9. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    PubMed

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Mammalian Cell Encapsulation in Alginate Beads Using a Simple Stirred Vessel.

    PubMed

    Hoesli, Corinne A; Kiang, Roger L J; Raghuram, Kamini; Pedroza, René G; Markwick, Karen E; Colantuoni, Antonio M R; Piret, James M

    2017-06-29

    Cell encapsulation in alginate beads has been used for immobilized cell culture in vitro as well as for immunoisolation in vivo. Pancreatic islet encapsulation has been studied extensively as a means to increase islet survival in allogeneic or xenogeneic transplants. Alginate encapsulation is commonly achieved by nozzle extrusion and external gelation. Using this method, cell-containing alginate droplets formed at the tip of nozzles fall into a solution containing divalent cations that cause ionotropic alginate gelation as they diffuse into the droplets. The requirement for droplet formation at the nozzle tip limits the volumetric throughput and alginate concentration that can be achieved. This video describes a scalable emulsification method to encapsulate mammalian cells in 0.5% to 10% alginate with 70% to 90% cell survival. By this alternative method, alginate droplets containing cells and calcium carbonate are emulsified in mineral oil, followed by a decrease in pH leading to internal calcium release and ionotropic alginate gelation. The current method allows the production of alginate beads within 20 min of emulsification. The equipment required for the encapsulation step consists in simple stirred vessels available to most laboratories.

  11. Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications.

    PubMed

    Yang, Sumi; Jang, LindyK; Kim, Semin; Yang, Jongcheol; Yang, Kisuk; Cho, Seung-Woo; Lee, Jae Young

    2016-11-01

    Electrically conductive biomaterials that can efficiently deliver electrical signals to cells or improve electrical communication among cells have received considerable attention for potential tissue engineering applications. Conductive hydrogels are desirable particularly for neural applications, as they can provide electrical signals and soft microenvironments that can mimic native nerve tissues. In this study, conductive and soft polypyrrole/alginate (PPy/Alg) hydrogels are developed by chemically polymerizing PPy within ionically cross-linked alginate hydrogel networks. The synthesized hydrogels exhibit a Young's modulus of 20-200 kPa. Electrical conductance of the PPy/Alg hydrogels could be enhanced by more than one order of magnitude compared to that of pristine alginate hydrogels. In vitro studies with human bone marrow-derived mesenchymal stem cells (hMSCs) reveal that cell adhesion and growth are promoted on the PPy/Alg hydrogels. Additionally, the PPy/Alg hydrogels support and greatly enhance the expression of neural differentiation markers (i.e., Tuj1 and MAP2) of hMSCs compared to tissue culture plate controls. Subcutaneous implantation of the hydrogels for eight weeks induces mild inflammatory reactions. These soft and conductive hydrogels will serve as a useful platform to study the effects of electrical and mechanical signals on stem cells and/or neural cells and to develop multifunctional neural tissue engineering scaffolds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Injectable MMP-sensitive alginate hydrogels as hMSC delivery systems.

    PubMed

    Fonseca, Keila B; Gomes, David B; Lee, Kangwon; Santos, Susana G; Sousa, Aureliana; Silva, Eduardo A; Mooney, David J; Granja, Pedro L; Barrias, Cristina C

    2014-01-13

    Hydrogels with the potential to provide minimally invasive cell delivery represent a powerful tool for tissue-regeneration therapies. In this context, entrapped cells should be able to escape the matrix becoming more available to actively participate in the healing process. Here, we analyzed the performance of proteolytically degradable alginate hydrogels as vehicles for human mesenchymal stem cells (hMSC) transplantation. Alginate was modified with the matrix metalloproteinase (MMP)-sensitive peptide Pro-Val-Gly-Leu-Iso-Gly (PVGLIG), which did not promote dendritic cell maturation in vitro, neither free nor conjugated to alginate chains, indicating low immunogenicity. hMSC were entrapped within MMP-sensitive and MMP-insensitive alginate hydrogels, both containing cell-adhesion RGD peptides. Softer (2 wt % alginate) and stiffer (4 wt % alginate) matrices were tested. When embedded in a Matrigel layer, hMSC-laden MMP-sensitive alginate hydrogels promoted more extensive outward cell migration and invasion into the tissue mimic. In vivo, after 4 weeks of subcutaneous implantation in a xenograft mouse model, hMSC-laden MMP-sensitive alginate hydrogels showed higher degradation and host tissue invasion than their MMP-insensitive equivalents. In both cases, softer matrices degraded faster than stiffer ones. The transplanted hMSC were able to produce their own collagenous extracellular matrix, and were located not only inside the hydrogels, but also outside, integrated in the host tissue. In summary, injectable MMP-sensitive alginate hydrogels can act as localized depots of cells and confer protection to transplanted cells while facilitating tissue regeneration.

  13. Detoxification of Hg(II) from aqueous and enzyme media: Pristine vs. tailored calcium alginate hydrogels.

    PubMed

    Sarkar, Kangkana; Ansari, Zarina; Sen, Kamalika

    2016-10-01

    Calcium alginate (CA) hydrogels were tailored using phenolic compounds (PC) like, thymol, morin, catechin, hesperidin, during their preparation. The PC incorporated gels show modified surface features as indicated by scanning electron microscopic images (SEM). The rheological studies show that excepting the hesperidin incorporated gels all the other kinds including calcium alginate pristine have similar mechanical strength. The hesperidine incorporated CA gels had the maximum capacity to adsorb Hg. The Freundlich adsorption isotherms show higher values of adsorption capacity for all PC incorporated CA beads than the pristine CA (PCA). The hesperidin incorporated CA gels were found to show the best adsorption condition at neutral pH and an optimum contact time of 2.5h at 25°C. Considering the possibility of ingested Hg detoxification from human alimentary tract, the hesperidin and morin incorporated CA beads were further modified through incorporation of cod liver oil as the digestion time of fat in stomach is higher. In vitro uptake capacities of Hg in pepsin and pancreatin containing enzyme media were studied with hesperidin and morin incorporated beads and their corresponding fat incorporated beads also. In the pepsin medium, there was no uptake by hesperidin and fat-hesperidin incorporated beads, which is possibly due to the higher acidity of the medium. But in pancreatin medium Hg was taken up by both kinds of beads. Morin and morin-fat incorporated beads were efficient to uptake Hg from both the pepsin and pancreatin medium. The tailored CA beads may therefore serve as efficient scaffolds to rescue Hg ingested individuals. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Hematoma-inspired alginate/platelet releasate/CaPO4 composite: initiation of the inflammatory-mediated response associated with fracture repair in vitro and ex vivo injection delivery.

    PubMed

    McCanless, Jonathan D; Jennings, Lisa K; Bumgardner, Joel D; Cole, Judith A; Haggard, Warren O

    2012-08-01

    A clinical need continues for consistent bone remodeling within problematic sites such as those of fracture nonunion, avascular necrosis, or irregular bone formations. In attempt to address such needs, a biomaterial system is proposed to induce early inflammatory responses after implantation and to provide later osteoconductive scaffolding for bone regeneration. Biomaterial-induced inflammation would parallel the early stage of hematoma-induced fracture repair and allow scaffold-promoted remodeling of osseous tissue to a healthy state. Initiation of the wound healing cascade by two human concentrated platelet releasate-containing alginate/β-tricalcium phosphate biocomposites has been studied in vitro using the TIB-71™ RAW264.7 mouse monocyte cell line. Inflammatory responses inherent to the base material were found and could be modulated through incorporation of platelet releasate. Differences in hydrogel wt% (2 vs. 8 %) and/or calcium phosphate granule vol.% (20 vs. 10 %) allowed for tuning the response associated with platelet releasate-associated growth factor elution. Tunability from completely suppressing the inflammatory response to augmenting the response was observed through varied elution profiles of both releasate-derived bioagents and impurities inherent to alginate. A 2.5-fold upregulation of inducible-nitric oxide synthase gene expression followed by a tenfold increase in nitrite media levels was induced by inclusion of releasate within the 8 wt%/10 vol.% formulation and was comparable to an endotoxin positive control. Whereas, near complete elimination of inflammation was seen when releasate was included within the 2 wt%/20 vol.% formulation. These in vitro results suggested tunable interactions between the multiple platelet releasate-derived bioagents and the biocomposites for enhancing hematoma-like fracture repair. Additionally, minimally invasive delivery for in situ curing of the implant system via injection was demonstrated in rat tail

  15. Standards and guidelines for biopolymers in tissue-engineered medical products: ASTM alginate and chitosan standard guides. American Society for Testing and Materials.

    PubMed

    Dornish, M; Kaplan, D; Skaugrud, O

    2001-11-01

    The American Society for Testing and Materials (ASTM) is making a concerted effort to establish standards and guidelines for the entire field of tissue-engineered medical products (TEMPS). Safety, consistency, and functionality of biomaterials used as matrices, scaffolds, and immobilizing agents in TEMPS are a concern. Therefore, the ASTM has established a number of task groups to produce standards and guidelines for such biomaterials. Alginate is a naturally occurring biomaterial used for immobilizing living cells to form an artificial organ, such as encapsulated pancreatic islets. In order to aid in successful clinical applications and to help expedite regulatory approval, the alginate used must be fully documented. The ASTM alginate guide gives information on selection of testing methodologies and safety criteria. Critical parameters such as monomer content, molecular weight, and viscosity, in addition to more general parameters, such as dry matter content, heavy metal content, bioburden, and endotoxin content are described in the ASTM document. In a like manner, the characterization parameters for chitosan, a bioadhesive polycationic polysaccharide, are described in a separate guide. For chitosan, the degree of deacetylation is of critical importance. Control of protein content and, hence, potential for hypersensitivity, endotoxin content, and total bioburden are important in chitosan preparations for TEMPS. Together these two guides represent part of the effort on behalf of the ASTM and other interested parties to ensure quality and standardization in TEMPS.

  16. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  17. Preparation and release characteristics of polymer-coated and blended alginate microspheres.

    PubMed

    Lee, D W; Hwang, S J; Park, J B; Park, H J

    2003-01-01

    To prevent a rapid drug release from alginate microspheres in simulated intestinal media, alginate microspheres were coated or blended with polymers. Three polymers were selected and evaluated such as HPMC, Eudragit RS 30D and chitosan, as both coating materials and additive polymers for controlling the drug release. This study focused on the release characteristics of polymer-coated and blended alginate microspheres, varying the type of polymer and its concentration. The alginate microspheres were prepared by dropping the mixture of drug and sodium alginate into CaCl(2) solution using a spray-gun. Polymer-coated microspheres were prepared by adding alginate microspheres into polymer solution with mild stirring. Polymer-blended microspheres were prepared by dropping the mixture of drug, sodium alginate and additive polymer with plasticizer into CaCl(2) solution. In vitro release test was carried out to investigate the release profiles in 500 ml of phosphate buffered saline (PBS, pH 7.4). As the amount of polymer in sodium alginate or coating solution increase, the drug release generally decreased. HPMC-blended microspheres swelled but withstood the disintegration, showing an ideal linear release profiles. Chitosan-coated microspheres showed smooth and round surface and extended the release of drug. In comparison with chitosan-coated microspheres, HPMC-blended alginate microspheres can be easily made and used for controlled drug delivery systems due to convenient process and controlled drug release.

  18. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Propylene glycol alginate. 172.858 Section 172.858... CONSUMPTION Multipurpose Additives § 172.858 Propylene glycol alginate. The food additive propylene glycol... information required by the act: (1) The name of the additive, “propylene glycol alginate” or “propylene...

  19. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Propylene glycol alginate. 172.858 Section 172.858... CONSUMPTION Multipurpose Additives § 172.858 Propylene glycol alginate. The food additive propylene glycol... information required by the act: (1) The name of the additive, “propylene glycol alginate” or “propylene...

  20. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.

    PubMed

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo

    2014-09-01

    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Guluronic acid content as a factor affecting turbidity removal potential of alginate.

    PubMed

    Kıvılcımdan Moral, Çiğdem; Ertesvåg, Helga; Sanin, F Dilek

    2016-11-01

    Alginates are natural polymers composed of mannuronic and guluronic acid residues. They are currently extracted from brown algae; however, alginate can also be synthesized by some species of Azotobacter and Pseudomonas. Alginates with different proportion of mannuronic and guluronic acids are known to have different characteristics and form gels at different extents in the presence of calcium ions. The aim of this work was to investigate the usefulness of alginate as a non-toxic coagulant used in purification of drinking water. This study utilized alginates from Azotobacter vinelandii having different guluronic acid levels. These were obtained partly by changing the cultivation parameters, partly by epimerizing a purified alginate sample in vitro using the A. vinelandii mannuronan C-5 epimerase AlgE1. The different alginates were then used for coagulation together with calcium. The results showed that turbidity removal capability was dependent on the content of guluronic acid residues. For the best performing samples, the turbidity decreased from 10 NTU to 1 NTU by the use of only 2 mg/L of alginate and 1.5 mM of calcium chloride.

  2. Influence of hydrophobic modification in alginate-based hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Choudhary, Soumitra

    Alginate has been exploited commercially for decades in foods, textiles, paper, pharmaceutical industries, and also as a detoxifier for removing heavy metals. Alginate is also popular in cell encapsulation because of its relatively mild gelation protocol and simple chemistry with which biological active entities can be immobilized. Surface modification of alginate gels has been explored to induce desired cell interactions with the gel matrix. These modifications alter the bulk properties, which strongly determine on how cells feel and response to the three-dimensional microenvironment. However, there is a need to develop strategies to engineer functionalities into bulk alginate hydrogels that not only preserve their inherent qualities but are also less toxic. In this thesis, our main focus was to optimize the mechanical properties of alginate-based hydrogels, and by doing so control the performance of the biomaterials. In the first scheme, we used alginate and hydrophobically modified ethyl hydroxy ethyl cellulose as components in interpenetrating polymer network (IPN) gels. The second network was used to control gelation time and rheological properties. We believe these experiments also may provide insight into the mechanical and structural properties of more complex biopolymer gels and naturally-occurring IPNs. Next, we worked on incorporating a hydrophobic moiety directly into the alginate chain, resulting in materials for extended release of hydrophobic drugs. We successfully synthesized hydrophobically modified alginate (HMA) by attaching octylamine groups onto the alginate backbone by standard carbodiimide based amide coupling reaction. Solubility of several model hydrophobic drugs in dilute HMA solutions was found to be increased by more than an order of magnitude. HMA hydrogels, prepared by crosslinking the alginate chains with calcium ions, were found to exhibit excellent mechanical properties (modulus ˜100 kPa) with release extended upto 5 days. Ability

  3. Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities.

    PubMed

    Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M N; Li, Chuanlong; Hu, Hongbo; Zhang, Xuehong

    2017-12-01

    Herein, a facile biosynthesis of silver nanoparticles (AgNPs) and AgNPs-loaded chitosan-alginate constructs with biomedical potentialities is reported. The UV-vis spectroscopic profile confirmed the synthesis of AgNPs using methanolic leaves extract of Euphorbia helioscopia. The newly developed AgNPs were characterized using various analytical and imaging techniques including UV-vis and FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The optimally yielded AgNPs at 24h reaction period were loaded onto various chitosan-alginate constructs. A maximum of 95% loading efficiency (LE) was recorded with a chitosan: alginate ratio at 2:1, followed by 81% at 2:2 ratios. The anti-bacterial activities of AgNPs and AgNPs loaded chitosan-alginate constructs were tested against six bacterial strains i.e. Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Morganella morganii and Haemophilus influenza. A significant reduction in the log values was recorded for all test constructs, in comparison to the initial bacterial count (control value, i.e., 1.5×10 8 CFU/mL). The cytotoxicity profile revealed complete biocompatibility against normal cell line i.e. L929. Almost all constructs showed considerable cytotoxicity up to certain extant against human epithelial cells (HeLa) cancer cells. In summary, the highest antibacterial activities along with anti-cancer behavior both suggest the biomedical potentialities of newly engineered AgNPs and AgNPs-loaded chitosan-alginate constructs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Alginate Demonstration: Polymers, Food Science, and Ion Exchange

    NASA Astrophysics Data System (ADS)

    Waldman, Amy Sue; Schechinger, Linda; Govindarajoo, Geeta; Nowick, James S.; Pignolet, Louis H.

    1998-11-01

    We have recently devised a polymer demonstration involving the crosslinking and decrosslinking of alginate, a polysaccharide isolated from seaweed. The polymer is composed of D-mannuronic acid and L-guluronic acid subunits and is a component of cell walls. It is commonly used as a thickener in foods such as ice cream and fruit-filled snacks. For the demonstration, a 2% solution of sodium alginate is poured into a 1% solution of calcium chloride. Nontoxic calcium alginate "worms" form due to crosslinking of the polymer. Alternatively, the commercially available antacid Gaviscon can be used as a source of sodium alginate. The crosslinks can then be broken by shaking the worms in brine. The demonstration is a fine addition to any chemical educator's repertoire of polymer experiments.

  5. Intragastric Gelation of Heated Soy Protein Isolate-Alginate Mixtures and Its Effect on Sucrose Release.

    PubMed

    Huang, Zhaozhi; Gruen, Ingolf; Vardhanabhuti, Bongkosh

    2018-06-15

    The goal of our study was to investigate the effect of alginate on in vitro gastric digestion and sucrose release of soy protein isolate (SPI) in model beverages. Model beverages containing 5% w/w SPI, 0% to 0.20% w/w alginate, and 10% w/w sucrose were prepared by heating the mixtures at 85 °C for 30 min at pH 6.0 or 7.0. Characterizations of beverages included determination of zeta potential, particle size and rheological properties. Digestion patterns and sucrose release profiles were determined during 2 hr in vitro gastric digestion using SDS-PAGE and HPLC analysis, respectively. Increasing alginate concentration led to increased negative surface charge, particle size, as well as viscosity and pseudoplastic behavior; however, no phase separation was observed. SPI beverages formed intragastric gel during in vitro gastric digestion when the formulations contained alginate or at pH 6.0 without alginate. Formation of the intragastric gel led to delayed protein digestion and release of sucrose. Higher resistance to digestion and a slower sucrose release rate were exhibited at increased alginate concentration, and to a lesser extent, at pH 6.0. This suggests that electrostatic interaction between SPI and alginate that occurred when the beverages were under gastric condition could be responsible for the intragastric gelation. These results could potentially lead to the formulation of SPI beverages with functionality to lower postprandial glycemic response. The results could be used to design beverages or semi solid food products with altered digestion properties and lowered or slower glucose release. © 2018 Institute of Food Technologists®.

  6. Alginate microparticles as oral colon drug delivery device: A review.

    PubMed

    Agüero, Lissette; Zaldivar-Silva, Dionisio; Peña, Luis; Dias, Marcos L

    2017-07-15

    The increase in the research interest on alginate microparticles in pharmaceutical and biomedical areas confirms its potential use as an effective matrix for drug and cell delivery. Among the well known alginate properties, pH sensitivity remains as an attractive option for targeting of drug in the colon region. This essential aspect is advantageous to enhance therapeutic efficacy of treatment of inflammatory bowel diseases, which require multi-drug administration frequently in a long period. As consequence, severe side effect appears leading to discontinuation of therapy and affecting quality of patient life. This review gives an overview of relevant properties of alginate as oral colon delivery systems and the recent innovative strategies of using alginate with other polymers as well as microencapsulation techniques. At the same time, it describes the several advantages of coating processes involving alginate over microparticles in order to design better material with sustained release characteristic for colon-targeted delivery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Biodegradable Nanocomposite Films Based on Sodium Alginate and Cellulose Nanofibrils

    PubMed Central

    Deepa, B.; Abraham, Eldho; Pothan, Laly A.; Cordeiro, Nereida; Faria, Marisa; Thomas, Sabu

    2016-01-01

    Biodegradable nanocomposite films were prepared by incorporation of cellulose nanofibrils (CNF) into alginate biopolymer using the solution casting method. The effects of CNF content (2.5, 5, 7.5, 10 and 15 wt %) on mechanical, biodegradability and swelling behavior of the nanocomposite films were determined. The results showed that the tensile modulus value of the nanocomposite films increased from 308 to 1403 MPa with increasing CNF content from 0% to 10%; however, it decreased with further increase of the filler content. Incorporation of CNF also significantly reduced the swelling percentage and water solubility of alginate-based films, with the lower values found for 10 wt % in CNF. Biodegradation studies of the films in soil confirmed that the biodegradation time of alginate/CNF films greatly depends on the CNF content. The results evidence that the stronger intermolecular interaction and molecular compatibility between alginate and CNF components was at 10 wt % in CNF alginate films. PMID:28787850

  8. Screening of alginate lyase-excreting microorganisms from the surface of brown algae.

    PubMed

    Wang, Mingpeng; Chen, Lei; Zhang, Zhaojie; Wang, Xuejiang; Qin, Song; Yan, Peisheng

    2017-12-01

    Alginate lyase is a biocatalyst that degrades alginate to produce oligosaccharides, which have many bioactive functions and could be used as renewable biofuels. Here we report a simple and sensitive plate assay for screening alginate lyase-excreting microorganisms from brown algae. Brown algae Laminaria japonica, Sargassum horneri and Sargassum siliquatrum were cultured in sterile water. Bacteria growing on the surface of seaweeds were identified and their capacity of excreting alginate lyase was analyzed. A total of 196 strains were recovered from the three different algae samples and 12 different bacterial strains were identified capable of excreting alginate lyases. Sequence analysis of the 16S rRNA gene revealed that these alginate lyase-excreting strains belong to eight genera: Paenibacillus (4/12), Bacillus (2/12), Leclercia (1/12), Isoptericola (1/12), Planomicrobium (1/12), Pseudomonas (1/12), Lysinibacillus (1/12) and Sphingomonas (1/12). Further analysis showed that the LJ-3 strain (Bacillus halosaccharovorans) had the highest enzyme activity. To our best knowledge, this is the first report regarding alginate lyase-excreting strains in Paenibacillus, Planomicrobium and Leclercia. We believe that our method used in this study is relatively easy and reliable for large-scale screening of alginate lyase-excreting microorganisms.

  9. Alginate Polymerization and Modification Are Linked in Pseudomonas aeruginosa

    PubMed Central

    Moradali, M. Fata; Donati, Ivan; Sims, Ian M.; Ghods, Shirin

    2015-01-01

    ABSTRACT The molecular mechanisms of alginate polymerization/modification/secretion by a proposed envelope-spanning multiprotein complex are unknown. Here, bacterial two-hybrid assays and pulldown experiments showed that the catalytic subunit Alg8 directly interacts with the proposed copolymerase Alg44 while embedded in the cytoplasmic membrane. Alg44 additionally interacts with the lipoprotein AlgK bridging the periplasmic space. Site-specific mutagenesis of Alg44 showed that protein-protein interactions and stability were independent of conserved amino acid residues R17 and R21, which are involved in c-di-GMP binding, the N-terminal PilZ domain, and the C-terminal 26 amino acids. Site-specific mutagenesis was employed to investigate the c-di-GMP-mediated activation of alginate polymerization by the PilZAlg44 domain and Alg8. Activation was found to be different from the proposed activation mechanism for cellulose synthesis. The interactive role of Alg8, Alg44, AlgG (epimerase), and AlgX (acetyltransferase) on alginate polymerization and modification was studied by using site-specific deletion mutants, inactive variants, and overproduction of subunits. The compositions, molecular masses, and material properties of resulting novel alginates were analyzed. The molecular mass was reduced by epimerization, while it was increased by acetylation. Interestingly, when overproduced, Alg44, AlgG, and the nonepimerizing variant AlgG(D324A) increased the degree of acetylation, while epimerization was enhanced by AlgX and its nonacetylating variant AlgX(S269A). Biofilm architecture analysis showed that acetyl groups promoted cell aggregation while nonacetylated polymannuronate alginate promoted stigmergy. Overall, this study sheds new light on the arrangement of the multiprotein complex involved in alginate production. Furthermore, the activation mechanism and the interplay between polymerization and modification of alginate were elucidated. PMID:25968647

  10. Hierarchical Scaffolding With Bambus

    PubMed Central

    Pop, Mihai; Kosack, Daniel S.; Salzberg, Steven L.

    2004-01-01

    The output of a genome assembler generally comprises a collection of contiguous DNA sequences (contigs) whose relative placement along the genome is not defined. A procedure called scaffolding is commonly used to order and orient these contigs using paired read information. This ordering of contigs is an essential step when finishing and analyzing the data from a whole-genome shotgun project. Most recent assemblers include a scaffolding module; however, users have little control over the scaffolding algorithm or the information produced. We thus developed a general-purpose scaffolder, called Bambus, which affords users significant flexibility in controlling the scaffolding parameters. Bambus was used recently to scaffold the low-coverage draft dog genome data. Most significantly, Bambus enables the use of linking data other than that inferred from mate-pair information. For example, the sequence of a completed genome can be used to guide the scaffolding of a related organism. We present several applications of Bambus: support for finishing, comparative genomics, analysis of the haplotype structure of genomes, and scaffolding of a mammalian genome at low coverage. Bambus is available as an open-source package from our Web site. PMID:14707177

  11. Hierarchical scaffolding with Bambus.

    PubMed

    Pop, Mihai; Kosack, Daniel S; Salzberg, Steven L

    2004-01-01

    The output of a genome assembler generally comprises a collection of contiguous DNA sequences (contigs) whose relative placement along the genome is not defined. A procedure called scaffolding is commonly used to order and orient these contigs using paired read information. This ordering of contigs is an essential step when finishing and analyzing the data from a whole-genome shotgun project. Most recent assemblers include a scaffolding module; however, users have little control over the scaffolding algorithm or the information produced. We thus developed a general-purpose scaffolder, called Bambus, which affords users significant flexibility in controlling the scaffolding parameters. Bambus was used recently to scaffold the low-coverage draft dog genome data. Most significantly, Bambus enables the use of linking data other than that inferred from mate-pair information. For example, the sequence of a completed genome can be used to guide the scaffolding of a related organism. We present several applications of Bambus: support for finishing, comparative genomics, analysis of the haplotype structure of genomes, and scaffolding of a mammalian genome at low coverage. Bambus is available as an open-source package from our Web site.

  12. Development of nanocomposites based on hydroxyapatite/sodium alginate: Synthesis and characterisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajkumar, M.; Meenakshisundaram, N.; Rajendran, V., E-mail: veerajendran@gmail.com

    2011-05-15

    In this study, a novel method was used to produce a nanostructured composite consisting of hydroxyapatite and sodium alginate by varying the composition of sodium alginate. The structure, morphology, simulated body fluid response and mechanical properties of the synthesised nanocomposites were characterised. From X-ray diffraction analysis, an increase in crystallite size and degree of crystallinity with an increase in the composition of sodium alginate up to 1.5 wt.% was observed. Further, it was found to decrease with an increase in the composition of sodium alginate. A notable peak shift from 1635 to 1607 cm{sup -1} and 1456 to 1418 cm{supmore » -1} in the Fourier transform infrared spectra of the nanocomposite was observed towards the lower wave number side when compared with pure hydroxyapatite. It reveals a strong interaction between the positively charged calcium (Ca{sup 2+}) and the negatively charged carboxyl group (COO{sup -}) in sodium alginate. Transmission electron microscopy images of pure hydroxyapatite showed a short nanorod-like morphology with an average particle size of 13 nm. Bioresorbability of the samples was observed by immersing them in simulated body fluid medium for 14 days to evaluate the changes in pH and Ca{sup 2+} ion strength. Microhardness shows an increasing trend with an increase in the composition of sodium alginate from 1.5 to 3.0 wt.%, which is similar to that in the density. - Research Highlights: {yields} We have prepared nanohydroxyapatite/sodium alginate as a composite. {yields} Effect of sodium alginate on the properties of nanohydrroxyapatite has been studied. {yields} The sodium alginate ranges from 0 to 3.75 wt.% has been used. {yields} Composites show improved biological and mechanical properties.« less

  13. Evolution of Sulfobacillus thermosulfidooxidans secreting alginate during bioleaching of chalcopyrite concentrate.

    PubMed

    Yu, R-L; Liu, A; Liu, Y; Yu, Z; Peng, T; Wu, X; Shen, L; Liu, Y; Li, J; Liu, X; Qiu, G; Chen, M; Zeng, W

    2017-06-01

    To explore the distribution disciplinarian of alginate on the chalcopyrite concentrate surface during bioleaching. The evolution of Sulfobacillus thermosulfidooxidans secreting alginate during bioleaching of chalcopyrite concentrate was investigated through gas chromatography coupled with mass spectrometry (GC-MS) and confocal laser scanning microscope (CLSM), and the critical synthetic genes (algA, algC, algD) of alginate were analysed by real-time polymerase chain reaction (RT-PCR). The GC-MS analysis results indicated that there was a little amount of alginate formed on the mineral surface at the early stage, while increasing largely to the maximum value at the intermediate stage, and then kept a stable value at the end stage. The CLSM analysis of chalcopyrite slice showed the same variation trend of alginate content on the mineral surface. Furthermore, the RT-PCR results showed that during the early stage of bioleaching, the expressions of the algA, algC and the algD genes were all overexpressed. However, at the final stage, the algD gene expression decreased in a large scale, and the algA and algC decreased slightly. This expression pattern was attributed to the fact that algA and algC genes were involved in several biosynthesis reactions, but the algD gene only participated in the alginate biosynthesis and this was considered as the key gene to control alginate synthesis. The content of alginate on the mineral surface increased largely at the beginning of bioleaching, and remained stable at the end of bioleaching due to the restriction of algD gene expression. Our findings provide valuable information to explore the relationship between alginate formation and bioleaching of chalcopyrite. © 2017 The Society for Applied Microbiology.

  14. A Controlled Drug-Delivery Experiment Using Alginate Beads

    ERIC Educational Resources Information Center

    Farrell, Stephanie; Vernengo, Jennifer

    2012-01-01

    This paper describes a simple, cost-effective experiment which introduces students to drug delivery and modeling using alginate beads. Students produce calcium alginate beads loaded with drug and measure the rate of release from the beads for systems having different stir rates, geometries, extents of cross-linking, and drug molecular weight.…

  15. Empirical study of alginate impression materials by customized proportioning system

    PubMed Central

    2016-01-01

    PURPOSE Alginate mixers available in the market do not have the automatic proportioning unit. In this study, an automatic proportioning unit for the alginate mixer and controller software were designed and produced for a new automatic proportioning unit. With this device, it was ensured that proportioning operation could arrange weight-based alginate impression materials. MATERIALS AND METHODS The variation of coefficient in the tested groups was compared with the manual proportioning. Compression tension and tear tests were conducted to determine the mechanical properties of alginate impression materials. The experimental data were statistically analyzed using one way ANOVA and Tukey test at the 0.05 level of significance. RESULTS No statistically significant differences in modulus of elastisity (P>0.3), tensional/compresional strength (P>0.3), resilience (P>0.2), strain in failure (P>0.4), and tear energy (P>0.7) of alginate impression materials were seen. However, a decrease in the standard deviation of tested groups was observed when the customized machine was used. To verify the efficiency of the system, powder and powder/water mixing were weighed and significant decrease was observed. CONCLUSION It was possible to obtain more mechanically stable alginate impression materials by using the custom-made proportioning unit. PMID:27826387

  16. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles.

    PubMed

    Venkatesan, Jayachandran; Lee, Jin-Young; Kang, Dong Seop; Anil, Sukumaran; Kim, Se-Kwon; Shim, Min Suk; Kim, Dong Gyu

    2017-05-01

    The main aim of this study was to obtain porous antimicrobial composites consisting of chitosan, alginate, and biosynthesized silver nanoparticles (AgNPs). Chitosan and alginate were used owing to their pore-forming capacity, while AgNPs were used for their antimicrobial property. The developed porous composites of chitosan-alginate-AgNPs were characterized using Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The FT-IR results revealed the presence of a strong chemical interaction between chitosan and alginate due to polyelectrolyte complex; whereas, the XRD results confirmed the presence of AgNPs in the composites. The dispersion of AgNPs in the porous membrane was uniform with a pore size of 50-500μm. Antimicrobial activity of the composites was checked with Escherichia coli and Staphylococcus aureus. The developed composites resulted in the formation of a zone of inhibition of 11±1mm for the Escherichia coli, and 10±1mm for Staphylococcus aureus. The bacterial filtration efficiency of chitosan-alginate-AgNPs was 1.5-times higher than that of the chitosan-alginate composite. The breast cancer cell line MDA-MB-231 was used to test the anticancer activity of the composites. The IC 50 value of chitosan-alginate-AgNPs on MDA-MB-231 was 4.6mg. The developed chitosan-alginate-AgNPs composite showed a huge potential for its applications in antimicrobial filtration and cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds.

    PubMed

    Sudarmadji, Novella; Chua, Chee Kai; Leong, Kah Fai

    2012-01-01

    Computer-aided system for tissue scaffolds (CASTS) is an in-house parametric library of polyhedral units that can be assembled into customized tissue scaffolds. Thirteen polyhedral configurations are available to select, depending on the biological and mechanical requirements of the target tissue/organ. Input parameters include the individual polyhedral units and overall scaffold block as well as the scaffold strut diameter. Taking advantage of its repeatability and reproducibility, the scaffold file is then converted into .STL file and fabricated using selective laser sintering, a rapid prototyping system. CASTS seeks to fulfill anatomical, biological, and mechanical requirements of the target tissue/organ. Customized anatomical scaffold shape is achieved through a Boolean operation between the scaffold block and the tissue defect image. Biological requirements, such as scaffold pore size and porosity, are unique for different type of cells. Matching mechanical properties, such as stiffness and strength, between the scaffold and target organ is very important, particularly in the regeneration of load-bearing organ, i.e., bone. This includes mimicking the compressive stiffness variation across the bone to prevent stress shielding and ensuring that the scaffold can withstand the load normally borne by the bone. The stiffness variation is tailored by adjusting the scaffold porosity based on the porosity-stiffness relationship of the CASTS scaffolds. Two types of functional gradients based on the gradient direction include radial and axial/linear gradient. Radial gradient is useful in the case of regenerating a section of long bones while the gradient in linear direction can be used in short or irregular bones. Stiffness gradient in the radial direction is achieved by using cylindrical unit cells arranged in a concentric manner, in which the porosity decreases from the center of the structure toward the outside radius, making the scaffold stiffer at the outer radius

  18. Evaluation of outgassing, tear strength, and detail reproduction in alginate substitute materials.

    PubMed

    Baxter, R T; Lawson, N C; Cakir, D; Beck, P; Ramp, L C; Burgess, J O

    2012-01-01

    To compare three alginate substitute materials to an alginate impression material for cast surface porosity (outgassing), tear strength, and detail reproduction. Detail reproduction tests were performed following American National Standards Institute/American Dental Association (ANSI/ADA) Specification No. 19. To measure tear strength, 12 samples of each material were made using a split mold, placed in a water bath until testing, and loaded in tension until failure at a rate of 500 mm/min using a universal testing machine. For cast surface porosity testing, five impressions of a Teflon mold with each material were placed in a water bath (37.8°C) for the in-mouth setting time and poured with vacuum-mixed Silky Rock die stone at 5, 10, 30, and 60 minutes from the start of mixing. The gypsum samples were analyzed with a digital microscope for surface porosity indicative of hydrogen gas release by comparing the surface obtained at each interval with four casts representing no, little, some, and significant porosity. Data analysis was performed using parametric and Kruskal-Wallis analysis of variance (ANOVA), Tukey/Kramer post-hoc tests (α=0.05), and individual Mann-Whitney U tests (α=0.0167). All alginate substitute materials passed the detail reproduction test. Tear strength of the alginate substitute materials was significantly better than alginate and formed three statistically different groups: AlgiNot had the lowest tear strength, Algin-X Ultra had the highest tear strength, and Position Penta Quick had intermediate tear strength. Significant variation in outgassing existed between materials and pouring times (p<0.05). All alginate substitute materials exhibited the least outgassing and cast porosity 60 minutes after mixing. Detail reproduction and tear strength of alginate substitute materials were superior to traditional alginate. The outgassing effect was minimal for most materials tested. Alginate substitute materials are superior replacements for

  19. A Study of BMP-2-Loaded Bipotential Electrolytic Complex around a Biphasic Calcium Phosphate-Derived (BCP) Scaffold for Repair of Large Segmental Bone Defect

    PubMed Central

    Paul, Kallyanashis; Padalhin, Andrew R.; Linh, Nguyen Thuy Ba; Kim, Boram; Sarkar, Swapan Kumar; Lee, Byong Taek

    2016-01-01

    A bipotential polyelectrolyte complex with biphasic calcium phosphate (BCP) powder dispersion provides an excellent option for protein adsorption and cell attachment and can facilitate enhanced bone regeneration. Application of the bipotential polyelectrolyte complex embedded in a spongy scaffold for faster healing of large segmental bone defects (LSBD) can be a promising endeavor in tissue engineering application. In the present study, a hollow scaffold suitable for segmental long bone replacement was fabricated by the sponge replica method applying the microwave sintering process. The fabricated scaffold was coated with calcium alginate at the shell surface, and genipin-crosslinked chitosan with biphasic calcium phosphate (BCP) dispersion was loaded at the central hollow core. The chitosan core was subsequently loaded with BMP-2. The electrolytic complex was characterized using SEM, porosity measurement, FTIR spectroscopy and BMP-2 release for 30 days. In vitro studies such as MTT, live/dead, cell proliferation and cell differentiation were performed. The scaffold was implanted into a 12 mm critical size defect of a rabbit radius. The efficacy of this complex is evaluated through an in vivo study, one and two month post implantation. BV/TV ratio for BMP-2 loaded sample was (42±1.76) higher compared with hollow BCP scaffold (32±0.225). PMID:27711142

  20. Composite alginate gels for tunable cellular microenvironment mechanics

    NASA Astrophysics Data System (ADS)

    Khavari, Adele; Nydén, Magnus; Weitz, David A.; Ehrlicher, Allen J.

    2016-08-01

    The mechanics of the cellular microenvironment can be as critical as biochemistry in directing cell behavior. Many commonly utilized materials derived from extra-cellular-matrix create excellent scaffolds for cell growth, however, evaluating the relative mechanical and biochemical effects independently in 3D environments has been difficult in frequently used biopolymer matrices. Here we present 3D sodium alginate hydrogel microenvironments over a physiological range of stiffness (E = 1.85 to 5.29 kPa), with and without RGD binding sites or collagen fibers. We use confocal microscopy to measure the growth of multi-cellular aggregates (MCAs), of increasing metastatic potential in different elastic moduli of hydrogels, with and without binding factors. We find that the hydrogel stiffness regulates the growth and morphology of these cell clusters; MCAs grow larger and faster in the more rigid environments similar to cancerous breast tissue (E = 4-12 kPa) as compared to healthy tissue (E = 0.4-2 kpa). Adding binding factors from collagen and RGD peptides increases growth rates, and change maximum MCA sizes. These findings demonstrate the utility of these independently tunable mechanical/biochemistry gels, and that mechanical confinement in stiffer microenvironments may increase cell proliferation.

  1. Polygalacturonase production by calcium alginate immobilized Enterobacter aerogenes NBO2 cells.

    PubMed

    Darah, I; Nisha, M; Lim, Sheh-Hong

    2015-03-01

    Bacterial cells of Enterobacter aerogenes NBO2 were entrapped in calcium alginate beads in order to enhance polygalacturonase production compared to free cells. The optimized condition of 5 % (w/v) sodium alginate concentration, agitation speed of 250 rpm, and 15 beads of calcium alginate with inoculum size of 4 % (v/v; 5.4 × 10(7) cells/ml) produced 23.48 U/mL of polygalacturonase compared to free cells of 18.54 U/ml. There was about 26.6 % increment in polygalaturonase production. However, in this study, there was 296.6 % of increment in polygalacturonase production after improvement parameters compared to before improvement parameters of calcium alginate bead immobilization cells (5.92 U/ml). This research has indicated that optimized physical parameters of calcium alginate bead immobilization cells have significantly enhanced the production of polygalacturonase.

  2. Alginate-Iron Speciation and Its Effect on In Vitro Cellular Iron Metabolism

    PubMed Central

    Horniblow, Richard D.; Dowle, Miriam; Iqbal, Tariq H.; Latunde-Dada, Gladys O.; Palmer, Richard E.

    2015-01-01

    Alginates are a class of biopolymers with known iron binding properties which are routinely used in the fabrication of iron-oxide nanoparticles. In addition, alginates have been implicated in influencing human iron absorption. However, the synthesis of iron oxide nanoparticles employs non-physiological pH conditions and whether nanoparticle formation in vivo is responsible for influencing cellular iron metabolism is unclear. Thus the aims of this study were to determine how alginate and iron interact at gastric-comparable pH conditions and how this influences iron metabolism. Employing a range of spectroscopic techniques under physiological conditions alginate-iron complexation was confirmed and, in conjunction with aberration corrected scanning transmission electron microscopy, nanoparticles were observed. The results infer a nucleation-type model of iron binding whereby alginate is templating the condensation of iron-hydroxide complexes to form iron oxide centred nanoparticles. The interaction of alginate and iron at a cellular level was found to decrease cellular iron acquisition by 37% (p < 0.05) and in combination with confocal microscopy the alginate inhibits cellular iron transport through extracellular iron chelation with the resulting complexes not internalised. These results infer alginate as being useful in the chelation of excess iron, especially in the context of inflammatory bowel disease and colorectal cancer where excess unabsorbed luminal iron is thought to be a driver of disease. PMID:26378798

  3. Evaluation of setting time and flow properties of self-synthesize alginate impressions

    NASA Astrophysics Data System (ADS)

    Halim, Calista; Cahyanto, Arief; Sriwidodo, Harsatiningsih, Zulia

    2018-02-01

    Alginate is an elastic hydrocolloid dental impression materials to obtain negative reproduction of oral mucosa such as to record soft-tissue and occlusal relationships. The aim of the present study was to synthesize alginate and to determine the setting time and flow properties. There were five groups of alginate consisted of fifty samples self-synthesize alginate and commercial alginate impression product. Fifty samples were divided according to two tests, each twenty-five samples for setting time and flow test. Setting time test was recorded in the s unit, meanwhile, flow test was recorded in the mm2 unit. The fastest setting time result was in the group three (148.8 s) and the latest was group fours). The highest flow test result was in the group three (69.70 mm2) and the lowest was group one (58.34 mm2). Results were analyzed statistically by one way ANOVA (α= 0.05), showed that there was a statistical significance of setting time while no statistical significance of flow properties between self-synthesize alginate and alginate impression product. In conclusion, the alginate impression was successfully self-synthesized and variation composition gives influence toward setting time and flow properties. The most resemble setting time of control group is group three. The most resemble flow of control group is group four.

  4. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds

    PubMed Central

    Hockaday, L A; Kang, K H; Colangelo, N W; Cheung, P Y C; Duan, B; Malone, E; Wu, J; Girardi, L N; Bonassar, L J; Lipson, H; Chu, C C; Butcher, J T

    2013-01-01

    The aortic valve exhibits complex three-dimensional (3D) anatomy and heterogeneity essential for long-term efficient biomechanical function. These are, however, challenging to mimic in de novo engineered living tissue valve strategies. We present a novel simultaneous 3D-printing/photocrosslinking technique for rapidly engineering complex, heterogeneous aortic valve scaffolds. Native anatomic and axisymmetric aortic valve geometries (root wall and tri-leaflets) with 12 to 22 mm inner diameters (ID) were 3D printed with poly-ethylene glycol-diacrylate (PEG-DA) hydrogels (700 or 8000 MW) supplemented with alginate. 3D printing geometric accuracy was quantified and compared using Micro-CT. Porcine aortic valve interstitial cells (PAVIC) seeded scaffolds were cultured for up to 21 days. Results showed that blended PEG-DA scaffolds could achieve over 10-fold range in elastic modulus (5.3±0.9 to 74.6±1.5 kPa). 3D printing times for valve conduits with mechanically contrasting hydrogels were optimized to 14 to 45 minutes, increasing linearly with conduit diameter. Larger printed valves had greater shape fidelity (93.3±2.6, 85.1±2.0, and 73.3±5.2% for 22, 17, and 12 mm ID porcine valves; 89.1±4.0, 84.1±5.6, and 66.6±5.2% for simplified valves). PAVIC seeded scaffolds maintained near 100% viability over 21 days. These results demonstrate that 3D hydrogel printing with controlled photocrosslinking can rapidly fabricate anatomical heterogeneous valve conduits that support cell engraftment. PMID:22914604

  5. Floating dosage forms to prolong gastro-retention--the characterisation of calcium alginate beads.

    PubMed

    Stops, Frances; Fell, John T; Collett, John H; Martini, Luigi G

    2008-02-28

    Floating calcium alginate beads, designed to improve drug bioavailability from oral preparations compared with that from many commercially available and modified release products, have been investigated as a possible gastro-retentive dosage form. A model drug, riboflavin, was also incorporated into the formula. The aims of the current work were (a) to obtain information regarding the structure, floating ability and changes that occurred when the dosage form was placed in aqueous media, (b) to investigate riboflavin release from the calcium alginate beads in physiologically relevant media prior to in vivo investigations. Physical properties of the calcium alginate beads were investigated. Using SEM and ESEM, externally the calcium alginate beads were spherical in shape, and internally, air filled cavities were present thereby enabling floatation of the beads. The calcium alginate beads remained buoyant for times in excess of 13h, and the density of the calcium alginate beads was <1.000gcm(-3). Riboflavin release from the calcium alginate beads showed that riboflavin release was slow in acidic media, whilst in more alkali media, riboflavin release was more rapid. The characterisation studies showed that the calcium alginate beads could be considered as a potential gastro-retentive dosage form.

  6. Potential Use of Alginate-Based Carriers As Antifungal Delivery System

    PubMed Central

    Spadari, Cristina de Castro; Lopes, Luciana B.; Ishida, Kelly

    2017-01-01

    Fungal infections have become a major public health problem, growing in number and severity in recent decades due to an increase of immunocompromised patients. The use of therapeutic agents available to treat these fungal infections is limited by their toxicity, low bioavailability, antifungal resistance, and high cost of treatment. Thus, it becomes extremely important to search for new therapeutic options. The use of polymeric systems as drug carriers has emerged as a promising alternative to conventional formulations for antifungals. Alginate is a natural polymer that has been explored in the last decade for development of drug delivery systems due to its non-toxicity, biodegradability, biocompatibility, low cost, mucoadhesive, and non-immunogenic properties. Several antifungal agents have been incorporated in alginate-based delivery systems, including micro and nanoparticles, with great success, displaying promising in vitro and in vivo results for antifungal activities, reduction in the toxicity and the total drug dose used in the treatment, and improved bioavailability. This review aims at discussing the potential use and benefits of alginate-based nanocarriers and other delivery systems containing antifungal agents in the therapy of fungal infections. PMID:28194145

  7. Encapsulation optimization of lemon balm antioxidants in calcium alginate hydrogels.

    PubMed

    Najafi-Soulari, Samira; Shekarchizadeh, Hajar; Kadivar, Mahdi

    2016-11-01

    Calcium alginate hydrogel beads were used to encapsulate lemon balm extract. Chitosan layer was used to investigate the effect of hydrogel coating. To determine the interactions of antioxidant compounds of extract with encapsulation materials and its stability, microstructure of hydrogel beads was thoroughly monitored using scanning electron microscopy and Fourier transform infrared (FTIR). Total polyphenols content and antiradical activity of lemon balm extract were also evaluated before and after encapsulation. Three significant parameters (lemon balm extract, sodium alginate, and calcium chloride concentrations) were optimized by response surface methodology to obtain maximum encapsulation efficiency. The FTIR spectra showed no interactions between extract and polymers as there were no new band in spectra of alginate hydrogel after encapsulation of active compounds of lemon balm extract. The antioxidant activity of lemon balm extract did not change after encapsulation. Therefore, it was found that alginate is a suitable material for encapsulation of natural antioxidants. Sodium alginate solution concentration, 1.84%, lemon balm extract concentration, 0.4%, and calcium chloride concentration, 0.2% was determined to be the optimum condition to reach maximum encapsulation efficiency.

  8. Characterization of Morphology and Composition of Inorganic Fillers in Dental Alginates

    PubMed Central

    Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Consani, Simonides; de Carvalho, Rodrigo Varella; Lopes, Murilo Baena; Meneghel, Luciana Lira; da Silva, Fabiane Borges; Sinhoreti, Mário Alexandre Coelho

    2014-01-01

    Energy dispersive X-ray spectroscopy microanalysis (EDX), scanning electron microscopy (SEM), and Archimedes' Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C), Hydrogum 5 (H5), Hydrogum (H), Orthoprint (O), and Jeltrate Plus (JP). The different alginate powders (0.5 mg) were fixed on plastic stubs (n = 5) and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450°C for 3 h. The alginate materials were mainly composed of silicon (Si) by weight (C—81.59%, H—79.89%, O—78.87%, H5—77.95%, JP—66.88%, wt). The filler fractions in volume (vt) were as follows: H5—84.85%, JP—74.76%, H—70.03%, O—68.31%, and C—56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology. PMID:25165690

  9. Characterization of morphology and composition of inorganic fillers in dental alginates.

    PubMed

    Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Consani, Simonides; de Carvalho, Rodrigo Varella; Lopes, Murilo Baena; Meneghel, Luciana Lira; da Silva, Fabiane Borges; Sinhoreti, Mário Alexandre Coelho

    2014-01-01

    Energy dispersive X-ray spectroscopy microanalysis (EDX), scanning electron microscopy (SEM), and Archimedes' Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C), Hydrogum 5 (H5), Hydrogum (H), Orthoprint (O), and Jeltrate Plus (JP). The different alginate powders (0.5 mg) were fixed on plastic stubs (n = 5) and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450(°)C for 3 h. The alginate materials were mainly composed of silicon (Si) by weight (C-81.59%, H-79.89%, O-78.87%, H5-77.95%, JP-66.88%, wt). The filler fractions in volume (vt) were as follows: H5-84.85%, JP-74.76%, H-70.03%, O-68.31%, and C-56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology.

  10. The influence of storage duration on the setting time of type 1 alginate impression material

    NASA Astrophysics Data System (ADS)

    Rahmadina, A.; Triaminingsih, S.; Irawan, B.

    2017-08-01

    Alginate is one of the most commonly used dental impression materials; however, its setting time is subject to change depending on storage conditions and duration. This creates problems because consumer carelessness can affect alginate shelf life and quality. In the present study, the setting times of two groups of type I alginate with different expiry dates was tested. The first group consisted of 11 alginate specimens that had not yet passed the expiry date, and the second group consisted of alginates that had passed the expiry date. The alginate powder was mixed with distilled water, poured into a metal ring, and tested with a polished rod of poly-methyl methacrylate. Statistical analysis showed a significant difference (p<0.05) between the setting times of the alginate that had not passed the expiry date (157 ± 3 seconds) and alginate that had passed the expiry date (144 ± 2 seconds). These findings indicate that storage duration can affect alginate setting time.

  11. Three-dimensional alginate spheroid culture system of murine osteosarcoma.

    PubMed

    Akeda, Koji; Nishimura, Akinobu; Satonaka, Haruhiko; Shintani, Ken; Kusuzaki, Katsuyuki; Matsumine, Akihiko; Kasai, Yuichi; Masuda, Koichi; Uchida, Atsumasa

    2009-11-01

    Osteosarcoma (OS) is the most common primary malignant tumor of the bone and often forms pulmonary metastases, which are the most important prognostic factor. For further elucidation of the mechanism underlying the progression and metastasis of human OS, a culture system mimicking the microenvironment of the tumor in vivo is needed. We report a novel three-dimensional (3D) alginate spheroid culture system of murine osteosarcoma. Two different metastatic clones, the parental Dunn and its derivative line LM8, which has a higher metastatic potential to the lungs, were encapsulated in alginate beads to develop the 3D culture system. The beads containing murine OS cells were also transplanted into mice to determine their metastatic potential in vivo. In this culture system, murine OS cells encapsulated in alginate beads were able to grow in a 3D structure with cells detaching from the alginate environment. The number of detaching cells was higher in the LM8 cell line than the Dunn cell line. In the in vivo alginate bead transplantation model, the rate of pulmonary metastasis was higher with LM8 cells compared with that of Dunn cells. The cell characteristics and kinetics in this culture system closely reflect the original malignant potential of the cells in vivo.

