Data-adaptive algorithms for calling alleles in repeat polymorphisms.
Stoughton, R; Bumgarner, R; Frederick, W J; McIndoe, R A
1997-01-01
Data-adaptive algorithms are presented for separating overlapping signatures of heterozygotic allele pairs in electrophoresis data. Application is demonstrated for human microsatellite CA-repeat polymorphisms in LiCor 4000 and ABI 373 data. The algorithms allow overlapping alleles to be called correctly in almost every case where a trained observer could do so, and provide a fast automated objective alternative to human reading of the gels. The algorithm also supplies an indication of confidence level which can be used to flag marginal cases for verification by eye, or as input to later stages of statistical analysis. PMID:9059812
Automated DNA Base Pair Calling Algorithm
Energy Science and Technology Software Center (ESTSC)
1999-07-07
The procedure solves the problem of calling the DNA base pair sequence from two channel electropherogram separations in an automated fashion. The core of the program involves a peak picking algorithm based upon first, second, and third derivative spectra for each electropherogram channel, signal levels as a function of time, peak spacing, base pair signal to noise sequence patterns, frequency vs ratio of the two channel histograms, and confidence levels generated during the run. Themore » ratios of the two channels at peak centers can be used to accurately and reproducibly determine the base pair sequence. A further enhancement is a novel Gaussian deconvolution used to determine the peak heights used in generating the ratio.« less
A fast meteor detection algorithm
NASA Astrophysics Data System (ADS)
Gural, P.
2016-01-01
A low latency meteor detection algorithm for use with fast steering mirrors had been previously developed to track and telescopically follow meteors in real-time (Gural, 2007). It has been rewritten as a generic clustering and tracking software module for meteor detection that meets both the demanding throughput requirements of a Raspberry Pi while also maintaining a high probability of detection. The software interface is generalized to work with various forms of front-end video pre-processing approaches and provides a rich product set of parameterized line detection metrics. Discussion will include the Maximum Temporal Pixel (MTP) compression technique as a fast thresholding option for feeding the detection module, the detection algorithm trade for maximum processing throughput, details on the clustering and tracking methodology, processing products, performance metrics, and a general interface description.
A hybrid fast Hankel transform algorithm for electromagnetic modeling
Anderson, W.L.
1989-01-01
A hybrid fast Hankel transform algorithm has been developed that uses several complementary features of two existing algorithms: Anderson's digital filtering or fast Hankel transform (FHT) algorithm and Chave's quadrature and continued fraction algorithm. A hybrid FHT subprogram (called HYBFHT) written in standard Fortran-77 provides a simple user interface to call either subalgorithm. The hybrid approach is an attempt to combine the best features of the two subalgorithms to minimize the user's coding requirements and to provide fast execution and good accuracy for a large class of electromagnetic problems involving various related Hankel transform sets with multiple arguments. Special cases of Hankel transforms of double-order and double-argument are discussed, where use of HYBFHT is shown to be advantageous for oscillatory kernal functions. -Author
Fast decoding algorithms for coded aperture systems
NASA Astrophysics Data System (ADS)
Byard, Kevin
2014-08-01
Fast decoding algorithms are described for a number of established coded aperture systems. The fast decoding algorithms for all these systems offer significant reductions in the number of calculations required when reconstructing images formed by a coded aperture system and hence require less computation time to produce the images. The algorithms may therefore be of use in applications that require fast image reconstruction, such as near real-time nuclear medicine and location of hazardous radioactive spillage. Experimental tests confirm the efficacy of the fast decoding techniques.
HYBRID FAST HANKEL TRANSFORM ALGORITHM FOR ELECTROMAGNETIC MODELING
A hybrid fast Hankel transform algorithm has been developed that uses several complementary features of two existing algorithms: Anderson's digital filtering or fast Hankel transform (FHT) algorithm and Chave's quadrature and continued fraction algorithm. A hybrid FHT subprogram ...
A Fast Implementation of the ISOCLUS Algorithm
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline
2003-01-01
Unsupervised clustering is a fundamental building block in numerous image processing applications. One of the most popular and widely used clustering schemes for remote sensing applications is the ISOCLUS algorithm, which is based on the ISODATA method. The algorithm is given a set of n data points in d-dimensional space, an integer k indicating the initial number of clusters, and a number of additional parameters. The general goal is to compute the coordinates of a set of cluster centers in d-space, such that those centers minimize the mean squared distance from each data point to its nearest center. This clustering algorithm is similar to another well-known clustering method, called k-means. One significant feature of ISOCLUS over k-means is that the actual number of clusters reported might be fewer or more than the number supplied as part of the input. The algorithm uses different heuristics to determine whether to merge lor split clusters. As ISOCLUS can run very slowly, particularly on large data sets, there has been a growing .interest in the remote sensing community in computing it efficiently. We have developed a faster implementation of the ISOCLUS algorithm. Our improvement is based on a recent acceleration to the k-means algorithm of Kanungo, et al. They showed that, by using a kd-tree data structure for storing the data, it is possible to reduce the running time of k-means. We have adapted this method for the ISOCLUS algorithm, and we show that it is possible to achieve essentially the same results as ISOCLUS on large data sets, but with significantly lower running times. This adaptation involves computing a number of cluster statistics that are needed for ISOCLUS but not for k-means. Both the k-means and ISOCLUS algorithms are based on iterative schemes, in which nearest neighbors are calculated until some convergence criterion is satisfied. Each iteration requires that the nearest center for each data point be computed. Naively, this requires O
Fast algorithms for transport models
Manteuffel, T.A.
1992-12-01
The objective of this project is the development of numerical solution techniques for deterministic models of the transport of neutral and charged particles and the demonstration of their effectiveness in both a production environment and on advanced architecture computers. The primary focus is on various versions of the linear Boltzman equation. These equations are fundamental in many important applications. This project is an attempt to integrate the development of numerical algorithms with the process of developing production software. A major thrust of this reject will be the implementation of these algorithms on advanced architecture machines that reside at the Advanced Computing Laboratory (ACL) at Los Alamos National Laboratories (LANL).
Fast ordering algorithm for exact histogram specification.
Nikolova, Mila; Steidl, Gabriele
2014-12-01
This paper provides a fast algorithm to order in a meaningful, strict way the integer gray values in digital (quantized) images. It can be used in any exact histogram specification-based application. Our algorithm relies on the ordering procedure based on the specialized variational approach. This variational method was shown to be superior to all other state-of-the art ordering algorithms in terms of faithful total strict ordering but not in speed. Indeed, the relevant functionals are in general difficult to minimize because their gradient is nearly flat over vast regions. In this paper, we propose a simple and fast fixed point algorithm to minimize these functionals. The fast convergence of our algorithm results from known analytical properties of the model. Our algorithm is equivalent to an iterative nonlinear filtering. Furthermore, we show that a particular form of the variational model gives rise to much faster convergence than other alternative forms. We demonstrate that only a few iterations of this filter yield almost the same pixel ordering as the minimizer. Thus, we apply only few iteration steps to obtain images, whose pixels can be ordered in a strict and faithful way. Numerical experiments confirm that our algorithm outperforms by far its main competitors. PMID:25347881
Fast Fourier Transform algorithm design and tradeoffs
NASA Technical Reports Server (NTRS)
Kamin, Ray A., III; Adams, George B., III
1988-01-01
The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program.
Call admission algorithms in multiservice and multiclass ATM network
NASA Astrophysics Data System (ADS)
Hamma, Salima; Hebuterne, Gerard
2004-09-01
The introduction of new ATM service categories increases the benefits of ATM, making the technology suitable for a virtually unlimited range of applications. Connection Admission Control (CAC) is defined as the set of actions taken by the network during the call (virtual connection) set-up phase, or during call re-negotiation phase, to determine whether a connection request can be accepted or rejected. Network resources (port bandwidth and buffer space) are reserved to the incoming connection at each switching element traversed, if so required, by the service category. The major focus of this paper is call admission in the context of multi-service, multi-class ATM networks. Several strategies suggesting rules on bandwidth sharing are found in the litterature. This study investigates particularly the Complete Sharing approach. Two service categories are concerned, namely, Constant Bit rate/Deterministic Bit Rate (CBR/DBR) and Variable Bit Rate/Statistical Bit Rate (VBR/SBR). Each service category is represented by a set of call classes corresponding to different bandwidth needs. We propose two algorithms to solve the underlying Markovian system: Product-form and Recursive solutions. A performance study based on the latter algorithm is implemented. We analyze the results of this very sharing strategy and set the not-to-violate limits for a beneficial use of it.
MATLAB tensor classes for fast algorithm prototyping.
Bader, Brett William; Kolda, Tamara Gibson
2004-10-01
Tensors (also known as mutidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to psychometrics. We describe four MATLAB classes for tensor manipulations that can be used for fast algorithm prototyping. The tensor class extends the functionality of MATLAB's multidimensional arrays by supporting additional operations such as tensor multiplication. The tensor as matrix class supports the 'matricization' of a tensor, i.e., the conversion of a tensor to a matrix (and vice versa), a commonly used operation in many algorithms. Two additional classes represent tensors stored in decomposed formats: cp tensor and tucker tensor. We descibe all of these classes and then demonstrate their use by showing how to implement several tensor algorithms that have appeared in the literature.
Fast Algorithms for Model-Based Diagnosis
NASA Technical Reports Server (NTRS)
Fijany, Amir; Barrett, Anthony; Vatan, Farrokh; Mackey, Ryan
2005-01-01
Two improved new methods for automated diagnosis of complex engineering systems involve the use of novel algorithms that are more efficient than prior algorithms used for the same purpose. Both the recently developed algorithms and the prior algorithms in question are instances of model-based diagnosis, which is based on exploring the logical inconsistency between an observation and a description of a system to be diagnosed. As engineering systems grow more complex and increasingly autonomous in their functions, the need for automated diagnosis increases concomitantly. In model-based diagnosis, the function of each component and the interconnections among all the components of the system to be diagnosed (for example, see figure) are represented as a logical system, called the system description (SD). Hence, the expected behavior of the system is the set of logical consequences of the SD. Faulty components lead to inconsistency between the observed behaviors of the system and the SD. The task of finding the faulty components (diagnosis) reduces to finding the components, the abnormalities of which could explain all the inconsistencies. Of course, the meaningful solution should be a minimal set of faulty components (called a minimal diagnosis), because the trivial solution, in which all components are assumed to be faulty, always explains all inconsistencies. Although the prior algorithms in question implement powerful methods of diagnosis, they are not practical because they essentially require exhaustive searches among all possible combinations of faulty components and therefore entail the amounts of computation that grow exponentially with the number of components of the system.
Fast computation algorithms for speckle pattern simulation
Nascov, Victor; Samoilă, Cornel; Ursuţiu, Doru
2013-11-13
We present our development of a series of efficient computation algorithms, generally usable to calculate light diffraction and particularly for speckle pattern simulation. We use mainly the scalar diffraction theory in the form of Rayleigh-Sommerfeld diffraction formula and its Fresnel approximation. Our algorithms are based on a special form of the convolution theorem and the Fast Fourier Transform. They are able to evaluate the diffraction formula much faster than by direct computation and we have circumvented the restrictions regarding the relative sizes of the input and output domains, met on commonly used procedures. Moreover, the input and output planes can be tilted each to other and the output domain can be off-axis shifted.
A fast DFT algorithm using complex integer transforms
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1978-01-01
Winograd's algorithm for computing the discrete Fourier transform is extended considerably for certain large transform lengths. This is accomplished by performing the cyclic convolution, required by Winograd's method, by a fast transform over certain complex integer fields. This algorithm requires fewer multiplications than either the standard fast Fourier transform or Winograd's more conventional algorithms.
An automatic and fast centerline extraction algorithm for virtual colonoscopy.
Jiang, Guangxiang; Gu, Lixu
2005-01-01
This paper introduces a new refined centerline extraction algorithm, which is based on and significantly improved from distance mapping algorithms. The new approach include three major parts: employing a colon segmentation method; designing and realizing a fast Euclidean Transform algorithm and inducting boundary voxels cutting (BVC) approach. The main contribution is the BVC processing, which greatly speeds up the Dijkstra algorithm and improves the whole performance of the new algorithm. Experimental results demonstrate that the new centerline algorithm was more efficient and accurate comparing with existing algorithms. PMID:17281406
An enhanced fast scanning algorithm for image segmentation
NASA Astrophysics Data System (ADS)
Ismael, Ahmed Naser; Yusof, Yuhanis binti
2015-12-01
Segmentation is an essential and important process that separates an image into regions that have similar characteristics or features. This will transform the image for a better image analysis and evaluation. An important benefit of segmentation is the identification of region of interest in a particular image. Various algorithms have been proposed for image segmentation and this includes the Fast Scanning algorithm which has been employed on food, sport and medical images. It scans all pixels in the image and cluster each pixel according to the upper and left neighbor pixels. The clustering process in Fast Scanning algorithm is performed by merging pixels with similar neighbor based on an identified threshold. Such an approach will lead to a weak reliability and shape matching of the produced segments. This paper proposes an adaptive threshold function to be used in the clustering process of the Fast Scanning algorithm. This function used the gray'value in the image's pixels and variance Also, the level of the image that is more the threshold are converted into intensity values between 0 and 1, and other values are converted into intensity values zero. The proposed enhanced Fast Scanning algorithm is realized on images of the public and private transportation in Iraq. Evaluation is later made by comparing the produced images of proposed algorithm and the standard Fast Scanning algorithm. The results showed that proposed algorithm is faster in terms the time from standard fast scanning.
Implementation and analysis of a fast backprojection algorithm
NASA Astrophysics Data System (ADS)
Gorham, LeRoy A.; Majumder, Uttam K.; Buxa, Peter; Backues, Mark J.; Lindgren, Andrew C.
2006-05-01
The convolution backprojection algorithm is an accurate synthetic aperture radar imaging technique, but it has seen limited use in the radar community due to its high computational costs. Therefore, significant research has been conducted for a fast backprojection algorithm, which surrenders some image quality for increased computational efficiency. This paper describes an implementation of both a standard convolution backprojection algorithm and a fast backprojection algorithm optimized for use on a Linux cluster and a field-programmable gate array (FPGA) based processing system. The performance of the different implementations is compared using synthetic ideal point targets and the SPIE XPatch Backhoe dataset.
Fast algorithm for peptide sequencing by mass spectroscopy.
Bartels, C
1990-01-01
An automatic algorithm for sequencing polypeptides from fast atom bombardment tandem mass spectra is presented.Based on graph theory considerations it finds the most probable sequences, even if the amino acid composition is unknown, by scoring mass differences. The algorithm is fast as the computing time increases by less than the square of the number of amino acids. Pairs of two or three amino acids are proposed to explain the gap if peaks are missing. PMID:24730078
Fast algorithms for computing isogenies between elliptic curves
NASA Astrophysics Data System (ADS)
Bostan, A.; Morain, F.; Salvy, B.; Schost, E.
2008-09-01
We survey algorithms for computing isogenies between elliptic curves defined over a field of characteristic either 0 or a large prime. We introduce a new algorithm that computes an isogeny of degree ell ( ell different from the characteristic) in time quasi-linear with respect to ell E This is based in particular on fast algorithms for power series expansion of the Weierstrass wp -function and related functions.
Fast algorithms for transport models. Final report
Manteuffel, T.A.
1994-10-01
This project has developed a multigrid in space algorithm for the solution of the S{sub N} equations with isotropic scattering in slab geometry. The algorithm was developed for the Modified Linear Discontinuous (MLD) discretization in space which is accurate in the thick diffusion limit. It uses a red/black two-cell {mu}-line relaxation. This relaxation solves for all angles on two adjacent spatial cells simultaneously. It takes advantage of the rank-one property of the coupling between angles and can perform this inversion in O(N) operations. A version of the multigrid in space algorithm was programmed on the Thinking Machines Inc. CM-200 located at LANL. It was discovered that on the CM-200 a block Jacobi type iteration was more efficient than the block red/black iteration. Given sufficient processors all two-cell block inversions can be carried out simultaneously with a small number of parallel steps. The bottleneck is the need for sums of N values, where N is the number of discrete angles, each from a different processor. These are carried out by machine intrinsic functions and are well optimized. The overall algorithm has computational complexity O(log(M)), where M is the number of spatial cells. The algorithm is very efficient and represents the state-of-the-art for isotropic problems in slab geometry. For anisotropic scattering in slab geometry, a multilevel in angle algorithm was developed. A parallel version of the multilevel in angle algorithm has also been developed. Upon first glance, the shifted transport sweep has limited parallelism. Once the right-hand-side has been computed, the sweep is completely parallel in angle, becoming N uncoupled initial value ODE`s. The author has developed a cyclic reduction algorithm that renders it parallel with complexity O(log(M)). The multilevel in angle algorithm visits log(N) levels, where shifted transport sweeps are performed. The overall complexity is O(log(N)log(M)).
Application of fast BLMS algorithm in acoustic echo cancellation
NASA Astrophysics Data System (ADS)
Zhao, Yue; Li, Nian Q.
2013-03-01
The acoustic echo path is usually very long and ranges from several hundreds to few thousands of taps. Frequency domain adaptive filter provides a solution to acoustic echo cancellation by means of resulting a significant reduction in the computational burden. In this paper, fast BLMS (Block Least-Mean-Square) algorithm in frequency domain is realized by using fast FFT technology. The adaptation of filter parameters is actually performed in the frequency domain. The proposed algorithm can ensure convergence with high speed and reduce computational complexity. Simulation results indicate that the algorithm demonstrates good performance for acoustic echo cancellation in communication systems.
A fast SEQUEST cross correlation algorithm.
Eng, Jimmy K; Fischer, Bernd; Grossmann, Jonas; Maccoss, Michael J
2008-10-01
The SEQUEST program was the first and remains one of the most widely used tools for assigning a peptide sequence within a database to a tandem mass spectrum. The cross correlation score is the primary score function implemented within SEQUEST and it is this score that makes the tool particularly sensitive. Unfortunately, this score is computationally expensive to calculate, and thus, to make the score manageable, SEQUEST uses a less sensitive but fast preliminary score and restricts the cross correlation to just the top 500 peptides returned by the preliminary score. Classically, the cross correlation score has been calculated using Fast Fourier Transforms (FFT) to generate the full correlation function. We describe an alternate method of calculating the cross correlation score that does not require FFTs and can be computed efficiently in a fraction of the time. The fast calculation allows all candidate peptides to be scored by the cross correlation function, potentially mitigating the need for the preliminary score, and enables an E-value significance calculation based on the cross correlation score distribution calculated on all candidate peptide sequences obtained from a sequence database. PMID:18774840
Fast search algorithms for computational protein design.
Traoré, Seydou; Roberts, Kyle E; Allouche, David; Donald, Bruce R; André, Isabelle; Schiex, Thomas; Barbe, Sophie
2016-05-01
One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state-of-the-art combinatorial optimization technologies based on Cost Function Network (CFN) processing allow speeding up provable rigid backbone protein design methods by several orders of magnitudes. Building up on this, we improved and injected CFN technology into the well-established CPD package Osprey to allow all Osprey CPD algorithms to benefit from associated speedups. Because Osprey fundamentally relies on the ability of A* to produce conformations in increasing order of energy, we defined new A* strategies combining CFN lower bounds, with new side-chain positioning-based branching scheme. Beyond the speedups obtained in the new A*-CFN combination, this novel branching scheme enables a much faster enumeration of suboptimal sequences, far beyond what is reachable without it. Together with the immediate and important speedups provided by CFN technology, these developments directly benefit to all the algorithms that previously relied on the DEE/ A* combination inside Osprey* and make it possible to solve larger CPD problems with provable algorithms. PMID:26833706
Two fast algorithms of image inpainting
NASA Astrophysics Data System (ADS)
He, Yuqing; Hou, Zhengxin; Wang, Chengyou
2008-03-01
Digital image inpainting is an interesting new research topic in multimedia computing and image processing since 2000. This talk covers the most recent contributions in digital image inpainting and image completion, as well as concepts in video inpainting. Image inpainting refers to reconstructing the corrupt regions where the data are all destroyed. A primary class of the technique is to build up a Partial Differential Equation (PDE), consider it as a boundary problem, and solve it by some iterative method. The most representative and creative one of the inpainting algorithms is Bertalmio-Sapiro-Caselles-Bellester (BSCB) model. After summarizes the development of image inpainting technique, this paper points the research at the improvement on BSCB model, and proposes two algorithms to solve the two drawbacks of this model. The first is selective adaptive interpolation which develops the traditional adaptive interpolation algorithm by introducing a priority value. Besides much faster than BSCB model, it can improve the inpainting effects. The second takes selective adaptive interpolation as a preprocessing step, reduces the operation time and improves the inpainting quality further.
Quantization Effects and Stabilization of the Fast-Kalman Algorithm
NASA Astrophysics Data System (ADS)
Papaodysseus, Constantin; Alexiou, Constantin; Roussopoulos, George; Panagopoulos, Athanasios
2001-12-01
The exact and actual cause of the failure of the fast-Kalman algorithm due to the generation and propagation of finite-precision or quantization error is presented. It is demonstrated that out of all the formulas that constitute this fast Recursive Least Squares (RLS) scheme only three generate an amount of finite-precision error that consistently propagates in the subsequent iterations and eventually makes the algorithm fail after a certain number of recursions. Moreover, it is shown that there is a very limited number of specific formulas that transmit the generated finite-precision error, while there is another class of formulas that lift or "relax" this error. In addition, a number of general propositions is presented that allow for the calculation of the exact number of erroneous digits with which the various quantities of the fast-Kalman scheme are computed, including the filter coefficients. On the basis of the previous analysis a method of stabilization of the fast-Kalman algorithm is developed and is presented here, a method that allows for the fast-Kalman algorithm to follow very difficult signals such as music, speech, environmental noise, and other nonstationary ones. Finally, a general methodology is pointed out, that allows for the development of new algorithms which, intrinsically, suffer far less of finite-precision problems.
A fast algorithm for numerical solutions to Fortet's equation
NASA Astrophysics Data System (ADS)
Brumen, Gorazd
2008-10-01
A fast algorithm for computation of default times of multiple firms in a structural model is presented. The algorithm uses a multivariate extension of the Fortet's equation and the structure of Toeplitz matrices to significantly improve the computation time. In a financial market consisting of M[not double greater-than sign]1 firms and N discretization points in every dimension the algorithm uses O(nlogn·M·M!·NM(M-1)/2) operations, where n is the number of discretization points in the time domain. The algorithm is applied to firm survival probability computation and zero coupon bond pricing.
Fast, Parallel and Secure Cryptography Algorithm Using Lorenz's Attractor
NASA Astrophysics Data System (ADS)
Marco, Anderson Gonçalves; Martinez, Alexandre Souto; Bruno, Odemir Martinez
A novel cryptography method based on the Lorenz's attractor chaotic system is presented. The proposed algorithm is secure and fast, making it practical for general use. We introduce the chaotic operation mode, which provides an interaction among the password, message and a chaotic system. It ensures that the algorithm yields a secure codification, even if the nature of the chaotic system is known. The algorithm has been implemented in two versions: one sequential and slow and the other, parallel and fast. Our algorithm assures the integrity of the ciphertext (we know if it has been altered, which is not assured by traditional algorithms) and consequently its authenticity. Numerical experiments are presented, discussed and show the behavior of the method in terms of security and performance. The fast version of the algorithm has a performance comparable to AES, a popular cryptography program used commercially nowadays, but it is more secure, which makes it immediately suitable for general purpose cryptography applications. An internet page has been set up, which enables the readers to test the algorithm and also to try to break into the cipher.
A fast portable implementation of the Secure Hash Algorithm, III.
McCurley, Kevin S.
1992-10-01
In 1992, NIST announced a proposed standard for a collision-free hash function. The algorithm for producing the hash value is known as the Secure Hash Algorithm (SHA), and the standard using the algorithm in known as the Secure Hash Standard (SHS). Later, an announcement was made that a scientist at NSA had discovered a weakness in the original algorithm. A revision to this standard was then announced as FIPS 180-1, and includes a slight change to the algorithm that eliminates the weakness. This new algorithm is called SHA-1. In this report we describe a portable and efficient implementation of SHA-1 in the C language. Performance information is given, as well as tips for porting the code to other architectures. We conclude with some observations on the efficiency of the algorithm, and a discussion of how the efficiency of SHA might be improved.
Some important observations on fast decoupled load flow algorithm
Nanda, J.; Kothari, D.P.; Srivastava, S.C.
1987-05-01
This letter brings out clearly for the first time the relative importance and weightage of some of the assumptions made by B. Scott and O. Alsac in their fast decoupled load flow (FDLF) algorithm on its convergence property. Results have been obtained for two sample IEEE test systems. The conclusions of this work are envisaged to be of immense practical relevance while developing a fast decoupled load flow program.
Fast prediction algorithm for multiview video coding
NASA Astrophysics Data System (ADS)
Abdelazim, Abdelrahman; Mein, Stephen James; Varley, Martin Roy; Ait-Boudaoud, Djamel
2013-03-01
The H.264/multiview video coding (MVC) standard has been developed to enable efficient coding for three-dimensional and multiple viewpoint video sequences. The inter-view statistical dependencies are utilized and an inter-view prediction is employed to provide more efficient coding; however, this increases the overall encoding complexity. Motion homogeneity is exploited here to selectively enable inter-view prediction, and to reduce complexity in the motion estimation (ME) and the mode selection processes. This has been accomplished by defining situations that relate macro-blocks' motion characteristics to the mode selection and the inter-view prediction processes. When comparing the proposed algorithm to the H.264/MVC reference software and other recent work, the experimental results demonstrate a significant reduction in ME time while maintaining similar rate-distortion performance.
Computer program for fast Karhunen Loeve transform algorithm
NASA Technical Reports Server (NTRS)
Jain, A. K.
1976-01-01
The fast KL transform algorithm was applied for data compression of a set of four ERTS multispectral images and its performance was compared with other techniques previously studied on the same image data. The performance criteria used here are mean square error and signal to noise ratio. The results obtained show a superior performance of the fast KL transform coding algorithm on the data set used with respect to the above stated perfomance criteria. A summary of the results is given in Chapter I and details of comparisons and discussion on conclusions are given in Chapter IV.
Fast sampling algorithm for Lie-Trotter products.
Predescu, Cristian
2005-04-01
A fast algorithm for path sampling in path-integral Monte Carlo simulations is proposed. The algorithm utilizes the Lévy-Ciesielski implementation of Lie-Trotter products to achieve a mathematically proven computational cost of n log2(n) with the number of time slices n, despite the fact that each path variable is updated separately, for reasons of optimality. In this respect, we demonstrate that updating a group of random variables simultaneously results in loss of efficiency. PMID:15903719
Fast algorithm for integrating inconsistent gradient fields.
Rivera, M; Marroquin, J L; Servin, M; Rodriguez-Vera, R
1997-11-10
A discrete Fourier transform (DFT) based algorithm for solving a quadratic cost functional is proposed; this regularized functional allows one to obtain a consistent gradient field from an inconsistent one. The calculated consistent gradient may then be integrated by use of simple methods. The technique is presented in the context of the phase-unwrapping problem; however, it may be applied to other problems, such as shapes from shading (a robot-vision technique) when inconsistent gradient fields with irregular domains are obtained. The regularized functional introduced here has advantages over existing techniques; in particular, it is able to manage complex irregular domains and to interpolate over regions with invalid data without any smoothness assumptions over the rest of the lattice, so that the estimation error is reduced. Furthermore, there are no free parameters to adjust. The DFT is used to compute a preconditioner because there is highly efficient hardware to perform the calculations and also because it may be computed by optical means. PMID:18264380
Fast image matching algorithm based on projection characteristics
NASA Astrophysics Data System (ADS)
Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun
2011-06-01
Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.
A fast directional algorithm for high-frequency electromagnetic scattering
Tsuji, Paul; Ying Lexing
2011-06-20
This paper is concerned with the fast solution of high-frequency electromagnetic scattering problems using the boundary integral formulation. We extend the O(N log N) directional multilevel algorithm previously proposed for the acoustic scattering case to the vector electromagnetic case. We also detail how to incorporate the curl operator of the magnetic field integral equation into the algorithm. When combined with a standard iterative method, this results in an almost linear complexity solver for the combined field integral equations. In addition, the butterfly algorithm is utilized to compute the far field pattern and radar cross section with O(N log N) complexity.
Fast frequency acquisition via adaptive least squares algorithm
NASA Technical Reports Server (NTRS)
Kumar, R.
1986-01-01
A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.
MATLAB tensor classes for fast algorithm prototyping : source code.
Bader, Brett William; Kolda, Tamara Gibson
2004-10-01
We present the source code for three MATLAB classes for manipulating tensors in order to allow fast algorithm prototyping. A tensor is a multidimensional or Nway array. This is a supplementary report; details on using this code are provided separately in SAND-XXXX.
A fast algorithm for sparse matrix computations related to inversion
NASA Astrophysics Data System (ADS)
Li, S.; Wu, W.; Darve, E.
