Execution time supports for adaptive scientific algorithms on distributed memory machines
NASA Technical Reports Server (NTRS)
Berryman, Harry; Saltz, Joel; Scroggs, Jeffrey
1990-01-01
Optimizations are considered that are required for efficient execution of code segments that consists of loops over distributed data structures. The PARTI (Parallel Automated Runtime Toolkit at ICASE) execution time primitives are designed to carry out these optimizations and can be used to implement a wide range of scientific algorithms on distributed memory machines. These primitives allow the user to control array mappings in a way that gives an appearance of shared memory. Computations can be based on a global index set. Primitives are used to carry out gather and scatter operations on distributed arrays. Communications patterns are derived at runtime, and the appropriate send and receive messages are automatically generated.
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Youngblood, John N.; Saha, Aindam
1987-01-01
Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processing elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.
Carroll, C.C.; Youngblood, J.N.; Saha, A.
1987-12-01
Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processing elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.
The relation of scalability and execution time
NASA Technical Reports Server (NTRS)
Sun, Xian-He
1995-01-01
Scalability has been used extensively as a de facto performance criterion for evaluating parallel algorithms and architectures. However, for many, scalability has theoretical interests only since it does not reveal execution time. In this paper, the relation between scalability and execution time is carefully studied. Results show that the isospeed scalability well characterizes the variation of execution time: smaller scalability leads to larger execution time, the same scalability leads to the same execution time, etc. Three algorithms from scientific computing are implemented on an Intel Paragon and an IBM SP2 parallel computer. Experimental and theoretical results show that scalability is an important, distinct metric for parallel and distributed systems, and may be as important as execution time in a scalable parallel and distributed environment.
Resource Selection Using Execution and Queue Wait Time Predictions
NASA Technical Reports Server (NTRS)
Smith, Warren; Wong, Parkson; Biegel, Bryan (Technical Monitor)
2001-01-01
We developed techniques to predict application execution times for instance-based learning with an average error of 33% of average run time. We developed techniques to predict queue wait times that included a simulation of scheduling algorithms and execution time predictions. We implemented these techniques for the NAS Origin cluster.
Resource Selection Using Execution and Queue Wait Time Predictions
NASA Technical Reports Server (NTRS)
Warren, Smith; Wong, Parkson; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Computational grids provide users with many possible places to execute their applications. We wish to help users select where to run their applications by providing predictions of the execution times of applications on space shared parallel computers and predictions of when scheduling systems for such parallel computers will start applications. Our predictions are based on instance based learning techniques and simulations of scheduling algorithms. We find that our execution time prediction techniques have an average error of 37 percent of the execution times for trace data recorded from SGI Origins at NASA Ames Research Center and that this error is 67 percent lower than the error of user estimates. We also find that the error when predicting how long applications will wait in scheduling queues is 95 percent of mean queue wait times when using our execution time predictions and this is 57 percent lower than if we use user execution time estimates.
Attitude-Control Algorithm for Minimizing Maneuver Execution Errors
NASA Technical Reports Server (NTRS)
Acikmese, Behcet
2008-01-01
A G-RAC attitude-control algorithm is used to minimize maneuver execution error in a spacecraft with a flexible appendage when said spacecraft must induce translational momentum by firing (in open loop) large thrusters along a desired direction for a given period of time. The controller is dynamic with two integrators and requires measurement of only the angular position and velocity of the spacecraft. The global stability of the closed-loop system is guaranteed without having access to the states describing the dynamics of the appendage and with severe saturation in the available torque. Spacecraft apply open-loop thruster firings to induce a desired translational momentum with an extended appendage. This control algorithm will assist this maneuver by stabilizing the attitude dynamics around a desired orientation, and consequently minimize the maneuver execution errors.
Execution time support for scientific programs on distributed memory machines
NASA Technical Reports Server (NTRS)
Berryman, Harry; Saltz, Joel; Scroggs, Jeffrey
1990-01-01
Optimizations are considered that are required for efficient execution of code segments that consists of loops over distributed data structures. The PARTI (Parallel Automated Runtime Toolkit at ICASE) execution time primitives are designed to carry out these optimizations and can be used to implement a wide range of scientific algorithms on distributed memory machines. These primitives allow the user to control array mappings in a way that gives an appearance of shared memory. Computations can be based on a global index set. Primitives are used to carry out gather and scatter operations on distributed arrays. Communications patterns are derived at runtime, and the appropriate send and receive messages are automatically generated.
NASA Astrophysics Data System (ADS)
Eberle, J.; Hese, S.; Schmullius, C.
2012-04-01
The Siberian Earth System Science Cluster (SIB-ESS-C) is a spatial data infrastructure for earth observation products for Siberia implemented at the University of Jena (Germany), Department for Earth Observation. Using standards for data discovery, data access and data processing, earth observation data is described with standards from the International Organizsation for Standardization (ISO). ISO-19115 and ISO-19115 part 2 was used to to describe this data and products in a very detail. Working with raster data every band was described precisely to have a possibility to link this kind of data as input data of algorithms, implemented as web processing services. With an integrated catalogue system data can be searched, found, visualised and downloaded. But the integration of raw earth observation data and derived products leads also to a processing of this data, for example if a user wants another projection, another format or further analysis. Having a pool of algorithms it should be possible to find an algorithm which can be used with given or available input data. For the description of each in- and output of an algorithm, metadata similar to the description of possible input data was used. Unfortunately in- and outputs of OGC-compliant Web Processing Services doesn't have much metadata, so own metadata keys were integrated to fit with the before described ISO-compliant metadata. The main objective of this work was to implement a system which knows what kind of data is available and what data is needed to run algorithms. The final system knows which algorithms can be executed with the available data and which data is needed to execute specific algorithms. Whenever new data is ingested into the system, it executes automatically applicable algorithms to have final earth observation products or further analysis on the fly and in real-time.
Motor and Executive Control in Repetitive Timing of Brief Intervals
ERIC Educational Resources Information Center
Holm, Linus; Ullen, Fredrik; Madison, Guy
2013-01-01
We investigated the causal role of executive control functions in the production of brief time intervals by means of a concurrent task paradigm. To isolate the influence of executive functions on timing from motor coordination effects, we dissociated executive load from the number of effectors used in the dual task situation. In 3 experiments,…
MRPack: Multi-Algorithm Execution Using Compute-Intensive Approach in MapReduce.
Idris, Muhammad; Hussain, Shujaat; Siddiqi, Muhammad Hameed; Hassan, Waseem; Syed Muhammad Bilal, Hafiz; Lee, Sungyoung
2015-01-01
Large quantities of data have been generated from multiple sources at exponential rates in the last few years. These data are generated at high velocity as real time and streaming data in variety of formats. These characteristics give rise to challenges in its modeling, computation, and processing. Hadoop MapReduce (MR) is a well known data-intensive distributed processing framework using the distributed file system (DFS) for Big Data. Current implementations of MR only support execution of a single algorithm in the entire Hadoop cluster. In this paper, we propose MapReducePack (MRPack), a variation of MR that supports execution of a set of related algorithms in a single MR job. We exploit the computational capability of a cluster by increasing the compute-intensiveness of MapReduce while maintaining its data-intensive approach. It uses the available computing resources by dynamically managing the task assignment and intermediate data. Intermediate data from multiple algorithms are managed using multi-key and skew mitigation strategies. The performance study of the proposed system shows that it is time, I/O, and memory efficient compared to the default MapReduce. The proposed approach reduces the execution time by 200% with an approximate 50% decrease in I/O cost. Complexity and qualitative results analysis shows significant performance improvement. PMID:26305223
MRPack: Multi-Algorithm Execution Using Compute-Intensive Approach in MapReduce
2015-01-01
Large quantities of data have been generated from multiple sources at exponential rates in the last few years. These data are generated at high velocity as real time and streaming data in variety of formats. These characteristics give rise to challenges in its modeling, computation, and processing. Hadoop MapReduce (MR) is a well known data-intensive distributed processing framework using the distributed file system (DFS) for Big Data. Current implementations of MR only support execution of a single algorithm in the entire Hadoop cluster. In this paper, we propose MapReducePack (MRPack), a variation of MR that supports execution of a set of related algorithms in a single MR job. We exploit the computational capability of a cluster by increasing the compute-intensiveness of MapReduce while maintaining its data-intensive approach. It uses the available computing resources by dynamically managing the task assignment and intermediate data. Intermediate data from multiple algorithms are managed using multi-key and skew mitigation strategies. The performance study of the proposed system shows that it is time, I/O, and memory efficient compared to the default MapReduce. The proposed approach reduces the execution time by 200% with an approximate 50% decrease in I/O cost. Complexity and qualitative results analysis shows significant performance improvement. PMID:26305223
Sorting on STAR. [CDC computer algorithm timing comparison
NASA Technical Reports Server (NTRS)
Stone, H. S.
1978-01-01
Timing comparisons are given for three sorting algorithms written for the CDC STAR computer. One algorithm is Hoare's (1962) Quicksort, which is the fastest or nearly the fastest sorting algorithm for most computers. A second algorithm is a vector version of Quicksort that takes advantage of the STAR's vector operations. The third algorithm is an adaptation of Batcher's (1968) sorting algorithm, which makes especially good use of vector operations but has a complexity of N(log N)-squared as compared with a complexity of N log N for the Quicksort algorithms. In spite of its worse complexity, Batcher's sorting algorithm is competitive with the serial version of Quicksort for vectors up to the largest that can be treated by STAR. Vector Quicksort outperforms the other two algorithms and is generally preferred. These results indicate that unusual instruction sets can introduce biases in program execution time that counter results predicted by worst-case asymptotic complexity analysis.
Time Monitoring and Executive Functioning in Children and Adults
ERIC Educational Resources Information Center
Mantyla, Timo; Carelli, Maria Grazia; Forman, Helen
2007-01-01
This study examined time-based prospective memory performance in relation to individual and developmental differences in executive functioning. School-age children and young adults completed six experimental tasks that tapped three basic components of executive functioning: inhibition, updating, and mental shifting. Monitoring performance was…
Programming real-time executives in higher order language
NASA Technical Reports Server (NTRS)
Foudriat, E. C.
1982-01-01
Methods by which real-time executive programs can be implemented in a higher order language are discussed, using HAL/S and Path Pascal languages as program examples. Techniques are presented by which noncyclic tasks can readily be incorporated into the executive system. Situations are shown where the executive system can fail to meet its task scheduling and yet be able to recover either by rephasing the clock or stacking the information for later processing. The concept of deadline processing is shown to enable more effective mixing of time and information synchronized systems.
An algorithm to find critical execution paths of software based on complex network
NASA Astrophysics Data System (ADS)
Huang, Guoyan; Zhang, Bing; Ren, Rong; Ren, Jiadong
2015-01-01
The critical execution paths play an important role in software system in terms of reducing the numbers of test date, detecting the vulnerabilities of software structure and analyzing software reliability. However, there are no efficient methods to discover them so far. Thus in this paper, a complex network-based software algorithm is put forward to find critical execution paths (FCEP) in software execution network. First, by analyzing the number of sources and sinks in FCEP, software execution network is divided into AOE subgraphs, and meanwhile, a Software Execution Network Serialization (SENS) approach is designed to generate execution path set in each AOE subgraph, which not only reduces ring structure's influence on path generation, but also guarantees the nodes' integrity in network. Second, according to a novel path similarity metric, similarity matrix is created to calculate the similarity among sets of path sequences. Third, an efficient method is taken to cluster paths through similarity matrices, and the maximum-length path in each cluster is extracted as the critical execution path. At last, a set of critical execution paths is derived. The experimental results show that the FCEP algorithm is efficient in mining critical execution path under software complex network.
Timing, Sequencing, and Executive Control in Repetitive Movement Production.
ERIC Educational Resources Information Center
Krampe, Ralf Th.; Mayr, Ulrich; Kliegl, Reinhold
2005-01-01
The authors demonstrate that the timing and sequencing of target durations require low-level timing and executive control. Sixteen young (M-sub(age) = 19 years) and 16 older (M-sub(age) = 70 years) adults participated in 2 experiments. In Experiment 1, individual mean-variance functions for low-level timing (isochronous tapping) and the sequencing…
SAMPLE: software for VAX FORTRAN execution timing
Lowe, L.H.
1983-01-01
SAMPLE is a set of subroutines in use at the Los Alamos National Laboratory for collecting CPU timings of various FORTRAN program sections - usually individual subroutines. These measurements have been useful in making programs run faster. The presentation includes a description of the software and examples of its use. The software is available on the directory (SAMPLE) of the VAX SIG tape.
Real Time Monitor of Grid job executions
NASA Astrophysics Data System (ADS)
Colling, D. J.; Martyniak, J.; McGough, A. S.; Křenek, A.; Sitera, J.; Mulač, M.; Dvořák, F.
2010-04-01
In this paper we describe the architecture and operation of the Real Time Monitor (RTM), developed by the Grid team in the HEP group at Imperial College London. This is arguably the most popular dissemination tool within the EGEE [1] Grid. Having been used, on many occasions including GridFest and LHC inauguration events held at CERN in October 2008. The RTM gathers information from EGEE sites hosting Logging and Bookkeeping (LB) services. Information is cached locally at a dedicated server at Imperial College London and made available for clients to use in near real time. The system consists of three main components: the RTM server, enquirer and an apache Web Server which is queried by clients. The RTM server queries the LB servers at fixed time intervals, collecting job related information and storing this in a local database. Job related data includes not only job state (i.e. Scheduled, Waiting, Running or Done) along with timing information but also other attributes such as Virtual Organization and Computing Element (CE) queue - if known. The job data stored in the RTM database is read by the enquirer every minute and converted to an XML format which is stored on a Web Server. This decouples the RTM server database from the client removing the bottleneck problem caused by many clients simultaneously accessing the database. This information can be visualized through either a 2D or 3D Java based client with live job data either being overlaid on to a 2 dimensional map of the world or rendered in 3 dimensions over a globe map using OpenGL.
Predicting Operator Execution Times Using CogTool
NASA Technical Reports Server (NTRS)
Santiago-Espada, Yamira; Latorella, Kara A.
2013-01-01
Researchers and developers of NextGen systems can use predictive human performance modeling tools as an initial approach to obtain skilled user performance times analytically, before system testing with users. This paper describes the CogTool models for a two pilot crew executing two different types of a datalink clearance acceptance tasks, and on two different simulation platforms. The CogTool time estimates for accepting and executing Required Time of Arrival and Interval Management clearances were compared to empirical data observed in video tapes and registered in simulation files. Results indicate no statistically significant difference between empirical data and the CogTool predictions. A population comparison test found no significant differences between the CogTool estimates and the empirical execution times for any of the four test conditions. We discuss modeling caveats and considerations for applying CogTool to crew performance modeling in advanced cockpit environments.
TVFMCATS. Time Variant Floating Mean Counting Algorithm
Huffman, R.K.