  12. Photonic monitoring of chitosan nanostructured alginate microcapsules for drug release

    NASA Astrophysics Data System (ADS)

    Khajuria, Deepak Kumar; Konnur, Manish C.; Vasireddi, Ramakrishna; Roy Mahapatra, D.

    2015-02-01

    By using a novel microfluidic set-up for drug screening applications, this study examines delivery of a novel risedronate based drug formulation for treatment of osteoporosis that was developed to overcome the usual shortcomings of risedronate, such as its low bioavailability and adverse gastric effects. Risedronate nanoparticles were prepared using muco-adhesive polymers such as chitosan as matrix for improving the intestinal cellular absorption of risedronate and also using a gastric-resistant polymer such as sodium alginate for reducing the gastric inflammation of risedronate. The in-vitro characteristics of the alginate encapsulated chitosan nanoparticles are investigated, including their stability, muco-adhesiveness, and Caco-2 cell permeability. Fluorescent markers are tagged with the polymers and their morphology within the microcapsules is imaged at various stages of drug release.

  13. Enzyme-entrapping behaviors in alginate fibers and their papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Y.; Matsuo, R.; Ohya, T.

    1987-01-01

    Enzyme immobilization in the form of fiber and paper was easily achieved by wet spinning of aqueous admixture of sodium alginate and enzymes into divalent metallic ion solution as a coagulating bath, followed by paper making of resultant shortly cut fibers. Entrapment yields of enzymes used, e.g., glucoamylase, cyclodextrin glucanotransferase, endo-polygalacturonase, and protease, were always higher in calcium alginate fibers and their papers than those in corresponding beads. It was found that the yields increased with an increase of the discharge rate through the spinning nozzle because the higher discharge rate could provide more highly oriented metal-chelate linear polymer moleculesmore » along the fiber axis for preventing leakage of entrapped enzymes. Divalent metallic ions affected greatly the entrapment of glucoamylase in alginate fibers, the order of which followed rougly the ionotropic series of Thiele. Entrapment of glucoamylase in bicomponent systems comprising alginate and other water-soluble polymers was also investigated. (Refs. 41).« less

  14. Fundamental Characteristics of Bioprint on Calcium Alginate Gel

    NASA Astrophysics Data System (ADS)

    Umezu, Shinjiro; Hatta, Tatsuru; Ohmori, Hitoshi

    2013-05-01

    The goal of this study is to fabricate precision three-dimensional (3D) biodevices those are micro fluidics and artificial organs utilizing digital fabrication. Digital fabrication is fabrication method utilizing inkjet technologies. Electrostatic inkjet is one of the inkjet technologies. The electrostatic inkjet method has following two merits; those are high resolution to print and ability to eject highly viscous liquid. These characteristics are suitable to print biomaterials precisely. We are now applying for bioprint. In this paper, the electrostatic inkjet method is applied for fabrication of 3D biodevices that has cave like blood vessel. When aqueous solution of sodium alginate is printed to aqueous solution of calcium chloride, calcium alginate is produced. 3D biodevices are fabricated in case that calcium alginate is piled.

  15. Review: peripheral nerve regeneration using non-tubular alginate gel crosslinked with covalent bonds.

    PubMed

    Hashimoto, Tadashi; Suzuki, Yoshihisa; Suzuki, Kyoko; Nakashima, Toshihide; Tanihara, Masao; Ide, Chizuka

    2005-06-01

    We have developed a nerve regeneration material consisting of alginate gel crosslinked with covalent bonds. in the first part of this study, we attempted to analyze nerve regeneration through alginate gel in the early stages within 2 weeks. in the second part, we tried to regenerate cat peripheral nerve by using alginate tubular or non-tubular nerve regeneration devices, and compared their efficacies. Four days after surgery, regenerating axons grew without Schwann cell investment through the partially degraded alginate gel, being in direct contact with the alginate without a basal lamina covering. One to 2 weeks after surgery, regenerating axons were surrounded by common Schwann cells, forming small bundles, with some axons at the periphery being partly in direct contact with alginate. At the distal stump, numerous Schwann cells had migrated into the alginate 8-14 days after surgery. Remarkable restorations of the 50-mm gap in cat sciatic nerve were obtained after a long term by using tubular or non-tubular nerve regeneration material consisting mainly of alginate gel. However, there was no significant difference between both groups at electrophysiological and morphological evaluation. Although, nowadays, nerve regeneration materials being marketed mostly have a tubular structure, our results suggest that the tubular structure is not indispensable for peripheral nerve regeneration.

  16. Selective digestion of Ba2+/Ca2+ alginate gel microdroplets for single-cell handling

    NASA Astrophysics Data System (ADS)

    Odaka, Masao; Hattori, Akihiro; Matsuura, Kenji; Yasuda, Kenji

    2018-06-01

    Cells encapsuled by polymer microdroplets are an effective platform for the identification and separation of individual cells for single-cell-based analysis. However, a key challenge is to maintain and release the captured cells in the microdroplets selectively, nondestructively, and noninvasively. We developed a simple method of encapsulating cells in alginate microdroplets having different digestion characteristics. Cells were diluted with an alginate polymer of sol state and encapsulated into microdroplets with Ba2+ and Ca2+ by a spray method. When a chelating buffer was applied, alginate gel microdroplets were digested according to the difference in chelating efficiency of linkage-divalent cations; hence, two types of alginate microdroplets were formed. Moreover, we examined the capability of the alginate gel to exchange linkage-divalent cations and found that both Ca2+ exchange in Ba-alginate microdroplets and Ba2+ exchange in Ca-alginate microdroplets occurred. These results indicate that the potential applications of a mixture of alginate microdroplets with different divalent cations control the selective digestion of microdroplets to improve the high-throughput, high-content microdroplet-based separation, analysis, or storage of single cells.

  17. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota

    PubMed Central

    Bai, Shaofeng; Chen, Huahai; Zhu, Liying; Liu, Wei; Yu, Hongwei D.; Wang, Xin; Yin, Yeshi

    2017-01-01

    Alginates pertain to organic polysaccharides that have been extensively used in food- and medicine-related industries. The present study obtained alginates from an alginate overproducing Pseudomonas aeruginosa PAO1 mutant by screening transposon mutagenesis libraries. The interaction between bacterial and seaweed alginates and gut microbiota were further studied by using an in vitro batch fermentation system. Thin-layer chromatography (TLC) analysis indicated that both bacterial and seaweed alginates can be completely degraded by fecal bacteria isolated from study volunteers, indicating that a minor structural difference between bacterial and seaweed alginates (O-acetylation and lack of G-G blocks) didn’t affect the digestion of alginates by human microbiota. Although, the digestion of bacterial and seaweed alginates was attributed to different Bacteroides xylanisolvens strains, they harbored similar alginate lyase genes. Genus Bacteroides with alginate-degrading capability were enriched in growth medium containing bacterial or seaweed alginates after in vitro fermentation. Short-chain fatty acid (SCFA) production in both bacterial and seaweed alginates was also comparable, but was significantly higher than the same medium using starch. In summary, the present study has isolated an alginate-overproducing P. aeruginosa mutant strain. Both seaweed and bacterial alginates were degraded by human gut microbiota, and their regulatory function on gut microbiota was similar. PMID:28170428

  18. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota.

    PubMed

    Bai, Shaofeng; Chen, Huahai; Zhu, Liying; Liu, Wei; Yu, Hongwei D; Wang, Xin; Yin, Yeshi

    2017-01-01

    Alginates pertain to organic polysaccharides that have been extensively used in food- and medicine-related industries. The present study obtained alginates from an alginate overproducing Pseudomonas aeruginosa PAO1 mutant by screening transposon mutagenesis libraries. The interaction between bacterial and seaweed alginates and gut microbiota were further studied by using an in vitro batch fermentation system. Thin-layer chromatography (TLC) analysis indicated that both bacterial and seaweed alginates can be completely degraded by fecal bacteria isolated from study volunteers, indicating that a minor structural difference between bacterial and seaweed alginates (O-acetylation and lack of G-G blocks) didn't affect the digestion of alginates by human microbiota. Although, the digestion of bacterial and seaweed alginates was attributed to different Bacteroides xylanisolvens strains, they harbored similar alginate lyase genes. Genus Bacteroides with alginate-degrading capability were enriched in growth medium containing bacterial or seaweed alginates after in vitro fermentation. Short-chain fatty acid (SCFA) production in both bacterial and seaweed alginates was also comparable, but was significantly higher than the same medium using starch. In summary, the present study has isolated an alginate-overproducing P. aeruginosa mutant strain. Both seaweed and bacterial alginates were degraded by human gut microbiota, and their regulatory function on gut microbiota was similar.

  19. Effect of gamma radiation on the physico-chemical properties of alginate-based films and beads

    NASA Astrophysics Data System (ADS)

    Huq, Tanzina; Khan, Avik; Dussault, Dominic; Salmieri, Stephane; Khan, Ruhul A.; Lacroix, Monique

    2012-08-01

    Alginate solution (3%, w/v) was prepared using deionized water from its powder. Then the solution was exposed to gamma radiation (0.1-25 kGy). The alginate films were prepared by solution casting. It was found that gamma radiation has strong effect on alginate solution. At low doses, mechanical strength of the alginate films improved but after 5 kGy dose, the strength started to decrease. The mechanism of alginate radiolysis in aqueous solution is discussed. Film formation was not possible from alginate solution at doses >5 kGy. The mechanical properties such as puncture strength (PS), puncture deformation (PD), viscoelasticity (Y) coefficient of the un-irradiated films were investigated. The values of PS, PD and Y coefficient of the films were 333 N/mm, 3.20 mm and 27%, respectively. Alginate beads were prepared from 3% alginate solution (w/v) by ionotropic gelation method in 5% CaCl2 solution. The rate of gel swelling improved in irradiated alginate-based beads at low doses (up to 0.5 kGy).

  20. Preparation, characterisation and viability of encapsulated Trichoderma harzianum UPM40 in alginate-montmorillonite clay.

    PubMed

    Adzmi, Fariz; Meon, Sariah; Musa, Mohamed Hanafi; Yusuf, Nor Azah

    2012-01-01

    Microencapsulation is a process by which tiny parcels of an active ingredient are packaged within a second material for the purpose of shielding the active ingredient from the surrounding environment. This study aims to determine the ability of the microencapsulation technique to improve the viability of Trichoderma harzianum UPM40 originally isolated from healthy groundnut roots as effective biological control agents (BCAs). Alginate was used as the carrier for controlled release, and montmorillonite clay (MMT) served as the filler. The encapsulated Ca-alginate-MMT beads were characterised using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The FTIR results showed the interaction between the functional groups of alginate and MMT in the Ca-alginate-MMT beads. Peaks at 1595, 1420 and 1020 cm(-1) characterised alginate, and peaks at 1028 and 453 cm(-1) characterised MMT; both sets of peaks appeared in the Ca-alginate-MMT FTIR spectrum. The TGA analysis showed an improvement in the thermal stability of the Ca-alginate-MMT beads compared with the alginate beads alone. SEM analysis revealed a homogeneous distribution of the MMT particles throughout the alginate matrix. T. harzianum UPM40 was successfully encapsulated in the Ca-alginate-MMT beads. Storage analysis of the encapsulated T. harzianum UPM40 showed that the low storage temperature of 5°C resulted in significantly (p < 0.05) better storage compared with room temperature (30°C).

  1. Bone tissue engineering scaffolding: computer-aided scaffolding techniques.

    PubMed

    Thavornyutikarn, Boonlom; Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Thouas, George A; Chen, Qizhi

    Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).

  2. The release of alginate lyase from growing Pseudomonas syringae pathovar phaseolicola

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Day, D. F.; Koenig, D. W.; Pierson, D. L.

    2001-01-01

    Pseudomonas syringae pathovar phaseolicola, which produces alginate during stationary growth phase, displayed elevated extracellular alginate lyase activity during both mid-exponential and late-stationary growth phases of batch growth. Intracellular activity remained below 22% of the total activity during exponential growth, suggesting that alginate lyase has an extracellular function for this organism. Extracellular enzyme activity in continuous cultures, grown in either nutrient broth or glucose-simple salts medium, peaked at 60% of the washout rate, although nutrient broth-grown cultures displayed more than twice the activity per gram of cell mass. These results imply that growth rate, nutritional composition, or both initiate a release of alginate lyase from viable P. syringae pv. phaseolicola, which could modify its entrapping biofilm.

  3. Enhancement of surface graft density of MPEG on alginate/chitosan hydrogel microcapsules for protein repellency.

    PubMed

    Zheng, Jiani; Xie, Hongguo; Yu, Weiting; Tan, Mingqian; Gong, Faquan; Liu, Xiudong; Wang, Feng; Lv, Guojun; Liu, Wanfa; Zheng, Guoshuang; Yang, Yan; Xie, Weiyang; Ma, Xiaojun

    2012-09-18

    Alginate/chitosan/alginate (ACA) hydrogel microcapsules were modified with methoxy poly(ethylene glycol) (MPEG) to improve protein repellency and biocompatibility. Increased MPEG surface graft density (n(S)) on hydrogel microcapsules was achieved by controlling the grafting parameters including the buffer layer substrate, membrane thickness, and grafting method. X-ray photoelectron spectroscopy (XPS) model was employed to quantitatively analyze n(S) on this three-dimensional (3D) hydrogel network structure. Our results indicated that neutralizing with alginate, increasing membrane thickness, and in situ covalent grafting could increase n(S) effectively. ACAC(PEG) was more promising than ACC(PEG) in protein repellency because alginate supplied more -COO(-) negative binding sites and prevented MPEG from diffusing. The n(S) increased with membrane thickness, showing better protein repellency. Moreover, the in situ covalent grafting provided an effective way to enhance n(S), and 1.00 ± 0.03 chains/nm(2) was achieved, exhibiting almost complete immunity to protein adsorption. This antifouling hydrogel biomaterial is expected to be useful in transplantation in vivo.

  4. Bilateral PLA/alginate membranes for the prevention of postsurgical adhesions.

    PubMed

    Kessler, Martina; Esser, Eva; Groll, Jürgen; Tessmar, Jörg

    2016-11-01

    A bilateral barrier membrane for the prevention of postsurgical adhesions was developed. Thereby, a smooth PLA side was supposed to keep the affected tissues glidingly separated, while a mucoadhesive side made of alginate was meant to keep the barrier resident on the site of injury so that suturing becomes redundant or at least the membrane stays long enough to facilitate surgical handling. Because hydrophilic alginate and lipophilic PLA films show only low cohesion, solution electrospun meshes of PLA and PLA-PEG-PLA triblock copolymers with varying poly(ethylene glycol) [PEG] content were investigated as cohesion promoter to avoid an easy separation of the functionally different layers. Using direct electrospinning onto the PLA film, a modified contact surface of the mesh was created, which allowed the tested alginate solutions (3%, 5%) to infiltrate to different extents. Thereby, an increasing content of hydrophilic PEG within the mesh copolymer and a lower alginate concentration facilitated the infiltration. As a result, the PLA film with a PLA35k-PEG10k-PLA35k (racemic PLA chains) mesh and an alginate layer cast from a 3% alginate solution appeared to be the most effective combination as examined by means of a t peel test, a mucoadhesion test, a tensile test and optical evaluations. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1563-1570, 2016. © 2015 Wiley Periodicals, Inc.

  5. Silk sericin loaded alginate nanoparticles: Preparation and anti-inflammatory efficacy.

    PubMed

    Khampieng, Thitikan; Aramwit, Pornanong; Supaphol, Pitt

    2015-09-01

    In this study, silk sericin loaded alginate nanoparticles were prepared by the emulsification method followed by internal crosslinking. The effects of various silk sericin loading concentration on particle size, shape, thermal properties, and release characteristics were investigated. The initial silk sericin loadings of 20, 40, and 80% w/w to polymer were incorporated into these alginate nanoparticles. SEM images showed a spherical shape and small particles of about 71.30-89.50 nm. TGA analysis showed that thermal stability slightly increased with increasing silk sericin loadings. FTIR analysis suggested interactions between alginate and silk sericin in the nanoparticles. The release study was performed in acetate buffer at normal skin conditions (pH 5.5; 32 °C). The release profiles of silk sericin exhibited initial rapid release, consequently with sustained release. These silk sericin loaded alginate nanoparticles were further incorporated into topical hydrogel and their anti-inflammatory properties were studied using carrageenan-induced paw edema assay. The current study confirms the hypothesis that the application of silk sericin loaded alginate nanoparticle gel can inhibit inflammation induced by carrageenan. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Stemness of spermatogonial stem cells encapsulated in alginate hydrogel during cryopreservation.

    PubMed

    Pirnia, A; Parivar, K; Hemadi, M; Yaghmaei, P; Gholami, M

    2017-06-01

    This study investigated the effect of spermatogonial stem cell encapsulated in alginate hydrogel during cryopreservation, as cells were protected against damage during cryopreservation within the hydrogel. Spermatogonial stem cells were isolated from the testes of Balb/c mice pups (6 days old), purified in laminin-coated dishes and CD90.1 microbeads, encapsulated in alginate hydrogel and then cryopreserved. After thawing, cell viability and Spermatogonial stem cell (SSC) colony diameter were evaluated. After RNA was isolated and cDNA was synthesised, the expression of stemness genes was considered using RT real-time PCR. Finally, spermatogonial stem cells labelled with BrdU were transplanted to busulfan azoospermic mouse models. Lin28a and Sall4 genes were significantly upregulated after cryopreservation in alginate hydrogel. However, cell viability was significantly decreased. The diameter of colonies consisting of spermatogonial stem cells freeze-thawed in alginate microbeads showed no significant difference with fresh spermatogonial stem cells and the control group. The injection of freeze-thawed spermatogonial stem cells encapsulated in alginate hydrogel resulted in spermatogenesis recovery. Alginate mimics the extracellular matrices (ECM) for spermatogonial stem cells; therefore, it can support stemness potential during the cell cryopreservation process and restart spermatogenesis after transplantation. © 2016 Blackwell Verlag GmbH.

  7. A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jingquan; Rouse, Sarah L.; Li, Dianfan

    2014-08-01

    Crystal structures of the β-barrel porin AlgE reveal a mechanism whereby alginate is exported from P. aeruginosa for biofilm formation. The exopolysaccharide alginate is an important component of biofilms produced by Pseudomonas aeruginosa, a major pathogen that contributes to the demise of cystic fibrosis patients. Alginate exits the cell via the outer membrane porin AlgE. X-ray structures of several AlgE crystal forms are reported here. Whilst all share a common β-barrel constitution, they differ in the degree to which loops L2 and T8 are ordered. L2 and T8 have been identified as an extracellular gate (E-gate) and a periplasmic gatemore » (P-gate), respectively, that reside on either side of an alginate-selectivity pore located midway through AlgE. Passage of alginate across the membrane is proposed to be regulated by the sequential opening and closing of the two gates. In one crystal form, the selectivity pore contains a bound citrate. Because citrate mimics the uronate monomers of alginate, its location is taken to highlight a route through AlgE taken by alginate as it crosses the pore. Docking and molecular-dynamics simulations support and extend the proposed transport mechanism. Specifically, the P-gate and E-gate are flexible and move between open and closed states. Citrate can leave the selectivity pore bidirectionally. Alginate docks stably in a linear conformation through the open pore. To translate across the pore, a force is required that presumably is provided by the alginate-synthesis machinery. Accessing the open pore is facilitated by complex formation between AlgE and the periplasmic protein AlgK. Alginate can thread through a continuous pore in the complex, suggesting that AlgK pre-orients newly synthesized exopolysaccharide for delivery to AlgE.« less

  8. Novel alginate-based nanocarriers as a strategy to include high concentrations of hydrophobic compounds in hydrogels for topical application.

    PubMed

    Nguyen, H T P; Munnier, E; Souce, M; Perse, X; David, S; Bonnier, F; Vial, F; Yvergnaux, F; Perrier, T; Cohen-Jonathan, S; Chourpa, I

    2015-01-26

    The cutaneous penetration of hydrophobic active molecules is of foremost concern in the dermatology and cosmetic formulation fields. The poor solubility in water of those molecules limits their use in hydrophilic forms such as gels, which are favored by patients with chronic skin disease. The aim of this work is to design a novel nanocarrier of hydrophobic active molecules and to determine its potential as an ingredient of a topical form. The nanocarrier consists of an oily core surrounded by a protective shell of alginate, a natural polysaccharide isolated from brown algae. These calcium alginate-based nanocarriers (CaANCs) were prepared at room temperature and without the use of organic solvent by an accelerated nanoemulsification-polymer crosslinking method. The size (hydrodynamic diameter ~200 nm) and surface charge (zeta potential ~ - 30 mV) of the CaANCs are both compatible with their application on skin. CaANCs loaded with a fluorescent label were stable in model hydrophilic galenic forms under different storage conditions. Curcumin was encapsulated in CaANCs with an efficiency of ~95%, fully retaining its antioxidant activity. The application of the curcumin-loaded CaANCs on excised human skin led to a significant accumulation of the active molecules in the upper layers of the skin, asserting the potential of these nanocarriers in active pharmaceutical and cosmetic ingredients topical delivery.

  9. Novel alginate-based nanocarriers as a strategy to include high concentrations of hydrophobic compounds in hydrogels for topical application

    NASA Astrophysics Data System (ADS)

    Nguyen, H. T. P.; Munnier, E.; Souce, M.; Perse, X.; David, S.; Bonnier, F.; Vial, F.; Yvergnaux, F.; Perrier, T.; Cohen-Jonathan, S.; Chourpa, I.

    2015-06-01

    The cutaneous penetration of hydrophobic active molecules is of foremost concern in the dermatology and cosmetic formulation fields. The poor solubility in water of those molecules limits their use in hydrophilic forms such as gels, which are favored by patients with chronic skin disease. The aim of this work is to design a novel nanocarrier of hydrophobic active molecules and to determine its potential as an ingredient of a topical form. The nanocarrier consists of an oily core surrounded by a protective shell of alginate, a natural polysaccharide isolated from brown algae. These calcium alginate-based nanocarriers (CaANCs) were prepared at room temperature and without the use of organic solvent by an accelerated nanoemulsification-polymer crosslinking method. The size (hydrodynamic diameter ˜200 nm) and surface charge (zeta potential ˜ - 30 mV) of the CaANCs are both compatible with their application on skin. CaANCs loaded with a fluorescent label were stable in model hydrophilic galenic forms under different storage conditions. Curcumin was encapsulated in CaANCs with an efficiency of ˜95%, fully retaining its antioxidant activity. The application of the curcumin-loaded CaANCs on excised human skin led to a significant accumulation of the active molecules in the upper layers of the skin, asserting the potential of these nanocarriers in active pharmaceutical and cosmetic ingredients topical delivery.

  10. Co-delivery of cisplatin and doxorubicin from calcium phosphate beads/matrix scaffolds for osteosarcoma therapy.

    PubMed

    Hess, Ulrike; Shahabi, Shakiba; Treccani, Laura; Streckbein, Philipp; Heiss, Christian; Rezwan, Kurosch

    2017-08-01

    Bone substitute materials with a controlled drug release ability can fill cavities caused by the resection of bone tumours and thereby combat any leftover bone cancer cells. The combined release of different cytostatics seems to enhance their toxicity. In this study, calcium phosphate beads and matrix scaffolds are combined for a long-term co-delivery of cis-diamminedichloroplatinum (cisplatin, CDDP) and doxorubicin hydrochloride (DOX) as clinical relevant model drugs. Tricalcium phosphate/alginate beads as additional drug carrier are produced by droplet extrusion with ionotropic gelation and incorporated in scaffold matrix by freeze gelation without sintering. CDDP shows a short burst release while DOX has a continuous release measurable over the entire study period of 40days. Drug release from matrix is decreased by ~30% compared to release from beads. Nevertheless, all formulations follow the Korsmeyer-Peppas release kinetic model and show Fickian diffusion. Cytotoxic activity was conducted on MG-63 osteosarcoma cells after 1, 4, and 7days with WST-1 cell viability assay. Co-loaded composites enhance activity towards MG-63 cells up to ~75% toxicity while reducing the released drug quantity. The results suggest that co-loaded beads/matrix scaffolds are highly promising for osteosarcoma therapy due to synergistic effects over a long period of more than a month. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Alginate Beads Containing Lactase: Stability and Microstructure.

    PubMed

    Traffano-Schiffo, Maria Victoria; Aguirre Calvo, Tatiana R; Castro-Giraldez, Marta; Fito, Pedro J; Santagapita, Patricio R

    2017-06-12

    β-Galactosidase (lactase) is a widely used enzyme in the food industry; however, it has low stability against thermal and mechanical treatments. Due to this, the purpose of the present research was to analyze the encapsulation of lactase in alginate-Ca(II) beads in order to maintain its enzymatic activity toward freezing, freezing/thawing, and storage. Also, the effect of the addition of trehalose, and arabic and guar gums and their influence on the microstructure as well as on thermal properties and molecular mobility were studied. Lactase was successfully encapsulated in alginate-Ca(II) beads, and the inclusion of trehalose was critical for activity preservation toward treatments, being improved in guar gum-containing systems. The gums increased the T m ' values, which represents a valuable technological improvement. Finally, the presence of secondary excipients affected the microstructure, showing rods with smaller outer diameter and with lower compactness than alginate-Ca(II) beads. Also, bead composition greatly affects the size, shape, and relaxation times.

  12. Link between alginate reaction front propagation and general reaction diffusion theory.

    PubMed

    Braschler, Thomas; Valero, Ana; Colella, Ludovica; Pataky, Kristopher; Brugger, Jürgen; Renaud, Philippe

    2011-03-15

    We provide a common theoretical framework reuniting specific models for the Ca(2+)-alginate system and general reaction diffusion theory along with experimental validation on a microfluidic chip. As a starting point, we use a set of nonlinear, partial differential equations that are traditionally solved numerically: the Mikkelsen-Elgsaeter model. Applying the traveling-wave hypothesis as a major simplification, we obtain an analytical solution. The solution indicates that the fundamental properties of the alginate reaction front are governed by a single dimensionless parameter λ. For small λ values, a large depletion zone accompanies the reaction front. For large λ values, the alginate reacts before having the time to diffuse significantly. We show that the λ parameter is of general importance beyond the alginate model system, as it can be used to classify known solutions for second-order reaction diffusion schemes, along with the novel solution presented here. For experimental validation, we develop a microchip model system, in which the alginate gel formation can be carried out in a highly controlled, essentially 1D environment. The use of a filter barrier enables us to rapidly renew the CaCl(2) solution, while maintaining flow speeds lower than 1 μm/s for the alginate compartment. This allows one to impose an exactly known bulk CaCl(2) concentration and diffusion resistance. This experimental model system, taken together with the theoretical development, enables the determination of the entire set of physicochemical parameters governing the alginate reaction front in a single experiment.

  13. Chondroprotective supplementation promotes the mechanical properties of injectable scaffold for human nucleus pulposus tissue engineering.

    PubMed

    Foss, Berit L; Maxwell, Thomas W; Deng, Ying

    2014-01-01

    A result of intervertebral disc (IVD) degeneration, the nucleus pulposus (NP) is no longer able to withstand applied load leading to pain and disability. The objective of this study is to fabricate a tissue-engineered injectable scaffold with chondroprotective supplementation in vitro to improve the mechanical properties of a degenerative NP. Tissue-engineered scaffolds were fabricated using different concentrations of alginate and calcium chloride and mechanically evaluated. Fabrication conditions were based on structural and mechanical resemblance to the native NP. Chondroprotective supplementation, glucosamine (GCSN) and chondroitin sulfate (CS), were added to scaffolds at concentrations of 0:0µg/mL (0:0-S), 125:100µg/mL (125:100-S), 250:200µg/mL (250:200-S), and 500:400µg/mL (500:400-S), GCSN and CS, respectively. Scaffolds were used to fabricate tissue-engineered constructs through encapsulation of human nucleus pulposus cells (HNPCs). The tissue-engineered constructs were collected at days 1, 14, and 28 for biochemical and biomechanical evaluations. Confocal microscopy showed HNPC viability and rounded morphology over the 28 day period. MTT analysis resulted in significant increases in cell proliferation for each group. Collagen type II ELISA quantification and compressive aggregate moduli (HA) showed increasing trends for both 250:200-S and the 500:400-S groups on Day 28 with significantly greater HA compared to 0:0-S group. Glycosaminoglycan and water content decreased for all groups. Results indicate the increased mechanical properties of the 250:200-S and the 500:400-S was due to production of a functional matrix. This study demonstrated potential for a chondroprotective supplemented injectable scaffold to restore biomechanical function of a degenerative disc through the production of a mechanically functional matrix. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Production, deformation and mechanical investigation of magnetic alginate capsules

    NASA Astrophysics Data System (ADS)

    Zwar, Elena; Kemna, Andre; Richter, Lena; Degen, Patrick; Rehage, Heinz

    2018-02-01

    In this article we investigated the deformation of alginate capsules in magnetic fields. The sensitivity to magnetic forces was realised by encapsulating an oil in water emulsion, where the oil droplets contained dispersed magnetic nanoparticles. We solved calcium ions in the aqueous emulsion phase, which act as crosslinking compounds for forming thin layers of alginate membranes. This encapsulating technique allows the production of flexible capsules with an emulsion as the capsule core. It is important to mention that the magnetic nanoparticles were stable and dispersed throughout the complete process, which is an important difference to most magnetic alginate-based materials. In a series of experiments, we used spinning drop techniques, capsule squeezing experiments and interfacial shear rheology in order to determine the surface Young moduli, the surface Poisson ratios and the surface shear moduli of the magnetically sensitive alginate capsules. In additional experiments, we analysed the capsule deformation in magnetic fields. In spinning drop and capsule squeezing experiments, water droplets were pressed out of the capsules at elevated values of the mechanical load. This phenomenon might be used for the mechanically triggered release of water-soluble ingredients. After drying the emulsion-filled capsules, we produced capsules, which only contained a homogeneous oil phase with stable suspended magnetic nanoparticles (organic ferrofluid). In the dried state, the thin alginate membranes of these particles were rather rigid. These dehydrated capsules could be stored at ambient conditions for several months without changing their properties. After exposure to water, the alginate membranes rehydrated and became flexible and deformable again. During this swelling process, water diffused back in the capsule. This long-term stability and rehydration offers a great spectrum of different applications as sensors, soft actuators, artificial muscles or drug delivery systems.

  15. Heavy metal removal by caustic-treated yeast immobilized in alginate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y.; Wilkins, E.

    1995-12-31

    Saccharomyces cerevisiae yeast biomass was treated with hot alkali to increase its biosorption capacity for heavy metals and then was immobilized in alginate gel. Biosorption capacities for Cu{sup 2+}, Cd{sup 2+}, and Zn{sup 2+} on alginate gel, native yeast, native yeast immobilized in alginate gel, and caustic-treated yeast immobilized in alginate gel were all compared. Immobilized yeasts could be reactivated and reused in a manner similar to the ion exchange resins. Immobilized caustic-treated yeast has high heavy metal biosorption capacity and high metal removal efficiency in a rather wide acidic pH region. The biosorption isotherm of immobilized caustic-treated yeast wasmore » studied, and empirical equations were obtained. The initial pH of polluted water affected the metal removal efficiency significantly, and the equilibrium biosorption capacity seemed to be temperature independent at lower initial metal concentrations.« less

  16. Chondrocyte Culture in Three Dimensional Alginate Sulfate Hydrogels Promotes Proliferation While Maintaining Expression of Chondrogenic Markers

    PubMed Central

    Mhanna, Rami; Kashyap, Aditya; Palazzolo, Gemma; Vallmajo-Martin, Queralt; Becher, Jana; Möller, Stephanie; Schnabelrauch, Matthias

    2014-01-01

    The loss of expression of chondrogenic markers during monolayer expansion remains a stumbling block for cell-based treatment of cartilage lesions. Here, we introduce sulfated alginate hydrogels as a cartilage biomimetic biomaterial that induces cell proliferation while maintaining the chondrogenic phenotype of encapsulated chondrocytes. Hydroxyl groups of alginate were converted to sulfates by incubation with sulfur trioxide–pyridine complex (SO3/pyridine), yielding a sulfated material cross-linkable with calcium chloride. Passage 3 bovine chondrocytes were encapsulated in alginate and alginate sulfate hydrogels for up to 35 days. Cell proliferation was five-fold higher in alginate sulfate compared with alginate (p=0.038). Blocking beta1 integrins in chondrocytes within alginate sulfate hydrogels significantly inhibited proliferation (p=0.002). Sulfated alginate increased the RhoA activity of chondrocytes compared with unmodified alginate, an increase that was blocked by β1 blocking antibodies (p=0.017). Expression and synthesis of type II collagen, type I collagen, and proteoglycan was not significantly affected by the encapsulation material evidenced by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry. Alginate sulfate constructs showed an opaque appearance in culture, whereas the unmodified alginate samples remained translucent. In conclusion, alginate sulfate provides a three dimensional microenvironment that promotes both chondrocyte proliferation and maintenance of the chondrogenic phenotype and represents an important advance for chondrocyte-based cartilage repair therapies providing a material in which cell expansion can be done in situ. PMID:24320935

  17. Functionalized scaffolds to enhance tissue regeneration

    PubMed Central

    Guo, Baolin; Lei, Bo; Li, Peng; Ma, Peter X.

    2015-01-01

    Tissue engineering scaffolds play a vital role in regenerative medicine. It not only provides a temporary 3-dimensional support during tissue repair, but also regulates the cell behavior, such as cell adhesion, proliferation and differentiation. In this review, we summarize the development and trends of functional scaffolding biomaterials including electrically conducting hydrogels and nanocomposites of hydroxyapatite (HA) and bioactive glasses (BGs) with various biodegradable polymers. Furthermore, the progress on the fabrication of biomimetic nanofibrous scaffolds from conducting polymers and composites of HA and BG via electrospinning, deposition and thermally induced phase separation is discussed. Moreover, bioactive molecules and surface properties of scaffolds are very important during tissue repair. Bioactive molecule-releasing scaffolds and antimicrobial surface coatings for biomedical implants and scaffolds are also reviewed. PMID:25844177

  18. Nanowired three-dimensional cardiac patches

    NASA Astrophysics Data System (ADS)

    Dvir, Tal; Timko, Brian P.; Brigham, Mark D.; Naik, Shreesh R.; Karajanagi, Sandeep S.; Levy, Oren; Jin, Hongwei; Parker, Kevin K.; Langer, Robert; Kohane, Daniel S.

    2011-11-01

    Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.

  19. Binding and Leakage of Barium in Alginate Microbeads

    PubMed Central

    Mørch, Yrr A.; Qi, Meirigeng; Gundersen, Per Ole M.; Formo, Kjetil; Lacik, Igor; Skjåk-Bræk, Gudmund; Oberholzer, Jose; Strand, Berit L.

    2013-01-01

    Microbeads of alginate cross-linked with Ca2+ and/or Ba2+ are popular matrices in cell-based therapy. The aim of this study was to quantify the binding of barium in alginate microbeads and its leakage under in vitro and accumulation under in vivo conditions. Low concentrations of barium (1 mM) in combination with calcium (50 mM) and high concentrations of barium (20 mM) in gelling solutions were used for preparation of microbeads made of high-G and high-M alginates. High-G microbeads accumulated barium from gelling solution and contained higher concentrations of divalent ions for both low- and high-Ba exposure compared to high-G microbeads exposed to calcium solely and to high-M microbeads for all gelling conditions. Although most of the unbound divalent ions were removed during the wash and culture steps, leakage of barium was still detected during storage. Barium accumulation in blood and femur bone of mice implanted with high-G beads was found to be dose-dependent. Estimated barium leakage relevant to transplantation to diabetic patients with islets in alginate microbeads showed that the leakage was 2.5 times lower than the tolerable intake value given by WHO for high-G microbeads made using low barium concentration. The similar estimate gave 1.5 times higher than is the tolerable intake value for the high-G microbeads made using high barium concentration. In order to reduce the risk of barium accumulation that may be of safety concern, the microbeads made of high-G alginate gelled with a combination of calcium and low concentration of barium ions is recommended for islet transplantation. PMID:22700168

  20. Binding and leakage of barium in alginate microbeads.

    PubMed

    Mørch, Yrr A; Qi, Meirigeng; Gundersen, Per Ole M; Formo, Kjetil; Lacik, Igor; Skjåk-Braek, Gudmund; Oberholzer, Jose; Strand, Berit L

    2012-11-01

    Microbeads of alginate crosslinked with Ca(2+) and/or Ba(2+) are popular matrices in cell-based therapy. The aim of this study was to quantify the binding of barium in alginate microbeads and its leakage under in vitro and accumulation under in vivo conditions. Low concentrations of barium (1 mM) in combination with calcium (50 mM) and high concentrations of barium (20 mM) in gelling solutions were used for preparation of microbeads made of high-G and high-M alginates. High-G microbeads accumulated barium from gelling solution and contained higher concentrations of divalent ions for both low- and high-Ba exposure compared with high-G microbeads exposed to calcium solely and to high-M microbeads for all gelling conditions. Although most of the unbound divalent ions were removed during the wash and culture steps, leakage of barium was still detected during storage. Barium accumulation in blood and femur bone of mice implanted with high-G beads was found to be dose-dependent. Estimated barium leakage relevant to transplantation to diabetic patients with islets in alginate microbeads showed that the leakage was 2.5 times lower than the tolerable intake value given by WHO for high-G microbeads made using low barium concentration. The similar estimate gave 1.5 times higher than is the tolerable intake value for the high-G microbeads made using high barium concentration. To reduce the risk of barium accumulation that may be of safety concern, the microbeads made of high-G alginate gelled with a combination of calcium and low concentration of barium ions is recommended for islet transplantation. Copyright © 2012 Wiley Periodicals, Inc.

  1. Microfluidic Synthesis of Ca-Alginate Microcapsules for Self-Healing of Bituminous Binder.

    PubMed

    Shu, Benan; Wu, Shaopeng; Dong, Lijie; Wang, Qing; Liu, Quantao

    2018-04-19

    This work aims to develop an original alginate micro-emulsion combining with droplets microfluidic method to produce multinuclear Ca-alginate microcapsules containing rejuvenator for the self-healing of bituminous binder. The sizes of the Ca-alginate microcapsules could be easily controlled by tuning flow rates of the continuous and dispersed phases. The addition of a surfactant Tween80 not only improved the stability of the emulsion, but it also effectively reduced the size of the microcapsules. Size predictive mathematical model of the microcapsules was proposed through the analysis of fluid force. Optical microscope and remote Fourier infrared test confirmed the multinuclear structure of Ca-alginate microcapsules. Thermogravimetric analysis showed that the microcapsules coated with nearly 40% rejuvenator and they remained intact during the preparation of bitumen specimen at 135 °C. Micro self-healing process of bituminous binder with multinuclear Ca-alginate microcapsules containing rejuvenator was monitored and showed enhanced self-healing performance. Tensile stress-recovery test revealed that the recovery rate increased by 32.08% (in the case of 5% microcapsules), which meant that the Ca-alginate microcapsules containing rejuvenator could effectively enhance the self-healing property of bituminous binder.

  2. Antifungal Effect of a Dental Tissue Conditioner Containing Nystatin-Loaded Alginate Microparticles.

    PubMed

    Kim, Hyun-Jin; Son, Jun Sik; Kwon, Tae-Yub

    2018-02-01

    In this in vitro study, nystatin-alginate microparticles were successfully fabricated to control the release of nystatin from a commercial dental tissue conditioner. These nystatin-alginate microparticles were spherical and had a slightly rough surface. The microparticles incorporated into the tissue conditioner were distributed homogeneously throughout the tissue conditioner matrix. The incorporation of the microparticles did not deteriorate the mechanical properties of the original material. The agar diffusion test results showed that the tissue conditioner containing the microparticles had a good antifungal effect against Candida albicans. The nystatin-alginate microparticles efficiently controlled the release of nystatin from the tissue conditioner matrix over the experimental period of 14 days. Moreover, the nystatin-alginate microparticles incorporated in the tissue conditioner showed effective antifungal function even at lower concentrations of nystatin. The current study suggests that the tissue conditioner containing the nystatin-alginate microparticle carrier system has potential as an effective antifungal material.

  3. Bacterial alginate production: an overview of its biosynthesis and potential industrial production.

    PubMed

    Urtuvia, Viviana; Maturana, Nataly; Acevedo, Fernando; Peña, Carlos; Díaz-Barrera, Alvaro

    2017-10-07

    Alginate is a linear polysaccharide that can be used for different applications in the food and pharmaceutical industries. These polysaccharides have a chemical structure composed of subunits of (1-4)-β-D-mannuronic acid (M) and its C-5 epimer α-L-guluronic acid (G). The monomer composition and molecular weight of alginates are known to have effects on their properties. Currently, these polysaccharides are commercially extracted from seaweed but can also be produced by Azotobacter vinelandii and Pseudomonas spp. as an extracellular polymer. One strategy to produce alginates with different molecular weights and with reproducible physicochemical characteristics is through the manipulation of the culture conditions during fermentation. This mini-review provides a comparative analysis of the metabolic pathways and molecular mechanisms involved in alginate polymerization from A. vinelandii and Pseudomonas spp. Different fermentation strategies used to produce alginates at a bioreactor laboratory scale are described.

  4. Preferential localization of Lactococcus lactis cells entrapped in a caseinate/alginate phase separated system.

    PubMed

    Léonard, Lucie; Gharsallaoui, Adem; Ouaali, Fahima; Degraeve, Pascal; Waché, Yves; Saurel, Rémi; Oulahal, Nadia

    2013-09-01

    This study aimed to entrap bioprotective lactic acid bacteria in a sodium caseinate/sodium alginate aqueous two-phase system. Phase diagram at pH=7 showed that sodium alginate and sodium caseinate were not miscible when their concentrations exceeded 1% (w/w) and 6% (w/w), respectively. The stability of the caseinate/alginate two-phase system was also checked at pH values of 6.0 and 5.5. Lactococcus lactis subsp. lactis LAB3 cells were added in a 4% (w/w) caseinate/1.5% (w/w) alginate two-phase system at pH=7. Fluorescence microscopy allowed to observe that the caseinate-rich phase formed droplets dispersed in a continuous alginate-rich phase. The distribution of bacteria in such a system was observed by epifluorescence microscopy: Lc. lactis LAB3 cells stained with Live/Dead(®) Baclight kit™ were located exclusively in the protein phase. Since zeta-potential measurements indicated that alginate, caseinate and bacterial cells all had an overall negative charge at pH 7, the preferential adhesion of LAB cells was assumed to be driven by hydrophobic effect or by depletion phenomena in such biopolymeric systems. Moreover, LAB cells viability was significantly higher in the ternary mixture obtained in the presence of both caseinate and alginate than in single alginate solution. Caseinate/alginate phase separated systems appeared thus well suited for Lc. lactis LAB3 cells entrapment. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Microfabrication of proangiogenic cell-laden alginate-g-pyrrole hydrogels.

    PubMed

    DeVolder, Ross J; Zill, Andrew T; Jeong, Jae H; Kong, Hyunjoon

    2012-11-01

    Cells have been extensively studied for their uses in various therapies because of their capacities to produce therapeutic proteins and recreate new tissues. It has often been suggested that the efficacy of cell therapies can greatly be improved through the ability to localize and regulate cellular activities at a transplantation site; however, the technologies for this control are lacking. Therefore, this study reports a cell-Laden hydrogel patch engineered to support the proliferation and angiogenic growth factor expression of cells adhered to their surfaces, and to further promote neovascularization. Hydrogels consisting of alginate chemically linked with pyrrole units, termed alginate-g-pyrrole, were prepared through an oxidative cross-linking reaction between pyrrole units. Fibroblasts adhered to the alginate-g-pyrrole hydrogels, and exhibited increased proliferation and overall vascular endothelial growth factor (VEGF) expression, compared to those on pyrrole-free hydrogels. Furthermore, the alginate-g-pyrrole hydrogel surfaces were modified to present microposts, subsequently increasing the amount of pyrrole units on their surfaces. Cells adhered to the microfabricated gel surfaces exhibited increased proliferation and overall VEGF expression proportional to the density of the microposts. The resulting micropatterned alginate-g-pyrrole hydrogels exhibited increases in the size and density of mature blood vessels when implanted on chick chorioallantoic membranes (CAMs). The hydrogel system developed in this study will be broadly useful for improving the efficacy of a wide array of cell-based wound healing and tissue regenerative therapies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Parallel fabrication of macroporous scaffolds.

    PubMed

    Dobos, Andrew; Grandhi, Taraka Sai Pavan; Godeshala, Sudhakar; Meldrum, Deirdre R; Rege, Kaushal

    2018-07-01

    Scaffolds generated from naturally occurring and synthetic polymers have been investigated in several applications because of their biocompatibility and tunable chemo-mechanical properties. Existing methods for generation of 3D polymeric scaffolds typically cannot be parallelized, suffer from low throughputs, and do not allow for quick and easy removal of the fragile structures that are formed. Current molds used in hydrogel and scaffold fabrication using solvent casting and porogen leaching are often single-use and do not facilitate 3D scaffold formation in parallel. Here, we describe a simple device and related approaches for the parallel fabrication of macroporous scaffolds. This approach was employed for the generation of macroporous and non-macroporous materials in parallel, in higher throughput and allowed for easy retrieval of these 3D scaffolds once formed. In addition, macroporous scaffolds with interconnected as well as non-interconnected pores were generated, and the versatility of this approach was employed for the generation of 3D scaffolds from diverse materials including an aminoglycoside-derived cationic hydrogel ("Amikagel"), poly(lactic-co-glycolic acid) or PLGA, and collagen. Macroporous scaffolds generated using the device were investigated for plasmid DNA binding and cell loading, indicating the use of this approach for developing materials for different applications in biotechnology. Our results demonstrate that the device-based approach is a simple technology for generating scaffolds in parallel, which can enhance the toolbox of current fabrication techniques. © 2018 Wiley Periodicals, Inc.

  7. Bacterial supersystem for alginate import/metabolism and its environmental and bioenergy applications.

    PubMed

    Hashimoto, Wataru; Kawai, Shigeyuki; Murata, Kousaku

    2010-01-01

    Distinct from most alginate-assimilating bacteria that secrete polysaccharide lyases extracellularly, a gram-negative bacterium, Sphingomonas sp. A1 (strain A1), can directly incorporate alginate into its cytoplasm, without degradation, through a "superchannel" consisting of a mouth-like pit on the cell surface, periplasmic binding proteins, and a cytoplasmic membrane-bound ATP-binding cassette transporter. Flagellin homologues function as cell surface alginate receptors essential for expressing the superchannel. Cytoplasmic alginate lyases with different substrate specificities and action modes degrade the polysaccharide to its constituent monosaccharides. The resultant monosaccharides, α-keto acids, are converted to a reduced form by NADPH-dependent reductase, and are finally metabolized in the TCA cycle. Transplantation of the strain A1 superchannel to xenobiotic-degrading sphingomonads enhances bioremediation through the propagation of bacteria with an elevated transport activity. Furthermore, strain A1 cells transformed with Zymomonas mobilis genes for pyruvate decarboxylase and alcohol dehydrogenase II produce considerable amounts of biofuel ethanol from alginate when grown statically. © 2010 Landes Bioscience

  8. Fabrication of large size alginate beads for three-dimensional cell-cluster culture

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengtao; Ruan, Meilin; Liu, Hongni; Cao, Yiping; He, Rongxiang

    2017-08-01

    We fabricated large size alginate beads using a simple microfluidic device under a co-axial injection regime. This device was made by PDMS casting with a mold formed by small diameter metal and polytetrafluorothylene tubes. Droplets of 2% sodium alginate were generated in soybean oil through the device and then cross-linked in a 2% CaCl2 solution, which was mixed tween80 with at a concentration of 0.4 to 40% (w/v). Our results showed that the morphology of the produced alginate beads strongly depends on the tween80 concentration. With the increase of concentration of tween80, the shape of the alginate beads varied from semi-spherical to tailed-spherical, due to the decrease of interface tension between oil and cross-link solution. To access the biocompatibility of the approach, MCF-7 cells were cultured with the alginate beads, showing the formation of cancer cells clusters which might be useful for future studies.

  9. Effect of Oxygen Tension and Medium Components on Monomer Distribution of Alginate.

    PubMed

    Kıvılcımdan Moral, Çiğdem; Doğan, Özdemir; Sanin, Faika Dilek

    2015-06-01

    Alginate is a natural biopolymer composed of mannuronic and guluronic acid monomers. It is produced by algae and some species of Azotobacter and Pseudomonas. This study aims to investigate the effect of dissolved oxygen tension (DOT) and growth medium substrate and calcium concentrations on the monomeric composition of alginate produced by Azotobacter vinelandii ATCC® 9046 in a fermenter. Results showed that alginate production increased with increasing DOT from 1 to 5 %. The highest alginate production was obtained as 4.51 g/L under 20 g/L of sucrose and 50 mg/L of calcium at 5 % DOT. At these conditions, alginate was rich in mannuronic acid (up to 61 %) and it was particularly high at low calcium concentration. On the other hand, at extreme conditions such as high DOT level (10 % DOT) and low sucrose concentration (10 g/L), guluronic acid was dominant (ranging between 65 and 100 %).

  10. Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures.

    PubMed

    Jin, Yifei; Compaan, Ashley; Bhattacharjee, Tapomoy; Huang, Yong

    2016-06-03

    Freeform fabrication of soft structures has been of great interest in recent years. In particular, it is viewed as a critical step toward the grand vision of organ printing--the on-demand design and fabrication of three-dimensional (3D) human organ constructs for implantation and regenerative medicine. The objective of this study is to develop a novel granular gel support material-enabled, two-step gelation-based 'printing-then-gelation' approach to fabricate 3D alginate structures using filament extrusion. Specifically, a granular Carbopol microgel bath holds the ungelled alginate structure being extruded, avoiding the instantaneous gelation of each printed layer as well as resultant surface tension-induced nozzle clogging. Since Carbopol microgels react with multivalent cations, which are needed for alginate crosslinking, gelatin is introduced as a sacrificial material to make an alginate and gelatin bioink for extrusion, which gels thermally (step-one gelation) to initially stabilize the printed structure for removal from Carbopol. Then gelatin is melted and diffused away while alginate is ionically crosslinked in a 37 °C calcium chloride bath (step-two gelation), resulting in an alginate structure. The proposed 'printing-then-gelation' approach works for alginate structure fabrication, and it is also applicable for the printing of cellular constructs and other similar homogeneous soft structures using a two-step or even multi-step approach. The main conclusions are: (1) 0.8% (w/v) Carbopol bath with a neutral pH value may be most suitable for soft structure printing; (2) it is most effective to use a 0.9% (w/v) NaCl solution to facilitate the removal of residual Carbopol; and (3) alginate structures fabricated using the proposed approach demonstrate better mechanical properties than those fabricated using the conventional 'gelation-while-printing' approach.