2013-06-01
We have developed a fast algorithm for computing certain entries of the inverse of a sparse matrix. Such computations are critical to many applications, such as the calculation of non-equilibrium Green's functions Gr and G< for nano-devices. The FIND (Fast Inverse using Nested Dissection) algorithm is optimal in the big-O sense. However, in practice, FIND suffers from two problems due to the width-2 separators used by its partitioning scheme. One problem is the presence of a large constant factor in the computational cost of FIND. The other problem is that the partitioning scheme used by FIND is incompatible with most existing partitioning methods and libraries for nested dissection, which all use width-1 separators. Our new algorithm resolves these problems by thoroughly decomposing the computation process such that width-1 separators can be used, resulting in a significant speedup over FIND for realistic devices — up to twelve-fold in simulation. The new algorithm also has the added advantage that desired off-diagonal entries can be computed for free. Consequently, our algorithm is faster than the current state-of-the-art recursive methods for meshes of any size. Furthermore, the framework used in the analysis of our algorithm is the first attempt to explicitly apply the widely-used relationship between mesh nodes and matrix computations to the problem of multiple eliminations with reuse of intermediate results. This framework makes our algorithm easier to generalize, and also easier to compare against other methods related to elimination trees. Finally, our accuracy analysis shows that the algorithms that require back-substitution are subject to significant extra round-off errors, which become extremely large even for some well-conditioned matrices or matrices with only moderately large condition numbers. When compared to these back-substitution algorithms, our algorithm is generally a few orders of magnitude more accurate, and our produced round-off errors
Fast parallel algorithm for slicing STL based on pipeline
NASA Astrophysics Data System (ADS)
Ma, Xulong; Lin, Feng; Yao, Bo
2016-04-01
In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.
Fast parallel algorithm for slicing STL based on pipeline
NASA Astrophysics Data System (ADS)
Ma, Xulong; Lin, Feng; Yao, Bo
2016-05-01
In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.
A Matrix Computation View of the FastMap and RobustMap Dimension Reduction Algorithms
Ostrouchov, George
2009-01-01
Given a set of pairwise object distances and a dimension $k$, FastMap and RobustMap algorithms compute a set of $k$-dimensional coordinates for the objects. These metric space embedding methods implicitly assume a higher-dimensional coordinate representation and are a sequence of translations and orthogonal projections based on a sequence of object pair selections (called pivot pairs). We develop a matrix computation viewpoint of these algorithms that operates on the coordinate representation explicitly using Householder reflections. The resulting Coordinate Mapping Algorithm (CMA) is a fast approximate alternative to truncated principal component analysis (PCA) and it brings the FastMap and RobustMap algorithms into the mainstream of numerical computation where standard BLAS building blocks are used. Motivated by the geometric nature of the embedding methods, we further show that truncated PCA can be computed with CMA by specific pivot pair selections. Describing FastMap, RobustMap, and PCA as CMA computations with different pivot pair choices unifies the methods along a pivot pair selection spectrum. We also sketch connections to the semi-discrete decomposition and the QLP decomposition.
Fast pixel shifting phase unwrapping algorithm in quantitative interferometric microscopy
NASA Astrophysics Data System (ADS)
Xu, Mingfei; Shan, Yanke; Yan, Keding; Xue, Liang; Wang, Shouyu; Liu, Fei
2014-11-01
Quantitative interferometric microscopy is an important method for observing biological samples such as cells and tissues. In order to obtain continuous phase distribution of the sample from the interferogram, phase extracting and phase unwrapping are both needed in quantitative interferometric microscopy. Phase extracting includes fast Fourier transform method and Hilbert transform method, etc., almost all of them are rapid methods. However, traditional unwrapping methods such as least squares algorithm, minimum network flow method, etc. are time-consuming to locate the phase discontinuities which lead to low processing efficiency. Other proposed high-speed phase unwrapping methods always need at least two interferograms to recover final phase distributions which cannot realize real time processing. Therefore, high-speed phase unwrapping algorithm for single interferogram is required to improve the calculation efficiency. Here, we propose a fast phase unwrapping algorithm to realize high-speed quantitative interferometric microscopy, by shifting mod 2π wrapped phase map for one pixel, then multiplying the original phase map and the shifted one, then the phase discontinuities location can be easily determined. Both numerical simulation and experiments confirm that the algorithm features fast, precise and reliable.
Packer, Jonathan S.; Maxwell, Evan K.; O’Dushlaine, Colm; Lopez, Alexander E.; Dewey, Frederick E.; Chernomorsky, Rostislav; Baras, Aris; Overton, John D.; Habegger, Lukas; Reid, Jeffrey G.
2016-01-01
Motivation: Several algorithms exist for detecting copy number variants (CNVs) from human exome sequencing read depth, but previous tools have not been well suited for large population studies on the order of tens or hundreds of thousands of exomes. Their limitations include being difficult to integrate into automated variant-calling pipelines and being ill-suited for detecting common variants. To address these issues, we developed a new algorithm—Copy number estimation using Lattice-Aligned Mixture Models (CLAMMS)—which is highly scalable and suitable for detecting CNVs across the whole allele frequency spectrum. Results: In this note, we summarize the methods and intended use-case of CLAMMS, compare it to previous algorithms and briefly describe results of validation experiments. We evaluate the adherence of CNV calls from CLAMMS and four other algorithms to Mendelian inheritance patterns on a pedigree; we compare calls from CLAMMS and other algorithms to calls from SNP genotyping arrays for a set of 3164 samples; and we use TaqMan quantitative polymerase chain reaction to validate CNVs predicted by CLAMMS at 39 loci (95% of rare variants validate; across 19 common variant loci, the mean precision and recall are 99% and 94%, respectively). In the Supplementary Materials (available at the CLAMMS Github repository), we present our methods and validation results in greater detail. Availability and implementation: https://github.com/rgcgithub/clamms (implemented in C). Contact: jeffrey.reid@regeneron.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26382196
Improved genetic algorithm for fast path planning of USV
NASA Astrophysics Data System (ADS)
Cao, Lu
2015-12-01
Due to the complex constraints, more uncertain factors and critical real-time demand of path planning for USV(Unmanned Surface Vehicle), an approach of fast path planning based on voronoi diagram and improved Genetic Algorithm is proposed, which makes use of the principle of hierarchical path planning. First the voronoi diagram is utilized to generate the initial paths and then the optimal path is searched by using the improved Genetic Algorithm, which use multiprocessors parallel computing techniques to improve the traditional genetic algorithm. Simulation results verify that the optimal time is greatly reduced and path planning based on voronoi diagram and the improved Genetic Algorithm is more favorable in the real-time operation.
The Empirical Mode Decomposition algorithm via Fast Fourier Transform
NASA Astrophysics Data System (ADS)
Myakinin, Oleg O.; Zakharov, Valery P.; Bratchenko, Ivan A.; Kornilin, Dmitry V.; Artemyev, Dmitry N.; Khramov, Alexander G.
2014-09-01
In this paper we consider a problem of implementing a fast algorithm for the Empirical Mode Decomposition (EMD). EMD is one of the newest methods for decomposition of non-linear and non-stationary signals. A basis of EMD is formed "on-the-fly", i.e. it depends from a distribution of the signal and not given a priori in contrast on cases Fourier Transform (FT) or Wavelet Transform (WT). The EMD requires interpolating of local extrema sets of signal to find upper and lower envelopes. The data interpolation on an irregular lattice is a very low-performance procedure. A classical description of EMD by Huang suggests doing this through splines, i.e. through solving of a system of equations. Existence of a fast algorithm is the main advantage of the FT. A simple description of an algorithm in terms of Fast Fourier Transform (FFT) is a standard practice to reduce operation's count. We offer a fast implementation of EMD (FEMD) through FFT and some other cost-efficient algorithms. Basic two-stage interpolation algorithm for EMD is composed of a Upscale procedure through FFT and Downscale procedure through a selection procedure for signal's points. First we consider the local maxima (or minima) set without reference to the axis OX, i.e. on a regular lattice. The Upscale through the FFT change the signal's length to the Least Common Multiple (LCM) value of all distances between neighboring extremes on the axis OX. If the LCM value is too large then it is necessary to limit local set of extrema. In this case it is an analog of the spline interpolation. A demo for FEMD in noise reduction task for OCT has been shown.
Fast wavelet based algorithms for linear evolution equations
NASA Technical Reports Server (NTRS)
Engquist, Bjorn; Osher, Stanley; Zhong, Sifen
1992-01-01
A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.
SMG: Fast scalable greedy algorithm for influence maximization in social networks
NASA Astrophysics Data System (ADS)
Heidari, Mehdi; Asadpour, Masoud; Faili, Hesham
2015-02-01
Influence maximization is the problem of finding k most influential nodes in a social network. Many works have been done in two different categories, greedy approaches and heuristic approaches. The greedy approaches have better influence spread, but lower scalability on large networks. The heuristic approaches are scalable and fast but not for all type of networks. Improving the scalability of greedy approach is still an open and hot issue. In this work we present a fast greedy algorithm called State Machine Greedy that improves the existing algorithms by reducing calculations in two parts: (1) counting the traversing nodes in estimate propagation procedure, (2) Monte-Carlo graph construction in simulation of diffusion. The results show that our method makes a huge improvement in the speed over the existing greedy approaches.
Fast algorithm of low power image reformation for OLED display
NASA Astrophysics Data System (ADS)
Lee, Myungwoo; Kim, Taewhan
2014-04-01
We propose a fast algorithm of low-power image reformation for organic light-emitting diode (OLED) display. The proposed algorithm scales the image histogram in a way to reduce power consumption in OLED display by remapping the gray levels of the pixels in the image based on the fast analysis of the histogram of the input image while maintaining contrast of the image. The key idea is that a large number of gray levels are never used in the images and these gray levels can be effectively exploited to reduce power consumption. On the other hand, to maintain the image contrast the gray level remapping is performed by taking into account the object size in the image to which each gray level is applied, that is, reforming little for the gray levels in the objects of large size. Through experiments with 24 Kodak images, it is shown that our proposed algorithm is able to reduce the power consumption by 10% even with 9% contrast enhancement. Our algorithm runs in a linear time so that it can be applied to moving pictures with high resolution.
A Fast and Exact Algorithm for the Exemplar Breakpoint Distance.
Shao, Mingfu; Moret, Bernard M E
2016-05-01
A fundamental problem in comparative genomics is to compute the distance between two genomes. For two genomes without duplicate genes, we can easily compute a variety of distance measures in linear time, but the problem is NP-hard under most models when genomes contain duplicate genes. Sankoff proposed the use of exemplars to tackle the problem of duplicate genes and gene families: each gene family is represented by a single gene (the exemplar for that family), chosen so as to optimize some metric. Unfortunately, choosing exemplars is itself an NP-hard problem. In this article, we propose a very fast and exact algorithm to compute the exemplar breakpoint distance, based on new insights in the underlying structure of genome rearrangements and exemplars. We evaluate the performance of our algorithm on simulation data and compare its performance to the best effort to date (a divide-and-conquer approach), showing that our algorithm runs much faster and scales much better. We also devise a new algorithm for the intermediate breakpoint distance problem, which can then be applied to assign orthologs. We compare our algorithm with the state-of-the-art method MSOAR by assigning orthologs among five well annotated mammalian genomes, showing that our algorithm runs much faster and is slightly more accurate than MSOAR. PMID:26953781
A fast algorithm for sparse matrix computations related to inversion
Li, S.; Wu, W.; Darve, E.
2013-06-01
We have developed a fast algorithm for computing certain entries of the inverse of a sparse matrix. Such computations are critical to many applications, such as the calculation of non-equilibrium Green’s functions G{sup r} and G{sup <} for nano-devices. The FIND (Fast Inverse using Nested Dissection) algorithm is optimal in the big-O sense. However, in practice, FIND suffers from two problems due to the width-2 separators used by its partitioning scheme. One problem is the presence of a large constant factor in the computational cost of FIND. The other problem is that the partitioning scheme used by FIND is incompatible with most existing partitioning methods and libraries for nested dissection, which all use width-1 separators. Our new algorithm resolves these problems by thoroughly decomposing the computation process such that width-1 separators can be used, resulting in a significant speedup over FIND for realistic devices — up to twelve-fold in simulation. The new algorithm also has the added advantage that desired off-diagonal entries can be computed for free. Consequently, our algorithm is faster than the current state-of-the-art recursive methods for meshes of any size. Furthermore, the framework used in the analysis of our algorithm is the first attempt to explicitly apply the widely-used relationship between mesh nodes and matrix computations to the problem of multiple eliminations with reuse of intermediate results. This framework makes our algorithm easier to generalize, and also easier to compare against other methods related to elimination trees. Finally, our accuracy analysis shows that the algorithms that require back-substitution are subject to significant extra round-off errors, which become extremely large even for some well-conditioned matrices or matrices with only moderately large condition numbers. When compared to these back-substitution algorithms, our algorithm is generally a few orders of magnitude more accurate, and our produced round
Fast algorithm for calculating chemical kinetics in turbulent reacting flow
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.; Pratt, D. T.
1986-01-01
This paper addresses the need for a fast batch chemistry solver to perform the kinetics part of a split operator formulation of turbulent reacting flows, with special attention focused on the solution of the ordinary differential equations governing a homogeneous gas-phase chemical reaction. For this purpose, a two-part predictor-corrector algorithm which incorporates an exponentially fitted trapezoidal method was developed. The algorithm performs filtering of ill-posed initial conditions, automatic step-size selection, and automatic selection of Jacobi-Newton or Newton-Raphson iteration for convergence to achieve maximum computational efficiency while observing a prescribed error tolerance. The new algorithm, termed CREK1D (combustion reaction kinetics, one-dimensional), compared favorably with the code LSODE when tested on two representative problems drawn from combustion kinetics, and is faster than LSODE.
A fast image encryption algorithm based on chaotic map
NASA Astrophysics Data System (ADS)
Liu, Wenhao; Sun, Kehui; Zhu, Congxu
2016-09-01
Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.
A Fast Conformal Mapping Algorithm with No FFT
NASA Astrophysics Data System (ADS)
Luchini, P.; Manzo, F.
1992-08-01
An algorithm is presented for the computation of a conformal mapping discretized on a non-uniformly spaced point set, useful for the numerical solution of many problems of fluid dynamics. Most existing iterative techniques, both those having a linear and those having a quadratic type of convergence, rely on the fast Fourier transform ( FFT) algorithm for calculating a convolution integral which represents the most time-consuming phase of the computation. The FFT, however, definitely cannot be applied to a non-uniform spacing. The algorithm presented in this paper has been made possible by the construction of a calculation method for convolution integrals which, despite not using an FFT, maintains a computation time of the same order as that of the FFT. The new technique is successfully applied to the problem of conformally mapping a closely spaced cascade of airfoils onto a circle, which requires an exceedingly large number of points if it is solved with uniform spacing.
A non-parametric peak calling algorithm for DamID-Seq.
Li, Renhua; Hempel, Leonie U; Jiang, Tingbo
2015-01-01
Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS) of double sex (DSX)-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID) technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq). One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only). After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1) reads resampling; 2) reads scaling (normalization) and computing signal-to-noise fold changes; 3) filtering; 4) Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC). We also used irreproducible discovery rate (IDR) analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width. PMID:25785608
3DRISM Multigrid Algorithm for Fast Solvation Free Energy Calculations.
Sergiievskyi, Volodymyr P; Fedorov, Maxim V
2012-06-12
In this paper we present a fast and accurate method for modeling solvation properties of organic molecules in water with a main focus on predicting solvation (hydration) free energies of small organic compounds. The method is based on a combination of (i) a molecular theory, three-dimensional reference interaction sites model (3DRISM); (ii) a fast multigrid algorithm for solving the high-dimensional 3DRISM integral equations; and (iii) a recently introduced universal correction (UC) for the 3DRISM solvation free energies by properly scaled molecular partial volume (3DRISM-UC, Palmer et al., J. Phys.: Condens. Matter2010, 22, 492101). A fast multigrid algorithm is the core of the method because it helps to reduce the high computational costs associated with solving the 3DRISM equations. To facilitate future applications of the method, we performed benchmarking of the algorithm on a set of several model solutes in order to find optimal grid parameters and to test the performance and accuracy of the algorithm. We have shown that the proposed new multigrid algorithm is on average 24 times faster than the simple Picard method and at least 3.5 times faster than the MDIIS method which is currently actively used by the 3DRISM community (e.g., the MDIIS method has been recently implemented in a new 3DRISM implicit solvent routine in the recent release of the AmberTools 1.4 molecular modeling package (Luchko et al. J. Chem. Theory Comput. 2010, 6, 607-624). Then we have benchmarked the multigrid algorithm with chosen optimal parameters on a set of 99 organic compounds. We show that average computational time required for one 3DRISM calculation is 3.5 min per a small organic molecule (10-20 atoms) on a standard personal computer. We also benchmarked predicted solvation free energy values for all of the compounds in the set against the corresponding experimental data. We show that by using the proposed multigrid algorithm and the 3DRISM-UC model, it is possible to obtain good
A novel fast median filter algorithm without sorting
NASA Astrophysics Data System (ADS)
Yang, Weiping; Zhang, Zhilong; Lu, Xinping; Li, Jicheng; Chen, Dong; Yang, Guopeng
2016-04-01
As one of widely applied nonlinear smoothing filtering methods, median filter is quite effective for removing salt-andpepper noise and impulsive noise while maintaining image edge information without blurring its boundaries, but its computation load is the maximal drawback while applied in real-time processing systems. In order to solve the issue, researchers have proposed many effective fast algorithms and published many papers. However most of the algorithms are based on sorting operations so as to make real-time implementation difficult. In this paper considering the large scale Boolean calculation function and convenient shift operation which are two of the advantages of FPGA(Field Programmable Gate Array), we proposed a novel median value finding algorithm without sorting, which can find the median value effectively and its performing time almost keeps changeless despite how large the filter radius is. Based on the algorithm, a real-time median filter has been realized. A lot of tests demonstrate the validity and correctness of proposed algorithm.
A fast contour descriptor algorithm for supernova imageclassification
Aragon, Cecilia R.; Aragon, David Bradburn
2006-07-16
We describe a fast contour descriptor algorithm and its application to a distributed supernova detection system (the Nearby Supernova Factory) that processes 600,000 candidate objects in 80 GB of image data per night. Our shape-detection algorithm reduced the number of false positives generated by the supernova search pipeline by 41% while producing no measurable impact on running time. Fourier descriptors are an established method of numerically describing the shapes of object contours, but transform-based techniques are ordinarily avoided in this type of application due to their computational cost. We devised a fast contour descriptor implementation for supernova candidates that meets the tight processing budget of the application. Using the lowest-order descriptors (F{sub 1} and F{sub -1}) and the total variance in the contour, we obtain one feature representing the eccentricity of the object and another denoting its irregularity. Because the number of Fourier terms to be calculated is fixed and small, the algorithm runs in linear time, rather than the O(n log n) time of an FFT. Constraints on object size allow further optimizations so that the total cost of producing the required contour descriptors is about 4n addition/subtraction operations, where n is the length of the contour.
Fast independent component analysis algorithm for quaternion valued signals.
Javidi, Soroush; Took, Clive Cheong; Mandic, Danilo P
2011-12-01
An extension of the fast independent component analysis algorithm is proposed for the blind separation of both Q-proper and Q-improper quaternion-valued signals. This is achieved by maximizing a negentropy-based cost function, and is derived rigorously using the recently developed HR calculus in order to implement Newton optimization in the augmented quaternion statistics framework. It is shown that the use of augmented statistics and the associated widely linear modeling provides theoretical and practical advantages when dealing with general quaternion signals with noncircular (rotation-dependent) distributions. Simulations using both benchmark and real-world quaternion-valued signals support the approach. PMID:22027374
A fast direct sampling algorithm for equilateral closed polygons
NASA Astrophysics Data System (ADS)
Cantarella, Jason; Duplantier, Bertrand; Shonkwiler, Clayton; Uehara, Erica
2016-07-01
Sampling equilateral closed polygons is of interest in the statistical study of ring polymers. Over the past 30 years, previous authors have proposed a variety of simple Markov chain algorithms (but have not been able to show that they converge to the correct probability distribution) and complicated direct samplers (which require extended-precision arithmetic to evaluate numerically unstable polynomials). We present a simple direct sampler which is fast and numerically stable, and analyze its runtime using a new formula for the volume of equilateral polygon space as a Dirichlet-type integral.
A fast-marching like algorithm for geometrical shock dynamics
NASA Astrophysics Data System (ADS)
Noumir, Y.; Le Guilcher, A.; Lardjane, N.; Monneau, R.; Sarrazin, A.
2015-03-01
We develop a new algorithm for the computation of the Geometrical Shock Dynamics (GSD) model. The method relies on the fast-marching paradigm and enables the discrete evaluation of the first arrival time of a shock wave and its local velocity on a Cartesian grid. The proposed algorithm is based on a first order upwind finite difference scheme and reduces to a local nonlinear system of two equations solved by an iterative procedure. Reference solutions are built for a smooth radial configuration and for the 2D Riemann problem. The link between the GSD model and p-systems is given. Numerical experiments demonstrate the efficiency of the scheme and its ability to handle singularities.
Fast Particle Pair Detection Algorithms for Particle Simulations
NASA Astrophysics Data System (ADS)
Iwai, T.; Hong, C.-W.; Greil, P.
New algorithms with O(N) complexity have been developed for fast particle-pair detections in particle simulations like the discrete element method (DEM) and molecular dynamic (MD). They exhibit robustness against broad particle size distributions when compared with conventional boxing methods. Almost similar calculation speeds are achieved at particle size distributions from is mono-size to 1:10 while the linked-cell method results in calculations more than 20 times. The basic algorithm, level-boxing, uses the variable search range according to each particle. The advanced method, multi-level boxing, employs multiple cell layers to reduce the particle size discrepancy. Another method, indexed-level boxing, reduces the size of cell arrays by introducing the hash procedure to access the cell array, and is effective for sparse particle systems with a large number of particles.
Fast clustering algorithm for codebook production in image vector quantization
NASA Astrophysics Data System (ADS)
Al-Otum, Hazem M.
2001-04-01
In this paper, a fast clustering algorithm (FCA) is proposed to be implemented in vector quantization codebook production. This algorithm gives the ability to avoid iterative averaging of vectors and is based on collecting vectors with similar or closely similar characters to produce corresponding clusters. FCA gives an increase in peak signal-to-noise ratio (PSNR) about 0.3 - 1.1 dB, over the LBG algorithm and reduces the computational cost for codebook production (10% - 60%) at different bit rates. Here, two FCA modifications are proposed: FCA with limited cluster size 1& (FCA-LCS1 and FCA-LCS2, respectively). FCA- LCS1 tends to subdivide large clusters into smaller ones while FCA-LCS2 reduces a predetermined threshold by a step to reach the required cluster size. The FCA-LCS1 and FCA- LCS2 give an increase in PSNR of about 0.9 - 1.0 and 0.9 - 1.1 dB, respectively, over the FCA algorithm, at the expense of about 15% - 25% and 18% - 28% increase in the output codebook size.
Fast and fully automatic phalanx segmentation using a grayscale-histogram morphology algorithm
NASA Astrophysics Data System (ADS)
Hsieh, Chi-Wen; Liu, Tzu-Chiang; Jong, Tai-Lang; Chen, Chih-Yen; Tiu, Chui-Mei; Chan, Din-Yuen
2011-08-01
Bone age assessment is a common radiological examination used in pediatrics to diagnose the discrepancy between the skeletal and chronological age of a child; therefore, it is beneficial to develop a computer-based bone age assessment to help junior pediatricians estimate bone age easily. Unfortunately, the phalanx on radiograms is not easily separated from the background and soft tissue. Therefore, we proposed a new method, called the grayscale-histogram morphology algorithm, to segment the phalanges fast and precisely. The algorithm includes three parts: a tri-stage sieve algorithm used to eliminate the background of hand radiograms, a centroid-edge dual scanning algorithm to frame the phalanx region, and finally a segmentation algorithm based on disk traverse-subtraction filter to segment the phalanx. Moreover, two more segmentation methods: adaptive two-mean and adaptive two-mean clustering were performed, and their results were compared with the segmentation algorithm based on disk traverse-subtraction filter using five indices comprising misclassification error, relative foreground area error, modified Hausdorff distances, edge mismatch, and region nonuniformity. In addition, the CPU time of the three segmentation methods was discussed. The result showed that our method had a better performance than the other two methods. Furthermore, satisfactory segmentation results were obtained with a low standard error.
Fast Field Calibration of MIMU Based on the Powell Algorithm
Ma, Lin; Chen, Wanwan; Li, Bin; You, Zheng; Chen, Zhigang
2014-01-01
The calibration of micro inertial measurement units is important in ensuring the precision of navigation systems, which are equipped with microelectromechanical system sensors that suffer from various errors. However, traditional calibration methods cannot meet the demand for fast field calibration. This paper presents a fast field calibration method based on the Powell algorithm. As the key points of this calibration, the norm of the accelerometer measurement vector is equal to the gravity magnitude, and the norm of the gyro measurement vector is equal to the rotational velocity inputs. To resolve the error parameters by judging the convergence of the nonlinear equations, the Powell algorithm is applied by establishing a mathematical error model of the novel calibration. All parameters can then be obtained in this manner. A comparison of the proposed method with the traditional calibration method through navigation tests shows the classic performance of the proposed calibration method. The proposed calibration method also saves more time compared with the traditional calibration method. PMID:25177801
A fast poly-energetic iterative FBP algorithm
NASA Astrophysics Data System (ADS)
Lin, Yuan; Samei, Ehsan
2014-04-01
The beam hardening (BH) effect can influence medical interpretations in two notable ways. First, high attenuation materials, such as bones, can induce strong artifacts, which severely deteriorate the image quality. Second, voxel values can significantly deviate from the real values, which can lead to unreliable quantitative evaluation results. Some iterative methods have been proposed to eliminate the BH effect, but they cannot be widely applied for clinical practice because of the slow computational speed. The purpose of this study was to develop a new fast and practical poly-energetic iterative filtered backward projection algorithm (piFBP). The piFBP is composed of a novel poly-energetic forward projection process and a robust FBP-type backward updating process. In the forward projection process, an adaptive base material decomposition method is presented, based on which diverse body tissues (e.g., lung, fat, breast, soft tissue, and bone) and metal implants can be incorporated to accurately evaluate poly-energetic forward projections. In the backward updating process, one robust and fast FBP-type backward updating equation with a smoothing kernel is introduced to avoid the noise accumulation in the iteration process and to improve the convergence properties. Two phantoms were designed to quantitatively validate our piFBP algorithm in terms of the beam hardening index (BIdx) and the noise index (NIdx). The simulation results showed that piFBP possessed fast convergence speed, as the images could be reconstructed within four iterations. The variation range of the BIdx's of various tissues across phantom size and spectrum were reduced from [-7.5, 17.5] for FBP to [-0.1, 0.1] for piFBP while the NIdx's were maintained in the same low level (about [0.3, 1.7]). When a metal implant presented in a complex phantom, piFBP still had excellent reconstruction performance, as the variation range of the BIdx's of body tissues were reduced from [-2.9, 15.9] for FBP to [-0
Fast Dating Using Least-Squares Criteria and Algorithms
To, Thu-Hien; Jung, Matthieu; Lycett, Samantha; Gascuel, Olivier
2016-01-01
Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley–Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley–Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to
Fast Dating Using Least-Squares Criteria and Algorithms.
To, Thu-Hien; Jung, Matthieu; Lycett, Samantha; Gascuel, Olivier
2016-01-01
Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley-Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley-Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that
NASA Technical Reports Server (NTRS)
Dagum, Leonardo
1989-01-01
The data parallel implementation of a particle simulation for hypersonic rarefied flow described by Dagum associates a single parallel data element with each particle in the simulation. The simulated space is divided into discrete regions called cells containing a variable and constantly changing number of particles. The implementation requires a global sort of the parallel data elements so as to arrange them in an order that allows immediate access to the information associated with cells in the simulation. Described here is a very fast algorithm for performing the necessary ranking of the parallel data elements. The performance of the new algorithm is compared with that of the microcoded instruction for ranking on the Connection Machine.
Fast imaging system and algorithm for monitoring microlymphatics
NASA Astrophysics Data System (ADS)
Akl, T.; Rahbar, E.; Zawieja, D.; Gashev, A.; Moore, J.; Coté, G.
2010-02-01
The lymphatic system is not well understood and tools to quantify aspects of its behavior are needed. A technique to monitor lymph velocity that can lead to flow, the main determinant of transport, in a near real time manner can be extremely valuable. We recently built a new system that measures lymph velocity, vessel diameter and contractions using optical microscopy digital imaging with a high speed camera (500fps) and a complex processing algorithm. The processing time for a typical data period was significantly reduced to less than 3 minutes in comparison to our previous system in which readings were available 30 minutes after the vessels were imaged. The processing was based on a correlation algorithm in the frequency domain, which, along with new triggering methods, reduced the processing and acquisition time significantly. In addition, the use of a new data filtering technique allowed us to acquire results from recordings that were irresolvable by the previous algorithm due to their high noise level. The algorithm was tested by measuring velocities and diameter changes in rat mesenteric micro-lymphatics. We recorded velocities of 0.25mm/s on average in vessels of diameter ranging from 54um to 140um with phasic contraction strengths of about 6 to 40%. In the future, this system will be used to monitor acute effects that are too fast for previous systems and will also increase the statistical power when dealing with chronic changes. Furthermore, we plan on expanding its functionality to measure the propagation of the contractile activity.