1999-05-01
This software was written to test a time variant floating mean counting algorithm. The algorithm was developed by Westinghouse Savannah River Company and a provisional patent has been filed on the algorithm. The test software was developed to work with the Val Tech model IVB prototype version II count rate meter hardware. The test software was used to verify the algorithm developed by WSRC could be correctly implemented with the vendor`s hardware.
Time Variant Floating Mean Counting Algorithm
Energy Science and Technology Software Center (ESTSC)
1999-06-03
This software was written to test a time variant floating mean counting algorithm. The algorithm was developed by Westinghouse Savannah River Company and a provisional patent has been filed on the algorithm. The test software was developed to work with the Val Tech model IVB prototype version II count rate meter hardware. The test software was used to verify the algorithm developed by WSRC could be correctly implemented with the vendor''s hardware.
Kalman plus weights: a time scale algorithm
NASA Technical Reports Server (NTRS)
Greenhall, C. A.
2001-01-01
KPW is a time scale algorithm that combines Kalman filtering with the basic time scale equation (BTSE). A single Kalman filter that estimates all clocks simultaneously is used to generate the BTSE frequency estimates, while the BTSE weights are inversely proportional to the white FM variances of the clocks. Results from simulated clock ensembles are compared to previous simulation results from other algorithms.
NASA Astrophysics Data System (ADS)
Tóth, Gábor
2006-05-01
We describe a general algorithm suitable for executing and coupling components of a software framework on a parallel computer. The requirements of a flexible, efficient and robust algorithm are defined precisely, and the motivation for the requirements is demonstrated on several examples. In short, the requirements are the following: (i) the algorithm should allow arbitrary distribution of processors among the components, (ii) it should allow arbitrary coupling schedule between the components, (iii) it should not use any inter-processor communication other than already required by the components and their couplings, and (iv) it should never get into a dead-lock. We show that the proposed algorithm based on the Temporal and Predefined Ordering of Tasks (TPOT) satisfies all these requirements. The TPOT algorithm has been implemented in the Space Weather Modeling Framework. The flexibility and efficiency of the algorithm is demonstrated with several examples.
Discrete Event Execution with One-Sided and Two-Sided GVT Algorithms on 216,000 Processor Cores
Perumalla, Kalyan S; Park, Alfred J; Tipparaju, Vinod
2014-01-01
Global virtual time (GVT) computation is a key determinant of the efficiency and runtime dynamics of parallel discrete event simulations (PDES), especially on large-scale parallel platforms. Here, three execution modes of a generalized GVT computation algorithm are studied on high-performance parallel computing systems: (1) a synchronous GVT algorithm that affords ease of implementation, (2) an asynchronous GVT algorithm that is more complex to implement but can relieve blocking latencies, and (3) a variant of the asynchronous GVT algorithm to exploit one-sided communication in extant supercomputing platforms. Performance results are presented of implementations of these algorithms on up to 216,000 cores of a Cray XT5 system, exercised on a range of parameters: optimistic and conservative synchronization, fine- to medium-grained event computation, synthetic and non-synthetic applications, and different lookahead values. Performance of up to 54 billion events executed per second is registered. Detailed PDES-specific runtime metrics are presented to further the understanding of tightly-coupled discrete event dynamics on massively parallel platforms.
Algorithm for Compressing Time-Series Data
NASA Technical Reports Server (NTRS)
Hawkins, S. Edward, III; Darlington, Edward Hugo
2012-01-01
An algorithm based on Chebyshev polynomials effects lossy compression of time-series data or other one-dimensional data streams (e.g., spectral data) that are arranged in blocks for sequential transmission. The algorithm was developed for use in transmitting data from spacecraft scientific instruments to Earth stations. In spite of its lossy nature, the algorithm preserves the information needed for scientific analysis. The algorithm is computationally simple, yet compresses data streams by factors much greater than two. The algorithm is not restricted to spacecraft or scientific uses: it is applicable to time-series data in general. The algorithm can also be applied to general multidimensional data that have been converted to time-series data, a typical example being image data acquired by raster scanning. However, unlike most prior image-data-compression algorithms, this algorithm neither depends on nor exploits the two-dimensional spatial correlations that are generally present in images. In order to understand the essence of this compression algorithm, it is necessary to understand that the net effect of this algorithm and the associated decompression algorithm is to approximate the original stream of data as a sequence of finite series of Chebyshev polynomials. For the purpose of this algorithm, a block of data or interval of time for which a Chebyshev polynomial series is fitted to the original data is denoted a fitting interval. Chebyshev approximation has two properties that make it particularly effective for compressing serial data streams with minimal loss of scientific information: The errors associated with a Chebyshev approximation are nearly uniformly distributed over the fitting interval (this is known in the art as the "equal error property"); and the maximum deviations of the fitted Chebyshev polynomial from the original data have the smallest possible values (this is known in the art as the "min-max property").
Univariate time series forecasting algorithm validation
NASA Astrophysics Data System (ADS)
Ismail, Suzilah; Zakaria, Rohaiza; Muda, Tuan Zalizam Tuan
2014-12-01
Forecasting is a complex process which requires expert tacit knowledge in producing accurate forecast values. This complexity contributes to the gaps between end users and expert. Automating this process by using algorithm can act as a bridge between them. Algorithm is a well-defined rule for solving a problem. In this study a univariate time series forecasting algorithm was developed in JAVA and validated using SPSS and Excel. Two set of simulated data (yearly and non-yearly); several univariate forecasting techniques (i.e. Moving Average, Decomposition, Exponential Smoothing, Time Series Regressions and ARIMA) and recent forecasting process (such as data partition, several error measures, recursive evaluation and etc.) were employed. Successfully, the results of the algorithm tally with the results of SPSS and Excel. This algorithm will not just benefit forecaster but also end users that lacking in depth knowledge of forecasting process.
Real-Time Projection to Verify Plan Success During Execution
NASA Technical Reports Server (NTRS)
Wagner, David A.; Dvorak, Daniel L.; Rasmussen, Robert D.; Knight, Russell L.; Morris, John R.; Bennett, Matthew B.; Ingham, Michel D.
2012-01-01
The Mission Data System provides a framework for modeling complex systems in terms of system behaviors and goals that express intent. Complex activity plans can be represented as goal networks that express the coordination of goals on different state variables of the system. Real-time projection extends the ability of this system to verify plan achievability (all goals can be satisfied over the entire plan) into the execution domain so that the system is able to continuously re-verify a plan as it is executed, and as the states of the system change in response to goals and the environment. Previous versions were able to detect and respond to goal violations when they actually occur during execution. This new capability enables the prediction of future goal failures; specifically, goals that were previously found to be achievable but are no longer achievable due to unanticipated faults or environmental conditions. Early detection of such situations enables operators or an autonomous fault response capability to deal with the problem at a point that maximizes the available options. For example, this system has been applied to the problem of managing battery energy on a lunar rover as it is used to explore the Moon. Astronauts drive the rover to waypoints and conduct science observations according to a plan that is scheduled and verified to be achievable with the energy resources available. As the astronauts execute this plan, the system uses this new capability to continuously re-verify the plan as energy is consumed to ensure that the battery will never be depleted below safe levels across the entire plan.
Plan generation and hard real-time execution with application to safe, autonomous flight
NASA Astrophysics Data System (ADS)
Atkins, Ella Marie
We address the problem of constructing and executing control plans for safe, fully-autonomous operation within a complex real-time domain where the combination of an incomplete knowledge base, limited computational resources, and hard real-time deadlines precludes the success of traditional planning and scheduling algorithms. To meet hard deadlines with limited computational resources, we employ a stochastic world model to prioritize the state-space during planning, then utilize feedback from the scheduler to set a threshold below which the planner removes unlikely states from consideration in order to generate a schedulable plan. Our probabilistic planning algorithm minimizes domain knowledge size and explicitly provides for the construction of real-time control plans. Although approximate instead of optimal, the representational efficiency gained by our approach makes it a viable alternative to the well-established Markov Decision Process for complex real-time problem domains. When resource limits require plan modification, our heuristic algorithms for communicating task resource utilization information from real-time scheduler to planner provide a novel method for directing the expensive planner backtracking process specifically toward a schedulable plan. The tradeoff in ignoring reachable but unlikely states, as well as allowing incomplete domain knowledge, is that we must now provide explicitly for the detection of and reaction to these "unexpected" states our system may encounter while executing a plan. By detecting such unhandled states and caching contingency plans for events which, though unlikely, could lead to catastrophic failure, we can still guarantee system safety in the probabilistic sense. Ultimately, however, we are still constrained by plan-execution resource limits regardless of the tradeoff algorithms employed. We apply the resultant architecture (CIRCA-II) to simulated autonomous aircraft flight and demonstrate its utility for intelligently
Execution environment for intelligent real-time control systems
NASA Technical Reports Server (NTRS)
Sztipanovits, Janos
1987-01-01
Modern telerobot control technology requires the integration of symbolic and non-symbolic programming techniques, different models of parallel computations, and various programming paradigms. The Multigraph Architecture, which has been developed for the implementation of intelligent real-time control systems is described. The layered architecture includes specific computational models, integrated execution environment and various high-level tools. A special feature of the architecture is the tight coupling between the symbolic and non-symbolic computations. It supports not only a data interface, but also the integration of the control structures in a parallel computing environment.
Timing issues in the distributed execution of Ada programs
NASA Technical Reports Server (NTRS)
Volz, Richard A.; Mudge, Trevor N.
1987-01-01
This paper examines, in the context of distributed execution, the meaning of Ada constructs involving time. In the process, unresolved questions of interpretation and problems with the implementation of a consistent notion of time across a network are uncovered. It is observed that there are two Ada mechanisms that can involve a distributed sense of time: the conditional entry call, and the timed entry call. It is shown that a recent interpretation by the Language Maintenance Committee resolves the questions for the conditional entry calls but results in an anomaly for timed entry calls. A detailed discussion of alternative implementations for the timed entry call is made, and it is aruged that: (1) timed entry calls imply a common sense of time between the machines holding the calling and called tasks; and (2) the measurement of time for the expiration of the delay and the decision of whether or not to perform the rendezvous should be made on the machine holding the called task. The need to distinguish the unreadiness of the called task from timeouts caused by network failure is pointed out. Finally, techniques for realizing a single sense of time across the distributed system (at least to within an acceptable degree of uncertainty) are also discussed.
Accuracy metrics for judging time scale algorithms
NASA Technical Reports Server (NTRS)
Douglas, R. J.; Boulanger, J.-S.; Jacques, C.
1994-01-01
Time scales have been constructed in different ways to meet the many demands placed upon them for time accuracy, frequency accuracy, long-term stability, and robustness. Usually, no single time scale is optimum for all purposes. In the context of the impending availability of high-accuracy intermittently-operated cesium fountains, we reconsider the question of evaluating the accuracy of time scales which use an algorithm to span interruptions of the primary standard. We consider a broad class of calibration algorithms that can be evaluated and compared quantitatively for their accuracy in the presence of frequency drift and a full noise model (a mixture of white PM, flicker PM, white FM, flicker FM, and random walk FM noise). We present the analytic techniques for computing the standard uncertainty for the full noise model and this class of calibration algorithms. The simplest algorithm is evaluated to find the average-frequency uncertainty arising from the noise of the cesium fountain's local oscillator and from the noise of a hydrogen maser transfer-standard. This algorithm and known noise sources are shown to permit interlaboratory frequency transfer with a standard uncertainty of less than 10(exp -15) for periods of 30-100 days.
A class of kernel based real-time elastography algorithms.
Kibria, Md Golam; Hasan, Md Kamrul
2015-08-01
In this paper, a novel real-time kernel-based and gradient-based Phase Root Seeking (PRS) algorithm for ultrasound elastography is proposed. The signal-to-noise ratio of the strain image resulting from this method is improved by minimizing the cross-correlation discrepancy between the pre- and post-compression radio frequency signals with an adaptive temporal stretching method and employing built-in smoothing through an exponentially weighted neighborhood kernel in the displacement calculation. Unlike conventional PRS algorithms, displacement due to tissue compression is estimated from the root of the weighted average of the zero-lag cross-correlation phases of the pair of corresponding analytic pre- and post-compression windows in the neighborhood kernel. In addition to the proposed one, the other time- and frequency-domain elastography algorithms (Ara et al., 2013; Hussain et al., 2012; Hasan et al., 2012) proposed by our group are also implemented in real-time using Java where the computations are serially executed or parallely executed in multiple processors with efficient memory management. Simulation results using finite element modeling simulation phantom show that the proposed method significantly improves the strain image quality in terms of elastographic signal-to-noise ratio (SNRe), elastographic contrast-to-noise ratio (CNRe) and mean structural similarity (MSSIM) for strains as high as 4% as compared to other reported techniques in the literature. Strain images obtained for the experimental phantom as well as in vivo breast data of malignant or benign masses also show the efficacy of our proposed method over the other reported techniques in the literature. PMID:25929595
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1996-01-01
NASA's advanced propulsion system Small Scale Magnetic Disturbances/Advanced Technology Development (SSME/ATD) has been undergoing extensive flight certification and developmental testing, which involves large numbers of health monitoring measurements. To enhance engine safety and reliability, detailed analysis and evaluation of the measurement signals are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce the risk of catastrophic system failures and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. During the development of SSME, ASRI participated in the research and development of several advanced non- linear signal diagnostic methods for health monitoring and failure prediction in turbomachinery components. However, due to the intensive computational requirement associated with such advanced analysis tasks, current SSME dynamic data analysis and diagnostic evaluation is performed off-line following flight or ground test with a typical diagnostic turnaround time of one to two days. The objective of MSFC's MPP Prototype System is to eliminate such 'diagnostic lag time' by achieving signal processing and analysis in real-time. Such an on-line diagnostic system can provide sufficient lead time to initiate corrective action and also to enable efficient scheduling of inspection, maintenance and repair activities. The major objective of this project was to convert and implement a number of advanced nonlinear diagnostic DSP algorithms in a format consistent with that required for integration into the Vanderbilt Multigraph Architecture (MGA) Model Based Programming environment. This effort will allow the real-time execution of these algorithms using the MSFC MPP Prototype System. ASRI has completed the software conversion and integration of a sequence of nonlinear signal analysis techniques specified in the SOW for real-time
A Decompositional Approach to Executing Quality Data Model Algorithms on the i2b2 Platform.