  11. In vitro fermentation of alginate and its derivatives by human gut microbiota.

    PubMed

    Li, Miaomiao; Li, Guangsheng; Shang, Qingsen; Chen, Xiuxia; Liu, Wei; Pi, Xiong'e; Zhu, Liying; Yin, Yeshi; Yu, Guangli; Wang, Xin

    2016-06-01

    Alginate (Alg) has a long history as a food ingredient in East Asia. However, the human gut microbes responsible for the degradation of alginate and its derivatives have not been fully understood yet. Here, we report that alginate and the low molecular polymer derivatives of mannuronic acid oligosaccharides (MO) and guluronic acid oligosaccharides (GO) can be completely degraded and utilized at various rates by fecal microbiota obtained from six Chinese individuals. However, the derivative of propylene glycol alginate sodium sulfate (PSS) was not hydrolyzed. The bacteria having a pronounced ability to degrade Alg, MO and GO were isolated from human fecal samples and were identified as Bacteroides ovatus, Bacteroides xylanisolvens, and Bacteroides thetaiotaomicron. Alg, MO and GO can increase the production level of short chain fatty acids (SCFA), but GO generates the highest level of SCFA. Our data suggest that alginate and its derivatives could be degraded by specific bacteria in the human gut, providing the basis for the impacts of alginate and its derivates as special food additives on human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Self-emulsifying excipient platform for improving technological properties of alginate-hydroxypropylcellulose pellets.

    PubMed

    Mannina, Paolo; Segale, Lorena; Giovannelli, Lorella; Bonda, Andrea Foglio; Pattarino, Franco

    2016-02-29

    In this work, alginate, alginate-pectin and alginate-hydroxypropylcellulose pellets were produced by ionotropic gelation and characterized. Ibuprofen was selected as model drug; it was suspended in the polymeric solution in crystalline form or dissolved in a self-emulsifying phase and then dispersed into the polymeric solution. The self-emulsifying excipient platform composed of Labrasol (PEG-8 caprylic/capric glycerides) and d-α-tocopherol polyethylene glycol 1000 succinate (TPGS), able to solubilize the drug was used to improve the technological and biopharmaceutical properties of the alginate pellets. The pellets had diameters between 1317 and 2026 μm and a high drug content (>51%). DSC analysis showed the amorphous state of drug in the pellets containing the self-emulsifying phase. All the systems restricted drug release in conditions simulating the gastric environment and made the drug completely available at a pH value typical for the intestine. Only alginate-HPC systems containing the drug solubilized into the self-emulsifying phase showed the ability to partially control the release of ibuprofen at neutral pH. The self-emulsifying excipient platform is a useful tool to improve technological and biopharmaceutical properties of alginate-HPC pellets. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. In vivo degradation of alginate in the presence and in the absence of resistant starch.

    PubMed

    Jonathan, Melliana; Souza da Silva, Carol; Bosch, Guido; Schols, Henk; Gruppen, Harry

    2015-04-01

    This study evaluated the intestinal degradability of alginate during 74 days intake in pigs as models for humans. Diets contained pregelatinized starch, retrograded starch, alginate, or a mix of retrograded starch and alginate. Faeces were collected on day 1, 3, 7, 14, 39 and 74. Clear trends in intestinal alginate degradation were observed. Up to day 39, the total tract digestibility of alginate was limited (0.52 ± 0.10), and was lower with the inclusion of retrograded starch in the diet (0.34 ± 0.02). More than 90% of the faecal alginate was insoluble in water, which may explain the low digestibility of the alginate. The digestibility of mannuronic acid (M) was 2-3 times higher than that of guluronic acid (G). The changes of G:M ratio and the relative amounts of alginate oligosaccharides between day 39 and 74 indicated that the microbiota needed more than 39 days to adapt to alginate. This study demonstrated that in-depth analyses of dietary fibres are valuable in understanding the fate of the dietary fibres in the large intestine as it was shown that degradation of a dietary fibre depends not only on the properties of the fibre itself, but also on the other dietary fibres present in the diet and the adaptation time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Clinical and laboratory studies of the antacid and raft-forming properties of Rennie alginate suspension.

    PubMed

    Tytgat, G N; Simoneau, G

    2006-03-15

    Acid pockets at the gastro-oesophageal junction escape buffering from meals in the stomach. Combining high-dose antacid with alginate may therefore be of benefit in gastro-oesophageal reflux disease. To characterize the antacid and raft-forming properties of Rennie alginate suspension (containing high-dose antacid and alginate; Bayer Consumer Care, Bladel, the Netherlands). The in vitro acid-neutralizing capacity of Rennie algniate was compared with Gaviscon (Reckitt Benckiser, Slough, UK) by pH-recorded HCl titration. Alginate raft weight formed in vitro at different pH was used to evaluate the pH dependency of raft formation with each product. A double-blind, placebo-controlled, randomized crossover study also compared the antacid activity of Rennie alginate vs. placebo in vivo using continuous intragastric pH monitoring in 12 healthy fasting volunteers. Compared with Gaviscon, Rennie alginate had a higher acid-neutralizing capacity, greater maximum pH and longer duration of antacid activity in vitro. However, the two products produced comparable alginate rafts at each pH evaluated. In vivo, Rennie alginate provided rapid, effective and long-lasting acid neutralization, with an onset of action of <5 min, and duration of action of almost 90 min. The dual mode of action of Rennie alginate offers an effective treatment option for mild symptomatic gastro-oesophageal reflux disease particularly considering recent findings regarding 'acid pockets'.

  15. High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue.

    PubMed

    Nasrullah, Asma; Bhat, A H; Naeem, Abdul; Isa, Mohamed Hasnain; Danish, Mohammed

    2018-02-01

    High surface area mesoporous activated carbon-alginate (AC-alginate) beads were successfully synthesized by entrapping activated carbon powder derived from Mangosteen fruit peel into calcium-alginate beads for methylene blue (MB) removal from aqueous solution. The structure and surface characteristics of AC-alginate beads were analyzed using Fourier transform infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and surface area analysis (S BET ), while thermal properties were tested using thermogravimetric analysis (TGA). The effect of AC-alginate dose, pH of solution, contact time, initial concentration of MB solution and temperature on MB removal was elucidated. The results showed that the maximum adsorption capacity of 230mg/g was achieved for 100mg/L of MB solution at pH 9.5 and temperature 25°C. Furthermore, the adsorption of MB on AC-alginate beads followed well pseudo-second order equation and equilibrium adsorption data were better fitted by the Freundlich isotherm model. The findings reveal the feasibility of AC-alginate beads composite to be used as a potential and low cost adsorbent for removal of cationic dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The relationship between digital model accuracy and time-dependent deformation of alginate impressions.

    PubMed

    Alcan, Toros; Ceylanoğlu, Cenk; Baysal, Bekir

    2009-01-01

    To investigate the effects of different storage periods of alginate impressions on digital model accuracy. A total of 105 impressions were taken from a master model with three different brands of alginates and were poured into stone models in five different storage periods. In all, 21 stone models were poured and immediately were scanned, and 21 digital models were prepared. The remaining 84 impressions were poured after 1, 2, 3, and 4 days, respectively. Five linear measurements were made by three researchers on the master model, the stone models, and the digital models. Time-dependent deformation of alginate impressions at different storage periods and the accuracy of traditional stone models and digital models were evaluated separately. Both the stone models and the digital models were highly correlated with the master model. Significant deformities in the alginate impressions were noted at different storage periods of 1 to 4 days. Alginate impressions of different brands also showed significant differences between each other on the first, third, and fourth days. Digital orthodontic models are as reliable as traditional stone models and probably will become the standard for orthodontic clinical use. Storing alginate impressions in sealed plastic bags for up to 4 days caused statistically significant deformation of alginate impressions, but the magnitude of these deformations did not appear to be clinically relevant and had no adverse effect on digital modeling.

  17. Encapsulation of Lactobacillus kefiri in alginate microbeads using a double novel aerosol technique.

    PubMed

    Demitri, Christian; Lamanna, Leonardo; De Benedetto, Egidio; Damiano, Fabrizio; Cappello, Maria Stella; Siculella, Luisa; Sannino, Alessandro

    2017-08-01

    Alginate micro beads containing Lactobacillus kefiri (the principal bacteria present in the kefir probiotic drink) were produced by a novel technique based on dual aerosols spaying of alginate based solution and CaCl 2 as cross linking agent. Carboxymethylcellulose (CMC) has been also added to the alginate in order to change the physic-chemical properties (viscosity and permeability) of the microbeads. Calcium alginate and CMC are biopolymers that can be used for developing oral drug-delivery systems. These biopolymers have been reported to show a pH-dependent swelling behaviour. Calcium alginate and CMC have also been known to possess an excellent mucoadhesive property. The loaded microbeads have been characterized in terms of morphology, chemical composition and stability in different conditions mimicking the gastric environment. In this study, we demonstrate the feasibility of a continuous fabrication of alginate microbeads in a range of 50-70μm size, encapsulating L. kefiri as active ingredient. The technique involves the use of a double aerosols of alginate based solution and CaCl 2 as crosslinking agent. Moreover, the encapsulation process was proved to be effective and not detrimental to bacteria viability. At the same time, it was verified the protective efficacy of the microcapsules against the gastric environment using both SGF pH1.2 (fasted state) and pH2.2 (feed state). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Antimicrobial cerium ion-chitosan crosslinked alginate biopolymer films: A novel and potential wound dressing.

    PubMed

    Kaygusuz, Hakan; Torlak, Emrah; Akın-Evingür, Gülşen; Özen, İlhan; von Klitzing, Regine; Erim, F Bedia

    2017-12-01

    Wound dressings require good antiseptic properties, mechanical strength and, more trustably, natural material ingredients. Antimicrobial properties of cerium ions and chitosan are known and alginate based wound dressings are commercially available. In this study, the advantages of these materials were combined and alginate films were crosslinked with cerium(III) solution and chitosan added cerium(III) solution. Films were characterized by Fourier transform infrared spectroscopy (FTIR), light transmittance, scanning electron microscopy (SEM), swelling experiments, water vapor transmittance tests, and mechanical stretching tests. The antibacterial and physical properties of the films were compared with those of conventional calcium alginate films. Both cerium ion crosslinked and cerium ion-chitosan crosslinked alginate films gained antibacterial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Cerium alginate-chitosan films showed high resistance to being deformed elastically. Results show that cerium alginate-chitosan films can be flexible, ultraviolet-protecting, and antibacterial wound dressings. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Alginate Microcapsules Incorporating Hyaluronic Acid Recreate Closer in Vivo Environment for Mesenchymal Stem Cells.

    PubMed

    Cañibano-Hernández, Alberto; Saenz Del Burgo, Laura; Espona-Noguera, Albert; Orive, Gorka; Hernández, Rosa M; Ciriza, Jesús; Pedraz, Jose Luis

    2017-07-03

    The potential clinical application of alginate cell microencapsulation has advanced enormously during the past decade. However, the 3D environment created by alginate beads does not mimic the natural extracellular matrix surrounding cells in vivo, responsible of cell survival and functionality. As one of the most frequent macromolecules present in the extracellular matrix is hyaluronic acid, we have formed hybrid beads with alginate and hyaluronic acid recreating a closer in vivo cell environment. Our results show that 1% alginate-0.25% hyaluronic acid microcapsules retain 1.5% alginate physicochemical properties. Moreover, mesenchymal stem cells encapsulated in these hybrid beads show enhanced viability therapeutic protein release and mesenchymal stem cells' potential to differentiate into chondrogenic lineage. Although future studies with additional proteins need to be done in order to approach even more the extracellular matrix features, we have shown that hyaluronic acid protects alginate encapsulated mesenchymal stem cells by providing a niche-like environment and remaining them competent as a sustainable drug delivery system.

  20. Applications of alginate in bioseparation of proteins.

    PubMed

    Jain, Sulakshana; Mondal, Kalyani; Gupta, Munishwar N

    2006-01-01

    Alginate is a polysaccharide that is a block polymer consisting of block units of guluronic acid and mannuronic acid. It shows inherent biological affinity for a variety of enzymes such as pectinase, lipase, phospholipase D, a and ss amylases and glucoamylase. Taking advantage of its precipitation with Ca2+ and the above-mentioned property, alginate has been used for purification of these enzymes by affinity precipitation, aqueous two phase separation, macroaffinity ligand facilitated three phase partitioning, immobilized metal affinity chromatography and expanded bed affinity chromatography. Thus, this versatile marine resource has tremendous potential in bioseparation of proteins.

  1. The effect of chemically modified alginates on macrophage phenotype and biomolecule transport.

    PubMed

    Bygd, Hannah C; Bratlie, Kaitlin M

    2016-07-01

    Macrophage (MΦ) reprogramming has received significant attention in applications such as cancer therapeutics and tissue engineering where the host immune response to biomaterials is crucial in determining the success or failure of an implanted device. Polymeric systems can potentially be used to redirect infiltrating M1 MΦs toward a proangiogenic phenotype. This work exploits the concept of MΦ reprogramming in the engineering of materials for improving the longevity of tissue engineering scaffolds. We have investigated the effect of 13 different chemical modifications of alginate on MΦ phenotype. Markers of the M1 response-tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase-and the M2 response-arginase-were measured and used to determine the ability of the materials to alter MΦ phenotype. It was found that some modifications were able to reduce the pro-inflammatory response of M1 MΦs, others appeared to amplify the M2 phenotype, and the results for two materials suggested they were able to reprogram a MΦ population from M1 to M2. These findings were supplemented by studies done to examine the permselectivity of the materials. Diffusion of TNF-α was completely prevented through some of these materials, while up to 84% was found to diffuse through others. The diffusion of insulin through the materials was statistically consistent. These results suggest that the modification of these materials might alter mass transport in beneficial ways. The ability to control polarization of MΦ phenotypes with immunoprotective materials has the potential to augment the success of tissue engineering scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1707-1719, 2016. © 2016 Wiley Periodicals, Inc.

  2. Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film.

    PubMed

    Huq, Tanzina; Salmieri, Stephane; Khan, Avik; Khan, Ruhul A; Le Tien, Canh; Riedl, Bernard; Fraschini, Carole; Bouchard, Jean; Uribe-Calderon, Jorge; Kamal, Musa R; Lacroix, Monique

    2012-11-06

    Nanocrystalline cellulose (NCC) reinforced alginate-based nanocomposite film was prepared by solution casting. The NCC content in the matrix was varied from 1 to 8% ((w/w) % dry matrix). It was found that the nanocomposite reinforced with 5 wt% NCC content exhibits the highest tensile strength which was increased by 37% compared to the control. Incorporation of NCC also significantly improved water vapor permeability (WVP) of the nanocomposite showing a 31% decrease due to 5 wt% NCC loading. Molecular interactions between alginate and NCC were supported by Fourier Transform Infrared Spectroscopy. The X-ray diffraction studies also confirmed the appearance of crystalline peaks due to the presence of NCC inside the films. Thermal stability of alginate-based nanocomposite films was improved after incorporation of NCC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Assessment of alginate hydrogel degradation in biological tissue using viscosity-sensitive fluorescent dyes

    NASA Astrophysics Data System (ADS)

    Shkand, Tatiana V.; Chizh, Mykola O.; Sleta, Iryna V.; Sandomirsky, Borys P.; Tatarets, Anatoliy L.; Patsenker, Leonid D.

    2016-12-01

    The main goal of this study is to investigate a combination of viscosity-sensitive and viscosity-insensitive fluorescent dyes to distinguish different rheological states of hydrogel based biostructural materials and carriers in biological tissues and to assess their corresponding location areas. The research is done in the example of alginate hydrogel stained with viscosity-sensitive dyes Seta-470 and Seta-560 as well as the viscosity-insensitive dye Seta-650. These dyes absorb/emit at 469/518, 565/591 and 651/670 nm, respectively. The rheological state of the alginate, the area of the fluorescence signal and the mass of the dense alginate versus the calcium gluconate concentration utilized for alginate gelation were studied in vitro. The most pronounced change in the fluorescence signal area was found at the same concentrations of calcium gluconate (below ~1%) as the change in the alginate plaque mass. The stained alginate was also implanted in situ in rat hip and myocardium and monitored using fluorescence imaging. In summary, our data indicate that the viscosity sensitive dye in combination with the viscosity-insensitive dye allow tracking the biodegradation of the alginate hydrogel and determining the rheological state of hydrogel in biological tissue, which both should have relevance for research and clinical applications. Using this method we estimated the half-life of the dense alginate hydrogel in a rat hip to be in the order of 4 d and about 6-8 d in rat myocardium. The half-life of the dense hydrogel in the myocardium was found to be long enough to prevent aneurysm rupture of the left ventricle wall, one of the more severe complications of the early post-infarction period.

  4. Injectable scaffolds: Preparation and application in dental and craniofacial regeneration

    PubMed Central

    Chang, Bei; Ahuja, Neelam; Ma, Chi; Liu, Xiaohua

    2016-01-01

    Injectable scaffolds are appealing for tissue regeneration because they offer many advantages over pre-formed scaffolds. This article provides a comprehensive review of the injectable scaffolds currently being investigated for dental and craniofacial tissue regeneration. First, we provide an overview of injectable scaffolding materials, including natural, synthetic, and composite biomaterials. Next, we discuss a variety of characteristic parameters and gelation mechanisms of the injectable scaffolds. The advanced injectable scaffolding systems developed in recent years are then illustrated. Furthermore, we summarize the applications of the injectable scaffolds for the regeneration of dental and craniofacial tissues that include pulp, dentin, periodontal ligament, temporomandibular joint, and alveolar bone. Finally, our perspectives on the injectable scaffolds for dental and craniofacial tissue regeneration are offered as signposts for the future advancement of this field. PMID:28649171

  5. Physical, mechanical, and barrier properties of sodium alginate/gelatin emulsion based-films incorporated with canola oil

    NASA Astrophysics Data System (ADS)

    Syarifuddin, A.; Hasmiyani; Dirpan, A.; Mahendradatta, M.

    2017-12-01

    The development of mixed emulsion-based films formed by sodium alginate/gelatin incorporated with canola oil can offer particular properties such as water vapor barrier properties. The different ratios of sodium alginate/gelatin and sodium alginate/gelatin emulsion-based films incorporated with canola oil were developed and their effects on films’ physical, mechanical and barrier properties were assessed. Here we set out to examine whether canola oil addition and different ratio of sodium alginate/gelatin modified physical, mechanical, and barrier properties of films. To do so, the films were prepared by vary the ratio of sodium alginate/gelatin (2.5, 1, 0.5). Canola oil addition induced changes in moisture content, thickness, solubility, water vapor transmission rate (WVTR), percent elongation at break (p<0.05). In addition, it is apparent that varying ratio of sodium alginate to gelatin induced change the mechanical properties of films. The reduction of sodium alginate to gelatin decreased the tensile strength of both films. Improved values of WVTR, tensile strength and solubility at break were observed when the ratio of sodium alginate/gelatin emulsion film incorporated with canola oil was 2.5. Therefore, different ratio of sodium alginate/gelatin incorporated with canola oil can be used to tailor emulsion films with enhanced water vapor barrier and mechanical properties.

  6. Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange.

    PubMed

    Bruchet, Marion; Melman, Artem

    2015-10-20

    Calcium cross-linked alginate hydrogels are widely used in targeted drug delivery, tissue engineering, wound treatment, and other biomedical applications. We developed a method for preparing homogeneous alginate hydrogels cross-linked with Ca(2+) cations using reductive cation exchange in homogeneous iron(III) cross-linked alginate hydrogels. Treatment of iron(III) cross-linked alginate hydrogels with calcium salts and sodium ascorbate results in reduction of iron(III) cations to iron(II) that are instantaneously replaced with Ca(2+) cations, producing homogeneous ionically cross-linking hydrogels. Alternatively, the cation exchange can be performed by photochemical reduction in the presence of calcium chloride using a sacrificial photoreductant. This approach allows fabrication of patterned calcium alginate hydrogels through photochemical patterning of iron(III) cross-linked alginate hydrogel followed by the photochemical reductive exchange of iron cations to calcium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Halloysite nanotubes as carriers of vancomycin in alginate-based wound dressing.

    PubMed

    Kurczewska, Joanna; Pecyna, Paulina; Ratajczak, Magdalena; Gajęcka, Marzena; Schroeder, Grzegorz

    2017-09-01

    The influence of an inorganic support - halloysite nanotubes - on the release rate and biological activity of the antibiotic encapsulated in alginate-based dressings was studied. The halloysite samples were loaded with approx. 10 wt.% of the antibiotic and then encapsulated in Alginate and Gelatin/Alginate gels. The material functionalized with aliphatic amine significantly extended the release of vancomycin from alginate-based gels as compared to that achieved when silica was used. After 24 h, the released amounts of the antibiotic immobilized at silica reached 70%, while for the drug immobilized at halloysite the released amount of vancomycin reached 44% for Alginate discs. The addition of gelatin resulted in even more prolonged sustained release of the drug. The antibiotic was released from the system with a double barrier with Higuchi kinetic model and Fickian diffusion mechanism. Only the immobilized drug encapsulated in Alginate gel demonstrated very good antimicrobial activity against various bacteria. The inhibition zones were greater than those of the standard discs for the staphylococci and enterococci bacteria tested. The addition of gelatin adversely affected the biological activity of the system. The inhibition zones were smaller than those of the reference samples. A reduction in the drug dose by half had no significant effect on changing the release rate and microbiological activity. The in vivo toxicity studies of the material with immobilized drug were carried out with Acutodesmus acuminatus and Daphnia magna . The material studied had no effect on the living organisms used in the bioassays. The proposed system with a double barrier demonstrated high storage stability.

  8. Alginate copper oxide nano-biocomposite as a novel material for amperometric glucose biosensing.

    PubMed

    Buk, Vuslat; Emregul, Emel; Emregul, Kaan Cebesoy

    2017-05-01

    A novel amperometric glucose biosensor based on alginate-CuO nano-biocomposite and glucose oxidase (GOD) film was developed and characterized. The properties of the alginate-CuO-GOD film were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric measurements were employed to characterize the analytical performance of the biosensor. Several parameters including amount of alginate, concentration of GOD and cross-linkers, amount of CuO nanoparticles, and effect of pH were studied and optimized. Under optimal conditions, the developed alginate-CuO-GOD biosensor was shown to have two linear ranges; from 0.04mM to 3mM (with a correlation coefficient of 0.9996 and the sensitivity of 30.443μAmM -1 cm -2 ) and from 4mM to 35mM (with a correlation coefficient of 0.9994 and the sensitivity of 7.205μAmM -1 cm -2 ). The overall detection limit was estimated to be 1.6μM (signal-to-noise ratio of 3) and the K m value of 2.82mM. The biosensor exhibited rather good performance with long-term stability (remainder of activity is 78% after 15days) and significant specificity for glucose when compared to possible interfering molecules such as ascorbic acid, uric acid and acetaminophen. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Characterisation of bare and tannase-loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses.

    PubMed

    Larosa, Claudio; Salerno, Marco; de Lima, Juliana Silva; Merijs Meri, Remo; da Silva, Milena Fernandes; de Carvalho, Luiz Bezerra; Converti, Attilio

    2018-08-01

    Incorporating enzymes into calcium alginate beads is an effective method to immobilise them and to preserve, at the same time, their catalytic activity. Sodium alginate was mixed with Aspergillus ficuum tannase in aqueous solution, and tannase-loaded calcium alginate beads were prepared using a simple droplet-based microfluidic system. Extensive experimental analysis was carried out to characterise the samples. Microscopic imaging revealed morphological differences between the surfaces of bare alginate matrix and tannase-loaded alginate beads. Thermal analysis allowed assessing the hydration contents of alginate and revealed the presence of tannase entrapped in the loaded beads, which was confirmed by vibrational spectroscopy. X-ray diffraction allowed us to conclude that alginate of tannase-loaded beads is not crystalline, which would make them suitable as carriers for possible controlled release. Moreover, they could be used in food applications to improve tea quality or clarify juices. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Digital microfluidic three-dimensional cell culture and chemical screening platform using alginate hydrogels

    PubMed Central

    2015-01-01

    Electro wetting-on-dielectric (EWOD) digital microfluidics (DMF) can be used to develop improved chemical screening platforms using 3-dimensional (3D) cell culture. Alginate hydrogels are one common method by which a 3D cell culture environment is created. This paper presents a study of alginate gelation on EWOD DMF and investigates designs to obtain uniform alginate hydrogels that can be repeatedly addressed by any desired liquids. A design which allows for gels to be retained in place during liquid delivery and removal without using any physical barriers or hydrophilic patterning of substrates is presented. A proof of concept screening platform is demonstrated by examining the effects of different concentrations of a test chemical on 3D cells in alginate hydrogels. In addition, the temporal effects of the various chemical concentrations on different hydrogel posts are demonstrated, thereby establishing the benefits of an EWOD DMF 3D cell culture and chemical screening platform using alginate hydrogels. PMID:25945142

  11. Fabrication of cell-benign inverse opal hydrogels for three-dimensional cell culture.

    PubMed

    Im, Pilseon; Ji, Dong Hwan; Kim, Min Kyung; Kim, Jaeyun

    2017-05-15

    Inverse opal hydrogels (IOHs) for cell culture were fabricated and optimized using calcium-crosslinked alginate microbeads as sacrificial template and gelatin as a matrix. In contrast to traditional three-dimensional (3D) scaffolds, the gelatin IOHs allowed the utilization of both the macropore surface and inner matrix for cell co-culture. In order to remove templates efficiently for the construction of 3D interconnected macropores and to maintain high cell viability during the template removal process using EDTA solution, various factors in fabrication, including alginate viscosity, alginate concentration, alginate microbeads size, crosslinking calcium concentration, and gelatin network density were investigated. Low viscosity alginate, lower crosslinking calcium ion concentration, and lower concentration of alginate and gelatin were found to obtain high viability of cells encapsulated in the gelatin matrix after removal of the alginate template by EDTA treatment by allowing rapid dissociation and diffusion of alginate polymers. Based on the optimized fabrication conditions, gelatin IOHs showed good potential as a cell co-culture system, applicable to tissue engineering and cancer research. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effects of alginate on frozen-thawed boar spermatozoa quality, lipid peroxidation and antioxidant enzymes activities.

    PubMed

    Hu, Jinghua; Geng, Guoxia; Li, Qingwang; Sun, Xiuzhu; Cao, Hualin; Liu, Yawei

    2014-06-30

    Although alginate was reported to play an important role as free radical scavengers in vitro and could be used as sources of natural antioxidants, there was no study about the cryoprotective effects of alginate on boar spermatozoa freezing. The objective of this research was to evaluate the effects of different concentrations of alginate added to the freezing extenders on boar spermatozoa motility, plasma membrane integrity, acrosomal integrity, mitochondrial activities, lipid peroxidation and antioxidative enzymes activities (SOD and GSH-Px) after thawing. Alginate was added to the TCG extender to yield six different final concentrations: 0, 0.2, 0.4, 0.6, 0.8, and 1.0mg/mL. The semen extender supplemented with various doses of alginate increased (P<0.05) total motility. The spermatozoa plasma membrane integrity and mitochondrial activity were improved at four different concentrations: 0.4, 0.6, 0.8, 1.0mg/mL. The addition of alginate also provided significantly positive effect on post-thaw boar spermatozoa acrosomal integrity at concentrations of 0.6, 0.8, 1.0mg/mL, compared with that of the control (P<0.05). The freezing extenders with the presence of alginate led to higher SOD and GSH-Px activities and lower MDA levels, in comparison to the control (P<0.05). In summary, alginate exhibited a dose-related response on frozen-thawed boar spermatozoa motility, functional integrity and antioxidative capacity at appropriate concentrations. Therefore alginate could be employed as an effective cryoprotectant in boar spermatozoa cryopreservation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Immobilization of ammonia-oxidizing bacteria by polyvinyl alcohol and sodium alginate.

    PubMed

    Dong, Yuwei; Zhang, Yanqiu; Tu, Baojun

    Ammonia-oxidizing bacteria were immobilized by polyvinyl alcohol (PVA) and sodium alginate. The immobilization conditions and ammonia oxidation ability of the immobilized bacteria were investigated. The following immobilization conditions were observed to be optimal: PVA, 12%; sodium alginate, 1.1%; calcium chloride, 1.0%; inoculum concentration, 1.3 immobilized balls/mL of immobilized medium; pH, 10; and temperature, 30°C. The immobilized ammonia-oxidizing bacteria exhibited strong ammonia oxidation ability even after being recycled four times. The ammonia nitrogen removal rate of the immobilized ammonia-oxidizing bacteria reached 90.30% under the optimal immobilization conditions. When compared with ammonia-oxidizing bacteria immobilized by sodium alginate alone, the bacteria immobilized by PVA and sodium alginate were superior with respect to pH resistance, the number of reuses, material cost, heat resistance, and ammonia oxidation ability. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  14. Development of a Spirulina Extract/Alginate-Imbedded PCL Nanofibrous Cosmetic Patch.

    PubMed

    Byeon, Seon Yeong; Cho, Myung Kwon; Shim, Kyou Hee; Kim, Hye Jin; Song, Hyeon Gi; Shin, Hwa Sung

    2017-09-28

    Cosmetic patches have recently been developed as skin products for personal care owing to rapid advances in the technology of delivery of active ingredients, moisture, and adhesiveness to skin. Alginate and Spirulina are typical marine resources used in cosmetic products. This research involved the development of a Spirulina extract-impregnated alginate nanofiber cosmetic patch supported by a polycaprolactone (PCL) nanofiber cover ( Spi /Alg-PCL NF patch). In addition to the ability of alginate to affect moisture and adhesiveness to skin, the impregnation of Spirulina extract strengthened those abilities as well as its own bioactive effectiveness. All fabrication processing steps were undertaken in aqueous solution. The three components (alginate, Spirulina extract, and PCL) had no detected cytotoxicity in human keratinocyte cell-based examination. In addition, wetting the pre-dried patch on the skin resulted in the Spirulina extract being released within 30 min. The results indicate the excellence of the Spi /Alg-PCL NF patch as a skin-care cosmetic device.

  15. Scaffold Library for Tissue Engineering: A Geometric Evaluation

    PubMed Central

    Chantarapanich, Nattapon; Puttawibul, Puttisak; Sucharitpwatskul, Sedthawatt; Jeamwatthanachai, Pongnarin; Inglam, Samroeng; Sitthiseripratip, Kriskrai

    2012-01-01

    Tissue engineering scaffold is a biological substitute that aims to restore, to maintain, or to improve tissue functions. Currently available manufacturing technology, that is, additive manufacturing is essentially applied to fabricate the scaffold according to the predefined computer aided design (CAD) model. To develop scaffold CAD libraries, the polyhedrons could be used in the scaffold libraries development. In this present study, one hundred and nineteen polyhedron models were evaluated according to the established criteria. The proposed criteria included considerations on geometry, manufacturing feasibility, and mechanical strength of these polyhedrons. CAD and finite element (FE) method were employed as tools in evaluation. The result of evaluation revealed that the close-cellular scaffold included truncated octahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. In addition, the suitable polyhedrons for using as open-cellular scaffold libraries included hexahedron, truncated octahedron, truncated hexahedron, cuboctahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. However, not all pore size to beam thickness ratios (PO : BT) were good for making the open-cellular scaffold. The PO : BT ratio of each library, generating the enclosed pore inside the scaffold, was excluded to avoid the impossibility of material removal after the fabrication. The close-cellular libraries presented the constant porosity which is irrespective to the different pore sizes. The relationship between PO : BT ratio and porosity of open-cellular scaffold libraries was displayed in the form of Logistic Power function. The possibility of merging two different types of libraries to produce the composite structure was geometrically evaluated in terms of the intersection index and was mechanically evaluated by means of FE analysis to observe the stress level. The couples of polyhedrons presenting low intersection index and high stress level were excluded

  16. Oxygen-dependent regulation of c-di-GMP synthesis by SadC controls alginate production in Pseudomonas aeruginosa.

    PubMed

    Schmidt, Annika; Hammerbacher, Anna Silke; Bastian, Mike; Nieken, Karen Jule; Klockgether, Jens; Merighi, Massimo; Lapouge, Karine; Poschgan, Claudia; Kölle, Julia; Acharya, K Ravi; Ulrich, Martina; Tümmler, Burkhard; Unden, Gottfried; Kaever, Volkhard; Lory, Stephen; Haas, Dieter; Schwarz, Sandra; Döring, Gerd

    2016-10-01

    Pseudomonas aeruginosa produces increased levels of alginate in response to oxygen-deprived conditions. The regulatory pathway(s) that links oxygen limitation to increased synthesis of alginate has remained elusive. In the present study, using immunofluorescence microscopy, we show that anaerobiosis-induced alginate production by planktonic PAO1 requires the diguanylate cyclase (DGC) SadC, previously identified as a regulator of surface-associated lifestyles. Furthermore, we found that the gene products of PA4330 and PA4331, located in a predicted operon with sadC, have a major impact on alginate production: deletion of PA4330 (odaA, for oxygen-dependent alginate synthesis activator) caused an alginate production defect under anaerobic conditions, whereas a PA4331 (odaI, for oxygen-dependent alginate synthesis inhibitor) deletion mutant produced alginate also in the presence of oxygen, which would normally inhibit alginate synthesis. Based on their sequence, OdaA and OdaI have predicted hydratase and dioxygenase reductase activities, respectively. Enzymatic assays using purified protein showed that unlike OdaA, which did not significantly affect DGC activity of SadC, OdaI inhibited c-di-GMP production by SadC. Our data indicate that SadC, OdaA and OdaI are components of a novel response pathway of P. aeruginosa that regulates alginate synthesis in an oxygen-dependent manner. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium longum for Oral Delivery

    PubMed Central

    Yeung, Timothy W.; Üçok, Elif F.; Tiani, Kendra A.; McClements, David J.; Sela, David A.

    2016-01-01

    Probiotic microorganisms are incorporated into a wide variety of foods, supplements, and pharmaceuticals to promote human health and wellness. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Encapsulation of bifidobacteria within food-grade hydrogel particles potentially mitigates their sensitivity to environmental stresses. In this study, Bifidobacterium longum subspecies and strains were encapsulated in core-shell microgels consisting of an alginate core and a microgel shell. Encapsulated obligate anaerobes Bifidobacterium longum subsp. infantis and Bifidobacterium longum subsp. longum exhibited differences in viability in a strain-dependent manner, without a discernable relationship to subspecies lineage. This includes viability under aerobic storage conditions and modeled gastrointestinal tract conditions. Coating alginate microgels with chitosan did not improve viability compared to cells encapsulated in alginate microgels alone, suggesting that modifying the surface charge alone does not enhance delivery. Thus hydrogel beads have great potential for improving the stability and efficacy of bifidobacterial probiotics in various nutritional interventions. PMID:27148184

  18. Safety and Efficacy of Alginate Adhesion Barrier Gel in Compromised Intestinal Anastomosis.

    PubMed

    Chaturvedi, Ankit A; Yauw, Simon T K; Lomme, Roger M L M; Hendriks, Thijs; van Goor, Harry

    For any anti-adhesive barrier developed for abdominal surgery, the use under conditions in which anastomotic healing is compromised needs to be investigated. The current study evaluates the effect of a new ultrapure alginate gel on early healing of high-risk anastomoses in the ileum and compares this with the gold standard used in clinical practice. In 75 adult male Wistar rats, a 5 mm ileal segment was resected and continuity was restored by construction of an inverted anastomosis. Rats were divided randomly into a control group and groups receiving either alginate gel or a sodium hyaluronate carboxymethylcellulose (HA/CMC) film around the anastomosis (n = 25 each). Carprofen, given in a daily dose of 1.25 mg/kg, was used to compromise anastomotic healing. At day three, animals were killed and scored for signs of anastomotic leakage and the presence of adhesions. The incidence of adhesion formation was 95% in the HA/CMC film group, which was significantly higher than in the controls (64%, p = 0.010) and the alginate gel group (52%, p = 0.004). The adhesion score was nearly 40% lower in the alginate gel group compared with the HA/CMC film group. The incidence of ileal leakage in the HA/CMC film group (92%) was significantly higher than in the controls (68%, p = 0.016). Leakage rate did not differ between the alginate gel and control groups. There was no significant difference between groups in either incision bursting pressure or incision breaking strength. Ultrapure alginate gel does not interfere with repair of ileal anastomoses constructed under conditions in which chances of anastomotic dehiscence are high. The alginate gel performs better than the HA/CMC film.

  19. A review: fabrication of porous polyurethane scaffolds.

    PubMed

    Janik, H; Marzec, M

    2015-03-01

    The aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical properties, ability to control the rate of degradation and similarities to natural tissue structures. Polyurethanes (PUs) are attractive candidates for scaffold fabrication, since they are biocompatible, and have excellent mechanical properties and mechanical flexibility. PU can be applied to various methods of porous scaffold fabrication, among which are solvent casting/particulate leaching, thermally induced phase separation, gas foaming, emulsion freeze-drying and melt moulding. Scaffold properties obtained by these techniques, including pore size, interconnectivity and total porosity, all depend on the thermal processing parameters, and the porogen agent and solvents used. In this review, various polyurethane systems for scaffolds are discussed, as well as methods of fabrication, including the latest developments, and their advantages and disadvantages. Copyright © 2014. Published by Elsevier B.V.

  20. Alginate/sodium caseinate aqueous-core capsules: a pH-responsive matrix.

    PubMed

    Ben Messaoud, Ghazi; Sánchez-González, Laura; Jacquot, Adrien; Probst, Laurent; Desobry, Stéphane

    2015-02-15

    Alginate capsules have several applications. Their functionality depends considerably on their permeability, chemical and mechanical stability. Consequently, the creation of composite system by addition of further components is expected to control mechanical and release properties of alginate capsules. Alginate and alginate-sodium caseinate composite liquid-core capsules were prepared by a simple extrusion. The influence of the preparation pH and sodium caseinate concentration on capsules physico-chemical properties was investigated. Results showed that sodium caseinate influenced significantly capsules properties. As regards to the membrane mechanical stability, composite capsules prepared at pH below the isoelectric point of sodium caseinate exhibited the highest surface Young's modulus, increasing with protein content, explained by potential electrostatic interactions between sodium caseinate amino-groups and alginate carboxylic group. The kinetic of cochineal red A release changed significantly for composite capsules and showed a pH-responsive release. Sodium caseinate-dye mixture studied by absorbance and fluorescence spectroscopy confirmed complex formation at pH 2 by electrostatic interactions between sodium caseinate tryptophan residues and cochineal red sulfonate-groups. Consequently, the release mechanism was explained by membrane adsorption process. This global approach is useful to control release mechanism from macro and micro-capsules by incorporating guest molecules which can interact with the entrapped molecule under specific conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Grafting of alginates on UF/NF ceramic membranes for wastewater treatment.

    PubMed

    Athanasekou, C P; Romanos, G E; Kordatos, K; Kasselouri-Rigopoulou, V; Kakizis, N K; Sapalidis, A A

    2010-10-15

    The mechanism of heavy metal ion removal in processes involving multi-layered tubular ultrafiltration and nanofiltration (UF/NF) membranes was investigated by conducting retention experiments in both flow-through and cross-flow modes. The prospect of the regeneration of the membranes through an acidic process was also examined and discussed. The UF/NF membranes were functionalised with alginates to develop hybrid inorganic/organic materials for continuous, single pass, wastewater treatment applications. The challenge laid in the induction of additional metal adsorption and improved regeneration capacity. This was accomplished by stabilizing alginates either into the pores or on the top-separating layer of the membrane. The preservation of efficient water fluxes at moderate trans-membrane pressures introduced an additional parameter that was pursued in parallel to the membrane modification process. The deposition and stabilization of alginates was carried out via physical (filtration/cross-linking) and chemical (grafting) procedures. The materials developed by means of the filtration process exhibited a 25-60% enhancement of their Cd(2+) binding capacity, depending on the amount of the filtered alginate solution. The grafting process led to the development of alginate layers with adequate stability under acidic regeneration conditions and metal retention enhancement of 25-180%, depending on the silane involved as grafting agent and the solvent of silanisation. 2010 Elsevier B.V. All rights reserved.

  2. Formulation of an alginate-vineyard pruning waste composite as a new eco-friendly adsorbent to remove micronutrients from agroindustrial effluents.

    PubMed

    Vecino, X; Devesa-Rey, R; Moldes, A B; Cruz, J M

    2014-09-01

    The cellulosic fraction of vineyard pruning waste (free of hemicellulosic sugars) was entrapped in calcium alginate beads and evaluated as an eco-friendly adsorbent for the removal of different nutrients and micronutrients (Mg, P, Zn, K, N-NH4, SO4, TN, TC and PO4) from an agroindustrial effluent (winery wastewater). Batch adsorption studies were performed by varying the amounts of cellulosic adsorbent (0.5-2%), sodium alginate (1-5%) and calcium chloride (0.05-0.9M) included in the biocomposite. The optimal formulation of the adsorbent composite varied depending on the target contaminant. Thus, for the adsorption of cationic contaminants (Mg, Zn, K, N-NH4 and TN), the best mixture comprised 5% sodium alginate, 0.05M calcium chloride and 0.5% cellulosic vineyard pruning waste, whereas for removal of anionic compounds (P, SO4 and PO4), the optimal mixture comprised 1% sodium alginate, 0.9M calcium chloride and 0.5% cellulosic vineyard pruning waste. To remove TC from the winery wastewater, the optimal mixture comprised 3% of sodium alginate, 0.475M calcium chloride and 0.5% cellulosic vineyard pruning waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Development of PVA-alginate as a matrix for enzymatic decolorization of textile dye in bioreactor system

    NASA Astrophysics Data System (ADS)

    Yanto, Dede Heri Yuli; Zahara, Syifa; Laksana, Raden Permana Budi; Anita, Sita Heris; Oktaviani, Maulida; Sari, Fahriya Puspita

    2017-01-01

    An immobilization technique using polyvinyl alcohol (PVA) crosslinked with sodium alginate as a matrix has been developed for textile dyes decolorization. Textiles use dye as an addition to the aesthetic value of the product. Dyes are generally used is a textile dye where the waste will be released directly into the waters around 2-20%. Therefore, it is important to develop an enzyme immobilization method using PVA-Alginate as a matrix. Based on the results of the study showed that the PVA-Alginate beads produced high decolorization percent compared to beads which contains only Ca-alginate alone and formula matrix is optimum at PVA 6% and alginate 1.5%. Encapsulation with boric acid at 7% showed optimum decolorization and reduction for enzyme leakage during decolorization. This study suggested that immobilization of enzymes into PVA-alginate matrix might be used as a biodecolorating agent.

  4. Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: A review.

    PubMed

    Saltz, Adam; Kandalam, Umadevi

    2016-05-01

    Craniofacial bone is a complex structure with an intricate anatomical and physiological architecture. The defects that exist in this region therefore require a precise control of osteogenesis in their reconstruction. Unlike traditional surgical intervention, tissue engineering techniques mediate bone development with limited postoperative risk and cost. Alginate stands as the premier polymer in bone repair because of its mild ionotropic gelation and excellent biocompatibility, biodegradability, and injectability. Alginate microcarriers are candidates of choice to mediate cells and accommodate into 3-D environment. Several studies reported the use of alginate microcarriers for delivering cells, drugs, and growth factors. This review will explore the potential use of alginate microcarrier for stem cell systems and its application in craniofacial bone tissue engineering. © 2016 Wiley Periodicals, Inc.

  5. Enzymatically cross-linked injectable alginate-g-pyrrole hydrogels for neovascularization.

    PubMed

    Devolder, Ross; Antoniadou, Eleni; Kong, Hyunjoon

    2013-11-28

    Microparticles capable of releasing protein drugs are often incorporated into injectable hydrogels to minimize their displacement at an implantation site, reduce initial drug burst, and further control drug release rates over a broader range. However, there is still a need to develop methods for releasing drug molecules over extended periods of time, in order to sustain the bioactivity of drug molecules at an implantation site. In this study, we hypothesized that a hydrogel formed through the cross-linking of pyrrole units linked to a hydrophilic polymer would release protein drugs in a more sustained manner, because of an enhanced association between cross-linked pyrrole groups and the drug molecules. To examine this hypothesis, we prepared hydrogels of alginate substituted with pyrrole groups, alginate-g-pyrrole, through a horse-radish peroxidase (HRP)-activated cross-linking of the pyrrole groups. The hydrogels were encapsulated with poly(lactic-co-glycolic acid) (PLGA) microparticles loaded with vascular endothelial growth factor (VEGF). The resulting hydrogel system released VEGF in a more sustained manner than Ca(2+) alginate or Ca(2+) alginate-g-pyrrole gel systems. Finally, implantations of the VEGF-releasing HRP-activated alginate-g-pyrrole hydrogel system on chicken chorioallantoic membranes resulted in the formation of blood vessels in higher densities and with larger diameters, compared to other control conditions. Overall, the drug releasing system developed in this study will be broadly useful for regulating release rates of a wide array of protein drugs, and further enhance the quality of protein drug-based therapies. © 2013 Elsevier B.V. All rights reserved.

  6. The effect of ionotropic gelation residence time on alginate cross-linking and properties.

    PubMed

    Patel, Mitulkumar A; AbouGhaly, Mohamed H H; Schryer-Praga, Jacqueline V; Chadwick, Keith

    2017-01-02

    The ability to engineer biocompatible polymers with controllable properties is highly desirable. One such approach is to cross-link carbohydrate polymers using ionotropic gelation (IG). Previous studies have investigated the effect of curing time on alginate cross-linking. Herein, we discuss a novel study detailing the effect of IG residence time (IGRT) on the cross-linking of alginate with calcium ions (Ca 2+ ) along with water migration (syneresis) and their subsequent impact on the pharmaceutical properties of alginate particles. IGRT was shown to have a significant effect on particle size, porosity, density, mechanical strength and swelling of calcium alginate particles as well as drug release mechanism. Furthermore, we describe a novel application of electron dispersive spectroscopy (EDS), in conjunction with Fourier Transform- infra red (FT-IR) spectroscopy, to analyze and monitor the changes in Ca 2+ concentration during cross-linking. A simple procedure to determine the concentration and distribution of the surface and internal Ca 2+ involved in alginate cross-linking was successfully developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Tough Al-alginate/poly(N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics.

    PubMed

    Zheng, Wen Jiang; An, Ning; Yang, Jian Hai; Zhou, Jinxiong; Chen, Yong Mei

    2015-01-28

    Tough Al-alginate/poly(N-isopropylacrylamide) (PNIPAM) hydrogel has been synthesized by introducing an interpenetrating network with hybrid physically cross-linked alginate and chemically cross-linked PNIPAM. Varying the concentration of AlCl3 regulates the mechanical properties of the tough hydrogel and tunes its lower critical solution temperature (LCST) as well. The tough Al-alginate/PNIPAM exhibits 6.3 ± 0.3 MPa of compressive stress and 9.95 of uniaxial stretch. Tunability of LCST is also achieved in a wide range within 22.5-32 °C. A bending beam actuator and a four-arm gripper made of bilayer (Na-alginate/PNIPAM)/(Al-alginate/PNIPAM) hydrogel as prototype of all-hydrogel soft robotics are demonstrated. A finite element (FE) simulation model is developed to simulate the deformation of the soft robotics. The FE simulation not only reproduces the deformation process of performed experiments but also predicts more complicated devices that can be explored in the future. This work broadens the application of temperature-responsive PNIPAM-based hydrogels.

  8. As(III) and As(V) removal from the aqueous phase via adsorption onto acid mine drainage sludge (AMDS) alginate beads and goethite alginate beads.

    PubMed

    Lee, Hongkyun; Kim, Dohyeong; Kim, Jongsik; Ji, Min-Kyu; Han, Young-Soo; Park, Young-Tae; Yun, Hyun-Shik; Choi, Jaeyoung

    2015-07-15

    Acid mine drainage sludge (AMDS) is a solid waste generated following the neutralization of acid mine drainage (AMD). This material entrapped in calcium alginate was investigated for the sorption of As(III) and As(V). Three different adsorbent materials were prepared: AMDS alginate beads (AABs), goethite alginate beads (GABs), and pure alginate beads. The effects of pH and the adsorption kinetics were investigated, and the adsorption isotherms were also evaluated. The optimum pH range using the AABs was determined to be within 2-10 for As(III) and 2-9 for As(V). Adsorption equilibrium data were evaluated using the Langmuir isotherm model, and the maximum adsorption capacity qmax was 18.25 and 4.97 mg g(-1) for As(III) on AAB and GAB, respectively, and 21.79 and 10.92 mg g(-1) for As(V) on AAB and GAB, respectively. The adsorption of As(III) and As(V) was observed to follow pseudo-second order kinetics. The As K-edge X-ray absorption near-edge structure (XANES) revealed that the adsorbed As(III) on the AABs was oxidized to As(V) via manganese oxide in the AMDS. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Immobilization of naringinase in PVA-alginate matrix using an innovative technique.

    PubMed

    Nunes, Mário A P; Vila-Real, Hélder; Fernandes, Pedro C B; Ribeiro, Maria H L

    2010-04-01

    A synthetic polymer, polyvinyl alcohol (PVA), a cheap and nontoxic synthetic polymer to organism, has been ascribed for biocatalyst immobilization. In this work PVA-alginate beads were developed with thermal, mechanical, and chemical stability to high temperatures (<80 degrees C). The combination of alginate and bead treatment with sodium sulfate not only prevented agglomeration but produced beads of high gel strength and conferred enzyme protection from inactivation by boric acid. Naringinase from Penicillium decumbens was immobilized in PVA (10%)-alginate beads with three different sizes (1-3 mm), at three different alginate concentrations (0.2-1.0%), and these features were investigated in terms of swelling ratio within the beads, enzyme activity, and immobilization yield during hydrolysis of naringin. The pH and temperature optimum were 4.0 and 70 degrees C for the PVA-alginate-immobilized naringinase. The highest naringinase activity yield in PVA (10%)-alginate (1%) beads of 2 mm was 80%, at pH 4.0 and 70 degrees C. The Michaelis constant (K(Mapp)) and the maximum reaction velocity (V(maxapp)) were evaluated for both free (K(Mapp) = 0.233 mM; V(maxapp) = 0.13 mM min(-1)) and immobilized naringinase (K(Mapp) = 0.349 mM; V(maxapp) = 0.08 mM min(-1)). The residual activity of the immobilized enzyme was followed in eight consecutive batch runs with a retention activity of 70%. After 6 weeks, upon storage in acetate buffer pH 4 at 4 degrees C, the immobilized biocatalyst retained 90% of the initial activity. These promising results are illustrative of the potential of this immobilization strategy for the system evaluated and suggest that its application may be effectively performed for the entrapment of other biocatalysts.

  10. Synthesis of Thiolated Alginate and Evaluation of Mucoadhesiveness, Cytotoxicity and Release Retardant Properties

    PubMed Central

    Jindal, A. B.; Wasnik, M. N.; Nair, Hema A.