Fast Adapting Ensemble: A New Algorithm for Mining Data Streams with Concept Drift
Ortíz Díaz, Agustín; Ramos-Jiménez, Gonzalo; Frías Blanco, Isvani; Caballero Mota, Yailé; Morales-Bueno, Rafael
2015-01-01
The treatment of large data streams in the presence of concept drifts is one of the main challenges in the field of data mining, particularly when the algorithms have to deal with concepts that disappear and then reappear. This paper presents a new algorithm, called Fast Adapting Ensemble (FAE), which adapts very quickly to both abrupt and gradual concept drifts, and has been specifically designed to deal with recurring concepts. FAE processes the learning examples in blocks of the same size, but it does not have to wait for the batch to be complete in order to adapt its base classification mechanism. FAE incorporates a drift detector to improve the handling of abrupt concept drifts and stores a set of inactive classifiers that represent old concepts, which are activated very quickly when these concepts reappear. We compare our new algorithm with various well-known learning algorithms, taking into account, common benchmark datasets. The experiments show promising results from the proposed algorithm (regarding accuracy and runtime), handling different types of concept drifts. PMID:25879051
A fast algorithm for the phonemic segmentation of continuous speech
NASA Astrophysics Data System (ADS)
Smidt, D.
1986-04-01
The method of differential learning (DL method) was applied to the fast phonemic classification of acoustic speech spectra. The method was also tested with a simple algorithm for continuous speech recognition. In every learning step of the DL method only that single pattern component which deviates most from the reference value is used for a new rule. Several rules of this type were connected in a conjunctive or disjunctive way. Tests with a single speaker demonstrate good classification capability and a very high speed. The inclusion of automatically additional features selected according to their relevance is discussed. It is shown that there exists a correspondence between processes related to the DL method and pattern recognition in living beings with their ability for generalization and differentiation.
Fast Probabilistic Particle Identification algorithm using silicon strip detectors
NASA Astrophysics Data System (ADS)
Di Fino, L.; Zaconte, V.; Ciccotelli, A.; Larosa, M.; Narici, L.
2012-08-01
Active detectors used as radiation monitors in space are not usually able to perform Particle Identification (PID). Common techniques need energy loss spectra with high statistics to estimate ion abundances. The ALTEA-space detector system is a set of silicon strip particle telescopes monitoring the radiation environment on board the International Space Station since July 2006 with real-time telemetry capabilities. Its large geometrical factor due to the concurrent use of six detectors permits the acquisition of good energy loss spectra even in a short period of observation. In this paper we present a novel Fast Probabilistic Particle Identification (FPPI) algorithm developed for the ALTEA data analysis in order to perform nuclear identification with low statistics and, with some limitations, also in real time.
Generation of fast neturon spectra using an adaptive Gauss-Kronrod Quadrature algorithm
NASA Astrophysics Data System (ADS)
Triplett, Brian Scott
A lattice physics calculation is often the first step in analyzing a nuclear reactor. This calculation condenses regions of the reactor into average parameters (i.e., group constants) that can be used in coarser full-core, time-dependent calculations. This work presents a high-fidelity deterministic method for calculating the neutron energy spectrum in an infinite medium. The spectrum resulting from this calculation can be used to generate accurate group constants. This method includes a numerical algorithm based on Gauss-Kronrod Quadrature to determine the neutron transfer source to a given energy while controlling numerical error. This algorithm was implemented in a pointwise transport solver program called Pointwise Fast Spectrum Generator (PWFSG). PWFSG was benchmarked against the Monte Carlo program MCNP and another pointwise spectrum generation program, CENTRM, for a set of fast reactor infinite medium example cases. PWFSG showed good agreement with MCNP, yielding coefficients of determination above 98% for all example cases. In addition, PWFSG had 6 to 8 times lower flux estimation error than CENTRM in the cases examined. With run-times comparable to CENTRM, PWFSG represents a robust set of methods for generation of fast neutron spectra with increased accuracy without increased computational cost.
Fast volume rendering algorithm in a virtual endoscopy system
NASA Astrophysics Data System (ADS)
Kim, Sang H.; Kim, Jin K.; Ra, Jong Beom
2002-05-01
Recently, 3D virtual endoscopy has been used as an alternative noninvasive procedure for visualization of a hollow organ. In this paper, we propose a fast volume rendering scheme based on perspective ray casting for virtual endoscopy. As a pre-processing step, the algorithm divides a volume into hierarchical blocks and classifies them into opaque or transparent blocks. Then, the rendering procedure is as follows. In the first step, we perform ray casting only for sub-sampled pixels on the image plane, and determine their pixel values and depth information. In the second step, by reducing the sub-sampling factor by half, we repeat ray casting for newly added pixels, and their pixel values and depth information are determined. Here, the previously obtained depth information is utilized to reduce the processing time. This step is performed recursively until the full-size rendering image is acquired. Experiments conducted on a PC shows that the proposed algorithm can reduce the rendering time by 70-80% for the bronchus and colon endoscopy, compared with the brute-force ray casting scheme. Thereby, interactive rendering becomes more realizable in a PC environment without any specific hardware.
Fast half-sibling population reconstruction: theory and algorithms
2013-01-01
Background Kinship inference is the task of identifying genealogically related individuals. Kinship information is important for determining mating structures, notably in endangered populations. Although many solutions exist for reconstructing full sibling relationships, few exist for half-siblings. Results We consider the problem of determining whether a proposed half-sibling population reconstruction is valid under Mendelian inheritance assumptions. We show that this problem is NP-complete and provide a 0/1 integer program that identifies the minimum number of individuals that must be removed from a population in order for the reconstruction to become valid. We also present SibJoin, a heuristic-based clustering approach based on Mendelian genetics, which is strikingly fast. The software is available at http://github.com/ddexter/SibJoin.git+. Conclusions Our SibJoin algorithm is reasonably accurate and thousands of times faster than existing algorithms. The heuristic is used to infer a half-sibling structure for a population which was, until recently, too large to evaluate. PMID:23849037
Ergül, Özgür; Gürel, Levent
2013-03-01
Accurate electromagnetic modeling of complicated optical structures poses several challenges. Optical metamaterial and plasmonic structures are composed of multiple coexisting dielectric and/or conducting parts. Such composite structures may possess diverse values of conductivities and dielectric constants, including negative permittivity and permeability. Further challenges are the large sizes of the structures with respect to wavelength and the complexities of the geometries. In order to overcome these challenges and to achieve rigorous and efficient electromagnetic modeling of three-dimensional optical composite structures, we have developed a parallel implementation of the multilevel fast multipole algorithm (MLFMA). Precise formulation of composite structures is achieved with the so-called "electric and magnetic current combined-field integral equation." Surface integral equations are carefully discretized with piecewise linear basis functions, and the ensuing dense matrix equations are solved iteratively with parallel MLFMA. The hierarchical strategy is used for the efficient parallelization of MLFMA on distributed-memory architectures. In this paper, fast and accurate solutions of large-scale canonical and complicated real-life problems, such as optical metamaterials, discretized with tens of millions of unknowns are presented in order to demonstrate the capabilities of the proposed electromagnetic solver. PMID:23456127
A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor
Zhang, Liang; Shen, Peiyi; Zhu, Guangming; Wei, Wei; Song, Houbing
2015-01-01
Internet of Things (IoT) is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB) method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN) k-Nearest Neighbor (KNN) algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC) estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP) is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS) algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University’s datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy. PMID:26287198
A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor.
Zhang, Liang; Shen, Peiyi; Zhu, Guangming; Wei, Wei; Song, Houbing
2015-01-01
Internet of Things (IoT) is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB) method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN) k-Nearest Neighbor (KNN) algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC) estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP) is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS) algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University's datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy. PMID:26287198
Fantin, Yuri S.; Neverov, Alexey D.; Favorov, Alexander V.; Alvarez-Figueroa, Maria V.; Braslavskaya, Svetlana I.; Gordukova, Maria A.; Karandashova, Inga V.; Kuleshov, Konstantin V.; Myznikova, Anna I.; Polishchuk, Maya S.; Reshetov, Denis A.; Voiciehovskaya, Yana A.; Mironov, Andrei A.; Chulanov, Vladimir P.
2013-01-01
Sanger sequencing is a common method of reading DNA sequences. It is less expensive than high-throughput methods, and it is appropriate for numerous applications including molecular diagnostics. However, sequencing mixtures of similar DNA of pathogens with this method is challenging. This is important because most clinical samples contain such mixtures, rather than pure single strains. The traditional solution is to sequence selected clones of PCR products, a complicated, time-consuming, and expensive procedure. Here, we propose the base-calling with vocabulary (BCV) method that computationally deciphers Sanger chromatograms obtained from mixed DNA samples. The inputs to the BCV algorithm are a chromatogram and a dictionary of sequences that are similar to those we expect to obtain. We apply the base-calling function on a test dataset of chromatograms without ambiguous positions, as well as one with 3–14% sequence degeneracy. Furthermore, we use BCV to assemble a consensus sequence for an HIV genome fragment in a sample containing a mixture of viral DNA variants and to determine the positions of the indels. Finally, we detect drug-resistant Mycobacterium tuberculosis strains carrying frameshift mutations mixed with wild-type bacteria in the pncA gene, and roughly characterize bacterial communities in clinical samples by direct 16S rRNA sequencing. PMID:23382983
Biased Randomized Algorithm for Fast Model-Based Diagnosis
NASA Technical Reports Server (NTRS)
Williams, Colin; Vartan, Farrokh
2005-01-01
A biased randomized algorithm has been developed to enable the rapid computational solution of a propositional- satisfiability (SAT) problem equivalent to a diagnosis problem. The closest competing methods of automated diagnosis are described in the preceding article "Fast Algorithms for Model-Based Diagnosis" and "Two Methods of Efficient Solution of the Hitting-Set Problem" (NPO-30584), which appears elsewhere in this issue. It is necessary to recapitulate some of the information from the cited articles as a prerequisite to a description of the present method. As used here, "diagnosis" signifies, more precisely, a type of model-based diagnosis in which one explores any logical inconsistencies between the observed and expected behaviors of an engineering system. The function of each component and the interconnections among all the components of the engineering system are represented as a logical system. Hence, the expected behavior of the engineering system is represented as a set of logical consequences. Faulty components lead to inconsistency between the observed and expected behaviors of the system, represented by logical inconsistencies. Diagnosis - the task of finding the faulty components - reduces to finding the components, the abnormalities of which could explain all the logical inconsistencies. One seeks a minimal set of faulty components (denoted a minimal diagnosis), because the trivial solution, in which all components are deemed to be faulty, always explains all inconsistencies. In the methods of the cited articles, the minimal-diagnosis problem is treated as equivalent to a minimal-hitting-set problem, which is translated from a combinatorial to a computational problem by mapping it onto the Boolean-satisfiability and integer-programming problems. The integer-programming approach taken in one of the prior methods is complete (in the sense that it is guaranteed to find a solution if one exists) and slow and yields a lower bound on the size of the
Carter, Gerald; Schoeppler, Diana; Manthey, Marie; Knörnschild, Mirjam; Denzinger, Annette
2015-01-01
Many birds and mammals produce distress calls when captured. Bats often approach speakers playing conspecific distress calls, which has led to the hypothesis that bat distress calls promote cooperative mobbing. An alternative explanation is that approaching bats are selfishly assessing predation risk. Previous playback studies on bat distress calls involved species with highly maneuverable flight, capable of making close passes and tight circles around speakers, which can look like mobbing. We broadcast distress calls recorded from the velvety free-tailed bat, Molossus molossus, a fast-flying aerial-hawker with relatively poor maneuverability. Based on their flight behavior, we predicted that, in response to distress call playbacks, M. molossus would make individual passing inspection flights but would not approach in groups or approach within a meter of the distress call source. By recording responses via ultrasonic recording and infrared video, we found that M. molossus, and to a lesser extent Saccopteryx bilineata, made more flight passes during distress call playbacks compared to noise. However, only the more maneuverable S. bilineata made close approaches to the speaker, and we found no evidence of mobbing in groups. Instead, our findings are consistent with the hypothesis that single bats approached distress calls simply to investigate the situation. These results suggest that approaches by bats to distress calls should not suffice as clear evidence for mobbing. PMID:26353118
Carter, Gerald; Schoeppler, Diana; Manthey, Marie; Knörnschild, Mirjam; Denzinger, Annette
2015-01-01
Many birds and mammals produce distress calls when captured. Bats often approach speakers playing conspecific distress calls, which has led to the hypothesis that bat distress calls promote cooperative mobbing. An alternative explanation is that approaching bats are selfishly assessing predation risk. Previous playback studies on bat distress calls involved species with highly maneuverable flight, capable of making close passes and tight circles around speakers, which can look like mobbing. We broadcast distress calls recorded from the velvety free-tailed bat, Molossus molossus, a fast-flying aerial-hawker with relatively poor maneuverability. Based on their flight behavior, we predicted that, in response to distress call playbacks, M. molossus would make individual passing inspection flights but would not approach in groups or approach within a meter of the distress call source. By recording responses via ultrasonic recording and infrared video, we found that M. molossus, and to a lesser extent Saccopteryx bilineata, made more flight passes during distress call playbacks compared to noise. However, only the more maneuverable S. bilineata made close approaches to the speaker, and we found no evidence of mobbing in groups. Instead, our findings are consistent with the hypothesis that single bats approached distress calls simply to investigate the situation. These results suggest that approaches by bats to distress calls should not suffice as clear evidence for mobbing. PMID:26353118
An algorithm for fast DNS cavitating flows simulations using homogeneous mixture approach
NASA Astrophysics Data System (ADS)
Žnidarčič, A.; Coutier-Delgosha, O.; Marquillie, M.; Dular, M.
2015-12-01
A new algorithm for fast DNS cavitating flows simulations is developed. The algorithm is based on Kim and Moin projection method form. Homogeneous mixture approach with transport equation for vapour volume fraction is used to model cavitation and various cavitation models can be used. Influence matrix and matrix diagonalisation technique enable fast parallel computations.
2010-01-01
Background Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r2 LD statistic have gained popularity because r2 is directly related to statistical power to detect disease associations. Most of existing r2 based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. Results We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above 96% when r2 ≥ 0.9. Conclusions Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag
A fast weak motif-finding algorithm based on community detection in graphs
2013-01-01
Background Identification of transcription factor binding sites (also called ‘motif discovery’) in DNA sequences is a basic step in understanding genetic regulation. Although many successful programs have been developed, the problem is far from being solved on account of diversity in gene expression/regulation and the low specificity of binding sites. State-of-the-art algorithms have their own constraints (e.g., high time or space complexity for finding long motifs, low precision in identification of weak motifs, or the OOPS constraint: one occurrence of the motif instance per sequence) which limit their scope of application. Results In this paper, we present a novel and fast algorithm we call TFBSGroup. It is based on community detection from a graph and is used to discover long and weak (l,d) motifs under the ZOMOPS constraint (zero, one or multiple occurrence(s) of the motif instance(s) per sequence), where l is the length of a motif and d is the maximum number of mutations between a motif instance and the motif itself. Firstly, TFBSGroup transforms the (l, d) motif search in sequences to focus on the discovery of dense subgraphs within a graph. It identifies these subgraphs using a fast community detection method for obtaining coarse-grained candidate motifs. Next, it greedily refines these candidate motifs towards the true motif within their own communities. Empirical studies on synthetic (l, d) samples have shown that TFBSGroup is very efficient (e.g., it can find true (18, 6), (24, 8) motifs within 30 seconds). More importantly, the algorithm has succeeded in rapidly identifying motifs in a large data set of prokaryotic promoters generated from the Escherichia coli database RegulonDB. The algorithm has also accurately identified motifs in ChIP-seq data sets for 12 mouse transcription factors involved in ES cell pluripotency and self-renewal. Conclusions Our novel heuristic algorithm, TFBSGroup, is able to quickly identify nearly exact matches for long
A fast image matching algorithm based on key points
NASA Astrophysics Data System (ADS)
Wang, Huilin; Wang, Ying; An, Ru; Yan, Peng
2014-05-01
Image matching is a very important technique in image processing. It has been widely used for object recognition and tracking, image retrieval, three-dimensional vision, change detection, aircraft position estimation, and multi-image registration. Based on the requirements of matching algorithm for craft navigation, such as speed, accuracy and adaptability, a fast key point image matching method is investigated and developed. The main research tasks includes: (1) Developing an improved celerity key point detection approach using self-adapting threshold of Features from Accelerated Segment Test (FAST). A method of calculating self-adapting threshold was introduced for images with different contrast. Hessian matrix was adopted to eliminate insecure edge points in order to obtain key points with higher stability. This approach in detecting key points has characteristics of small amount of computation, high positioning accuracy and strong anti-noise ability; (2) PCA-SIFT is utilized to describe key point. 128 dimensional vector are formed based on the SIFT method for the key points extracted. A low dimensional feature space was established by eigenvectors of all the key points, and each eigenvector was projected onto the feature space to form a low dimensional eigenvector. These key points were re-described by dimension-reduced eigenvectors. After reducing the dimension by the PCA, the descriptor was reduced to 20 dimensions from the original 128. This method can reduce dimensions of searching approximately near neighbors thereby increasing overall speed; (3) Distance ratio between the nearest neighbour and second nearest neighbour searching is regarded as the measurement criterion for initial matching points from which the original point pairs matched are obtained. Based on the analysis of the common methods (e.g. RANSAC (random sample consensus) and Hough transform cluster) used for elimination false matching point pairs, a heuristic local geometric restriction
A fast and memory-sparing probabilistic selection algorithm for the GPU
Monroe, Laura M; Wendelberger, Joanne; Michalak, Sarah
2010-09-29
A fast and memory-sparing probabilistic top-N selection algorithm is implemented on the GPU. This probabilistic algorithm gives a deterministic result and always terminates. The use of randomization reduces the amount of data that needs heavy processing, and so reduces both the memory requirements and the average time required for the algorithm. This algorithm is well-suited to more general parallel processors with multiple layers of memory hierarchy. Probabilistic Las Vegas algorithms of this kind are a form of stochastic optimization and can be especially useful for processors having a limited amount of fast memory available.
Fast three-step phase-shifting algorithm
Huang, Peisen S.; Zhang Song
2006-07-20
We propose a new three-step phase-shifting algorithm, which is much faster than the traditional three-step algorithm. We achieve the speed advantage by using a simple intensity ratio function to replace the arc tangent function in the traditional algorithm. The phase error caused by this new algorithm is compensated for by use of a lookup table. Our experimental result sshow that both the new algorithm and the traditional algorithm generate similar results, but the new algorithm is 3.4 times faster. By implementing this new algorithm in a high-resolution, real-time three-dimensional shape measurement system,we were able to achieve a measurement speed of 40 frames per second ata resolution of 532x500 pixels, all with an ordinary personal computer.
Xu, Lingyang; Hou, Yali; Bickhart, Derek M.; Song, Jiuzhou; Liu, George E.
2013-01-01
Copy number variations (CNVs) are gains and losses of genomic sequence between two individuals of a species when compared to a reference genome. The data from single nucleotide polymorphism (SNP) microarrays are now routinely used for genotyping, but they also can be utilized for copy number detection. Substantial progress has been made in array design and CNV calling algorithms and at least 10 comparison studies in humans have been published to assess them. In this review, we first survey the literature on existing microarray platforms and CNV calling algorithms. We then examine a number of CNV calling tools to evaluate their impacts using bovine high-density SNP data. Large incongruities in the results from different CNV calling tools highlight the need for standardizing array data collection, quality assessment and experimental validation. Only after careful experimental design and rigorous data filtering can the impacts of CNVs on both normal phenotypic variability and disease susceptibility be fully revealed.
Fast algorithm for probabilistic bone edge detection (FAPBED)
NASA Astrophysics Data System (ADS)
Scepanovic, Danilo; Kirshtein, Joshua; Jain, Ameet K.; Taylor, Russell H.
2005-04-01
The registration of preoperative CT to intra-operative reality systems is a crucial step in Computer Assisted Orthopedic Surgery (CAOS). The intra-operative sensors include 3D digitizers, fiducials, X-rays and Ultrasound (US). FAPBED is designed to process CT volumes for registration to tracked US data. Tracked US is advantageous because it is real time, noninvasive, and non-ionizing, but it is also known to have inherent inaccuracies which create the need to develop a framework that is robust to various uncertainties, and can be useful in US-CT registration. Furthermore, conventional registration methods depend on accurate and absolute segmentation. Our proposed probabilistic framework addresses the segmentation-registration duality, wherein exact segmentation is not a prerequisite to achieve accurate registration. In this paper, we develop a method for fast and automatic probabilistic bone surface (edge) detection in CT images. Various features that influence the likelihood of the surface at each spatial coordinate are combined using a simple probabilistic framework, which strikes a fair balance between a high-level understanding of features in an image and the low-level number crunching of standard image processing techniques. The algorithm evaluates different features for detecting the probability of a bone surface at each voxel, and compounds the results of these methods to yield a final, low-noise, probability map of bone surfaces in the volume. Such a probability map can then be used in conjunction with a similar map from tracked intra-operative US to achieve accurate registration. Eight sample pelvic CT scans were used to extract feature parameters and validate the final probability maps. An un-optimized fully automatic Matlab code runs in five minutes per CT volume on average, and was validated by comparison against hand-segmented gold standards. The mean probability assigned to nonzero surface points was 0.8, while nonzero non-surface points had a mean
Fast algorithm for detecting community structure in networks
NASA Astrophysics Data System (ADS)
Newman, M. E.
2004-06-01
Many networks display community structure—groups of vertices within which connections are dense but between which they are sparser—and sensitive computer algorithms have in recent years been developed for detecting this structure. These algorithms, however, are computationally demanding, which limits their application to small networks. Here we describe an algorithm which gives excellent results when tested on both computer-generated and real-world networks and is much faster, typically thousands of times faster, than previous algorithms. We give several example applications, including one to a collaboration network of more than 50 000 physicists.
Fast single-pass alignment and variant calling using sequencing data
Technology Transfer Automated Retrieval System (TEKTRAN)
Sequencing research requires efficient computation. Few programs use already known information about DNA variants when aligning sequence data to the reference map. New program findmap.f90 reads the previous variant list before aligning sequence, calling variant alleles, and summing the allele counts...
A fast algorithm for reconstruction of spectrally sparse signals in super-resolution
NASA Astrophysics Data System (ADS)
Cai, Jian-Feng; Liu, Suhui; Xu, Weiyu
2015-08-01
We propose a fast algorithm to reconstruct spectrally sparse signals from a small number of randomly observed time domain samples. Different from conventional compressed sensing where frequencies are discretized, we consider the super-resolution case where the frequencies can be any values in the normalized continuous frequency domain [0; 1). We first convert our signal recovery problem into a low rank Hankel matrix completion problem, for which we then propose an efficient feasible point algorithm named projected Wirtinger gradient algorithm(PWGA). The algorithm can be further accelerated by a scheme inspired by the fast iterative shrinkage-thresholding algorithm (FISTA). Numerical experiments are provided to illustrate the effectiveness of our proposed algorithm. Different from earlier approaches, our algorithm can solve problems of large scale efficiently.
Fast Optimal Load Balancing Algorithms for 1D Partitioning
Pinar, Ali; Aykanat, Cevdet
2002-12-09
One-dimensional decomposition of nonuniform workload arrays for optimal load balancing is investigated. The problem has been studied in the literature as ''chains-on-chains partitioning'' problem. Despite extensive research efforts, heuristics are still used in parallel computing community with the ''hope'' of good decompositions and the ''myth'' of exact algorithms being hard to implement and not runtime efficient. The main objective of this paper is to show that using exact algorithms instead of heuristics yields significant load balance improvements with negligible increase in preprocessing time. We provide detailed pseudocodes of our algorithms so that our results can be easily reproduced. We start with a review of literature on chains-on-chains partitioning problem. We propose improvements on these algorithms as well as efficient implementation tips. We also introduce novel algorithms, which are asymptotically and runtime efficient. We experimented with data sets from two different applications: Sparse matrix computations and Direct volume rendering. Experiments showed that the proposed algorithms are 100 times faster than a single sparse-matrix vector multiplication for 64-way decompositions on average. Experiments also verify that load balance can be significantly improved by using exact algorithms instead of heuristics. These two findings show that exact algorithms with efficient implementations discussed in this paper can effectively replace heuristics.
A fast and convergent stochastic MLP learning algorithm.
Sakurai, A
2001-12-01
We propose a stochastic learning algorithm for multilayer perceptrons of linear-threshold function units, which theoretically converges with probability one and experimentally exhibits 100% convergence rate and remarkable speed on parity and classification problems with typical generalization accuracy. For learning the n bit parity function with n hidden units, the algorithm converged on all the trials we tested (n=2 to 12) after 5.8 x 4.1(n) presentations for 0.23 x 4.0(n-6) seconds on a 533MHz Alpha 21164A chip on average, which is five to ten times faster than Levenberg-Marquardt algorithm with restarts. For a medium size classification problem known as Thyroid in UCI repository, the algorithm is faster in speed and comparative in generalization accuracy than the standard backpropagation and Levenberg-Marquardt algorithms. PMID:11852440
Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.
Mei, Gang; Xu, Nengxiong; Xu, Liangliang
2016-01-01
This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm. PMID:27610308
Low-Complexity Saliency Detection Algorithm for Fast Perceptual Video Coding
Liu, Pengyu; Jia, Kebin
2013-01-01
A low-complexity saliency detection algorithm for perceptual video coding is proposed; low-level encoding information is adopted as the characteristics of visual perception analysis. Firstly, this algorithm employs motion vector (MV) to extract temporal saliency region through fast MV noise filtering and translational MV checking procedure. Secondly, spatial saliency region is detected based on optimal prediction mode distributions in I-frame and P-frame. Then, it combines the spatiotemporal saliency detection results to define the video region of interest (VROI). The simulation results validate that the proposed algorithm can avoid a large amount of computation work in the visual perception characteristics analysis processing compared with other existing algorithms; it also has better performance in saliency detection for videos and can realize fast saliency detection. It can be used as a part of the video standard codec at medium-to-low bit-rates or combined with other algorithms in fast video coding. PMID:24489495
NASA Technical Reports Server (NTRS)
Chew, W. C.; Song, J. M.; Lu, C. C.; Weedon, W. H.
1995-01-01
In the first phase of our work, we have concentrated on laying the foundation to develop fast algorithms, including the use of recursive structure like the recursive aggregate interaction matrix algorithm (RAIMA), the nested equivalence principle algorithm (NEPAL), the ray-propagation fast multipole algorithm (RPFMA), and the multi-level fast multipole algorithm (MLFMA). We have also investigated the use of curvilinear patches to build a basic method of moments code where these acceleration techniques can be used later. In the second phase, which is mainly reported on here, we have concentrated on implementing three-dimensional NEPAL on a massively parallel machine, the Connection Machine CM-5, and have been able to obtain some 3D scattering results. In order to understand the parallelization of codes on the Connection Machine, we have also studied the parallelization of 3D finite-difference time-domain (FDTD) code with PML material absorbing boundary condition (ABC). We found that simple algorithms like the FDTD with material ABC can be parallelized very well allowing us to solve within a minute a problem of over a million nodes. In addition, we have studied the use of the fast multipole method and the ray-propagation fast multipole algorithm to expedite matrix-vector multiplication in a conjugate-gradient solution to integral equations of scattering. We find that these methods are faster than LU decomposition for one incident angle, but are slower than LU decomposition when many incident angles are needed as in the monostatic RCS calculations.
Vectorized Rebinning Algorithm for Fast Data Down-Sampling
NASA Technical Reports Server (NTRS)
Dean, Bruce; Aronstein, David; Smith, Jeffrey
2013-01-01
A vectorized rebinning (down-sampling) algorithm, applicable to N-dimensional data sets, has been developed that offers a significant reduction in computer run time when compared to conventional rebinning algorithms. For clarity, a two-dimensional version of the algorithm is discussed to illustrate some specific details of the algorithm content, and using the language of image processing, 2D data will be referred to as "images," and each value in an image as a "pixel." The new approach is fully vectorized, i.e., the down-sampling procedure is done as a single step over all image rows, and then as a single step over all image columns. Data rebinning (or down-sampling) is a procedure that uses a discretely sampled N-dimensional data set to create a representation of the same data, but with fewer discrete samples. Such data down-sampling is fundamental to digital signal processing, e.g., for data compression applications.
A fast recursive algorithm for molecular dynamics simulation
NASA Technical Reports Server (NTRS)
Jain, A.; Vaidehi, N.; Rodriguez, G.
1993-01-01
The present recursive algorithm for solving molecular systems' dynamical equations of motion employs internal variable models that reduce such simulations' computation time by an order of magnitude, relative to Cartesian models. Extensive use is made of spatial operator methods recently developed for analysis and simulation of the dynamics of multibody systems. A factor-of-450 speedup over the conventional O(N-cubed) algorithm is demonstrated for the case of a polypeptide molecule with 400 residues.
Fast algorithm for automatically computing Strahler stream order
Lanfear, Kenneth J.
1990-01-01
An efficient algorithm was developed to determine Strahler stream order for segments of stream networks represented in a Geographic Information System (GIS). The algorithm correctly assigns Strahler stream order in topologically complex situations such as braided streams and multiple drainage outlets. Execution time varies nearly linearly with the number of stream segments in the network. This technique is expected to be particularly useful for studying the topology of dense stream networks derived from digital elevation model data.