Mo, Huan; Jiang, Guoqian; Pacheco, Jennifer A; Kiefer, Richard; Rasmussen, Luke V; Pathak, Jyotishman; Denny, Joshua C; Thompson, William K
2016-01-01
The Quality Data Model (QDM) is an established standard for representing electronic clinical quality measures on electronic health record (EHR) repositories. The Informatics for Integrated Biology and the Bedside (i2b2) is a widely used platform for implementing clinical data repositories. However, translation from QDM to i2b2 is challenging, since QDM allows for complex queries beyond the capability of single i2b2 messages. We have developed an approach to decompose complex QDM algorithms into workflows of single i2b2 messages, and execute them on the KNIME data analytics platform. Each workflow operation module is composed of parameter lists, a template for the i2b2 message, an mechanism to create parameter updates, and a web service call to i2b2. The communication between workflow modules relies on passing keys ofi2b2 result sets. As a demonstration of validity, we describe the implementation and execution of a type 2 diabetes mellitus phenotype algorithm against an i2b2 data repository. PMID:27570665
A Decompositional Approach to Executing Quality Data Model Algorithms on the i2b2 Platform
Mo, Huan; Jiang, Guoqian; Pacheco, Jennifer A.; Kiefer, Richard; Rasmussen, Luke V.; Pathak, Jyotishman; Denny, Joshua C.; Thompson, William K.
2016-01-01
The Quality Data Model (QDM) is an established standard for representing electronic clinical quality measures on electronic health record (EHR) repositories. The Informatics for Integrated Biology and the Bedside (i2b2) is a widely used platform for implementing clinical data repositories. However, translation from QDM to i2b2 is challenging, since QDM allows for complex queries beyond the capability of single i2b2 messages. We have developed an approach to decompose complex QDM algorithms into workflows of single i2b2 messages, and execute them on the KNIME data analytics platform. Each workflow operation module is composed of parameter lists, a template for the i2b2 message, an mechanism to create parameter updates, and a web service call to i2b2. The communication between workflow modules relies on passing keys ofi2b2 result sets. As a demonstration of validity, we describe the implementation and execution of a type 2 diabetes mellitus phenotype algorithm against an i2b2 data repository. PMID:27570665
Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment.
Liu, Qi; Cai, Weidong; Jin, Dandan; Shen, Jian; Fu, Zhangjie; Liu, Xiaodong; Linge, Nigel
2016-01-01
Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR) method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks' execution time can be improved, in particular for some regular jobs. PMID:27589753
Pronk, Sander; Pouya, Iman; Lundborg, Magnus; Rotskoff, Grant; Wesén, Björn; Kasson, Peter M; Lindahl, Erik
2015-06-01
Computational chemistry and other simulation fields are critically dependent on computing resources, but few problems scale efficiently to the hundreds of thousands of processors available in current supercomputers-particularly for molecular dynamics. This has turned into a bottleneck as new hardware generations primarily provide more processing units rather than making individual units much faster, which simulation applications are addressing by increasingly focusing on sampling with algorithms such as free-energy perturbation, Markov state modeling, metadynamics, or milestoning. All these rely on combining results from multiple simulations into a single observation. They are potentially powerful approaches that aim to predict experimental observables directly, but this comes at the expense of added complexity in selecting sampling strategies and keeping track of dozens to thousands of simulations and their dependencies. Here, we describe how the distributed execution framework Copernicus allows the expression of such algorithms in generic workflows: dataflow programs. Because dataflow algorithms explicitly state dependencies of each constituent part, algorithms only need to be described on conceptual level, after which the execution is maximally parallel. The fully automated execution facilitates the optimization of these algorithms with adaptive sampling, where undersampled regions are automatically detected and targeted without user intervention. We show how several such algorithms can be formulated for computational chemistry problems, and how they are executed efficiently with many loosely coupled simulations using either distributed or parallel resources with Copernicus. PMID:26575558
EDITORIAL: Special issue on time scale algorithms
NASA Astrophysics Data System (ADS)
Matsakis, Demetrios; Tavella, Patrizia
2008-12-01
This special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the tutorials presented on the first day. The symposium was attended by 76 persons, from every continent except Antarctica, by students as well as senior scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation's high reputation for hospitality. Although a timescale can be simply defined as a weighted average of clocks, whose purpose is to measure time better than any individual clock, timescale theory has long been and continues to be a vibrant field of research that has both followed and helped to create advances in the art of timekeeping. There is no perfect timescale algorithm, because every one embodies a compromise involving user needs. Some users wish to generate a constant frequency, perhaps not necessarily one that is well-defined with respect to the definition of a second. Other users might want a clock which is as close to UTC or a particular reference clock as possible, or perhaps wish to minimize the maximum variation from that standard. In contrast to the steered timescales that would be required by those users, other users may need free-running timescales, which are independent of external information. While no algorithm can meet all these needs, every algorithm can benefit from some form of tuning. The optimal tuning, and even the optimal algorithm, can depend on the noise characteristics of the frequency standards, or of their comparison systems, the most precise and accurate of which are currently Two Way Satellite Time and Frequency Transfer (TWSTFT) and GPS carrier phase time transfer. The interest in time scale algorithms and its associated statistical methodology began around 40 years ago when the Allan variance appeared and when the metrological institutions started realizing ensemble atomic time using more than
Integrated Planning: Consolidating Annual Facility Planning - More Time for Execution
Nelson, J. G.; R., L. Morton; Ramirez, C.; Morris, P. S.; McSwain, J. T.
2011-02-02
Previously, annual planning for Readiness in Technical Base and Facilities (RTBF) at the Nevada National Security Site (NNSS) was fragmented, disconnected, circular, and occurred constantly throughout the fiscal year (FY) comprising 9 of the 12 months, reducing the focus on implementation and execution. This required constant “looking back” instead of “looking forward.” In FY 2009, annual planning was consolidated into one comprehensive integrated plan (IP) for each facility/project, which comprised annual task planning/outyear budgeting, AMPs, and investment planning (i.e., TYIP). In FY 2010, the Risk Management Plans were added to the IPs. The integrated planning process achieved the following: 1) Eliminated fragmented, circular, planning and moved the plan to be more forward-looking; 2) Achieved a 90% reduction in schedule planning timeframe from 40 weeks (9 months) to 6 weeks; 3) Achieved an 80% reduction in cost from just under $1.0M to just over $200K, for a cost savings of nearly $800K (reduced combined effort from over 200 person-weeks to less than 40); 4) Reduced the number of plans generated from 21 plans (1 per facility per plan) per year to 8 plans per year (1 per facility plus 1 program-level IP); 5) Eliminated redundancy in common content between plans and improved consistency and overall quality; 6) Reduced the preparation time and cost of the FY 2010 SEP by 50% due to information provided in the IP; 7) Met the requirements for annual task planning, annual maintenance planning, ten-year investment planning, and risk management plans.
EDITORIAL: Special issue on time scale algorithms
NASA Astrophysics Data System (ADS)
Matsakis, Demetrios; Tavella, Patrizia
2008-12-01
This special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the tutorials presented on the first day. The symposium was attended by 76 persons, from every continent except Antarctica, by students as well as senior scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation's high reputation for hospitality. Although a timescale can be simply defined as a weighted average of clocks, whose purpose is to measure time better than any individual clock, timescale theory has long been and continues to be a vibrant field of research that has both followed and helped to create advances in the art of timekeeping. There is no perfect timescale algorithm, because every one embodies a compromise involving user needs. Some users wish to generate a constant frequency, perhaps not necessarily one that is well-defined with respect to the definition of a second. Other users might want a clock which is as close to UTC or a particular reference clock as possible, or perhaps wish to minimize the maximum variation from that standard. In contrast to the steered timescales that would be required by those users, other users may need free-running timescales, which are independent of external information. While no algorithm can meet all these needs, every algorithm can benefit from some form of tuning. The optimal tuning, and even the optimal algorithm, can depend on the noise characteristics of the frequency standards, or of their comparison systems, the most precise and accurate of which are currently Two Way Satellite Time and Frequency Transfer (TWSTFT) and GPS carrier phase time transfer. The interest in time scale algorithms and its associated statistical methodology began around 40 years ago when the Allan variance appeared and when the metrological institutions started realizing ensemble atomic time using more than
Enhancing real-time flight simulation execution by intercepting Run-Time Library calls
NASA Technical Reports Server (NTRS)
Reinbachs, Namejs
1993-01-01
Standard operating system input-output (I/O) procedures impose a large time penalty on real-time program execution. These procedures are generally invoked by way of Run-Time Library (RTL) calls. To reduce the time penalty, as well as add flexibility, a technique has been developed to dynamically intercept these calls. The design and implementation of this technique, as applied to FORTRAN WRITE statements, are described. Measured performance gains using this RTL intercept technique are on the order of 1000 percent.
Jiang, Guoqian; Kiefer, Richard C; Rasmussen, Luke V; Solbrig, Harold R; Mo, Huan; Pacheco, Jennifer A; Xu, Jie; Montague, Enid; Thompson, William K; Denny, Joshua C; Chute, Christopher G; Pathak, Jyotishman
2016-08-01
The Quality Data Model (QDM) is an information model developed by the National Quality Forum for representing electronic health record (EHR)-based electronic clinical quality measures (eCQMs). In conjunction with the HL7 Health Quality Measures Format (HQMF), QDM contains core elements that make it a promising model for representing EHR-driven phenotype algorithms for clinical research. However, the current QDM specification is available only as descriptive documents suitable for human readability and interpretation, but not for machine consumption. The objective of the present study is to develop and evaluate a data element repository (DER) for providing machine-readable QDM data element service APIs to support phenotype algorithm authoring and execution. We used the ISO/IEC 11179 metadata standard to capture the structure for each data element, and leverage Semantic Web technologies to facilitate semantic representation of these metadata. We observed there are a number of underspecified areas in the QDM, including the lack of model constraints and pre-defined value sets. We propose a harmonization with the models developed in HL7 Fast Healthcare Interoperability Resources (FHIR) and Clinical Information Modeling Initiatives (CIMI) to enhance the QDM specification and enable the extensibility and better coverage of the DER. We also compared the DER with the existing QDM implementation utilized within the Measure Authoring Tool (MAT) to demonstrate the scalability and extensibility of our DER-based approach. PMID:27392645
ERIC Educational Resources Information Center
Gomez-Guerrero, Lorena; Martin, Cristina Dominguez; Mairena, Maria Angeles; Di Martino, Adriana; Wang, Jing; Mendelsohn, Alan L.; Dreyer, Benard P.; Isquith, Peter K.; Gioia, Gerard; Petkova, Eva; Castellanos, F. Xavier
2011-01-01
Objective: Individuals with ADHD are often characterized as inconsistent across many contexts. ADHD is also associated with deficits in executive function. We examined the relationships between response time (RT) variability on five brief computer tasks to parents' ratings of ADHD-related features and executive function in a group of children with…
Easy and hard testbeds for real-time search algorithms
Koenig, S.; Simmons, R.G.
1996-12-31
Although researchers have studied which factors influence the behavior of traditional search algorithms, currently not much is known about how domain properties influence the performance of real-time search algorithms. In this paper we demonstrate, both theoretically and experimentally, that Eulerian state spaces (a super set of undirected state spaces) are very easy for some existing real-time search algorithms to solve: even real-time search algorithms that can be intractable, in general, are efficient for Eulerian state spaces. Because traditional real-time search testbeds (such as the eight puzzle and gridworlds) are Eulerian, they cannot be used to distinguish between efficient and inefficient real-time search algorithms. It follows that one has to use non-Eulerian domains to demonstrate the general superiority of a given algorithm. To this end, we present two classes of hard-to-search state spaces and demonstrate the performance of various real-time search algorithms on them.
A time-accurate multiple-grid algorithm
NASA Technical Reports Server (NTRS)
Jespersen, D. C.
1985-01-01
A time-accurate multiple-grid algorithm is described. The algorithm allows one to take much larger time steps with an explicit time-marching scheme than would otherwise be the case. Sample calculations of a scalar advection equation and the Euler equations for an oscillating airfoil are shown. For the oscillating airfoil, time steps an order of magnitude larger than the single-grid algorithm are possible.
Less-structured time in children's daily lives predicts self-directed executive functioning
Barker, Jane E.; Semenov, Andrei D.; Michaelson, Laura; Provan, Lindsay S.; Snyder, Hannah R.; Munakata, Yuko
2014-01-01
Executive functions (EFs) in childhood predict important life outcomes. Thus, there is great interest in attempts to improve EFs early in life. Many interventions are led by trained adults, including structured training activities in the lab, and less-structured activities implemented in schools. Such programs have yielded gains in children's externally-driven executive functioning, where they are instructed on what goal-directed actions to carry out and when. However, it is less clear how children's experiences relate to their development of self-directed executive functioning, where they must determine on their own what goal-directed actions to carry out and when. We hypothesized that time spent in less-structured activities would give children opportunities to practice self-directed executive functioning, and lead to benefits. To investigate this possibility, we collected information from parents about their 6–7 year-old children's daily, annual, and typical schedules. We categorized children's activities as “structured” or “less-structured” based on categorization schemes from prior studies on child leisure time use. We assessed children's self-directed executive functioning using a well-established verbal fluency task, in which children generate members of a category and can decide on their own when to switch from one subcategory to another. The more time that children spent in less-structured activities, the better their self-directed executive functioning. The opposite was true of structured activities, which predicted poorer self-directed executive functioning. These relationships were robust (holding across increasingly strict classifications of structured and less-structured time) and specific (time use did not predict externally-driven executive functioning). We discuss implications, caveats, and ways in which potential interpretations can be distinguished in future work, to advance an understanding of this fundamental aspect of growing up
Global convergence analysis of a discrete time nonnegative ICA algorithm.
Ye, Mao
2006-01-01
When the independent sources are known to be nonnegative and well-grounded, which means that they have a nonzero pdf in the region of zero, Oja and Plumbley have proposed a "Nonnegative principal component analysis (PCA)" algorithm to separate these positive sources. Generally, it is very difficult to prove the convergence of a discrete-time independent component analysis (ICA) learning algorithm. However, by using the skew-symmetry property of this discrete-time "Nonnegative PCA" algorithm, if the learning rate satisfies suitable condition, the global convergence of this discrete-time algorithm can be proven. Simulation results are employed to further illustrate the advantages of this theory. PMID:16526495
Time optimal route planning algorithm of LBS online navigation
NASA Astrophysics Data System (ADS)
Li, Yong; Bao, Shitai; Su, Kui; Fang, Qiushui; Yang, Jingfeng
2011-02-01
This paper proposes a time optimal route planning optimization algorithm in the mode of LBS online navigation based on the improved Dijkstra algorithms. Combined with the returning real-time location information by on-line users' handheld terminals, the algorithm can satisfy requirement of the optimal time in the mode of LBS online navigation. A navigation system is developed and applied in actual navigation operations. Operating results show that the algorithm could form a reasonable coordination on the basis of shortest route and fastest velocity in the requirement of optimal time. The algorithm could also store the calculated real-time route information in the cache to improve the efficiency of route planning and to reduce the planning time-consuming.