    2010-01-01

    Modification of polymers by covalent attachment of thiol bearing pendant groups is reported to impart many beneficial properties to them. Hence in the present study, sodium alginate–cysteine conjugate was synthesized by carbodiimide mediated coupling under varying reaction conditions and the derivatives characterized for thiol content. The thiolated alginate species synthesized had bound thiol content ranging from 247.8±11.03–324.54±10.107 ΅mol/g of polymer depending on the reaction conditions. Matrix tablets based on sodium alginate-cysteine conjugate and native sodium alginate containing tramadol hydrochloride as a model drug were prepared and mucoadhesive strength and in vitro drug release from the tablets were compared. Tablets containing 75 mg sodium alginate-cysteine conjugate could sustain release of 10 mg of model drug for 3 h, whereas 90% of the drug was released within 1 h from corresponding tablets prepared using native sodium alginate. An approximately 2-fold increase in the minimal detachment force of the tablets from an artificial mucin film was observed for sodium alginate–cysteine conjugate as compared to native sodium alginate. In vitro cytotoxicity studies in L-929 mouse fibroblast cells studied using an MTT assay revealed that at low concentrations of polymer, sodium alginate–cysteine conjugate was less toxic to L-929 mouse fibroblast cell line when compared to native sodium alginate. Hence, thiolation is found to be a simple route to improving polymer performance. The combination of improved controlled drug release and mucoadhesive properties coupled with the low toxicity of these new excipients builds up immense scope for the use of thiolated polymers in mucoadhesive drug delivery systems. PMID:21969750

  11. Quantitative determination of alginic acid in pharmaceutical formulations using capillary electrophoresis.

    PubMed

    Moore, Douglas E; Miao, William G; Benikos, Con

    2004-01-27

    A capillary electrophoresis (CE) method has been developed and validated for the quantitative determination of alginic acid, which is used as a rafting agent in complex antacid formulations. The method involves a preliminary separation of the alginic acid from the formulation by washing the sample matrix with methanol, diluted HCl and water. This is followed by electrophoresis within a fused silica capillary using borate/boric acid buffer as the electrolyte, and the quantification is performed by a UV detector monitoring at 200 nm, where the intrinsic absorption of alginic acid is measured. An assay precision of better than 3% was achieved in intra- and interday determinations. No interference was found from the matrix of the antacid formulations.

  12. Molecular modeling and redesign of alginate lyase from Pseudomonas aeruginosa for accelerating CRPA biofilm degradation.

    PubMed

    Cho, Hoon; Huang, Xiaoqin; Lan Piao, Yu; Eun Kim, Da; Yeon Lee, So; Jeong Yoon, Eun; Hee Park, So; Lee, Kyoung; Ho Jang, Chul; Zhan, Chang-Guo

    2016-12-01

    Administration of an efficient alginate lyase (AlgL) or AlgL mutant may be a promising therapeutic strategy for treatment of cystic fibrosis patients with Pseudomonas aeruginosa infections. Nevertheless, the catalytic activity of wild-type AlgL is not sufficiently high. It is highly desired to design and discover an AlgL mutant with significantly improved catalytic efficiency against alginate substrates. For the purpose of identifying an AlgL mutant with significantly improved catalytic activity, in this study, we first constructed and validated a structural model of AlgL interacting with substrate, providing a better understanding of the interactions between AlgL and its substrate. Based on the modeling insights, further enzyme redesign and experimental testing led to discovery of AlgL mutants, including the K197D/K321A mutant, with significantly improved catalytic activities against alginate and acetylated alginate in ciprofloxacin-resistant P. aeruginosa (CRPA) biofilms. Further anti-biofilm activity assays have confirmed that the K197D/K321A mutant with piperacillin/tazobactam is indeed effective in degrading the CRPA biofilms. Co-administration of the potent mutant AlgL and an antibiotic (such as a nebulizer) could be effective for therapeutic treatment of CRPA-infected patients with cystic fibrosis. Proteins 2016; 84:1875-1887. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Gelation of Na-alginate aqueous solution: A study of sodium ion dynamics via NMR relaxometry.

    PubMed

    Zhao, Congxian; Zhang, Chao; Kang, Hongliang; Xia, Yanzhi; Sui, Kunyan; Liu, Ruigang

    2017-08-01

    Sodium alginate (SA) hydrogels have a wide range of applications including tissue engineering, drug delivery and formulations for preventing gastric reflux. The dynamics of sodium ions during the gelation process of SA solution is critical for clarification of the gelation procedure. In this work, nuclear magnetic resonance (NMR) relaxometry and pulsed-field-gradient (PFG) NMR diffusometry were used to investigate the dynamics of the sodium ions during the gelation of SA alginate. We find that sodium ions are in two different states with the addition of divalent calcium ions, corresponding to Ca 2+ crosslinked and un-crosslinked regions in the hydrogels. The sodium ions within the un-crosslinked regions are those released from the alginate chains without Ca 2+ crosslinking. The relative content of sodium ions within the Ca 2+ crosslinked regions decreased with the increase in the content of calcium ions in the system. The relaxation time T 2 of sodium ions within the Ca 2+ crosslinked and un-crosslinked regions shift to shorter and longer relaxation time with the increase in concentration of calcium ion, which indicates the closer package of SA chains and the larger space for the diffusion of free sodium ions. This work clarifies the dynamics of 23 Na + in a calcium alginate gel at the equilibrium state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Chitosan/alginate complexes for vaginal delivery of chlorhexidine digluconate.

    PubMed

    Abruzzo, A; Bigucci, F; Cerchiara, T; Saladini, B; Gallucci, M C; Cruciani, F; Vitali, B; Luppi, B

    2013-01-16

    Chitosan/alginate complexes were prepared at different polycation/polyanion molar ratios and freeze-dried vaginal inserts were obtained for chlorhexidine digluconate local delivery in genital infections. Complex yield, FT-IR spectra, and TGA thermograms were studied to confirm the interaction between the two polyions. The influence of different complexes on physical handling, morphology, and drug distribution in the samples were evaluated by friability test, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS), respectively. In vitro water-uptake, mucoadhesion and release tests were performed as well as microbiological tests toward pathogenic vaginal microorganisms. The results showed that the selection of suitable chitosan/alginate molar ratio and drug loading allowed modulate insert ability to hydrate, adhere to the mucosa, and release chlorhexidine digluconate. The insert containing an excess of alginate was found to be the best performing formulation and showed good antimicrobial activity toward the pathogens Candida albicans and Escherichia coli. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Methylene blue adsorption on graphene oxide/calcium alginate composites.

    PubMed

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Wang, Yonghao; Wu, Shaoling; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2013-06-05

    Graphene oxide has been used as an adsorbent in wastewater treatment. However, the dispersibility in aqueous solution and the biotoxicity to human cells of graphene oxide limits its practical application in environmental protection. In this research, a novel environmental friendly adsorbent, calcium alginate immobilized graphene oxide composites was prepared. The effects of pH, contact time, temperature and dosage on the adsorption properties of methylene blue onto calcium alginate immobilized graphene oxide composites were investigated. The equilibrium adsorption data were described by the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 181.81 mg/g. The pseudo-first order, pseudo-second order, and intraparticle diffusion equation were used to evaluate the kinetic data. Thermodynamic analysis of equilibriums indicated that the adsorption reaction of methylene blue onto calcium alginate immobilized graphene oxide composites was exothermic and spontaneous in nature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Alginate based nanocomposite for microencapsulation of probiotic: Effect of cellulose nanocrystal (CNC) and lecithin.

    PubMed

    Huq, Tanzina; Fraschini, Carole; Khan, Avik; Riedl, Bernard; Bouchard, Jean; Lacroix, Monique

    2017-07-15

    Probiotic (Lactobacillus rhamnosus ATCC 9595) was encapsulated in alginate-CNC-lecithin microbeads to produce nutraceutical microcapsules. Addition of CNC and lecithin in alginate microbeads (ACL-1) improved the viability of L. rhamnosus during gastric passage and storage. The compression strength of the freeze-dried ACL-1 microbeads improved 40% compared to alginate microbeads alone. Swelling studies revealed that addition of CNC and lecithin in alginate microbeads decreased (around 47%) the gastric fluid absorption but increased the dissolution time by 20min compared to alginate microbeads (A-0). During transition through the gastric passage, the viability of L. rhamnosus in dried ACL-1 microbeads was increased 37% as compared to A-0 based beads. At 25 and 4°C storage conditions, the viability of L. rhamnosus encapsulated in ACL-1 microbeads decreased by 1.23 and 1.08 log respectively, whereas the encapsulation with A-0 microbeads exhibited a 3.17 and 1.93 log reduction respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Innovative plasticized alginate obtained by thermo-mechanical mixing: Effect of different biobased polyols systems.

    PubMed

    Gao, Chengcheng; Pollet, Eric; Avérous, Luc

    2017-02-10

    Plasticized alginate films with different biobased polyols (glycerol and sorbitol) and their mixtures were successfully prepared by thermo-mechanical mixing instead of the usual casting-evaporation procedure. The microstructure and properties of the different plasticized alginate formulations were investigated by SEM, FTIR, XRD, DMTA and uniaxial tensile tests. SEM and XRD results showed that native alginate particles were largely destructured with the plasticizers (polyols and water), under a thermo-mechanical input. With increasing amount of plasticizers, the samples showed enhanced homogeneity while their thermal and mechanical properties decreased. Compared to sorbitol, glycerol resulted in alginate films with a higher flexibility due to its better plasticization efficiency resulting from its smaller size and higher hydrophilic character. Glycerol and sorbitol mixtures seemed to be an optimum to obtain the best properties. This work showed that thermo-mechanical mixing is a promising method to produce, at large scale, plasticized alginate-based films with improved properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Enzymatically Cross-linked Alginic-Hyaluronic acid Composite Hydrogels As Cell Delivery Vehicles

    PubMed Central

    Ganesh, Nitya; Hanna, Craig; Nair, Shantikumar V.; Nair, Lakshmi S.

    2013-01-01

    An injectable composite gel was developed from alginic and hyaluronic acid. The ezymatically cross-linked injectable gels were prepared via the oxidative coupling of tyramine modified sodium algiante and sodium hyaluronate in the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H2O2). The composite gels were prepared by mixing equal parts of the two tryaminated polymer solutions in 10U HRP and treating with 1.0% H2O2. The properties of the alginate gels were significanly affected by the addition of hyaluronic acid. The percentage water absorption and storage modulus of the composite gels were found to be lower than the alginate gels. The alginate and composite gels showed lower protein release compared to hyaluronate gels in the absence of hyaluronidase. Even hyaluronate gels showed only approximately 10% protein release after 14 days incubation in phosphate buffer solution. ATDC-5 cells encapsulated in the injectable gels showed high cell viability. The composite gels showed the presence of enlarged spherical cells with significantly higher metabolic activity compared to cells in hyaluronic and alginic acid gels. The results suggest the potential of the composite approach to develop covalently cross-linked hydrogels with tuneable physical, mechanical, and biological properties. PMID:23357799

  19. Antifibrotic effect of dexamethasone/alginate-coated silicone sheet in the abraded middle ear mucosa.

    PubMed

    Jang, Chul Ho; Ahn, Seung Hyun; Kim, Geun Hyung

    2016-12-01

    Silicone sheet is a material which is commonly used in middle ear surgery to prevent the formation of adhesions between the tympanic membrane and the medial bony wall of the middle ear cavity. However, silicone sheet can induce a tight and hard fibrous capsule in the region of the stapes, and this is particularly common in cases of eustachian tube dysfunction. As a result of the fibrous encapsulation around the silicone sheet, postoperative aeration of the stapes can be interrupted causing poor hearing gain. In this study, we performed an in vitro and in vivo evaluation of the antifibrotic effects of a dexamethasone and alginate (Dx/alginate) coating on silicone sheet. The Dx/alginate-coated silicone sheets were fabricated using a plasma-treatment and coating method. The Dx/alginate-coated silicone sheets effectively limited in vitro fibroblast attachment and proliferation due to the controlled release of Dx, which can be modified by manipulation of the alginate coating. For the in-vivo evaluation, guinea pigs (albino, male, weighing 250g) were divided into two groups, with the control group (n=5) implanted with silicone sheet and the test group (n=5) receiving Dx/alginate-coated silicone sheet. Animals were sacrificed 3 weeks after implantation, and histological analysis was performed using hematoxylin and eosin (H&E) and immunohistochemical staining techniques. Dx/alginate-coated silicone sheets showed marked inhibition of fibrosis in both the in vitro and in vivo studies. Silicone sheet that incorporates a Dx/alginate coating can release Dx and inhibit fibrosis in the middle ear. This material could be utilized in middle ear surgery as a means of preserving proper aeration and hearing gain following ossiculoplasty. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Synthesis, characterization and cytotoxicity of S-nitroso-mercaptosuccinic acid-containing alginate/chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Seabra, Amedea B.; Fabbri, Giulia K.; Pelegrino, Milena T.; Silva, Letícia C.; Rodrigues, Tiago

    2017-06-01

    Nitric oxide (NO) is an endogenous free radical, which plays key roles in several biological processes including vasodilation, neurotransmission, inhibition of platelet adhesion, cytotoxicity against pathogens, wound healing, and defense against cancer. Due to the relative instability of NO in vivo (half-life of ca. 0.5 seconds), there is an increasing interest in the development of low molecular weight NO donors, such as S-nitrosothiols (RSNOs), which are able to prolong and preserve the biological activities of NO in vivo. In order to enhance the sustained NO release in several biomedical applications, RSNOs have been successfully allied to nanomaterials. In this context, this work describes the synthesis and characterization of the NO donor S-nitroso-mercaptosuccinic acid (S-nitroso-MSA), which belongs to the class of RSNOs, and its incorporation in polymeric biodegradable nanoparticles composed by alginate/chitosan. First, chitosan nanoparticles were obtained by gelation process with sodium tripolyphosphate (TPP), followed by the addition of the alginate layer, to enhance the nanoparticle protection. The obtained nanoparticles presented a hydrodynamic diameter of 343 ± 38 nm, polydispersity index (PDI) of 0.36 ± 0.1, and zeta potential of - 30.3 ± 0.4 mV, indicating their thermal stability in aqueous suspension. The negative zeta potential value was assigned to the presence of alginate chains on the surface of chitosan/TPP nanoparticles. The encapsulation efficiency of the NO donor into the polymeric nanoparticles was found to be 98 ± 0.2%. The high encapsulation efficiency value was attributed to the positive interactions between the NO donor and the polymeric content of the nanoparticles. Kinetics of NO release from the nanoparticles revealed a spontaneous and sustained release of therapeutic amounts of NO, for several hours under physiological temperature. The incubation of NO-releasing alginate/chitosan nanoparticles with human hepatocellular carcinoma

  1. Encapsulation of Autoinducer Sensing Reporter Bacteria in Reinforced Alginate-Based Microbeads.

    PubMed

    Li, Ping; Müller, Mareike; Chang, Matthew Wook; Frettlöh, Martin; Schönherr, Holger

    2017-07-12

    Quorum sensing, in which bacteria communities use signaling molecules for inter- and intracellular communication, has been intensively studied in recent decades. In order to fabricate highly sensitive easy-to-handle point of care biosensors that detect quorum sensing molecules, we have developed, as is reported here, reporter bacteria loaded alginate-methacrylate (alginate-MA) hydrogel beads. The alginate-MA beads, which were obtained by electrostatic extrusion, were reinforced by photo-cross-linking to increase stability and thereby to reduce bacteria leaching. In these beads the genetically engineered fluorescent reporter bacterium Escherichia coli pTetR-LasR-pLuxR-GFP (E. coli pLuxR-GFP) was encapsulated, which responds to the autoinducer N-(3-oxododecanoyl)homoserine lactone secreted by Pseudomonas aeruginosa. After encapsulation in alginate-MA hydrogel beads with diameters in the range of 100-300 μm that were produced by an electrostatic extrusion method and rapid photo-cross-linking, the E. coli pLuxR-GFP were found to possess a high degree of viability and sensing activity. The encapsulated bacteria could proliferate inside the hydrogel beads, when exposed to bacteria culture medium. In media containing the autoinducer N-(3-oxododecanoyl)homoserine lactone, the encapsulated reporter bacteria responded with a strong fluorescence signal due to an increased green fluorescent protein (GFP) expression. A prototype dipstick type sensor developed here underlines the potential of encapsulation of viable and functional reporter bacteria inside reinforced alginate-methacrylate hydrogel beads for whole cell sensors for bacteria detection.

  2. The biofilm matrix polysaccharides cellulose and alginate both protect Pseudomonas putida mt-2 against reactive oxygen species generated under matric stress and copper exposure.

    PubMed

    Svenningsen, Nanna B; Martínez-García, Esteban; Nicolaisen, Mette H; de Lorenzo, Victor; Nybroe, Ole

    2018-06-01

    In natural environments most bacteria live in biofilms embedded in complex matrices of extracellular polymeric substances (EPS). This lifestyle is known to increase protection against environmental stress. Pseudomonas putida mt-2 harbours genes for the production of at least four different EPS polysaccharides, including alginate and cellulose. Little is known about the functional properties of cellulose, while alginate attenuates the accumulation of reactive oxygen species (ROS) caused by matric stress. By using mutants that are deficient in either alginate or cellulose production we show that even cellulose attenuates the accumulation of matric stress-induced ROS for cells in biofilms. Further, both cellulose and alginate attenuate ROS generated through exposure to copper. Interestingly, the two EPS polysaccharides protect cells in both liquid culture and in biofilms against ROS caused by matric stress, indicating that cellulose and alginate do not need to be produced as an integral part of the biofilm lifestyle to provide tolerance towards environmental stressors.

  3. Alginate nanoparticles protect ferrous from oxidation: Potential iron delivery system.

    PubMed

    Katuwavila, Nuwanthi P; Perera, A D L C; Dahanayake, Damayanthi; Karunaratne, V; Amaratunga, Gehan A J; Karunaratne, D Nedra

    2016-11-20

    A novel, efficient delivery system for iron (Fe 2+ ) was developed using the alginate biopolymer. Iron loaded alginate nanoparticles were synthesized by a controlled ionic gelation method and was characterized with respect to particle size, zeta potential, morphology and encapsulation efficiency. Successful loading was confirmed with Fourier Transform Infrared spectroscopy and Thermogravimetric Analysis. Electron energy loss spectroscopy study corroborated the loading of ferrous into the alginate nanoparticles. Iron encapsulation (70%) was optimized at 0.06% Fe (w/v) leading to the formation of iron loaded alginate nanoparticles with a size range of 15-30nm and with a negative zeta potential (-38mV). The in vitro release studies showed a prolonged release profile for 96h. Release of iron was around 65-70% at pH of 6 and 7.4 whereas it was less than 20% at pH 2.The initial burst release upto 8h followed zero order kinetics at all three pH values. All the release profiles beyond 8h best fitted the Korsmeyer-Peppas model of diffusion. Non Fickian diffusion was observed at pH 6 and 7.4 while at pH 2 Fickian diffusion was observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Adenoviral transduction supports matrix expression of alginate cultured articular chondrocytes.

    PubMed

    Pohle, D; Kasch, R; Herlyn, P; Bader, R; Mittlmeier, T; Pützer, B M; Müller-Hilke, B

    2012-09-01

    The present study examines the effects of adenoviral (Ad) transduction of human primary chondrocyte on transgene expression and matrix production. Primary chondrocytes were isolated from healthy articular cartilage and from cartilage with mild osteoarthritis (OA), transduced with an Ad vector and either immediately cultured in alginate or expanded in monolayer before alginate culture. Proteoglycan production was measured using dimethylmethylene blue (DMMB) assay and matrix gene expression was quantified by real-time PCR. Viral infection of primary chondrocytes results in a stable long time transgene expression for up to 13 weeks. Ad transduction does not significantly alter gene expression and matrix production if chondrocytes are immediately embedded in alginate. However, if expanded prior to three dimension (3D) culture in alginate, chondrocytes produce not only more proteoglycans compared to non-transduced controls, but also display an increased anabolic and decreased catabolic activity compared to non-transduced controls. We therefore suggest that successful autologous chondrocyte transplantation (ACT) should combine adenoviral transduction of primary chondrocytes with expansion in monolayer followed by 3D culture. Future studies will be needed to investigate whether the subsequent matrix production can be further improved by using Ad vectors bearing genes encoding matrix proteins. Copyright © 2012 Wiley Periodicals, Inc.

  5. Copper and nitrophenol pollutants removal by Na-montmorillonite/alginate microcapsules.

    PubMed

    Ely, Abdellahi; Baudu, Michel; Basly, Jean-Philippe; Kankou, Mohamed Ould Sid'Ahmed Ould

    2009-11-15

    The use of renewable bioresources allows the development of low cost adsorbents that are versatile. In the present paper, the affinity and the removal capacity of montmorillonite/alginate microcapsules for a hydrophobic organic pollutant (4-nitrophenol) and an inorganic pollutant (copper) were evaluated. The physicochemical processes through sorption and kinetic experiments under different ratios of montmorillonite vs. alginate and initial contaminant concentrations were investigated. The total weight loss and diameter decrease during the drying process were 90-96% and 64%, respectively. A significant decrease in beads diameter, related to water elimination, has been observed during the first 24h. Structural modifications that occur during the drying process were evaluated using thermal analysis. From correlation coefficients, the second-order equation depicts properly the adsorption of copper by the microbeads adsorption capacity increases to saturation with time; 3 and 6h were needed to reach equilibrium on wet and dry mixed microcapsules. The pseudo-second order model properly depicts the adsorption process of 4-NP onto Na-mont and (Na-mont/SA) mixed microcapsules but failed to reproduce the data observed for the alginate beads. Isotherms data were fitted with good correlation using the Langmuir model; alginate and montmorillonite adsorption capacities (q(m)/wet beads) agree with those obtained by various studies.

  6. Scaffold Translation: Barriers Between Concept and Clinic

    PubMed Central

    Murphy, William L.

    2011-01-01

    Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. PMID:21902613

  7. Scaffold translation: barriers between concept and clinic.

    PubMed

    Hollister, Scott J; Murphy, William L

    2011-12-01

    Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. © Mary Ann Liebert, Inc.

  8. ILP-based maximum likelihood genome scaffolding

    PubMed Central

    2014-01-01

    Background Interest in de novo genome assembly has been renewed in the past decade due to rapid advances in high-throughput sequencing (HTS) technologies which generate relatively short reads resulting in highly fragmented assemblies consisting of contigs. Additional long-range linkage information is typically used to orient, order, and link contigs into larger structures referred to as scaffolds. Due to library preparation artifacts and erroneous mapping of reads originating from repeats, scaffolding remains a challenging problem. In this paper, we provide a scalable scaffolding algorithm (SILP2) employing a maximum likelihood model capturing read mapping uncertainty and/or non-uniformity of contig coverage which is solved using integer linear programming. A Non-Serial Dynamic Programming (NSDP) paradigm is applied to render our algorithm useful in the processing of larger mammalian genomes. To compare scaffolding tools, we employ novel quantitative metrics in addition to the extant metrics in the field. We have also expanded the set of experiments to include scaffolding of low-complexity metagenomic samples. Results SILP2 achieves better scalability throughg a more efficient NSDP algorithm than previous release of SILP. The results show that SILP2 compares favorably to previous methods OPERA and MIP in both scalability and accuracy for scaffolding single genomes of up to human size, and significantly outperforms them on scaffolding low-complexity metagenomic samples. Conclusions Equipped with NSDP, SILP2 is able to scaffold large mammalian genomes, resulting in the longest and most accurate scaffolds. The ILP formulation for the maximum likelihood model is shown to be flexible enough to handle metagenomic samples. PMID:25253180

  9. Strategies to overcome pH-dependent solubility of weakly basic drugs by using different types of alginates.

    PubMed

    Gutsche, S; Krause, M; Kranz, H

    2008-12-01

    Weakly basic drugs demonstrate higher solubility at lower pH, thus often leading to faster drug release at lower pH. The objective of this study was to achieve pH-independent release of weakly basic drugs from extended release formulations based on the naturally occurring polymer sodium alginate. Three approaches to overcome the pH-dependent solubility of the weakly basic model drug verapamil hydrochloride were investigated. First, matrix tablets were prepared by direct compression of drug substance with different types of sodium alginate only. Second, pH-modifiers were added to the drug/alginate matrix systems. Third, press-coated tablets consisting of an inner pH-modifier tablet core and an outer drug/sodium alginate coat were prepared. pH-Independent drug release was achieved from matrix tablets consisting of selected alginates and drug substance only. Alginates are better soluble at higher pH. Therefore, they are able to compensate the poor solubility of weakly basic drugs at higher pH as the matrix of the tablets dissolves faster. This approach was successful when using alginates that demonstrated fast hydration and erosion at higher pH. The approach failed for alginates with less-pronounced erosion at higher pH. The addition of fumaric acid to drug/alginate-based matrix systems decreased the microenvironmental pH within the tablets thus increasing the solubility of the weakly basic drug at higher pH. Therefore, pH-independent drug release was achieved irrespective of the type of alginate used. Drug release from press-coated tablets did not provide any further advantages as compound release remained pH-dependent.

  10. Improvement of stability of oil-in-water emulsions containing caseinate-coated droplets by addition of sodium alginate.

    PubMed

    Pallandre, S; Decker, E A; McClements, D J

    2007-11-01

    The potential of sodium alginate for improving the stability of emulsions containing caseinate-coated droplets was investigated. One wt% corn oil-in-water emulsions containing anionic caseinate-coated droplets (0.15 wt% sodium caseinate) and anionic sodium alginate (0 to 1 wt%) were prepared at pH 7. The pH of these emulsions was then adjusted to 3.5, so that the anionic alginate molecules adsorbed to the cationic caseinate-coated droplets. Extensive droplet aggregation occurred when there was insufficient alginate to completely saturate the droplet surfaces due to bridging flocculation, and when the nonadsorbed alginate concentration was high enough to induce depletion flocculation. Emulsions with relatively small particle sizes could be formed over a range of alginate concentrations (0.1 to 0.4 wt%). The influence of pHs (3 to 7) and sodium chloride (0 to 500 mM) on the properties of primary (0 wt% alginate) and secondary (0.15 wt% alginate) emulsions was studied. Alginate adsorbed to the droplet surfaces at pHs 3, 4, and 5, but not at pHs 6 and 7, due to electrostatic attraction between anionic groups on the alginate and cationic groups on the adsorbed caseinate. Secondary emulsions had better stability than primary emulsions at pH values near caseinate's isoelectric point (pHs 4 and 5). In addition, secondary emulsions were stable up to higher ionic strengths (< 300 mM) than primary emulsions (<50 mM). The controlled electrostatic deposition method utilized in this study could be used to extend the range of application of dairy protein emulsifiers in the food industry.

  11. Montmorillonite-Alginate Composites as a Drug delivery System: Intercalation and In vitro Release of Diclofenac sodium

    PubMed Central

    Kevadiya, B. D.; Patel, H. A.; Joshi, G. V.; Abdi, S. H. R.; Bajaj, H. C.

    2010-01-01

    Diclofenac sodium and alginate was intercalated into montmorillonite to form uniform sized beads by gelation method. The structure and surface morphology of the synthesized composite beads were characterized by powdered X-ray diffraction, Fourier transform infrared spectroscopy, thermo gravimetric analysis and scanning electron microscopy. Diclofenac release kinetics of the composite in simulated intestinal fluid medium (pH 7.4) and effect of montmorillonite content on the in vitro release of diclofenac from diclofenac-montmorillonite-alginate composites bead was investigated by UV/Vis spectrophotometer. Diclofenac encapsulation efficiency in the montmorillonite-alginate composites bead increases with an increase in the montmorillonite content. The control release of diclofenac from diclofenac-montmorillonite-alginate composites beads was observed to be better as compared to diclofenac-alginate beads. PMID:21969745

  12. A radiopaque electrospun scaffold for engineering fibrous musculoskeletal tissues: Scaffold characterization and in vivo applications.

    PubMed

    Martin, John T; Milby, Andrew H; Ikuta, Kensuke; Poudel, Subash; Pfeifer, Christian G; Elliott, Dawn M; Smith, Harvey E; Mauck, Robert L

    2015-10-01

    Tissue engineering strategies have emerged in response to the growing prevalence of chronic musculoskeletal conditions, with many of these regenerative methods currently being evaluated in translational animal models. Engineered replacements for fibrous tissues such as the meniscus, annulus fibrosus, tendons, and ligaments are subjected to challenging physiologic loads, and are difficult to track in vivo using standard techniques. The diagnosis and treatment of musculoskeletal conditions depends heavily on radiographic assessment, and a number of currently available implants utilize radiopaque markers to facilitate in vivo imaging. In this study, we developed a nanofibrous scaffold in which individual fibers included radiopaque nanoparticles. Inclusion of radiopaque particles increased the tensile modulus of the scaffold and imparted radiation attenuation within the range of cortical bone. When scaffolds were seeded with bovine mesenchymal stem cells in vitro, there was no change in cell proliferation and no evidence of promiscuous conversion to an osteogenic phenotype. Scaffolds were implanted ex vivo in a model of a meniscal tear in a bovine joint and in vivo in a model of total disc replacement in the rat coccygeal spine (tail), and were visualized via fluoroscopy and microcomputed tomography. In the disc replacement model, histological analysis at 4 weeks showed that the scaffold was biocompatible and supported the deposition of fibrous tissue in vivo. Nanofibrous scaffolds that include radiopaque nanoparticles provide a biocompatible template with sufficient radiopacity for in vivo visualization in both small and large animal models. This radiopacity may facilitate image-guided implantation and non-invasive long-term evaluation of scaffold location and performance. The healing capacity of fibrous musculoskeletal tissues is limited, and injury or degeneration of these tissues compromises the standard of living of millions in the US. Tissue engineering repair

  13. Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation.

    PubMed

    Shang, Wanfeng; Liu, Yanting; Wan, Wenfeng; Hu, Chengzhi; Liu, Zeyang; Wong, Chin To; Fukuda, Toshio; Shen, Yajing

    2017-06-07

    Calcium alginate hydrogels are widely used as biocompatible materials in a substantial number of biomedical applications. This paper reports on a hybrid 3D printing and electrodeposition approach for forming 3D calcium alginate hydrogels in a controllable manner. Firstly, a specific 3D hydrogel printing system is developed by integrating a customized ejection syringe with a conventional 3D printer. Then, a mixed solution of sodium alginate and CaCO 3 nanoparticles is filled into the syringe and can be continuously ejected out of the syringe nozzle onto a conductive substrate. When applying a DC voltage (∼5 V) between the substrate (anode) and the nozzle (cathode), the Ca 2+ released from the CaCO 3 particles can crosslink the alginate to form calcium alginate hydrogel on the substrate. To elucidate the gel formation mechanism and better control the gel growth, we can further establish and verify a gel growth model by considering several key parameters, i.e., applied voltage and deposition time. The experimental results indicate that the alginate hydrogel of various 3D structures can be formed by controlling the movement of the 3D printer. A cell viability test is conducted and shows that the encapsulated cells in the gel can maintain a high survival rate (∼99% right after gel formation). This research establishes a reliable method for the controllable formation of 3D calcium alginate hydrogel, exhibiting great potential for use in basic biology and applied biomedical engineering.

  14. Sterilization techniques for biodegradable scaffolds in tissue engineering applications

    PubMed Central

    Dai, Zheng; Ronholm, Jennifer; Tian, Yiping; Sethi, Benu; Cao, Xudong

    2016-01-01

    Biodegradable scaffolds have been extensively studied due to their wide applications in biomaterials and tissue engineering. However, infections associated with in vivo use of these scaffolds by different microbiological contaminants remain to be a significant challenge. This review focuses on different sterilization techniques including heat, chemical, irradiation, and other novel sterilization techniques for various biodegradable scaffolds. Comparisons of these techniques, including their sterilization mechanisms, post-sterilization effects, and sterilization efficiencies, are discussed. PMID:27247758

  15. Kefiran-alginate gel microspheres for oral delivery of ciprofloxacin.

    PubMed

    Blandón, Lina M; Islan, German A; Castro, Guillermo R; Noseda, Miguel D; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2016-09-01

    Ciprofloxacin is a broad-spectrum antibiotic associated with gastric and intestinal side effects after extended oral administration. Alginate is a biopolymer commonly employed in gel synthesis by ionotropic gelation, but unstable in the presence of biological metal-chelating compounds and/or under dried conditions. Kefiran is a microbial biopolymer able to form gels with the advantage of displaying antimicrobial activity. In the present study, kefiran-alginate gel microspheres were developed to encapsulate ciprofloxacin for antimicrobial controlled release and enhanced bactericidal effect against common pathogens. Scanning electron microscopy (SEM) analysis of the hybrid gel microspheres showed a spherical structure with a smoother surface compared to alginate gel matrices. In vitro release of ciprofloxacin from kefiran-alginate microspheres was less than 3.0% and 5.0% at pH 1.2 (stomach), and 5.0% and 25.0% at pH 7.4 (intestine) in 3 and 21h, respectively. Fourier transform infrared spectroscopy (FTIR) of ciprofloxacin-kefiran showed the displacement of typical bands of ciprofloxacin and kefiran, suggesting a cooperative interaction by hydrogen bridges between both molecules. Additionally, the thermal analysis of ciprofloxacin-kefiran showed a protective effect of the biopolymer against ciprofloxacin degradation at high temperatures. Finally, antimicrobial assays of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhymurium, and Staphylococcus aureus demonstrated the synergic effect between ciprofloxacin and kefiran against the tested microorganisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. ASTM International Workshop on Standards & Measurements for Tissue Engineering Scaffolds

    PubMed Central

    Simon, Carl G.; Yaszemski, Michael J.; Ratcliffe, Anthony; Tomlins, Paul; Luginbuehl, Reto; Tesk, John A.

    2016-01-01

    The “Workshop on Standards & Measurements for Tissue Engineering Scaffolds” was held on May 21, 2013 in Indianapolis, IN and was sponsored by the ASTM International (ASTM). The purpose of the workshop was to identify the highest priority items for future standards work for scaffolds used in the development and manufacture of tissue engineered medical products (TEMPs). Eighteen speakers and 78 attendees met to assess current scaffold standards and to prioritize needs for future standards. A key finding was that the ASTM TEMPs subcommittees (F04.41-46) have many active “guide” documents for educational purposes, but that few standard “test methods” or “practices” have been published. Overwhelmingly, the most clearly identified need was standards for measuring the structure of scaffolds, followed by standards for biological characterization, including in vitro testing, animal models and cell-material interactions. The third most pressing need was to develop standards for assessing the mechanical properties of scaffolds. Additional needs included standards for assessing scaffold degradation, clinical outcomes with scaffolds, effects of sterilization on scaffolds, scaffold composition and drug release from scaffolds. Discussions also highlighted the need for additional scaffold reference materials and the need to use them for measurement traceability. Finally, dialogue emphasized the needs to promote the use of standards in scaffold fabrication, characterization, and commercialization and to assess the use and impact of standards in the TEMPs community. Many scaffold standard needs have been identified and focus should now turn to generating these standards to support the use of scaffolds in TEMPs. PMID:25220952

  17. Electrospray-assisted encapsulation of caffeine in alginate microhydrogels.

    PubMed

    Nikoo, Alireza Mehregan; Kadkhodaee, Rassoul; Ghorani, Behrouz; Razzaq, Hussam; Tucker, Nick

    2018-05-02

    One of the major challenges with microencapsulation and delivery of low molecular weight bioactive compounds is their diffusional loss during storage and process conditions as well as under gastric conditions. In an attempt to slow down the release rate of core material, electrospray fabricated calcium alginate microhydrogels were coated with low molecular weight and high molecular weight chitosans. Caffeine as a hydrophilic model compound was used due to its several advantages on human behavior especially increasing consciousness. Mathematical modeling of the caffeine release by fitting the data with Korsmeyer-Peppas model showed that Fick's diffusion law could be the prevalent mechanism of the release. Electrostatic interaction between alginate and chitosan (particularly in the presence of 1% low molecular weight chitosan) provided an effective barrier against caffeine release and significantly reduced swelling of particles compared to control samples. The results of this study demonstrated that calcium alginate microhydrogels coated by chitosan could be used for encapsulation of low molecular compounds. However, more complementary research must be done in this field. In addition, electrospray, by producing monodisperse particles, would be as an alternative method for fabrication of microparticles based on natural polymers. Copyright © 2018. Published by Elsevier B.V.

  18. Novel Biodegradable Porous Scaffold Applied to Skin Regeneration

    PubMed Central

    Wang, Hui-Min; Chou, Yi-Ting; Wen, Zhi-Hong; Wang, Zhao-Ren; Chen, Chun-Hong; Ho, Mei-Ling

    2013-01-01

    Skin wound healing is an important lifesaving issue for massive lesions. A novel porous scaffold with collagen, hyaluronic acid and gelatin was developed for skin wound repair. The swelling ratio of this developed scaffold was assayed by water absorption capacity and showed a value of over 20 g water/g dried scaffold. The scaffold was then degraded in time- and dose-dependent manners by three enzymes: lysozyme, hyaluronidase and collagenase I. The average pore diameter of the scaffold was 132.5±8.4 µm measured from SEM images. With human skin cells growing for 7 days, the SEM images showed surface fractures on the scaffold due to enzymatic digestion, indicating the biodegradable properties of this scaffold. To simulate skin distribution, the human epidermal keratinocytes, melanocytes and dermal fibroblasts were seeded on the porous scaffold and the cross-section immunofluorescent staining demonstrated normal human skin layer distributions. The collagen amount was also quantified after skin cells seeding and presented an amount 50% higher than those seeded on culture wells. The in vivo histological results showed that the scaffold ameliorated wound healing, including decreasing neutrophil infiltrates and thickening newly generated skin compared to the group without treatments. PMID:23762223

  19. Genipin-Crosslinked Chitosan Gels and Scaffolds for Tissue Engineering and Regeneration of Cartilage and Bone

    PubMed Central

    Muzzarelli, Riccardo A. A.; El Mehtedi, Mohamad; Bottegoni, Carlo; Aquili, Alberto; Gigante, Antonio

    2015-01-01

    The present review article intends to direct attention to the technological advances made since 2009 in the area of genipin-crosslinked chitosan (GEN-chitosan) hydrogels. After a concise introduction on the well recognized characteristics of medical grade chitosan and food grade genipin, the properties of GEN-chitosan obtained with a safe, spontaneous and irreversible chemical reaction, and the quality assessment of the gels are reviewed. The antibacterial activity of GEN-chitosan has been well assessed in the treatment of gastric infections supported by Helicobacter pylori. Therapies based on chitosan alginate crosslinked with genipin include stem cell transplantation, and development of contraction free biomaterials suitable for cartilage engineering. Collagen, gelatin and other proteins have been associated to said hydrogels in view of the regeneration of the cartilage. Viability and proliferation of fibroblasts were impressively enhanced upon addition of poly-l-lysine. The modulation of the osteocytes has been achieved in various ways by applying advanced technologies such as 3D-plotting and electrospinning of biomimetic scaffolds, with optional addition of nano hydroxyapatite to the formulations. A wealth of biotechnological advances and know-how has permitted reaching outstanding results in crucial areas such as cranio-facial surgery, orthopedics and dentistry. It is mandatory to use scaffolds fully characterized in terms of porosity, pore size, swelling, wettability, compressive strength, and degree of acetylation, if the osteogenic differentiation of human mesenchymal stem cells is sought: in fact, the novel characteristics imparted by GEN-chitosan must be simultaneously of physico-chemical and cytological nature. Owing to their high standard, the scientific publications dated 2010–2015 have met the expectations of an interdisciplinary audience. PMID:26690453

  20. Genipin-Crosslinked Chitosan Gels and Scaffolds for Tissue Engineering and Regeneration of Cartilage and Bone.

    PubMed

    Muzzarelli, Riccardo A A; El Mehtedi, Mohamad; Bottegoni, Carlo; Aquili, Alberto; Gigante, Antonio

    2015-12-11

    The present review article intends to direct attention to the technological advances made since 2009 in the area of genipin-crosslinked chitosan (GEN-chitosan) hydrogels. After a concise introduction on the well recognized characteristics of medical grade chitosan and food grade genipin, the properties of GEN-chitosan obtained with a safe, spontaneous and irreversible chemical reaction, and the quality assessment of the gels are reviewed. The antibacterial activity of GEN-chitosan has been well assessed in the treatment of gastric infections supported by Helicobacter pylori. Therapies based on chitosan alginate crosslinked with genipin include stem cell transplantation, and development of contraction free biomaterials suitable for cartilage engineering. Collagen, gelatin and other proteins have been associated to said hydrogels in view of the regeneration of the cartilage. Viability and proliferation of fibroblasts were impressively enhanced upon addition of poly-l-lysine. The modulation of the osteocytes has been achieved in various ways by applying advanced technologies such as 3D-plotting and electrospinning of biomimetic scaffolds, with optional addition of nano hydroxyapatite to the formulations. A wealth of biotechnological advances and know-how has permitted reaching outstanding results in crucial areas such as cranio-facial surgery, orthopedics and dentistry. It is mandatory to use scaffolds fully characterized in terms of porosity, pore size, swelling, wettability, compressive strength, and degree of acetylation, if the osteogenic differentiation of human mesenchymal stem cells is sought: in fact, the novel characteristics imparted by GEN-chitosan must be simultaneously of physico-chemical and cytological nature. Owing to their high standard, the scientific publications dated 2010-2015 have met the expectations of an interdisciplinary audience.

  1. A comparative study on the raft chemical properties of various alginate antacid raft-forming products.

    PubMed

    Dettmar, Peter W; Gil-Gonzalez, Diana; Fisher, Jeanine; Flint, Lucy; Rainforth, Daniel; Moreno-Herrera, Antonio; Potts, Mark

    2018-01-01

    Research to measure the chemical characterization of alginate rafts for good raft performance and ascertain how formulation can affect chemical parameters. A selection of alginate formulations was investigated all claiming to be proficient raft formers with significance between products established and ranked. Procedures were selected which demonstrated the chemical characterization allowing rafts to effectively impede the reflux into the esophagus or in severe cases to be refluxed preferentially into the esophagus and exert a demulcent effect, with focus of current research on methods which complement previous studies centered on physical properties. The alginate content was analyzed by a newly developed HPLC method. Methods were used to determine the neutralization profile and the acid neutralization within the raft determined along with how raft structure affects neutralization. Alginate content of Gaviscon Double Action (GDA) within the raft was significantly superior (p < .0001) to all competitor products. The two products with the highest raft acid neutralization capacity were GDA and Rennie Duo, the latter product not being a raft former. Raft structure was key and GDA had the right level of porosity to allow for longer duration of neutralization. Alginate formulations require three chemical reactions to take place simultaneously: transformation to alginic acid, sodium carbonate reacting to form carbon dioxide, calcium releasing free calcium ions to bind with alginic acid providing strength to raft formation. GDA was significantly superior (p <.0001) to all other comparators.

  2. Core-shell alginate-ghatti gum modified montmorillonite composite matrices for stomach-specific flurbiprofen delivery.

    PubMed

    Bera, Hriday; Ippagunta, Sohitha Reddy; Kumar, Sanoj; Vangala, Pavani

    2017-07-01

    Novel alginate-arabic gum (AG) gel membrane coated alginate-ghatti gum (GG) modified montmorillonite (MMT) composite matrices were developed for intragastric flurbiprofen (FLU) delivery by combining floating and mucoadhesion mechanisms. The clay-biopolymer composite matrices containing FLU as core were accomplished by ionic-gelation technique. Effects of polymer-blend (alginate:GG) ratios and crosslinker (CaCl 2 ) concentrations on drug entrapment efficiency (DEE, %) and cumulative drug release after 8h (Q 8h , %) were studied to optimize the core matrices by a 3 2 factorial design. The optimized matrices (F-O) demonstrated DEE of 91.69±1.43% and Q 8h of 74.96±1.56% with minimum errors in prediction. The alginate-AG gel membrane enveloped optimized matrices (F-O, coated) exhibited superior buoyancy, better ex vivo mucoadhesion and slower drug release rate. The drug release profile of FLU-loaded uncoated and coated optimized matrices was best fitted in Korsmeyer-Peppas model with anomalous diffusion and case-II transport driven mechanism, respectively. The uncoated and coated matrices containing FLU were also characterized for drug-excipients compatibility, drug crystallinity, thermal behaviour and surface morphology. Thus, the newly developed alginate-AG gel membrane coated alginate-GG modified MMT composite matrices are appropriate for intragastric delivery of FLU over an extended period of time with improved therapeutic benefits. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Release of tissue inhibitor of metalloproteinase-2 from alginate microcapsule encapsulating genetically engineered cells

    PubMed Central

    Kim, Yeon Seong; Jeong, Young-II; Jin, Shu-Guang; Pei, Jian; Wen, Min; Kim, In-Young; Moon, Kyung-Sub; Jung, Tae-Young; Ryu, Hyang-Hwa; Jung, Shin

    2013-01-01

    Background In this study, 293T cells were genetically engineered to secrete tissue inhibitor of metalloproteinase-2 (TIMP2) and encapsulated into alginate microcapsules to continuously release TIMP2 protein. Methods The anti-invasive potential of the microcapsules was studied in vitro using brain tumor cells. The TIMP2 gene was transfected to 293T cells, and genetically engineered 293TIMP2 cells were encapsulated into alginate microcapsules. Release of TIMP2 protein was detected with Western blot analysis and the anti-invasive potential against U87MG cells was tested using gelatin zymography and a Matrigel assay. Results Cell viability within the alginate microcapsules was maintained at a cell density of 5 × 106. Because polycationic polymers are helpful for maintaining the mechanical strength of microcapsules with good cell viability, the alginate microcapsules were reinforced with chitosan (0.1% w/v). Expression of TIMP2 protein in cell lysates and secretion of TIMP2 into the conditioned medium was confirmed by Western blot analysis. Alginate microcapsules encapsulating 293TIMP2 cells released TIMP2 protein into the medium efficiently, where the TIMP2 protein participated in degradation of the matrix metalloproteinase-2 enzyme and inhibited invasion of U87MG cells. Conclusion Alginate microcapsules encapsulating 293TIMP2 cells are promising candidates for anti-invasive treatment of glioma. PMID:24231999

  4. Synergistic effect of divalent cations in improving technological properties of cross-linked alginate beads.

    PubMed

    Cerciello, Andrea; Del Gaudio, Pasquale; Granata, Veronica; Sala, Marina; Aquino, Rita P; Russo, Paola

    2017-08-01

    Gelling solution parameters are some of the most important variables in ionotropic gelation and consequently influence the technological characteristics of the product. To date, only a few studies have focused on the simultaneous use of multiple cations as gelling agents. With the aim to deeply explore this possibility, in this research we investigated the effect of two divalent cations (Ca 2+ and Zn 2+ ) on alginate beads formation and properties. Alginate beads containing prednisolone (P) as model drug were prepared by prilling technique. The main critical variables of the ionotropic gelation process i.e. composition of the aqueous feed solutions (sodium alginate and prednisolone concentration) and cross-linking conditions (Ca 2+ , Zn 2+ or Ca 2+ +Zn 2+ ), were studied. The obtained beads were characterized and their in vitro release performances were assessed in conditions simulating the gastrointestinal environment. Results evidenced a synergistic effect of the two cations, affecting positively both the encapsulation efficiency and the ability of the alginate polymeric matrix to control the drug release. A Ca 2+ /Zn 2+ ratio of 4:1, in fact, exploited the Ca 2+ ability of establish quicker electrostatic interactions with guluronic groups of alginate and the Zn 2+ ability to establish covalent-like bonds with carboxylate groups of both guluronic and mannuronic moieties of alginate. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fabrication of monodispersive nanoscale alginate-chitosan core-shell particulate systems for controlled release studies

    NASA Astrophysics Data System (ADS)

    Körpe, Didem Aksoy; Malekghasemi, Soheil; Aydın, Uğur; Duman, Memed

    2014-12-01

    Biopolymers such as chitosan and alginate are widely used for controlled drug delivery systems. The present work aimed to develop a new protocol for preparation of monodisperse alginate-coated chitosan nanoparticles at nanoscale. Modifications of preparation protocol contain changing the pH of polymer solutions and adding extra centrifugation steps into the procedure. While chitosan nanoparticles were synthesized by ionic gelation method, they were coated with alginate by electrostatic interaction. The size, morphology, charge, and structural characterization of prepared core-shell nanoparticulated system were performed by AFM, Zeta sizer, and FTIR. BSA and DOX were loaded as test biomolecules to core and shell part of the nanoparticle, respectively. Release profiles of BSA and DOX were determined by spectrophotometry. The sizes of both chitosan and alginate-coated chitosan nanoparticles which were prepared by modified protocol were measured to be 50 ± 10 and 60 ± 3 nm, respectively. After loading BSA and DOX, the average size of the particles increased to 80 ± 7 nm. Moreover, while the zeta potential of chitosan nanoparticles was positive value, the value was inverted to negative after alginate coating. Release profile measurements of BSA and DOX were determined during 57 and 2 days, respectively. Our results demonstrated that monodisperse alginate-coated nanoparticles were synthesized and loaded successfully using our modified protocol.

  6. Chondrocyte response to cyclic hydrostatic pressure in alginate versus pellet culture.

    PubMed

    Elder, Steven H; Sanders, Shawn W; McCulley, William R; Marr, Misti L; Shim, Joon W; Hasty, Karen A

    2006-04-01

    Cells are often cultured at high density (e.g., confluent monolayer and as pellets) to promote chondrogenic differentiation and to maintain the chondrocyte phenotype. They are also frequently suspended in hydrogels such as agarose or alginate for the same purposes. These culture techniques differ markedly with respect to frequency of direct contact between cells and overall intercellular spacing. Because these factors may significantly affect mechanotransduction, the purpose of this study was to determine if the response of articular chondrocytes to cyclic hydrostatic pressure would depend on the culture condition. Primary articular chondrocytes from young and mature pigs were cultured either as pellets or suspended in alginate beads. Both groups were exposed to dynamic hydrostatic pressure (4 MPa, 1 Hz, 5400 cycles per day) for 7 days. Cell proliferation was unaffected by pressure, but pressurized chondrocytes in pellet culture had significantly greater sGAG content and incorporated [3H]proline at a higher rate than nonpressurized controls. Electron microscopy revealed a fibrous extracellular matrix (ECM) surrounding pellets, but not cells in alginate. In addition, expression of Connexin 43 (Cx43) mRNA was slightly lower in alginate than in pellet cultures and was not significantly altered by loading. Thus, metabolic response of chondrocytes to dynamic hydrostatic pressure was affected by culture technique; chondrocytes cultured as pellets exhibited the classical anabolic response to dynamic hydrostatic pressure, but those in alginate did not. Although cell-ECM interaction could be important, the differential response is not likely attributable to differential expression of Cx43 mRNA. Copyright 2006 Orthopaedic Research Society

  7. Work of adhesion between mucin macromolecule and calcium-alginate gels on molecular level.

    PubMed

    Popeski-Dimovski, Riste

    2015-06-05

    The bioadhesion of biopolymers to mucus layers is of great interest for the development of drug delivery systems. Herein we use AFM force measurements to evaluate the interaction on molecular level between a mucin macromolecule attached to an AFM tip and a calcium-alginate gel layer. The total work of adhesion is measured from the AFM force curves depending on different parameters: time of contact, G/M ratio of the alginate, and crosslink ratio of the gel. The total work of adhesion is found to be in the range of 1×10(-19) to 6×10(-18)J. The results show that the work of adhesion increases with the time of contact but it is independent from the molecular mass of the alginate, the G/M ratio of the alginate and crosslink ratio of the gel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Determination of diffusion coefficients and diffusion characteristics for chlorferon and diethylthiophosphate in Ca-alginate gel beads.