Fast parallel algorithms for short-range molecular dynamics
Plimpton, S.
1993-05-01
Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a subset of atoms; the second assigns each a subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently -- those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 10,000,000 atoms on three parallel supercomputers, the nCUBE 2, Intel iPSC/860, and Intel Delta. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and the Intel Delta performs about 30 times faster than a single Y-MP processor and 12 times faster than a single C90 processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.
A fast neural-network algorithm for VLSI cell placement.
Aykanat, Cevdet; Bultan, Tevfik; Haritaoğlu, Ismail
1998-12-01
Cell placement is an important phase of current VLSI circuit design styles such as standard cell, gate array, and Field Programmable Gate Array (FPGA). Although nondeterministic algorithms such as Simulated Annealing (SA) were successful in solving this problem, they are known to be slow. In this paper, a neural network algorithm is proposed that produces solutions as good as SA in substantially less time. This algorithm is based on Mean Field Annealing (MFA) technique, which was successfully applied to various combinatorial optimization problems. A MFA formulation for the cell placement problem is derived which can easily be applied to all VLSI design styles. To demonstrate that the proposed algorithm is applicable in practice, a detailed formulation for the FPGA design style is derived, and the layouts of several benchmark circuits are generated. The performance of the proposed cell placement algorithm is evaluated in comparison with commercial automated circuit design software Xilinx Automatic Place and Route (APR) which uses SA technique. Performance evaluation is conducted using ACM/SIGDA Design Automation benchmark circuits. Experimental results indicate that the proposed MFA algorithm produces comparable results with APR. However, MFA is almost 20 times faster than APR on the average. PMID:12662737
Wang, Lei-Guang; Zheng, Chen; Lin, Li-Yu; Chen, Rong-Yuan; Mei, Tian-Can
2011-01-01
Mean Shift algorithm is a robust approach toward feature space analysis and it has been used wildly for natural scene image and medical image segmentation. However, high computational complexity of the algorithm has constrained its application in remote sensing images with massive information. A fast image segmentation algorithm is presented by extending traditional mean shift method to wavelet domain. In order to evaluate the effectiveness of the proposed algorithm, multispectral remote sensing image and synthetic image are utilized. The results show that the proposed algorithm can improve the speed 5-7 times compared to the traditional MS method in the premise of segmentation quality assurance. PMID:21428083
A new hybrid algorithm for computing a fast discrete Fourier transform
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1979-01-01
In this paper for certain long transform lengths, Winograd's algorithm for computing the discrete Fourier transform (DFT) is extended considerably. This is accomplished by performing the cyclic convolution, required by Winograd's method, with the Mersenne prime number-theoretic transform developed originally by Rader. This new algorithm requires fewer multiplications than either the standard fast Fourier transform (FFT) or Winograd's more conventional algorithm. However, more additions are required.
Fast Combinatorial Algorithm for the Solution of Linearly Constrained Least Squares Problems
Van Benthem, Mark H.; Keenan, Michael R.
2008-11-11
A fast combinatorial algorithm can significantly reduce the computational burden when solving general equality and inequality constrained least squares problems with large numbers of observation vectors. The combinatorial algorithm provides a mathematically rigorous solution and operates at great speed by reorganizing the calculations to take advantage of the combinatorial nature of the problems to be solved. The combinatorial algorithm exploits the structure that exists in large-scale problems in order to minimize the number of arithmetic operations required to obtain a solution.
Simple, fast codebook training algorithm by entropy sequence for vector quantization
NASA Astrophysics Data System (ADS)
Pang, Chao-yang; Yao, Shaowen; Qi, Zhang; Sun, Shi-xin; Liu, Jingde
2001-09-01
The traditional training algorithm for vector quantization such as the LBG algorithm uses the convergence of distortion sequence as the condition of the end of algorithm. We presented a novel training algorithm for vector quantization in this paper. The convergence of the entropy sequence of each region sequence is employed as the condition of the end of the algorithm. Compared with the famous LBG algorithm, it is simple, fast and easy to be comprehended and controlled. We test the performance of the algorithm by typical test image Lena and Barb. The result shows that the PSNR difference between the algorithm and LBG is less than 0.1dB, but the running time of it is at most one second of LBG.
Jühling, Frank; Kretzmer, Helene; Bernhart, Stephan H; Otto, Christian; Stadler, Peter F; Hoffmann, Steve
2016-02-01
The detection of differentially methylated regions (DMRs) is a necessary prerequisite for characterizing different epigenetic states. We present a novel program, metilene, to identify DMRs within whole-genome and targeted data with unrivaled specificity and sensitivity. A binary segmentation algorithm combined with a two-dimensional statistical test allows the detection of DMRs in large methylation experiments with multiple groups of samples in minutes rather than days using off-the-shelf hardware. metilene outperforms other state-of-the-art tools for low coverage data and can estimate missing data. Hence, metilene is a versatile tool to study the effect of epigenetic modifications in differentiation/development, tumorigenesis, and systems biology on a global, genome-wide level. Whether in the framework of international consortia with dozens of samples per group, or even without biological replicates, it produces highly significant and reliable results. PMID:26631489
Outline of a fast hardware implementation of Winograd's DFT algorithm
NASA Technical Reports Server (NTRS)
Zohar, S.
1980-01-01
The main characteristics of the discrete Fourier transform (DFT) algorithm considered by Winograd (1976) is a significant reduction in the number of multiplications. Its primary disadvantage is a higher structural complexity. It is, therefore, difficult to translate the reduced number of multiplications into faster execution of the DFT by means of a software implementation of the algorithm. For this reason, a hardware implementation is considered in the current study, taking into account a design based on the algorithm prescription discussed by Zohar (1979). The hardware implementation of a FORTRAN subroutine is proposed, giving attention to a pipelining scheme in which 5 consecutive data batches are being operated on simultaneously, each batch undergoing one of 5 processing phases.
BFL: a node and edge betweenness based fast layout algorithm for large scale networks
Hashimoto, Tatsunori B; Nagasaki, Masao; Kojima, Kaname; Miyano, Satoru
2009-01-01
Background Network visualization would serve as a useful first step for analysis. However, current graph layout algorithms for biological pathways are insensitive to biologically important information, e.g. subcellular localization, biological node and graph attributes, or/and not available for large scale networks, e.g. more than 10000 elements. Results To overcome these problems, we propose the use of a biologically important graph metric, betweenness, a measure of network flow. This metric is highly correlated with many biological phenomena such as lethality and clusters. We devise a new fast parallel algorithm calculating betweenness to minimize the preprocessing cost. Using this metric, we also invent a node and edge betweenness based fast layout algorithm (BFL). BFL places the high-betweenness nodes to optimal positions and allows the low-betweenness nodes to reach suboptimal positions. Furthermore, BFL reduces the runtime by combining a sequential insertion algorim with betweenness. For a graph with n nodes, this approach reduces the expected runtime of the algorithm to O(n2) when considering edge crossings, and to O(n log n) when considering only density and edge lengths. Conclusion Our BFL algorithm is compared against fast graph layout algorithms and approaches requiring intensive optimizations. For gene networks, we show that our algorithm is faster than all layout algorithms tested while providing readability on par with intensive optimization algorithms. We achieve a 1.4 second runtime for a graph with 4000 nodes and 12000 edges on a standard desktop computer. PMID:19146673
A fast non-local image denoising algorithm
NASA Astrophysics Data System (ADS)
Dauwe, A.; Goossens, B.; Luong, H. Q.; Philips, W.
2008-02-01
In this paper we propose several improvements to the original non-local means algorithm introduced by Buades et al. which obtains state-of-the-art denoising results. The strength of this algorithm is to exploit the repetitive character of the image in order to denoise the image unlike conventional denoising algorithms, which typically operate in a local neighbourhood. Due to the enormous amount of weight computations, the original algorithm has a high computational cost. An improvement of image quality towards the original algorithm is to ignore the contributions from dissimilar windows. Even though their weights are very small at first sight, the new estimated pixel value can be severely biased due to the many small contributions. This bad influence of dissimilar windows can be eliminated by setting their corresponding weights to zero. Using the preclassification based on the first three statistical moments, only contributions from similar neighborhoods are computed. To decide whether a window is similar or dissimilar, we will derive thresholds for images corrupted with additive white Gaussian noise. Our accelerated approach is further optimized by taking advantage of the symmetry in the weights, which roughly halves the computation time, and by using a lookup table to speed up the weight computations. Compared to the original algorithm, our proposed method produces images with increased PSNR and better visual performance in less computation time. Our proposed method even outperforms state-of-the-art wavelet denoising techniques in both visual quality and PSNR values for images containing a lot of repetitive structures such as textures: the denoised images are much sharper and contain less artifacts. The proposed optimizations can also be applied in other image processing tasks which employ the concept of repetitive structures such as intra-frame super-resolution or detection of digital image forgery.
Gradient maintenance: A new algorithm for fast online replanning
Ahunbay, Ergun E. Li, X. Allen
2015-06-15
Purpose: Clinical use of online adaptive replanning has been hampered by the unpractically long time required to delineate volumes based on the image of the day. The authors propose a new replanning algorithm, named gradient maintenance (GM), which does not require the delineation of organs at risk (OARs), and can enhance automation, drastically reducing planning time and improving consistency and throughput of online replanning. Methods: The proposed GM algorithm is based on the hypothesis that if the dose gradient toward each OAR in daily anatomy can be maintained the same as that in the original plan, the intended plan quality of the original plan would be preserved in the adaptive plan. The algorithm requires a series of partial concentric rings (PCRs) to be automatically generated around the target toward each OAR on the planning and the daily images. The PCRs are used in the daily optimization objective function. The PCR dose constraints are generated with dose–volume data extracted from the original plan. To demonstrate this idea, GM plans generated using daily images acquired using an in-room CT were compared to regular optimization and image guided radiation therapy repositioning plans for representative prostate and pancreatic cancer cases. Results: The adaptive replanning using the GM algorithm, requiring only the target contour from the CT of the day, can be completed within 5 min without using high-power hardware. The obtained adaptive plans were almost as good as the regular optimization plans and were better than the repositioning plans for the cases studied. Conclusions: The newly proposed GM replanning algorithm, requiring only target delineation, not full delineation of OARs, substantially increased planning speed for online adaptive replanning. The preliminary results indicate that the GM algorithm may be a solution to improve the ability for automation and may be especially suitable for sites with small-to-medium size targets surrounded by
Fast algorithms for transport models. Technical progress report
Manteuffel, T.A.
1992-12-01
The objective of this project is the development of numerical solution techniques for deterministic models of the transport of neutral and charged particles and the demonstration of their effectiveness in both a production environment and on advanced architecture computers. The primary focus is on various versions of the linear Boltzman equation. These equations are fundamental in many important applications. This project is an attempt to integrate the development of numerical algorithms with the process of developing production software. A major thrust of this reject will be the implementation of these algorithms on advanced architecture machines that reside at the Advanced Computing Laboratory (ACL) at Los Alamos National Laboratories (LANL).
A Simple and Fast Spline Filtering Algorithm for Surface Metrology
Zhang, Hao; Ott, Daniel; Song, John; Tong, Mingsi; Chu, Wei
2015-01-01
Spline filters and their corresponding robust filters are commonly used filters recommended in ISO (the International Organization for Standardization) standards for surface evaluation. Generally, these linear and non-linear spline filters, composed of symmetric, positive-definite matrices, are solved in an iterative fashion based on a Cholesky decomposition. They have been demonstrated to be relatively efficient, but complicated and inconvenient to implement. A new spline-filter algorithm is proposed by means of the discrete cosine transform or the discrete Fourier transform. The algorithm is conceptually simple and very convenient to implement. PMID:26958443
Fast Quantum Algorithms for Numerical Integrals and Stochastic Processes
NASA Technical Reports Server (NTRS)
Abrams, D.; Williams, C.
1999-01-01
We discuss quantum algorithms that calculate numerical integrals and descriptive statistics of stochastic processes. With either of two distinct approaches, one obtains an exponential speed increase in comparison to the fastest known classical deterministic algotithms and a quadratic speed increase incomparison to classical Monte Carlo methods.
Attitude determination using vector observations: A fast optimal matrix algorithm
NASA Technical Reports Server (NTRS)
Markley, F. Landis
1993-01-01
The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function.
Fast algorithms for combustion kinetics calculations: A comparison
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
1984-01-01
To identify the fastest algorithm currently available for the numerical integration of chemical kinetic rate equations, several algorithms were examined. Findings to date are summarized. The algorithms examined include two general-purpose codes EPISODE and LSODE and three special-purpose (for chemical kinetic calculations) codes CHEMEQ, CRK1D, and GCKP84. In addition, an explicit Runge-Kutta-Merson differential equation solver (IMSL Routine DASCRU) is used to illustrate the problems associated with integrating chemical kinetic rate equations by a classical method. Algorithms were applied to two test problems drawn from combustion kinetics. These problems included all three combustion regimes: induction, heat release and equilibration. Variations of the temperature and species mole fraction are given with time for test problems 1 and 2, respectively. Both test problems were integrated over a time interval of 1 ms in order to obtain near-equilibration of all species and temperature. Of the codes examined in this study, only CREK1D and GCDP84 were written explicitly for integrating exothermic, non-isothermal combustion rate equations. These therefore have built-in procedures for calculating the temperature.
An Iterative CT Reconstruction Algorithm for Fast Fluid Flow Imaging.
Van Eyndhoven, Geert; Batenburg, K Joost; Kazantsev, Daniil; Van Nieuwenhove, Vincent; Lee, Peter D; Dobson, Katherine J; Sijbers, Jan
2015-11-01
The study of fluid flow through solid matter by computed tomography (CT) imaging has many applications, ranging from petroleum and aquifer engineering to biomedical, manufacturing, and environmental research. To avoid motion artifacts, current experiments are often limited to slow fluid flow dynamics. This severely limits the applicability of the technique. In this paper, a new iterative CT reconstruction algorithm for improved a temporal/spatial resolution in the imaging of fluid flow through solid matter is introduced. The proposed algorithm exploits prior knowledge in two ways. First, the time-varying object is assumed to consist of stationary (the solid matter) and dynamic regions (the fluid flow). Second, the attenuation curve of a particular voxel in the dynamic region is modeled by a piecewise constant function over time, which is in accordance with the actual advancing fluid/air boundary. Quantitative and qualitative results on different simulation experiments and a real neutron tomography data set show that, in comparison with the state-of-the-art algorithms, the proposed algorithm allows reconstruction from substantially fewer projections per rotation without image quality loss. Therefore, the temporal resolution can be substantially increased, and thus fluid flow experiments with faster dynamics can be performed. PMID:26259219
Xue, Zhong; Li, Hai; Guo, Lei; Wong, Stephen T C
2010-08-01
It is a key step to spatially align diffusion tensor images (DTI) to quantitatively compare neural images obtained from different subjects or the same subject at different timepoints. Different from traditional scalar or multi-channel image registration methods, tensor orientation should be considered in DTI registration. Recently, several DTI registration methods have been proposed in the literature, but deformation fields are purely dependent on the tensor features not the whole tensor information. Other methods, such as the piece-wise affine transformation and the diffeomorphic non-linear registration algorithms, use analytical gradients of the registration objective functions by simultaneously considering the reorientation and deformation of tensors during the registration. However, only relatively local tensor information such as voxel-wise tensor-similarity is utilized. This paper proposes a new DTI image registration algorithm, called local fast marching (FM)-based simultaneous registration. The algorithm not only considers the orientation of tensors during registration but also utilizes the neighborhood tensor information of each voxel to drive the deformation, and such neighborhood tensor information is extracted from a local fast marching algorithm around the voxels of interest. These local fast marching-based tensor features efficiently reflect the diffusion patterns around each voxel within a spherical neighborhood and can capture relatively distinctive features of the anatomical structures. Using simulated and real DTI human brain data the experimental results show that the proposed algorithm is more accurate compared with the FA-based registration and is more efficient than its counterpart, the neighborhood tensor similarity-based registration. PMID:20382233
A Fast MEANSHIFT Algorithm-Based Target Tracking System
Sun, Jian
2012-01-01
Tracking moving targets in complex scenes using an active video camera is a challenging task. Tracking accuracy and efficiency are two key yet generally incompatible aspects of a Target Tracking System (TTS). A compromise scheme will be studied in this paper. A fast mean-shift-based Target Tracking scheme is designed and realized, which is robust to partial occlusion and changes in object appearance. The physical simulation shows that the image signal processing speed is >50 frame/s. PMID:22969397
A Fast Implementation of the ISODATA Clustering Algorithm
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline
2005-01-01
Clustering is central to many image processing and remote sensing applications. ISODATA is one of the most popular and widely used clustering methods in geoscience applications, but it can run slowly, particularly with large data sets. We present a more efficient approach to ISODATA clustering, which achieves better running times by storing the points in a kd-tree and through a modification of the way in which the algorithm estimates the dispersion of each cluster. We also present an approximate version of the algorithm which allows the user to further improve the running time, at the expense of lower fidelity in computing the nearest cluster center to each point. We provide both theoretical and empirical justification that our modified approach produces clusterings that are very similar to those produced by the standard ISODATA approach. We also provide empirical studies on both synthetic data and remotely sensed Landsat and MODIS images that show that our approach has significantly lower running times.
Compressed Sensing Photoacoustic Imaging Based on Fast Alternating Direction Algorithm
Liu, Xueyan; Peng, Dong; Guo, Wei; Ma, Xibo; Yang, Xin; Tian, Jie
2012-01-01
Photoacoustic imaging (PAI) has been employed to reconstruct endogenous optical contrast present in tissues. At the cost of longer calculations, a compressive sensing reconstruction scheme can achieve artifact-free imaging with fewer measurements. In this paper, an effective acceleration framework using the alternating direction method (ADM) was proposed for recovering images from limited-view and noisy observations. Results of the simulation demonstrated that the proposed algorithm could perform favorably in comparison to two recently introduced algorithms in computational efficiency and data fidelity. In particular, it ran considerably faster than these two methods. PAI with ADM can improve convergence speed with fewer ultrasonic transducers, enabling a high-performance and cost-effective PAI system for biomedical applications. PMID:23365553
Fast algorithms for improved speech coding and recognition
NASA Astrophysics Data System (ADS)
Turner, J. M.; Morf, M.; Stirling, W.; Shynk, J.; Huang, S. S.
1983-12-01
This research effort has studied estimation techniques for processes that contain Gaussian noise and jump components, and classification methods for transitional signals by using recursive estimation with vector quantization. The major accomplishments presented are an algorithm for joint estimation of excitation and vocal tract response, a pitch pulse location method using recursive least squares estimation, and a stop consonant recognition method using recursive estimation and vector quantization.
Fast automatic algorithm for bifurcation detection in vascular CTA scans
NASA Astrophysics Data System (ADS)
Brozio, Matthias; Gorbunova, Vladlena; Godenschwager, Christian; Beck, Thomas; Bernhardt, Dominik
2012-02-01
Endovascular imaging aims at identifying vessels and their branches. Automatic vessel segmentation and bifurcation detection eases both clinical research and routine work. In this article a state of the art bifurcation detection algorithm is developed and applied on vascular computed tomography angiography (CTA) scans to mark the common iliac artery and its branches, the internal and external iliacs. In contrast to other methods our algorithm does not rely on a complete segmentation of a vessel in the 3D volume, but evaluates the cross-sections of the vessel slice by slice. Candidates for vessels are obtained by thresholding, following by 2D connected component labeling and prefiltering by size and position. The remaining candidates are connected in a squared distanced weighted graph. With Dijkstra algorithm the graph is traversed to get candidates for the arteries. We use another set of features considering length and shape of the paths to determine the best candidate and detect the bifurcation. The method was tested on 119 datasets acquired with different CT scanners and varying protocols. Both easy to evaluate datasets with high resolution and no apparent clinical diseases and difficult ones with low resolution, major calcifications, stents or poor contrast between the vessel and surrounding tissue were included. The presented results are promising, in 75.7% of the cases the bifurcation was labeled correctly, and in 82.7% the common artery and one of its branches were assigned correctly. The computation time was on average 0.49 s +/- 0.28 s, close to human interaction time, which makes the algorithm applicable for time-critical applications.
Fast motion prediction algorithm for multiview video coding
NASA Astrophysics Data System (ADS)
Abdelazim, Abdelrahman; Zhang, Guang Y.; Mein, Stephen J.; Varley, Martin R.; Ait-Boudaoud, Djamel
2011-06-01
Multiview Video Coding (MVC) is an extension to the H.264/MPEG-4 AVC video compression standard developed with joint efforts by MPEG/VCEG to enable efficient encoding of sequences captured simultaneously from multiple cameras using a single video stream. Therefore the design is aimed at exploiting inter-view dependencies in addition to reducing temporal redundancies. However, this further increases the overall encoding complexity In this paper, the high correlation between a macroblock and its enclosed partitions is utilised to estimate motion homogeneity, and based on the result inter-view prediction is selectively enabled or disabled. Moreover, if the MVC is divided into three layers in terms of motion prediction; the first being the full and sub-pixel motion search, the second being the mode selection process and the third being repetition of the first and second for inter-view prediction, the proposed algorithm significantly reduces the complexity in the three layers. To assess the proposed algorithm, a comprehensive set of experiments were conducted. The results show that the proposed algorithm significantly reduces the motion estimation time whilst maintaining similar Rate Distortion performance, when compared to both the H.264/MVC reference software and recently reported work.
Constant Modulus Algorithm with Reduced Complexity Employing DFT Domain Fast Filtering
NASA Astrophysics Data System (ADS)
Yang, Yoon Gi; Lee, Chang Su; Yang, Soo Mi
In this paper, a novel CMA (constant modulus algorithm) algorithm employing fast convolution in the DFT (discrete Fourier transform) domain is proposed. We propose a non-linear adaptation algorithm that minimizes CMA cost function in the DFT domain. The proposed algorithm is completely new one as compared to the recently introduced similar DFT domain CMA algorithm in that, the original CMA cost function has not been changed to develop DFT domain algorithm, resulting improved convergence properties. Using the proposed approach, we can reduce the number of multiplications to O(N log 2 N), whereas the conventional CMA has the computation order of O(N2). Simulation results show that the proposed algorithm provides a comparable performance to the conventional CMA.
Fast time-reversible algorithms for molecular dynamics of rigid-body systems.
Kajima, Yasuhiro; Hiyama, Miyabi; Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki
2012-06-21
In this paper, we present time-reversible simulation algorithms for rigid bodies in the quaternion representation. By advancing a time-reversible algorithm [Y. Kajima, M. Hiyama, S. Ogata, and T. Tamura, J. Phys. Soc. Jpn. 80, 114002 (2011)] that requires iterations in calculating the angular velocity at each time step, we propose two kinds of iteration-free fast time-reversible algorithms. They are easily implemented in codes. The codes are compared with that of existing algorithms through demonstrative simulation of a nanometer-sized water droplet to find their stability of the total energy and computation speeds. PMID:22779579
NASA Technical Reports Server (NTRS)
De Man, H. J. J.
1972-01-01
A fast algorithm is described which calculates the space charge layer width and junction capacitance for an arbitrary impurity profile and for plane, cylindrical and spherical junctions. The algorithm is based on the abrupt space charge edge (ASCE) approximation. A method to use the algorithm for the determination of impurity profiles for two-sided junctions is presented. An expression is derived for the built-in voltage to be used for capacitance calculations with the ASCE approximation. Experimental evidence is given that the algorithm permits very accurate capacitance calculations and also predicts the exact temperature dependence of the junction capacitance.
A fast algorithm for nonlinear finite element analysis using equivalent magnetization current
NASA Astrophysics Data System (ADS)
Lee, Joon-Ho; Park, Il-Han; Kim, Dong-Hun; Lee, Ki-Sik
2002-05-01
A fast algorithm for iterative nonlinear finite element analysis is presented in this paper. The algorithm replaces updated permeability by an equivalent magnetization current and moves it to the source current term. Once the initial system matrix is decomposed in the LU form, the iterative procedure involves the trivial step of back-substitution from the LU form. Consequently, the computation time for the nonlinear analysis is greatly reduced. A numerical model of a cylindrical conductor enclosed with saturable iron is tested to validate the proposed algorithm. Numerical results are compared with those obtained using conventional Newton-Raphson algorithm in respect to accuracy and computational time.
Fast and accurate image recognition algorithms for fresh produce food safety sensing
NASA Astrophysics Data System (ADS)
Yang, Chun-Chieh; Kim, Moon S.; Chao, Kuanglin; Kang, Sukwon; Lefcourt, Alan M.
2011-06-01
This research developed and evaluated the multispectral algorithms derived from hyperspectral line-scan fluorescence imaging under violet LED excitation for detection of fecal contamination on Golden Delicious apples. The algorithms utilized the fluorescence intensities at four wavebands, 680 nm, 684 nm, 720 nm, and 780 nm, for computation of simple functions for effective detection of contamination spots created on the apple surfaces using four concentrations of aqueous fecal dilutions. The algorithms detected more than 99% of the fecal spots. The effective detection of feces showed that a simple multispectral fluorescence imaging algorithm based on violet LED excitation may be appropriate to detect fecal contamination on fast-speed apple processing lines.
AMY-tree: an algorithm to use whole genome SNP calling for Y chromosomal phylogenetic applications
2013-01-01
Background Due to the rapid progress of next-generation sequencing (NGS) facilities, an explosion of human whole genome data will become available in the coming years. These data can be used to optimize and to increase the resolution of the phylogenetic Y chromosomal tree. Moreover, the exponential growth of known Y chromosomal lineages will require an automatic determination of the phylogenetic position of an individual based on whole genome SNP calling data and an up to date Y chromosomal tree. Results We present an automated approach, ‘AMY-tree’, which is able to determine the phylogenetic position of a Y chromosome using a whole genome SNP profile, independently from the NGS platform and SNP calling program, whereby mistakes in the SNP calling or phylogenetic Y chromosomal tree are taken into account. Moreover, AMY-tree indicates ambiguities within the present phylogenetic tree and points out new Y-SNPs which may be phylogenetically relevant. The AMY-tree software package was validated successfully on 118 whole genome SNP profiles of 109 males with different origins. Moreover, support was found for an unknown recurrent mutation, wrong reported mutation conversions and a large amount of new interesting Y-SNPs. Conclusions Therefore, AMY-tree is a useful tool to determine the Y lineage of a sample based on SNP calling, to identify Y-SNPs with yet unknown phylogenetic position and to optimize the Y chromosomal phylogenetic tree in the future. AMY-tree will not add lineages to the existing phylogenetic tree of the Y-chromosome but it is the first step to analyse whole genome SNP profiles in a phylogenetic framework. PMID:23405914
Quadrant architecture for fast in-place algorithms
Besslich, P.W.; Kurowski, J.O.
1983-10-01
The architecture proposed is tailored to support Radix-2/sup k/ based in-place processing of pictorial data. The algorithms make use of signal-flow graphs to describe 2-dimensional in-place operations suitable for image processing. They may be executed on a general-purpose computer but may also be supported by a special parallel architecture. Major advantages of the scheme are in-place processing and parallel access to disjoint sections of memory only. A quadtree-like decomposition of the picture prevents blocking and queuing of private and common buses. 9 references.
Fast Huffman encoding algorithms in MPEG-4 advanced audio coding
NASA Astrophysics Data System (ADS)
Brzuchalski, Grzegorz
2014-11-01
This paper addresses the optimisation problem of Huffman encoding in MPEG-4 Advanced Audio Coding stan- dard. At first, the Huffman encoding problem and the need of encoding two side info parameters scale factor and Huffman codebook are presented. Next, Two Loop Search, Maximum Noise Mask Ratio and Trellis Based algorithms of bit allocation are briefly described. Further, Huffman encoding optimisation are shown. New methods try to check and change scale factor bands as little as possible to estimate bitrate cost or its change. Finally, the complexity of old and new methods is calculated, compared and measured time of encoding is given.
A fast algorithm for the simulation of arterial pulse waves
NASA Astrophysics Data System (ADS)
Du, Tao; Hu, Dan; Cai, David
2016-06-01
One-dimensional models have been widely used in studies of the propagation of blood pulse waves in large arterial trees. Under a periodic driving of the heartbeat, traditional numerical methods, such as the Lax-Wendroff method, are employed to obtain asymptotic periodic solutions at large times. However, these methods are severely constrained by the CFL condition due to large pulse wave speed. In this work, we develop a new numerical algorithm to overcome this constraint. First, we reformulate the model system of pulse wave propagation using a set of Riemann variables and derive a new form of boundary conditions at the inlet, the outlets, and the bifurcation points of the arterial tree. The new form of the boundary conditions enables us to design a convergent iterative method to enforce the boundary conditions. Then, after exchanging the spatial and temporal coordinates of the model system, we apply the Lax-Wendroff method in the exchanged coordinate system, which turns the large pulse wave speed from a liability to a benefit, to solve the wave equation in each artery of the model arterial system. Our numerical studies show that our new algorithm is stable and can perform ∼15 times faster than the traditional implementation of the Lax-Wendroff method under the requirement that the relative numerical error of blood pressure be smaller than one percent, which is much smaller than the modeling error.
Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes
NASA Technical Reports Server (NTRS)
Williams Colin P.
1999-01-01
Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.