ERIC Educational Resources Information Center
Gooch, Debbie; Snowling, Margaret; Hulme, Charles
2011-01-01
Background: Deficits in time perception (the ability to judge the duration of time intervals) have been found in children with both attention-deficit/hyperactivity disorder (ADHD) and dyslexia. This paper investigates time perception, phonological skills and executive functions in children with dyslexia and/or ADHD symptoms (AS). Method: Children…
28 CFR 26.3 - Date, time, place, and method of execution.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Date, time, place, and method of... Implementation of Death Sentences in Federal Cases § 26.3 Date, time, place, and method of execution. (a) Except... time designated by the Director of the Federal Bureau of Prisons, which date shall be no sooner than...
Making Time for Instructional Leadership. Volume 1: Executive Summary
ERIC Educational Resources Information Center
Goldring, Ellen; Grissom, Jason A.; Neumerski, Christine M.; Murphy, Joseph; Blissett, Richard; Porter, Andy
2015-01-01
This three-volume report describes the "SAM (School Administration Manager) process," an approach that about 700 schools around the nation are using to direct more of principals' time and effort to improve teaching and learning in classrooms. Research has shown that a principal's instructional leadership is second only to teaching among…
Processing Time Shifts Affects the Execution of Motor Responses
ERIC Educational Resources Information Center
Sell, Andrea J.; Kaschak, Michael P.
2011-01-01
We explore whether time shifts in text comprehension are represented spatially. Participants read sentences involving past or future events and made sensibility judgment responses in one of two ways: (1) moving toward or away from their body and (2) pressing the toward or away buttons without moving. Previous work suggests that spatial…
Combing the Communication Hairball: Visualizing Parallel Execution Traces using Logical Time.
Isaacs, Katherine E; Bremer, Peer-Timo; Jusufi, Ilir; Gamblin, Todd; Bhatele, Abhinav; Schulz, Martin; Hamann, Bernd
2014-12-01
With the continuous rise in complexity of modern supercomputers, optimizing the performance of large-scale parallel programs is becoming increasingly challenging. Simultaneously, the growth in scale magnifies the impact of even minor inefficiencies--potentially millions of compute hours and megawatts in power consumption can be wasted on avoidable mistakes or sub-optimal algorithms. This makes performance analysis and optimization critical elements in the software development process. One of the most common forms of performance analysis is to study execution traces, which record a history of per-process events and interprocess messages in a parallel application. Trace visualizations allow users to browse this event history and search for insights into the observed performance behavior. However, current visualizations are difficult to understand even for small process counts and do not scale gracefully beyond a few hundred processes. Organizing events in time leads to a virtually unintelligible conglomerate of interleaved events and moderately high process counts overtax even the largest display. As an alternative, we present a new trace visualization approach based on transforming the event history into logical time inferred directly from happened-before relationships. This emphasizes the code's structural behavior, which is much more familiar to the application developer. The original timing data, or other information, is then encoded through color, leading to a more intuitive visualization. Furthermore, we use the discrete nature of logical timelines to cluster processes according to their local behavior leading to a scalable visualization of even long traces on large process counts. We demonstrate our system using two case studies on large-scale parallel codes. PMID:26356949
Two linear time, low overhead algorithms for graph layout
Energy Science and Technology Software Center (ESTSC)
2008-01-10
The software comprises two algorithms designed to perform a 2D layout of a graph structure in time linear with respect to the vertices and edges in the graph, whereas most other layout algorithms have a running time that is quadratic with respect to the number of vertices or greater. Although these layout algorithms run in a fraction of the time as their competitors, they provide competitive results when applied to most real-world graphs. These algorithmsmore » also have a low constant running time and small memory footprint, making them useful for small to large graphs.« less
A fast and Robust Algorithm for general inequality/equality constrained minimum time problems
Briessen, B.; Sadegh, N.
1995-12-01
This paper presents a new algorithm for solving general inequality/equality constrained minimum time problems. The algorithm`s solution time is linear in the number of Runge-Kutta steps and the number of parameters used to discretize the control input history. The method is being applied to a three link redundant robotic arm with torque bounds, joint angle bounds, and a specified tip path. It solves case after case within a graphical user interface in which the user chooses the initial joint angles and the tip path with a mouse. Solve times are from 30 to 120 seconds on a Hewlett Packard workstation. A zero torque history is always used in the initial guess, and the algorithm has never crashed, indicating its robustness. The algorithm solves for a feasible solution for large trajectory execution time t{sub f} and then reduces t{sub f} and then reduces t{sub f} by a small amount and re-solves. The fixed time re- solve uses a new method of finding a near-minimum-2-norm solution to a set of linear equations and inequalities that achieves quadratic convegence to a feasible solution of the full nonlinear problem.
The time course effect of moderate intensity exercise on response execution and response inhibition.
Joyce, Jennifer; Graydon, Jan; McMorris, Terry; Davranche, Karen
2009-10-01
This research aimed to investigate the time course effect of a moderate steady-state exercise session on response execution and response inhibition using a stop-task paradigm. Ten participants performed a stop-signal task whilst cycling at a carefully controlled workload intensity (40% of maximal aerobic power), immediately following exercise and 30min after exercise cessation. Results showed that moderate exercise enhances a subjects' ability to execute responses under time pressure (shorter Go reaction time, RT without a change in accuracy) but also enhances a subjects' ability to withhold ongoing motor responses (shorter stop-signal RT). The present outcomes reveal that the beneficial effect of exercise is neither limited to motor response tasks, nor to cognitive tasks performed during exercise. Beneficial effects of exercise remain present on both response execution and response inhibition performance for up to 52min after exercise cessation. PMID:19346049
NASA Technical Reports Server (NTRS)
Homem De Mello, Luiz S.; Sanderson, Arthur C.
1991-01-01
The authors introduce two criteria for the evaluation and selection of assembly plans. The first criterion is to maximize the number of different sequences in which the assembly tasks can be executed. The second criterion is to minimize the total assembly time through simultaneous execution of assembly tasks. An algorithm that performs a heuristic search for the best assembly plan over the AND/OR graph representation of assembly plans is discussed. Admissible heuristics for each of the two criteria introduced are presented. Some implementation issues that affect the computational efficiency are addressed.
Simulating the time-dependent Schr"odinger equation with a quantum lattice-gas algorithm
NASA Astrophysics Data System (ADS)
Prezkuta, Zachary; Coffey, Mark
2007-03-01
Quantum computing algorithms promise remarkable improvements in speed or memory for certain applications. Currently, the Type II (or hybrid) quantum computer is the most feasible to build. This consists of a large number of small Type I (pure) quantum computers that compute with quantum logic, but communicate with nearest neighbors in a classical way. The arrangement thus formed is suitable for computations that execute a quantum lattice gas algorithm (QLGA). We report QLGA simulations for both the linear and nonlinear time-dependent Schr"odinger equation. These evidence the stable, efficient, and at least second order convergent properties of the algorithm. The simulation capability provides a computational tool for applications in nonlinear optics, superconducting and superfluid materials, Bose-Einstein condensates, and elsewhere.
A Polynomial Time, Numerically Stable Integer Relation Algorithm
NASA Technical Reports Server (NTRS)
Ferguson, Helaman R. P.; Bailey, Daivd H.; Kutler, Paul (Technical Monitor)
1998-01-01
Let x = (x1, x2...,xn be a vector of real numbers. X is said to possess an integer relation if there exist integers a(sub i) not all zero such that a1x1 + a2x2 + ... a(sub n)Xn = 0. Beginning in 1977 several algorithms (with proofs) have been discovered to recover the a(sub i) given x. The most efficient of these existing integer relation algorithms (in terms of run time and the precision required of the input) has the drawback of being very unstable numerically. It often requires a numeric precision level in the thousands of digits to reliably recover relations in modest-sized test problems. We present here a new algorithm for finding integer relations, which we have named the "PSLQ" algorithm. It is proved in this paper that the PSLQ algorithm terminates with a relation in a number of iterations that is bounded by a polynomial in it. Because this algorithm employs a numerically stable matrix reduction procedure, it is free from the numerical difficulties, that plague other integer relation algorithms. Furthermore, its stability admits an efficient implementation with lower run times oil average than other algorithms currently in Use. Finally, this stability can be used to prove that relation bounds obtained from computer runs using this algorithm are numerically accurate.
Filter model based dwell time algorithm for ion beam figuring
NASA Astrophysics Data System (ADS)
Li, Yun; Xing, Tingwen; Jia, Xin; Wei, Haoming
2010-10-01
The process of Ion Beam Figuring (IBF) can be described by a two-dimensional convolution equation which including dwell time. Solving the dwell time is a key problem in IBF. Theoretically, the dwell time can be solved from a two-dimensional deconvolution. However, it is often ill-posed]; the suitable solution of that is hard to get. In this article, a dwell time algorithm is proposed, depending on the characters of IBF. Usually, the Beam Removal Function (BRF) in IBF is Gaussian, which can be regarded as a headstand Gaussian filter. In its stop-band, the filter has various filtering abilities for various frequencies. The dwell time algorithm proposed in this article is just based on this concept. The Curved Surface Smooth Extension (CSSE) method and Fast Fourier Transform (FFT) algorithm are also used. The simulation results show that this algorithm is high precision, effective, and suitable for actual application.
Embedded algorithms within an FPGA-based system to process nonlinear time series data
NASA Astrophysics Data System (ADS)
Jones, Jonathan D.; Pei, Jin-Song; Tull, Monte P.
2008-03-01
This paper presents some preliminary results of an ongoing project. A pattern classification algorithm is being developed and embedded into a Field-Programmable Gate Array (FPGA) and microprocessor-based data processing core in this project. The goal is to enable and optimize the functionality of onboard data processing of nonlinear, nonstationary data for smart wireless sensing in structural health monitoring. Compared with traditional microprocessor-based systems, fast growing FPGA technology offers a more powerful, efficient, and flexible hardware platform including on-site (field-programmable) reconfiguration capability of hardware. An existing nonlinear identification algorithm is used as the baseline in this study. The implementation within a hardware-based system is presented in this paper, detailing the design requirements, validation, tradeoffs, optimization, and challenges in embedding this algorithm. An off-the-shelf high-level abstraction tool along with the Matlab/Simulink environment is utilized to program the FPGA, rather than coding the hardware description language (HDL) manually. The implementation is validated by comparing the simulation results with those from Matlab. In particular, the Hilbert Transform is embedded into the FPGA hardware and applied to the baseline algorithm as the centerpiece in processing nonlinear time histories and extracting instantaneous features of nonstationary dynamic data. The selection of proper numerical methods for the hardware execution of the selected identification algorithm and consideration of the fixed-point representation are elaborated. Other challenges include the issues of the timing in the hardware execution cycle of the design, resource consumption, approximation accuracy, and user flexibility of input data types limited by the simplicity of this preliminary design. Future work includes making an FPGA and microprocessor operate together to embed a further developed algorithm that yields better
Li, Hongbao; Liao, Yuxi; Wang, Yiwen; Zhang, Qiaosheng; Zhang, Shaomin; Zheng, Xiaoxiang
2015-01-01
Premotor cortex is a higher level cortex than primary motor cortex in movement controlling hierarchy, which contributes to the motor preparation and execution simultaneously during the planned movement. The mediation mechanism from movement preparation to execution has attracted many scientists' attention. Gateway hypothesis is one possible explanation that some neurons act as "gating" to release the movement intention at the "on-go" cue. We propose to utilize a local-learning based feature extraction method to target the neurons in premotor cortex, which functionally contribute mostly to the discrimination between motor preparation and execution without tuning information to either target or movement trajectory. Then the support vector machine is utilized to predict the single trial switching time. With top three functional "gating" neurons, the prediction accuracy rate of the switching time is above 90%, which indicates the potential of asynchronous BMI control using premotor cortical activity. PMID:26736827
Method for run time hardware code profiling for algorithm acceleration
NASA Astrophysics Data System (ADS)
Matev, Vladimir; de la Torre, Eduardo; Riesgo, Teresa
2009-05-01
In this paper we propose a method for run time profiling of applications on instruction level by analysis of loops. Instead of looking for coarse grain blocks we concentrate on fine grain but still costly blocks in terms of execution times. Most code profiling is done in software by introducing code into the application under profile witch has time overhead, while in this work data for the position of a loop, loop body, size and number of executions is stored and analysed using a small non intrusive hardware block. The paper describes the system mapping to runtime reconfigurable systems. The fine grain code detector block synthesis results and its functionality verification are also presented in the paper. To demonstrate the concept MediaBench multimedia benchmark running on the chosen development platform is used.
Performance of recovery time improvement algorithms for software RAIDs
Riegel, J.; Menon, Jai
1996-12-31
A software RAID is a RAID implemented purely in software running on a host computer. One problem with software RAIDs is that they do not have access to special hardware such as NVRAM. Thus, software RAIDs may need to check every parity group of an array for consistency following a host crash or power failure. This process of checking parity groups is called recovery, and results in long delays when the software RAID is restarted. In this paper, we review two algorithms to reduce this recovery time for software RAIDs: the PGS Bitmap algorithm we proposed in and the List Algorithm proposed in. We compare the performance of these two algorithms using trace-driven simulations. Our results show that the PGS Bitmap Algorithm can reduce recovery time by a factor of 12 with a response time penalty of less than 1%, or by a factor of 50 with a response time penalty of less than 2%, and a memory requirement of around 9 Kbytes. The List Algorithm can reduce recovery time by a factor of 50 but cannot achieve a response time penalty of less than 16%.
A linear-time algorithm for reconstructing zero-recombinant haplotype configuration on a pedigree
2012-01-01
Background When studying genetic diseases in which genetic variations are passed on to offspring, the ability to distinguish between paternal and maternal alleles is essential. Determining haplotypes from genotype data is called haplotype inference. Most existing computational algorithms for haplotype inference have been designed to use genotype data collected from individuals in the form of a pedigree. A haplotype is regarded as a hereditary unit and therefore input pedigrees are preferred that are free of mutational events and have a minimum number of genetic recombinational events. These ideas motivated the zero-recombinant haplotype configuration (ZRHC) problem, which strictly follows the Mendelian law of inheritance, namely that one haplotype of each child is inherited from the father and the other haplotype is inherited from the mother, both without any mutation. So far no linear-time algorithm for ZRHC has been proposed for general pedigrees, even though the number of mating loops in a human pedigree is usually very small and can be regarded as constant. Results Given a pedigree with n individuals, m marker loci, and k mating loops, we proposed an algorithm that can provide a general solution to the zero-recombinant haplotype configuration problem in O(kmn + k2m) time. In addition, this algorithm can be modified to detect inconsistencies within the genotype data without loss of efficiency. The proposed algorithm was subject to 12000 experiments to verify its performance using different (n, m) combinations. The value of k was uniformly distributed between zero and six throughout all experiments. The experimental results show a great linearity in terms of execution time in relation to input size when both n and m are larger than 100. For those experiments where n or m are less than 100, the proposed algorithm runs very fast, in thousandth to hundredth of a second, on a personal desktop computer. Conclusions We have developed the first deterministic linear-time
The Time Course Effect of Moderate Intensity Exercise on Response Execution and Response Inhibition
ERIC Educational Resources Information Center
Joyce, Jennifer; Graydon, Jan; McMorris, Terry; Davranche, Karen
2009-01-01
This research aimed to investigate the time course effect of a moderate steady-state exercise session on response execution and response inhibition using a stop-task paradigm. Ten participants performed a stop-signal task whilst cycling at a carefully controlled workload intensity (40% of maximal aerobic power), immediately following exercise and…
A Scheduling Algorithm for Replicated Real-Time Tasks
NASA Technical Reports Server (NTRS)
Yu, Albert C.; Lin, Kwei-Jay
1991-01-01
We present an algorithm for scheduling real-time periodic tasks on a multiprocessor system under fault-tolerant requirement. Our approach incorporates both the redundancy and masking technique and the imprecise computation model. Since the tasks in hard real-time systems have stringent timing constraints, the redundancy and masking technique are more appropriate than the rollback techniques which usually require extra time for error recovery. The imprecise computation model provides flexible functionality by trading off the quality of the result produced by a task with the amount of processing time required to produce it. It therefore permits the performance of a real-time system to degrade gracefully. We evaluate the algorithm by stochastic analysis and Monte Carlo simulations. The results show that the algorithm is resilient under hardware failures.