    PubMed

    Ha, Jiyeon; Engler, Cady R; Lee, Seung Jae

    2008-07-01

    Diffusion characteristics of chlorferon and diethylthiophosphate (DETP) in Ca-alginate gel beads were studied to assist in designing and operating bioreactor systems. Diffusion coefficients for chlorferon and DETP in Ca-alginate gel beads determined at conditions suitable for biodegradation studies were 2.70 x 10(-11) m(2)/s and 4.28 x 10(-11) m(2)/s, respectively. Diffusivities of chlorferon and DETP were influenced by several factors, including viscosity of the bulk solution, agitation speed, and the concentrations of diffusing substrate and immobilized cells. Diffusion coefficients increased with increasing agitation speed, probably due to poor mixing at low speed and some attrition of beads at high speeds. Diffusion coefficients also increased with decreasing substrate concentration. Increased cell concentration in the gel beads caused lower diffusivity. Theoretical models to predict diffusivities as a function of cell weight fraction overestimated the effective diffusivities for both chlorferon and DETP, but linear relations between effective diffusivity and cell weight fraction were derived from experimental data. Calcium-alginate gel beads with radii of 1.65-1.70 mm used in this study were not subject to diffusional limitations: external mass transfer resistances were negligible based on Biot number calculations and effectiveness factors indicated that internal mass transfer resistance was negligible. Therefore, the degradation rates of chlorferon and DETP inside Ca-alginate gel beads were reaction-limited. (c) 2007 Wiley Periodicals, Inc.

  9. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system.

    PubMed

    Song, Seung-Joon; Choi, Jaesoon; Park, Yong-Doo; Hong, Soyoung; Lee, Jung Joo; Ahn, Chi Bum; Choi, Hyuk; Sun, Kyung

    2011-11-01

    Bioprinting is a technology for constructing bioartificial tissue or organs of complex three-dimensional (3-D) structure with high-precision spatial shape forming ability in larger scale than conventional tissue engineering methods and simultaneous multiple components composition ability. It utilizes computer-controlled 3-D printer mechanism or solid free-form fabrication technologies. In this study, sodium alginate hydrogel that can be utilized for large-dimension tissue fabrication with its fast gelation property was studied regarding material-specific printing technique and printing parameters using a multinozzle bioprinting system developed by the authors. A sodium alginate solution was prepared with a concentration of 1% (wt/vol), and 1% CaCl(2) solution was used as cross-linker for the gelation. The two materials were loaded in each of two nozzles in the multinozzle bioprinting system that has a total of four nozzles of which the injection speed can be independently controlled. A 3-D alginate structure was fabricated through layer-by-layer printing. Each layer was formed through two phases of printing, the first phase with the sodium alginate solution and the second phase with the calcium chloride solution, in identical printing pattern and speed condition. The target patterns were lattice shaped with 2-mm spacing and two different line widths. The nozzle moving speed was 6.67 mm/s, and the injection head speed was 10 µm/s. For the two different line widths, two injection needles with inner diameters of 260 and 410 µm were used. The number of layers accumulated was five in this experiment. By varying the nozzle moving speed and the injection speed, various pattern widths could be achieved. The feasibility of sodium alginate hydrogel free-form formation by alternate printing of alginate solution and sodium chloride solution was confirmed in the developed multinozzle bioprinting system. © 2011, Copyright the Authors. Artificial Organs © 2011, International

  10. Inverse Opal Scaffolds and Their Biomedical Applications.

    PubMed

    Zhang, Yu Shrike; Zhu, Chunlei; Xia, Younan

    2017-09-01

    Three-dimensional porous scaffolds play a pivotal role in tissue engineering and regenerative medicine by functioning as biomimetic substrates to manipulate cellular behaviors. While many techniques have been developed to fabricate porous scaffolds, most of them rely on stochastic processes that typically result in scaffolds with pores uncontrolled in terms of size, structure, and interconnectivity, greatly limiting their use in tissue regeneration. Inverse opal scaffolds, in contrast, possess uniform pores inheriting from the template comprised of a closely packed lattice of monodispersed microspheres. The key parameters of such scaffolds, including architecture, pore structure, porosity, and interconnectivity, can all be made uniform across the same sample and among different samples. In conjunction with a tight control over pore sizes, inverse opal scaffolds have found widespread use in biomedical applications. In this review, we provide a detailed discussion on this new class of advanced materials. After a brief introduction to their history and fabrication, we highlight the unique advantages of inverse opal scaffolds over their non-uniform counterparts. We then showcase their broad applications in tissue engineering and regenerative medicine, followed by a summary and perspective on future directions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Free-standing polyelectrolyte membranes made of chitosan and alginate

    PubMed Central

    Caridade, Sofia G.; Monge, Claire; Gilde, Flora; Boudou, Thomas; Mano, João F.; Picart, Catherine

    2014-01-01

    Free-standing films have increasing applications in the biomedical field as drug delivery systems, for wound healing and tissue engineering. Here, we prepared free-standing membranes by the layer-by-layer assembly of chitosan and alginate, two widely used biomaterials. Our aim was to produce thick membrane, to study the permeation of model drugs and the adhesion of muscle cells. We first defined the optimal growth conditions in terms of pH and alginate concentration. The membranes could be easily detached from polystyrene or polypropylene substrate without any post-processing step. They dry thickness was varied over a large range from 4 to 35 μm. A two-fold swelling was observed by confocal microscopy when they were immersed in PBS. In addition, we quantified the permeation of model drugs (fluorescent dextrans) through the free standing membrane, which depended on the dextran molecular weight. Finally, we showed that myoblast cells exhibited a preferential adhesion on the alginate-ending membrane as compared to the chitosan-ending membrane or to the substrate side. PMID:23590116

  12. Preparation of highly stable zeolite-alginate foam composite for strontium(90Sr) removal from seawater and evaluation of Sr adsorption performance.

    PubMed

    Hong, Hye-Jin; Kim, Byoung-Gyu; Ryu, Jungho; Park, In-Su; Chung, Kang-Sup; Lee, Sang Moon; Lee, Jin-Bae; Jeong, Hyeon Su; Kim, Hyunchul; Ryu, Taegong

    2018-01-01

    Alginate bead is a promising strontium (Sr) adsorbent in seawater, but highly concentrated Na ions caused over-swelling and damaged the hydrogel bead. To improve the mechanical stability of alginate bead, flexible foam-type zeolite-alginate composite was synthesized and Sr adsorption performance was evaluated in seawater; 1-10% zeolite immobilized alginate foams were prepared by freeze-dry technique. Immobilization of zeolite into alginate foam converted macro-pores to meso-pores which lead to more compact structure. It resulted in less swollen composite in seawater medium and exhibited highly improved mechanical stability compared with alginate bead. Besides, Sr adsorption efficiency and selectivity were enhanced by immobilization of zeolite in alginate foam due to the increase of Sr binding sites (zeolite). In particular, Sr selectivity against Na was highly improved. The 10% zeolite-alginate foam exhibited a higher log K d of 3.3, while the pure alginate foam exhibited 2.7 in the presence of 0.1 M Na. Finally, in the real seawater, the 10% zeolite-alginate foam exhibited 1.5 times higher Sr adsorption efficiency than the pure alginate foam. This result reveals that zeolite-alginate foam composite is appropriate material for Sr removal in seawater due to its swelling resistance as well as improved Sr adsorption performance in complex media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Optimization of culturing condition and medium composition for the production of alginate lyase by a marine Vibrio sp. YKW-34

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoting; Lin, Hong; Kim, Sang Moo

    2008-02-01

    Carbohydrases secreted by marine Vibrio sp. YKW-34 with strong Laminaria cell wall degrading ability were screened, and among them alginate lyase was found to be dominant. The effects of medium composition and culturing condition on the production of alginate lyase by marine Vibrio sp. YKW-34 in flask were investigated in this study. In the culture medium of marine broth, no alginate lyase was produced. The activity of the alginate lyase, after being induced, reached 5 UmL-1. The best inoculum volume and inoculum age were 10% and 12 h, respectively. The optimal temperature for alginate lyase production was 25°C. The fermentation medium was composed of 0.5% of Laminaria powder and 0.2% of KNO3 with an initial acidity of pH 8.0. Alginate could induce alginate lyase production but not as efficiently as Laminaria powder did. The addition of fucoidan, cellulose and glucose had negative effect on the alginate lyase production. Other kinds of nitrogen sources, such as yeast extract, beef extract and peptone, had positive effect on the growth of the microorganism and negative effect on alginate lyase production. In addition, the time course of alginate lyase production under the optimized condition was described. The optimal harvest time was 48 h.

  14. Systematic study of alginate-based microcapsules by micropipette aspiration and confocal fluorescence microscopy.

    PubMed

    Kleinberger, Rachelle M; Burke, Nicholas A D; Dalnoki-Veress, Kari; Stöver, Harald D H

    2013-10-01

    Micropipette aspiration and confocal fluorescence microscopy were used to study the structure and mechanical properties of calcium alginate hydrogel beads (A beads), as well as A beads that were additionally coated with poly-L-lysine (P) and sodium alginate (A) to form, respectively, AP and APA hydrogels. A beads were found to continue curing for up to 500 h during storage in saline, due to residual calcium chloride carried over from the gelling bath. In subsequent saline washes, micropipette aspiration proved to be a sensitive indicator of gel weakening and calcium loss. Aspiration tests were used to compare capsule stiffness before and after citrate extraction of calcium. They showed that the initial gel strength is largely due to the calcium alginate gel cores, while the long term strength is solely due to the poly-L-lysine-alginate polyelectrolyte complex (PEC) shells. Confocal fluorescence microscopy showed that calcium chloride exposure after PLL deposition led to PLL redistribution into the hydrogel bead, resulting in thicker but more diffuse and weaker PEC shells. Adding a final alginate coating to form APA capsules did not significantly change the PEC membrane thickness and stiffness, but did speed the loss of calcium from the bead core. © 2013.

  15. Synthesis and characterization of guar-alginate hybrid bead templated mercury sorbing titania spheres.

    PubMed

    Singh, Vandana; Preeti; Singh, Angela; Singh, Devendra; Singh, Yadveer; Pandey, Arvind Kumar

    2015-01-01

    Present communication reports on the synthesis and characterization of Hg(II) sorbing millimeter sized porous titania spheres (TSP). The synthesis utilizes guar gum-alginate hybrid beads as sacrificial template to polymerize titanium(IV) isopropoxide. The hybrid beads are crafted by pouring guar-alginate mixed solution to calcium bath. The mechanical strength of the beads depended on guar to alginate ratio in the mixed solution. The equal weight ratio of the two polysaccharides is appropriate for adequate mechanical strength beads. The unique performance of the templating beads is attributed to the synergistic interaction between guar gum and sodium alginate. FTIR, BET, SEM, TEM, XRD, TGA, and DTG analyses have been used for the characterization of the optimum performance TSP (TSPAG2). TSPAG2 is a mesoporous material that has higher surface area and narrower pore size distribution than pure alginate derived titania spheres (TSPA). TEM study demonstrated that TSPAG2 spheres are constituted of aggregated TiO2 nanoparticles of ∼ 10 nm size. TSPAG2 is able to capture >95% Hg(II) from synthetic Hg(II) solution in 10h at pH 5 as opposed to only 68% removal by TSPA. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. ASTM international workshop on standards and measurements for tissue engineering scaffolds.

    PubMed

    Simon, Carl G; Yaszemski, Michael J; Ratcliffe, Anthony; Tomlins, Paul; Luginbuehl, Reto; Tesk, John A

    2015-07-01

    The "Workshop on Standards & Measurements for Tissue Engineering Scaffolds" was held on May 21, 2013 in Indianapolis, IN, and was sponsored by the ASTM International (ASTM). The purpose of the workshop was to identify the highest priority items for future standards work for scaffolds used in the development and manufacture of tissue engineered medical products (TEMPs). Eighteen speakers and 78 attendees met to assess current scaffold standards and to prioritize needs for future standards. A key finding was that the ASTM TEMPs subcommittees (F04.41-46) have many active "guide" documents for educational purposes, but few standard "test methods" or "practices." Overwhelmingly, the most clearly identified need was standards for measuring the structure of scaffolds, followed by standards for biological characterization, including in vitro testing, animal models and cell-material interactions. The third most pressing need was to develop standards for assessing the mechanical properties of scaffolds. Additional needs included standards for assessing scaffold degradation, clinical outcomes with scaffolds, effects of sterilization on scaffolds, scaffold composition, and drug release from scaffolds. Discussions highlighted the need for additional scaffold reference materials and the need to use them for measurement traceability. Workshop participants emphasized the need to promote the use of standards in scaffold fabrication, characterization, and commercialization. Finally, participants noted that standards would be more broadly accepted if their impact in the TEMPs community could be quantified. Many scaffold standard needs have been identified and focus is turning to generating these standards to support the use of scaffolds in TEMPs. © 2014 Wiley Periodicals, Inc.

  17. Purification and characterization of an alginate lyase from marine Bacterium Vibrio sp. mutant strain 510-64.

    PubMed

    Hu, Xiaoke; Jiang, Xiaolu; Hwang, Huey-Min

    2006-08-01

    Marine Vibrio sp. 510 was chosen as a parent strain for screening high producers of alginate lyase using the complex mutagenesis of Ethyl Methanesulphonate and UV radiation treatments. The mutant strain Vibrio sp. 510-64 was selected and its alginate lyase activity was increased by 3.87-fold (reaching 46.12 EU/mg) over that of the parent strain. An extracellular alginate lyase was purified from Vibrio sp. 510-64 cultural supernatant by successive fractionation on DEAE Sepharose FF and two steps of Superdex 75. The purified enzyme yielded a single band on SDS-PAGE with the molecular weight of 34.6 kDa. Data of the N-terminal amino acid sequence indicated that this protein might be a novel alginate lyase. The substrate specificity results demonstrated that the alginate lyase had the specificity for poly G block.

  18. Production and characterization of alginate microcapsules produced by a vibrational encapsulation device.

    PubMed

    Mazzitelli, S; Tosi, A; Balestra, C; Nastruzzi, C; Luca, G; Mancuso, F; Calafiore, R; Calvitti, M

    2008-09-01

    The optimization, through a Design of Experiments (DoE) approach, of a microencapsulation procedure for isolated neonatal porcine islets (NPI) is described. The applied method is based on the generation of monodisperse droplets by a vibrational nozzle. An alginate/polyornithine encapsulation procedure, developed and validated in our laboratory for almost a decade, was used to embody pancreatic islets. We analyzed different experimental parameters including frequency of vibration, amplitude of vibration, polymer pumping rate, and distance between the nozzle and the gelling bath. We produced calcium-alginate gel microbeads with excellent morphological characteristics as well as a very narrow size distribution. The automatically produced microcapsules did not alter morphology, viability and functional properties of the enveloped NPI. The optimization of this automatic procedure may provide a novel approach to obtain a large number of batches possibly suitable for large scale production of immunoisolated NPI for in vivo cell transplantation procedures in humans.

  19. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery.

    PubMed

    Zhang, Yeshun; Liu, Jia; Huang, Lei; Wang, Zheng; Wang, Lin

    2015-07-24

    Although alginate hydrogels have been extensively studied for tissue engineering applications, their utilization is limited by poor mechanical strength, rapid drug release, and a lack of cell adhesive ability. Aiming to improve these properties, we employ the interpenetrating hydrogel design rationale. Using alginate and sericin (a natural protein with many unique properties and a major component of silkworm silk), we develop an interpenetrating polymer network (IPN) hydrogel comprising interwoven sericin and alginate double networks. By adjusting the sericin-to-alginate ratios, IPNs' mechanical strength can be adjusted to meet stiffness requirements for various tissue repairs. The IPNs with high sericin content show increased stability during degradation, avoiding pure alginate's early collapse. These IPNs have high swelling ratios, benefiting various applications such as drug delivery. The IPNs sustain controlled drug release with the adjustable rates. Furthermore, these IPNs are adhesive to cells, supporting cell proliferation, long-term survival and migration. Notably, the IPNs inherit sericin's photoluminescent property, enabling bioimaging in vivo. Together, our study indicates that the sericin-alginate IPN hydrogels may serve as a versatile platform for delivering cells and drugs, and suggests that sericin may be a building block broadly applicable for generating IPN networks with other biomaterials for diverse tissue engineering applications.

  20. Effect of lecithin and starch on alginate-encapsulated probiotic bacteria.

    PubMed

    Donthidi, A R; Tester, R F; Aidoo, K E

    2010-01-01

    The effect of lecithin and starch on viability of alginate encapsulated probiotics was determined at different temperatures. Probiotic organisms (1% v/v>10Log CFU ml(-1)) were encapsulated using alginate (2% w/v), gelatinized starches (2% w/v) and lecithin (0-4% w/v) and stored in sealed containers at 4, 23 and 37 degrees C (to simulate shelf storage conditions). Incorporation of lecithin improved the entrapment efficiency (p < 0.05) and the viability of encapsulated bacteria (p = 0.02). Encapsulated Lactobacillus, Bifidobacterium species and Lactococcus lactis in lecithin containing freeze-dried beads had good survival stability (above 6Log CFU ml(-1)) at 23 degrees C for 12 weeks. The bacteria in the beads showed 6Log survival by the end of 2 weeks at 37 degrees C. Encapsulated L. casei in the alginate beads containing lecithin were also more stable in the yoghurt than the beads without lecithin. SEM analysis of the beads showed an irregular surface for the beads without lecithin.

  1. Alginate based polyurethanes: A review of recent advances and perspective.

    PubMed

    Zia, Khalid Mahmood; Zia, Fatima; Zuber, Mohammad; Rehman, Saima; Ahmad, Mirza Nadeem

    2015-08-01

    The trend of using biopolymers in combination with synthetic polymers was increasing rapidly from last two or three decades. Polysaccharide based biopolymers especially starch, cellulose, chitin, chitosan, alginate, etc. found extensive applications for different industrial uses, as they are biocompatible, biodegradable, bio-renewable resources and chiefly environment friendly. Segment block copolymer character of polyurethanes that endows them a broad range of versatility in terms of tailoring their properties was employed in conjunction with various natural polymers resulted in modified biomaterials. Alginate is biodegradable, biocompatible, bioactive, less toxic and low cost anionic polysaccharide, as a part of structural component of bacteria and brown algae (sea weed) is quite abundant in nature. It is used in combination with polyurethanes to form elastomers, nano-composites, hydrogels, etc. that especially revolutionized the food and biomedical industries. The review summarized the development in alginate based polyurethanes with their potential applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Iron-Regulated Expression of Alginate Production, Mucoid Phenotype, and Biofilm Formation by Pseudomonas aeruginosa

    PubMed Central

    Wiens, Jacinta R.; Vasil, Adriana I.; Schurr, Michael J.; Vasil, Michael L.

    2014-01-01

    ABSTRACT Pseudomonas aeruginosa strains of non-cystic fibrosis (non-CF) origin do not produce significant amounts of extracellular alginate and are nonmucoid. In CF, such isolates can become mucoid through mutation of one of the genes (mucA, mucB, mucC, or mucD) that produce regulatory factors that sequester AlgU, required for increased expression of alginate genes. Mutation of the muc genes in the nonmucoid PAO1, PA14, PAKS-1, and Ps388 strains led to increased levels of extracellular alginate and an obvious mucoid phenotype, but only under iron-limiting growth conditions (≤5 µM), not under iron-replete conditions (≥10 µM). In contrast, >50% of P. aeruginosa isolates from chronic CF pulmonary infections expressed increased levels of alginate and mucoidy both under iron-limiting and iron-replete conditions (i.e., iron-constitutive phenotype). No single iron regulatory factor (e.g., Fur, PvdS) was associated with this loss of iron-regulated alginate expression and mucoidy in these CF isolates. However, the loss of only pyoverdine production, or its uptake, abrogated the ability of P. aeruginosa to produce a robust biofilm that represents the Psl-type of biofilm. In contrast, we show that mutation of the pyoverdine and pyochelin biosynthesis genes and the pyoverdine receptor (FpvA) lead to iron-constitutive expression of the key alginate biosynthesis gene, algD, and an explicitly mucoid phenotype in both iron-limiting and iron-replete conditions. These data indicate that alginate production and mucoidy, in contrast to other types of biofilms produced by P. aeruginosa, are substantially enhanced under iron limitation. These results also have compelling implications in relation to the use of iron chelators in the treatment of P. aeruginosa CF infections. PMID:24496793

  3. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium alginate. 184.1610 Section 184.1610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of...

  4. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7187...

  5. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7610...

  6. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7610...

  7. 21 CFR 582.7133 - Ammonium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium alginate. 582.7133 Section 582.7133 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7133...

  8. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of...

  9. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7187...

  10. 21 CFR 582.7133 - Ammonium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium alginate. 582.7133 Section 582.7133 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7133...

  11. Silk sericin-alginate-chitosan microcapsules: hepatocytes encapsulation for enhanced cellular functions.

    PubMed

    Nayak, Sunita; Dey, Sanchareeka; Kundu, Subhas C

    2014-04-01

    The encapsulation based technology permits long-term delivery of desired therapeutic products in local regions of body without the need of immunosuppressant drugs. In this study microcapsules composed of sericin and alginate micro bead as inner core and with an outer chitosan shell are prepared. This work is proposed for live cell encapsulation for potential therapeutic applications. The sericin protein is obtained from cocoons of non-mulberry silkworm Antheraea mylitta. The sericin-alginate micro beads are prepared via ionotropic gelation under high applied voltage. The beads further coated with chitosan and crosslinked with genipin. The microcapsules developed are nearly spherical in shape with smooth surface morphology. Alamar blue assay and confocal microscopy indicate high cell viability and uniform encapsulated cell distribution within the sericin-alginate-chitosan microcapsules indicating that the microcapsules maintain favourable microenvironment for the cells. The functional analysis of encapsulated cells demonstrates that the glucose consumption, urea secretion rate and intracellular albumin content increased in the microcapsules. The study suggests that the developed sericin-alginate-chitosan microcapsule contributes towards the development of cell encapsulation model. It also offers to generate enriched population of metabolically and functionally active cells for the future therapeutics especially for hepatocytes transplantation in acute liver failure. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Electrosynthesis of magnetoresponsive microrobot for targeted drug delivery using calcium alginate.

    PubMed

    Chengzhi Hu; Riederer, Katharina; Klemmer, Michael; Pane, Salvador; Nelson, Bradley J

    2016-08-01

    Targeted drug delivery systems deliver drugs precisely to a specific targeted site inside the body, and can also release the drugs with controlled kinetics to prolong the efficacy of single dose administration. The advantageous properties of hydrogels make them attractive for use in the area of drug delivery. Calcium alginate is a pH sensitive hydrogel stable in acidic media and soluble in basic media. This enables the hydrogel to absorb and release aqueous solutions at certain ranges of pH values. By absorbing an aqueous solution containing a drug, an active drug release can be triggered at a specified range of pH value. In this paper, we combined calcium alginate with cobalt nickel (CoNi) in a cylindrical hybrid micro robot by electrodeposition. The designed microrobot can be wirelessly actuated with an external magnetic manipulation system and, hence, targeted to a specific location in the human body. At this specific location, characterized by its pH range, the absorbed drug will be released. Here, the fabrication steps of the specified microrobot are characterized, namely the production of a template on a silicon chip and the subsequent template-assisted electrodeposition of CoNi and alginate. Additionally, the dynamics of drug release of calcium alginate is studied.

  13. Oesophageal bioadhesion of sodium alginate suspensions: particle swelling and mucosal retention.

    PubMed

    Richardson, J Craig; Dettmar, Peter W; Hampson, Frank C; Melia, Colin D

    2004-09-01

    This paper describes a prospective bioadhesive liquid dosage form designed to specifically adhere to the oesophageal mucosa. It contains a swelling polymer, sodium alginate, suspended in a water-miscible vehicle and is activated by dilution with saliva to form an adherent layer of polymer on the mucosal surface. The swelling of alginate particles and the bioadhesion of 40% (w/w) sodium alginate suspensions were investigated in a range of vehicles: glycerol, propylene glycol, PEG 200 and PEG 400. Swelling of particles as a function of vehicle dilution with artificial saliva was quantified microscopically using 1,9-dimethyl methylene blue (DMMB) as a visualising agent. The minimum vehicle dilution to initiate swelling varied between vehicles: glycerol required 30% (w/w) dilution whereas PEG 400 required nearly 60% (w/w). Swelling commenced when the Hildebrand solubility parameter of the diluted vehicle was raised to 37 MPa(1/2). The bioadhesive properties of suspensions were examined by quantifying the amount of sodium alginate retained on oesophageal mucosa after washing in artificial saliva. Suspensions exhibited considerable mucoretention and strong correlations were obtained between mucosal retention, the minimum dilution to initiate swelling, and the vehicle Hildebrand solubility parameter. These relationships may allow predictive design of suspensions with specific mucoretentive properties, through judicious choice of vehicle characteristics.

  14. Intrinsic disorder in scaffold proteins: Getting more from less

    PubMed Central

    Cortese, Marc S.; Uversky, Vladimir N.; Dunker, A. Keith

    2008-01-01

    Regulation, recognition and cell signaling involve the coordinated actions of many players. Signaling scaffolds, with their ability to bring together proteins belonging to common and/or interlinked pathways, play crucial roles in orchestrating numerous events by coordinating specific interactions among signaling proteins. This review examines the roles of intrinsic disorder (ID) in signaling scaffold protein function. Several well-characterized scaffold proteins with structurally and functionally characterized ID regions are used here to illustrate the importance of ID for scaffolding function. These examples include scaffolds that are mostly disordered, only partially disordered or those in which the ID resides in a scaffold partner. Specific scaffolds discussed include RNase, voltage-activated potassium channels, axin, BRCA1, GSK-3β, p53, Ste5, titin, Fus3, BRCA1, Titin, MAP2, D-AKAP2 and AKAP250. Among the mechanisms discussed are: molecular recognition features, fly-casting, ease of encounter complex formation, structural isolation of partners, modulation of interactions between bound partners, masking of intramolecular interaction sites, maximized interaction surface per residue, toleration of high evolutionary rates, binding site overlap, allosteric modification, palindromic binding, reduced constraints for alternative splicing, efficient regulation via posttranslational modification, efficient regulation via rapid degradation, protection of normally solvent-exposed sites, enhancing the plasticity of interaction and molecular crowding. We conclude that ID can enhance scaffold function by a diverse array of mechanisms. In other words, scaffold proteins utilize several ID-facilitated mechanisms to enhance function, and by doing so, get more functionality from less structure. PMID:18619997

  15. A smart bioconjugate of alginate and pectinase with unusual biological activity toward chitosan.

    PubMed

    Sardar, Meryam; Roy, Ipsita; Gupta, Munishwar N

    2003-01-01

    The commercial preparation of pectinase (Pectinex Ultra SP-L) was conjugated to alginate by noncovalent interactions by employing 1% alginate during the conjugation protocol. The optimum "immobilization efficiency" was 0.76. The pH optimum and the thermal stability of the enzyme remained unchanged upon conjugation with alginate. The soluble bioconjugate showed a 3-fold increase in V(max)/K(m) as compared to the free enzyme when the smart biocatalyst was used for chitosan hydrolysis. Time course hydrolysis of chitosan thus showed higher conversion of chitosan into reducing oligosaccharides/sugars. The smart bioconjugate could be reused five times without any detectable loss of chitosanase activity.

  16. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    PubMed Central

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  17. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...

  18. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...

  19. Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications.

    PubMed

    García-Astrain, Clara; Avérous, Luc

    2018-06-15

    Environment-sensitive alginate-based hydrogels for drug delivery applications are receiving increasing attention. However, most work in this field involves traditional cross-linking strategies which led to hydrogels with poor long-term stability. Herein, a series of chemically cross-linked alginate hydrogels was synthesized via click chemistry using Diels-Alder reaction by reacting furan-modified alginate and bifunctional cross-linkers. Alginate was successfully functionalized with furfurylamine. Then, 3D architectures were synthesized with water-soluble bismaleimides. Different substitution degrees were achieved in order to study the effect of alginate modification and the cross-linking extent over the behaviour of the hydrogels. The ensuing hydrogels were analysed in terms of microstructure, swelling, structure modification and rheological behaviour. The materials response to external stimuli such as pH was also investigated, revealing a pulsatile behaviour in a large pH range (1-13) and a clear pH-dependent swelling. Finally, vanillin release studies were conducted to demonstrate the potential of these biobased materials for drug delivery applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. A simple approach for morphology tailoring of alginate particles by manipulation ionic nature of polyurethanes.

    PubMed

    Daemi, Hamed; Barikani, Mehdi; Barmar, Mohammad

    2014-05-01

    A number of different ionic aqueous polyurethane dispersions (PUDs) were synthesized based on NCO-terminated prepolymers. Two different anionic and cationic polyurethane samples were synthesized using dimethylol propionic acid and N-methyldiethanolamine emulsifiers, respectively. Then, proper amounts of PUDs and sodium alginate were mixed to obtain a number of aqueous polyurethane dispersions-sodium alginate (PUD/SA) elastomers. The chemical structure, thermal, morphological, thermo-mechanical and mechanical properties, and hydrophilicity content of the prepared samples were studied by FTIR, EDX, DSC, TGA, SEM, DMTA, tensile testing and contact angle techniques. The cationic polyurethanes and their blends with sodium alginate showed excellent miscibility and highly stretchable properties, while the samples containing anionic polyurethanes and alginate illustrated a poor compatibility and no significant miscibility. The morphology of alginate particles shifted from nanoparticles to microparticles by changing the nature of PUDs from cationic to anionic types. The final cationic elastomers not only showed better mechanical properties but also were formulated easier than anionic samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Effect of storage time of extended-pour and conventional alginate impressions on dimensional accuracy of casts.

    PubMed

    Rohanian, Ahmad; Ommati Shabestari, Ghasem; Zeighami, Somayeh; Samadi, Mohammad Javad; Shamshiri, Ahmad Reza

    2014-11-01

    Some manufacturers claim to have produced new irreversible hydro-colloids that are able to maintain their dimensional stability during storage. The present study evaluated the effect of storage time on dimensional stability of three alginates: Hydrogum 5, Tropicalgin and Alginoplast. In this experimental in-vitro trial, a total of 90 alginate impressions were made from a Dentoform model using Hydrogum 5, Tropicalgin and Alginoplast alginates. The impressions were stored in a sealed plastic bag without a damp paper towel for 0, 24, 48, 72 and 120 hours and then poured with type III dental stone. Cross-arch (facial of 6 to facial of 6 on the opposite side) and antero-posterior (distal of right first molar to the ipsilateral central incisor) measurements were made with a digital caliper on the casts. Data were analyzed by two-way and one-way ANOVA and Tukey's post-hoc test (P<0.05). Alginate type and the pouring time significantly affected the dimensional stability of alginate impressions (both Ps<0.001). Pouring of Hydrogum 5 impressions can be delayed for up to 120 hours without significant dimensional changes. Alginoplast impressions may be poured after 72 hours, but Tropicalgin should be poured immediately and the storage time should not be more than 24 hours. Immediate pouring of alginate impressions provides the highest accuracy in reproducing the teeth and adjacent tissues; however, this study demonstrated that pouring may be delayed for up to five days using extended-pour (Hydrogum 5) alginates.

  2. Production of tannase by the immobilized cells of Bacillus licheniformis KBR6 in Ca-alginate beads.

    PubMed

    Mohapatra, P K D; Mondal, K C; Pati, B R

    2007-06-01

    The present study was aimed at finding the optimal conditions for immobilization of Bacillus licheniformis KBR6 cells in calcium-alginate (Ca-alginate) beads and determining the operational stability during the production of tannin-acyl-hydrolase (tannase) under semicontinous cultivation. The active cells of B. licheniformis KBR6 were immobilized in Ca-alginate and used for the production of tannase. The influence of alginate concentration (5, 10, 20 and 30 g l(-1)) and initial cell loading on enzyme production were studied. The production of tannase increased significantly with increasing alginate concentration and reached a maximum enzyme yield of 0.56 +/- 0.03 U ml(-1) at 20 g l(-1). This was about 1.70-fold higher than that obtained by free cells. The immobilized cells produced tannase consistently over 13 repeated cycles and reached a maximum level at the third cycle. Scanning electron microscope study indicated that the cells in Ca-alginate beads remain in normal shape. The Ca-alginate entrapment is a promising immobilization method of B. licheniformis KBR6 for repeated tannase production. Tannase production by immobilized cells is superior to that of free cells because it leads to higher volumetric activities within the same period of fermentation. This is the first report of tannase production from immobilized bacterial cells. The bacterium under study can produce higher amounts of tannase with respect to other fungal strains within a short cultivation period.

  3. Immunological Challenges Facing Translation of Alginate Encapsulated Porcine Islet Xenotransplantation to Human Clinical Trials.

    PubMed

    Krishnan, Rahul; Ko, David; Foster, Clarence E; Liu, Wendy; Smink, A M; de Haan, Bart; De Vos, Paul; Lakey, Jonathan R T

    2017-01-01

    Transplantation of alginate-encapsulated islets has the potential to treat patients suffering from type I diabetes, a condition characterized by an autoimmune attack against insulin-secreting beta cells. However, there are multiple immunological challenges associated with this procedure, all of which must be adequately addressed prior to translation from trials in small animal and nonhuman primate models to human clinical trials. Principal threats to graft viability include immune-mediated destruction triggered by immunogenic alginate impurities, unfavorable polymer composition and surface characteristics, and release of membrane-permeable antigens, as well as damage associated molecular patterns (DAMPs) by the encapsulated islets themselves. The lack of standardization of significant parameters of bioencapsulation device design and manufacture (i.e., purification protocols, surface-modification grafting techniques, alginate composition modifications) between labs is yet another obstacle that must be overcome before a clinically effective and applicable protocol for encapsulating islets can be implemented. Nonetheless, substantial progress is being made, as is evident from prolonged graft survival times and improved protection from immune-mediated graft destruction reported by various research groups, but also with regard to discoveries of specific pathways involved in explaining observed outcomes. Progress in the latter is essential for a comprehensive understanding of the mechanisms responsible for the varying levels of immunogenicity of certain alginate devices. Successful translation of encapsulated islet transplantation from in vitro and animal model testing to human clinical trials hinges on application of this knowledge of the pathways and interactions which comprise immune-mediated rejection. Thus, this review not only focuses on the different factors contributing to provocation of the immune reaction by encapsulated islets, but also on the defining

  4. Further Development of Scaffolds for Regeneration of Nerves

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Tuszynski, Mark

    2009-01-01

    Progress has been made in continuing research on scaffolds for the guided growth of nerves to replace damaged ones. The scaffolds contain pores that are approximately cylindrical and parallel, with nearly uniform widths ranging from tens to hundreds of microns. At the earlier stage of development, experimental scaffolds had been made from agarose hydrogel. Such a scaffold was made in a multistep process in which poly(methyl methacrylate) [PMMA] fibers were used as templates for the pores. The process included placement of a bundle of the PMMA fibers in a tube, filling the interstices in the tube with a hot agarose solution, cooling to turn the solution into a gel, and then immersion in acetone to dissolve the PMMA fibers. The scaffolds were typically limited to about 25 pores per scaffold, square cross sections of no more than about 1.5 by 1.5 mm, and lengths of no more than about 2 mm.

  5. Encapsulating Non-Human Primate Multipotent Stromal Cells in Alginate via High Voltage for Cell-Based Therapies and Cryopreservation

    PubMed Central

    Gryshkov, Oleksandr; Pogozhykh, Denys; Hofmann, Nicola; Pogozhykh, Olena; Mueller, Thomas; Glasmacher, Birgit

    2014-01-01

    Alginate cell-based therapy requires further development focused on clinical application. To assess engraftment, risk of mutations and therapeutic benefit studies should be performed in an appropriate non-human primate model, such as the common marmoset (Callithrix jacchus). In this work we encapsulated amnion derived multipotent stromal cells (MSCs) from Callithrix jacchus in defined size alginate beads using a high voltage technique. Our results indicate that i) alginate-cell mixing procedure and cell concentration do not affect the diameter of alginate beads, ii) encapsulation of high cell numbers (up to 10×106 cells/ml) can be performed in alginate beads utilizing high voltage and iii) high voltage (15–30 kV) does not alter the viability, proliferation and differentiation capacity of MSCs post-encapsulation compared with alginate encapsulated cells produced by the traditional air-flow method. The consistent results were obtained over the period of 7 days of encapsulated MSCs culture and after cryopreservation utilizing a slow cooling procedure (1 K/min). The results of this work show that high voltage encapsulation can further be maximized to develop cell-based therapies with alginate beads in a non-human primate model towards human application. PMID:25259731

  6. Alginate as immobilization matrix and stabilizing agent in a two-phase liquid system: application in lipase-catalysed reactions.

    PubMed

    Hertzberg, S; Kvittingen, L; Anthonsen, T; Skjåk-Braek, G

    1992-01-01

    Alginate was evaluated as an immobilization matrix for enzyme-catalyzed reactions in organic solvents. In contrast to most hydrogels, calcium alginate was found to be stable in a range of organic solvents and to retain the enzyme inside the gel matrix. In hydrophobic solvents, the alginate gel (greater than 95% water) thus provided a stable, two-phase liquid system. The lipase from Candida cylindracea, after immobilization in alginate beads, catalysed esterification and transesterification in n-hexane under both batch and continuous-flow conditions. The operational stability of the lipase was markedly enhanced by alginate entrapment. In the esterification of butanoic acid with n-butanol, better results were obtained in the typical hydrophilic calcium alginate beads than in less hydrophilic matrices. The effects of substrate concentration, matrix area, and polarity of the substrate alcohols and of the organic solvent on the esterification activity were examined. The transesterification of octyl 2-bromopropanoate with ethanol was less efficient than that of ethyl 2-bromopropanoate with octanol. By using the hydrophilic alginate gel as an immobilization matrix in combination with a mobile hydrophobic phase, a two-phase liquid system was achieved with definite advantages for a continuous, enzyme-catalysed process.

  7. Use of Magnetic Nanoparticles to Monitor Alginate-Encapsulated βTC-tet Cells

    PubMed Central

    Constantinidis, Ioannis; Grant, Samuel C.; Simpson, Nicholas E.; Oca-Cossio, Jose A.; Sweeney, Carol A.; Mao, Hui; Blackband, Stephen J.; Sambanis, Athanassios

    2008-01-01

    Non-invasive monitoring of tissue-engineered constructs is an important component in optimizing construct design and assessing therapeutic efficacy. In recent years, cellular and molecular imaging initiatives have spurred the use of iron oxide based contrast agents in the field of NMR imaging. Although their use in medical research has been widespread, their application in tissue engineering has been limited. In this study, the utility of Monocrystalline Iron Oxide Nanoparticles (MION) as an NMR contrast agent was evaluated for βTC-tet cells encapsulated within alginate/poly-L-lysine/alginate (APA) microbeads. The constructs were labeled with MION in two different ways: (a) MION-labeled βTC-tet cells were encapsulated in APA beads (i.e., intracellular compartment); and (b) MION particles were suspended in the alginate solution prior to encapsulation so that the alginate matrix was labeled with MION instead of the cells (i.e., extracellular compartment). The data show that although the location of cells can be identified within APA beads, cell growth or rearrangement within these constructs cannot be effectively monitored, regardless of the location of MION compartmentalization. The advantages and disadvantages of these techniques and their potential use in tissue engineering are discussed. PMID:19165877

  8. Oesophageal bioadhesion of sodium alginate suspensions 2. Suspension behaviour on oesophageal mucosa.

    PubMed

    Richardson, J Craig; Dettmar, Peter W; Hampson, Frank C; Melia, Colin D

    2005-01-01

    Sodium alginate suspensions in a range of water miscible vehicles were investigated as novel bioadhesive liquids for targeting the oesophageal mucosa. Such a dosage form might be utilised to coat the oesophageal surface and provide a protective barrier against gastric reflux, or to deliver therapeutic agents site-specifically. Alginate suspensions swelled and formed an adherent viscous layer on contact with the mucosa. The swelling kinetics of alginate particles on the oesophageal surface was examined with respect to vehicle composition and related to the extent, duration and location of bioadhesion within the oesophagus. Mucosal retention was evaluated in two in vitro models utilising tissue immersion and a peristaltic tube. By varying the vehicle composition it was possible to modulate the rate of swelling of alginate particles on the mucosa and the mucosal retention of suspensions. Suspensions containing predominantly glycerol exhibited superior retention and were preferentially retained within the lower oesophagus. The propensity of these suspensions to rapidly swell on the mucosa and establish adhesive/cohesive bonds may explain their enhanced retention. The potential to control, through vehicle composition, the extent, duration and location of oesophageal retention could provide a useful tool for site targeting of viscous polymers to the oesophagus.

  9. Streptomycin-loaded PLGA-alginate nanoparticles: preparation, characterization, and assessment

    NASA Astrophysics Data System (ADS)

    Asadi, Asadollah

    2014-04-01

    The aim of this study was to formulate and characterize streptomycin-loaded PLGA-alginate nanoparticles for their potential therapeutic use in Salmonella subsp. enterica ATCC 14028 infections. The streptomycin nanoparticle was prepared by solvent diffusion method, and the other properties such as size, zeta potential, loading efficacy, release kinetics, and antimicrobial strength were evaluated. The survey shows that nanoparticles may serve as a carrier of streptomycin and may provide localized antibacterial activity in the treatment of Salmonellosis. Electron microscopy showed spherical particles with indentations. The average size of the nanoparticles was 90 nm. At pH 7.2, the release kinetics of streptomycin from the nanoparticles was successfully illustrated as an initial burst defined by a first order equation that after this stage, it has a drastic tendency to obtain steady state. Nevertheless, nanoparticles showed loading efficacy nearly about 70-75 %. In addition, the tendency of concentration of streptomycin released from nanoparticles to reach antibacterial activity was similar to that of free streptomycin against PLGA-alginate, but it had threefold more antimicrobial strength in comparison with free streptomycin. This work shows the potential use of streptomycin-loaded PLGA-alginate nanoparticles and its capability.

  10. Fabrication of cationic chitin nanofiber/alginate composite materials.

    PubMed

    Sato, Koki; Tanaka, Kohei; Takata, Yusei; Yamamoto, Kazuya; Kadokawa, Jun-Ichi

    2016-10-01

    We have already found that an amidinated chitin, which was prepared by the reaction of a partially deacetylated chitin with N,N-dimethylacetamide dimethyl acetal, was converted into an amidinium chitin bicarbonate with nanofiber morphology by CO2 gas bubbling and ultrasonic treatments in water. In this study, we performed the fabrication of composite materials of such cationic chitin nanofibers with an anionic polysaccharide, sodium alginate, by ion exchange. When the amidinium chitin bicarbonate nanofiber aqueous dispersion was added to an aqueous solution of sodium alginate, the composite material was agglomerated, which was isolated by centrifugation, filtration, and lyophilization, to form a manipulatable sheet. The morphology of the resulting sheet at nano-scale was evaluated by SEM measurement. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.

    PubMed

    Wang, Junping; Valmikinathan, Chandra M; Liu, Wei; Laurencin, Cato T; Yu, Xiaojun

    2010-05-01

    Polymeric nanofiber matrices have already been widely used in tissue engineering. However, the fabrication of nanofibers into complex three-dimensional (3D) structures is restricted due to current manufacturing techniques. To overcome this limitation, we have incorporated nanofibers onto spiral-structured 3D scaffolds made of poly (epsilon-caprolactone) (PCL). The spiral structure with open geometries, large surface areas, and porosity will be helpful for improving nutrient transport and cell penetration into the scaffolds, which are otherwise limited in conventional tissue-engineered scaffolds for large bone defects repair. To investigate the effect of structure and fiber coating on the performance of the scaffolds, three groups of scaffolds including cylindrical PCL scaffolds, spiral PCL scaffolds (without fiber coating), and spiral-structured fibrous PCL scaffolds (with fiber coating) have been prepared. The morphology, porosity, and mechanical properties of the scaffolds have been characterized. Furthermore, human osteoblast cells are seeded on these scaffolds, and the cell attachment, proliferation, differentiation, and mineralized matrix deposition on the scaffolds are evaluated. The results indicated that the spiral scaffolds possess porosities within the range of human trabecular bone and an appropriate pore structure for cell growth, and significantly lower compressive modulus and strength than cylindrical scaffolds. When compared with the cylindrical scaffolds, the spiral-structured scaffolds demonstrated enhanced cell proliferation, differentiation, and mineralization and allowed better cellular growth and penetration. The incorporation of nanofibers onto spiral scaffolds further enhanced cell attachment, proliferation, and differentiation. These studies suggest that spiral-structured nanofibrous scaffolds may serve as promising alternatives for bone tissue engineering applications. Copyright 2009 Wiley Periodicals, Inc.

  12. Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin.

    PubMed

    Dey, Soma; Sreenivasan, K

    2014-01-01

    Curcumin is a potential drug for various diseases including cancer. Prime limitations associated with curcumin are low water solubility, rapid hydrolytic degradation and poor bioavailability. In order to redress these issues we developed Alginate-Curcumin (Alg-Ccm) conjugate which was characterized by FTIR and (1)H NMR spectroscopy. The conjugate self-assembled in aqueous solution forming micelles with an average hydrodynamic diameter of 459 ± 0.32 nm and negative zeta potential. The spherical micelles were visualized by TEM. The critical micelle concentration (CMC) of Alg-Ccm conjugate was determined. A significant enhancement in the aqueous solubility of curcumin was observed upon conjugation with alginate. Formation of micelles improved the stability of curcumin in water at physiological pH. The cytotoxic activity of Alg-Ccm was quantified by MTT assay using L-929 fibroblast cells and it was found to be potentially cytotoxic. Hence, Alg-Ccm could be a promising drug conjugate as well as a nanosized delivery vehicle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The study of the structural properties of very low viscosity sodium alginate by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Badita, C. R.; Aranghel, D.; Radulescu, A.; Anitas, E. M.

    2016-03-01

    Sodium alginate is a linear polymer extract from brown algae and it is used in the biomedical, food, cosmetics and pharmaceutical industries as solution property modifiers and gelling agents. But despite the extensive studies of the alginate gelation process, still some fundamental questions remain unresolved. The fractal behavior of very low viscosity sodium alginate solutions and their influence on the critical gelation of alginate induced by Ca2+ ions were investigated using Small-Angle Neutron Scattering (SANS) measurements. SANS data are interpreted using both standard linear plots and the Beaucage model. The scattering intensity is dependent by alginate concentration and Ca2+ concentration. From a critical concentration of 1.0 % w/w our polymer swelled forming spherical structures with rough surfaces. Also the addition of the salt induces the collapse and the appearance of the aggregation and clusters formation.

  14. Culture of C3A cells in alginate beads for fluidized bed bioartificial liver.

    PubMed

    Kinasiewicz, A; Gautier, A; Lewinska, D; Bukowski, J; Legallais, C; Weryński, A

    2007-11-01

    Extracorporeal bioartificial liver has been designed to sustain the detoxification and synthetic function of the failed liver in patients suffering from acute liver failure until the time of liver allotransplantation or regeneration of their own. A fluidized bed, bioartificial liver improves the mass transfer velocity between the medium and the hepatocytes. Detoxification functions of the liver could be replaced by completely artificial systems, but the synthetic functions of hepatocytes may be obtained only by metabolically active cells. The aim of our study was to investigate the influence of C3A cell culture in alginate beads on synthetic function in a fluidized bed, bioartificial liver. Cells in alginate beads were prepared using an electrostatic droplet generator of our own design using low-viscosity alginate. Beads were cultured for 24 hours then 7 days in static conditions and then 24 hours of fluidization in the bioreactor to assess albumin production. We observed significantly increased albumin production by C3A cells entrapped in alginate beads during static culture. Fluidization increased albumin production compared with static culture. Fluidization performed after 7 days of static culture resulted in a significant increase in albumin synthesis. In conclusion, static culture of alginate beads hosting hepatic cells facilitates restoration of cell function.

  15. Chitosan and alginate types of bio-membrane in fuel cell application: An overview

    NASA Astrophysics Data System (ADS)

    Shaari, N.; Kamarudin, S. K.

    2015-09-01

    The major problems of polymer electrolyte membrane fuel cell technology that need to be highlighted are fuel crossovers (e.g., methanol or hydrogen leaking across fuel cell membranes), CO poisoning, low durability, and high cost. Chitosan and alginate-based biopolymer membranes have recently been used to solve these problems with promising results. Current research in biopolymer membrane materials and systems has focused on the following: 1) the development of novel and efficient biopolymer materials; and 2) increasing the processing capacity of membrane operations. Consequently, chitosan and alginate-based biopolymers seek to enhance fuel cell performance by improving proton conductivity, membrane durability, and reducing fuel crossover and electro-osmotic drag. There are four groups of chitosan-based membranes (categorized according to their reaction and preparation): self-cross-linked and salt-complexed chitosans, chitosan-based polymer blends, chitosan/inorganic filler composites, and chitosan/polymer composites. There are only three alginate-based membranes that have been synthesized for fuel cell application. This work aims to review the state-of-the-art in the growth of chitosan and alginate-based biopolymer membranes for fuel cell applications.

  16. An Investigation of Software Scaffolds Supporting Modeling Practices

    NASA Astrophysics Data System (ADS)

    Fretz, Eric B.; Wu, Hsin-Kai; Zhang, Baohui; Davis, Elizabeth A.; Krajcik, Joseph S.; Soloway, Elliot

    2002-08-01

    Modeling of complex systems and phenomena is of value in science learning and is increasingly emphasised as an important component of science teaching and learning. Modeling engages learners in desired pedagogical activities. These activities include practices such as planning, building, testing, analysing, and critiquing. Designing realistic models is a difficult task. Computer environments allow the creation of dynamic and even more complex models. One way of bringing the design of models within reach is through the use of scaffolds. Scaffolds are intentional assistance provided to learners from a variety of sources, allowing them to complete tasks that would otherwise be out of reach. Currently, our understanding of how scaffolds in software tools assist learners is incomplete. In this paper the scaffolds designed into a dynamic modeling software tool called Model-It are assessed in terms of their ability to support learners' use of modeling practices. Four pairs of middle school students were video-taped as they used the modeling software for three hours, spread over a two week time frame. Detailed analysis of coded videotape transcripts provided evidence of the importance of scaffolds in supporting the use of modeling practices. Learners used a variety of modeling practices, the majority of which occurred in conjunction with scaffolds. The use of three tool scaffolds was assessed as directly as possible, and these scaffolds were seen to support a variety of modeling practices. An argument is made for the continued empirical validation of types and instances of tool scaffolds, and further investigation of the important role of teacher and peer scaffolding in the use of scaffolded tools.

  17. Sulindac loaded alginate beads for a mucoprotective and controlled drug release.

    PubMed

    Yegin, Betül Arica; Moulari, Brice; Durlu-Kandilci, N Tugba; Korkusuz, Petek; Pellequer, Yann; Lamprecht, Alf

    2007-06-01

    Ionotropic gelation was used to entrap sulindac into calcium alginate beads as a potential drug carrier for the oral delivery of this anti-inflammatory drug. Beads were investigated in vitro for a possible sustained drug release and their use in vivo as a gastroprotective system for sulindac. Process parameters such as the polymer concentration, polymer/drug ratio, and different needle diameter were analysed for their influences on the bead properties. Size augmented with increasing needle diameter (0.9 mm needle: 1.28 to 1.44 mm; 0.45 mm needle: 1.04 to 1.07 mm) due to changes in droplet size as well as droplet viscosity. Yields varied between 87% and 98% while sulindac encapsulation efficiencies of about 88% and 94% were slightly increasing with higher alginate concentrations. Drug release profiles exhibited a complete release for all formulations within 4 hours with a faster release for smaller beads. Sulindac loaded alginate beads led to a significant reduction of macroscopic histological damage in the stomach and duodenum in mice. Similarly, microscopic analyses of the mucosal damage demonstrated a significant mucoprotective effect of all bead formulation compared to the free drug. The present alginate formulations exhibit promising properties of a controlled release form for sulindac; meanwhile they provide a distinct tissue protection in the stomach and duodenum.