Fast algorithms for glassy materials: methods and explorations
NASA Astrophysics Data System (ADS)
Middleton, A. Alan
2014-03-01
Glassy materials with frozen disorder, including random magnets such as spin glasses and interfaces in disordered materials, exhibit striking non-equilibrium behavior such as the ability to store a history of external parameters (memory). Precisely due to their glassy nature, direct simulation of models of these materials is very slow. In some fortunate cases, however, algorithms exist that exactly compute thermodynamic quantities. Such cases include spin glasses in two dimensions and interfaces and random field magnets in arbitrary dimensions at zero temperature. Using algorithms built using ideas developed by computer scientists and mathematicians, one can even directly sample equilibrium configurations in very large systems, as if one picked the configurations out of a ``hat'' of all configurations weighted by their Boltzmann factors. This talk will provide some of the background for these methods and discuss the connections between physics and computer science, as used by a number of groups. Recent applications of these methods to investigating phase transitions in glassy materials and to answering qualitative questions about the free energy landscape and memory effects will be discussed. This work was supported in part by NSF grant DMR-1006731. Creighton Thomas and David Huse also contributed to much of the work to be presented.
Fast computation of Lagrangian coherent structures: algorithms and error analysis
NASA Astrophysics Data System (ADS)
Brunton, Steven; Rowley, Clarence
2009-11-01
This work investigates a number of efficient methods for computing finite time Lyapunov exponent (FTLE) fields in unsteady flows by approximating the particle flow map and eliminating redundant particle integrations in neighboring flow maps. Ridges of the FTLE fields are Lagrangian coherent structures (LCS) and provide an unsteady analogue of invariant manifolds from dynamical systems theory. The fast methods fall into two categories, unidirectional and bidirectional, depending on whether flow maps in one or both time directions are composed to form an approximate flow map. An error analysis is presented which shows that the unidirectional methods are accurate while the bidirectional methods have significant error which is aligned with the opposite time coherent structures. This relies on the fact that material from the positive time LCS attracts onto the negative time LCS near time-dependent saddle points.
Compiling fast partial derivatives of functions given by algorithms
Speelpenning, B.
1980-01-01
If the gradient of the function y = f(x/sub 1/,..., x/sub n/) is desired, where f is given by an algoritym Af(x, n, y), most numerical analysts will use numerical differencing. This is a sampling scheme that approximates derivatives by the slope of secants in closely spaced points. Symbolic methods that make full use of the program text of Af should be able to come up with a better way to evaluate the gradient of F. The system Jake described produces gradients significantly faster than numerical differencing. Jake can handle algorithms Af with arbitrary flow of control. Measurements performed on one particular machine suggest that Jake is faster than numerical differencing for n > 8. Somewhat weaker results were obtained for the problem of computing Jacobians of arbitrary shape.
Ultra-fast fluence optimization for beam angle selection algorithms
NASA Astrophysics Data System (ADS)
Bangert, M.; Ziegenhein, P.; Oelfke, U.
2014-03-01
Beam angle selection (BAS) including fluence optimization (FO) is among the most extensive computational tasks in radiotherapy. Precomputed dose influence data (DID) of all considered beam orientations (up to 100 GB for complex cases) has to be handled in the main memory and repeated FOs are required for different beam ensembles. In this paper, the authors describe concepts accelerating FO for BAS algorithms using off-the-shelf multiprocessor workstations. The FO runtime is not dominated by the arithmetic load of the CPUs but by the transportation of DID from the RAM to the CPUs. On multiprocessor workstations, however, the speed of data transportation from the main memory to the CPUs is non-uniform across the RAM; every CPU has a dedicated memory location (node) with minimum access time. We apply a thread node binding strategy to ensure that CPUs only access DID from their preferred node. Ideal load balancing for arbitrary beam ensembles is guaranteed by distributing the DID of every candidate beam equally to all nodes. Furthermore we use a custom sorting scheme of the DID to minimize the overall data transportation. The framework is implemented on an AMD Opteron workstation. One FO iteration comprising dose, objective function, and gradient calculation takes between 0.010 s (9 beams, skull, 0.23 GB DID) and 0.070 s (9 beams, abdomen, 1.50 GB DID). Our overall FO time is < 1 s for small cases, larger cases take ~ 4 s. BAS runs including FOs for 1000 different beam ensembles take ~ 15-70 min, depending on the treatment site. This enables an efficient clinical evaluation of different BAS algorithms.
[An improved fast algorithm for ray casting volume rendering of medical images].
Tao, Ling; Wang, Huina; Tian, Zhiliang
2006-10-01
Ray casting algorithm can obtain better quality images in volume rendering, however, it presents some problems such as powerful computing capacity and slow rendering velocity. Therefore, a new fast algorithm of ray casting volume rendering is proposed in this paper. This algorithm reduces matrix computation by the matrix transformation characteristics of re-sampling points in two coordinate system, so re-sampled computational process is accelerated. By extending the Bresenham algorithm to three dimension and utilizing boundary box technique, this algorithm avoids the sampling in empty voxel and greatly improves the efficiency of ray casting. The experiment results show that the improved acceleration algorithm can produce the required quality images, at the same time reduces the total operations remarkably, and speeds up the volume rendering. PMID:17121341
SIML: A Fast SIMD Algorithm for Calculating LINGO Chemical Similarities on GPUs and CPUs
Haque, Imran S.; Walters, W. Patrick
2010-01-01
LINGOs are a holographic measure of chemical similarity based on text comparison of SMILES strings. We present a new algorithm for calculating LINGO similarities amenable to parallelization on SIMD architectures (such as GPUs and vector units of modern CPUs). We show that it is nearly 3 times as fast as existing algorithms on a CPU, and over 80 times faster than existing methods when run on a GPU. PMID:20218693
A preliminary report on the development of MATLAB tensor classes for fast algorithm prototyping.
Bader, Brett William; Kolda, Tamara Gibson
2004-07-01
We describe three MATLAB classes for manipulating tensors in order to allow fast algorithm prototyping. A tensor is a multidimensional or N-way array. We present a tensor class for manipulating tensors which allows for tensor multiplication and 'matricization.' We have further added two classes for representing tensors in decomposed format: cp{_}tensor and tucker{_}tensor. We demonstrate the use of these classes by implementing several algorithms that have appeared in the literature.
Fast algorithm for calculation of the moving tsunami wave height
NASA Astrophysics Data System (ADS)
Krivorotko, Olga; Kabanikhin, Sergey
2014-05-01
One of the most urgent problems of mathematical tsunami modeling is estimation of a tsunami wave height while a wave approaches to the coastal zone. There are two methods for solving this problem, namely, Airy-Green formula in one-dimensional case ° --- S(x) = S(0) 4 H(0)/H (x), and numerical solution of an initial-boundary value problem for linear shallow water equations ( { ηtt = div (gH (x,y)gradη), (x,y,t) ∈ ΩT := Ω ×(0,T); ( η|t=0 = q(x,y), ηt|t=0 = 0, (x,y ) ∈ Ω := (0,Lx)× (0,Ly ); (1) η|δΩT = 0. Here η(x,y,t) is the free water surface vertical displacement, H(x,y) is the depth at point (x,y), q(x,y) is the initial amplitude of a tsunami wave, S(x) is a moving tsunami wave height at point x. The main difficulty problem of tsunami modeling is a very big size of the computational domain ΩT. The calculation of the function η(x,y,t) of three variables in ΩT requires large computing resources. We construct a new algorithm to solve numerically the problem of determining the moving tsunami wave height which is based on kinematic-type approach and analytical representation of fundamental solution (2). The wave is supposed to be generated by the seismic fault of the bottom η(x,y,0) = g(y) ·θ(x), where θ(x) is a Heaviside theta-function. Let τ(x,y) be a solution of the eikonal equation 1 τ2x +τ2y = --, gH (x,y) satisfying initial conditions τ(0,y) = 0 and τx(0,y) = (gH (0,y))-1/2. Introducing new variables and new functions: ° -- z = τ(x,y), u(z,y,t) = ηt(x,y,t), b(z,y) = gH(x,y). We obtain an initial-boundary value problem in new variables from (1) ( 2 2 (2 bz- ) { utt = uzz + b uyy + 2b τyuzy + b(τxx + τyy) + 2b + 2bbyτy uz+ ( +2b(bzτy + by)uy, z,y- >2 0,t > 0,2 -1/2 u|t 0,t > 0. Then after some mathematical transformation we get the structure of the function u(x,y,t) in the form u(z,y,t) = S(z,y)·θ(t - z) + ˜u(z,y,t). (2) Here Å©(z,y,t) is a smooth function, S(z,y) is the solution of the problem: { S + b2τ S + (1b2(τ +
Modified fast frequency acquisition via adaptive least squares algorithm
NASA Technical Reports Server (NTRS)
Kumar, Rajendra (Inventor)
1992-01-01
A method and the associated apparatus for estimating the amplitude, frequency, and phase of a signal of interest are presented. The method comprises the following steps: (1) inputting the signal of interest; (2) generating a reference signal with adjustable amplitude, frequency and phase at an output thereof; (3) mixing the signal of interest with the reference signal and a signal 90 deg out of phase with the reference signal to provide a pair of quadrature sample signals comprising respectively a difference between the signal of interest and the reference signal and a difference between the signal of interest and the signal 90 deg out of phase with the reference signal; (4) using the pair of quadrature sample signals to compute estimates of the amplitude, frequency, and phase of an error signal comprising the difference between the signal of interest and the reference signal employing a least squares estimation; (5) adjusting the amplitude, frequency, and phase of the reference signal from the numerically controlled oscillator in a manner which drives the error signal towards zero; and (6) outputting the estimates of the amplitude, frequency, and phase of the error signal in combination with the reference signal to produce a best estimate of the amplitude, frequency, and phase of the signal of interest. The preferred method includes the step of providing the error signal as a real time confidence measure as to the accuracy of the estimates wherein the closer the error signal is to zero, the higher the probability that the estimates are accurate. A matrix in the estimation algorithm provides an estimate of the variance of the estimation error.
White, J.; Phillips, J.R.; Korsmeyer, T.
1994-12-31
Mixed first- and second-kind surface integral equations with (1/r) and {partial_derivative}/{partial_derivative} (1/r) kernels are generated by a variety of three-dimensional engineering problems. For such problems, Nystroem type algorithms can not be used directly, but an expansion for the unknown, rather than for the entire integrand, can be assumed and the product of the singular kernal and the unknown integrated analytically. Combining such an approach with a Galerkin or collocation scheme for computing the expansion coefficients is a general approach, but generates dense matrix problems. Recently developed fast algorithms for solving these dense matrix problems have been based on multipole-accelerated iterative methods, in which the fast multipole algorithm is used to rapidly compute the matrix-vector products in a Krylov-subspace based iterative method. Another approach to rapidly computing the dense matrix-vector products associated with discretized integral equations follows more along the lines of a multigrid algorithm, and involves projecting the surface unknowns onto a regular grid, then computing using the grid, and finally interpolating the results from the regular grid back to the surfaces. Here, the authors describe a precorrectted-FFT approach which can replace the fast multipole algorithm for accelerating the dense matrix-vector product associated with discretized potential integral equations. The precorrected-FFT method, described below, is an order n log(n) algorithm, and is asymptotically slower than the order n fast multipole algorithm. However, initial experimental results indicate the method may have a significant constant factor advantage for a variety of engineering problems.
General Structure Design for Fast Image Processing Algorithms Based upon FPGA DSP Slice
NASA Astrophysics Data System (ADS)
Wasfy, Wael; Zheng, Hong
Increasing the speed and accuracy for a fast image processing algorithms during computing the image intensity for low level 3x3 algorithms with different kernel but having the same parallel calculation method is our target to achieve in this paper. FPGA is one of the fastest embedded systems that can be used for implementing the fast image processing image algorithms by using DSP slice module inside the FPGA we aimed to get the advantage of the DSP slice as a faster, accurate, higher number of bits in calculations and different calculated equation maneuver capabilities. Using a higher number of bits during algorithm calculations will lead to a higher accuracy compared with using the same image algorithm calculations with less number of bits, also reducing FPGA resources as minimum as we can and according to algorithm calculations needs is a very important goal to achieve. So in the recommended design we used as minimum DSP slice as we can and as a benefit of using DSP slice is higher calculations accuracy as the DSP capabilities of having 48 bit accuracy in addition and 18 x 18 bit accuracy in multiplication. For proofing the design, Gaussian filter and Sobelx edge detector image processing algorithms have been chosen to be implemented. Also we made a comparison with another design for proofing the improvements of the accuracy and speed of calculations, the other design as will be mentioned later on this paper is using maximum 12 bit accuracy in adding or multiplying calculations.
Preliminary versions of the MATLAB tensor classes for fast algorithm prototyping.
Bader, Brett William; Kolda, Tamara Gibson
2004-07-01
We present the source code for three MATLAB classes for manipulating tensors in order to allow fast algorithm prototyping. A tensor is a multidimensional or Nway array. This is a supplementary report; details on using this code are provided separately in SAND-XXXX.
A fast D.F.T. algorithm using complex integer transforms
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1978-01-01
Winograd (1976) has developed a new class of algorithms which depend heavily on the computation of a cyclic convolution for computing the conventional DFT (discrete Fourier transform); this new algorithm, for a few hundred transform points, requires substantially fewer multiplications than the conventional FFT algorithm. Reed and Truong have defined a special class of finite Fourier-like transforms over GF(q squared), where q = 2 to the p power minus 1 is a Mersenne prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 61. In the present paper it is shown that Winograd's algorithm can be combined with the aforementioned Fourier-like transform to yield a new algorithm for computing the DFT. A fast method for accurately computing the DFT of a sequence of complex numbers of very long transform-lengths is thus obtained.
A Fast Clustering Algorithm for Data with a Few Labeled Instances
Yang, Jinfeng; Xiao, Yong; Wang, Jiabing; Ma, Qianli; Shen, Yanhua
2015-01-01
The diameter of a cluster is the maximum intracluster distance between pairs of instances within the same cluster, and the split of a cluster is the minimum distance between instances within the cluster and instances outside the cluster. Given a few labeled instances, this paper includes two aspects. First, we present a simple and fast clustering algorithm with the following property: if the ratio of the minimum split to the maximum diameter (RSD) of the optimal solution is greater than one, the algorithm returns optimal solutions for three clustering criteria. Second, we study the metric learning problem: learn a distance metric to make the RSD as large as possible. Compared with existing metric learning algorithms, one of our metric learning algorithms is computationally efficient: it is a linear programming model rather than a semidefinite programming model used by most of existing algorithms. We demonstrate empirically that the supervision and the learned metric can improve the clustering quality. PMID:25861252
a Fast and Robust Algorithm for Road Edges Extraction from LIDAR Data
NASA Astrophysics Data System (ADS)
Qiu, Kaijin; Sun, Kai; Ding, Kou; Shu, Zhen
2016-06-01
Fast mapping of roads plays an important role in many geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance. How to extract various road edges fast and robustly is a challenging task. In this paper, we present a fast and robust algorithm for the automatic road edges extraction from terrestrial mobile LiDAR data. The algorithm is based on a key observation: most roads around edges have difference in elevation and road edges with pavement are seen in two different planes. In our algorithm, we firstly extract a rough plane based on RANSAC algorithm, and then multiple refined planes which only contains pavement are extracted from the rough plane. The road edges are extracted based on these refined planes. In practice, there is a serious problem that the rough and refined planes usually extracted badly due to rough roads and different density of point cloud. To eliminate the influence of rough roads, the technology which is similar with the difference of DSM (digital surface model) and DTM (digital terrain model) is used, and we also propose a method which adjust the point clouds to a similar density to eliminate the influence of different density. Experiments show the validities of the proposed method with multiple datasets (e.g. urban road, highway, and some rural road). We use the same parameters through the experiments and our algorithm can achieve real-time processing speeds.
Wang, Ting; Ren, Zhao; Ding, Ying; Fang, Zhou; Sun, Zhe; MacDonald, Matthew L; Sweet, Robert A; Wang, Jieru; Chen, Wei
2016-02-01
Biological networks provide additional information for the analysis of human diseases, beyond the traditional analysis that focuses on single variables. Gaussian graphical model (GGM), a probability model that characterizes the conditional dependence structure of a set of random variables by a graph, has wide applications in the analysis of biological networks, such as inferring interaction or comparing differential networks. However, existing approaches are either not statistically rigorous or are inefficient for high-dimensional data that include tens of thousands of variables for making inference. In this study, we propose an efficient algorithm to implement the estimation of GGM and obtain p-value and confidence interval for each edge in the graph, based on a recent proposal by Ren et al., 2015. Through simulation studies, we demonstrate that the algorithm is faster by several orders of magnitude than the current implemented algorithm for Ren et al. without losing any accuracy. Then, we apply our algorithm to two real data sets: transcriptomic data from a study of childhood asthma and proteomic data from a study of Alzheimer's disease. We estimate the global gene or protein interaction networks for the disease and healthy samples. The resulting networks reveal interesting interactions and the differential networks between cases and controls show functional relevance to the diseases. In conclusion, we provide a computationally fast algorithm to implement a statistically sound procedure for constructing Gaussian graphical model and making inference with high-dimensional biological data. The algorithm has been implemented in an R package named "FastGGM". PMID:26872036
NASA Astrophysics Data System (ADS)
Maj, P.
2014-07-01
An important trend in the design of readout electronics working in the single photon counting mode for hybrid pixel detectors is to minimize the single pixel area without sacrificing its functionality. This is the reason why many digital and analog blocks are made with the smallest, or next to smallest, transistors possible. This causes a problem with matching among the whole pixel matrix which is acceptable by designers and, of course, it should be corrected with the use of dedicated circuitry, which, by the same rule of minimizing devices, suffers from the mismatch. Therefore, the output of such a correction circuit, controlled by an ultra-small area DAC, is not only a non-linear function, but it is also often non-monotonic. As long as it can be used for proper correction of the DC operation points inside each pixel, it is acceptable, but the time required for correction plays an important role for both chip verification and the design of a big, multi-chip system. Therefore, we present two algorithms: a precise one and a fast one. The first algorithm is based on the noise hits profiles obtained during so called threshold scan procedures. The fast correction procedure is based on the trim DACs scan and it takes less than a minute in a SPC detector systems consisting of several thousands of pixels.
FctClus: A Fast Clustering Algorithm for Heterogeneous Information Networks.
Yang, Jing; Chen, Limin; Zhang, Jianpei
2015-01-01
It is important to cluster heterogeneous information networks. A fast clustering algorithm based on an approximate commute time embedding for heterogeneous information networks with a star network schema is proposed in this paper by utilizing the sparsity of heterogeneous information networks. First, a heterogeneous information network is transformed into multiple compatible bipartite graphs from the compatible point of view. Second, the approximate commute time embedding of each bipartite graph is computed using random mapping and a linear time solver. All of the indicator subsets in each embedding simultaneously determine the target dataset. Finally, a general model is formulated by these indicator subsets, and a fast algorithm is derived by simultaneously clustering all of the indicator subsets using the sum of the weighted distances for all indicators for an identical target object. The proposed fast algorithm, FctClus, is shown to be efficient and generalizable and exhibits high clustering accuracy and fast computation speed based on a theoretic analysis and experimental verification. PMID:26090857
Fast phase-added stereogram algorithm for generation of photorealistic 3D content.
Kang, Hoonjong; Stoykova, Elena; Yoshikawa, Hiroshi
2016-01-20
A new phase-added stereogram algorithm for accelerated computation of holograms from a point cloud model is proposed. The algorithm relies on the hologram segmentation, sampling of directional information, and usage of the fast Fourier transform with a finer grid in the spatial frequency domain than is provided by the segment size. The algorithm gives improved quality of reconstruction due to new phase compensation introduced in the segment fringe patterns. The result is finer beam steering leading to high peak intensity and a large peak signal-to-noise ratio in reconstruction. The feasibility of the algorithm is checked by the generation of 3D contents for a color wavefront printer. PMID:26835945
de Andrade, Mariza; Atkinson, Elizabeth J.; Bamlet, William R.; Matsumoto, Martha E.; Maharjan, Sooraj; Slager, Susan L.; Vachon, Celine M.; Cunningham, Julie M.; Kardia, Sharon L.R.
2011-01-01
Objective Our goal was to evaluate the influence of quality control (QC) decisions using two genotype calling algorithms, CRLMM and Birdseed, designed for the Affymetrix SNP Array 6.0. Methods Various QC options were tried using the two algorithms and comparisons were made on subject and call rate and on association results using two data sets. Results For Birdseed, we recommend using the contrast QC instead of QC call rate for sample QC. For CRLMM, we recommend using the signal-to-noise rate ≥4 for sample QC and a posterior probability of 90% for genotype accuracy. For both algorithms, we recommend calling the genotype separately for each plate, and dropping SNPs with a lower call rate (<95%) before evaluating samples with lower call rates. To investigate whether the genotype calls from the two algorithms impacted the genome-wide association results, we performed association analysis using data from the GENOA cohort; we observed that the number of significant SNPs were similar using either CRLMM or Birdseed. Conclusions Using our suggested workflow both algorithms performed similarly; however, fewer samples were removed and CRLMM took half the time to run our 854 study samples (4.2 h) compared to Birdseed (8.4 h). PMID:21734406
The Block V Receiver fast acquisition algorithm for the Galileo S-band mission
NASA Technical Reports Server (NTRS)
Aung, M.; Hurd, W. J.; Buu, C. M.; Berner, J. B.; Stephens, S. A.; Gevargiz, J. M.
1994-01-01
A fast acquisition algorithm for the Galileo suppressed carrier, subcarrier, and data symbol signals under low data rate, signal-to-noise ratio (SNR) and high carrier phase-noise conditions has been developed. The algorithm employs a two-arm fast Fourier transform (FFT) method utilizing both the in-phase and quadrature-phase channels of the carrier. The use of both channels results in an improved SNR in the FFT acquisition, enabling the use of a shorter FFT period over which the carrier instability is expected to be less significant. The use of a two-arm FFT also enables subcarrier and symbol acquisition before carrier acquisition. With the subcarrier and symbol loops locked first, the carrier can be acquired from an even shorter FFT period. Two-arm tracking loops are employed to lock the subcarrier and symbol loops parameter modification to achieve the final (high) loop SNR in the shortest time possible. The fast acquisition algorithm is implemented in the Block V Receiver (BVR). This article describes the complete algorithm design, the extensive computer simulation work done for verification of the design and the analysis, implementation issues in the BVR, and the acquisition times of the algorithm. In the expected case of the Galileo spacecraft at Jupiter orbit insertion PD/No equals 14.6 dB-Hz, R(sym) equals 16 symbols per sec, and the predicted acquisition time of the algorithm (to attain a 0.2-dB degradation from each loop to the output symbol SNR) is 38 sec.
A fast and high performance multiple data integration algorithm for identifying human disease genes
2015-01-01
Background Integrating multiple data sources is indispensable in improving disease gene identification. It is not only due to the fact that disease genes associated with similar genetic diseases tend to lie close with each other in various biological networks, but also due to the fact that gene-disease associations are complex. Although various algorithms have been proposed to identify disease genes, their prediction performances and the computational time still should be further improved. Results In this study, we propose a fast and high performance multiple data integration algorithm for identifying human disease genes. A posterior probability of each candidate gene associated with individual diseases is calculated by using a Bayesian analysis method and a binary logistic regression model. Two prior probability estimation strategies and two feature vector construction methods are developed to test the performance of the proposed algorithm. Conclusions The proposed algorithm is not only generated predictions with high AUC scores, but also runs very fast. When only a single PPI network is employed, the AUC score is 0.769 by using F2 as feature vectors. The average running time for each leave-one-out experiment is only around 1.5 seconds. When three biological networks are integrated, the AUC score using F3 as feature vectors increases to 0.830, and the average running time for each leave-one-out experiment takes only about 12.54 seconds. It is better than many existing algorithms. PMID:26399620
Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks
Vestergaard, Christian L.; Génois, Mathieu
2015-01-01
Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling. PMID:26517860
The fast simulated annealing algorithm applied to the search problem in LEED
NASA Astrophysics Data System (ADS)
Nascimento, V. B.; de Carvalho, V. E.; de Castilho, C. M. C.; Costa, B. V.; Soares, E. A.
2001-07-01
In this work we present new results obtained from the application of the fast simulated algorithm (FSA) to the surface structure determination of the Ag(1 1 0) and CdTe(1 1 0) systems. The influence of a control parameter, the "initial temperature", on the FSA search process was investigated. A scaling behaviour, that measures the efficiency of a search method as a function of the number of parameters to be varied, was obtained for the FSA algorithm, and indicated a favourable linear scaling ( N1).
A fast optimization algorithm for multicriteria intensity modulated proton therapy planning
Chen Wei; Craft, David; Madden, Thomas M.; Zhang, Kewu; Kooy, Hanne M.; Herman, Gabor T.
2010-09-15
Purpose: To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. Methods: The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. Results: The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK's interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. Conclusions: The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.
A fast optimization algorithm for multicriteria intensity modulated proton therapy planning
Chen, Wei; Craft, David; Madden, Thomas M.; Zhang, Kewu; Kooy, Hanne M.; Herman, Gabor T.
2010-01-01
Purpose: To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. Methods: The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. Results: The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK’s interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. Conclusions: The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization. PMID:20964213
A fast algorithm for exact sequence search in biological sequences using polyphase decomposition
Srikantha, Abhilash; Bopardikar, Ajit S.; Kaipa, Kalyan Kumar; Venkataraman, Parthasarathy; Lee, Kyusang; Ahn, TaeJin; Narayanan, Rangavittal
2010-01-01
Motivation: Exact sequence search allows a user to search for a specific DNA subsequence in a larger DNA sequence or database. It serves as a vital block in many areas such as Pharmacogenetics, Phylogenetics and Personal Genomics. As sequencing of genomic data becomes increasingly affordable, the amount of sequence data that must be processed will also increase exponentially. In this context, fast sequence search algorithms will play an important role in exploiting the information contained in the newly sequenced data. Many existing algorithms do not scale up well for large sequences or databases because of their high-computational costs. This article describes an efficient algorithm for performing fast searches on large DNA sequences. It makes use of hash tables of Q-grams that are constructed after downsampling the database, to enable efficient search and memory use. Time complexity for pattern search is reduced using beam pruning techniques. Theoretical complexity calculations and performance figures are presented to indicate the potential of the proposed algorithm. Contact: s.abhilash@samsung.com; ajit.b@samsung.com PMID:20823301
A fast bilinear structure from motion algorithm using a video sequence and inertial sensors.
Ramachandran, Mahesh; Veeraraghavan, Ashok; Chellappa, Rama
2011-01-01
In this paper, we study the benefits of the availability of a specific form of additional information—the vertical direction (gravity) and the height of the camera, both of which can be conveniently measured using inertial sensors and a monocular video sequence for 3D urban modeling. We show that in the presence of this information, the SfM equations can be rewritten in a bilinear form. This allows us to derive a fast, robust, and scalable SfM algorithm for large scale applications. The SfM algorithm developed in this paper is experimentally demonstrated to have favorable properties compared to the sparse bundle adjustment algorithm. We provide experimental evidence indicating that the proposed algorithm converges in many cases to solutions with lower error than state-of-art implementations of bundle adjustment. We also demonstrate that for the case of large reconstruction problems, the proposed algorithm takes lesser time to reach its solution compared to bundle adjustment. We also present SfM results using our algorithm on the Google StreetView research data set. PMID:20733224
Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors
Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don
2016-01-01
Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel’s type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms. PMID:27005632
Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors.
Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don
2016-01-01
Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel's type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms. PMID:27005632
A fast, robust algorithm for power line interference cancellation in neural recording
NASA Astrophysics Data System (ADS)
Keshtkaran, Mohammad Reza; Yang, Zhi
2014-04-01
Objective. Power line interference may severely corrupt neural recordings at 50/60 Hz and harmonic frequencies. The interference is usually non-stationary and can vary in frequency, amplitude and phase. To retrieve the gamma-band oscillations at the contaminated frequencies, it is desired to remove the interference without compromising the actual neural signals at the interference frequency bands. In this paper, we present a robust and computationally efficient algorithm for removing power line interference from neural recordings. Approach. The algorithm includes four steps. First, an adaptive notch filter is used to estimate the fundamental frequency of the interference. Subsequently, based on the estimated frequency, harmonics are generated by using discrete-time oscillators, and then the amplitude and phase of each harmonic are estimated by using a modified recursive least squares algorithm. Finally, the estimated interference is subtracted from the recorded data. Main results. The algorithm does not require any reference signal, and can track the frequency, phase and amplitude of each harmonic. When benchmarked with other popular approaches, our algorithm performs better in terms of noise immunity, convergence speed and output signal-to-noise ratio (SNR). While minimally affecting the signal bands of interest, the algorithm consistently yields fast convergence (<100 ms) and substantial interference rejection (output SNR >30 dB) in different conditions of interference strengths (input SNR from -30 to 30 dB), power line frequencies (45-65 Hz) and phase and amplitude drifts. In addition, the algorithm features a straightforward parameter adjustment since the parameters are independent of the input SNR, input signal power and the sampling rate. A hardware prototype was fabricated in a 65 nm CMOS process and tested. Software implementation of the algorithm has been made available for open access at https://github.com/mrezak/removePLI. Significance. The proposed
Auroux, Didier; Cohen, Laurent D; Masmoudi, Mohamed
2011-01-01
We combine in this paper the topological gradient, which is a powerful method for edge detection in image processing, and a variant of the minimal path method in order to find connected contours. The topological gradient provides a more global analysis of the image than the standard gradient and identifies the main edges of an image. Several image processing problems (e.g., inpainting and segmentation) require continuous contours. For this purpose, we consider the fast marching algorithm in order to find minimal paths in the topological gradient image. This coupled algorithm quickly provides accurate and connected contours. We present then two numerical applications, to image inpainting and segmentation, of this hybrid algorithm. PMID:22194734
A Fast Overlapping Community Detection Algorithm with Self-Correcting Ability
Lu, Nan
2014-01-01
Due to the defects of all kinds of modularity, this paper defines a weighted modularity based on the density and cohesion as the new evaluation measurement. Since the proportion of the overlapping nodes in network is very low, the number of the nodes' repeat visits can be reduced by signing the vertices with the overlapping attributes. In this paper, we propose three test conditions for overlapping nodes and present a fast overlapping community detection algorithm with self-correcting ability, which is decomposed into two processes. Under the control of overlapping properties, the complexity of the algorithm tends to be approximate linear. And we also give a new understanding on membership vector. Moreover, we improve the bridgeness function which evaluates the extent of overlapping nodes. Finally, we conduct the experiments on three networks with well known community structures and the results verify the feasibility and effectiveness of our algorithm. PMID:24757434
FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks
Ding, Ying; Fang, Zhou; Sun, Zhe; MacDonald, Matthew L.; Sweet, Robert A.; Wang, Jieru; Chen, Wei
2016-01-01
Biological networks provide additional information for the analysis of human diseases, beyond the traditional analysis that focuses on single variables. Gaussian graphical model (GGM), a probability model that characterizes the conditional dependence structure of a set of random variables by a graph, has wide applications in the analysis of biological networks, such as inferring interaction or comparing differential networks. However, existing approaches are either not statistically rigorous or are inefficient for high-dimensional data that include tens of thousands of variables for making inference. In this study, we propose an efficient algorithm to implement the estimation of GGM and obtain p-value and confidence interval for each edge in the graph, based on a recent proposal by Ren et al., 2015. Through simulation studies, we demonstrate that the algorithm is faster by several orders of magnitude than the current implemented algorithm for Ren et al. without losing any accuracy. Then, we apply our algorithm to two real data sets: transcriptomic data from a study of childhood asthma and proteomic data from a study of Alzheimer’s disease. We estimate the global gene or protein interaction networks for the disease and healthy samples. The resulting networks reveal interesting interactions and the differential networks between cases and controls show functional relevance to the diseases. In conclusion, we provide a computationally fast algorithm to implement a statistically sound procedure for constructing Gaussian graphical model and making inference with high-dimensional biological data. The algorithm has been implemented in an R package named “FastGGM”. PMID:26872036
Fast randomized Hough transformation track initiation algorithm based on multi-scale clustering
NASA Astrophysics Data System (ADS)
Wan, Minjie; Gu, Guohua; Chen, Qian; Qian, Weixian; Wang, Pengcheng
2015-10-01
A fast randomized Hough transformation track initiation algorithm based on multi-scale clustering is proposed to overcome existing problems in traditional infrared search and track system(IRST) which cannot provide movement information of the initial target and select the threshold value of correlation automatically by a two-dimensional track association algorithm based on bearing-only information . Movements of all the targets are presumed to be uniform rectilinear motion throughout this new algorithm. Concepts of space random sampling, parameter space dynamic linking table and convergent mapping of image to parameter space are developed on the basis of fast randomized Hough transformation. Considering the phenomenon of peak value clustering due to shortcomings of peak detection itself which is built on threshold value method, accuracy can only be ensured on condition that parameter space has an obvious peak value. A multi-scale idea is added to the above-mentioned algorithm. Firstly, a primary association is conducted to select several alternative tracks by a low-threshold .Then, alternative tracks are processed by multi-scale clustering methods , through which accurate numbers and parameters of tracks are figured out automatically by means of transforming scale parameters. The first three frames are processed by this algorithm in order to get the first three targets of the track , and then two slightly different gate radius are worked out , mean value of which is used to be the global threshold value of correlation. Moreover, a new model for curvilinear equation correction is applied to the above-mentioned track initiation algorithm for purpose of solving the problem of shape distortion when a space three-dimensional curve is mapped to a two-dimensional bearing-only space. Using sideways-flying, launch and landing as examples to build models and simulate, the application of the proposed approach in simulation proves its effectiveness , accuracy , and adaptivity
A fast implementation of the incremental backprojection algorithms for parallel beam geometries
Chen, C.M.; Wang, C.Y.; Cho, Z.H.
1996-12-01
Filtered-backprojection algorithms are the most widely used approaches for reconstruction of computed tomographic (CT) images, such as X-ray CT and positron emission tomographic (PET) images. The Incremental backprojection algorithm is a fast backprojection approach based on restructuring the Shepp and Logan algorithm. By exploiting interdependency (position and values) of adjacent pixels, the Incremental algorithm requires only O(N) and O(N{sup 2}) multiplications in contrast to O(N{sup 2}) and O(N{sup 3}) multiplications for the Shepp and Logan algorithm in two-dimensional (2-D) and three-dimensional (3-D) backprojections, respectively, for each view, where N is the size of the image in each dimension. In addition, it may reduce the number of additions for each pixel computation. The improvement achieved by the Incremental algorithm in practice was not, however, as significant as expected. One of the main reasons is due to inevitably visiting pixels outside the beam in the searching flow scheme originally developed for the Incremental algorithm. To optimize implementation of the Incremental algorithm, an efficient scheme, namely, coded searching flow scheme, is proposed in this paper to minimize the overhead caused by searching for all pixels in a beam. The key idea of this scheme is to encode the searching flow for all pixels inside each beam. While backprojecting, all pixels may be visited without any overhead due to using the coded searching flow as the a priori information. The proposed coded searching flow scheme has been implemented on a Sun Sparc 10 and a Sun Sparc 20 workstations. The implementation results show that the proposed scheme is 1.45--2.0 times faster than the original searching flow scheme for most cases tested.
NASA Astrophysics Data System (ADS)
Xu, Shiyu; Zhang, Zhenxi; Chen, Ying
2014-03-01
Statistical iterative reconstruction exhibits particularly promising since it provides the flexibility of accurate physical noise modeling and geometric system description in transmission tomography system. However, to solve the objective function is computationally intensive compared to analytical reconstruction methods due to multiple iterations needed for convergence and each iteration involving forward/back-projections by using a complex geometric system model. Optimization transfer (OT) is a general algorithm converting a high dimensional optimization to a parallel 1-D update. OT-based algorithm provides a monotonic convergence and a parallel computing framework but slower convergence rate especially around the global optimal. Based on an indirect estimation on the spectrum of the OT convergence rate matrix, we proposed a successively increasing factor- scaled optimization transfer (OT) algorithm to seek an optimal step size for a faster rate. Compared to a representative OT based method such as separable parabolic surrogate with pre-computed curvature (PC-SPS), our algorithm provides comparable image quality (IQ) with fewer iterations. Each iteration retains a similar computational cost to PC-SPS. The initial experiment with a simulated Digital Breast Tomosynthesis (DBT) system shows that a total 40% computing time is saved by the proposed algorithm. In general, the successively increasing factor-scaled OT exhibits a tremendous potential to be a iterative method with a parallel computation, a monotonic and global convergence with fast rate.
Fast instantaneous center of rotation estimation algorithm for a skied-steered robot
NASA Astrophysics Data System (ADS)
Kniaz, V. V.
2015-05-01
Skid-steered robots are widely used as mobile platforms for machine vision systems. However it is hard to achieve a stable motion of such robots along desired trajectory due to an unpredictable wheel slip. It is possible to compensate the unpredictable wheel slip and stabilize the motion of the robot using visual odometry. This paper presents a fast optical flow based algorithm for estimation of instantaneous center of rotation, angular and longitudinal speed of the robot. The proposed algorithm is based on Horn-Schunck variational optical flow estimation method. The instantaneous center of rotation and motion of the robot is estimated by back projection of optical flow field to the ground surface. The developed algorithm was tested using skid-steered mobile robot. The robot is based on a mobile platform that includes two pairs of differential driven motors and a motor controller. Monocular visual odometry system consisting of a singleboard computer and a low cost webcam is mounted on the mobile platform. A state-space model of the robot was derived using standard black-box system identification. The input (commands) and the output (motion) were recorded using a dedicated external motion capture system. The obtained model was used to control the robot without visual odometry data. The paper is concluded with the algorithm quality estimation by comparison of the trajectories estimated by the algorithm with the data from motion capture system.
Peak detection in fiber Bragg grating using a fast phase correlation algorithm
NASA Astrophysics Data System (ADS)
Lamberti, A.; Vanlanduit, S.; De Pauw, B.; Berghmans, F.
2014-05-01
Fiber Bragg grating sensing principle is based on the exact tracking of the peak wavelength location. Several peak detection techniques have already been proposed in literature. Among these, conventional peak detection (CPD) methods such as the maximum detection algorithm (MDA), do not achieve very high precision and accuracy, especially when the Signal to Noise Ratio (SNR) and the wavelength resolution are poor. On the other hand, recently proposed algorithms, like the cross-correlation demodulation algorithm (CCA), are more precise and accurate but require higher computational effort. To overcome these limitations, we developed a novel fast phase correlation algorithm (FPC) which performs as well as the CCA, being at the same time considerably faster. This paper presents the FPC technique and analyzes its performances for different SNR and wavelength resolutions. Using simulations and experiments, we compared the FPC with the MDA and CCA algorithms. The FPC detection capabilities were as precise and accurate as those of the CCA and considerably better than those of the CPD. The FPC computational time was up to 50 times lower than CCA, making the FPC a valid candidate for future implementation in real-time systems.
Fast automated yeast cell counting algorithm using bright-field and fluorescence microscopic images
2013-01-01
Background The faithful determination of the concentration and viability of yeast cells is important for biological research as well as industry. To this end, it is important to develop an automated cell counting algorithm that can provide not only fast but also accurate and precise measurement of yeast cells. Results With the proposed method, we measured the precision of yeast cell measurements by using 0%, 25%, 50%, 75% and 100% viability samples. As a result, the actual viability measured with the proposed yeast cell counting algorithm is significantly correlated to the theoretical viability (R2 = 0.9991). Furthermore, we evaluated the performance of our algorithm in various computing platforms. The results showed that the proposed algorithm could be feasible to use with low-end computing platforms without loss of its performance. Conclusions Our yeast cell counting algorithm can rapidly provide the total number and the viability of yeast cells with exceptional accuracy and precision. Therefore, we believe that our method can become beneficial for a wide variety of academic field and industries such as biotechnology, pharmaceutical and alcohol production. PMID:24215650
Fast algorithm for scaling analysis with higher-order detrending moving average method
NASA Astrophysics Data System (ADS)
Tsujimoto, Yutaka; Miki, Yuki; Shimatani, Satoshi; Kiyono, Ken
2016-05-01
Among scaling analysis methods based on the root-mean-square deviation from the estimated trend, it has been demonstrated that centered detrending moving average (DMA) analysis with a simple moving average has good performance when characterizing long-range correlation or fractal scaling behavior. Furthermore, higher-order DMA has also been proposed; it is shown to have better detrending capabilities, removing higher-order polynomial trends than original DMA. However, a straightforward implementation of higher-order DMA requires a very high computational cost, which would prevent practical use of this method. To solve this issue, in this study, we introduce a fast algorithm for higher-order DMA, which consists of two techniques: (1) parallel translation of moving averaging windows by a fixed interval; (2) recurrence formulas for the calculation of summations. Our algorithm can significantly reduce computational cost. Monte Carlo experiments show that the computational time of our algorithm is approximately proportional to the data length, although that of the conventional algorithm is proportional to the square of the data length. The efficiency of our algorithm is also shown by a systematic study of the performance of higher-order DMA, such as the range of detectable scaling exponents and detrending capability for removing polynomial trends. In addition, through the analysis of heart-rate variability time series, we discuss possible applications of higher-order DMA.
A fast rank-reduction algorithm for three-dimensional seismic data interpolation
NASA Astrophysics Data System (ADS)
Jia, Yongna; Yu, Siwei; Liu, Lina; Ma, Jianwei
2016-09-01
Rank-reduction methods have been successfully used for seismic data interpolation and noise attenuation. However, highly intense computation is required for singular value decomposition (SVD) in most rank-reduction methods. In this paper, we propose a simple yet efficient interpolation algorithm, which is based on the Hankel matrix, for randomly missing traces. Following the multichannel singular spectrum analysis (MSSA) technique, we first transform the seismic data into a low-rank block Hankel matrix for each frequency slice. Then, a fast orthogonal rank-one matrix pursuit (OR1MP) algorithm is employed to minimize the low-rank constraint of the block Hankel matrix. In the new algorithm, only the left and right top singular vectors are needed to be computed, thereby, avoiding the complexity of computation required for SVD. Thus, we improve the calculation efficiency significantly. Finally, we anti-average the rank-reduction block Hankel matrix and obtain the reconstructed data in the frequency domain. Numerical experiments on 3D seismic data show that the proposed interpolation algorithm provides much better performance than the traditional MSSA algorithm in computational speed, especially for large-scale data processing.
NASA Astrophysics Data System (ADS)
Tilly, David; Ahnesjö, Anders
2015-07-01
A fast algorithm is constructed to facilitate dose calculation for a large number of randomly sampled treatment scenarios, each representing a possible realisation of a full treatment with geometric, fraction specific displacements for an arbitrary number of fractions. The algorithm is applied to construct a dose volume coverage probability map (DVCM) based on dose calculated for several hundred treatment scenarios to enable the probabilistic evaluation of a treatment plan. For each treatment scenario, the algorithm calculates the total dose by perturbing a pre-calculated dose, separately for the primary and scatter dose components, for the nominal conditions. The ratio of the scenario specific accumulated fluence, and the average fluence for an infinite number of fractions is used to perturb the pre-calculated dose. Irregularities in the accumulated fluence may cause numerical instabilities in the ratio, which is mitigated by regularisation through convolution with a dose pencil kernel. Compared to full dose calculations the algorithm demonstrates a speedup factor of ~1000. The comparisons to full calculations show a 99% gamma index (2%/2 mm) pass rate for a single highly modulated beam in a virtual water phantom subject to setup errors during five fractions. The gamma comparison shows a 100% pass rate in a moving tumour irradiated by a single beam in a lung-like virtual phantom. DVCM iso-probability lines computed with the fast algorithm, and with full dose calculation for each of the fractions, for a hypo-fractionated prostate case treated with rotational arc therapy treatment were almost indistinguishable.
Tilly, David; Ahnesjö, Anders
2015-07-21
A fast algorithm is constructed to facilitate dose calculation for a large number of randomly sampled treatment scenarios, each representing a possible realisation of a full treatment with geometric, fraction specific displacements for an arbitrary number of fractions. The algorithm is applied to construct a dose volume coverage probability map (DVCM) based on dose calculated for several hundred treatment scenarios to enable the probabilistic evaluation of a treatment plan.For each treatment scenario, the algorithm calculates the total dose by perturbing a pre-calculated dose, separately for the primary and scatter dose components, for the nominal conditions. The ratio of the scenario specific accumulated fluence, and the average fluence for an infinite number of fractions is used to perturb the pre-calculated dose. Irregularities in the accumulated fluence may cause numerical instabilities in the ratio, which is mitigated by regularisation through convolution with a dose pencil kernel.Compared to full dose calculations the algorithm demonstrates a speedup factor of ~1000. The comparisons to full calculations show a 99% gamma index (2%/2 mm) pass rate for a single highly modulated beam in a virtual water phantom subject to setup errors during five fractions. The gamma comparison shows a 100% pass rate in a moving tumour irradiated by a single beam in a lung-like virtual phantom. DVCM iso-probability lines computed with the fast algorithm, and with full dose calculation for each of the fractions, for a hypo-fractionated prostate case treated with rotational arc therapy treatment were almost indistinguishable. PMID:26118844
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-01
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427
A hierarchical algorithm for fast Debye summation with applications to small angle scattering.
Gumerov, Nail A; Berlin, Konstantin; Fushman, David; Duraiswami, Ramani
2012-09-30
Debye summation, which involves the summation of sinc functions of distances between all pair of atoms in three-dimensional space, arises in computations performed in crystallography, small/wide angle X-ray scattering (SAXS/WAXS), and small angle neutron scattering (SANS). Direct evaluation of Debye summation has quadratic complexity, which results in computational bottleneck when determining crystal properties, or running structure refinement protocols that involve SAXS or SANS, even for moderately sized molecules. We present a fast approximation algorithm that efficiently computes the summation to any prescribed accuracy ε in linear time. The algorithm is similar to the fast multipole method (FMM), and is based on a hierarchical spatial decomposition of the molecule coupled with local harmonic expansions and translation of these expansions. An even more efficient implementation is possible when the scattering profile is all that is required, as in small angle scattering reconstruction (SAS) of macromolecules. We examine the relationship of the proposed algorithm to existing approximate methods for profile computations, and show that these methods may result in inaccurate profile computations, unless an error-bound derived in this article is used. Our theoretical and computational results show orders of magnitude improvement in computation complexity over existing methods, while maintaining prescribed accuracy. PMID:22707386
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-01
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427
Noll, Douglas C.; Fessler, Jeffrey A.
2014-01-01
Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms. PMID:25330484
Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements
NASA Astrophysics Data System (ADS)
Singh, Chandan; Saini, Jaswinder Singh
2016-07-01
In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.
A Generalized Fast Frequency Sweep Algorithm for Coupled Circuit-EM Simulations
Ouyang, G; Jandhyala, V; Champagne, N; Sharpe, R; Fasenfest, B J; Rockway, J D
2004-12-14
An Asymptotic Wave Expansion (AWE) technique is implemented into the EIGER computational electromagnetics code. The AWE fast frequency sweep is formed by separating the components of the integral equations by frequency dependence, then using this information to find a rational function approximation of the results. The standard AWE method is generalized to work for several integral equations, including the EFIE for conductors and the PMCHWT for dielectrics. The method is also expanded to work for two types of coupled circuit-EM problems as well as lumped load circuit elements. After a simple bisecting adaptive sweep algorithm is developed, dramatic speed improvements are seen for several example problems.
Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements
NASA Astrophysics Data System (ADS)
Singh, Chandan; Saini, Jaswinder Singh
2016-05-01
In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.
Lazy skip-lists: An algorithm for fast hybridization-expansion quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Sémon, P.; Yee, Chuck-Hou; Haule, Kristjan; Tremblay, A.-M. S.
2014-08-01
The solution of a generalized impurity model lies at the heart of electronic structure calculations with dynamical mean field theory. In the strongly correlated regime, the method of choice for solving the impurity model is the hybridization-expansion continuous-time quantum Monte Carlo (CT-HYB). Enhancements to the CT-HYB algorithm are critical for bringing new physical regimes within reach of current computational power. Taking advantage of the fact that the bottleneck in the algorithm is a product of hundreds of matrices, we present optimizations based on the introduction and combination of two concepts of more general applicability: (a) skip lists and (b) fast rejection of proposed configurations based on matrix bounds. Considering two very different test cases with d electrons, we find speedups of ˜25 up to ˜500 compared to the direct evaluation of the matrix product. Even larger speedups are likely with f electron systems and with clusters of correlated atoms.
2014-01-01
Background Drug discovery, disease detection, and personalized medicine are fast-growing areas of genomic research. With the advancement of next-generation sequencing techniques, researchers can obtain an abundance of data for many different biological assays in a short period of time. When this data is error-free, the result is a high-quality base-pair resolution picture of the genome. However, when the data is lossy the heuristic algorithms currently used when aligning next-generation sequences causes the corresponding accuracy to drop. Results This paper describes a program, ADaM (APF DNA Mapper) which significantly increases final alignment accuracy. ADaM works by first using an existing program to align "easy" sequences, and then using an algorithm with accuracy guarantees (the APF) to align the remaining sequences. The final result is a technique that increases the mapping accuracy from only 60% to over 90% for harder-to-align sequences. PMID:25079667
A fast high-order finite difference algorithm for pricing American options
NASA Astrophysics Data System (ADS)
Tangman, D. Y.; Gopaul, A.; Bhuruth, M.
2008-12-01
We describe an improvement of Han and Wu's algorithm [H. Han, X.Wu, A fast numerical method for the Black-Scholes equation of American options, SIAM J. Numer. Anal. 41 (6) (2003) 2081-2095] for American options. A high-order optimal compact scheme is used to discretise the transformed Black-Scholes PDE under a singularity separating framework. A more accurate free boundary location based on the smooth pasting condition and the use of a non-uniform grid with a modified tridiagonal solver lead to an efficient implementation of the free boundary value problem. Extensive numerical experiments show that the new finite difference algorithm converges rapidly and numerical solutions with good accuracy are obtained. Comparisons with some recently proposed methods for the American options problem are carried out to show the advantage of our numerical method.
NASA Astrophysics Data System (ADS)
Li, Xinxin; Wang, Jiang; Tan, Shan
2015-03-01
Statistical iterative reconstruction in Cone-beam computed tomography (CBCT) uses prior knowledge to form different kinds of regularization terms. The total variation (TV) regularization has shown state-of-the-art performance in suppressing noises and preserving edges. However, it produces the well-known staircase effect. In this paper, a method that involves second-order differential operators was employed to avoid the staircase effect. The ability to avoid staircase effect lies in that higher-order derivatives can avoid over-sharpening the regions of smooth intensity transitions. Meanwhile, a fast iterative shrinkage-thresholding algorithm was used for the corresponding optimization problem. The proposed Hessian Schatten norm-based regularization keeps lots of favorable properties of TV, such as translation and scale invariant, with getting rid of the staircase effect that appears in TV-based reconstructions. The experiments demonstrated the outstanding ability of the proposed algorithm over TV method especially in suppressing the staircase effect.
Fast algorithm of 3D median filter for medical image despeckling
NASA Astrophysics Data System (ADS)
Xiong, Chengyi; Hou, Jianhua; Gao, Zhirong; He, Xiang; Chen, Shaoping
2007-12-01
Three-dimensional (3-D) median filtering is very useful to eliminate speckle noise from a medical imaging source, such as functional magnetic resonance imaging (fMRI) and ultrasonic imaging. 3-D median filtering is characterized by its higher computation complexity. N 3(N 3-1)/2 comparison operations would be required for 3-D median filtering with N×N×N window if the conventional bubble-sorting algorithm is adopted. In this paper, an efficient fast algorithm for 3-D median filtering was presented, which considerably reduced the computation complexity for extracting the median of a 3-D data array. Compared to the state-of-the-art, the proposed method could reduce the computation complexity of 3-D median filtering by 33%. It results in efficiently reducing the system delay of the 3-D median filter by software implementation, and the system cost and power consumption by hardware implementation.
A fast two-step algorithm for invasion percolation with trapping
NASA Astrophysics Data System (ADS)
Masson, Yder
2016-05-01
I present a fast algorithm for modeling invasion percolation (IP) with trapping (TIP). IP is a numerical algorithm that models quasi-static (i.e. slow) fluid invasion in porous media. Trapping occurs when the invading fluid (that is injected) forms continuous surfaces surrounding patches of the displaced fluid (that is assumed incompressible and originally saturates the invaded medium). In TIP, the invading fluid is not allowed to enter the trapped patches. I demonstrate that TIP can be modeled in two steps: (1) Run an IP simulation without trapping (NTIP). (2) Identify the sites that invaded trapped regions and remove them from the chronological list of sites invaded in NTIP. Fast algorithms exist for solving NTIP. The focus of this paper is to propose an efficient solution for step (2). I show that it can be solved using a disjoint set data structure and going backward in time, i.e. by un-invading all sites invaded in NTIP in reverse order. Time reversal of the invasion greatly reduces the computational complexity for the identification of trapped sites as one only needs to investigate sites neighbor to the latest invaded/un-invaded site. This differs from traditional approaches where trapping is performed in real time, i.e. as the IP simulation is running, and where it is sometimes necessary to investigate the whole lattice to identify newly trapped regions. With the proposed algorithm, the total computational time for the identification and the removal of trapped sites goes as O(N), where N is the total number of sites in the lattice.
Fast parallel algorithms and enumeration techniques for partial k-trees
Narayanan, C.
1989-01-01
Recent research by several authors have resulted in systematic way of developing linear-time sequential algorithms for a host of problem: on a fairly general class of graphs variously known as bounded decomposable graphs, graphs of bounded treewidth, partial k-trees, etc. Partial k-trees arise in a variety of real-life applications such as network reliability, VLSI design and database systems and hence fast sequential algorithms on these graphs have been found to be desirable. The linear-time methodologies were independently developed by Bern, Lawler, and Wong ((10)), Arnborg and Proskurowski ((6)), Bodlaender ((14)), and Courcelle ((25)). Wimer ((89)) significantly extended the work of Bern, Lawler and Wong. All of these approaches share the common thread of using dynamic programming on a tree structure. In particular the methodology of Wimer uses a parse-tree as the data structure. The methodologies claim linear-time algorithms on partial k-trees for fixed k, for a number of combinatorial optimization problems given the tree structure as input. It is known that obtaining the tree structure is NP-hard. This dissertation investigates three important classes of problems: (1) Developing parallel algorithms for constructing a k-tree embedding, finding a tree decomposition and most notably obtaining a parse-tree for a partial k-tree. (2) Developing parallel algorithms for parse-tree computations, testing isomorphism of k-trees, and finding a 2-tree embedding of a cactus. (3) Obtaining techniques for counting vertex/edge subsets satisfying a certain property in some classes of partial k-trees. The parallel algorithms the author has developed are in class NC and are either new or improve upon the existing results of Bodlaender (13). The difference equations he has obtained for counting certain sub-graphs are not known in the literature so far.
Adaptation of a Fast Optimal Interpolation Algorithm to the Mapping of Oceangraphic Data
NASA Technical Reports Server (NTRS)
Menemenlis, Dimitris; Fieguth, Paul; Wunsch, Carl; Willsky, Alan
1997-01-01
A fast, recently developed, multiscale optimal interpolation algorithm has been adapted to the mapping of hydrographic and other oceanographic data. This algorithm produces solution and error estimates which are consistent with those obtained from exact least squares methods, but at a small fraction of the computational cost. Problems whose solution would be completely impractical using exact least squares, that is, problems with tens or hundreds of thousands of measurements and estimation grid points, can easily be solved on a small workstation using the multiscale algorithm. In contrast to methods previously proposed for solving large least squares problems, our approach provides estimation error statistics while permitting long-range correlations, using all measurements, and permitting arbitrary measurement locations. The multiscale algorithm itself, published elsewhere, is not the focus of this paper. However, the algorithm requires statistical models having a very particular multiscale structure; it is the development of a class of multiscale statistical models, appropriate for oceanographic mapping problems, with which we concern ourselves in this paper. The approach is illustrated by mapping temperature in the northeastern Pacific. The number of hydrographic stations is kept deliberately small to show that multiscale and exact least squares results are comparable. A portion of the data were not used in the analysis; these data serve to test the multiscale estimates. A major advantage of the present approach is the ability to repeat the estimation procedure a large number of times for sensitivity studies, parameter estimation, and model testing. We have made available by anonymous Ftp a set of MATLAB-callable routines which implement the multiscale algorithm and the statistical models developed in this paper.
Crane, N K; Parsons, I D; Hjelmstad, K D
2002-03-21
Adaptive mesh refinement selectively subdivides the elements of a coarse user supplied mesh to produce a fine mesh with reduced discretization error. Effective use of adaptive mesh refinement coupled with an a posteriori error estimator can produce a mesh that solves a problem to a given discretization error using far fewer elements than uniform refinement. A geometric multigrid solver uses increasingly finer discretizations of the same geometry to produce a very fast and numerically scalable solution to a set of linear equations. Adaptive mesh refinement is a natural method for creating the different meshes required by the multigrid solver. This paper describes the implementation of a scalable adaptive multigrid method on a distributed memory parallel computer. Results are presented that demonstrate the parallel performance of the methodology by solving a linear elastic rocket fuel deformation problem on an SGI Origin 3000. Two challenges must be met when implementing adaptive multigrid algorithms on massively parallel computing platforms. First, although the fine mesh for which the solution is desired may be large and scaled to the number of processors, the multigrid algorithm must also operate on much smaller fixed-size data sets on the coarse levels. Second, the mesh must be repartitioned as it is adapted to maintain good load balancing. In an adaptive multigrid algorithm, separate mesh levels may require separate partitioning, further complicating the load balance problem. This paper shows that, when the proper optimizations are made, parallel adaptive multigrid algorithms perform well on machines with several hundreds of processors.
A Fast Cluster Motif Finding Algorithm for ChIP-Seq Data Sets.