Impacts of Time Delays on Distributed Algorithms for Economic Dispatch
Yang, Tao; Wu, Di; Sun, Yannan; Lian, Jianming
2015-07-26
Economic dispatch problem (EDP) is an important problem in power systems. It can be formulated as an optimization problem with the objective to minimize the total generation cost subject to the power balance constraint and generator capacity limits. Recently, several consensus-based algorithms have been proposed to solve EDP in a distributed manner. However, impacts of communication time delays on these distributed algorithms are not fully understood, especially for the case where the communication network is directed, i.e., the information exchange is unidirectional. This paper investigates communication time delay effects on a distributed algorithm for directed communication networks. The algorithm has been tested by applying time delays to different types of information exchange. Several case studies are carried out to evaluate the effectiveness and performance of the algorithm in the presence of time delays in communication networks. It is found that time delay effects have negative effects on the convergence rate, and can even result in an incorrect converge value or fail the algorithm to converge.
Influence of timing algorithm on brachialankle pulse wave velocity measurement.
Sun, Xin; Li, Ke; Ren, Hongwei; Li, Peng; Wang, Xinpei; Liu, Changchun
2014-01-01
The baPWV measurement is a non-invasive and convenient technique in an assessment of arterial stiffness. Despite its widespread application, the influence of different timing algorithms is still unclear. The present study was conducted to investigate the influence of six timing algorithms (MIN, MAX, D1, D2, MDP and INS) on the baPWV measurement and to evaluate the performance of them. Forty-five CAD patients and fifty-five healthy subjects were recruited in this study. A PVR acquisition apparatus was built up for baPWV measurement. The baPWV and other related parameters were calculated separately by the six timing algorithms. The influence and performance of the six algorithms was analyzed. The six timing algorithms generate significantly different baPWV values (left: F=29.036, P<0.001; right: F=40.076, P<0.001). In terms of reproducibility, the MAX has significantly higher CV value (≥ 18.6%) than the other methods, while the INS has the lowest CV value (≤ 2.7%). On the performance of classification, the INS produces the highest AUC values (left: 0.854; right: 0.872). The MIN and D2 also have a passable performance (AUC > 0.8). The choice of timing algorithm affects baPWV values and the quality of measurement. The INS method is recommended for baPWV measurement. PMID:24211905
The XH-map algorithm: A method to process stereo video to produce a real-time obstacle map
NASA Astrophysics Data System (ADS)
Rosselot, Donald; Hall, Ernest L.
2005-10-01
This paper presents a novel, simple and fast algorithm to produce a "floor plan" obstacle map in real time using video. The XH-map algorithm is a transformation of stereo vision data in disparity map space into a two dimensional obstacle map space using a method that can be likened to a histogram reduction of image information. The classic floor-ground background noise problem is addressed with a simple one-time semi-automatic calibration method incorporated into the algorithm. This implementation of this algorithm utilizes the Intel Performance Primitives library and OpenCV libraries for extremely fast and efficient execution, creating a scaled obstacle map from a 480x640x256 stereo pair in 1.4 milliseconds. This algorithm has many applications in robotics and computer vision including enabling an "Intelligent Robot" robot to "see" for path planning and obstacle avoidance.
IMPROVEMENTS TO THE TIME STEPPING ALGORITHM OF RELAP5-3D
Cumberland, R.; Mesina, G.
2009-01-01
The RELAP5-3D time step method is used to perform thermo-hydraulic and neutronic simulations of nuclear reactors and other devices. It discretizes time and space by numerically solving several differential equations. Previously, time step size was controlled by halving or doubling the size of a previous time step. This process caused the code to run slower than it potentially could. In this research project, the RELAP5-3D time step method was modifi ed to allow a new method of changing time steps to improve execution speed and to control error. The new RELAP5-3D time step method being studied involves making the time step proportional to the material courant limit (MCL), while insuring that the time step does not increase by more than a factor of two between advancements. As before, if a step fails or mass error is excessive, the time step is cut in half. To examine performance of the new method, a measure of run time and a measure of error were plotted against a changing MCL proportionality constant (m) in seven test cases. The removal of the upper time step limit produced a small increase in error, but a large decrease in execution time. The best value of m was found to be 0.9. The new algorithm is capable of producing a signifi cant increase in execution speed, with a relatively small increase in mass error. The improvements made are now under consideration for inclusion as a special option in the RELAP5-3D production code.
Algorithmic properties of the midpoint predictor-corrector time integrator.
Rider, William J.; Love, Edward; Scovazzi, Guglielmo
2009-03-01
Algorithmic properties of the midpoint predictor-corrector time integration algorithm are examined. In the case of a finite number of iterations, the errors in angular momentum conservation and incremental objectivity are controlled by the number of iterations performed. Exact angular momentum conservation and exact incremental objectivity are achieved in the limit of an infinite number of iterations. A complete stability and dispersion analysis of the linearized algorithm is detailed. The main observation is that stability depends critically on the number of iterations performed.
Reducing the Time Requirement of k-Means Algorithm
Osamor, Victor Chukwudi; Adebiyi, Ezekiel Femi; Oyelade, Jelilli Olarenwaju; Doumbia, Seydou
2012-01-01
Traditional k-means and most k-means variants are still computationally expensive for large datasets, such as microarray data, which have large datasets with large dimension size d. In k-means clustering, we are given a set of n data points in d-dimensional space Rd and an integer k. The problem is to determine a set of k points in Rd, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this work, we develop a novel k-means algorithm, which is simple but more efficient than the traditional k-means and the recent enhanced k-means. Our new algorithm is based on the recently established relationship between principal component analysis and the k-means clustering. We provided the correctness proof for this algorithm. Results obtained from testing the algorithm on three biological data and six non-biological data (three of these data are real, while the other three are simulated) also indicate that our algorithm is empirically faster than other known k-means algorithms. We assessed the quality of our algorithm clusters against the clusters of a known structure using the Hubert-Arabie Adjusted Rand index (ARIHA). We found that when k is close to d, the quality is good (ARIHA>0.8) and when k is not close to d, the quality of our new k-means algorithm is excellent (ARIHA>0.9). In this paper, emphases are on the reduction of the time requirement of the k-means algorithm and its application to microarray data due to the desire to create a tool for clustering and malaria research. However, the new clustering algorithm can be used for other clustering needs as long as an appropriate measure of distance between the centroids and the members is used. This has been demonstrated in this work on six non-biological data. PMID:23239974
Implementation of and Ada real-time executive: A case study
NASA Technical Reports Server (NTRS)
Laird, James D.; Burton, Bruce A.; Koppes, Mary R.
1986-01-01
Current Ada language implementations and runtime environments are immature, unproven and are a key risk area for real-time embedded computer system (ECS). A test-case environment is provided in which the concerns of the real-time, ECS community are addressed. A priority driven executive is selected to be implemented in the Ada programming language. The model selected is representative of real-time executives tailored for embedded systems used missile, spacecraft, and avionics applications. An Ada-based design methodology is utilized, and two designs are considered. The first of these designs requires the use of vendor supplied runtime and tasking support. An alternative high-level design is also considered for an implementation requiring no vendor supplied runtime or tasking support. The former approach is carried through to implementation.
Discrete-time minimal control synthesis adaptive algorithm
NASA Astrophysics Data System (ADS)
di Bernardo, M.; di Gennaro, F.; Olm, J. M.; Santini, S.
2010-12-01
This article proposes a discrete-time Minimal Control Synthesis (MCS) algorithm for a class of single-input single-output discrete-time systems written in controllable canonical form. As it happens with the continuous-time MCS strategy, the algorithm arises from the family of hyperstability-based discrete-time model reference adaptive controllers introduced in (Landau, Y. (1979), Adaptive Control: The Model Reference Approach, New York: Marcel Dekker, Inc.) and is able to ensure tracking of the states of a given reference model with minimal knowledge about the plant. The control design shows robustness to parameter uncertainties, slow parameter variation and matched disturbances. Furthermore, it is proved that the proposed discrete-time MCS algorithm can be used to control discretised continuous-time plants with the same performance features. Contrary to previous discrete-time implementations of the continuous-time MCS algorithm, here a formal proof of asymptotic stability is given for generic n-dimensional plants in controllable canonical form. The theoretical approach is validated by means of simulation results.
Linear-time algorithms for scheduling on parallel processors
Monma, C.L.
1982-01-01
Linear-time algorithms are presented for several problems of scheduling n equal-length tasks on m identical parallel processors subject to precedence constraints. This improves upon previous time bounds for the maximum lateness problem with treelike precedence constraints, the number-of-late-tasks problem without precedence constraints, and the one machine maximum lateness problem with general precedence constraints. 5 references.
ETD: an extended time delay algorithm for ventricular fibrillation detection.
Kim, Jungyoon; Chu, Chao-Hsien
2014-01-01
Ventricular fibrillation (VF) is the most serious type of heart attack which requires quick detection and first aid to improve patients' survival rates. To be most effective in using wearable devices for VF detection, it is vital that the detection algorithms be accurate, robust, reliable and computationally efficient. Previous studies and our experiments both indicate that the time-delay (TD) algorithm has a high reliability for separating sinus rhythm (SR) from VF and is resistant to variable factors, such as window size and filtering method. However, it fails to detect some VF cases. In this paper, we propose an extended time-delay (ETD) algorithm for VF detection and conduct experiments comparing the performance of ETD against five good VF detection algorithms, including TD, using the popular Creighton University (CU) database. Our study shows that (1) TD and ETD outperform the other four algorithms considered and (2) with the same sensitivity setting, ETD improves upon TD in three other quality measures for up to 7.64% and in terms of aggregate accuracy, the ETD algorithm shows an improvement of 2.6% of the area under curve (AUC) compared to TD. PMID:25571480
Algorithm Implementation for a Prototype Time-Encoded Signature Detector
Mercier, Theresa M.; Runkle, Robert C.; Stephens, Daniel L.; Hyronimus, Brian J.; Morris, Scott J.; Seifert, Allen; Wyatt, Cory R.
2007-12-31
The authors constructed a prototype Time-Encoded Signature (TES) system, complete with automated detection algorithms, useful for the detection of point-like, gamma-ray sources in search applications where detectors observe large variability in background count rates beyond statistical (Poisson) noise. The person-carried TES instrument consists of two Cesium Iodide scintillators placed on opposite sides of a Tungsten shield. This geometry mitigates systematic background variation, and induces a unique signature upon encountering point-like sources. This manuscript focuses on the development of detection algorithms that both identify point-source signatures and are computationally simple. The latter constraint derives from the instrument’s mobile (and thus low power) operation. The authors evaluated algorithms on both simulated and field data. The results of this analysis demonstrate the ability to detect sources at a wide range of source-detector distances using computationally simple algorithms.
Magnetotelluric inversion via reverse time migration algorithm of seismic data
Ha, Taeyoung . E-mail: tyha@math.snu.ac.kr; Shin, Changsoo . E-mail: css@model.snu.ac.kr
2007-07-01
We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversion algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.
Supporting Real-Time Operations and Execution through Timeline and Scheduling Aids
NASA Technical Reports Server (NTRS)
Marquez, Jessica J.; Pyrzak, Guy; Hashemi, Sam; Ahmed, Samia; McMillin, Kevin Edward; Medwid, Joseph Daniel; Chen, Diana; Hurtle, Esten
2013-01-01
Since 2003, the NASA Ames Research Center has been actively involved in researching and advancing the state-of-the-art of planning and scheduling tools for NASA mission operations. Our planning toolkit SPIFe (Scheduling and Planning Interface for Exploration) has supported a variety of missions and field tests, scheduling activities for Mars rovers as well as crew on-board International Space Station and NASA earth analogs. The scheduled plan is the integration of all the activities for the day/s. In turn, the agents (rovers, landers, spaceships, crew) execute from this schedule while the mission support team members (e.g., flight controllers) follow the schedule during execution. Over the last couple of years, our team has begun to research and validate methods that will better support users during realtime operations and execution of scheduled activities. Our team utilizes human-computer interaction principles to research user needs, identify workflow processes, prototype software aids, and user test these. This paper discusses three specific prototypes developed and user tested to support real-time operations: Score Mobile, Playbook, and Mobile Assistant for Task Execution (MATE).
Time-reversible molecular dynamics algorithms with bond constraints
NASA Astrophysics Data System (ADS)
Toxvaerd, Søren; Heilmann, Ole J.; Ingebrigtsen, Trond; Schrøder, Thomas B.; Dyre, Jeppe C.
2009-08-01
Time-reversible molecular dynamics algorithms with bond constraints are derived. The algorithms are stable with and without a thermostat and in double precision as well as in single-precision arithmetic. Time reversibility is achieved by applying a central-difference expression for the velocities in the expression for Gauss' principle of least constraint. The imposed time symmetry results in a quadratic expression for the Lagrange multiplier. For a system of complex molecules with connected constraints the corresponding set of coupled quadratic equations is easily solved by a consecutive iteration scheme. The algorithms were tested on two models. One is a dumbbell model of Toluene, the other system consists of molecules with four connected constraints forming a triangle and a branch point of constraints. The equilibrium particle distributions and the mean-square particle displacements for the dumbbell model were compared to the corresponding functions obtained by GROMACS. The agreement is perfect within statistical error.