  18. Effect of Storage Time of Extended-Pour and Conventional Alginate Impressions on Dimensional Accuracy of Casts

    PubMed Central

    Rohanian, Ahmad; Ommati Shabestari, Ghasem; Zeighami, Somayeh; Samadi, Mohammad Javad; Shamshiri, Ahmad Reza

    2014-01-01

    Objectives: Some manufacturers claim to have produced new irreversible hydro-colloids that are able to maintain their dimensional stability during storage. The present study evaluated the effect of storage time on dimensional stability of three alginates: Hydrogum 5, Tropicalgin and Alginoplast. Materials and Methods: In this experimental in-vitro trial, a total of 90 alginate impressions were made from a Dentoform model using Hydrogum 5, Tropicalgin and Alginoplast alginates. The impressions were stored in a sealed plastic bag without a damp paper towel for 0, 24, 48, 72 and 120 hours and then poured with type III dental stone. Cross-arch (facial of 6 to facial of 6 on the opposite side) and antero-posterior (distal of right first molar to the ipsilateral central incisor) measurements were made with a digital caliper on the casts. Data were analyzed by two-way and one-way ANOVA and Tukey’s post-hoc test (P<0.05). Results: Alginate type and the pouring time significantly affected the dimensional stability of alginate impressions (both Ps<0.001). Pouring of Hydrogum 5 impressions can be delayed for up to 120 hours without significant dimensional changes. Alginoplast impressions may be poured after 72 hours, but Tropicalgin should be poured immediately and the storage time should not be more than 24 hours. Conclusion: Immediate pouring of alginate impressions provides the highest accuracy in reproducing the teeth and adjacent tissues; however, this study demonstrated that pouring may be delayed for up to five days using extended-pour (Hydrogum 5) alginates. PMID:25628695

  19. Evaluation of digital dental models obtained from dental cone-beam computed tomography scan of alginate impressions

    PubMed Central

    Jiang, Tingting; Lee, Sang-Mi; Hou, Yanan; Chang, Xin

    2016-01-01

    Objective To investigate the dimensional accuracy of digital dental models obtained from the dental cone-beam computed tomography (CBCT) scan of alginate impressions according to the time elapse when the impressions are stored under ambient conditions. Methods Alginate impressions were obtained from 20 adults using 3 different alginate materials, 2 traditional alginate materials (Alginoplast and Cavex Impressional) and 1 extended-pour alginate material (Cavex ColorChange). The impressions were stored under ambient conditions, and scanned by CBCT immediately after the impressions were taken, and then at 1 hour intervals for 6 hours. After reconstructing three-dimensional digital dental models, the models were measured and the data were analyzed to determine dimensional changes according to the elapsed time. The changes within the measurement error were regarded as clinically acceptable in this study. Results All measurements showed a decreasing tendency with an increase in the elapsed time after the impressions. Although the extended-pour alginate exhibited a less decreasing tendency than the other 2 materials, there were no statistically significant differences between the materials. Changes above the measurement error occurred between the time points of 3 and 4 hours after the impressions. Conclusions The results of this study indicate that digital dental models can be obtained simply from a CBCT scan of alginate impressions without sending them to a remote laboratory. However, when the impressions are not stored under special conditions, they should be scanned immediately, or at least within 2 to 3 hours after the impressions are taken. PMID:27226958

  20. Modification of pH Conferring Virucidal Activity on Dental Alginates

    PubMed Central

    Nallamuthu, Navina; Braden, Michael; Oxford, John; Williams, David; Patel, Mangala

    2015-01-01

    To formulate an alginate dental impression material with virucidal properties, experimental alginate dental impression materials were developed and the formulations adjusted in order to study the effect on pH profiles during setting. Commercially available materials served as a comparison. Eight experimental materials were tested for antiviral activity against Herpes Simplex Virus type 1 (HSV-1). Changing the amount of magnesium oxide (MgO) used in the experimental formulations had a marked effect on pH. Increasing MgO concentration corresponded with increased pH values. All experimental materials brought about viral log reductions ranging between 0.5 and 4.0 over a period of 4 h. The material with the lowest pH was the most effective. The current work highlights the very important role of MgO in controlling pH profiles. This knowledge has been applied to the formulation of experimental alginates; where materials with pH values of approximately 4.2–4.4 are able to achieve a significant log reduction when assayed against HSV-1. PMID:28788042

  1. Production and characterization of the healthy brown rice milk with sodium alginate addition from brown algae Sargassum binderi as emulsifier

    NASA Astrophysics Data System (ADS)

    Latifah, R. N.; Warganegara, F. M.

    2018-03-01

    Brown rice milk, a plant milk, is potential to cure beriberi disease. Alginate was used as an emulsifier and increased the nutrition of brown rice milk. Alginate from Sargassum binderi was extracted by nonacidic treatment. The yield of alginate was 6.25 %. The moisture and water content of alginate were 18.27 % and 12.2 %, respectively. The density and viscosity of 0.1 % alginates in aqueous solution were 1.007 g·mL-1 and 7.651 × 10-3 kg·m-1s-1, respectively. The characteristics peaks of alginate appeared at 3,477; 1,633 and 1,419 cm-1, corresponding to hydroxyl (OH), carbonyl (C=O) and carboxyl (COOH), respectively. The best composition of alginate addition in brown rice milk was 0.2 %. The viscosity of the 0.2 % alginate in brown rice milk was 1.206 × 10-2 kg·m-1s-1 and showed a texture of small particle with closer spaces between the particles. The addition of alginate in brown rice milk also inhibited the process of sedimentation of milk which showed in the first order. The nutrition composition of the best brown rice milk was 40.21 mg·mL-1 carbohydrate; 1.3 mg·mL-1 protein; 0.158 mg·mL-1 fat and 13.1 mg·mL-1 total dietary fiber.

  2. Transcriptome analysis revealed anti-obesity effects of the Sodium Alginate in high-fat diet -induced obese mice.

    PubMed

    Wang, Xiong; Liu, Fang; Gao, Yuan; Xue, Chang-Hu; Li, Robert W; Tang, Qing-Juan

    2018-04-10

    Human obesity and overweight, caused by accumulated of fat, is the most commonly phenomenon from all over the world, especially in Western countries and Chinese mainland during the past three decades. Sodium Alginate, a polysaccharide extracted from brown seaweeds, has been proved its strong ability on body weight loss and anti-inflammatory response. However, no studies have been explored the effects of Sodium Alginate on colonic transcriptome, especially in obese individuals. Therefore, the current study was designed to detect whether Sodium Alginate could remit obesity and ease chronic metabolism disease through strengthening the bio-functionality of the lower intestine, particularly in colon. The data showed after Sodium Alginate gavaged for four weeks, the body weight, fat accumulation, triglyceride and total cholesterol were ameliorated in high fat diet induced obese mice. Sodium Alginate also improved the blood glucose level and lipopolysaccharides in serum. Furthermore, data from RNA sequence indicated that there were significantly changes in several genes, which involved in lipid metabolism and carbohydrate metabolism. In conclusion, these results suggested that Sodium Alginate could effectively suppress obesity and obesity related metabolic syndromes, due to the colonic transcriptome changes. Copyright © 2018. Published by Elsevier B.V.

  3. Light-addressable electrodeposition of cell-encapsulated alginate hydrogels for a cellular microarray using a digital micromirror device

    PubMed Central

    Huang, Shih-Hao; Hsueh, Hui-Jung; Jiang, Yeu-Long

    2011-01-01

    This paper describes a light-addressable electrolytic system used to perform an electrodeposition of calcium alginate hydrogels using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-anode to electrolytically produce protons, which can lead to a decreased pH gradient. The low pH generated at the anode can locally release calcium ions from insoluble calcium carbonate (CaCO3) to cause gelation of calcium alginate through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressable electrodeposition of calcium alginate hydrogels with different shapes and sizes, as well as multiplexed micropatterning was performed. The effects of the concentration of the alginate and CaCO3 solutions on the dimensional resolution of alginate hydrogel formation were experimentally examined. A 3 × 3 array of cell-encapsulated alginate hydrogels was also successfully demonstrated through light-addressable electrodeposition. Our proposed method provides a programmable method for the spatiotemporally controllable assembly of cell populations into cellular microarrays and could have a wide range of biological applications in cell-based biosensing, toxicology, and drug discovery. PMID:22685500

  4. Light-addressable electrodeposition of cell-encapsulated alginate hydrogels for a cellular microarray using a digital micromirror device.

    PubMed

    Huang, Shih-Hao; Hsueh, Hui-Jung; Jiang, Yeu-Long

    2011-09-01

    This paper describes a light-addressable electrolytic system used to perform an electrodeposition of calcium alginate hydrogels using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-anode to electrolytically produce protons, which can lead to a decreased pH gradient. The low pH generated at the anode can locally release calcium ions from insoluble calcium carbonate (CaCO(3)) to cause gelation of calcium alginate through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressable electrodeposition of calcium alginate hydrogels with different shapes and sizes, as well as multiplexed micropatterning was performed. The effects of the concentration of the alginate and CaCO(3) solutions on the dimensional resolution of alginate hydrogel formation were experimentally examined. A 3 × 3 array of cell-encapsulated alginate hydrogels was also successfully demonstrated through light-addressable electrodeposition. Our proposed method provides a programmable method for the spatiotemporally controllable assembly of cell populations into cellular microarrays and could have a wide range of biological applications in cell-based biosensing, toxicology, and drug discovery.

  5. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead.

    PubMed

    Kim, Hojeong; Hong, Hye-Jin; Jung, Juri; Kim, Seong-Hye; Yang, Ji-Won

    2010-04-15

    Nowadays, many researchers have studied the environmental application of the nanoscale zero-valent iron (nZVI) and several field applications for the groundwater remediation have been reported. Still, there are many concerns on the fate and transport of the nZVI and the corresponding risks. To avoid such concerns, it was investigated to immobilize nZVI in a support and then it was applied to degrade trichloroethylene (TCE). The nZVI and palladium-doped nZVI (Fe(0)- and Fe/Pd-alginate) were immobilized in the alginate bead where ferric and barium ions are used as the cross-linking cations of the bead. According to TEM (transmission electron microscopy), the size of the immobilized ZVI was as small as a few nanometers. From the surface analysis of the Fe/Pd-alginate, it is found that the immobilized nZVI has the core-shell structure. The core is composed of single crystal Fe(0), while most of irons on the surface are oxidized to Fe(3+). When 50 g/L of Fe/Pd-alginate (3.7 g Fe/L) was introduced to the aqueous solution, >99.8% of TCE was removed and the release of metal from the support was <3% of the loaded iron. The removal of TCE by Fe/Pd-alginate followed pseudo-first-order kinetics. The observed pseudo-first-order reaction constant (k(obs)) of Fe/Pd-alginate was 6.11 h(-1) and the mass normalized rate constant (k(m)) was 1.6 L h(-1) g(-1). The k(m) is the same order of magnitude with that of iron nanoparticles. In conclusion, it is considered that Fe/Pd-alginate can be used efficiently in the treatment of chlorinated solvent. 2009 Elsevier B.V. All rights reserved.

  6. The study of the structural properties of very low viscosity sodium alginate by small-angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badita, C. R., E-mail: ramona@tandem.nipne.ro; University of Bucharest, Faculty of Physics, Atomiştilor 405, CP MG - 11, RO – 077125, Bucharest-Magurele; Aranghel, D., E-mail: daranghe@nipne.ro

    2016-03-25

    Sodium alginate is a linear polymer extract from brown algae and it is used in the biomedical, food, cosmetics and pharmaceutical industries as solution property modifiers and gelling agents. But despite the extensive studies of the alginate gelation process, still some fundamental questions remain unresolved. The fractal behavior of very low viscosity sodium alginate solutions and their influence on the critical gelation of alginate induced by Ca{sup 2+} ions were investigated using Small-Angle Neutron Scattering (SANS) measurements. SANS data are interpreted using both standard linear plots and the Beaucage model. The scattering intensity is dependent by alginate concentration and Ca{supmore » 2+} concentration. From a critical concentration of 1.0 % w/w our polymer swelled forming spherical structures with rough surfaces. Also the addition of the salt induces the collapse and the appearance of the aggregation and clusters formation.« less

  7. Effects of process variables on the encapsulation of oil in ca-alginate capsules using an inverse gelation technique.

    PubMed

    Abang, Sariah; Chan, Eng-Seng; Poncelet, Denis

    2012-01-01

    The objective of this study was to investigate the effects of process variables on the encapsulation of oil in a calcium alginate membrane using an inverse gelation technique. A dispersion of calcium chloride solution in sunflower oil (water-in-oil emulsion) was added dropwise to the alginate solution. The migration of calcium ions to the alginate solution initiates the formation of a ca-alginate membrane around the emulsion droplets. The membrane thickness of wet capsules and the elastic modulus of dry capsules increased following first-order kinetics with an increasing curing time. An increase in the calcium chloride concentration increased the membrane thickness of wet capsules and the elastic modulus of dry capsules. An increase in the alginate concentration decreased the mean diameter of wet capsules but increased the elastic modulus of dry capsules.

  8. Ancient acquisition of "alginate utilization loci" by human gut microbiota.

    PubMed

    Mathieu, Sophie; Touvrey-Loiodice, Mélanie; Poulet, Laurent; Drouillard, Sophie; Vincentelli, Renaud; Henrissat, Bernard; Skjåk-Bræk, Gudmund; Helbert, William

    2018-05-23

    In bacteria from the phylum Bacteroidetes, the genes coding for enzymes involved in polysaccharide degradation are often colocalized and coregulated in so-called "polysaccharide utilization loci" (PULs). PULs dedicated to the degradation of marine polysaccharides (e.g. laminaran, ulvan, alginate and porphyran) have been characterized in marine bacteria. Interestingly, the gut microbiome of Japanese individuals acquired, by lateral transfer from marine bacteria, the genes involved in the breakdown of porphyran, the cell wall polysaccharide of the red seaweed used in maki. Sequence similarity analyses predict that the human gut microbiome also encodes enzymes for the degradation of alginate, the main cell wall polysaccharide of brown algae. We undertook the functional characterization of diverse polysaccharide lyases from family PL17, frequently found in marine bacteria as well as those of human gut bacteria. We demonstrate here that this family is polyspecific. Our phylogenetic analysis of family PL17 reveals that all alginate lyases, which have all the same specificity and mode of action, cluster together in a very distinct subfamily. The alginate lyases found in human gut bacteria group together in a single clade which is rooted deeply in the PL17 tree. These enzymes were found in PULs containing PL6 enzymes, which also clustered together in the phylogenetic tree of PL6. Together, biochemical and bioinformatics analyses suggest that acquisition of this system appears ancient and, because only traces of two successful transfers were detected upon inspection of PL6 and PL17 families, the pace of acquisition of marine polysaccharide degradation system is probably very slow.

  9. 3D Printing of Scaffolds for Tissue Regeneration Applications.

    PubMed

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M; Salem, Aliasger K

    2015-08-26

    The current need for organ and tissue replacement, repair, and regeneration for patients is continually growing such that supply is not meeting demand primarily due to a paucity of donors as well as biocompatibility issues leading to immune rejection of the transplant. In order to overcome these drawbacks, scientists have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired an interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity, where fine details can be included at a micrometer level. In this Review, the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering are discussed. Creating biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Lifting bloody footwear impressions using alginate casts followed by chemical enhancement.

    PubMed

    Wiesner, Sarena; Izraeli, Elad; Shor, Yaron; Domb, Avi

    2013-05-01

    A method for lifting bloody footwear impressions using alginate casts and enhancing the lifted impressions with amido black is presented. On rough or dark substrates, background interferences may conceal significant details of footwear impressions. Illumination with alternative light sources and chemically enhancing the bloody footwear impressions may reveal additional details, but sometimes, lifting footwear impressions prior to enhancing is the only way to expose hidden details (by using blood reagents not adequate on the original). Several cast formulations were tested for lifting the footwear impressions. The best results were achieved using Aroma fine®. Enhancement of the footwear impressions was attempted with several reagents prior to lifting, during the casting process, and on the lifted footwear impressions. Applying amido black to footwear impressions lifted with alginate produced the sharpest and most detailed footwear impressions. Alginate castings followed by chemical enhancement with amido black may produce high-quality footwear impressions for comparison. © 2013 American Academy of Forensic Sciences.

  11. Neoatherosclerosis 5 Years After Bioresorbable Vascular Scaffold Implantation.

    PubMed

    Moriyama, Noriaki; Shishido, Koki; Tanaka, Yutaka; Yokota, Shohei; Hayashi, Takahiro; Miyashita, Hirokazu; Koike, Tatsuya; Yokoyama, Hiroaki; Takada, Takuma; Nishimoto, Takashi; Ochiai, Tomoki; Tobita, Kazuki; Yamanaka, Futoshi; Mizuno, Shingo; Murakami, Masato; Takahashi, Saeko; Saito, Shigeru

    2018-05-01

    Data regarding neoatherosclerosis after everolimus-eluting bioresorbable vascular scaffold (BVS) (ABSORB BVS Rev. 1.1, Abbott Vascular, Santa Clara, California) implantation are limited. This study investigated the findings of neoatherosclerosis at 5 years after BVS 1.1 implantation by using multi-imaging modalities, including optical coherence tomography (OCT). Patients included in the ABSORB EXTEND (ABSORB EXTEND Clinical Investigation) trial at Shonan Kamakura General Hospital underwent OCT at baseline after the index procedure and at 1 and 5 years. Intimal plaque distributions in the in-scaffold and out-scaffold segments were analyzed. Twenty patients (22 lesions) with stable angina pectoris were enrolled. The median follow-up duration was 67 months (interquartile range: 65 to 69 months), and the mean age was 69 ± 8 years. Patients with diabetes mellitus (25%) were included. Based on the baseline angiogram, 10 (46%) lesions were type B2/C lesions. At 1 and 5 years of follow-up, significant differences in the prevalence of in-scaffold lipid-laden neointima (17% vs. 61%; p = 0.04), calcification (28% vs. 94%; p < 0.01), neovascularization (6% vs. 78%; p < 0.01), and thin-cap fibroatheroma (0% vs. 22%; p = 0.02) were found. In the out-scaffold segments, no significant difference in the plaque prevalence between 1 and 5 years was noted. The occurrence and progression of in-scaffold neoatherosclerosis with luminal narrowing was observed at 5 years after BVS 1.1 implantation. The small size of the current study warrants confirmation in larger study. (ABSORB EXTEND Clinical Investigation [ABSORB EXTEND]; NCT01023789). Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  12. Potentiometric titration for determining the composition and stability of metal(II) alginates and pectinates in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kaisheva, N. Sh.; Kaishev, A. Sh.

    2015-07-01

    The compositions and stabilities of Cu2+, Mn2+, Pb2+, Ca2+, Zn2+, Cd2+, Co2+, and Ni2+ alginates and pectinates are determined in aqueous solutions via titrimetry and potentiometry with calculations performed using Bjerrum's method, the curve intersection technique, and the equilibrium shift method. It is found that the interaction between Cu2+ and polyuronides is a stepwise process and, depending on the ligand concentration and the method of determination, Cu2+ alginate can be characterized by its ML, ML2, and ML3 compositions (where M is the metal ion and L is the structural unit of polyuronide) and stability constants logβ = 2.65, 5.00-5.70, and 7.18-7.80, respectively. The compositions of Cu2+ pectinates are ML and ML2 with logβ = 3.00 and 7.64-7.94, respectively. It is concluded that Pb2+, Ca2+, Mn2+, Zn2+, Cd2+, Co2+, and Ni2+ ions form only alginates and pectinates of ML2 composition with logβ values of 3.45 (Pb2+ alginate), 2.20 (Ca2+ alginate), 1.06 (Mn2+ alginate), 3.51 (Pb2+ pectinate), 2.35 (Ca2+ pectinate), and 1.24 (Mn2+ pectinate). The pectinates are shown to be more stable than the alginates, the most stable compounds being those formed by polyuronides and Cu2+. The least stable are those with Mn2+.

  13. Review: efficacy of alginate supplementation in relation to appetite regulation and metabolic risk factors: evidence from animal and human studies.

    PubMed

    Georg Jensen, M; Pedersen, C; Kristensen, M; Frost, G; Astrup, A

    2013-02-01

    This review provides a critical update on human and animal studies investigating the effect of alginate supplementation on appetite regulation, glycaemic and insulinemic responses, and lipid metabolism with discussion of the evidence on potential mechanisms, efficacy and tolerability. Dependent on vehicle applied for alginate supplementation, the majority of animal and human studies suggest that alginate consumption does suppress satiety and to some extent energy intake. Only one long-term intervention trial found effects on weight loss. In addition, alginates seem to exhibit beneficial influence on postprandial glucose absorption and insulin response in animals and humans. However, alginate supplementation was only found to have cholesterol-lowering properties in animals. Several mechanisms have been suggested for the positive effect observed, which involve delayed gastric emptying, increased viscosity of digesta and slowed nutrient absorption in the small intestine upon alginate gel formation. Despite reasonable efficacy and tolerability from the acute or short-term studies, we still realize there is a critical need for development of optimal alginate types and vehicles as well as studies on further long-term investigation on alginate supplementation in humans before inferring that it could be useful in the management of obesity and the metabolic syndrome. © 2012 The Authors. obesity reviews © 2012 International Association for the Study of Obesity.

  14. Bromo-oxidation reaction in enzyme-entrapped alginate hollow microfibers

    PubMed Central

    Asthana, Amit; Lee, Kwang Ho; Shin, Su-Jung; Perumal, Jayakumar; Butler, Lauren; Lee, Sang-Hoon; Kim, Dong-Pyo

    2011-01-01

    In this article, the authors present the fabrication of an enzyme-entrapped alginate hollow fiber using a microfluidic device. Further use of enzyme-entrapped alginate hollow fibers as a biocatalytic microchemical reactor for chemical synthesis is also deliberated in this article. To ensure that there is no enzyme leaching from the fiber, fiber surfaces were coated with chitosan. To confine the mobility of reactants and products within the porous hollow fibers the entire fibers were embedded into a transparent polydimethylsiloxane (PDMS) matrix which also works as a support matrix. A vanadium-containing bromoperoxidase enzyme isolated from Corallina confusa was used as a model enzyme to demonstrate the use of these alginate hollow-fiber reactors in bromo-oxidation of phenol red to bromophenol blue at different dye flow rates. Stability of the entrapped enzyme at different temperatures and the effect of the chitosan coating on the reaction conversion were also studied. It was observed that molecules as big as 27 kDa can be retained in the matrix after coating with chitosan while molecules with molecular-weight of around 378 Da can still diffuse in and out of the matrix. The kinetic conversion rate in this microfluidic bioreactor was more than 41-fold faster when compared with the standard test-tube procedure. PMID:21799723

  15. Scaffolds for peripheral nerve repair and reconstruction.

    PubMed

    Yi, Sheng; Xu, Lai; Gu, Xiaosong

    2018-06-02

    Trauma-associated peripheral nerve defect is a widespread clinical problem. Autologous nerve grafting, the current gold standard technique for the treatment of peripheral nerve injury, has many internal disadvantages. Emerging studies showed that tissue engineered nerve graft is an effective substitute to autologous nerves. Tissue engineered nerve graft is generally composed of neural scaffolds and incorporating cells and molecules. A variety of biomaterials have been used to construct neural scaffolds, the main component of tissue engineered nerve graft. Synthetic polymers (e.g. silicone, polyglycolic acid, and poly(lactic-co-glycolic acid)) and natural materials (e.g. chitosan, silk fibroin, and extracellular matrix components) are commonly used along or together to build neural scaffolds. Many other materials, including the extracellular matrix, glass fabrics, ceramics, and metallic materials, have also been used to construct neural scaffolds. These biomaterials are fabricated to create specific structures and surface features. Seeding supporting cells and/or incorporating neurotrophic factors to neural scaffolds further improve restoration effects. Preliminary studies demonstrate that clinical applications of these neural scaffolds achieve satisfactory functional recovery. Therefore, tissue engineered nerve graft provides a good alternative to autologous nerve graft and represents a promising frontier in neural tissue engineering. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Еvaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin.

    PubMed

    Aluani, Denitsa; Tzankova, Virginia; Kondeva-Burdina, Magdalena; Yordanov, Yordan; Nikolova, Elena; Odzhakov, Feodor; Apostolov, Alexandar; Markova, Tzvetanka; Yoncheva, Krassimira

    2017-10-01

    The present study deals with development and evaluation of the safety profile of chitosan/alginate nanoparticles as a platform for delivery of a natural antioxidant quercetin. The nanoparticles were prepared by varying the ratios between both biopolymers giving different size and charge of the formulations. The biocompatibility was explored in vitro in cells from different origin: cultivated HepG2 cells, isolated primary rat hepatocytes, isolated murine spleen lymphocytes and macrophages. In vivo toxicological evaluation was performed after repeated 14-day oral administration to rats. The study revealed that chitosan/alginate nanoparticles did not change body weight, the relative weight of rat livers, liver histology, hematology and biochemical parameters. The protective effects of quercetin-loaded nanoparticles were investigated in the models of iron/ascorbic acid (Fe 2+ /AA) induced lipid peroxidation in microsomes and tert-butyl hydroperoxide oxidative stress in isolated rat hepatocytes. Interesting finding was that the empty chitosan/alginate nanoparticles possessed protective activity themselves. The antioxidant effects of quercetin loaded into the nanoparticles formulated with higher concentration of chitosan were superior compared to quercetin encapsulated in nanoparticles with higher amount of sodium alginate. In conclusion, chitosan/alginate nanoparticles can be considered appropriate carrier for quercetin, combining safety profile and improved protective activity of the encapsulated antioxidant. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Microencapsulation of islets within alginate/poly(ethylene glycol) gels cross-linked via Staudinger ligation

    PubMed Central

    Hall, Kristina K.; Gattás-Asfura, Kerim M.; Stabler, Cherie L.

    2010-01-01

    Functionalized alginate and PEG polymers were used to generate covalently linked alginate-PEG (XAlgPEG) microbeads of high stability. The cell-compatible Staudinger ligation scheme was used to chemoselectively cross-link phosphine-terminated poly(ethylene glycol) (PEG) to azide-functionalized alginate, resulting in XAlgPEG hydrogels. XAlgPEG microbeads were formed by co-incubation of the two polymers, followed by ionic cross-linking of the alginate using barium ions. The enhanced stability and gel properties of the resulting XAlgPEG microbeads, as well as the compatibility of these polymers for the encapsulation of islets and beta cells lines, were investigated. Our data show that XAlgPEG microbeads exhibit superior resistance to osmotic swelling compared to traditional barium cross-linked alginate (Ba-Alg) beads, with a 5-fold reduction in observed swelling, as well as resistance to dissolution via chelation solution. Diffusion and porosity studies found XAlgPEG beads to exhibit properties comparable to standard Ba-Alg. Our data found XAlgPEG microbeads to be highly cell compatible with insulinoma cell lines, as well as rat and human pancreatic islets, where the viability and functional assessment of cells within XAlgPEG were comparable to Ba-Alg controls. The remarkable improved stability, as well as demonstrated cellular compatibility, of XAlgPEG hydrogels makes them an appealing option for a wide variety of tissue engineering applications. PMID:20654745

  18. [Strategies to choose scaffold materials for tissue engineering].

    PubMed

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which

  19. Preparation and Characterization of Azadirachtin Alginate-Biosorbent Based Formulations: Water Release Kinetics and Photodegradation Study.

    PubMed

    Flores-Céspedes, Francisco; Martínez-Domínguez, Gerardo P; Villafranca-Sánchez, Matilde; Fernández-Pérez, Manuel

    2015-09-30

    The botanical insecticide azadirachtin was incorporated in alginate-based granules to obtain controlled release formulations (CRFs). The basic formulation [sodium alginate (1.47%) - azadirachtin (0.28%) - water] was modified by the addition of biosorbents, obtaining homogeneous hybrid hydrogels with high azadirachtin entrapment efficiency. The effect on azadirachtin release rate caused by the incorporation of biosorbents such as lignin, humic acid, and olive pomace in alginate formulation was studied by immersion of the granules in water under static conditions. The addition of the biosorbents to the basic alginate formulation reduces the rate of release because the lignin-based formulation produces a slower release. Photodegradation experiments showed the potential of the prepared formulations in protecting azadirachtin against simulated sunlight, thus improving its stability. The results showed that formulation prepared with lignin provided extended protection. Therefore, this study provides a new procedure to encapsulate the botanical insecticide azadirachtin, improving its delivery and photostability.

  20. Inquiry-based science education: scaffolding pupils' self-directed learning in open inquiry

    NASA Astrophysics Data System (ADS)

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2017-12-01

    This paper describes a multiple case study on open inquiry-based learning in primary schools. During open inquiry, teachers often experience difficulties in balancing support and transferring responsibility to pupils' own learning. To facilitate teachers in guiding open inquiry, we developed hard and soft scaffolds. The hard scaffolds consisted of documents with explanations and/or exercises regarding difficult parts of the inquiry process. The soft scaffolds included explicit references to and additional explanations of the hard scaffolds. We investigated how teacher implementation of these scaffolds contributed to pupils' self-directed learning during open inquiry. Four classes of pupils, aged 10-11, were observed while they conducted an inquiry lesson module of about 10 lessons in their classrooms. Data were acquired via classroom observations, audio recordings, and interviews with teachers and pupils. The results show that after the introduction of the hard scaffolds by the teacher, pupils were able and willing to apply them to their investigations. Combining hard scaffolds with additional soft scaffolding promoted pupils' scientific understanding and contributed to a shared guidance of the inquiry process by the teacher and her pupils. Our results imply that the effective use of scaffolds is an important element to be included in teacher professionalisation.

  1. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.

    PubMed

    Liu, Shengwen; Sandner, Beatrice; Schackel, Thomas; Nicholson, LaShae; Chtarto, Abdelwahed; Tenenbaum, Liliane; Puttagunta, Radhika; Müller, Rainer; Weidner, Norbert; Blesch, Armin

    2017-09-15

    Grafting of cell-seeded alginate capillary hydrogels into a spinal cord lesion site provides an axonal bridge while physically directing regenerating axonal growth in a linear pattern. However, without an additional growth stimulus, bridging axons fail to extend into the distal host spinal cord. Here we examined whether a combinatory strategy would support regeneration of descending axons across a cervical (C5) lateral hemisection lesion in the rat spinal cord. Following spinal cord transections, Schwann cell (SC)-seeded alginate hydrogels were grafted to the lesion site and AAV5 expressing brain-derived neurotrophic factor (BDNF) under control of a tetracycline-regulated promoter was injected caudally. In addition, we examined whether SC injection into the caudal spinal parenchyma would further enhance regeneration of descending axons to re-enter the host spinal cord. Our data show that both serotonergic and descending axons traced by biotinylated dextran amine (BDA) extend throughout the scaffolds. The number of regenerating axons is significantly increased when caudal BDNF expression is activated and transient BDNF delivery is able to sustain axons after gene expression is switched off. Descending axons are confined to the caudal graft/host interface even with continuous BDNF expression for 8weeks. Only with a caudal injection of SCs, a pathway facilitating axonal regeneration through the host/graft interface is generated allowing axons to successfully re-enter the caudal spinal cord. Recovery from spinal cord injury is poor due to the limited regeneration observed in the adult mammalian central nervous system. Biomaterials, cell transplantation and growth factors that can guide axons across a lesion site, provide a cellular substrate, stimulate axon growth and have shown some promise in increasing the growth distance of regenerating axons. In the present study, we combined an alginate biomaterial with linear channels with transplantation of Schwann cells within

  2. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions.

    PubMed

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source.

  3. Encapsulated eucalyptus oil in ionically cross-linked alginate microcapsules and its controlled release.

    PubMed

    Noppakundilograt, Supaporn; Piboon, Phianghathai; Graisuwan, Wilaiporn; Nuisin, Roongkan; Kiatkamjornwong, Suda

    2015-10-20

    Sodium alginate microcapsules containing eucalyptus oil were prepared by oil-in-water emulsification via Shirasu porous glass (SPG) membrane and cross-linked by calcium chloride (CaCl2). SPG membrane pore size of 5.2μm was used to control the size of eucalyptus oil microdroplets. Effects of sodium alginate, having a mannuronic acid/guluronic acid (M/G) ratio of 1.13, eucalyptus oil and CaCl2 amounts on microdroplet sizes and size distribution were elucidated. Increasing sodium alginate amounts from 0.1 to 0.5% (wv(-1)) sodium alginate, the average droplets size increased from 42.2±2.0 to 48.5±0.6μm, with CVs of 16.5±2.2 and 30.2±4.5%, respectively. CaCl2 successfully gave narrower size distribution of cross-linked eucalyptus oil microcapsules. The optimum conditions for preparing the microcapsules, oil loading efficiency, and controlled release of the encapsulated eucalyptus oil from the microcapsules as a function of time at 40°C were investigated. Release model for the oil from microcapsules fitted Ritger-Peppas model with non-Fickian transport mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Boron nitride nanotubes enhance properties of chitosan-based scaffolds.

    PubMed

    Emanet, Melis; Kazanç, Emine; Çobandede, Zehra; Çulha, Mustafa

    2016-10-20

    With their low toxicity, high mechanical strength and chemical stability, boron nitride nanotubes (BNNTs) are good candidates to enhance the properties of polymers, composites and scaffolds. Chitosan-based scaffolds are exhaustively investigated in tissue engineering because of their biocompatibility and antimicrobial activity. However, their spontaneous degradation prevents their use in a range of tissue engineering applications. In this study, hydroxylated BNNTs (BNNT-OH) were included into a chitosan scaffold and tested for their mechanical strength, swelling behavior and biodegradability. The results show that inclusion of BNNTs-OH into the chitosan scaffold increases the mechanical strength and pore size at values optimal for high cellular proliferation and adhesion. The chitosan/BNNT-OH scaffold was also found to be non-toxic to Human Dermal Fibroblast (HDF) cells due to its slow degradation rate. HDF cell proliferation and adhesion were increased as compared to the chitosan-only scaffold as observed by scanning electron microscopy (SEM) and fluorescent microscopy images. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Development of a novel colorimetric sensor based on alginate beads for monitoring rainbow trout spoilage.

    PubMed

    Majdinasab, Marjan; Hosseini, Seyed Mohammad Hashem; Sepidname, Marziyeh; Negahdarifar, Manizheh; Li, Peiwu

    2018-05-01

    Alginate is a non-toxic, renewable, and linear copolymer obtained from the brown algae Laminaria digitata that can be easily shaped into beads. Its good gel forming properties have made it useful for entrapping food and pharmaceutical ingredients. In this study, alginate beads were used in a novel application as a colorimetric sensor in food intelligent packaging. Colorimetric sensor was developed through entrapping red cabbage extract as a pH indicator in alginate beads. The pH indicator beads were used in rainbow trout packaging for monitoring fillets spoilage. Color change of beads during fish storage was measured using the CIELab method. The alginate bead colorimetric sensor is validated by measuring total volatile basic nitrogen (TVB-N) levels and microbial populations in fish samples. Moreover, peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) were evaluated during storage. Results indicated that increasing the bacterial population during storage and production of proteolytic enzymes resulted in protein degradation, accumulation of volatile amine compounds, increase in the pH and finally color change of alginate beads. The values of TVB-N, pH, PV and TBARS increased with time of storage. The results of TVB-N and microbial growth were in accordance with color change of beads and CIELab data. Therefore, the proposed system enjoys a high sensitivity to pH variations and is capable of monitoring the spoilage of fish or other protein-rich products through its wide range of color changes. The alginate beads containing the red cabbage extract can, thus, be used as a low-cost colorimetric sensor for intelligent packaging applications.

  6. Removal of acetaminophen in water by laccase immobilized in barium alginate.

    PubMed

    Ratanapongleka, Karnika; Punbut, Supot

    2018-02-01

    This research has focused on the optimization of immobilized laccase condition and utilization in degradation of acetaminophen contaminated in aqueous solution. Laccase from Lentinus polychrous was immobilized in barium alginate. The effects of laccase immobilization such as sodium alginate concentration, barium chloride concentration and gelation time were studied. The optimal conditions for immobilization were sodium alginate 5% (w/v), barium chloride 5% (w/v) and gelation time of 60 min. Immobilized laccase was then used for acetaminophen removal. Acetaminophen was removed quickly in the first 50 min. The degradation rate and percentage of removal increased when the enzyme concentration increased. Immobilized laccase at 0.57 U/g-alginate showed the maximum removal at 94% in 240 min. The removal efficiency decreased with increasing initial acetaminophen concentration. The K m value for immobilized laccase (98.86 µM) was lower than that of free laccase (203.56 µM), indicating that substrate affinity was probably enhanced by immobilization. The immobilized enzyme exhibited high activity and good acetaminophen removal at pH 7 and temperature of 35°C. The activation energies of free and immobilized laccase for degradation of acetaminophen were 8.08 and 17.70 kJ/mol, respectively. It was also found that laccase stability to pH and temperature increased after immobilization. Furthermore, immobilized laccase could be reused for five cycles. The capability of removal and enzyme activity were retained above 70%.

  7. Alginate Immobilization of Metabolic Enzymes (AIME) for High ...

    EPA Pesticide Factsheets

    Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput screening (HTS) assays to assess chemical perturbations of molecular and cellular endpoints. A key criticism of using HTS assays for toxicity assessment is the lack of xenobiotic metabolism (XM) which precludes both metabolic detoxification as well as bioactivation of chemicals tested in vitro thereby mischaracterizing the potential risk posed by these chemicals. To address this deficiency, we have developed an extracellular platform to retrofit existing HTS assays with XM activity. This platform utilizes the S9 fraction of liver homogenate encapsulated in an alginate gel network which reduces the cytotoxicity caused by direct addition of S9 to cells in culture. Alginate microspheres containing encapsulated human liver S9 were cross-linked to solid supports extending from a 96-well plate lid and were assayed using a pro-luciferin substrate specific for CYP3A4 (IPA). We demonstrate that S9 was successfully encapsulated and remained enzymatically active post-encapsulation with 5-10X the CYP3A4 activity as compared to 1 µg solubilized human liver S9. Ketoconazole, a known inhibitor of human CYP3A4, inhibited CYP3A4 activity in a concentration-dependent manner (IC50: 0.27 µM) and inhibiti

  8. In-situ photopolymerization of monodisperse and discoid oxidized methacrylated alginate microgels in a microfluidic channel

    DOE PAGES

    Wang, Shuo; Jeon, Oju; Shankles, Peter G.; ...

    2016-02-03

    Here, we present a simple microfluidic technique to in-situ photopolymerize (by 365 nm ultraviolet) monodisperse oxidized methacrylated alginate (OMA) microgels using a photoinitiator (VA-086). By this technique, we generated monodisperse spherical OMA beads and discoid non-spherical beads with better shape consistency than ionic crosslinking methods do. We found that a high monomer concentration (8 w/v %), a high photoinitiator concentration (1.5 w/v %) and absence of oxygen are critical factors to cure OMA microgels. This photopolymerizing method is an alternative to current methods to form alginate microgels and is a simpler approach to generate non-spherical alginate microgels.

  9. Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase.

    PubMed

    Bilal, Muhammad; Asgher, Muhammad

    2015-12-10

    In view of compliance with increasingly stringent environmental legislation, an eco-friendly treatment technology of industrial dyes and effluents is a major environmental challenge in the color industry. In present study, a promising and eco-friendly entrapment approach was adopted to immobilize purified manganese peroxidase (MnP) produced from an indigenous strain of Ganoderma lucidum IBL-05 on Ca-alginate beads. The immobilized MnP was subsequently used for enhanced decolorization and detoxification of textile reactive dyes). MnP isolated from solid-state culture of G. lucidum IBL-05, presented highest immobilization yield (83.9 %) using alginate beads prepared at optimized conditions of 4 % (w/v) sodium alginate, 2 % (w/v) Calcium chloride (CaCl2) and 0.5 mg/ml enzyme concentration. Immobilization of MnP enhanced optimum temperature but caused acidic shift in optimum pH of the enzyme. The immobilized MnP showed optimum activity at pH 4.0 and 60 °C as compared to pH 5.0 and 35 °C for free enzyme. The kinetic parameters K(m) and V(max) of MnP were significantly improved by immobilization. The enhanced catalytic potential of immobilized MnP led to 87.5 %, 82.1 %, 89.4 %, 95.7 % and 83 % decolorization of Sandal-fix Red C4BLN, Sandal-fix Turq Blue GWF, Sandal-fix Foron Blue E2BLN, Sandal-fix Black CKF and Sandal-fix Golden Yellow CRL dyes, respectively. The insolubilized MnP was reusable for 7 repeated cycles in dye color removal. Furthermore, immobilized MnP also caused a significant reduction in biochemical oxygen demand (BOD) (94.61-95.47 %), chemical oxygen demand (COD) (91.18-94.85 %), and total organic carbon (TOC) (89.58-95 %) of aqueous dye solutions. G. lucidum MnP was immobilized in Ca-alginate beads by entrapment method to improve its practical effectiveness. Ca-alginate bound MnP was catalytically more vigorous, thermo-stable, reusable and worked over wider ranges of pH and temperature as compared to its free counterpart. Results of cytotoxicity like

  10. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery

    PubMed Central

    Zhang, Yeshun; Liu, Jia; Huang, Lei; Wang, Zheng; Wang, Lin

    2015-01-01

    Although alginate hydrogels have been extensively studied for tissue engineering applications, their utilization is limited by poor mechanical strength, rapid drug release, and a lack of cell adhesive ability. Aiming to improve these properties, we employ the interpenetrating hydrogel design rationale. Using alginate and sericin (a natural protein with many unique properties and a major component of silkworm silk), we develop an interpenetrating polymer network (IPN) hydrogel comprising interwoven sericin and alginate double networks. By adjusting the sericin-to-alginate ratios, IPNs’ mechanical strength can be adjusted to meet stiffness requirements for various tissue repairs. The IPNs with high sericin content show increased stability during degradation, avoiding pure alginate’s early collapse. These IPNs have high swelling ratios, benefiting various applications such as drug delivery. The IPNs sustain controlled drug release with the adjustable rates. Furthermore, these IPNs are adhesive to cells, supporting cell proliferation, long-term survival and migration. Notably, the IPNs inherit sericin’s photoluminescent property, enabling bioimaging in vivo. Together, our study indicates that the sericin-alginate IPN hydrogels may serve as a versatile platform for delivering cells and drugs, and suggests that sericin may be a building block broadly applicable for generating IPN networks with other biomaterials for diverse tissue engineering applications. PMID:26205586

  11. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery

    NASA Astrophysics Data System (ADS)

    Zhang, Yeshun; Liu, Jia; Huang, Lei; Wang, Zheng; Wang, Lin

    2015-07-01

    Although alginate hydrogels have been extensively studied for tissue engineering applications, their utilization is limited by poor mechanical strength, rapid drug release, and a lack of cell adhesive ability. Aiming to improve these properties, we employ the interpenetrating hydrogel design rationale. Using alginate and sericin (a natural protein with many unique properties and a major component of silkworm silk), we develop an interpenetrating polymer network (IPN) hydrogel comprising interwoven sericin and alginate double networks. By adjusting the sericin-to-alginate ratios, IPNs’ mechanical strength can be adjusted to meet stiffness requirements for various tissue repairs. The IPNs with high sericin content show increased stability during degradation, avoiding pure alginate’s early collapse. These IPNs have high swelling ratios, benefiting various applications such as drug delivery. The IPNs sustain controlled drug release with the adjustable rates. Furthermore, these IPNs are adhesive to cells, supporting cell proliferation, long-term survival and migration. Notably, the IPNs inherit sericin’s photoluminescent property, enabling bioimaging in vivo. Together, our study indicates that the sericin-alginate IPN hydrogels may serve as a versatile platform for delivering cells and drugs, and suggests that sericin may be a building block broadly applicable for generating IPN networks with other biomaterials for diverse tissue engineering applications.

  12. The role of alginate in Pseudomonas aeruginosa EPS adherence, viscoelastic properties and cell attachment.

    PubMed

    Orgad, Oded; Oren, Yoram; Walker, Sharon L; Herzberg, Moshe

    2011-08-01

    Among various functions, extracellular polymeric substances (EPS) provide microbial biofilms with mechanical stability and affect initial cell attachment, the first stage in the biofilm formation process. The role of alginate, an abundant polysaccharide in Pseudomonas aeruginosa biofilms, in the viscoelastic properties and adhesion kinetics of EPS was analyzed using a quartz crystal microbalance with dissipation (QCM-D) monitoring technology. EPS was extracted from two P. aeruginosa biofilms, a wild type strain, PAO1, and a mucoid strain, PAOmucA22 that over-expresses alginate production. The higher alginate content in the EPS originating from the mucoid biofilms was clearly shown to increase both the rate and the extent of attachment of the EPS, as well as the layer's thickness. Also, the presence of calcium and elevated ionic strength increased the thickness of the EPS layer. Dynamic light scattering (DLS) showed that the presence of calcium and elevated ionic strength induced intermolecular attractive interactions in the mucoid EPS molecules. For the wild type EPS, in the presence of calcium, an elevated shift in the distribution of the diffusion coefficients was observed with DLS due to a more compacted conformation of the EPS molecules. Moreover, the alginate over-expression effect on EPS adherence was compared to the effect of alginate over-expression on P. aeruginosa cell attachment. In a parallel plate flow cell, under similar hydraulic and aquatic conditions as those applied for the EPS adsorption tests in the QCM-D flow cell, reduced adherence of the mucoid strain was clearly observed compared to the wild type isogenic bacteria. The results suggest that alginate contributes to steric hindrance and shielding of cell surface features and adhesins that are known to promote cell attachment. © 2011 Taylor & Francis

  13. An alginate-antacid formulation localizes to the acid pocket to reduce acid reflux in patients with gastroesophageal reflux disease.

    PubMed

    Rohof, Wout O; Bennink, Roel J; Smout, Andre J P M; Thomas, Edward; Boeckxstaens, Guy E

    2013-12-01

    Alginate rafts (polysaccharide polymers that precipitate into a low-density viscous gel when they contact gastric acid) have been reported to form at the acid pocket, an unbuffered pool of acid that floats on top of ingested food and causes postprandial acid reflux. We studied the location of an alginate formulation in relation to the acid pocket and the corresponding effects on reflux parameters and acid pocket positioning in patients with gastroesophageal reflux disease (GERD). We randomly assigned patients with symptomatic GERD and large hiatal hernias to groups who were given either (111)In-labeled alginate-antacid (n = 8, Gaviscon Double Action Liquid) or antacid (n = 8, Antagel) after a standard meal. The relative positions of labeled alginate and acid pocket were analyzed for 2 hours by using scintigraphy; reflux episodes were detected by using high-resolution manometry and pH-impedance monitoring. The alginate-antacid label localized to the acid pocket. The number of acid reflux episodes was significantly reduced in patients receiving alginate-antacid (3.5; range, 0-6.5; P = .03) compared with those receiving antacid (15; range, 5-20), whereas time to acid reflux was significantly increased in patients receiving alginate-antacid (63 minutes; range, 23-92) vs those receiving antacid (14 minutes; range, 9-23; P = .01). The acid pocket was located below the diaphragm in 71% of patients given alginate-antacid vs 21% of those given antacid (P = .08). There was an inverse correlation between a subdiaphragm position of the acid pocket and acid reflux (r = -0.76, P < .001). In a study of 16 patients with GERD, we observed that the alginate-antacid raft localizes to the postprandial acid pocket and displaces it below the diaphragm to reduce postprandial acid reflux. These findings indicate the importance of the acid pocket in GERD pathogenesis and establish alginate-antacid as an appropriate therapy for postprandial acid reflux. Copyright © 2013 AGA Institute

  14. Introduction of N-cadherin-binding motif to alginate hydrogels for controlled stem cell differentiation.

    PubMed

    Lee, Jae Won; An, Hyoseok; Lee, Kuen Yong

    2017-07-01

    Control of stem cell fate and phenotype using biomimetic synthetic extracellular matrices (ECMs) is an important tissue engineering approach. Many studies have focused on improving cell-matrix interactions. However, proper control of cell-cell interactions using synthetic ECMs could be critical for tissue engineering, especially with undifferentiated stem cells. In this study, alginate hydrogels were modified with a peptide derived from the low-density lipoprotein receptor-related protein 5 (LRP5), which is known to bind to N-cadherin, as a cell-cell interaction motif. In vitro changes in the morphology and differentiation of mouse bone marrow stromal cells (D1 stem cells) cultured in LRP5-alginate hydrogels were investigated. LRP5-alginate gels successfully induced stem cell aggregation and enhanced chondrogenic differentiation of D1 stem cells, compared to RGD-alginate gels, at low cell density. This approach to tailoring synthetic biomimetic ECMs using cell-cell interaction motifs may be critical in tissue engineering approaches using stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications.

    PubMed

    Baniasadi, Hossein; Mashayekhan, Shohreh; Fadaoddini, Samira; Haghirsharifzamini, Yasamin

    2016-07-01

    In this study, we reported the preparation of self cross-linked oxidized alginate-gelatin hydrogels for muscle tissue engineering. The effect of oxidation degree (OD) and oxidized alginate/gelatin (OA/GEL) weight ratio were examined and the results showed that in the constant OA/GEL weight ratio, both cross-linking density and Young's modulus enhanced by increasing OD due to increment of aldehyde groups. Furthermore, the degradation rate was increased with increasing OD probably due to decrement in alginate molecular weight during oxidation reaction facilitated degradation of alginate chains. MTT cytotoxicity assays performed on Wharton's Jelly-derived umbilical cord mesenchymal stem cells cultured on hydrogels with OD of 30% showed that the highest rate of cell proliferation belong to hydrogel with OA/GEL weight ratio of 30/70. Overall, it can be concluded from all obtained results that the prepared hydrogel with OA/GEL weight ratio and OD of 30/70 and 30%, respectively, could be proper candidate for use in muscle tissue engineering. © The Author(s) 2016.

  16. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Y., E-mail: yuta-n@mech.kumamoto-u.ac.jp; Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611; Tsusu, K.

    2014-06-15

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film wasmore » controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.« less

  17. Alginate microencapsulation technology for the percutaneous delivery of adipose-derived stem cells.

    PubMed

    Moyer, Hunter R; Kinney, Ramsey C; Singh, Kimberly A; Williams, Joseph K; Schwartz, Zvi; Boyan, Barbara D

    2010-11-01

    Autologous fat is the ideal soft-tissue filler; however, its widespread application is limited because of variable clinical results and poor survival. Engineered fillers have the potential to maximize survival. Alginate is a hydrogel copolymer that can be engineered into spheres of <200 μm, thus facilitating mass transfer, allowing for subcutaneous injection, and protecting cells from shearing forces. Alginate powder was dissolved in saline, and adipose-derived stem cells (ADSCs) were encapsulated (1 million cells/mL) in alginate using an electrostatic bead generator. To assess effects of injection on cell viability, microspheres containing ADSCs were separated into 2 groups: the control group was decanted into culture wells and the injection group was mixed with basal media and injected through a 21-gauge needle into culture wells. Microbeads were cultured for 3 weeks, and cell number and viability were measured weekly using electron and confocal microscopy. To assess effects of percutaneous injection in vivo, twenty-four male nude mice were randomly separated into 2 groups and injected with either empty microcapsules or ADSC-laden microcapsules. Mice were harvested at 1 and 3 months, and the implants were examined microscopically to assess bead and cell viability. A flow rate of 5 mL/h and an electrostatic potential of 7 kV produced viable ADSC-laden microbeads of <200 μm. There were no differences in bead morphology and ADSC viability between microcapsules placed versus injected into tissue culture plates for up to 3 weeks. Microspheres implanted in a nude mouse model show durability up to 3 months with a host response around each individual sphere. ADSCs remained viable and showed signs of mitosis. ADSCs can be readily cultured, encapsulated, and injected in alginate microspheres. Stem cells suspended in alginate microspheres survive in vivo and are seen to replicate in vitro.