Zhang, Yipu; Wang, Ping
2015-01-01
New high-throughput technique ChIP-seq, coupling chromatin immunoprecipitation experiment with high-throughput sequencing technologies, has extended the identification of binding locations of a transcription factor to the genome-wide regions. However, the most existing motif discovery algorithms are time-consuming and limited to identify binding motifs in ChIP-seq data which normally has the significant characteristics of large scale data. In order to improve the efficiency, we propose a fast cluster motif finding algorithm, named as FCmotif, to identify the (l, d) motifs in large scale ChIP-seq data set. It is inspired by the emerging substrings mining strategy to find the enriched substrings and then searching the neighborhood instances to construct PWM and cluster motifs in different length. FCmotif is not following the OOPS model constraint and can find long motifs. The effectiveness of proposed algorithm has been proved by experiments on the ChIP-seq data sets from mouse ES cells. The whole detection of the real binding motifs and processing of the full size data of several megabytes finished in a few minutes. The experimental results show that FCmotif has advantageous to deal with the (l, d) motif finding in the ChIP-seq data; meanwhile it also demonstrates better performance than other current widely-used algorithms such as MEME, Weeder, ChIPMunk, and DREME. PMID:26236718
Combined algorithmic and GPU acceleration for ultra-fast circular conebeam backprojection
NASA Astrophysics Data System (ADS)
Brokish, Jeffrey; Sack, Paul; Bresler, Yoram
2010-04-01
In this paper, we describe the first implementation and performance of a fast O(N3logN) hierarchical backprojection algorithm for cone beam CT with a circular trajectory1,developed on a modern Graphics Processing Unit (GPU). The resulting tomographic backprojection system for 3D cone beam geometry combines speedup through algorithmic improvements provided by the hierarchical backprojection algorithm with speedup from a massively parallel hardware accelerator. For data parameters typical in diagnostic CT and using a mid-range GPU card, we report reconstruction speeds of up to 360 frames per second, and relative speedup of almost 6x compared to conventional backprojection on the same hardware. The significance of these results is twofold. First, they demonstrate that the reduction in operation counts demonstrated previously for the FHBP algorithm can be translated to a comparable run-time improvement in a massively parallel hardware implementation, while preserving stringent diagnostic image quality. Second, the dramatic speedup and throughput numbers achieved indicate the feasibility of systems based on this technology, which achieve real-time 3D reconstruction for state-of-the art diagnostic CT scanners with small footprint, high-reliability, and affordable cost.
A Fast Hyperplane-Based Minimum-Volume Enclosing Simplex Algorithm for Blind Hyperspectral Unmixing
NASA Astrophysics Data System (ADS)
Lin, Chia-Hsiang; Chi, Chong-Yung; Wang, Yu-Hsiang; Chan, Tsung-Han
2016-04-01
Hyperspectral unmixing (HU) is a crucial signal processing procedure to identify the underlying materials (or endmembers) and their corresponding proportions (or abundances) from an observed hyperspectral scene. A well-known blind HU criterion, advocated by Craig in early 1990's, considers the vertices of the minimum-volume enclosing simplex of the data cloud as good endmember estimates, and it has been empirically and theoretically found effective even in the scenario of no pure pixels. However, such kind of algorithms may suffer from heavy simplex volume computations in numerical optimization, etc. In this work, without involving any simplex volume computations, by exploiting a convex geometry fact that a simplest simplex of N vertices can be defined by N associated hyperplanes, we propose a fast blind HU algorithm, for which each of the N hyperplanes associated with the Craig's simplex of N vertices is constructed from N-1 affinely independent data pixels, together with an endmember identifiability analysis for its performance support. Without resorting to numerical optimization, the devised algorithm searches for the N(N-1) active data pixels via simple linear algebraic computations, accounting for its computational efficiency. Monte Carlo simulations and real data experiments are provided to demonstrate its superior efficacy over some benchmark Craig-criterion-based algorithms in both computational efficiency and estimation accuracy.
The backpropagation algorithm in J, a fast prototyping tool for researching neural networks.
Brouwer, R K
1999-08-01
This paper illustrates the use of a powerful language, called J, that is ideal for simulating neural networks. The use of J is demonstrated by its application to a gradient descent method for training a multilayer perceptron. It is also shown how the back-propagation algorithm can be easily generalized to multilayer networks without any increase in complexity and that the algorithm can be completely expressed in an array notation which is directly executable through J. J is a general purpose language, which means that its user is given a flexibility not available in neural network simulators or in software packages such as MATLAB. Yet, because of its numerous operators, J allows a very succinct code to be used, leading to a tremendous decrease in development time. PMID:10586987
A fast rebinning algorithm for 3D positron emission tomography using John's equation
NASA Astrophysics Data System (ADS)
Defrise, Michel; Liu, Xuan
1999-08-01
Volume imaging in positron emission tomography (PET) requires the inversion of the three-dimensional (3D) x-ray transform. The usual solution to this problem is based on 3D filtered-backprojection (FBP), but is slow. Alternative methods have been proposed which factor the 3D data into independent 2D data sets corresponding to the 2D Radon transforms of a stack of parallel slices. Each slice is then reconstructed using 2D FBP. These so-called rebinning methods are numerically efficient but are approximate. In this paper a new exact rebinning method is derived by exploiting the fact that the 3D x-ray transform of a function is the solution to the second-order partial differential equation first studied by John. The method is proposed for two sampling schemes, one corresponding to a pair of infinite plane detectors and another one corresponding to a cylindrical multi-ring PET scanner. The new FORE-J algorithm has been implemented for this latter geometry and was compared with the approximate Fourier rebinning algorithm FORE and with another exact rebinning algorithm, FOREX. Results with simulated data demonstrate a significant improvement in accuracy compared to FORE, while the reconstruction time is doubled. Compared to FOREX, the FORE-J algorithm is slightly less accurate but more than three times faster.
Moriguchi, H; Wendt, M; Duerk, J L
2000-11-01
Various kinds of nonrectilinear Cartesian k-space trajectories have been studied, such as spiral, circular, and rosette trajectories. Although the nonrectilinear Cartesian sampling techniques generally have the advantage of fast data acquisition, the gridding process prior to 2D-FFT image reconstruction usually requires a number of additional calculations, thus necessitating an increase in the computation time. Further, the reconstructed image often exhibits artifacts resulting from both the k-space sampling pattern and the gridding procedure. To date, it has been demonstrated in only a few studies that the special geometric sampling patterns of certain specific trajectories facilitate fast image reconstruction. In other words, the inherent link among the trajectory, the sampling scheme, and the associated complexity of the regridding/reconstruction process has been investigated to only a limited extent. In this study, it is demonstrated that a Lissajous trajectory has the special geometric characteristics necessary for rapid reconstruction of nonrectilinear Cartesian k-space trajectories with constant sampling time intervals. Because of the applicability of a uniform resampling (URS) algorithm, a high-quality reconstructed image is obtained in a short reconstruction time when compared to other gridding algorithms. PMID:11064412
Demeyer, Sofie; Michoel, Tom; Fostier, Jan; Audenaert, Pieter; Pickavet, Mario; Demeester, Piet
2013-01-01
Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA), a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/isma/. PMID:23620730
Demeyer, Sofie; Michoel, Tom; Fostier, Jan; Audenaert, Pieter; Pickavet, Mario; Demeester, Piet
2013-01-01
Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA), a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/isma/. PMID:23620730
A Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream
Ying Wah, Teh
2014-01-01
Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets. PMID:25110753
A fast density-based clustering algorithm for real-time Internet of Things stream.
Amini, Amineh; Saboohi, Hadi; Wah, Teh Ying; Herawan, Tutut
2014-01-01
Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets. PMID:25110753
Fast parallel tracking algorithm for the muon detector of the CBM experiment at fair
NASA Astrophysics Data System (ADS)
Lebedev, A.; Höhne, C.; Kisel, I.; Ososkov, G.
2010-07-01
Particle trajectory recognition is an important and challenging task in the Compressed Baryonic Matter (CBM) experiment at the future FAIR accelerator at Darmstadt. The tracking algorithms have to process terabytes of input data produced in particle collisions. Therefore, the speed of the tracking software is extremely important for data analysis. In this contribution, a fast parallel track reconstruction algorithm which uses available features of modern processors is presented. These features comprise a SIMD instruction set (SSE) and multithreading. The first allows one to pack several data items into one register and to operate on all of them in parallel thus achieving more operations per cycle. The second feature enables the routines to exploit all available CPU cores and hardware threads. This parallel version of the tracking algorithm has been compared to the initial serial scalar version which uses a similar approach for tracking. A speed-up factor of 487 was achieved (from 730 to 1.5 ms/event) for a computer with 2 × Intel Core i7 processors at 2.66 GHz.
NASA Astrophysics Data System (ADS)
Fiorino, Steven T.; Elmore, Brannon; Schmidt, Jaclyn; Matchefts, Elizabeth; Burley, Jarred L.
2016-05-01
Properly accounting for multiple scattering effects can have important implications for remote sensing and possibly directed energy applications. For example, increasing path radiance can affect signal noise. This study describes the implementation of a fast-calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations into the Laser Environmental Effects Definition and Reference (LEEDR) atmospheric characterization and radiative transfer code. The multiple scattering algorithm fully solves for molecular, aerosol, cloud, and precipitation single-scatter layer effects with a Mie algorithm at every calculation point/layer rather than an interpolated value from a pre-calculated look-up-table. This top-down cumulative diffusivity method first considers the incident solar radiance contribution to a given layer accounting for solid angle and elevation, and it then measures the contribution of diffused energy from previous layers based on the transmission of the current level to produce a cumulative radiance that is reflected from a surface and measured at the aperture at the observer. Then a unique set of asymmetry and backscattering phase function parameter calculations are made which account for the radiance loss due to the molecular and aerosol constituent reflectivity within a level and allows for a more accurate characterization of diffuse layers that contribute to multiple scattered radiances in inhomogeneous atmospheres. The code logic is valid for spectral bands between 200 nm and radio wavelengths, and the accuracy is demonstrated by comparing the results from LEEDR to observed sky radiance data.
NASA Astrophysics Data System (ADS)
Moreno Oliva, Víctor Iván; Castañeda Mendoza, Álvaro; Campos García, Manuel; Díaz Uribe, Rufino
2011-09-01
The null screen is a geometric method that allows the testing of fast aspherical surfaces, this method measured the local slope at the surface and by numerical integration the shape of the surface is measured. The usual technique for the numerical evaluation of the surface is the trapezoidal rule, is well-known fact that the truncation error increases with the second power of the spacing between spots of the integration path. Those paths are constructed following spots reflected on the surface and starting in an initial select spot. To reduce the numerical errors in this work we propose the use of the Dijkstra algorithm.1 This algorithm can find the shortest path from one spot (or vertex) to another spot in a weighted connex graph. Using a modification of the algorithm it is possible to find the minimal path from one select spot to all others ones. This automates and simplifies the integration process in the test with null screens. In this work is shown the efficient proposed evaluating a previously surface with a traditional process.
A New Fast Algorithm to Completely Account for Non-Lambertian Surface Reflection of The Earth
NASA Technical Reports Server (NTRS)
Qin, Wen-Han; Herman, Jay R.; Ahmad, Ziauddin; Einaudi, Franco (Technical Monitor)
2000-01-01
Surface bidirectional reflectance distribution function (BRDF) influences not only radiance just about the surface, but that emerging from the top of the atmosphere (TOA). In this study we propose a new, fast and accurate, algorithm CASBIR (correction for anisotropic surface bidirectional reflection) to account for such influences on radiance measured above TOA. This new algorithm is based on a 4-stream theory that separates the radiation field into direct and diffuse components in both upwelling and downwelling directions. This is important because the direct component accounts for a substantial portion of incident radiation under a clear sky, and the BRDF effect is strongest in the reflection of the direct radiation reaching the surface. The model is validated by comparison with a full-scale, vector radiation transfer model for the atmosphere-surface system. The result demonstrates that CASBIR performs very well (with overall relative difference of less than one percent) for all solar and viewing zenith and azimuth angles considered in wavelengths from ultraviolet to near-infrared over three typical, but very different surface types. Application of this algorithm includes both accounting for non-Lambertian surface scattering on the emergent radiation above TOA and a potential approach for surface BRDF retrieval from satellite measured radiance.
Fast algorithm for minutiae matching based on multiple-ridge information
NASA Astrophysics Data System (ADS)
Wang, Guoyou; Hu, Jing
2001-09-01
Autonomous real-time fingerprint verification, how to judge whether two fingerprints come from the same finger or not, is an important and difficult problem in AFIS (Automated Fingerprint Identification system). In addition to the nonlinear deformation, two fingerprints from the same finger may also be dissimilar due to translation or rotation, all these factors do make the dissimilarities more great and lead to misjudgment, thus the correct verification rate highly depends on the deformation degree. In this paper, we present a new fast simple algorithm for fingerprint matching, derived from the Chang et al.'s method, to solve the problem of optimal matches between two fingerprints under nonlinear deformation. The proposed algorithm uses not only the feature points of fingerprints but also the multiple information of the ridge to reduce the computational complexity in fingerprint verification. Experiments with a number of fingerprint images have shown that this algorithm has higher efficiency than the existing of methods due to the reduced searching operations.
NASA Astrophysics Data System (ADS)
Ghaffarian, Saman; Ghaffarian, Salar
2014-11-01
This paper proposes an improved FastICA model named as Purposive FastICA (PFICA) with initializing by a simple color space transformation and a novel masking approach to automatically detect buildings from high resolution Google Earth imagery. ICA and FastICA algorithms are defined as Blind Source Separation (BSS) techniques for unmixing source signals using the reference data sets. In order to overcome the limitations of the ICA and FastICA algorithms and make them purposeful, we developed a novel method involving three main steps: 1-Improving the FastICA algorithm using Moore-Penrose pseudo inverse matrix model, 2-Automated seeding of the PFICA algorithm based on LUV color space and proposed simple rules to split image into three regions; shadow + vegetation, baresoil + roads and buildings, respectively, 3-Masking out the final building detection results from PFICA outputs utilizing the K-means clustering algorithm with two number of clusters and conducting simple morphological operations to remove noises. Evaluation of the results illustrates that buildings detected from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.6% and 85.5% overall pixel-based and object-based precision performances, respectively.
Van der Auwera, Geraldine A.; Carneiro, Mauricio O.; Hartl, Chris; Poplin, Ryan; del Angel, Guillermo; Levy-Moonshine, Ami; Jordan, Tadeusz; Shakir, Khalid; Roazen, David; Thibault, Joel; Banks, Eric; Garimella, Kiran V.; Altshuler, David; Gabriel, Stacey; DePristo, Mark A.
2013-01-01
This unit describes how to use BWA and the Genome Analysis Toolkit (GATK) to map genome sequencing data to a reference and produce high-quality variant calls that can be used in downstream analyses. The complete workflow includes the core NGS data processing steps that are necessary to make the raw data suitable for analysis by the GATK, as well as the key methods involved in variant discovery using the GATK. PMID:25431634
Pre-Hardware Optimization and Implementation Of Fast Optics Closed Control Loop Algorithms
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Lyon, Richard G.; Herman, Jay R.; Abuhassan, Nader
2004-01-01
One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). The FFT is particularly useful in two-dimensional (2-D) image processing (FFT2) within optical systems control. However, timing constraints of a fast optics closed control loop would require a supercomputer to run the software implementation of the FFT2 and its inverse, as well as other image processing representative algorithm, such as numerical image folding and fringe feature extraction. A laboratory supercomputer is not always available even for ground operations and is not feasible for a night project. However, the computationally intensive algorithms still warrant alternative implementation using reconfigurable computing technologies (RC) such as Digital Signal Processors (DSP) and Field Programmable Gate Arrays (FPGA), which provide low cost compact super-computing capabilities. We present a new RC hardware implementation and utilization architecture that significantly reduces the computational complexity of a few basic image-processing algorithm, such as FFT2, image folding and phase diversity for the NASA Solar Viewing Interferometer Prototype (SVIP) using a cluster of DSPs and FPGAs. The DSP cluster utilization architecture also assures avoidance of a single point of failure, while using commercially available hardware. This, combined with the control algorithms pre-hardware optimization, or the first time allows construction of image-based 800 Hertz (Hz) optics closed control loops on-board a spacecraft, based on the SVIP ground instrument. That spacecraft is the proposed Earth Atmosphere Solar Occultation Imager (EASI) to study greenhouse gases CO2, C2H, H2O, O3, O2, N2O from Lagrange-2 point in space. This paper provides an advanced insight into a new type of science capabilities for future space exploration missions based on on-board image processing
Topology correction of segmented medical images using a fast marching algorithm.
Bazin, Pierre-Louis; Pham, Dzung L
2007-11-01
We present here a new method for correcting the topology of objects segmented from medical images. Whereas previous techniques alter a surface obtained from a binary segmentation of the object, our technique can be applied directly to the image intensities of a probabilistic or fuzzy segmentation, thereby propagating the topology for all isosurfaces of the object. From an analysis of topological changes and critical points in implicit surfaces, we derive a topology propagation algorithm that enforces any desired topology using a fast marching technique. The method has been applied successfully to the correction of the cortical gray matter/white matter interface in segmented brain images and is publicly released as a software plug-in for the MIPAV package. PMID:17942182
Program for the analysis of time series. [by means of fast Fourier transform algorithm
NASA Technical Reports Server (NTRS)
Brown, T. J.; Brown, C. G.; Hardin, J. C.
1974-01-01
A digital computer program for the Fourier analysis of discrete time data is described. The program was designed to handle multiple channels of digitized data on general purpose computer systems. It is written, primarily, in a version of FORTRAN 2 currently in use on CDC 6000 series computers. Some small portions are written in CDC COMPASS, an assembler level code. However, functional descriptions of these portions are provided so that the program may be adapted for use on any facility possessing a FORTRAN compiler and random-access capability. Properly formatted digital data are windowed and analyzed by means of a fast Fourier transform algorithm to generate the following functions: (1) auto and/or cross power spectra, (2) autocorrelations and/or cross correlations, (3) Fourier coefficients, (4) coherence functions, (5) transfer functions, and (6) histograms.
On high-order denoising models and fast algorithms for vector-valued images.
Brito-Loeza, Carlos; Chen, Ke
2010-06-01
Variational techniques for gray-scale image denoising have been deeply investigated for many years; however, little research has been done for the vector-valued denoising case and the very few existent works are all based on total-variation regularization. It is known that total-variation models for denoising gray-scaled images suffer from staircasing effect and there is no reason to suggest this effect is not transported into the vector-valued models. High-order models, on the contrary, do not present staircasing. In this paper, we introduce three high-order and curvature-based denoising models for vector-valued images. Their properties are analyzed and a fast multigrid algorithm for the numerical solution is provided. AMS subject classifications: 68U10, 65F10, 65K10. PMID:20172828
Fast String Search on Multicore Processors: Mapping fundamental algorithms onto parallel hardware
Scarpazza, Daniele P.; Villa, Oreste; Petrini, Fabrizio
2008-04-01
String searching is one of these basic algorithms. It has a host of applications, including search engines, network intrusion detection, virus scanners, spam filters, and DNA analysis, among others. The Cell processor, with its multiple cores, promises to speed-up string searching a lot. In this article, we show how we mapped string searching efficiently on the Cell. We present two implementations: • The fast implementation supports a small dictionary size (approximately 100 patterns) and provides a throughput of 40 Gbps, which is 100 times faster than reference implementations on x86 architectures. • The heavy-duty implementation is slower (3.3-4.3 Gbps), but supports dictionaries with tens of thousands of strings.
Automatic brain tumor segmentation with a fast Mumford-Shah algorithm
NASA Astrophysics Data System (ADS)
Müller, Sabine; Weickert, Joachim; Graf, Norbert
2016-03-01
We propose a fully-automatic method for brain tumor segmentation that does not require any training phase. Our approach is based on a sequence of segmentations using the Mumford-Shah cartoon model with varying parameters. In order to come up with a very fast implementation, we extend the recent primal-dual algorithm of Strekalovskiy et al. (2014) from the 2D to the medically relevant 3D setting. Moreover, we suggest a new confidence refinement and show that it can increase the precision of our segmentations substantially. Our method is evaluated on 188 data sets with high-grade gliomas and 25 with low-grade gliomas from the BraTS14 database. Within a computation time of only three minutes, we achieve Dice scores that are comparable to state-of-the-art methods.
Pimentel, J A; Carneiro, J; Darszon, A; Corkidi, G
2012-01-01
Recent advances in microscopy and cytolabelling methods enable the real time imaging of cells as they move and interact in their real physiological environment. Scenarios in which multiple cells move autonomously in all directions are not uncommon in biology. A remarkable example is the swimming of marine spermatozoa in search of the conspecific oocyte. Imaging cells in these scenarios, particularly when they move fast and are poorly labelled or even unlabelled requires very fast three-dimensional time-lapse (3D+t) imaging. This 3D+t imaging poses challenges not only to the acquisition systems but also to the image analysis algorithms. It is in this context that this work describes an original automated multiparticle segmentation method to analyse motile translucent cells in 3D microscopical volumes. The proposed segmentation technique takes advantage of the way the cell appearance changes with the distance to the focal plane position. The cells translucent properties and their interaction with light produce a specific pattern: when the cell is within or close to the focal plane, its two-dimensional (2D) appearance matches a bright spot surrounded by a dark ring, whereas when it is farther from the focal plane the cell contrast is inverted looking like a dark spot surrounded by a bright ring. The proposed method analyses the acquired video sequence frame-by-frame taking advantage of 2D image segmentation algorithms to identify and select candidate cellular sections. The crux of the method is in the sequential filtering of the candidate sections, first by template matching of the in-focus and out-of-focus templates and second by considering adjacent candidates sections in 3D. These sequential filters effectively narrow down the number of segmented candidate sections making the automatic tracking of cells in three dimensions a straightforward operation. PMID:21999166
NASA Technical Reports Server (NTRS)
Alfano, Robert R. (Inventor); Cai, Wei (Inventor)
2007-01-01
A reconstruction technique for reducing computation burden in the 3D image processes, wherein the reconstruction procedure comprises an inverse and a forward model. The inverse model uses a hybrid dual Fourier algorithm that combines a 2D Fourier inversion with a 1D matrix inversion to thereby provide high-speed inverse computations. The inverse algorithm uses a hybrid transfer to provide fast Fourier inversion for data of multiple sources and multiple detectors. The forward model is based on an analytical cumulant solution of a radiative transfer equation. The accurate analytical form of the solution to the radiative transfer equation provides an efficient formalism for fast computation of the forward model.
Wang, Zhaocai; Huang, Dongmei; Meng, Huajun; Tang, Chengpei
2013-10-01
The minimum spanning tree (MST) problem is to find minimum edge connected subsets containing all the vertex of a given undirected graph. It is a vitally important NP-complete problem in graph theory and applied mathematics, having numerous real life applications. Moreover in previous studies, DNA molecular operations usually were used to solve NP-complete head-to-tail path search problems, rarely for NP-hard problems with multi-lateral path solutions result, such as the minimum spanning tree problem. In this paper, we present a new fast DNA algorithm for solving the MST problem using DNA molecular operations. For an undirected graph with n vertex and m edges, we reasonably design flexible length DNA strands representing the vertex and edges, take appropriate steps and get the solutions of the MST problem in proper length range and O(3m+n) time complexity. We extend the application of DNA molecular operations and simultaneity simplify the complexity of the computation. Results of computer simulative experiments show that the proposed method updates some of the best known values with very short time and that the proposed method provides a better performance with solution accuracy over existing algorithms. PMID:23871964
Interlocked optimization and fast gradient algorithm for a seismic inverse problem
Metivier, Ludovic
2011-08-10
Highlights: {yields} A 2D extension of the 1D nonlinear inversion of well-seismic data is given. {yields} Appropriate regularization yields a well-determined large scale inverse problem. {yields} An interlocked optimization loop acts as an efficient preconditioner. {yields} The adjoint state method is used to compute the misfit function gradient. {yields} Domain decomposition method yields an efficient parallel implementation. - Abstract: We give a nonlinear inverse method for seismic data recorded in a well from sources at several offsets from the borehole in a 2D acoustic framework. Given the velocity field, approximate values of the impedance are recovered. This is a 2D extension of the 1D inversion of vertical seismic profiles . The inverse problem generates a large scale undetermined ill-conditioned problem. Appropriate regularization terms render the problem well-determined. An interlocked optimization algorithm yields an efficient preconditioning. A gradient algorithm based on the adjoint state method and domain decomposition gives a fast parallel numerical method. For a realistic test case, convergence is attained in an acceptable time with 128 processors.
A fast thresholded landweber algorithm for wavelet-regularized multidimensional deconvolution.
Vonesch, C; Unser, M
2008-04-01
We present a fast variational deconvolution algorithm that minimizes a quadratic data term subject to a regularization on the l(1)-norm of the wavelet coefficients of the solution. Previously available methods have essentially consisted in alternating between a Landweber iteration and a wavelet-domain soft-thresholding operation. While having the advantage of simplicity, they are known to converge slowly. By expressing the cost functional in a Shannon wavelet basis, we are able to decompose the problem into a series of subband-dependent minimizations. In particular, this allows for larger (subband-dependent) step sizes and threshold levels than the previous method. This improves the convergence properties of the algorithm significantly. We demonstrate a speed-up of one order of magnitude in practical situations. This makes wavelet-regularized deconvolution more widely accessible, even for applications with a strong limitation on computational complexity. We present promising results in 3-D deconvolution microscopy, where the size of typical data sets does not permit more than a few tens of iterations. PMID:18390362
A fast algorithm for voxel-based deterministic simulation of X-ray imaging
NASA Astrophysics Data System (ADS)
Li, Ning; Zhao, Hua-Xia; Cho, Sang-Hyun; Choi, Jung-Gil; Kim, Myoung-Hee
2008-04-01
Deterministic method based on ray tracing technique is known as a powerful alternative to the Monte Carlo approach for virtual X-ray imaging. The algorithm speed is a critical issue in the perspective of simulating hundreds of images, notably to simulate tomographic acquisition or even more, to simulate X-ray radiographic video recordings. We present an algorithm for voxel-based deterministic simulation of X-ray imaging using voxel-driven forward and backward perspective projection operations and minimum bounding rectangles (MBRs). The algorithm is fast, easy to implement, and creates high-quality simulated radiographs. As a result, simulated radiographs can typically be obtained in split seconds with a simple personal computer. Program summaryProgram title: X-ray Catalogue identifier: AEAD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 416 257 No. of bytes in distributed program, including test data, etc.: 6 018 263 Distribution format: tar.gz Programming language: C (Visual C++) Computer: Any PC. Tested on DELL Precision 380 based on a Pentium D 3.20 GHz processor with 3.50 GB of RAM Operating system: Windows XP Classification: 14, 21.1 Nature of problem: Radiographic simulation of voxelized objects based on ray tracing technique. Solution method: The core of the simulation is a fast routine for the calculation of ray-box intersections and minimum bounding rectangles, together with voxel-driven forward and backward perspective projection operations. Restrictions: Memory constraints. There are three programs in all. A. Program for test 3.1(1): Object and detector have axis-aligned orientation; B. Program for test 3.1(2): Object in arbitrary orientation; C. Program for test 3.2: Simulation of X-ray video
Fast multi-scale edge detection algorithm based on wavelet transform
NASA Astrophysics Data System (ADS)
Zang, Jie; Song, Yanjun; Li, Shaojuan; Luo, Guoyun
2011-11-01
The traditional edge detection algorithms have certain noise amplificat ion, making there is a big error, so the edge detection ability is limited. In analysis of the low-frequency signal of image, wavelet analysis theory can reduce the time resolution; under high time resolution for high-frequency signal of the image, it can be concerned about the transient characteristics of the signal to reduce the frequency resolution. Because of the self-adaptive for signal, the wavelet transform can ext ract useful informat ion from the edge of an image. The wavelet transform is at various scales, wavelet transform of each scale provides certain edge informat ion, so called mult i-scale edge detection. Multi-scale edge detection is that the original signal is first polished at different scales, and then detects the mutation of the original signal by the first or second derivative of the polished signal, and the mutations are edges. The edge detection is equivalent to signal detection in different frequency bands after wavelet decomposition. This article is use of this algorithm which takes into account both details and profile of image to detect the mutation of the signal at different scales, provided necessary edge information for image analysis, target recognition and machine visual, and achieved good results.
A fast algorithm for the recursive calculation of dominant singular subspaces
NASA Astrophysics Data System (ADS)
Mastronardi, N.; van Barel, M.; Vandebril, R.
2008-09-01
In many engineering applications it is required to compute the dominant subspace of a matrix A of dimension m×n, with m[not double greater-than sign]n. Often the matrix A is produced incrementally, so all the columns are not available simultaneously. This problem arises, e.g., in image processing, where each column of the matrix A represents an image of a given sequence leading to a singular value decomposition-based compression [S. Chandrasekaran, B.S. Manjunath, Y.F. Wang, J. Winkeler, H. Zhang, An eigenspace update algorithm for image analysis, Graphical Models and Image Process. 59 (5) (1997) 321-332]. Furthermore, the so-called proper orthogonal decomposition approximation uses the left dominant subspace of a matrix A where a column consists of a time instance of the solution of an evolution equation, e.g., the flow field from a fluid dynamics simulation. Since these flow fields tend to be very large, only a small number can be stored efficiently during the simulation, and therefore an incremental approach is useful [P. Van Dooren, Gramian based model reduction of large-scale dynamical systems, in: Numerical Analysis 1999, Chapman & Hall, CRC Press, London, Boca Raton, FL, 2000, pp. 231-247]. In this paper an algorithm for computing an approximation of the left dominant subspace of size k of , with k[double less-than sign]m,n, is proposed requiring at each iteration O(mk+k2) floating point operations. Moreover, the proposed algorithm exhibits a lot of parallelism that can be exploited for a suitable implementation on a parallel computer.