NASA Astrophysics Data System (ADS)
Weston, Joseph; Waintal, Xavier
2016-04-01
We report on a "source-sink" algorithm which allows one to calculate time-resolved physical quantities from a general nanoelectronic quantum system (described by an arbitrary time-dependent quadratic Hamiltonian) connected to infinite electrodes. Although mathematically equivalent to the nonequilibrium Green's function formalism, the approach is based on the scattering wave functions of the system. It amounts to solving a set of generalized Schrödinger equations that include an additional "source" term (coming from the time-dependent perturbation) and an absorbing "sink" term (the electrodes). The algorithm execution time scales linearly with both system size and simulation time, allowing one to simulate large systems (currently around 106 degrees of freedom) and/or large times (currently around 105 times the smallest time scale of the system). As an application we calculate the current-voltage characteristics of a Josephson junction for both short and long junctions, and recover the multiple Andreev reflection physics. We also discuss two intrinsically time-dependent situations: the relaxation time of a Josephson junction after a quench of the voltage bias, and the propagation of voltage pulses through a Josephson junction. In the case of a ballistic, long Josephson junction, we predict that a fast voltage pulse creates an oscillatory current whose frequency is controlled by the Thouless energy of the normal part. A similar effect is found for short junctions; a voltage pulse produces an oscillating current which, in the absence of electromagnetic environment, does not relax.
Time scale algorithms for an inhomogeneous group of atomic clocks
NASA Technical Reports Server (NTRS)
Jacques, C.; Boulanger, J.-S.; Douglas, R. J.; Morris, D.; Cundy, S.; Lam, H. F.
1993-01-01
Through the past 17 years, the time scale requirements at the National Research Council (NRC) have been met by the unsteered output of its primary laboratory cesium clocks, supplemented by hydrogen masers when short-term stability better than 2 x 10(exp -12)tau(sup -1/2) has been required. NRC now operates three primary laboratory cesium clocks, three hydrogen masers, and two commercial cesium clocks. NRC has been using ensemble averages for internal purposes for the past several years, and has a realtime algorithm operating on the outputs of its high-resolution (2 x 10(exp -13) s at 1 s) phase comparators. The slow frequency drift of the hydrogen masers has presented difficulties in incorporating their short-term stability into the ensemble average, while retaining the long-term stability of the laboratory cesium frequency standards. We report on this work on algorithms for an inhomogeneous ensemble of atomic clocks, and on our initial work on time scale algorithms that could incorporate frequency calibrations at NRC from the next generation of Zacharias fountain cesium frequency standards having frequency accuracies that might surpass 10(exp -15), or from single-trapped-ion frequency standards (Ba+, Sr+,...) with even higher potential accuracies. The requirements for redundancy in all the elements (including the algorithms) of an inhomogeneous ensemble that would give a robust real-time output of the algorithms are presented and discussed.
Effects of sleep inertia after daytime naps vary with executive load and time of day.
Groeger, John A; Lo, June C Y; Burns, Christopher G; Dijk, Derk-Jan
2011-04-01
The effects of executive load on working memory performance during sleep inertia after morning or afternoon naps were assessed using a mixed design with nap/wake as a between-subjects factor and morning/afternoon condition as a within-subject factor. Thirty-two healthy adults (mean 22.5 ± 3.0 years) attended two laboratory sessions after a night of restricted sleep (6 hrs), and at first visit, were randomly assigned to the Nap or Wake group. Working memory (n-back) and subjective workload were assessed approximately 5 and 25 minutes after 90-minute morning and afternoon nap opportunities and at the corresponding times in the Wake condition. Actigraphically assessed nocturnal sleep duration, subjective sleepiness, and psychomotor vigilance performance before daytime assessments did not vary across conditions. Afternoon naps showed shorter EEG assessed sleep latencies, longer sleep duration, and more Slow Wave Sleep than morning naps. Working memory performance deteriorated, and subjective mental workload increased at higher executive loadings. After afternoon naps, participants performed less well on more executive-function intensive working memory tasks (i.e., 3-back), but waking and napping participants performed equally well on simpler tasks. After some 30 minutes of cognitive activity, there were no longer performance differences between the waking and napping groups. Subjective Task Difficulty and Mental Effort requirements were less affected by sleep inertia and dissociated from objective measures when participants had napped in the afternoon. We conclude that executive functions take longer to return to asymptotic performance after sleep than does performance of simpler tasks which are less reliant on executive functions. PMID:21463024
Kretschmer, Anett; Voigt, Babett; Friedrich, Sylva; Pfeiffer, Kathrin; Kliegel, Matthias
2014-01-01
The present study investigated time-based prospective memory (PM) during the transition from kindergarten/preschool to school age and applied mediation models to test the impact of executive functions (working memory, inhibitory control) and time monitoring on time-based PM development. Twenty-five preschool (age: M = 5.75, SD = 0.28) and 22 primary school children (age: M = 7.83, SD = 0.39) participated. To examine time-based PM, children had to play a computer-based driving game requiring them to drive a car on a road without hitting others cars (ongoing task) and to refill the car regularly according to a fuel gauge, which serves as clock equivalent (PM task). The level of gas that was still left in the fuel gauge was not displayed on the screen and children had to monitor it via a button press (time monitoring). Results revealed a developmental increase in time-based PM performance from preschool to school age. Applying the mediation models, only working memory was revealed to influence PM development. Neither inhibitory control alone nor the mediation paths leading from both executive functions to time monitoring could explain the link between age and time-based PM. Thus, results of the present study suggest that working memory may be one key cognitive process driving the developmental growth of time-based PM during the transition from preschool to school age. PMID:24111941
A Quantum Algorithm for Estimating Hitting Times of Markov Chains
NASA Astrophysics Data System (ADS)
Narayan Chowdhury, Anirban; Somma, Rolando
We present a quantum algorithm to estimate the hitting time of a reversible Markov chain faster than classically possible. To this end, we show that the hitting time is given by an expected value of the inverse of a Hermitian matrix. To obtain this expected value, our algorithm combines three important techniques developed in the literature. One such a technique is called spectral gap amplification and we use it to amplify the gap of the Hermitian matrix or reduce its condition number. We then use a new algorithm by Childs, Kothari, and Somma to implement the inverse of a matrix, and finally use methods developed in the context of quantum metrology to reduce the complexity of expected-value estimation for a given precision. The authors acknowledge support from AFOSR Grant Number FA9550-12-1-0057 and the Google Research Award.
NASA Astrophysics Data System (ADS)
Valorani, Mauro; Goussis, Dimitrios A.
2001-05-01
A new explicit algorithm based on the computational singular perturbation (CSP) method is presented. This algorithm is specifically designed to solve stiff problems, and its performance increases with stiffness. The key concept in its structure is the splitting of the fast from the slow time scales in the problem, realized by embedding CSP concepts into an explicit scheme. In simple terms, the algorithm marches in time with only the terms producing the slow time scales, while the contribution of the terms producing the fast time scales is taken into account at the end of each integration step as a correction. The new algorithm is designed for the integration of stiff systems of PDEs by means of explicit schemes. For simplicity in the presentation and discussion of the different features of the new algorithm, a simple test case is considered, involving the auto-ignition of a methane/air mixture behind a normal shock wave, which is described by a system of ODEs. The performance of the new algorithm (accuracy and computational efficiency) is then compared with the well-known LSODE package. Its merits when used for the solution of systems of PDEs are discussed. Although when dealing with a stiff system of ODEs the new algorithm is shown to provide equal accuracy with that delivered by LSODE at the cost of higher execution time, the results indicate that its performance could be superior when facing a stiff system of PDEs.
Lidar detection algorithm for time and range anomalies
NASA Astrophysics Data System (ADS)
Ben-David, Avishai; Davidson, Charles E.; Vanderbeek, Richard G.
2007-10-01
A new detection algorithm for lidar applications has been developed. The detection is based on hyperspectral anomaly detection that is implemented for time anomaly where the question "is a target (aerosol cloud) present at range R within time t1 to t2" is addressed, and for range anomaly where the question "is a target present at time t within ranges R1 and R2" is addressed. A detection score significantly different in magnitude from the detection scores for background measurements suggests that an anomaly (interpreted as the presence of a target signal in space/time) exists. The algorithm employs an option for a preprocessing stage where undesired oscillations and artifacts are filtered out with a low-rank orthogonal projection technique. The filtering technique adaptively removes the one over range-squared dependence of the background contribution of the lidar signal and also aids visualization of features in the data when the signal-to-noise ratio is low. A Gaussian-mixture probability model for two hypotheses (anomaly present or absent) is computed with an expectation-maximization algorithm to produce a detection threshold and probabilities of detection and false alarm. Results of the algorithm for CO2 lidar measurements of bioaerosol clouds Bacillus atrophaeus (formerly known as Bacillus subtilis niger, BG) and Pantoea agglomerans, Pa (formerly known as Erwinia herbicola, Eh) are shown and discussed.
Lidar detection algorithm for time and range anomalies.
Ben-David, Avishai; Davidson, Charles E; Vanderbeek, Richard G
2007-10-10
A new detection algorithm for lidar applications has been developed. The detection is based on hyperspectral anomaly detection that is implemented for time anomaly where the question "is a target (aerosol cloud) present at range R within time t(1) to t(2)" is addressed, and for range anomaly where the question "is a target present at time t within ranges R(1) and R(2)" is addressed. A detection score significantly different in magnitude from the detection scores for background measurements suggests that an anomaly (interpreted as the presence of a target signal in space/time) exists. The algorithm employs an option for a preprocessing stage where undesired oscillations and artifacts are filtered out with a low-rank orthogonal projection technique. The filtering technique adaptively removes the one over range-squared dependence of the background contribution of the lidar signal and also aids visualization of features in the data when the signal-to-noise ratio is low. A Gaussian-mixture probability model for two hypotheses (anomaly present or absent) is computed with an expectation-maximization algorithm to produce a detection threshold and probabilities of detection and false alarm. Results of the algorithm for CO(2) lidar measurements of bioaerosol clouds Bacillus atrophaeus (formerly known as Bacillus subtilis niger, BG) and Pantoea agglomerans, Pa (formerly known as Erwinia herbicola, Eh) are shown and discussed. PMID:17932542
A Real-Time Rover Executive based On Model-Based Reactive Planning
NASA Technical Reports Server (NTRS)
Bias, M. Bernardine; Lemai, Solange; Muscettola, Nicola; Korsmeyer, David (Technical Monitor)
2003-01-01
This paper reports on the experimental verification of the ability of IDEA (Intelligent Distributed Execution Architecture) effectively operate at multiple levels of abstraction in an autonomous control system. The basic hypothesis of IDEA is that a large control system can be structured as a collection of interacting control agents, each organized around the same fundamental structure. Two IDEA agents, a system-level agent and a mission-level agent, are designed and implemented to autonomously control the K9 rover in real-time. The system is evaluated in the scenario where the rover must acquire images from a specified set of locations. The IDEA agents are responsible for enabling the rover to achieve its goals while monitoring the execution and safety of the rover and recovering from dangerous states when necessary. Experiments carried out both in simulation and on the physical rover, produced highly promising results.
Timescape: a simple space-time interpolation geostatistical Algorithm
NASA Astrophysics Data System (ADS)
Ciolfi, Marco; Chiocchini, Francesca; Gravichkova, Olga; Pisanelli, Andrea; Portarena, Silvia; Scartazza, Andrea; Brugnoli, Enrico; Lauteri, Marco
2016-04-01
Environmental sciences include both time and space variability in their datasets. Some established tools exist for both spatial interpolation and time series analysis alone, but mixing space and time variability calls for compromise: Researchers are often forced to choose which is the main source of variation, neglecting the other. We propose a simple algorithm, which can be used in many fields of Earth and environmental sciences when both time and space variability must be considered on equal grounds. The algorithm has already been implemented in Java language and the software is currently available at https://sourceforge.net/projects/timescapeglobal/ (it is published under GNU-GPL v3.0 Free Software License). The published version of the software, Timescape Global, is focused on continent- to Earth-wide spatial domains, using global longitude-latitude coordinates for samples localization. The companion Timescape Local software is currently under development ad will be published with an open license as well; it will use projected coordinates for a local to regional space scale. The basic idea of the Timescape Algorithm consists in converting time into a sort of third spatial dimension, with the addition of some causal constraints, which drive the interpolation including or excluding observations according to some user-defined rules. The algorithm is applicable, as a matter of principle, to anything that can be represented with a continuous variable (a scalar field, technically speaking). The input dataset should contain position, time and observed value of all samples. Ancillary data can be included in the interpolation as well. After the time-space conversion, Timescape follows basically the old-fashioned IDW (Inverse Distance Weighted) interpolation Algorithm, although users have a wide choice of customization options that, at least partially, overcome some of the known issues of IDW. The three-dimensional model produced by the Timescape Algorithm can be
Efficient photoheating algorithms in time-dependent photoionization simulations
NASA Astrophysics Data System (ADS)
Lee, Kai-Yan; Mellema, Garrelt; Lundqvist, Peter
2016-02-01
We present an extension to the time-dependent photoionization code C2-RAY to calculate photoheating in an efficient and accurate way. In C2-RAY, the thermal calculation demands relatively small time-steps for accurate results. We describe two novel methods to reduce the computational cost associated with small time-steps, namely, an adaptive time-step algorithm and an asynchronous evolution approach. The adaptive time-step algorithm determines an optimal time-step for the next computational step. It uses a fast ray-tracing scheme to quickly locate the relevant cells for this determination and only use these cells for the calculation of the time-step. Asynchronous evolution allows different cells to evolve with different time-steps. The asynchronized clocks of the cells are synchronized at the times where outputs are produced. By only evolving cells which may require short time-steps with these short time-steps instead of imposing them to the whole grid, the computational cost of the calculation can be substantially reduced. We show that our methods work well for several cosmologically relevant test problems and validate our results by comparing to the results of another time-dependent photoionization code.
Reducing the time requirement of k-means algorithm.
Osamor, Victor Chukwudi; Adebiyi, Ezekiel Femi; Oyelade, Jelilli Olarenwaju; Doumbia, Seydou
2012-01-01
Traditional k-means and most k-means variants are still computationally expensive for large datasets, such as microarray data, which have large datasets with large dimension size d. In k-means clustering, we are given a set of n data points in d-dimensional space R(d) and an integer k. The problem is to determine a set of k points in R(d), called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this work, we develop a novel k-means algorithm, which is simple but more efficient than the traditional k-means and the recent enhanced k-means. Our new algorithm is based on the recently established relationship between principal component analysis and the k-means clustering. We provided the correctness proof for this algorithm. Results obtained from testing the algorithm on three biological data and six non-biological data (three of these data are real, while the other three are simulated) also indicate that our algorithm is empirically faster than other known k-means algorithms. We assessed the quality of our algorithm clusters against the clusters of a known structure using the Hubert-Arabie Adjusted Rand index (ARI(HA)). We found that when k is close to d, the quality is good (ARI(HA)>0.8) and when k is not close to d, the quality of our new k-means algorithm is excellent (ARI(HA)>0.9). In this paper, emphases are on the reduction of the time requirement of the k-means algorithm and its application to microarray data due to the desire to create a tool for clustering and malaria research. However, the new clustering algorithm can be used for other clustering needs as long as an appropriate measure of distance between the centroids and the members is used. This has been demonstrated in this work on six non-biological data. PMID:23239974
Fully efficient time-parallelized quantum optimal control algorithm
NASA Astrophysics Data System (ADS)
Riahi, M. K.; Salomon, J.; Glaser, S. J.; Sugny, D.