  18. Osteoblast Differentiation on Collagen Scaffold with Immobilized Alkaline Phosphatase.

    PubMed

    Jafary, F; Hanachi, P; Gorjipour, K

    2017-01-01

    In tissue engineering, scaffold characteristics play an important role in the biological interactions between cells and the scaffold. Cell adhesion, proliferation, and activation depend on material properties used for the fabrication of scaffolds. In the present investigation, we used collagen with proper characteristics including mechanically stability, biodegradability and low antigenicity. Optimization of the scaffold was done by immobilization of alkaline phosphatase on the collagen surface via cross-linking method, because this enzyme is one of the most important markers of osteoblast, which increases inorganic phosphate concentration and promote mineralization of bone formation. Alkaline phosphatase was immobilized on a collagen surface by 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride, as a reagent. Then, rat mesenchymal stem cells were cultured in osteogenic medium in control and treated groups. The osteogenesis-related genes were compared between treatments (differentiated cells with immobilized alkaline phosphatase/collagen scaffold) and control groups (differentiated cells on collagen surface without alkaline phosphatase) on days 3 and 7 by quantitative real-time PCR (QIAGEN software). Several genes, including alkaline phosphatase, collagen type I and osteocalcine associated with calcium binding and mineralization, showed upregulation in expression during the first 3 days, whereas tumor necrosis factor-α, acting as an inhibitor of differentiation, was down-regulated during osteogenesis. Collagen scaffold with immobilized alkaline phosphatase can be utilized as a good candidate for enhancing the differentiation of osteoblasts from mesenchymal stem cells.

  19. Design of a bioresorbable polymeric scaffold for osteoblast culture

    NASA Astrophysics Data System (ADS)

    Ditaranto, Vincent M., Jr.

    Bioresorbable polymeric scaffolds were designed for the purpose of growing rat osteosarcoma cells (ROS 17/2.8) using the compression molding method. The material used in the construction of the scaffolds was a mixture of polycaprolactone (PCL), Hydroxyapatite (HA), Glycerin (GL) and salt (NaCl) for porosity. The concentration of the several materials utilized, was determined by volume. Past research at the University of Massachusetts Lowell (UML) has successfully utilized the compression molding method for the construction of scaffolds, but was unable to accomplish the goal of long term cell survival and complete cellular proliferation throughout a three dimensional scaffold. This research investigated various concentrations of the materials and molding temperatures used for the manufacture of scaffolds in order to improve the scaffold design and address those issues. The design of the scaffold using the compression molding process is detailed in the Method and Materials section of this thesis. The porogen (salt) used for porosity was suspected as a possible source of contamination causing cell apoptosis in past studies. This research addressed the issues for cell survival and proliferation throughout a three dimensional scaffold. The leaching of the salt was one major design modification. This research successfully used ultrasonic leaching in addition to the passive method. Prior to cell culture, the scaffolds were irradiated to 2.75 Mrad, with cobalt-60 gamma radionuclide. The tissue culture consisted of two trials: (1) cell culture in scaffolds cleaned with passive leaching; (2) cell culture with scaffolds cleaned with ultrasonic leaching. Cell survival and proliferation was accomplished only with the addition of ultrasonic leaching of the scaffolds. Analysis of the scaffolds included Scanning Electron Microscopy (SEM), Nikon light microscopy and x-ray mapping of the calcium, sodium and chloride ion distribution. The cells were analyzed by Environmental Scanning

  20. [Development of computer aided forming techniques in manufacturing scaffolds for bone tissue engineering].

    PubMed

    Wei, Xuelei; Dong, Fuhui

    2011-12-01

    To review recent advance in the research and application of computer aided forming techniques for constructing bone tissue engineering scaffolds. The literature concerning computer aided forming techniques for constructing bone tissue engineering scaffolds in recent years was reviewed extensively and summarized. Several studies over last decade have focused on computer aided forming techniques for bone scaffold construction using various scaffold materials, which is based on computer aided design (CAD) and bone scaffold rapid prototyping (RP). CAD include medical CAD, STL, and reverse design. Reverse design can fully simulate normal bone tissue and could be very useful for the CAD. RP techniques include fused deposition modeling, three dimensional printing, selected laser sintering, three dimensional bioplotting, and low-temperature deposition manufacturing. These techniques provide a new way to construct bone tissue engineering scaffolds with complex internal structures. With rapid development of molding and forming techniques, computer aided forming techniques are expected to provide ideal bone tissue engineering scaffolds.

  1. Influence of internal composition on physicochemical properties of alginate aqueous-core capsules.

    PubMed

    Ben Messaoud, Ghazi; Sánchez-González, Laura; Probst, Laurent; Desobry, Stéphane

    2016-05-01

    To enhance physicochemical properties of alginate aqueous-core capsules, conventional strategies were focused in literature on designing composite and coated capsules. In the present study, own effect of liquid-core composition on mechanical and release properties was investigated. Capsules were prepared by dripping a CaCl2 solution into an alginate gelling solution. Viscosity of CaCl2 solution was adjusted by adding cationic, anionic and non-ionic naturally derived polymers, respectively chitosan, xanthan gum and guar gum. In parallel, uniform alginate hydrogels were prepared by different methods (pouring, in situ forming and mixing). Mechanical stability of capsules and plane hydrogels were respectively evaluated by compression experiments and small amplitude oscillatory shear rheology and then correlated. Capsules permeability was evaluated by monitoring diffusion of encapsulated cochineal dye, riboflavin and BSA. The core-shell interactions were investigated by ATR-FTIR. Results showed that inner polymer had an impact on membrane stability and could act as an internal coating or provide mechanical reinforcement. Mechanical properties of alginate capsules were in a good agreement with rheological behavior of plane hydrogels. Release behavior of the entrapped molecules changed considerably. This study demonstrated the importance of aqueous-core composition, and gave new insights for possible adjusting of microcapsules physicochemical properties by modulating core-shell interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Long-term Efficacy and Biocompatibility of Encapsulated Islet Transplantation With Chitosan-Coated Alginate Capsules in Mice and Canine Models of Diabetes.

    PubMed

    Yang, Hae Kyung; Ham, Dong-Sik; Park, Heon-Seok; Rhee, Marie; You, Young Hye; Kim, Min Jung; Shin, Juyoung; Kim, On-You; Khang, Gilson; Hong, Tae Ho; Kim, Ji-Won; Lee, Seung-Hwan; Cho, Jae-Hyoung; Yoon, Kun-Ho

    2016-02-01

    Clinical application of encapsulated islet transplantation is hindered by low biocompatibility of capsules leading to pericapsular fibrosis and decreased islet viability. To improve biocompatibility, we designed a novel chitosan-coated alginate capsules and compared them to uncoated alginate capsules. Alginate capsules were formed by crosslinking with BaCl2, then they were suspended in chitosan solution for 10 minutes at pH 4.5. Xenogeneic islet transplantation, using encapsulated porcine islets in 1,3-galactosyltransferase knockout mice, and allogeneic islet transplantation, using encapsulated canine islets in beagles, were performed without immunosuppressants. The chitosan-alginate capsules showed similar pore size, islet viability, and insulin secretory function compared to alginate capsules, in vitro. Xenogeneic transplantation of chitosan-alginate capsules demonstrated a trend toward superior graft survival (P = 0.07) with significantly less pericapsular fibrosis (cell adhesion score: 3.77 ± 0.41 vs 8.08 ± 0.05; P < 0.001) compared to that of alginate capsules up to 1 year after transplantation. Allogeneic transplantation of chitosan-alginate capsules normalized the blood glucose level up to 1 year with little evidence of pericapsular fibrotic overgrowth on graft explantation. The efficacy and biocompatibility of chitosan-alginate capsules were demonstrated in xenogeneic and allogeneic islet transplantations using small and large animal models of diabetes. This capsule might be a potential candidate applicable in the treatment of type 1 diabetes mellitus patients, and further studies in nonhuman primates are required.

  3. Time-Resolved Imaging Study of Jetting Dynamics during Laser Printing of Viscoelastic Alginate Solutions.

    PubMed

    Zhang, Zhengyi; Xiong, Ruitong; Mei, Renwei; Huang, Yong; Chrisey, Douglas B

    2015-06-16

    Matrix-assisted pulsed-laser evaporation direct-write (MAPLE DW) has been successfully implemented as a promising laser printing technology for various fabrication applications, in particular, three-dimensional bioprinting. Since most bioinks used in bioprinting are viscoelastic, it is of importance to understand the jetting dynamics during the laser printing of viscoelastic fluids in order to control and optimize the laser printing performance. In this study, MAPLE DW was implemented to study the jetting dynamics during the laser printing of representative viscoelastic alginate bioinks and evaluate the effects of operating conditions (e.g., laser fluence) and material properties (e.g., alginate concentration) on the jet formation performance. Through a time-resolved imaging approach, it is found that when the laser fluence increases or the alginate concentration decreases, the jetting behavior changes from no material transferring to well-defined jetting to well-defined jetting with an initial bulgy shape to jetting with a bulgy shape to pluming/splashing. For the desirable well-defined jetting regimes, as the laser fluence increases, the jet velocity and breakup length increase while the breakup time and primary droplet size decrease. As the alginate concentration increases, the jet velocity and breakup length decrease while the breakup time and primary droplet size increase. In addition, Ohnesorge, elasto-capillary, and Weber number based phase diagrams are presented to better appreciate the dependence of jetting regimes on the laser fluence and alginate concentration.

  4. Study of the physical properties of calcium alginate hydrogel beads containing vineyard pruning waste for dye removal.

    PubMed

    Vecino, X; Devesa-Rey, R; Cruz, J M; Moldes, A B

    2015-01-22

    In this work the morphological and surface properties of a biocomposite formulated with vineyard pruning waste entrapped in calcium alginate hydrogel beads were studied. The formulation of the calcium alginate hydrogel beads, containing vineyard pruning waste, was based on the capacity of this green adsorbent to remove dye compounds from wastewater, observing that in the optimum condition (1.25% of cellulosic residue, 2.2% of sodium alginate and 0.475 mol L(-1) CaCl2) the percentage of dyes was reduced up to 74.6%. At lower concentration of CaCl2, high-resolution optical images show that the elongation of the vineyard-alginate biocomposite decreased, whereas the compactness increased. Moreover, higher concentrations of cellulosic residue increased the biocomposite roundness in comparison with biocomposite without the cellulosic residue. Interferometric perfilometry analysis (Ra, Rq, Rz and Rt) revealed that high concentrations of CaCl2 increased the roughness of the of the calcium alginate hydrogel beads observing vesicles in the external surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. 3D Printing of Scaffolds for Tissue Regeneration Applications

    PubMed Central

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M.; Salem, Aliasger K.

    2015-01-01

    The current need for organ and tissue replacement, repair and regeneration for patients is continually growing such that supply is not meeting the high demand primarily due to a paucity of donors as well as biocompatibility issues that lead to immune rejection of the transplant. In an effort to overcome these drawbacks, scientists working in the field of tissue engineering and regenerative medicine have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired a growing interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity and precision, where fine details can be included at a micron level. In this review, we discuss the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering. A hybrid approach, employing both natural and synthetic materials, as well as multiple printing processes may be the key to yielding an ECM-like scaffold with high mechanical strength, porosity, interconnectivity, biocompatibility, biodegradability, and high processability. Creating such biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. PMID:26097108

  6. Effects of mixing technique on bubble formation in alginate impression material.

    PubMed

    McDaniel, Thomas F; Kramer, Robert T; Im, Francis; Snow, Dallin

    2013-01-01

    Previous studies have found that variations in mixing technique can influence the porosity content of alginate impression material. The aim of this study was twofold: determine whether bubble formation in alginate is influenced by the sequence of water/powder addition prior to mixing, and to compare 4 different mixing techniques. Manual spatulation, an automated spinning bowl, a centrifugal mixer and a vacuum mixer were evaluated for the resulting porosity in the set alginate. It was found that adding powder first, versus water first, made no difference in the bubble content using the 3 automated mixing techniques (P = 0.714). However, porosity was significantly less for powder-first trials using manual spatulation (P < 0.05). It was also found that surface porosity in the resulting impressions was significantly less for centrifugal and vacuum mixing when compared to manual spatulation, while internal porosity was significantly less for centrifugal mixing compared to all other mixing techniques (P < 0.05). The centrifugal mixing and vacuum mixing techniques required the least amount of mixing time.

  7. Scaffolded biology.

    PubMed

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  8. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.

    PubMed

    Kennedy, Kelsey M; Bhaw-Luximon, Archana; Jhurry, Dhanjay

    2017-03-01

    Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the mechanical environment in electrospun scaffolds toward constructs that may be successfully applied in tissue engineering and regenerative medicine. Tissue engineering requires design of scaffolds that interact with cells to promote tissue development. Electrospinning is a promising technique for fabricating fibrous, biomimetic scaffolds. Effects of electrospun matrix microstructure and biochemical properties on cell behavior have been extensively reviewed previously; here, we consider cell-matrix interaction from a mechanical perspective. Micromechanical properties as a driver of cell behavior has been well established in planar substrates, but more recently, many studies have provided new insights into mechanical interaction in fibrillar, electrospun environments. This review provides readers with an overview of how electrospun scaffold mechanics and

  9. The influence of polymeric component of bioactive glass-based nanocomposite paste on its rheological behaviors and in vitro responses: hyaluronic acid versus sodium alginate.

    PubMed

    Sohrabi, Mehri; Hesaraki, Saeed; Kazemzadeh, Asghar

    2014-04-01

    Different biocomposite pastes were prepared from a solid phase that was nanoparticles of sol-gel-derived bioactive glass and different liquid phases including 3% hyaluronic acid solution, sodium alginate solutions (3% and 10 %) or mixtures of hyaluronic acid and sodium alginate (3% or 10 %) solutions in 50:50 volume ratio. Rheological properties of the pastes were measured in both rotatory and oscillatory modes. The washout behavior and in vitro apatite formation of the pastes were determined by soaking them in simulated body fluid under dynamic situation for 14 days. The proliferation and alkaline phosphatase activity of MG-63 osteoblastic cells were also determined using extracts of the pastes. All pastes could be easily injected from the standard syringes with different tip diameters. All pastes exhibited visco-elastic character, but a nonthixotropic paste was obtained using hyaluronic acid in which the loss modulus was higher than the storage modulus. The thixotropy and storage modulus were increasingly improved by adding/using sodium alginate as mixing liquid. Moreover, the pastes in which the liquid phase was sodium alginate or mixture of hyaluronic acid and 10% sodium alginate solution revealed better apatite formation ability and washout resistance than that made of hyaluronic acid alone. No cytotoxicity effects were observed by extracts of the pastes on osteoblasts but better alkaline phosphatase activity was found for the pastes containing hyaluronic acid. Overall, injectable biocomposites can be produced by mixing bioactive glass nanoparticles and sodium alginate/hyaluronic acid polymers. They are potentially useful for hard and even soft tissues treatments. Copyright © 2013 Wiley Periodicals, Inc.

  10. Chitin Scaffolds in Tissue Engineering

    PubMed Central

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  11. Biochemical consequences of alginate encapsulation: a NMR study of insulin-secreting cells.

    PubMed

    Simpson, Nicholas E; Grant, Samuel C; Gustavsson, Lenita; Peltonen, Vilje-Mia; Blackband, Stephen J; Constantinidis, Ioannis

    2006-04-01

    In this study we explore the biochemical consequences of alginate encapsulation on betaTC3 cells. (13)C NMR spectroscopy and isotopomer analysis were used to investigate the effects of encapsulation on several enzymatic processes associated with the TCA cycle. Our data show statistically significant differences in various enzymatic fluxes related to the TCA cycle and insulin secretion between monolayer and alginate-encapsulated cultures. The principal cause for these effects was the process of trypsinization. Embedding the trypsinized cells in alginate beads did not have a compounded effect on the enzymatic fluxes of entrapped cells. However, an additional small but statistically significant decrease in insulin secretion was measured in encapsulated cells. Finally, differences in either enzymatic fluxes or glucose consumption as a function of bead diameter were not observed. However, differences in T(2), assessed by (1)H NMR microimaging, were observed as a function of bead diameter, suggesting that smaller beads became more organized with time in culture, while larger beads displayed a looser organization.

  12. Optimized water vapor permeability of sodium alginate films using response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Xu, Jiachao; Gao, Xin; Fu, Xiaoting

    2013-11-01

    The water vapor permeability (WVP) of films is important when developing pharmaceutical applications. Films are frequently used as coatings, and as such directly influence the quality of the medicine. The optimization of processing conditions for sodium alginate films was investigated using response surface methodology. Single-factor tests and Box-Behnken experimental design were employed. WVP was selected as the response variable, and the operating parameters for the single-factor tests were sodium alginate concentration, carboxymethyl cellulose (CMC) concentration and CaCl2 solution immersion time. The coefficient of determination ( R 2) was 0.97, indicating statistical significance. A minimal WVP of 0.389 8 g·mm/(m2·h·kPa) was achieved under the optimum conditions. These were found to be a sodium alginate concentration, CMC concentration and CaCl2 solution immersion time at 8.04%, 0.13%, and 12 min, respectively. This provides a reference for potential applications in manufacturing film-coated hard capsule shells.

  13. Microfluidics-assisted generation of stimuli-responsive hydrogels based on alginates incorporated with thermo-responsive and amphiphilic polymers as novel biomaterials.

    PubMed

    Karakasyan, C; Mathos, J; Lack, S; Davy, J; Marquis, M; Renard, D

    2015-11-01

    We used a droplet-based microfluidics technique to produce monodisperse responsive alginate-block-polyetheramine copolymer microgels. The polyetheramine group (PEA), corresponding to a propylene oxide /ethylene oxide ratio (PO/EO) of 29/6 (Jeffamine(®) M2005), was condensed, via the amine link, to alginates with various mannuronic/guluronic acids ratios and using two alginate:jeffamine mass ratios. The size of the grafted-alginate microgels varied from 60 to 80 μm depending on the type of alginate used and the degree of substitution. The droplet-based microfluidics technique offered exquisite control of both the dimension and physical chemical properties of the grafted-alginate microgels. These microgels were therefore comparable to isolated grafted-alginate chains in retaining both their amphiphilic and thermo-sensitive properties. Amphiphilicity was demonstrated at the oil-water interface where grafted-alginate microgels were found to decrease interfacial tension by ∼ 50%. The thermo-sensitivity of microgels was clearly demonstrated and a 10 to 20% reduction in size between was evidenced on increasing the temperature above the lower critical solution temperature (TLCST) of Jeffamine. In addition, the reversibility of thermo-sensitivity was demonstrated by studying the oil-water affinity of microgels with temperature after Congo red labeling. Finally, droplet-based microfluidics was found to be a good and promising tool for generating responsive biobased hydrogels for drug delivery applications and potential new colloidal stabilizers for dispersed systems such as Pickering emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Studies of ciprofloxacin encapsulation on alginate/pectin matrixes and its relationship with biodisponibility.

    PubMed

    Islan, Germán A; de Verti, Ignacio Pérez; Marchetti, Sergio G; Castro, Guillermo R

    2012-07-01

    Screening of ciprofloxacin (Cip) with selected biopolymers brings about 90% antibiotic interactions with a coacervate composed of alginate/high metoxylated pectin in 2:1 ratio. Fourier transform infrared spectroscopy analysis provides information about the nature of this interaction, revealing ionic and hydrophobic patterns among the molecules. Alginate/high methoxylated pectin gel microspheres developed by ionic gelation encapsulates 46.8 ± 5.0% Cip. The gel matrix can release Cip in a sustained manner, releasing 42.7 ± 0.2% in 2 h under simulated stomach pH conditions, and 83.3 ± 1.1% Cip release in 80 mM phosphate at pH = 7.40 (intestinal). The increase of sodium chloride from 50 to 200 mM implies a Cip release from 69.0 ± 1.5% to 95.1 ± 3.6% respectively in 2 h. Scanning electron microscopy revealed the cohesive effect of HM pectin over alginate molecules on the microsphere surface. Those results guarantee all Cip contained in the alginate/HM pectin microspheres could be released in an established kinetic profile along the gastrointestinal tract, avoiding the Cip undesirable side effects during absorption.

  15. A design protocol for tailoring ice-templated scaffold structure

    PubMed Central

    Pawelec, K. M.; Husmann, A.; Best, S. M.; Cameron, R. E.

    2014-01-01

    In this paper, we show, for the first time, the key link between scaffold architecture and latent heat evolution during the production of porous biomedical collagen structures using freeze-drying. Collagen scaffolds are used widely in the biomedical industry for the repair and reconstruction of skeletal tissues and organs. Freeze-drying of collagen slurries is a standard industrial process, and, until now, the literature has sought to characterize the influence of set processing parameters including the freezing protocol and weight percentage of collagen. However, we are able to demonstrate, by monitoring the local thermal events within the slurry during solidification, that nucleation, growth and annealing processes can be controlled, and therefore we are able to control the resulting scaffold architecture. Based on our correlation of thermal profile measurements with scaffold architecture, we hypothesize that there is a link between the fundamental freezing of ice and the structure of scaffolds, which suggests that this concept is applicable not only for collagen but also for ceramics and pharmaceuticals. We present a design protocol of strategies for tailoring the ice-templated scaffold structure. PMID:24402916

  16. Adsorption of ochratoxin A from grape juice by yeast cells immobilised in calcium alginate beads.

    PubMed

    Farbo, Maria Grazia; Urgeghe, Pietro Paolo; Fiori, Stefano; Marceddu, Salvatore; Jaoua, Samir; Migheli, Quirico

    2016-01-18

    Grape juice can be easily contaminated with ochratoxin A (OTA), one of the known mycotoxins with the greatest public health significance. Among the different approaches to decontaminate juice from this mycotoxin, microbiological methods proved efficient, inexpensive and safe, particularly the use of yeast or yeast products. To ascertain whether immobilisation of the yeast biomass would lead to successful decontamination, alginate beads encapsulating Candida intermedia yeast cells were used in our experiments to evaluate their OTA-biosorption efficacy. Magnetic calcium alginate beads were also prepared by adding magnetite in the formulation to allow fast removal from the aqueous solution with a magnet. Calcium alginate beads were added to commercial grape juice spiked with 20 μg/kg OTA and after 48 h of incubation a significant reduction (>80%), of the total OTA content was achieved, while in the subsequent phases (72-120 h) OTA was slowly released into the grape juice by alginate beads. Biosorption properties of alginate-yeast beads were tested in a prototype bioreactor consisting in a glass chromatography column packed with beads, where juice amended with OTA was slowly flowed downstream. The adoption of an interconnected scaled-up bioreactor as an efficient and safe tool to remove traces of OTA from liquid matrices is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Can alginate-based preloads increase weight loss beyond calorie restriction? A pilot study in obese individuals.

    PubMed

    Georg Jensen, M; Kristensen, M; Astrup, A

    2011-12-01

    This randomized, controlled, 2-week intervention study in 24 obese subjects tested the effect on body weight loss and gastrointestinal tolerance of consuming low viscous alginate fibre-based preloads of 3% concentration (500 ml volume) three times a day as an adjuvant to a calorie-restricted diet. The pilot study showed that intake of the alginate preloads was moderately acceptable to the majority of subjects but did not produce additional body weight loss beyond calorie restriction (-1.42 ± 0.38 kg) (n=12) compared to control group (-1.56 ± 0.21 kg) (n=8). These results do not support that alginate supplementation enhance the weight loss effects of a hypo-caloric diet, but a sufficiently powered long-term study is needed to explore whether alginate could be an aid for improving weight loss during caloric-restriction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Scaffolding Student Participation in Mathematical Practices

    ERIC Educational Resources Information Center

    Moschkovich, Judit N.

    2015-01-01

    The concept of scaffolding can be used to describe various types of adult guidance, in multiple settings, across different time scales. This article clarifies what we mean by scaffolding, considering several questions specifically for scaffolding in mathematics: What theoretical assumptions are framing scaffolding? What is being scaffolded? At…

  19. Development of serratiopeptidase and metronidazole based alginate microspheres for wound healing.

    PubMed

    Rath, G; Johal, E S; Goyal, Amit K

    2011-02-01

    The objective of this study was to establish an effective therapy system for wound management. The present work describes preparation of metronidazole/serratiopeptidase loaded alginate microspheres by emulsification method. In vitro characterizations like particle size analysis, % yield, % encapsulation, and in vitro release were carried out. Wound healing assessment was determined by physical, histological, and biochemical methods. Wound healing performance of experimental formulations was compared with marketed product in rabbits. Result obtained for alginate microspheres showed good loading efficiency with spherical in shape. Experimentation suggests wound healing is improved by using serratiopeptidase and metronidazole in full thickness wounds in rabbits.

  20. Synthesis and characterisation of multifunctional alginate microspheres via the in situ formation of ZnO quantum dots and the graft of 4-(1-pyrenyl) butyric acid to sodium alginate.

    PubMed

    Luo, Guilin; Wang, Jianxin; Wang, Yingying; Feng, Bo; Weng, Jie

    2015-01-01

    Growth factor-loaded fluorescent alginate microspheres, which can realise sustained growth factor release and fluorescence imaging, were synthesised by in situ formation of ZnO quantum dots (QDs) and covalent graft of 4-(1-pyrenyl) butyric acid (PBA). BSA was chosen as a growth factor model protein to study the release kinetic of growth factors from alginate microspheres. The microsphere size and fluorescent properties were also investigated. Investigations of cell culture were used for evaluating biocompatibility of BSA-loaded fluorescent microspheres and fluorescence imaging property of ZnO QDs and PBA-grafted sodium alginate from the microspheres. The results show that they have good fluorescent property either to microspheres or to cells and fluorescent microspheres have good biocompatibility and property in sustained release of growth factors. The obtained microspheres will be expected to realise the imaging of cells and materials and also the release of growth factor in tissue engineering or in cell culture.

  1. Mechanical characterization of collagen-glycosaminoglycan scaffolds.

    PubMed

    Harley, Brendan A; Leung, Janet H; Silva, Emilio C C M; Gibson, Lorna J

    2007-07-01

    Tissue engineering scaffolds are used extensively as three-dimensional analogs of the extracellular matrix (ECM). However, less attention has been paid to characterizing the scaffold microstructure and mechanical properties than to the processing and bioactivity of scaffolds. Collagen-glycosaminoglycan (CG) scaffolds have long been utilized as ECM analogs for the regeneration of skin and are currently being considered for the regeneration of nerve and conjunctiva. Recently a series of CG scaffolds with a uniform pore microstructure has been developed with a range of sizes of equiaxed pores. Experimental characterization and theoretical modeling techniques have previously been used to describe the pore microstructure, specific surface area, cell attachment and permeability of these variants. The results of tensile and compressive tests on these CG scaffolds and of bending tests on the individual struts that define the scaffold network are reported here. The CG scaffold variants exhibited stress-strain behavior characteristic of low-density, open-cell foams with distinct linear elastic, collapse plateau and densification regimes. Scaffolds with equiaxed pores were found to be mechanically isotropic. The independent effects of hydration level, pore size, crosslink density and relative density on the mechanical properties was determined. Independent control over scaffold stiffness and pore size was obtained. Good agreement was observed between experimental results of scaffold mechanical characterization and low-density, open-cell foam model predictions for uniform scaffolds. The characterized scaffold variants provide a standardized framework with defined extracellular environments (microstructure, mechanics) for in vitro studies of the mechanical interactions between cells and scaffolds as well as in vivo tissue engineering studies.

  2. Scaffold Design for Bone Regeneration

    PubMed Central

    Polo-Corrales, Liliana; Latorre-Esteves, Magda; Ramirez-Vick, Jaime E.

    2014-01-01

    The use of bone grafts is the standard to treat skeletal fractures, or to replace and regenerate lost bone, as demonstrated by the large number of bone graft procedures performed worldwide. The most common of these is the autograft, however, its use can lead to complications such as pain, infection, scarring, blood loss, and donor-site morbidity. The alternative is allografts, but they lack the osteoactive capacity of autografts and carry the risk of carrying infectious agents or immune rejection. Other approaches, such as the bone graft substitutes, have focused on improving the efficacy of bone grafts or other scaffolds by incorporating bone progenitor cells and growth factors to stimulate cells. An ideal bone graft or scaffold should be made of biomaterials that imitate the structure and properties of natural bone ECM, include osteoprogenitor cells and provide all the necessary environmental cues found in natural bone. However, creating living tissue constructs that are structurally, functionally and mechanically comparable to the natural bone has been a challenge so far. This focus of this review is on the evolution of these scaffolds as bone graft substitutes in the process of recreating the bone tissue microenvironment, including biochemical and biophysical cues. PMID:24730250

  3. Osteochondral tissue engineering: scaffolds, stem cells and applications

    PubMed Central

    Nooeaid, Patcharakamon; Salih, Vehid; Beier, Justus P; Boccaccini, Aldo R

    2012-01-01

    Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment. PMID:22452848

  4. Electrosprayed Multi-Core Alginate Microcapsules as Novel Self-Healing Containers

    NASA Astrophysics Data System (ADS)

    Hia, Iee Lee; Pasbakhsh, Pooria; Chan, Eng-Seng; Chai, Siang-Piao

    2016-10-01

    Alginate microcapsules containing epoxy resin were developed through electrospraying method and embedded into epoxy matrix to produce a capsule-based self-healing composite system. These formaldehyde free alginate/epoxy microcapsules were characterized via light microscope, field emission scanning electron microscope, fourier transform infrared spectroscopy and thermogravimetric analysis. Results showed that epoxy resin was successfully encapsulated within alginate matrix to form porous (multi-core) microcapsules with pore size ranged from 5-100 μm. The microcapsules had an average size of 320 ± 20 μm with decomposition temperature at 220 °C. The loading capacity of these capsules was estimated to be 79%. Under in situ healing test, impact specimens showed healing efficiency as high as 86% and the ability to heal up to 3 times due to the multi-core capsule structure and the high impact energy test that triggered the released of epoxy especially in the second and third healings. TDCB specimens showed one-time healing only with the highest healing efficiency of 76%. The single healing event was attributed by the constant crack propagation rate of TDCB fracture test. For the first time, a cost effective, environmentally benign and sustainable capsule-based self-healing system with multiple healing capabilities and high healing performance was developed.

  5. Electrosprayed Multi-Core Alginate Microcapsules as Novel Self-Healing Containers.

    PubMed

    Hia, Iee Lee; Pasbakhsh, Pooria; Chan, Eng-Seng; Chai, Siang-Piao

    2016-10-03

    Alginate microcapsules containing epoxy resin were developed through electrospraying method and embedded into epoxy matrix to produce a capsule-based self-healing composite system. These formaldehyde free alginate/epoxy microcapsules were characterized via light microscope, field emission scanning electron microscope, fourier transform infrared spectroscopy and thermogravimetric analysis. Results showed that epoxy resin was successfully encapsulated within alginate matrix to form porous (multi-core) microcapsules with pore size ranged from 5-100 μm. The microcapsules had an average size of 320 ± 20 μm with decomposition temperature at 220 °C. The loading capacity of these capsules was estimated to be 79%. Under in situ healing test, impact specimens showed healing efficiency as high as 86% and the ability to heal up to 3 times due to the multi-core capsule structure and the high impact energy test that triggered the released of epoxy especially in the second and third healings. TDCB specimens showed one-time healing only with the highest healing efficiency of 76%. The single healing event was attributed by the constant crack propagation rate of TDCB fracture test. For the first time, a cost effective, environmentally benign and sustainable capsule-based self-healing system with multiple healing capabilities and high healing performance was developed.

  6. Growth and morphology of thermophilic dairy starters in alginate beads.

    PubMed

    Lamboley, Laurence; St-Gelais, Daniel; Champagne, Claude P; Lamoureux, Maryse

    2003-06-01

    The aim of this research was to produce concentrated biomasses of thermophilic lactic starters using immobilized cell technology (ICT). Fermentations were carried out in milk using pH control with cells microentrapped in alginate beads. In the ICT fermentations, beads represented 17% of the weight. Some assays were carried out with free cells without pH control, in order to compare the ICT populations with those of classical starters. With Streptococcus thermophilus, overall populations in the fermentor were similar, but maximum bead population for (8.2 x 10(9) cfu/g beads) was 13 times higher than that obtained in a traditional starter (4.9 x 10(8) cfu/ml). For both Lactobacillus helveticus strains studied, immobilized-cell populations were about 3 x 10(9) cfu/g beads. Production of immobilized Lb. bulgaricus 210R strain was not possible, since no increases in viable counts occurred in beads. Therefore, production of concentrated cell suspension in alginate beads was more effective for S. thermophilus. Photomicrographs of cells in alginate beads demonstrated that, while the morphology of S. thermophilus remained unchanged during the ICT fermentation, immobilized cells of Lb. helveticus appeared wider. In addition, cells of Lb. bulgaricus were curved and elongated. These morphological changes would also impair the growth of immobilized lactobacilli.

  7. Chitosan-collagen scaffolds with nano/microfibrous architecture for skin tissue engineering.

    PubMed

    Sarkar, Soumi Dey; Farrugia, Brooke L; Dargaville, Tim R; Dhara, Santanu

    2013-12-01

    In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibing of collagen solution, freeze-drying, and subsequent cross-linking of two polymers. Scanning electron microscopy showed formation of layered scaffolds with nano/microfibrous architechture. Physicochemical properties of scaffolds including tensile strength, swelling behavior, and biodegradability were found satisfactory for intended application. 3T3 fibroblasts and HaCaT keratinocytes showed good in vitro cellular response on scaffolds thereby indicating the matrices, cytocompatible nature. Scaffolds tested in an ex vivo human skin equivalent wound model, as a preliminary alternative to animal testing, showed keratinocyte migration and wound re-epithelization-a prerequisite for healing and regeneration. Taken together, the herein proposed chitosan/collagen scaffold, shows good potential for skin tissue engineering. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  8. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  9. Design properties of hydrogel tissue-engineering scaffolds

    PubMed Central

    Zhu, Junmin; Marchant, Roger E

    2011-01-01

    This article summarizes the recent progress in the design and synthesis of hydrogels as tissue-engineering scaffolds. Hydrogels are attractive scaffolding materials owing to their highly swollen network structure, ability to encapsulate cells and bioactive molecules, and efficient mass transfer. Various polymers, including natural, synthetic and natural/synthetic hybrid polymers, have been used to make hydrogels via chemical or physical crosslinking. Recently, bioactive synthetic hydrogels have emerged as promising scaffolds because they can provide molecularly tailored biofunctions and adjustable mechanical properties, as well as an extracellular matrix-like microenvironment for cell growth and tissue formation. This article addresses various strategies that have been explored to design synthetic hydrogels with extracellular matrix-mimetic bioactive properties, such as cell adhesion, proteolytic degradation and growth factor-binding. PMID:22026626

  10. Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking.

    PubMed

    Yoon, Jihee; Oh, Dongyeop X; Jo, Changshin; Lee, Jinwoo; Hwang, Dong Soo

    2014-12-14

    Si-based anodes in lithium ion batteries (LIBs) have exceptionally high theoretical capacity, but the use of a Si-based anode in LIBs is problematic because the charging-discharging process can fracture the Si particles. Alginate and its derivatives show promise as Si particle binders in the anode. We show that calcium-mediated "egg-box" electrostatic cross-linking of alginate improves toughness, resilience, electrolyte desolvation of the alginate binder as a Si-binder for LIBs. Consequently, the improved mechanical properties of the calcium alginate binder compared to the sodium alginate binder and other commercial binders extend the lifetime and increase the capacity of Si-based anodes in LIBs.

  11. Cetylpyridinium chloride/magnetic alginate beads: an efficient system to remove p-nitrophenol from wastewater

    NASA Astrophysics Data System (ADS)

    Obeid, Layaly; Bee, Agnes; Talbot, Delphine; Abramson, Sebastien; Welschbillig, Mathias

    2014-05-01

    The adsorption process is one of the most efficient methods to remove pollutants from wastewater provided that suitable adsorbents are used. In order to produce environmentally safe adsorbents, natural polymers have received increasing attention in recent years. Thus, alginate, a polysaccharide extracted from brown seaweeds, is extensively used as inexpensive, non-toxic and efficient biosorbent. Furthermore, it has been shown that the encapsulation of magnetic materials in alginate beads facilitates their recovery from wastewater after the adsorption step, by the use of an external magnetic field gradient, obtained with a magnet or an electromagnet [1, 2]. In the present work, we have studied the adsorption affinity of magnetic alginate beads (called magsorbents)for p-nitrophenol (PNP), used as a hydrophobic pollutant, in presence of cetylpyridinium chloride (CPC), a cationic surfactant. First, the effect of different parameters (pH solution, contact time, surfactant initial concentration…) on the adsorption of CPC on the alginate beads was investigated. Adsorption of the surfactant occurs due to electrostatic attractions between its cationic head groups and negative carboxylate functions of the alginate beads. At larger surfactant concentrations, adsorption is also due to the interaction between the hydrocarbon chains of CPC forming aggregated structures capable of solubilizing hydrophobic solutes. In a second step, we showed that PNP can reach up to 95% of adsorption in the beads in presence of CPC, although the pollutant is poorly adsorbed by alginate in absence of the surfactant. At highest CPC concentrations, desorption occurs as micellar solubilization is preferred over coadsorption. Our magsorbents appear to efficiently remove both cationic surfactant and hydrophobic pollutants and we hope that this fundamental research will be helpful for the future development of magnetically assisted processes in water treatment plants. 1. A.Bee, D.Talbot, S.Abramson, V

  12. Preparation of bismuth titanate/calcium alginate composite bead and its photocatalytic degradation of dye pollutants

    NASA Astrophysics Data System (ADS)

    Gan, Huihui; Dong, Nanyang; Lu, Linxiao; Fu, Yan; Zhang, Huining; Qian, Yongxin; Zhang, Kefeng; Jin, Huixia

    2017-08-01

    In this study, the bismuth titanate/calcium alginate composite bead was synthesized by immobilizing bismuth titanate Bi4Ti3O12 particles into 1.5% sodium alginate (SA) matrix. The Bi4Ti3O12 particles were characterized by X-ray diffraction (XRD). The photocatalytic activity for the degradation of dye Rhodamine B in solution by as-prepared bismuth titanate/calcium alginate composite bead was investigated. The as-prepared composite beads CA/BTO-700 exhibited best photocatalytic efficiency for the degradation of RhB compared with CA/BTO-800 and CA/BTO-900 under simulated solar light. After 4 cycles in photocatalytic degradation of RhB, the degradation rate of the CA/BTO-700 nearly remained unchanged.

  13. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.

    PubMed

    Olami, Hilla; Zilberman, Meital

    2016-02-01

    Interest in the development of new bioresorbable structures for various tissue engineering applications is on the rise. In the current study, we developed and studied novel soy protein-based porous blends as potential new scaffolds for such applications. Soy protein has several advantages over the various types of natural proteins employed for biomedical applications due to its low price, non-animal origin and relatively long storage time and stability. In the present study, blends of soy protein with other polymers (gelatin, pectin and alginate) were added and chemically cross-linked using the cross-linking agents carbodiimide or glyoxal, and the porous structure was obtained through lyophilization. The resulting blend porous structures were characterized using environmental scanning microscopy, and the cytotoxicity of these scaffolds was examined in vitro. The biocompatibility of the scaffolds was also evaluated in vitro by seeding and culturing human fibroblasts on these scaffolds. Cell growth morphology and adhesion were examined histologically. The results show that these blends can be assembled into porous three-dimensional structures by combining chemical cross-linking with freeze-drying. The achieved blend structures combine suitable porosity with a large pore size (100-300 µm). The pore structure in the soy-alginate scaffolds possesses adequate interconnectivity compared to that of the soy-gelatin scaffolds. However, porous structure was not observed for the soy-pectin blend, which presented a different structure with significantly lower porosities than all other groups. The in vitro evaluation of these porous soy blends demonstrated that soy-alginate blends are advantageous over soy-gelatin blends and exhibited adequate cytocompatibility along with better cell infiltration and stability. These soy protein scaffolds may be potentially useful as a cellular/acellular platform for skin regeneration applications. © The Author(s) 2015.

  14. Braided and Stacked Electrospun Nanofibrous Scaffolds for Tendon and Ligament Tissue Engineering

    PubMed Central

    Rothrauff, Benjamin B.; Lauro, Brian B.; Yang, Guang; Debski, Richard E.; Musahl, Volker

    2017-01-01

    Tendon and ligament injuries are a persistent orthopedic challenge given their poor innate healing capacity. Nonwoven electrospun nanofibrous scaffolds composed of polyesters have been used to mimic the mechanics and topographical cues of native tendons and ligaments. However, nonwoven nanofibers have several limitations that prevent broader clinical application, including poor cell infiltration, as well as tensile and suture-retention strengths that are inferior to native tissues. In this study, multilayered scaffolds of aligned electrospun nanofibers of two designs–stacked or braided–were fabricated. Mechanical properties, including structural and mechanical properties and suture-retention strength, were determined using acellular scaffolds. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on scaffolds for up to 28 days, and assays for tenogenic differentiation, histology, and biochemical composition were performed. Braided scaffolds exhibited improved tensile and suture-retention strengths, but reduced moduli. Both scaffold designs supported expression of tenogenic markers, although the effect was greater on braided scaffolds. Conversely, cell infiltration was superior in stacked constructs, resulting in enhanced cell number, total collagen content, and total sulfated glycosaminoglycan content. However, when normalized against cell number, both designs modulated extracellular matrix protein deposition to a similar degree. Taken together, this study demonstrates that multilayered scaffolds of aligned electrospun nanofibers supported tenogenic differentiation of seeded MSCs, but the macroarchitecture is an important consideration for applications of tendon and ligament tissue engineering. PMID:28071988

  15. Braided and Stacked Electrospun Nanofibrous Scaffolds for Tendon and Ligament Tissue Engineering.

    PubMed

    Rothrauff, Benjamin B; Lauro, Brian B; Yang, Guang; Debski, Richard E; Musahl, Volker; Tuan, Rocky S

    2017-05-01

    Tendon and ligament injuries are a persistent orthopedic challenge given their poor innate healing capacity. Nonwoven electrospun nanofibrous scaffolds composed of polyesters have been used to mimic the mechanics and topographical cues of native tendons and ligaments. However, nonwoven nanofibers have several limitations that prevent broader clinical application, including poor cell infiltration, as well as tensile and suture-retention strengths that are inferior to native tissues. In this study, multilayered scaffolds of aligned electrospun nanofibers of two designs-stacked or braided-were fabricated. Mechanical properties, including structural and mechanical properties and suture-retention strength, were determined using acellular scaffolds. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on scaffolds for up to 28 days, and assays for tenogenic differentiation, histology, and biochemical composition were performed. Braided scaffolds exhibited improved tensile and suture-retention strengths, but reduced moduli. Both scaffold designs supported expression of tenogenic markers, although the effect was greater on braided scaffolds. Conversely, cell infiltration was superior in stacked constructs, resulting in enhanced cell number, total collagen content, and total sulfated glycosaminoglycan content. However, when normalized against cell number, both designs modulated extracellular matrix protein deposition to a similar degree. Taken together, this study demonstrates that multilayered scaffolds of aligned electrospun nanofibers supported tenogenic differentiation of seeded MSCs, but the macroarchitecture is an important consideration for applications of tendon and ligament tissue engineering.

  16. Composite material consisting of microporous β-TCP ceramic and alginate for delayed release of antibiotics.

    PubMed

    Seidenstuecker, Michael; Ruehe, Juergen; Suedkamp, Norbert P; Serr, Annerose; Wittmer, Annette; Bohner, Marc; Bernstein, Anke; Mayr, Hermann O

    2017-03-15

    The aim of this study was to produce a novel composite of microporous β-TCP filled with alginate and Vancomycin (VAN) to prolong the release behavior of the antibiotic for up to 28days. Using the flow chamber developed by the group, porous ceramics in a directional flow were filled with alginates of different composition containing 50mg/mL of antibiotics. After cross-linking the alginate with calcium ions, incubation took place in 10mL double-distilled water for 4weeks at 37°C. At defined times (1, 2, 3, 6, 9, 14, 20 and 28days), the liquid was completely exchanged and analyzed by capillary zone electrophoresis and microtiter trials. For statistical purposes, the mean and standard deviation were calculated and analyzed by ANOVA. The release of VAN from alginate was carried out via an external calcium source over the entire period with concentrations above the minimal inhibitory concentration (MIC). The burst release measured 35.2±1.5%. The release of VAN from alginate with an internal calcium source could only be observed over 14days. The burst release here was 61.9±4.3%. The native alginate's burst release was 54.1±7.8%; that of the sterile alginate 40.5±6.4%. The microtiter experiments revealed efficacy over the entire study period for VAN. The MIC value was determined in the release experiments as well in a range of 0.5-2.0μg/mL against Staphylococcus aureus. Drug release systems based on β-TCP and hydrogels are well documented in literature. However, in all described systems the ceramic, as granule or powder, is inserted into a hydrogel. In our work, we do the opposite, a hydrogel which acts as reservoir for antibiotics is placed into a porous biodegradable ceramic. Eventually, this system should be applied as treatment of bone infections. Contrary to the "granule in hydrogel" composites it has the advantage of mechanical stability. Thus, it can take over functions of the bone during the healing process. For a quicker translation from our scientific

  17. Sodium alginate as feed additive in cultured sea bream (Sparus aurata): does it modify the quality of the flesh?

    PubMed

    Peso-Echarri, P; Frontela-Saseta, C; Santaella-Pascual, M; García-Alcázar, A; Abdel, I; Ros-Berruezo, G; Martínez-Graciá, C

    2012-11-15

    The objective of this study was to evaluate the effect of sodium alginate obtained from brown seaweed as a prebiotic supplement to the feed of reared sea bream (Sparus aurata). Addition of the alginate to a control diet was investigated at both concentrations 2% and 5%. Proximate composition in the flesh were not modified significantly by sodium alginate inclusion in the diet of the sea bream; however the fat and ash content in the specimens supplemented with 5% alginate were found to be significantly higher than those found in individuals who were fed the control diet. No significant differences in mineral content, fatty acid profiles, cholesterol content, texture parameters and sensory acceptability among the three studied groups. Results obtained in this study offer support for the use of alginate as a feed additive in sea bream diets since no significant effects were found in the flesh quality and characteristics of commercial size sea bream. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Formation of proteoglycan and collagen-rich scaffold-free stiff cartilaginous tissue using two-step culture methods with combinations of growth factors.

    PubMed

    Miyazaki, Tatsuya; Miyauchi, Satoshi; Matsuzaka, Satoshi; Yamagishi, Chie; Kobayashi, Kohei

    2010-05-01

    Tissue-engineered cartilage may be expected to serve as an alternative to autologous chondrocyte transplantation treatment. Several methods for producing cartilaginous tissue have been reported. In this study, we describe the production of scaffold-free stiff cartilaginous tissue of pig and human, using allogeneic serum and growth factors. The tissue was formed in a mold using chondrocytes recovered from alginate bead culture and maintained in a medium with transforming growth factor-beta and several other additives. In the case of porcine tissue, the tear strength of the tissue and the contents of proteoglycan (PG) and collagen per unit of DNA increased dose-dependently with transforming growth factor-beta. The length of culture was significantly and positively correlated with thickness, tear strength, and PG and collagen contents. Tear strength showed positive high correlations with both PG and collagen contents. A positive correlation was also seen between PG content and collagen content. Similar results were obtained with human cartilaginous tissue formed from chondrocytes expanded in monolayer culture. Further, an in vivo pilot study using pig articular cartilage defect model demonstrated that the cartilaginous tissue was well integrated with surrounding tissue at 13 weeks after the implantation. In conclusion, we successfully produced implantable scaffold-free stiff cartilaginous tissue, which characterized high PG and collagen contents.

  19. Effect of magnesium alginate plus simethicone on gastroesophageal reflux in infants.

    PubMed

    Ummarino, Dario; Miele, Erasmo; Martinelli, Massimo; Scarpato, Elena; Crocetto, Felice; Sciorio, Elisa; Staiano, Annamaria

    2015-02-01

    Gastroesophageal reflux (GER) is a frequently occurring condition in infants capable of causing distressing symptoms. The aim of our study is to evaluate the efficacy of Mg alginate plus simethicone (Gastrotuss Baby, DMG Italia SRL, Pomezia, Italy), compared with rice-starch-thickened formula or with reassurance alone, in the treatment of GER in infants. The present randomized controlled trial was conducted in full-term infants affected by symptoms suggestive of GER, evaluated through a validated questionnaire (Infant Gastroesophageal Reflux Questionnaire Revised). The patients were randomized into 3 groups according to treatment (group A: Mg alginate plus simethicone; group B: thickened formula; group C: reassurance with lifestyle changes). Evaluation of symptom scores was performed after 1 month (T1) and 2 months (T2). A total of 64 (85.3%) of 75 enrolled infants (median age 5 months; range 1-10) concluded the study. After 1 month of treatment (T1), infants treated with Mg alginate plus simethicone showed a statistically significant improvement in symptoms compared with the thickened formula and reassurance (P < 0.03, <0.0001, respectively). At the end of the study, all 3 groups of patients showed a significant reduction in symptom scores (P < 0.002, <0.038, <0.03, respectively). Median symptom score values were more significantly reduced in group A than in group B and in group C (group A vs group B P < 0.002; group A vs group C P < 0.0001; group B vs group C P < 0.001). Mg alginate plus simethicone seems to be more efficacious on GER symptom scores than thickened formula and reassurance with lifestyle changes alone.

  20. Design, biometric simulation and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain.

    PubMed

    Pillay, Samantha; Pillay, Viness; Choonara, Yahya E; Naidoo, Dinesh; Khan, Riaz A; du Toit, Lisa C; Ndesendo, Valence M K; Modi, Girish; Danckwerts, Michael P; Iyuke, Sunny E

    2009-12-01

    This study focused on the design, biometric simulation and optimization of an intracranial nano-enabled scaffold device (NESD) for the site-specific delivery of dopamine (DA) as a strategy to minimize the peripheral side-effects of conventional forms of Parkinson's disease therapy. The NESD was modulated through biometric simulation and computational prototyping to produce a binary crosslinked alginate scaffold embedding stable DA-loaded cellulose acetate phthalate (CAP) nanoparticles optimized in accordance with Box-Behnken statistical designs. The physicomechanical properties of the NESD were characterized and in vitro and in vivo release studies performed. Prototyping predicted a 3D NESD model with enhanced internal micro-architecture. SEM and TEM revealed spherical, uniform and non-aggregated DA-loaded nanoparticles with the presence of CAP (FTIR bands at 1070, 1242 and 2926 cm(-1)). An optimum nanoparticle size of 197 nm (PdI=0.03), a zeta potential of -34.00 mV and a DEE of 63% was obtained. The secondary crosslinker BaCl(2) imparted crystallinity resulting in significant thermal shifts between native CAP (T(g)=160-170 degrees C; T(m)=192 degrees C) and CAP nanoparticles (T(g)=260 degrees C; T(m)=268 degrees C). DA release displayed an initial lag phase of 24 h and peaked after 3 days, maintaining favorable CSF (10 microg/mL) versus systemic concentrations (1-2 microg/mL) over 30 days and above the inherent baseline concentration of DA (1 microg/mL) following implantation in the parenchyma of the frontal lobe of the Sprague-Dawley rat model. The strategy of coupling polymeric scaffold science and nanotechnology enhanced the site-specific delivery of DA from the NESD.

  1. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering.