NASA Technical Reports Server (NTRS)
Hung, Stephen H. Y.
1989-01-01
A fast 3-D object recognition algorithm that can be used as a quick-look subsystem to the vision system for the Special-Purpose Dexterous Manipulator (SPDM) is described. Global features that can be easily computed from range data are used to characterize the images of a viewer-centered model of an object. This algorithm will speed up the processing by eliminating the low level processing whenever possible. It may identify the object, reject a set of bad data in the early stage, or create a better environment for a more powerful algorithm to carry the work further.
NASA Astrophysics Data System (ADS)
Su, Zhong
Lateral migration radiography (LMR) is a unique x-ray Compton backscatter imaging (CBI) technique to image surface and subsurface, or internal structure of an object. An x-ray pencil beam scans the interrogated area and the backscattered photons are registered by detectors which have varying degrees of collimation. In early LMR applications, either the LMR systems or the imaged objects are moved on a rectangular grid, and at each node, the systems register backscattered photon energy deposition as pixel intensity in acquired images. The mechanical movement of the system or objects from pixel to pixel causes prolonged image scan time with a high percentage of system dead time. To avoid this drawback, a particular x-ray beam formation technique is proposed and analyzed. A corresponding mobile, fast-scan LMR system is designed, fabricated and tested. The results show a two orders-of-magnitude reduction in image scan time compared with those of previous systems. The x-ray beam formation technique, based on a rotating collimator in the LMR system, implements surface line scan by sampling an x-ray fan beam. This rotating collimator yields unique imaging effects compared to those for an x-ray beam with fixed collimation and perpendicular incidence: (1) the speed of the x-ray beam spot on the scanned surface is not uniform; (2) constant movement of the x-ray beam spot changes the resolution in the image raster direction; (3) x-ray beam spot size changes with location on the scanned surface; (4) the object image shows a squeezed effect in the raster scan direction; (5) under a uniform background, the Compton scatter angular distribution causes the x-ray backscatter field to be stronger, when the x-ray beam has greater incidence angle; and (6) the x-ray illumination spot trace on the scanned surface is skewed. The physics generating these effects is analyzed with Monte Carlo computer simulations and/or measurements. Image acquisition and image processing algorithms are
The 183-WSL fast rain rate retrieval algorithm: Part I: Retrieval design
NASA Astrophysics Data System (ADS)
Laviola, Sante; Levizzani, Vincenzo
2011-03-01
The Water vapour Strong Lines at 183 GHz (183-WSL) fast retrieval method retrieves rain rates and classifies precipitation types for applications in nowcasting and weather monitoring. The retrieval scheme consists of two fast algorithms, over land and over ocean, that use the water vapour absorption lines at 183.31 GHz corresponding to the channels 3 (183.31 ± 1 GHz), 4 (183.31 ± 3 GHz) and 5 (183.31 ± 7 GHz) of the Advanced Microwave Sounding Unit module B (AMSU-B) and of the Microwave Humidity Sounder (MHS) flying on NOAA-15-18 and Metop-A satellite series, respectively. The method retrieves rain rates by exploiting the extinction of radiation due to rain drops following four subsequent steps. After ingesting the satellite data stream, the window channels at 89 and 150 GHz are used to compute scattering-based thresholds and the 183-WSLW module for rainfall area discrimination and precipitation type classification as stratiform or convective on the basis of the thresholds calculated for land/mixed and sea surfaces. The thresholds are based on the brightness temperature difference Δwin = TB89 - TB150 and are different over land (L) and over sea (S): cloud droplets and water vapour (Δwin < 3 K L; Δwin < 0 K S), stratiform rain (3 K < Δwin < 10 K L; 0 K < Δwin < 10 K S), and convective rain (Δwin > 10 K L and S). The thresholds, initially empirically derived from observations, are corroborated by the simulations of the RTTOV radiative transfer model applied to 20000 ECMWF atmospheric profiles at midlatitudes and the use of data from the Nimrod radar network. A snow cover mask and a digital elevation model are used to eliminate false rain area attribution, especially over elevated terrain. A probability of detection logistic function is also applied in the transition region from no-rain to rain adjacent to the clouds to ensure continuity of the rainfall field. Finally, the last step is dedicated to the rain rate retrieval with the modules 183-WSLS (stratiform
A fast automatic recognition and location algorithm for fetal genital organs in ultrasound images
Tang, Sheng; Chen, Si-ping
2009-01-01
Severe sex ratio imbalance at birth is now becoming an important issue in several Asian countries. Its leading immediate cause is prenatal sex-selective abortion following illegal sex identification by ultrasound scanning. In this paper, a fast automatic recognition and location algorithm for fetal genital organs is proposed as an effective method to help prevent ultrasound technicians from unethically and illegally identifying the sex of the fetus. This automatic recognition algorithm can be divided into two stages. In the ‘rough’ stage, a few pixels in the image, which are likely to represent the genital organs, are automatically chosen as points of interest (POIs) according to certain salient characteristics of fetal genital organs. In the ‘fine’ stage, a specifically supervised learning framework, which fuses an effective feature data preprocessing mechanism into the multiple classifier architecture, is applied to every POI. The basic classifiers in the framework are selected from three widely used classifiers: radial basis function network, backpropagation network, and support vector machine. The classification results of all the POIs are then synthesized to determine whether the fetal genital organ is present in the image, and to locate the genital organ within the positive image. Experiments were designed and carried out based on an image dataset comprising 658 positive images (images with fetal genital organs) and 500 negative images (images without fetal genital organs). The experimental results showed true positive (TP) and true negative (TN) results from 80.5% (265 from 329) and 83.0% (415 from 500) of samples, respectively. The average computation time was 453 ms per image. PMID:19735097
An algorithm for computing the 2D structure of fast rotating stars
NASA Astrophysics Data System (ADS)
Rieutord, Michel; Espinosa Lara, Francisco; Putigny, Bertrand
2016-08-01
Stars may be understood as self-gravitating masses of a compressible fluid whose radiative cooling is compensated by nuclear reactions or gravitational contraction. The understanding of their time evolution requires the use of detailed models that account for a complex microphysics including that of opacities, equation of state and nuclear reactions. The present stellar models are essentially one-dimensional, namely spherically symmetric. However, the interpretation of recent data like the surface abundances of elements or the distribution of internal rotation have reached the limits of validity of one-dimensional models because of their very simplified representation of large-scale fluid flows. In this article, we describe the ESTER code, which is the first code able to compute in a consistent way a two-dimensional model of a fast rotating star including its large-scale flows. Compared to classical 1D stellar evolution codes, many numerical innovations have been introduced to deal with this complex problem. First, the spectral discretization based on spherical harmonics and Chebyshev polynomials is used to represent the 2D axisymmetric fields. A nonlinear mapping maps the spheroidal star and allows a smooth spectral representation of the fields. The properties of Picard and Newton iterations for solving the nonlinear partial differential equations of the problem are discussed. It turns out that the Picard scheme is efficient on the computation of the simple polytropic stars, but Newton algorithm is unsurpassed when stellar models include complex microphysics. Finally, we discuss the numerical efficiency of our solver of Newton iterations. This linear solver combines the iterative Conjugate Gradient Squared algorithm together with an LU-factorization serving as a preconditioner of the Jacobian matrix.
Kalet, Alan M; Sandison, George A; Phillips, Mark H; Parvathaneni, Upendra
2013-01-01
We evaluate a photon convolution-superposition algorithm used to model a fast neutron therapy beam in a commercial treatment planning system (TPS). The neutron beam modeled was the Clinical Neutron Therapy System (CNTS) fast neutron beam produced by 50 MeV protons on a Be target at our facility, and we implemented the Pinnacle3 dose calculation model for computing neutron doses. Measured neutron data were acquired by an IC30 ion chamber flowing 5 cc/min of tissue equivalent gas. Output factors and profile scans for open and wedged fields were measured according to the Pinnacle physics reference guide recommendations for photon beams in a Wellhofer water tank scanning system. Following the construction of a neutron beam model, computed doses were then generated using 100 monitor units (MUs) beams incident on a water-equivalent phantom for open and wedged square fields, as well as multileaf collimator (MLC)-shaped irregular fields. We compared Pinnacle dose profiles, central axis doses, and off-axis doses (in irregular fields) with 1) doses computed using the Prism treatment planning system, and 2) doses measured in a water phantom and having matching geometry to the computation setup. We found that the Pinnacle photon model may be used to model most of the important dosimetric features of the CNTS fast neutron beam. Pinnacle-calculated dose points among open and wedged square fields exhibit dose differences within 3.9 cGy of both Prism and measured doses along the central axis, and within 5 cGy difference of measurement in the penumbra region. Pinnacle dose point calculations using irregular treatment type fields showed a dose difference up to 9 cGy from measured dose points, although most points of comparison were below 5 cGy. Comparisons of dose points that were chosen from cases planned in both Pinnacle and Prism show an average dose difference less than 0.6%, except in certain fields which incorporate both wedges and heavy blocking of the central axis. All
A Fast, Locally Adaptive, Interactive Retrieval Algorithm for the Analysis of DIAL Measurements
NASA Astrophysics Data System (ADS)
Samarov, D. V.; Rogers, R.; Hair, J. W.; Douglass, K. O.; Plusquellic, D.
2010-12-01
Differential absorption light detection and ranging (DIAL) is a laser-based tool which is used for remote, range-resolved measurement of particular gases in the atmosphere, such as carbon-dioxide and methane. In many instances it is of interest to study how these gases are distributed over a region such as a landfill, factory, or farm. While a single DIAL measurement only tells us about the distribution of a gas along a single path, a sequence of consecutive measurements provides us with information on how that gas is distributed over a region, making DIAL a natural choice for such studies. DIAL measurements present a number of interesting challenges; first, in order to convert the raw data to concentration it is necessary to estimate the derivative along the path of the measurement. Second, as the distribution of gases across a region can be highly heterogeneous it is important that the spatial nature of the measurements be taken into account. Finally, since it is common for the set of collected measurements to be quite large it is important for the method to be computationally efficient. Existing work based on Local Polynomial Regression (LPR) has been developed which addresses the first two issues, but the issue of computational speed remains an open problem. In addition to the latter, another desirable property is to allow user input into the algorithm. In this talk we present a novel method based on LPR which utilizes a variant of the RODEO algorithm to provide a fast, locally adaptive and interactive approach to the analysis of DIAL measurements. This methodology is motivated by and applied to several simulated examples and a study out of NASA Langley Research Center (LaRC) looking at the estimation of aerosol extinction in the atmosphere. A comparison study of our method against several other algorithms is also presented. References Chaudhuri, P., Marron, J.S., Scale-space view of curve estimation, Annals of Statistics 28 (2000) 408-428. Duong, T., Cowling
Fast numerical algorithms for fitting multiresolution hybrid shape models to brain MRI.
Vemuri, B C; Guo, Y; Lai, S H; Leonard, C M
1997-09-01
In this paper, we present new and fast numerical algorithms for shape recovery from brain MRI using multiresolution hybrid shape models. In this modeling framework, shapes are represented by a core rigid shape characterized by a superquadric function and a superimposed displacement function which is characterized by a membrane spline discretized using the finite-element method. Fitting the model to brain MRI data is cast as an energy minimization problem which is solved numerically. We present three new computational methods for model fitting to data. These methods involve novel mathematical derivations that lead to efficient numerical solutions of the model fitting problem. The first method involves using the nonlinear conjugate gradient technique with a diagonal Hessian preconditioner. The second method involves the nonlinear conjugate gradient in the outer loop for solving global parameters of the model and a preconditioned conjugate gradient scheme for solving the local parameters of the model. The third method involves the nonlinear conjugate gradient in the outer loop for solving the global parameters and a combination of the Schur complement formula and the alternating direction-implicit method for solving the local parameters of the model. We demonstrate the efficiency of our model fitting methods via experiments on several MR brain scans. PMID:9873915
Johnson, S A; Zhou, Y; Tracy, M K; Berggren, M J; Stenger, F
1984-01-01
olving the inverse scattering problem for the Helmholtz wave equation without employing the Born or Rytov approximations is a challenging problem, but some slow iterative methods have been proposed. One such method suggested by us is based on solving systems of nonlinear algebraic equations that are derived by applying the method of moments to a sinc basis function expansion of the fields and scattering potential. In the past, we have solved these equations for a 2-D object of n by n pixels in a time proportional to n5. In the present paper, we demonstrate a new method based on FFT convolution and the concept of backprojection which solves these equations in time proportional to n3 X log(n). Several numerical examples are given for images up to 7 by 7 pixels in size. Analogous algorithms to solve the Riccati wave equation in n3 X log(n) time are also suggested, but not verified. A method is suggested for interpolating measurements from one detector geometry to a new perturbed detector geometry whose measurement points fall on a FFT accessible, rectangular grid and thereby render many detector geometrics compatible for use by our fast methods. PMID:6540908
Fast Estimation of Distribution Algorithm (EDA) via Constrained Multi-Parent Recombination
NASA Astrophysics Data System (ADS)
Chan, Zeke S. H.; Kasabov, N.
This paper proposes a new evolutionary operator called Constrained Multi-parent Recombination (CMR) that performs Estimation of Distribution Algorithm (EDA) for continuous optimization problems without evaluating any explicit probabilistic model. The operator linearly combines subsets of the parent population with random coefficients that are subject to constraints to produce the offspring population, so that it is distributed according to Normal distribution with mean and variance equal to that of the parent population. Moreover, the population convergence rate can be controlled with a variance-scaling factor. CMR is a simple, yet robust and efficient operator. It eliminates the requirement for evaluating an explicit probabilistic model and thus the associated errors and computation. It implicitly models the full set of d(d-1)/2 interdependencies between components, yet its computation complexity is only O(d) per solution (d denotes the problem dimension). Theoretical proofs are provided to support its underlying principle. Preliminary experiment involves comparing the performance of CMR, four other EDA approaches and Evolutionary Strategies over three benchmark test functions. Results show that CMR performs more consistently than other approaches.
Bernhardt, Paul W.; Zhang, Daowen; Wang, Huixia Judy
2014-01-01
Joint modeling techniques have become a popular strategy for studying the association between a response and one or more longitudinal covariates. Motivated by the GenIMS study, where it is of interest to model the event of survival using censored longitudinal biomarkers, a joint model is proposed for describing the relationship between a binary outcome and multiple longitudinal covariates subject to detection limits. A fast, approximate EM algorithm is developed that reduces the dimension of integration in the E-step of the algorithm to one, regardless of the number of random effects in the joint model. Numerical studies demonstrate that the proposed approximate EM algorithm leads to satisfactory parameter and variance estimates in situations with and without censoring on the longitudinal covariates. The approximate EM algorithm is applied to analyze the GenIMS data set. PMID:25598564
A fast color image enhancement algorithm based on Max Intensity Channel.
Sun, Wei; Han, Long; Guo, Baolong; Jia, Wenyan; Sun, Mingui
2014-03-30
In this paper, we extend image enhancement techniques based on the retinex theory imitating human visual perception of scenes containing high illumination variations. This extension achieves simultaneous dynamic range modification, color consistency, and lightness rendition without multi-scale Gaussian filtering which has a certain halo effect. The reflection component is analyzed based on the illumination and reflection imaging model. A new prior named Max Intensity Channel (MIC) is implemented assuming that the reflections of some points in the scene are very high in at least one color channel. Using this prior, the illumination of the scene is obtained directly by performing a gray-scale closing operation and a fast cross-bilateral filtering on the MIC of the input color image. Consequently, the reflection component of each RGB color channel can be determined from the illumination and reflection imaging model. The proposed algorithm estimates the illumination component which is relatively smooth and maintains the edge details in different regions. A satisfactory color rendition is achieved for a class of images that do not satisfy the gray-world assumption implicit to the theoretical foundation of the retinex. Experiments are carried out to compare the new method with several spatial and transform domain methods. Our results indicate that the new method is superior in enhancement applications, improves computation speed, and performs well for images with high illumination variations than other methods. Further comparisons of images from National Aeronautics and Space Administration and a wearable camera eButton have shown a high performance of the new method with better color restoration and preservation of image details. PMID:25110395
NASA Astrophysics Data System (ADS)
Harker, Brian J.
The measurement of vector magnetic fields on the sun is one of the most important diagnostic tools for characterizing solar activity. The ubiquitous solar wind is guided into interplanetary space by open magnetic field lines in the upper solar atmosphere. Highly-energetic solar flares and Coronal Mass Ejections (CMEs) are triggered in lower layers of the solar atmosphere by the driving forces at the visible "surface" of the sun, the photosphere. The driving forces there tangle and interweave the vector magnetic fields, ultimately leading to an unstable field topology with large excess magnetic energy, and this excess energy is suddenly and violently released by magnetic reconnection, emitting intense broadband radiation that spans the electromagnetic spectrum, accelerating billions of metric tons of plasma away from the sun, and finally relaxing the magnetic field to lower-energy states. These eruptive flaring events can have severe impacts on the near-Earth environment and the human technology that inhabits it. This dissertation presents a novel inversion method for inferring the properties of the vector magnetic field from telescopic measurements of the polarization states (Stokes vector) of the light received from the sun, in an effort to develop a method that is fast, accurate, and reliable. One of the long-term goals of this work is to develop such a method that is capable of rapidly-producing characterizations of the magnetic field from time-sequential data, such that near real-time projections of the complexity and flare- productivity of solar active regions can be made. This will be a boon to the field of solar flare forecasting, and should help mitigate the harmful effects of space weather on mankind's space-based endeavors. To this end, I have developed an inversion method based on genetic algorithms (GA) that have the potential for achieving such high-speed analysis.
Dallman, Tim; Pearl, Frances M. G; Orengo, Christine A
2007-01-01
We present CATHEDRAL, an iterative protocol for determining the location of previously observed protein folds in novel multidomain protein structures. CATHEDRAL builds on the features of a fast secondary-structure–based method (using graph theory) to locate known folds within a multidomain context and a residue-based, double-dynamic programming algorithm, which is used to align members of the target fold groups against the query protein structure to identify the closest relative and assign domain boundaries. To increase the fidelity of the assignments, a support vector machine is used to provide an optimal scoring scheme. Once a domain is verified, it is excised, and the search protocol is repeated in an iterative fashion until all recognisable domains have been identified. We have performed an initial benchmark of CATHEDRAL against other publicly available structure comparison methods using a consensus dataset of domains derived from the CATH and SCOP domain classifications. CATHEDRAL shows superior performance in fold recognition and alignment accuracy when compared with many equivalent methods. If a novel multidomain structure contains a known fold, CATHEDRAL will locate it in 90% of cases, with <1% false positives. For nearly 80% of assigned domains in a manually validated test set, the boundaries were correctly delineated within a tolerance of ten residues. For the remaining cases, previously classified domains were very remotely related to the query chain so that embellishments to the core of the fold caused significant differences in domain sizes and manual refinement of the boundaries was necessary. To put this performance in context, a well-established sequence method based on hidden Markov models was only able to detect 65% of domains, with 33% of the subsequent boundaries assigned within ten residues. Since, on average, 50% of newly determined protein structures contain more than one domain unit, and typically 90% or more of these domains are already
A fast color image enhancement algorithm based on Max Intensity Channel
Sun, Wei; Han, Long; Guo, Baolong; Jia, Wenyan; Sun, Mingui
2014-01-01
In this paper, we extend image enhancement techniques based on the retinex theory imitating human visual perception of scenes containing high illumination variations. This extension achieves simultaneous dynamic range modification, color consistency, and lightness rendition without multi-scale Gaussian filtering which has a certain halo effect. The reflection component is analyzed based on the illumination and reflection imaging model. A new prior named Max Intensity Channel (MIC) is implemented assuming that the reflections of some points in the scene are very high in at least one color channel. Using this prior, the illumination of the scene is obtained directly by performing a gray-scale closing operation and a fast cross-bilateral filtering on the MIC of the input color image. Consequently, the reflection component of each RGB color channel can be determined from the illumination and reflection imaging model. The proposed algorithm estimates the illumination component which is relatively smooth and maintains the edge details in different regions. A satisfactory color rendition is achieved for a class of images that do not satisfy the gray-world assumption implicit to the theoretical foundation of the retinex. Experiments are carried out to compare the new method with several spatial and transform domain methods. Our results indicate that the new method is superior in enhancement applications, improves computation speed, and performs well for images with high illumination variations than other methods. Further comparisons of images from National Aeronautics and Space Administration and a wearable camera eButton have shown a high performance of the new method with better color restoration and preservation of image details. PMID:25110395
A fast and efficient algorithm for Slater determinant updates in quantum Monte Carlo simulations
Nukala, Phani K. V. V.; Kent, P. R. C.
2009-05-28
We present an efficient low-rank updating algorithm for updating the trial wave functions used in quantum Monte Carlo (QMC) simulations. The algorithm is based on low-rank updating of the Slater determinants. In particular, the computational complexity of the algorithm is O(kN) during the kth step compared to traditional algorithms that require O(N{sup 2}) computations, where N is the system size. For single determinant trial wave functions the new algorithm is faster than the traditional O(N{sup 2}) Sherman-Morrison algorithm for up to O(N) updates. For multideterminant configuration-interaction-type trial wave functions of M+1 determinants, the new algorithm is significantly more efficient, saving both O(MN{sup 2}) work and O(MN{sup 2}) storage. The algorithm enables more accurate and significantly more efficient QMC calculations using configuration-interaction-type wave functions.
A fast and efficient algorithm for Slater determinant updates in quantum Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Nukala, Phani K. V. V.; Kent, P. R. C.
2009-05-01
We present an efficient low-rank updating algorithm for updating the trial wave functions used in quantum Monte Carlo (QMC) simulations. The algorithm is based on low-rank updating of the Slater determinants. In particular, the computational complexity of the algorithm is O(kN) during the kth step compared to traditional algorithms that require O(N2) computations, where N is the system size. For single determinant trial wave functions the new algorithm is faster than the traditional O(N2) Sherman-Morrison algorithm for up to O(N ) updates. For multideterminant configuration-interaction-type trial wave functions of M +1 determinants, the new algorithm is significantly more efficient, saving both O(MN2) work and O(MN2) storage. The algorithm enables more accurate and significantly more efficient QMC calculations using configuration-interaction-type wave functions.
A fast and efficient algorithm for Slater determinant updates in quantum Monte Carlo simulations.
Nukala, Phani K V V; Kent, P R C
2009-05-28
We present an efficient low-rank updating algorithm for updating the trial wave functions used in quantum Monte Carlo (QMC) simulations. The algorithm is based on low-rank updating of the Slater determinants. In particular, the computational complexity of the algorithm is O(kN) during the kth step compared to traditional algorithms that require O(N(2)) computations, where N is the system size. For single determinant trial wave functions the new algorithm is faster than the traditional O(N(2)) Sherman-Morrison algorithm for up to O(N) updates. For multideterminant configuration-interaction-type trial wave functions of M+1 determinants, the new algorithm is significantly more efficient, saving both O(MN(2)) work and O(MN(2)) storage. The algorithm enables more accurate and significantly more efficient QMC calculations using configuration-interaction-type wave functions. PMID:19485435
A Fast and efficient Algorithm for Slater Determinant Updates in Quantum Monte Carlo Simulations
Nukala, Phani K; Kent, Paul R
2009-01-01
We present an efficient low-rank updating algorithm for updating the trial wavefunctions used in Quantum Monte Carlo (QMC) simulations. The algorithm is based on low-rank updating of the Slater determinants. In particular, the computational complexity of the algorithm is $\\mathcal{O}(k N)$ during the $k$-th step compared with traditional algorithms that require $\\mathcal{O}(N^2)$ computations, where $N$ is the system size. For single determinant trial wavefunctions the new algorithm is faster than the traditional $\\mathcal{O}(N^2)$ Sherman-Morrison algorithm for up to $\\mathcal{O}(N)$ updates. For multideterminant configuration-interaction type trial wavefunctions of $M+1$ determinants, the new algorithm is significantly more efficient, saving both $\\mathcal{O}(MN^2)$ work and $\\mathcal{O}(MN^2)$ storage. The algorithm enables more accurate and significantly more efficient QMC calculations using configuration interaction type wavefunctions.
2014-01-01
Background High-throughput sequencing has opened up exciting possibilities in population and conservation genetics by enabling the assessment of genetic variation at genome-wide scales. One approach to reduce genome complexity, i.e. investigating only parts of the genome, is reduced-representation library (RRL) sequencing. Like similar approaches, RRL sequencing reduces ascertainment bias due to simultaneous discovery and genotyping of single-nucleotide polymorphisms (SNPs) and does not require reference genomes. Yet, generating such datasets remains challenging due to laboratory and bioinformatical issues. In the laboratory, current protocols require improvements with regards to sequencing homologous fragments to reduce the number of missing genotypes. From the bioinformatical perspective, the reliance of most studies on a single SNP caller disregards the possibility that different algorithms may produce disparate SNP datasets. Results We present an improved RRL (iRRL) protocol that maximizes the generation of homologous DNA sequences, thus achieving improved genotyping-by-sequencing efficiency. Our modifications facilitate generation of single-sample libraries, enabling individual genotype assignments instead of pooled-sample analysis. We sequenced ~1% of the orangutan genome with 41-fold median coverage in 31 wild-born individuals from two populations. SNPs and genotypes were called using three different algorithms. We obtained substantially different SNP datasets depending on the SNP caller. Genotype validations revealed that the Unified Genotyper of the Genome Analysis Toolkit and SAMtools performed significantly better than a caller from CLC Genomics Workbench (CLC). Of all conflicting genotype calls, CLC was only correct in 17% of the cases. Furthermore, conflicting genotypes between two algorithms showed a systematic bias in that one caller almost exclusively assigned heterozygotes, while the other one almost exclusively assigned homozygotes. Conclusions
A novel algorithm for calling mRNA m6A peaks by modeling biological variances in MeRIP-seq data
Cui, Xiaodong; Meng, Jia; Zhang, Shaowu; Chen, Yidong; Huang, Yufei
2016-01-01
Motivation: N6-methyl-adenosine (m6A) is the most prevalent mRNA methylation but precise prediction of its mRNA location is important for understanding its function. A recent sequencing technology, known as Methylated RNA Immunoprecipitation Sequencing technology (MeRIP-seq), has been developed for transcriptome-wide profiling of m6A. We previously developed a peak calling algorithm called exomePeak. However, exomePeak over-simplifies data characteristics and ignores the reads’ variances among replicates or reads dependency across a site region. To further improve the performance, new model is needed to address these important issues of MeRIP-seq data. Results: We propose a novel, graphical model-based peak calling method, MeTPeak, for transcriptome-wide detection of m6A sites from MeRIP-seq data. MeTPeak explicitly models read count of an m6A site and introduces a hierarchical layer of Beta variables to capture the variances and a Hidden Markov model to characterize the reads dependency across a site. In addition, we developed a constrained Newton’s method and designed a log-barrier function to compute analytically intractable, positively constrained Beta parameters. We applied our algorithm to simulated and real biological datasets and demonstrated significant improvement in detection performance and robustness over exomePeak. Prediction results on publicly available MeRIP-seq datasets are also validated and shown to be able to recapitulate the known patterns of m6A, further validating the improved performance of MeTPeak. Availability and implementation: The package ‘MeTPeak’ is implemented in R and C ++, and additional details are available at https://github.com/compgenomics/MeTPeak Contact: yufei.huang@utsa.edu or xdchoi@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307641
NASA Astrophysics Data System (ADS)
Zhang, Lisha
We present fast and robust numerical algorithms for 3-D scattering from perfectly electrical conducting (PEC) and dielectric random rough surfaces in microwave remote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin's procedure in the method of moments (MoM). Due to the high-precision one-point quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reducing the matrix fill effort from O(N2) to O( N). The orthogonality and Riesz basis of the Coiflets generate well conditioned impedance matrix, with rapid convergence for the conjugate gradient solver. The resulting impedance matrix is further sparsified by the matrix-formed standard fast wavelet transform (SFWT). By properly selecting multiresolution levels of the total transformation matrix, the solution precision can be enhanced while matrix sparsity and memory consumption have not been noticeably sacrificed. The unified fast scattering algorithm for dielectric random rough surfaces can asymptotically reduce to the PEC case when the loss tangent grows extremely large. Numerical results demonstrate that the reduced PEC model does not suffer from ill-posed problems. Compared with previous publications and laboratory measurements, good agreement is observed.
Fast parallel algorithms for graph-theoretic problems: matching, coloring, and partitioning
Karloff, H.J.
1985-01-01
New parallel algorithms are presented to solve graph-theoretic problems of three kinds: matching, coloring, and partitioning. Throughout, superfast algorithms, are sought, those running on a parallel random access machine in time polynomial in the log of the input size (polylog time) and using a polynomial number of processors. Problems solvable with such algorithms are said to be in NC. Those solvable by randomized algorithms obeying the same time and processor bounds are said to be in RNC or LVNC; those in RNC (or Monte Carlo RNC) are solvable by algorithms which, on instances of size n, return a correct answer with probability at least 1-2/sup -n/, and those in LVNC (or Las Vegas RNC), by algorithms that always return either a correct answer or failure, failure being returned at most half the time. Often the algorithms themselves will be said to be in NC, TNC, or LVNC.