2016-04-01
We present a time-parallelization method that enables one to accelerate the computation of quantum optimal control algorithms. We show that this approach is approximately fully efficient when based on a gradient method as optimization solver: the computational time is approximately divided by the number of available processors. The control of spin systems, molecular orientation, and Bose-Einstein condensates are used as illustrative examples to highlight the wide range of applications of this numerical scheme.
An exponential time 2-approximation algorithm for bandwidth
Kasiviswanathan, Shiva; Furer, Martin; Gaspers, Serge
2009-01-01
The bandwidth of a graph G on n vertices is the minimum b such that the vertices of G can be labeled from 1 to n such that the labels of every pair of adjacent vertices differ by at most b. In this paper, we present a 2-approximation algorithm for the Bandwidth problem that takes worst-case {Omicron}(1.9797{sup n}) = {Omicron}(3{sup 0.6217n}) time and uses polynomial space. This improves both the previous best 2- and 3-approximation algorithms of Cygan et al. which have an {Omicron}*(3{sup n}) and {Omicron}*(2{sup n}) worst-case time bounds, respectively. Our algorithm is based on constructing bucket decompositions of the input graph. A bucket decomposition partitions the vertex set of a graph into ordered sets (called buckets) of (almost) equal sizes such that all edges are either incident on vertices in the same bucket or on vertices in two consecutive buckets. The idea is to find the smallest bucket size for which there exists a bucket decomposition. The algorithm uses a simple divide-and-conquer strategy along with dynamic programming to achieve this improved time bound.
A post-processing algorithm for time domain pitch trackers
NASA Astrophysics Data System (ADS)
Specker, P.
1983-01-01
This paper describes a powerful post-processing algorithm for time-domain pitch trackers. On two successive passes, the post-processing algorithm eliminates errors produced during a first pass by a time-domain pitch tracker. During the second pass, incorrect pitch values are detected as outliers by computing the distribution of values over a sliding 80 msec window. During the third pass (based on artificial intelligence techniques), remaining pitch pulses are used as anchor points to reconstruct the pitch train from the original waveform. The algorithm produced a decrease in the error rate from 21% obtained with the original time domain pitch tracker to 2% for isolated words and sentences produced in an office environment by 3 male and 3 female talkers. In a noisy computer room errors decreased from 52% to 2.9% for the same stimuli produced by 2 male talkers. The algorithm is efficient, accurate, and resistant to noise. The fundamental frequency micro-structure is tracked sufficiently well to be used in extracting phonetic features in a feature-based recognition system.
Time-series pattern recognition with an immune algorithm
NASA Astrophysics Data System (ADS)
Paprocka, I.; Kempa, W. M.; Grabowik, C.; Kalinowski, K.
2015-11-01
In this paper, changes in sequences pattern describing damage-sensitive features of an object which undergoes a failure mode are recognized using an immune algorithm. A frequency response change is an effect for various failure modes occurrence. The objective of this paper is to present immune algorithm for pattern recognition which can discover dependencies between failure mode and effect - frequency response change. Changes in the effect are described with noise due to the fact that the object operates in external conditions. In the immune algorithm antibodies encode various changes in the effect after a given mode occurrence by a number of time. A pathogen encodes a noisy effect of the mode occurrence. Antibodies belonging to a given neighbourhood represent effects after a given type of failure mode occurrence. Antibodies from the neighbourhood undergo clonal selection and affinity maturation process. With the best matched antibody the type of failure mode is achieved.
An algorithm for the Italian atomic time scale
NASA Technical Reports Server (NTRS)
Cordara, F.; Vizio, G.; Tavella, P.; Pettiti, V.
1994-01-01
During the past twenty years, the time scale at the IEN has been realized by a commercial cesium clock, selected from an ensemble of five, whose rate has been continuously steered towards UTC to maintain a long term agreement within 3 x 10(exp -13). A time scale algorithm, suitable for a small clock ensemble and capable of improving the medium and long term stability of the IEN time scale, has been recently designed taking care of reducing the effects of the seasonal variations and the sudden frequency anomalies of the single cesium clocks. The new time scale, TA(IEN), is obtained as a weighted average of the clock ensemble computed once a day from the time comparisons between the local reference UTC(IEN) and the single clocks. It is foreseen to include in the computation also ten cesium clocks maintained in other Italian laboratories to further improve its reliability and its long term stability. To implement this algorithm, a personal computer program in Quick Basic has been prepared and it has been tested at the IEN time and frequency laboratory. Results obtained using this algorithm on the real clocks data relative to a period of about two years are presented.
Efficient Algorithms for Segmentation of Item-Set Time Series
NASA Astrophysics Data System (ADS)
Chundi, Parvathi; Rosenkrantz, Daniel J.
We propose a special type of time series, which we call an item-set time series, to facilitate the temporal analysis of software version histories, email logs, stock market data, etc. In an item-set time series, each observed data value is a set of discrete items. We formalize the concept of an item-set time series and present efficient algorithms for segmenting a given item-set time series. Segmentation of a time series partitions the time series into a sequence of segments where each segment is constructed by combining consecutive time points of the time series. Each segment is associated with an item set that is computed from the item sets of the time points in that segment, using a function which we call a measure function. We then define a concept called the segment difference, which measures the difference between the item set of a segment and the item sets of the time points in that segment. The segment difference values are required to construct an optimal segmentation of the time series. We describe novel and efficient algorithms to compute segment difference values for each of the measure functions described in the paper. We outline a dynamic programming based scheme to construct an optimal segmentation of the given item-set time series. We use the item-set time series segmentation techniques to analyze the temporal content of three different data sets—Enron email, stock market data, and a synthetic data set. The experimental results show that an optimal segmentation of item-set time series data captures much more temporal content than a segmentation constructed based on the number of time points in each segment, without examining the item set data at the time points, and can be used to analyze different types of temporal data.
NASA Technical Reports Server (NTRS)
Schoppers, Marcel
1994-01-01
The design of a flexible, real-time software architecture for trajectory planning and automatic control of redundant manipulators is described. Emphasis is placed on a technique of designing control systems that are both flexible and robust yet have good real-time performance. The solution presented involves an artificial intelligence algorithm that dynamically reprograms the real-time control system while planning system behavior.
Color reproduction and processing algorithm based on real-time mapping for endoscopic images.
Khan, Tareq H; Mohammed, Shahed K; Imtiaz, Mohammad S; Wahid, Khan A
2016-01-01
In this paper, we present a real-time preprocessing algorithm for image enhancement for endoscopic images. A novel dictionary based color mapping algorithm is used for reproducing the color information from a theme image. The theme image is selected from a nearby anatomical location. A database of color endoscopy image for different location is prepared for this purpose. The color map is dynamic as its contents change with the change of the theme image. This method is used on low contrast grayscale white light images and raw narrow band images to highlight the vascular and mucosa structures and to colorize the images. It can also be applied to enhance the tone of color images. The statistic visual representation and universal image quality measures show that the proposed method can highlight the mucosa structure compared to other methods. The color similarity has been verified using Delta E color difference, structure similarity index, mean structure similarity index and structure and hue similarity. The color enhancement was measured using color enhancement factor that shows considerable improvements. The proposed algorithm has low and linear time complexity, which results in higher execution speed than other related works. PMID:26759756
NASA Technical Reports Server (NTRS)
Metcalfe, A. G.; Bodenheimer, R. E.
1976-01-01
A parallel algorithm for counting the number of logic-l elements in a binary array or image developed during preliminary investigation of the Tse concept is described. The counting algorithm is implemented using a basic combinational structure. Modifications which improve the efficiency of the basic structure are also presented. A programmable Tse computer structure is proposed, along with a hardware control unit, Tse instruction set, and software program for execution of the counting algorithm. Finally, a comparison is made between the different structures in terms of their more important characteristics.
Pseudo-time algorithms for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Turkel, E.
1986-01-01
A pseudo-time method is introduced to integrate the compressible Navier-Stokes equations to a steady state. This method is a generalization of a method used by Crocco and also by Allen and Cheng. We show that for a simple heat equation that this is just a renormalization of the time. For a convection-diffusion equation the renormalization is dependent only on the viscous terms. We implement the method for the Navier-Stokes equations using a Runge-Kutta type algorithm. This permits the time step to be chosen based on the inviscid model only. We also discuss the use of residual smoothing when viscous terms are present.
New approximation algorithms for flow shop total completion time problem
NASA Astrophysics Data System (ADS)
Bai, Danyu; Ren, Tao
2013-09-01
This article addresses the flow shop scheduling problem to minimize the sum of the completion times. On the basis of the properties in job sequencing, the triangular shortest processing time (TSPT) first and dynamic triangular shortest processing time first heuristics are designed to solve the static and dynamic versions of this problem, respectively. Moreover, an improvement scheme is provided for these heuristics to enhance the quality of the original solutions. For further numerical evaluation of the heuristics, two new lower bounds with performance guarantees are presented for the two versions of the problem. At the end of the article, a series of numerical experiments is conducted to demonstrate the effectiveness of the algorithms.
Integrating impairments in reaction time and executive function using a diffusion model framework.
Karalunas, Sarah L; Huang-Pollock, Cynthia L
2013-07-01
Using Ratcliff's diffusion model and ex-Gaussian decomposition, we directly evaluate the role individual differences in reaction time (RT) distribution components play in the prediction of inhibitory control and working memory (WM) capacity in children with and without ADHD. Children with (n = 91, [Formula: see text] age = 10.2 years, 67 % male) and without ADHD (n = 62, [Formula: see text] age = 10.6 years, 46 % male) completed four tasks of WM and a stop signal reaction time (SSRT) task. Children with ADHD had smaller WM capacities and less efficient inhibitory control. Diffusion model analyses revealed that children with ADHD had slower drift rates (v) and faster non-decision times (Ter), but there were no group differences in boundary separations (a). Similarly, using an ex-Gaussian approach, children with ADHD had larger τ values than non-ADHD controls, but did not differ in μ or σ distribution components. Drift rate mediated the association between ADHD status and performance on both inhibitory control and WM capacity. τ also mediated the ADHD-executive function impairment associations; however, models were a poorer fit to the data. Impaired performance on RT and executive functioning tasks has long been associated with childhood ADHD. Both are believed to be important cognitive mechanisms to the disorder. We demonstrate here that drift rate, or the speed at which information accumulates towards a decision, is able to explain both. PMID:23334775
Integrating impairments in reaction time and executive function using a diffusion model framework
Karalunas, Sarah L.; Huang-Pollock, Cynthia L.
2013-01-01
Using Ratcliff’s diffusion model and ex-Gaussian decomposition, we directly evaluate the role individual differences in reaction time (RT) distribution components play in the prediction of inhibitory control and working memory (WM) capacity in children with and without ADHD. Children with (n=92, x̄ age= 10.2 years, 67% male) and without ADHD (n=62, x̄ age=10.6 years, 46% male) completed four tasks of WM and a stop signal reaction time (SSRT) task. Children with ADHD had smaller WM capacities and less efficient inhibitory control. Diffusion model analyses revealed that children with ADHD had slower drift rates (v) and faster non-decision times (Ter), but there were no group differences in boundary separations (a). Similarly, using an ex-Gaussian approach, children with ADHD had larger τ values than non-ADHD controls, but did not differ in µ or σ distribution components. Drift rate mediated the association between ADHD status and performance on both inhibitory control and WM capacity. τ also mediated the ADHD-executive function impairment associations; however, models were a poorer fit to the data. Impaired performance on RT and executive functioning tasks has long been associated with childhood ADHD. Both are believed to be important cognitive mechanisms to the disorder. We demonstrate here that drift rate, or the speed at which information accumulates towards a decision, is able to explain both. PMID:23334775
Real-time algorithm for robust coincidence search
Petrovic, T.; Vencelj, M.; Lipoglavsek, M.; Gajevic, J.; Pelicon, P.
2012-10-20
In in-beam {gamma}-ray spectroscopy experiments, we often look for coincident detection events. Among every N events detected, coincidence search is naively of principal complexity O(N{sup 2}). When we limit the approximate width of the coincidence search window, the complexity can be reduced to O(N), permitting the implementation of the algorithm into real-time measurements, carried out indefinitely. We have built an algorithm to find simultaneous events between two detection channels. The algorithm was tested in an experiment where coincidences between X and {gamma} rays detected in two HPGe detectors were observed in the decay of {sup 61}Cu. Functioning of the algorithm was validated by comparing calculated experimental branching ratio for EC decay and theoretical calculation for 3 selected {gamma}-ray energies for {sup 61}Cu decay. Our research opened a question on the validity of the adopted value of total angular momentum of the 656 keV state (J{sup {pi}} = 1/2{sup -}) in {sup 61}Ni.
A combined algorithm for minimum time slewing of flexible spacecraft
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Li, F.; Xu, J.