    PubMed

    Zhao, Wen; Li, Jiaojiao; Jin, Kaixiang; Liu, Wenlong; Qiu, Xuefeng; Li, Chenrui

    2016-02-01

    Electrospun PLGA-based scaffolds have been applied extensively in biomedical engineering, such as tissue engineering and drug delivery system. Due to lack of the recognition sites on cells, hydropholicity and single-function, the applications of PLGA fibrous scaffolds are limited. In order to tackle these issues, many works have been done to obtain functional PLGA-based scaffolds, including surface modifications, the fabrication of PLGA-based composite scaffolds and drug-loaded scaffolds. The functional PLGA-based scaffolds have significantly improved cell adhesion, attachment and proliferation. Moreover, the current study has summarized the applications of functional PLGA-based scaffolds in wound dressing, vascular and bone tissue engineering area as well as drug delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Electrochemically controlled drug-mimicking protein release from iron-alginate thin-films associated with an electrode.

    PubMed

    Jin, Zhiyuan; Güven, Güray; Bocharova, Vera; Halámek, Jan; Tokarev, Ihor; Minko, Sergiy; Melman, Artem; Mandler, Daniel; Katz, Evgeny

    2012-01-01

    Novel biocompatible hybrid-material composed of iron-ion-cross-linked alginate with embedded protein molecules has been designed for the signal-triggered drug release. Electrochemically controlled oxidation of Fe(2+) ions in the presence of soluble natural alginate polymer and drug-mimicking protein (bovine serum albumin, BSA) results in the formation of an alginate-based thin-film cross-linked by Fe(3+) ions at the electrode interface with the entrapped protein. The electrochemically generated composite thin-film was characterized by electrochemistry and atomic force microscopy (AFM). Preliminary experiments demonstrated that the electrochemically controlled deposition of the protein-containing thin-film can be performed at microscale using scanning electrochemical microscopy (SECM) as the deposition tool producing polymer-patterned spots potentially containing various entrapped drugs. Application of reductive potentials on the modified electrode produced Fe(2+) cations which do not keep complexation with alginate, thus resulting in the electrochemically triggered thin-film dissolution and the protein release. Different experimental parameters, such as the film-deposition time, concentrations of compounds and applied potentials, were varied in order to demonstrate that the electrodepositon and electrodissolution of the alginate composite film can be tuned to the optimum performance. A statistical modeling technique was applied to find optimal conditions for the formation of the composite thin-film for the maximal encapsulation and release of the drug-mimicking protein at the lowest possible potential. © 2011 American Chemical Society

  3. Release Behavior and Antibacterial Activity of Chitosan/Alginate Blends with Aloe vera and Silver Nanoparticles

    PubMed Central

    Gómez Chabala, Luisa Fernanda; Cuartas, Claudia Elena Echeverri; López, Martha Elena Londoño

    2017-01-01

    Aloe vera is a perennial plant employed for medical, pharmaceutical and cosmetic purposes that is rich in amino acids, enzymes, vitamins and polysaccharides, which are responsible for its therapeutic properties. Incorporating these properties into a biopolymer film obtained from alginate and chitosan allowed the development of a novel wound dressing with antibacterial capacity and healing effects to integrate the antibacterial capacity of silver nanoparticles with the healing and emollient properties of Aloe vera gel. Three alginate-chitosan matrices were obtained through blending methods using different proportions of alginate, chitosan, the Aloe vera (AV) gel and silver nanoparticles (AgNps), which were incorporated into the polymeric system through immersion methods. Physical, chemical and antibacterial characteristics were evaluated in each matrix. Interaction between alginate and chitosan was identified using the Fourier transform infrared spectroscopy technique (FTIR), porosity was studied using scanning electron microscopy (SEM), swelling degree was calculated by difference in weight, Aloe vera gel release capacity was estimated by applying a drug model (Peppas) and finally antibacterial capacity was evaluated against S. Aureus and P. aeruginosa. Results show that alginate-chitosan (A (1:3 Chit 1/Alg 1); B (1:3 Chit 1.5/Alg 1) and C (3:1 Chit 1/Alg 1/B12)) matrices with Aloe vera (AV) gel and silver nanoparticles (AgNps) described here displayed antibacterial properties and absorption and Aloe vera release capacity making it a potential wound dressing for minor injuries. PMID:29064431

  4. Immobilization of alginate-encapsulated Bacillus thuringiensis var. israelensis containing different multivalent counterions for mosquito control.

    PubMed

    Prabakaran, G; Hoti, S L

    2008-08-01

    Immobilized techniques have been used widely for the controlled release formulation of mosquitoes. Among the microbial formulations, polymeric matrices play an important role in the controlled release of microbial pesticide at rates sufficiently effective to kill mosquitoes in the field. The advantage of these matrices is that they enhance the stability of both spores and toxin against pH, temperature variations, and UV irradiation. The disadvantage of using calcium alginate beads is that they are unstable upon contact with phosphate of potassium or sodium ions rich in the mosquito habitats. To overcome these problems, attempts were made to encapsulate Bacillus thuringiensis var. israelensis within alginate by using different multivalent counterions, namely, calcium chloride, zinc sulfate, copper sulfate, cobalt chloride, and ferric chloride, and the beads formed were tested for its mosquito larvicidal activity. Among all the beads tested, zinc alginate beads resulted in maximum larvicidal activity of 98% (+/-1.40 SE) against Culex quinquefasciatus IIIrd instar larvae and maximum spore count of 3.36 x 10(5) (+/-5291.50 SE) CFU/ml. Zinc alginate beads maintained their structure for up to 48 h when shaken vigorously on a rotary shaker at 180 rpm in the presence of 10 mM potassium phosphate buffer (pH 6.8 +/- 0.1). In conclusion, our results suggest that the use of zinc sulfate as counterions to encapsulate B. thuringiensis var. israelensis within alginate may be a potent mosquito control program in the habitats where more phosphate ions are present.

  5. Release Behavior and Antibacterial Activity of Chitosan/Alginate Blends with Aloe vera and Silver Nanoparticles.

    PubMed

    Gómez Chabala, Luisa Fernanda; Cuartas, Claudia Elena Echeverri; López, Martha Elena Londoño

    2017-10-24

    Aloe vera is a perennial plant employed for medical, pharmaceutical and cosmetic purposes that is rich in amino acids, enzymes, vitamins and polysaccharides, which are responsible for its therapeutic properties. Incorporating these properties into a biopolymer film obtained from alginate and chitosan allowed the development of a novel wound dressing with antibacterial capacity and healing effects to integrate the antibacterial capacity of silver nanoparticles with the healing and emollient properties of Aloe vera gel. Three alginate-chitosan matrices were obtained through blending methods using different proportions of alginate, chitosan, the Aloe vera (AV) gel and silver nanoparticles (AgNps), which were incorporated into the polymeric system through immersion methods. Physical, chemical and antibacterial characteristics were evaluated in each matrix. Interaction between alginate and chitosan was identified using the Fourier transform infrared spectroscopy technique (FTIR), porosity was studied using scanning electron microscopy (SEM), swelling degree was calculated by difference in weight, Aloe vera gel release capacity was estimated by applying a drug model (Peppas) and finally antibacterial capacity was evaluated against S. Aureus and P. aeruginosa . Results show that alginate-chitosan (A (1:3 Chit 1/Alg 1); B (1:3 Chit 1.5/Alg 1) and C (3:1 Chit 1/Alg 1/B12)) matrices with Aloe vera (AV) gel and silver nanoparticles (AgNps) described here displayed antibacterial properties and absorption and Aloe vera release capacity making it a potential wound dressing for minor injuries.

  6. Design, characterisation and application of alginate-based encapsulated pig liver esterase.

    PubMed

    Pauly, Jan; Gröger, Harald; Patel, Anant V

    2018-06-05

    Encapsulation of hydrolases in biopolymer-based hydrogels often suffers from low activities and encapsulation efficiencies along with high leaching and unsatisfactory recycling properties. Exemplified for the encapsulation of pig liver esterase the coating of alginate and chitosan beads have been studied by creating various biopolymer hydrogel beads. Enzyme activity and encapsulation efficiency were notably enhanced by chitosan coating of alginate beads while leaching remained nearly unchanged. This was caused by the enzymatic reaction acidifying the matrix, which increased enzyme retention through enhanced electrostatic enzyme-alginate interaction but decreased activity through enzyme deactivation. A practical and ready-to-use method for visualising pH in beads during reaction by co-encapsulation of a conventional pH indicator was also found. Our method proves that pH control inside the beads can only be realised by buffering. The resulting beads provided a specific activity of 0.267 μmol ∙ min -1 ∙ mg -1 , effectiveness factor 0.88, encapsulation efficiency of 88%, 5% leaching and good recycling properties. This work will contribute towards better understanding and application of encapsulated hydrolases for enzymatic syntheses. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Mechanical characterization of injection-molded macro porous bioceramic bone scaffolds.

    PubMed

    Vivanco, Juan; Aiyangar, Ameet; Araneda, Aldo; Ploeg, Heidi-Lynn

    2012-05-01

    Bioactive ceramic materials like tricalcium phosphate (TCP) have been emerging as viable material alternatives to the current therapies of bone scaffolding to target fracture healing and osteoporosis. Both material and architectural characteristics play a critical role in the osteoconductive capacity and strength of bone scaffolds. Thus, the objective of this research was to investigate the sintering temperature effect of a cost-effective manufacturing process on the architecture and mechanical properties of a controlled macro porous bioceramic bone scaffold. In this study the physical and mechanical properties of β-TCP bioceramic scaffolds were investigated as a function of the sintering temperature in the range of 950-1150 °C. Physical properties investigated included bulk dimensions, pore size, and strut thickness; and, compressive mechanical properties were evaluated in air at room temperature and in saline solution at body temperature. Statistically significant increases in apparent elastic modulus were measured for scaffolds sintered at higher temperatures. Structural stiffness for all the specimens was significantly reduced when tested at body temperature in saline solution. These findings support the development of clinically successful bioceramic scaffolds that may stimulate bone regeneration and scaffold integration while providing structural integrity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. The synthesis and characterization of hydrogel chitosan-alginate with the addition of plasticizer lauric acid for wound dressing application

    NASA Astrophysics Data System (ADS)

    Izak Rudyardjo, Djony; Wijayanto, Setiawan

    2017-05-01

    The writers conducted a study about the synthesis and characterization of hydrogel chitosan-alginate by addition plasticizer lauric acid for wound dressing application. The purpose was to find out the impact of lauric acid concentration variation on hydrogel chitosan-alginate to get the best mechanical and physical properties to be applied as wound dressing in accordance with existing standards. This study used commercially chitosan from extract of shells crab, commercially-available alginate from the extract of sargassum sp, and commercial lauric acid from palm starch. The addition of lauric acid was aimed to repair mechanical properties of hydrogel. The composition of chitosan-alginate is 4:1 (v/v), while the lauric acid concentration variations are 0%, 1%, 2%, 3%, 4%, and 5% w/v. The characterization of mechanical properties test (Tensile strength and Elongation at break) at hydrogel showed the hydrogel chitosan-alginate-lauric acid have the characteristic which meets the standard of mechanical properties for human skin. The best performance of hydrogel chitosan-alginate-lauric acid was obtained by increasing luric acid concentration by 4%, which has a thickness value of 125.46±0.63 µm, elongation 28.89±1.01 %, tensile strength (9.01±0.65) MPa, and ability to absorb liquids (601.45 ±1.24) %.

  9. Pectin-chitosan-PVA nanofibrous scaffold made by electrospinning and its potential use as a skin tissue scaffold.

    PubMed

    Lin, Hsin-Yi; Chen, Hsin-Hung; Chang, Shih-Hsin; Ni, Tsung-Sheng

    2013-01-01

    Scaffolds made of chitosan nanofibers are often too mechanically weak for their application and often their manufacturing processes involve the use of harmful and flammable organic solvents. In the attempt to improve the mechanical properties of nanofibrous scaffolds made of chitosan without the use of harmful chemicals, pectin, an anionic polymer was blended with chitosan, a cationic polymer, to form a polyelectrolyte complex and electrospun into nanofibers for the first time. The electrospun chitosan-pectin scaffolds, when compared to electrospun chitosan scaffolds, had a 58% larger diameter, a 21% higher Young's modulus, a 162% larger strain at break, and a 104% higher ultimate tensile strength. Compared to the chitosan scaffolds, the chitosan-pectin scaffolds' swelling ratios decreased by 55% after 60 min in a saline solution and more quickly released the preloaded tetracycline HCl. The L929 fibroblast cells proliferated slightly slower on the chitosan-pectin scaffolds than on the chitosan scaffolds. Nonetheless, cells on both materials deposited similar levels of extracellular type I collagen on a per DNA basis. In conclusion, a novel chitosan-pectin nanofibrous scaffold with superior mechanical properties than a chitosan nanofibrous scaffold was successfully made without the use of harmful solvents.

  10. Evaluation of Osteoconductive Scaffolds in the Canine Femoral Multi-Defect Model

    PubMed Central

    Luangphakdy, Viviane; Walker, Esteban; Shinohara, Kentaro; Pan, Hui; Hefferan, Theresa; Bauer, Thomas W.; Stockdale, Linda; Saini, Sunil; Dadsetan, Mahrokh; Runge, M. Brett; Vasanji, Amit; Griffith, Linda; Yaszemski, Michael

    2013-01-01

    Treatment of large segmental bone defects remains an unsolved clinical challenge, despite a wide array of existing bone graft materials. This project was designed to rapidly assess and compare promising biodegradable osteoconductive scaffolds for use in the systematic development of new bone regeneration methodologies that combine scaffolds, sources of osteogenic cells, and bioactive scaffold modifications. Promising biomaterials and scaffold fabrication methods were identified in laboratories at Rutgers, MIT, Integra Life Sciences, and Mayo Clinic. Scaffolds were fabricated from various materials, including poly(L-lactide-co-glycolide) (PLGA), poly(L-lactide-co-ɛ-caprolactone) (PLCL), tyrosine-derived polycarbonate (TyrPC), and poly(propylene fumarate) (PPF). Highly porous three-dimensional (3D) scaffolds were fabricated by 3D printing, laser stereolithography, or solvent casting followed by porogen leaching. The canine femoral multi-defect model was used to systematically compare scaffold performance and enable selection of the most promising substrate(s) on which to add cell sourcing options and bioactive surface modifications. Mineralized cancellous allograft (MCA) was used to provide a comparative reference to the current clinical standard for osteoconductive scaffolds. Percent bone volume within the defect was assessed 4 weeks after implantation using both MicroCT and limited histomorphometry. Bone formed at the periphery of all scaffolds with varying levels of radial ingrowth. MCA produced a rapid and advanced stage of bone formation and remodeling throughout the defect in 4 weeks, greatly exceeding the performance of all polymer scaffolds. Two scaffold constructs, TyrPCPL/TCP and PPF4SLA/HAPLGA Dip, proved to be significantly better than alternative PLGA and PLCL scaffolds, justifying further development. MCA remains the current standard for osteoconductive scaffolds. PMID:23215980

  11. Evaluation of osteoconductive scaffolds in the canine femoral multi-defect model.

    PubMed

    Luangphakdy, Viviane; Walker, Esteban; Shinohara, Kentaro; Pan, Hui; Hefferan, Theresa; Bauer, Thomas W; Stockdale, Linda; Saini, Sunil; Dadsetan, Mahrokh; Runge, M Brett; Vasanji, Amit; Griffith, Linda; Yaszemski, Michael; Muschler, George F

    2013-03-01

    Treatment of large segmental bone defects remains an unsolved clinical challenge, despite a wide array of existing bone graft materials. This project was designed to rapidly assess and compare promising biodegradable osteoconductive scaffolds for use in the systematic development of new bone regeneration methodologies that combine scaffolds, sources of osteogenic cells, and bioactive scaffold modifications. Promising biomaterials and scaffold fabrication methods were identified in laboratories at Rutgers, MIT, Integra Life Sciences, and Mayo Clinic. Scaffolds were fabricated from various materials, including poly(L-lactide-co-glycolide) (PLGA), poly(L-lactide-co-ɛ-caprolactone) (PLCL), tyrosine-derived polycarbonate (TyrPC), and poly(propylene fumarate) (PPF). Highly porous three-dimensional (3D) scaffolds were fabricated by 3D printing, laser stereolithography, or solvent casting followed by porogen leaching. The canine femoral multi-defect model was used to systematically compare scaffold performance and enable selection of the most promising substrate(s) on which to add cell sourcing options and bioactive surface modifications. Mineralized cancellous allograft (MCA) was used to provide a comparative reference to the current clinical standard for osteoconductive scaffolds. Percent bone volume within the defect was assessed 4 weeks after implantation using both MicroCT and limited histomorphometry. Bone formed at the periphery of all scaffolds with varying levels of radial ingrowth. MCA produced a rapid and advanced stage of bone formation and remodeling throughout the defect in 4 weeks, greatly exceeding the performance of all polymer scaffolds. Two scaffold constructs, TyrPC(PL)/TCP and PPF4(SLA)/HA(PLGA) (Dip), proved to be significantly better than alternative PLGA and PLCL scaffolds, justifying further development. MCA remains the current standard for osteoconductive scaffolds.

  12. Acellular organ scaffolds for tumor tissue engineering

    NASA Astrophysics Data System (ADS)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  13. Saccharification of citrus wastes by immobilized polygalacturonase in an improved alginate matrix.

    PubMed

    Ramírez-Tapias, Yuly A; Lapasset Laumann, Aldana S; Britos, Claudia N; Rivero, Cintia W; Trelles, Jorge A

    2017-12-01

    Enzyme immobilization using hydrogels is a low-cost and effective system for the degradation of bulk pectin derived from orange industry residues. Polygalacturonases obtained from four different bacterial strains of Streptomyces genus were immobilized in alginate gel and assayed for pectin hydrolysis. The enzyme from Streptomyces halstedii ATCC 10897 proved to be superior and more stable within the alginate matrix. Furthermore, a new strategy to improve alginate bead stability using a mixture of calcium and strontium is reported; this technique allowed enhancing the mechanical properties by combining different amounts of these cations for ionotropic gelation. The developed biocatalyst showed maximum hydrolysis at 2 h, generating 1.54 mg/mL of reducing sugars and decreasing the viscosity of polygalacturonic acid by 98.9%. Reusability up to 29 successive reactions (58 h) demonstrated a very stable performance. The heterogeneous biocatalyst was used in the enzymatic saccharification of orange peel albedo (2.23 mg/mL) for adding value to this agro-waste by industrial exploitation.

  14. Instructive Biologic Scaffold for Functional Tissue Regeneration Following Trauma to the Extremities

    DTIC Science & Technology

    2015-09-01

    Award Number: W81XWH-12-2-0128 TITLE: Instructive Biologic Scaffold for Functional Tissue Regeneration Following Trauma to the Extremities...2014 - 29 Aug 2015 4. TITLE AND SUBTITLE Instructive Biologic Scaffold for Functional Tissue Regeneration Following Trauma to the Extremities 5a...effectiveness of a regenerative scaffold for the restoration of functional musculotendinous tissue , including the restoration of blood supply and innervation

  15. Physicochemical Characterization of a Heat Treated Calcium Alginate Dry Film Prepared with Chicken Stock.

    PubMed

    Báez, Germán D; Piccirilli, Gisela N; Ballerini, Griselda A; Frattini, Agustín; Busti, Pablo A; Verdini, Roxana A; Delorenzi, Néstor J

    2017-04-01

    Solid sodium alginate was dissolved into chicken stock in order to give a final alginate concentration of 0.9 percent (w/v). Calcium ions present in chicken stock were enough to induce ionic gelation. After drying, Fourier transform infrared spectroscopy, thickness and mechanical properties of films obtained were determined. Calcium alginate-chicken stock films were heated at 130 °C for different times between 0 and 15 min. Mechanical and optical studies, differential scanning calorimetry, visual aspect and scanning electron microscopy were carried out to describe physicochemical properties of heat treated films. Heating developed a maroon ochre color and increased the brittleness (crispness) of the films related to the intensity of the treatment. Differential scanning thermometry and study on appearance of the films suggested that Maillard reactions may be responsible for the observed changes. Maillard reactions mainly occurred between reducing sugar monomers and free amino groups of gelatin peptides present in the chicken stock, and between alginate and gelatin peptides to a lesser extent. In addition, the plasticizing effect of fat added with chicken stock was also studied. These studies suggest a potential use of heat treated chicken stock films as a substitute of roasted chicken skin. © 2017 Institute of Food Technologists®.

  16. Electrospun Silk Biomaterial Scaffolds for Regenerative Medicine

    PubMed Central

    Zhang, Xiaohui; Reagan, Michaela R; Kaplan, David L.

    2009-01-01

    Electrospinning is a versatile technique that enables the development of nanofiber-based biomaterial scaffolds. Scaffolds can be generated that are useful for tissue engineering and regenerative medicine since they mimic the nanoscale properties of certain fibrous components of the native extracellular matrix in tissues. Silk is a natural protein with excellent biocompatibility, remarkable mechanical properties as well as tailorable degradability. Integrating these protein polymer advantages with electrospinning results in scaffolds with combined biochemical, topographical and mechanical cues with versatility for a range of biomaterial, cell and tissue studies and applications. This review covers research related to electrospinning of silk, including process parameters, post treatment of the spun fibers, functionalization of nanofibers, and the potential applications for these material systems in regenerative medicine. Research challenges and future trends are also discussed. PMID:19643154

  17. Collagen Scaffolds in Bone Sialoprotein-Mediated Bone Regeneration

    PubMed Central

    Kruger, Thomas E.; Miller, Andrew H.; Wang, Jinxi

    2013-01-01

    Decades of research in bioengineering have resulted in the development of many types of 3-dimentional (3D) scaffolds for use as drug delivery systems (DDS) and for tissue regeneration. Scaffolds may be comprised of different natural fibers and synthetic polymers as well as ceramics in order to exert the most beneficial attributes including biocompatibility, biodegradability, structural integrity, cell infiltration and attachment, and neovascularization. Type I collagen scaffolds meet most of these criteria. In addition, type I collagen binds integrins through RGD and non-RGD sites which facilitates cell migration, attachment, and proliferation. Type I collagen scaffolds can be used for bone tissue repair when they are coated with osteogenic proteins such as bone morphogenic protein (BMP) and bone sialoprotein (BSP). BSP, a small integrin-binding ligand N-linked glycoprotein (SIBLING), has osteogenic properties and plays an essential role in bone formation. BSP also mediates mineral deposition, binds type I collagen with high affinity, and binds αvβ 3 and αvβ 5 integrins which mediate cell signaling. This paper reviews the emerging evidence demonstrating the efficacy of BSP-collagen scaffolds in bone regeneration. PMID:23653530

  18. Collagen scaffolds in bone sialoprotein-mediated bone regeneration.

    PubMed

    Kruger, Thomas E; Miller, Andrew H; Wang, Jinxi

    2013-01-01

    Decades of research in bioengineering have resulted in the development of many types of 3-dimentional (3D) scaffolds for use as drug delivery systems (DDS) and for tissue regeneration. Scaffolds may be comprised of different natural fibers and synthetic polymers as well as ceramics in order to exert the most beneficial attributes including biocompatibility, biodegradability, structural integrity, cell infiltration and attachment, and neovascularization. Type I collagen scaffolds meet most of these criteria. In addition, type I collagen binds integrins through RGD and non-RGD sites which facilitates cell migration, attachment, and proliferation. Type I collagen scaffolds can be used for bone tissue repair when they are coated with osteogenic proteins such as bone morphogenic protein (BMP) and bone sialoprotein (BSP). BSP, a small integrin-binding ligand N-linked glycoprotein (SIBLING), has osteogenic properties and plays an essential role in bone formation. BSP also mediates mineral deposition, binds type I collagen with high affinity, and binds α v β 3 and α v β 5 integrins which mediate cell signaling. This paper reviews the emerging evidence demonstrating the efficacy of BSP-collagen scaffolds in bone regeneration.

  19. Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface.

    PubMed

    Hirama, Hirotada; Kambe, Taisuke; Aketagawa, Kyouhei; Ota, Taku; Moriguchi, Hiroyuki; Torii, Toru

    2013-01-15

    We report a simple method for forming monodispersed, uniformly shaped gel microbeads with precisely controlled sizes. The basis of our method is the placement of monodispersed sodium alginate droplets, formed by a microfluidic device, on an agarose slab gel containing a high-osmotic-pressure gelation agent (CaCl(2) aq.): (1) the droplets are cross-linked (gelated) due to the diffusion of the gelation agent from the agarose slab gel to the sodium alginate droplets and (2) the droplets simultaneously shrink to a fraction of their original size (<100 μm in diameter) due to the diffusion of water molecules from the sodium alginate droplets to the agarose slab gel. We verified the mass transfer mechanism between the droplet and the agarose slab gel. This method circumvents the limitations of gel microbead formation, such as the need to prepare microchannels of various sizes, microchannel clogging, and the deformation of the produced gel microbeads.

  20. The role of alginates in regulation of food intake and glycemia: a gastroenterological perspective.

    PubMed

    El Khoury, D; Goff, H D; Anderson, G H

    2015-01-01

    Regulation of food intake through modulation of gastrointestinal responses to ingested foods is an ever-growing component of the therapeutic approaches targeting the obesity epidemic. Alginates, viscous and gel-forming soluble fibers isolated from the cell wall of brown seaweeds and some bacteria, are recently receiving considerable attention because of their potential role in satiation, satiety, and food intake regulation in the short term. Enhancement of gastric distension, delay of gastric emptying, and attenuation of postprandial glucose responses may constitute the basis of their physiological benefits. Offering physical, chemical, sensorial, and physiological advantages over other viscous and gel-forming fibers, alginates constitute promising functional food ingredients for the food industry. Therefore, the current review explores the role of alginates in food intake and glycemic regulation, their underlying modes of action and their potential in food applications.

  1. Alginate nanobeads interspersed fibrin network as in situ forming hydrogel for soft tissue engineering.

    PubMed

    Deepthi, S; Jayakumar, R

    2018-06-01

    Hydrogels are a class of materials that has the property of injectability and in situ gel formation. This property of hydrogels is manipulated in this study to develop a biomimetic bioresorbable injectable system of alginate nanobeads interspersed in fibrin network. Alginate nanobeads developed by calcium cross-linking yielded a size of 200-500 nm. The alginate nanobeads fibrin hydrogel was formed using dual syringe apparatus. Characterization of the in situ injectable hydrogel was done by SEM, FTIR and Rheometer. The developed hydrogel showed mechanical strength of 19 kPa which provides the suitable compliance for soft tissue engineering. Cytocompatibility studies using human umbilical cord blood derived mesenchymal stem cells showed good attachment, proliferation and infiltration within the hydrogel similar to fibrin gel. The developed in situ forming hydrogel could be a suitable delivery carrier of stem cells for soft tissue regeneration.

  2. Alginate-cellulose sulphate-oligocation microcapsules: optimization of mass transport and mechanical properties.

    PubMed

    Schuldt, U; Hunkeler, D

    2007-02-01

    Microcapsules based on polyelectrolyte complexation, where the inner phase involves a blend of alginate and sodium cellulose sulphate (SCS), have mechanical and transport properties which are relatively insensitive to the chemical composition of the rigid polyanion. Specifically, the bursting force of 400- and 1000 microm microcapsules increase slightly with the degree of substitution of the SCS, though the molar mass of the SCS appears to influence the transport properties more strongly than its composition. The concentration of the sodium chloride in the gelling batch can be varied rather extensively, with optimum properties at approximately half (i.e. 0.5 M) the level typically employed for the formation of cell-containing microcapsules. This indicates that the microcapsule properties can be tuned for biocompatability, without concern that changes to the polymer microstructure or reaction process conditions would adversely influence the bursting force or molar mass cut-off of the capsules. The alginate-SCS blend, which is typical equimass, can be slightly increased in favour of the SCS (to 55 wt%) if one seeks to mechanically optimize the system. The substitution of the oligocation polymethylene-co-guanidine with pDADMAC seems strongly undesirable. Similarly, the replacement of SCS with sulphoethylcellulose, while possible, offers no important advantages. The overall optimum conditions appear to be for a SCS with a DS of 2, prepared at 1.2 wt% of total cation with alginate. The ideal ratio, for mechanical and transport properties, of SCS to alginate is 55:45 (wt:wt), which represents a subtle modification from the classical formulation with very good biocompatability.

  3. Phenol biodegradation by immobilized Pseudomonas putida FNCC-0071 cells in alginate beads

    NASA Astrophysics Data System (ADS)

    Hakim, Lukman Nul; Rochmadi, Sutijan

    2017-06-01

    Phenol is one of industrial liquid waste which is harmful to the environment, so it must be degraded. It can be degraded by immobilized Pseudomonas putida FNCC-0071 cells. It needs the kinetics and mass transfer data to design this process which can be estimated by the proposed dynamic model in this study. This model involves simultaneous diffusion and reaction in the alginate bead and liquid bulk. The preliminary stage of phenol biodegradation process was acclimatization cells. This is the stage where cells were acclimated to phenol as carbon source (substrate). Then the acclimated cells were immobilized in alginate beads by extrusion method. The variation of the initial phenol concentration in the solution is 350 to 850 ppm where 60 g alginate bead contained by cells loaded into its solution in reactor batch, so then biodegradation occurs. In this study, the average radius of alginate bead was 0.152 cm. The occurred kinetic reaction process can be explained by Blanch kinetic model with the decreasing of parameter μmax' while the increasing values of initial phenol concentration in the same time, but the parameters KM, KM', and kt were increasing by the rising values of initial phenol concentration. The value of the parameter β is almost zero. Effective diffusivity of phenol and cells are 1.11 × 10-5±4.5% cm2 s-1 and 1.39 × 10-7± 0.04% cm2 s-1. The partition coefficient of phenol and cells are 0.39 ± 15% and 2.22 ± 18%.

  4. Auger electron and X-ray photoelectron spectroscopic study of the biocorrosion of copper by alginic acid polysaccharide

    NASA Astrophysics Data System (ADS)

    Jolley, John G.; Geesey, Gill G.; Hankins, Michael R.; Wright, Randy B.; Wichlacz, Paul L.

    1989-08-01

    Thin films (3.4 nm) of copper on germanium substrates were exposed to 2% alginic acid polysaccharide aqueous solution. Pre- and post-exposure characterization were done by Auger electron spectroscopy and X-ray photoelectron spectroscopy. Ancillary graphite furnace atomic absorption spectroscopy was used to monitor the removal process of the copper thin film from the germanium substrate. Results indicate that some of the copper was oxidized by the alginic acid solution. Some of the copper was removed from the Cu/Ge interface and incorporated into the polymer matrix. Thus, biocorrosion of copper was exhibited by the alginic acid polysaccharide.

  5. Alginate Inhibits Iron Absorption from Ferrous Gluconate in a Randomized Controlled Trial and Reduces Iron Uptake into Caco-2 Cells

    PubMed Central

    Wawer, Anna A.; Harvey, Linda J.; Dainty, Jack R.; Perez-Moral, Natalia; Sharp, Paul; Fairweather-Tait, Susan J.

    2014-01-01

    Previous in vitro results indicated that alginate beads might be a useful vehicle for food iron fortification. A human study was undertaken to test the hypothesis that alginate enhances iron absorption. A randomised, single blinded, cross-over trial was carried out in which iron absorption was measured from serum iron appearance after a test meal. Overnight-fasted volunteers (n = 15) were given a test meal of 200 g cola-flavoured jelly plus 21 mg iron as ferrous gluconate, either in alginate beads mixed into the jelly or in a capsule. Iron absorption was lower from the alginate beads than from ferrous gluconate (8.5% and 12.6% respectively, p = 0.003). Sub-group B (n = 9) consumed the test meals together with 600 mg calcium to determine whether alginate modified the inhibitory effect of calcium. Calcium reduced iron absorption from ferrous gluconate by 51%, from 11.5% to 5.6% (p = 0.014), and from alginate beads by 37%, from 8.3% to 5.2% (p = 0.009). In vitro studies using Caco-2 cells were designed to explore the reasons for the difference between the previous in vitro findings and the human study; confirmed the inhibitory effect of alginate. Beads similar to those used in the human study were subjected to simulated gastrointestinal digestion, with and without cola jelly, and the digestate applied to Caco-2 cells. Both alginate and cola jelly significantly reduced iron uptake into the cells, by 34% (p = 0.009) and 35% (p = 0.003) respectively. The combination of cola jelly and calcium produced a very low ferritin response, 16.5% (p<0.001) of that observed with ferrous gluconate alone. The results of these studies demonstrate that alginate beads are not a useful delivery system for soluble salts of iron for the purpose of food fortification. Trial Registration ClinicalTrials.gov NCT01528644 PMID:25391138

  6. Kinetic and thermodynamic properties of alginate lyase and cellulase co-produced by Exiguobacterium species Alg-S5.

    PubMed

    Mohapatra, Bidyut R

    2017-05-01

    In an effort to screen out the alginolytic and cellulolytic bacteria from the putrefying invasive seaweed Sargassum species accumulated off Barbados' coast, a potent bacterial strain was isolated. This bacterium, which simultaneously produced alginate lyase and cellulase, was identified as Exiguobacterium sp. Alg-S5 via the phylogenetic approach targeting the 16S rRNA gene. The co-produced alginate lyase and cellulase exhibited maximal enzymatic activity at pH 7.5 and at 40°C and 45°C, respectively. The K m and V max values recorded as 0.91mg/mL and 21.8U/mg-protein, respectively, for alginate lyase, and 10.9mg/mL and 74.6U/mg-protein, respectively, for cellulase. First order kinetic analysis of the thermal denaturation of the co-produced alginate lyase and cellulase in the temperature range from 40°C to 55°C revealed that both the enzymes were thermodynamically efficient by displaying higher activation energy and enthalpy of denaturation. These enzymatic properties indicate the potential industrial importance of this bacterium in algal biomass conversion. This appears to be the first report on assessing the efficacy of a bacterium for the co-production of alginate lyase and cellulase. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering

    PubMed Central

    Moda, Marlon; Cattani, Silvia Mara de Melo; de Santana, Gracy Mara; Barbieri, Juliana Abreu; Munhoz, Monique Moron; Cardoso, Túlio Pereira; Barbo, Maria Lourdes Peris; Russo, Teresa; D'Amora, Ugo; Gloria, Antonio; Ambrosio, Luigi; Duek, Eliana Aparecida de Rezende

    2013-01-01

    Abstract The inability of the avascular region of the meniscus to regenerate has led to the use of tissue engineering to treat meniscal injuries. The aim of this study was to evaluate the ability of fibrochondrocytes preseeded on PLDLA/PCL-T [poly(L-co-D,L-lactic acid)/poly(caprolactone-triol)] scaffolds to stimulate regeneration of the whole meniscus. Porous PLDLA/PCL-T (90/10) scaffolds were obtained by solvent casting and particulate leaching. Compressive modulus of 9.5±1.0 MPa and maximum stress of 4.7±0.9 MPa were evaluated. Fibrochondrocytes from rabbit menisci were isolated, seeded directly on the scaffolds, and cultured for 21 days. New Zealand rabbits underwent total meniscectomy, after which implants consisting of cell-free scaffolds or cell-seeded scaffolds were introduced into the medial knee meniscus; the negative control group consisted of rabbits that received no implant. Macroscopic and histological evaluations of the neomeniscus were performed 12 and 24 weeks after implantation. The polymer scaffold implants adapted well to surrounding tissues, without apparent rejection, infection, or chronic inflammatory response. Fibrocartilaginous tissue with mature collagen fibers was observed predominantly in implants with seeded scaffolds compared to cell-free implants after 24 weeks. Similar results were not observed in the control group. Articular cartilage was preserved in the polymeric implants and showed higher chondrocyte cell number than the control group. These findings show that the PLDLA/PCL-T 90/10 scaffold has potential for orthopedic applications since this material allowed the formation of fibrocartilaginous tissue, a structure of crucial importance for repairing injuries to joints, including replacement of the meniscus and the protection of articular cartilage from degeneration. PMID:23593566

  8. Alginate-Based Composite Sponges as Gastroretentive Carriers for Curcumin-Loaded Self-Microemulsifying Drug Delivery Systems

    PubMed Central

    Petchsomrit, Arpa; Sermkaew, Namfa; Wiwattanapatapee, Ruedeekorn

    2017-01-01

    Alginate-based composite sponges were developed as carriers to prolong the gastric retention time and controlled release of curcumin-loaded self-microemulsifying drug delivery systems (Cur-SMEDDS). Liquid Cur-SMEDDS was incorporated into a solution made up of a mixture of polymers and converted into a solid form by freeze-drying. The ratio of alginate as the main polymer, adsorbent (colloidal silicon dioxide), and additional polymers—sodium carboxymethyl cellulose (SCMC), hydroxypropyl methylcellulose (HPMC)—was varied systematically to adjust the drug loading and entrapment efficiency, sponge buoyancy, and the release profile of Cur-SMEDDS. The optimum composite sponge was fabricated from a 4% alginate and 2% HPMC mixed solution. It immediately floated on simulated gastric fluid (SGF, pH 1.2) and remained buoyant over an 8 h period. The formulation exhibited an emulsion droplet size of approximately 30 nm and provided sustained release of Cur-SMEDDS in SGF, reaching 71% within 8 h compared with only 10% release from curcumin powder. This study demonstrates the potential of alginate-based composite sponges combined with self-microemulsifying formulations for gastroretention applications involving poorly soluble compounds. PMID:28294964

  9. Electrosprayed Multi-Core Alginate Microcapsules as Novel Self-Healing Containers

    PubMed Central

    Hia, Iee Lee; Pasbakhsh, Pooria; Chan, Eng-Seng; Chai, Siang-Piao

    2016-01-01

    Alginate microcapsules containing epoxy resin were developed through electrospraying method and embedded into epoxy matrix to produce a capsule-based self-healing composite system. These formaldehyde free alginate/epoxy microcapsules were characterized via light microscope, field emission scanning electron microscope, fourier transform infrared spectroscopy and thermogravimetric analysis. Results showed that epoxy resin was successfully encapsulated within alginate matrix to form porous (multi-core) microcapsules with pore size ranged from 5–100 μm. The microcapsules had an average size of 320 ± 20 μm with decomposition temperature at 220 °C. The loading capacity of these capsules was estimated to be 79%. Under in situ healing test, impact specimens showed healing efficiency as high as 86% and the ability to heal up to 3 times due to the multi-core capsule structure and the high impact energy test that triggered the released of epoxy especially in the second and third healings. TDCB specimens showed one-time healing only with the highest healing efficiency of 76%. The single healing event was attributed by the constant crack propagation rate of TDCB fracture test. For the first time, a cost effective, environmentally benign and sustainable capsule-based self-healing system with multiple healing capabilities and high healing performance was developed. PMID:27694922

  10. Time-Dependent Effect of Encapsulating Alginate Hydrogel on Neurogenic Potential

    PubMed Central

    Razavi, Shahnaz; Khosravizadeh, Zahra; Bahramian, Hamid; Kazemi, Mohammad

    2015-01-01

    Objective Due to the restricted potential of neural stem cells for regeneration of central nervous system (CNS) after injury, providing an alternative source for neural stem cells is essential. Adipose derived stem cells (ADSCs) are multipotent cells with properties suitable for tissue engineering. In addition, alginate hydrogel is a biocompatible polysaccharide polymer that has been used to encapsulate many types of cells. The aim of this study was to assess the proliferation rate and level of expression of neural markers; NESTIN, glial fibrillary acidic protein (GFAP) and microtubule-associated protein 2 (MAP2) in encapsulated human ADSCs (hADSCs) 10 and14 days after neural induction. Materials and Methods In this experimental study, ADSCs isolated from human were cultured in neural induction media and seeded into alginate hydrogel. The rate of proliferation and differentiation of encapsulated cells were evaluated by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay, immunocytoflourescent and realtime reverse transcriptase polymerase chain reaction (RT-PCR) analyzes 10 and 14 days after induction. Results The rate of proliferation of encapsulated cells was not significantly changed with time passage. The expression of NESTIN and GFAP significantly decreased on day 14 relative to day 10 (P<0.001) but MAP2 expression was increased. Conclusion Alginate hydrogel can promote the neural differentiation of encapsulated hADSCs with time passage. PMID:26199909

  11. Cell–scaffold interaction within engineered tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haiping; Liu, Yuanyuan, E-mail: Yuanyuan_liu@shu.edu.cn; Jiang, Zhenglong

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted largemore » amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.« less

  12. Improvement of Biodesulfurization Rate of Alginate Immobilized Rhodococcus erythropolis R1.

    PubMed

    Derikvand, Peyman; Etemadifar, Zahra

    2014-03-01

    Sulfur oxides released from the burning of oil causes severe environmental pollution. The sulfur can be removed via the 4S pathway in biodesulfurization (BDS). Immobilization approaches have been developed to prevent cell contamination of oil during the BDS process. The encapsulation of Rhodococcus erythropolis R1 in calcium alginate beads was studied in order to enhance conversion of dibenzothiophene (DBT) to 2-hydroxy biphenyl (2-HBP) as the final product. Also the effect of different factors on the BDS process was investigated. Calcium alginate capsules were prepared using peristaltic pumps with different needle sizes to control the beads sizes. Scanning electron microscopy and flow cytometry methods were used to study the distribution and viability of encapsulated cells, respectively. Two non-ionic surfactants and also nano Ƴ-Al2O3were used with the ratio of 0.5% (v/v) and 1:5 (v/v) respectively to investigate their BDS efficiency. In addition, the effect of different bead sizes and different concentrations of sodium alginate in BDS activity was studied. The 2% (w/v) sodium alginate beads with 1.5mm size were found to be the optimum for beads stability and efficient 2-HBP production. The viability of encapsulated cells decreased by 12% after 20 h of desulfurization, compared to free cells. Adding the non-ionic surfactants markedly enhanced the rate of BDS, because of increasing mass transfer of DBT to the gel matrix. In addition, Span 80 was more effective than Tween 80. The nanoƳ-Al2O3 particles could increase BDS rate by up to two-folds greater than that of the control beads. The nano Ƴ-Al2O3 can improve the immobilized biocatalyst for excellent efficiency of DBT desulfurization. Also the BDS activity can be enhanced by setting the other explained factors at optimum levels.

  13. Method To immobilize the aphid-pathogenic fungus erynia neoaphidis in an alginate matrix for biocontrol

    PubMed

    Shah; Aebi; Tuor

    1998-11-01

    Erynia neoaphidis is an important fungal pathogen of aphid pests worldwide. There have been few reported attempts to formulate this natural agent for use in biocontrol. In the current study, factors involved in the immobilization of E. neoaphidis hyphae in an alginate matrix were investigated. Hyphae of two isolates cultured in liquid medium were 220 to 620 &mgr;m in length and 7 to 19 &mgr;m in diameter with a 74 to 83% cytoplasmic content. The optimal concentration of low-viscosity sodium alginate for production of conidia from entrapped hyphae was 1.5% (wt/vol), and 0.1 and 0.25 M calcium chloride were equally suitable for use as the gelling solution. Alginate beads were rinsed with 10% sucrose after gelling. However, beads should not be left for longer than 40 min in 0.1 M calcium chloride or 10% sucrose to prevent a 10% loss in conidial production. A 40% (vol/vol) concentration of fungal biomass produced significantly more conidia than either 20% or the standard concentration of 10%. This effect persisted even after beads were dried overnight in a laminar flow hood and stored at 4 degreesC for 4 days. Conidia from freshly produced alginate beads caused 27 to 32% infection in Pea aphids as determined by standardized laboratory bioassays. This finding was not significantly different from infections in aphids inoculated with fresh mycelial mats or plugs from Petri dish cultures. In conclusion, algination appears to be a promising technique for utilizing E. neoaphidis in the biocontrol of aphid pests.

  14. Combination of sodium caseinate and succinylated alginate improved stability of high fat fish oil-in-water emulsions.

    PubMed

    Yesiltas, Betül; Sørensen, Ann-Dorit Moltke; García-Moreno, Pedro J; Anankanbil, Sampson; Guo, Zheng; Jacobsen, Charlotte

    2018-07-30

    Sodium caseinate (CAS) and commercial sodium alginate (CA), long chain modified alginate (LCMA) or short chain modified alginate (SCMA) were used in combination for emulsifying and stabilizing high fat (50-70%) fish oil-in-water emulsions. Physical (creaming, droplet size, viscosity and protein determination) and oxidative (primary and secondary oxidation products) stabilities of the emulsions were studied during 12 days of storage. Creaming stability was higher for emulsions produced with alginates and CAS compared to emulsions prepared with only CAS. Combined use of CAS + LCMA performed better in terms of physical stability compared to emulsions produced with only CAS. However, the oxidative stability of this emulsion was inferior probably due to the presence of an unsaturated carbon chain in LCMA structure. CAS + SCMA emulsions not only showed better physical stability such as smaller droplet size, lower creaming and higher viscosity, but also had an improved oxidative stability than emulsions produced with only CAS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Formation and oral administration of alginate microspheres loaded with pDNA coding for lymphocystis disease virus (LCDV) to Japanese flounder.

    PubMed

    Tian, Ji-Yuan; Sun, Xiu-Qin; Chen, Xi-Guang

    2008-05-01

    Oral delivery of plasmid DNA (pDNA) is a desirable approach for fish immunization in intensive culture. However, its effectiveness is limited because of possible degradation of pDNA in the fish's digestive system. In this report, alginate microspheres loaded with pDNA coding for fish lymphocystis disease virus (LCDV) and green fluorescent protein were prepared with a modified oil containing water (W/O) emulsification method. Yield, loading percent and encapsulation efficiency of alginate microspheres were 90.5%, 1.8% and 92.7%, respectively. The alginate microspheres had diameters of less than 10 microm, and their shape was spherical. As compared to sodium alginate, a remarkable increase of DNA-phosphodiester and DNA-phosphomonoester bonds was observed for alginate microspheres loaded with pDNA by Fourier transform infrared (FTIR) spectroscopic analysis. Agarose gel electrophoresis showed a little supercoiled pDNA was transformed to open circular and linear pDNA during encapsulation. The cumulative release of pDNA in alginate microspheres was or=0.3) for anti-LCDV antibody from week 3 to week 16 for fish orally vaccinated with alginate microspheres loaded with pDNA, in comparison with fish orally vaccinated with naked pDNA. Our results display that alginate microspheres obtained by W/O emulsification are promising carriers for oral delivery of pDNA. This encapsulation technique has the potential for DNA vaccine delivery applications due to its ease of operation, low cost and significant immune effect.

  16. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds.

    PubMed

    Lim, Janice; You, Mingliang; Li, Jian; Li, Zibiao

    2017-10-01

    Polyhydroxyalkanoates (PHAs) are a class of biodegradable polymers derived from microorganisms. On top of their biodegradability and biocompatibility, different PHA types can contribute to varying mechanical and chemical properties. This has led to increasing attention to the use of PHAs in numerous biomedical applications over the past few decades. Bone tissue engineering refers to the regeneration of new bone through providing mechanical support while inducing cell growth on the PHA scaffolds having a porous structure for tissue regeneration. This review first introduces the various properties PHA scaffold that make them suitable for bone tissue engineering such as biocompatibility, biodegradability, mechanical properties as well as vascularization. The typical fabrication techniques of PHA scaffolds including electrospinning, salt-leaching and solution casting are further discussed, followed by the relatively new technology of using 3D printing in PHA scaffold fabrication. Finally, the recent progress of using different types of PHAs scaffold in bone tissue engineering applications are summarized in intrinsic PHA/blends forms or as composites with other polymeric or inorganic hybrid materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Finding the Optimal Scaffoldings for Learners' Epistemological Beliefs during Ill-Structured Problem Solving

    ERIC Educational Resources Information Center

    Shin, Suhkyung; Song, Hae-Deok

    2016-01-01

    This study investigates how scaffolding type and learners' epistemological beliefs influence ill-structured problem solving. The independent variables in this study include the type of scaffolding (task-supported, self-monitoring) and the student's epistemological belief level (more advanced, less advanced). The dependent variables include three…

  18. Metallic Scaffolds for Bone Regeneration

    PubMed Central

    Alvarez, Kelly; Nakajima, Hideo

    2009-01-01

    Bone tissue engineering is an emerging interdisciplinary field in Science, combining expertise in medicine, material science and biomechanics. Hard tissue engineering research is focused mainly in two areas, osteo and dental clinical applications. There is a lot of exciting research being performed worldwide in developing novel scaffolds for tissue engineering. Although, nowadays the majority of the research effort is in the development of scaffolds for non-load bearing applications, primarily using soft natural or synthetic polymers or natural scaffolds for soft tissue engineering; metallic scaffolds aimed for hard tissue engineering have been also the subject of in vitro and in vivo research and industrial development. In this article, descriptions of the different manufacturing technologies available to fabricate metallic scaffolds and a compilation of the reported biocompatibility of the currently developed metallic scaffolds have been performed. Finally, we highlight the positive aspects and the remaining problems that will drive future research in metallic constructs aimed for the reconstruction and repair of bone.

  19. Self-assembled gold coating enhances X-ray imaging of alginate microcapsules

    NASA Astrophysics Data System (ADS)

    Qie, Fengxiang; Astolfo, Alberto; Wickramaratna, Malsha; Behe, Martin; Evans, Margaret D. M.; Hughes, Timothy C.; Hao, Xiaojuan; Tan, Tianwei

    2015-01-01

    NPs (PAuNPs) were coated onto the surface of negatively charged alginate MCs resulting in hybrids which possessed low cytotoxicity and high mechanical stability in vitro. As a result of their high localized Au concentration, the hybrid MCs exhibited a distinctive bright circular ring even with a low X-ray dose and rapid scanning in post-mortem imaging experiments facilitating their positive identification and potentially enabling them to be used for in vivo tracking experiments over multiple time-points. Electronic supplementary information (ESI) available: Including NMR spectra and TGA chromatogram of polymers, SEM imaging, EDS analysis, UV-Visible spectra of MCs and CT images of unlabeled MCs. See DOI: 10.1039/c4nr06692h

  20. Alginate Sulfates Mitigate Binding Kinetics of Proangiogenic Growth Factors with Receptors toward Revascularization.

    PubMed

    Schmidt, John; Lee, Min Kyung; Ko, Eunkyung; Jeong, Jae Hyun; DiPietro, Luisa A; Kong, Hyunjoon

    2016-07-05

    Ever since proangiogenic growth factors have been used as a vascular medicine to treat tissue ischemia, efforts have been increasingly made to develop a method to enhance efficacy of growth factors in recreating microvascular networks, especially at low dose. To this end, we hypothesized that polysaccharides substituted with sulfate groups would amplify growth factor receptor activation and stimulate phenotypic activities of endothelial cells involved in neovascularization. We examined this hypothesis by modifying alginate with a controlled number of sulfates and using it to derive a complex with vascular endothelial growth factor (VEGF), as confirmed with fluorescence resonance energy transfer (FRET) assay. Compared with the bare VEGF and with a mixture of VEGF and unmodified alginates, the VEGF complexed with alginate sulfates significantly reduced the dissociation rate with the VEGFR-2, elevated VEGFR-2 phosphorylation level, and increased the number of endothelial sprouts in vitro. Furthermore, the VEGF-alginate sulfate complex improved recovery of perfusion in an ischemic hindlimb of a mouse due to the increase of the capillary density. Overall, this study not only demonstrates an important cofactor of VEGF but also uncovers an underlying mechanism by which the cofactor mitigates the VEGF-induced signaling involved in the binding kinetics and activation of VEGFR. We therefore believe that the results of this study will be highly useful in improving the therapeutic efficacy of various growth factors and expediting their uses in clinical treatments of wounds and tissue defects.