1994-01-01
The use of Pontryagin's Maximum Principle for the large-angle slewing of large flexible structures usually results in the so-called two-point boundary-value problem (TPBVP), in which many requirements (e.g., minimum time, small flexible amplitude, and limited control powers, etc.) must be satisfied simultaneously. The successful solution of this problem depends largely on the use of an efficient numerical computational algorithm. There are many candidate algorithms available for his problem (e.g., quasilinearization, gradient, and shooting, etc.). In this paper, a proposed algorithm, which combines the quasilinearization method with a time shortening technique and a shooting method, is applied to the minimum-time, three-dimensional, and large-angle maneuver of flexible spacecraft, particularly the orbiting Spacecraft Control Laboratory Experiment (SCOLE) configuration. Theoretically, the nonlinear TPBVP can be solved only through the shooting method to find the 'exact' switching times for the bang-bang controls. However, computationally, a suitable guess for the missing initial costates is crucial because the convergence range of the unknown initial costates is usually narrow, especially for systems with high dimensions and when a multi-bang-bang control strategy is needed. On the other hand, the problems of near minimum time attitude maneuver of general rigid spacecraft and fast slewing of flexible spacecraft have been examined by the authors through a numerical approach based on the quasilinearization algorithm with a time shortening technique. Computational results have demonstrated its broad convergence range and insensitivity to initial costate choices. Consequently, a combined approach is naturally suggested here to solve the minimum time slewing problem. That is, in the computational process, the quasilinearization method is used first to obtain a near minimum time solution. Then, the acquired converged initial costates from the quasilinearization approach
Karlsson, Jonny; Dooley, Laurence S; Pulkkis, Göran
2013-01-01
Traversal time and hop count analysis (TTHCA) is a recent wormhole detection algorithm for mobile ad hoc networks (MANET) which provides enhanced detection performance against all wormhole attack variants and network types. TTHCA involves each node measuring the processing time of routing packets during the route discovery process and then delivering the measurements to the source node. In a participation mode (PM) wormhole where malicious nodes appear in the routing tables as legitimate nodes, the time measurements can potentially be altered so preventing TTHCA from successfully detecting the wormhole. This paper analyses the prevailing conditions for time tampering attacks to succeed for PM wormholes, before introducing an extension to the TTHCA detection algorithm called ∆T Vector which is designed to identify time tampering, while preserving low false positive rates. Simulation results confirm that the ∆T Vector extension is able to effectively detect time tampering attacks, thereby providing an important security enhancement to the TTHCA algorithm. PMID:23686143
Karlsson, Jonny; Dooley, Laurence S.; Pulkkis, Göran
2013-01-01
Traversal time and hop count analysis (TTHCA) is a recent wormhole detection algorithm for mobile ad hoc networks (MANET) which provides enhanced detection performance against all wormhole attack variants and network types. TTHCA involves each node measuring the processing time of routing packets during the route discovery process and then delivering the measurements to the source node. In a participation mode (PM) wormhole where malicious nodes appear in the routing tables as legitimate nodes, the time measurements can potentially be altered so preventing TTHCA from successfully detecting the wormhole. This paper analyses the prevailing conditions for time tampering attacks to succeed for PM wormholes, before introducing an extension to the TTHCA detection algorithm called ΔT Vector which is designed to identify time tampering, while preserving low false positive rates. Simulation results confirm that the ΔT Vector extension is able to effectively detect time tampering attacks, thereby providing an important security enhancement to the TTHCA algorithm. PMID:23686143
NASA Astrophysics Data System (ADS)
Guo, Peng; Cheng, Wenming; Wang, Yi
2015-11-01
This article considers the parallel machine scheduling problem with step-deteriorating jobs and sequence-dependent setup times. The objective is to minimize the total tardiness by determining the allocation and sequence of jobs on identical parallel machines. In this problem, the processing time of each job is a step function dependent upon its starting time. An individual extended time is penalized when the starting time of a job is later than a specific deterioration date. The possibility of deterioration of a job makes the parallel machine scheduling problem more challenging than ordinary ones. A mixed integer programming model for the optimal solution is derived. Due to its NP-hard nature, a hybrid discrete cuckoo search algorithm is proposed to solve this problem. In order to generate a good initial swarm, a modified Biskup-Hermann-Gupta (BHG) heuristic called MBHG is incorporated into the population initialization. Several discrete operators are proposed in the random walk of Lévy flights and the crossover search. Moreover, a local search procedure based on variable neighbourhood descent is integrated into the algorithm as a hybrid strategy in order to improve the quality of elite solutions. Computational experiments are executed on two sets of randomly generated test instances. The results show that the proposed hybrid algorithm can yield better solutions in comparison with the commercial solver CPLEX® with a one hour time limit, the discrete cuckoo search algorithm and the existing variable neighbourhood search algorithm.
ERIC Educational Resources Information Center
Farbman, David; Kaplan, Claire
2005-01-01
Massachusetts 2020 is a nonprofit operating foundation with a mission to expand educational and economic opportunities for children and families across Massachusetts. Massachusetts 2020, with support from the L.G. Balfour Foundation, a Bank of America Company, set out to understand how a select group of extended-time schools in Massachusetts and…
NASA Technical Reports Server (NTRS)
Kim, K. H.; Welch, Howard O.
1989-01-01
The concept of distributed execution of recovery blocks is examined as an approach for uniform treatment of hardware and software faults. A useful characteristic of the approach is the relatively small time cost it requires. The approach is thus suitable for incorporation into real-time computer systems. A specific formulation of the approach that is aimed at minimizing the recovery time is presented, called the distributed recovery block (DRB) scheme. The DRB scheme is capable of effecting forward recovery while handling both hardware and software faults in a uniform manner. An approach to incorporating the capability for multiprocessing scheme is also discussed. Two experiments aimed at testing the execution efficiency of the scheme in real-time applications have been conducted on two different multimicrocomputer networks. The results clearly indicate the feasibility of achieving tolerance of hardware and software faults in a broad range of real-time computer systems by use of the schemes for distributed execution of recovery blocks.
Echoed time series predictions, neural networks and genetic algorithms
NASA Astrophysics Data System (ADS)
Conway, A.
This work aims to illustrate a potentially serious and previously unrecognised problem in using Neural Networks (NNs), and possibly other techniques, to predict Time Series (TS). It also demonstrates how a new training scheme using a genetic algorithm can alleviate this problem. Although it is already established that NNs can predict TS such as Sunspot Number (SSN) with reasonable success, the accuracy of these predictions is often judged solely by an RMS or related error. The use of this type of error overlooks the presence of what we have termed echoing, where the NN outputs its most recent input as its prediction. Therefore, a method of detecting echoed predictions is introduced, called time-shifting. Reasons for the presence of echo are discussed and then related to the choice of TS sampling. Finally, a new specially designed training scheme is described, which is a hybrid of a genetic algorithm search and back propagation. With this method we have successfully trained NNs to predict without any echo.
Two algorithms to fill cloud gaps in LST time series
NASA Astrophysics Data System (ADS)
Frey, Corinne; Kuenzer, Claudia
2013-04-01
Cloud contamination is a challenge for optical remote sensing. This is especially true for the recording of a fast changing radiative quantity like land surface temperature (LST). The substitution of cloud contaminated pixels with estimated values - gap filling - is not straightforward but possible to a certain extent, as this research shows for medium-resolution time series of MODIS data. Area of interest is the Upper Mekong Delta (UMD). The background for this work is an analysis of the temporal development of 1-km LST in the context of the WISDOM project. The climate of the UMD is characterized by peak rainfalls in the summer months, which is also the time where cloud contamination is highest in the area. Average number of available daytime observations per pixel can go down to less than five for example in the month of June. In winter the average number may reach 25 observations a month. This situation is not appropriate to the calculation of longterm statistics; an adequate gap filling method should be used beforehand. In this research, two different algorithms were tested on an 11 year time series: 1) a gradient based algorithm and 2) a method based on ECMWF era interim re-analysis data. The first algorithm searches for stable inter-image gradients from a given environment and for a certain period of time. These gradients are then used to estimate LST for cloud contaminated pixels in each acquisition. The estimated LSTs are clear-sky LSTs and solely based on the MODIS LST time series. The second method estimates LST on the base of adapted ECMWF era interim skin temperatures and creates a set of expected LSTs. The estimated values were used to fill the gaps in the original dataset, creating two new daily, 1 km datasets. The maps filled with the gradient based method had more than the double amount of valid pixels than the original dataset. The second method (ECMWF era interim based) was able to fill all data gaps. From the gap filled data sets then monthly
Timing Analysis with INTEGRAL: Comparing Different Reconstruction Algorithms
NASA Technical Reports Server (NTRS)
Grinberg, V.; Kreykenboehm, I.; Fuerst, F.; Wilms, J.; Pottschmidt, K.; Bel, M. Cadolle; Rodriquez, J.; Marcu, D. M.; Suchy, S.; Markowitz, A.; Nowak, M. A.
2010-01-01
INTEGRAL is one of the few instruments capable of detecting X-rays above 20keV. It is therefore in principle well suited for studying X-ray variability in this regime. Because INTEGRAL uses coded mask instruments for imaging, the reconstruction of light curves of X-ray sources is highly non-trivial. We present results from the comparison of two commonly employed algorithms, which primarily measure flux from mask deconvolution (ii-lc-extract) and from calculating the pixel illuminated fraction (ii-light). Both methods agree well for timescales above about 10 s, the highest time resolution for which image reconstruction is possible. For higher time resolution, ii-light produces meaningful results, although the overall variance of the lightcurves is not preserved.
An Algorithm for Network Real Time Kinematic Processing
NASA Astrophysics Data System (ADS)
Malekzadeh, A.; Asgari, J.; Amiri-Simkooei, A. R.
2015-12-01
NRTK1 is an efficient method to achieve precise real time positioning from GNSS measurements. In this paper we attempt to improve NRTK algorithm by introducing a new strategy. In this strategy a precise relocation of master station observations is performed using Sagnac effect. After processing the double differences, the tropospheric and ionospheric errors of each baseline can be estimated separately. The next step is interpolation of these errors for the atmospheric errors mitigation of desired baseline. Linear and kriging interpolation methods are implemented in this study. In the new strategy the RINEX2 data of the master station is re-located and is converted to the desired virtual observations. Then the interpolated corrections are applied to the virtual observations. The results are compared by the classical method of VRS generation. 1 Network Real Time Kinematic 2 Receiver Independent Exchange Format
A multilevel Cartesian non-uniform grid time domain algorithm
Meng Jun; Boag, Amir; Lomakin, Vitaliy; Michielssen, Eric
2010-11-01
A multilevel Cartesian non-uniform grid time domain algorithm (CNGTDA) is introduced to rapidly compute transient wave fields radiated by time dependent three-dimensional source constellations. CNGTDA leverages the observation that transient wave fields generated by temporally bandlimited and spatially confined source constellations can be recovered via interpolation from appropriately delay- and amplitude-compensated field samples. This property is used in conjunction with a multilevel scheme, in which the computational domain is hierarchically decomposed into subdomains with sparse non-uniform grids used to obtain the fields. For both surface and volumetric source distributions, the computational cost of CNGTDA to compute the transient field at N{sub s} observation locations from N{sub s} collocated sources for N{sub t} discrete time instances scales as O(N{sub t}N{sub s}logN{sub s}) and O(N{sub t}N{sub s}log{sup 2}N{sub s}) in the low- and high-frequency regimes, respectively. Coupled with marching-on-in-time (MOT) time domain integral equations, CNGTDA can facilitate efficient analysis of large scale time domain electromagnetic and acoustic problems.
Role of sleep continuity and total sleep time in executive function across the adult lifespan.
Wilckens, Kristine A; Woo, Sarah G; Kirk, Afton R; Erickson, Kirk I; Wheeler, Mark E
2014-09-01
The importance of sleep for cognition in young adults is well established, but the role of habitual sleep behavior in cognition across the adult life span remains unknown. We examined the relationship between sleep continuity and total sleep time as assessed with a sleep-detection device, and cognitive performance using a battery of tasks in young (n = 59, mean age = 23.05) and older (n = 53, mean age = 62.68) adults. Across age groups, higher sleep continuity was associated with better cognitive performance. In the younger group, higher sleep continuity was associated with better working memory and inhibitory control. In the older group, higher sleep continuity was associated with better inhibitory control, memory recall, and verbal fluency. Very short and very long total sleep time was associated with poorer working memory and verbal fluency, specifically in the younger group. Total sleep time was not associated with cognitive performance in any domains for the older group. These findings reveal that sleep continuity is important for executive function in both young and older adults, but total sleep time may be more important for cognition in young adults. PMID:25244484
The role of sleep continuity and total sleep time in executive function across the adult lifespan
Wilckens, Kristine A.; Woo, Sarah G.; Kirk, Afton R.; Erickson, Kirk I.; Wheeler, Mark E.
2015-01-01
The importance of sleep for cognition in young adults is well established, but the role of habitual sleep behavior in cognition across the adult lifespan remains unknown. We examined the relationship between sleep continuity and total sleep time assessed with a sleep detection device and cognitive performance using a battery of tasks in young (n = 59, mean age = 23.05) and older (n = 53, mean age = 62.68) adults. Across age groups, higher sleep continuity was associated with better cognitive performance. In the younger group, higher sleep continuity was associated with better working memory and inhibitory control. In the older group, higher sleep continuity was associated with better inhibitory control, memory recall, and verbal fluency. Very short and very long total sleep time was associated with poorer working memory and verbal fluency, specifically in the younger group. Total sleep time was not associated with cognitive performance in any domains for the older group. These findings reveal that sleep continuity is important for executive function in both young and older adults, but total sleep time may be more important for cognition in young adults. PMID:25244484
NASA Astrophysics Data System (ADS)
Joo, Cheol Min; Kim, Byung Soo
2012-09-01
This article considers a parallel machine scheduling problem with ready times, due times and sequence-dependent setup times. The objective of this problem is to determine the allocation policy of jobs and the scheduling policy of machines to minimize the weighted sum of setup times, delay times and tardy times. A mathematical model for optimal solution is derived. An in-depth analysis of the model shows that it is very complicated and difficult to obtain optimal solutions as the problem size becomes large. Therefore, two meta-heuristics, genetic algorithm (GA) and a new population-based evolutionary meta-heuristic called self-evolution algorithm (SEA), are proposed. The performances of the meta-heuristic algorithms are evaluated through comparison with optimal solutions using several randomly generated examples.
Chaos Time Series Prediction Based on Membrane Optimization Algorithms
Li, Meng; Yi, Liangzhong; Pei, Zheng; Gao, Zhisheng
2015-01-01
This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (τ, m) and least squares support vector machine (LS-SVM) (γ, σ) by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM) broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE), root mean square error (RMSE), and mean absolute percentage error (MAPE). PMID:25874249
Chaos time series prediction based on membrane optimization algorithms.
Li, Meng; Yi, Liangzhong; Pei, Zheng; Gao, Zhisheng; Peng, Hong
2015-01-01
This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (τ, m) and least squares support vector machine (LS-SVM) (γ, σ) by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM) broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE), root mean square error (RMSE), and mean absolute percentage error (MAPE). PMID:25874249
A time-efficient algorithm for implementing the Catmull-Clark subdivision method
NASA Astrophysics Data System (ADS)
Ioannou, G.; Savva, A.; Stylianou, V.
2015-10-01
Splines are the most popular methods in Figure Modeling and CAGD (Computer Aided Geometric Design) in generating smooth surfaces from a number of control points. The control points define the shape of a figure and splines calculate the required number of points which when displayed on a computer screen the result is a smooth surface. However, spline methods are based on a rectangular topological structure of points, i.e., a two-dimensional table of vertices, and thus cannot generate complex figures, such as the human and animal bodies that their complex structure does not allow them to be defined by a regular rectangular grid. On the other hand surface subdivision methods, which are derived by splines, generate surfaces which are defined by an arbitrary topology of control points. This is the reason that during the last fifteen years subdivision methods have taken the lead over regular spline methods in all areas of modeling in both industry and research. The cost of executing computer software developed to read control points and calculate the surface is run-time, due to the fact that the surface-structure required for handling arbitrary topological grids is very complicate. There are many software programs that have been developed related to the implementation of subdivision surfaces however, not many algorithms are documented in the literature, to support developers for writing efficient code. This paper aims to assist programmers by presenting a time-efficient algorithm for implementing subdivision splines. The Catmull-Clark which is the most popular of the subdivision methods has been employed to illustrate the algorithm.
Parrington, Lucy; MacMahon, Clare; Ball, Kevin
2015-01-01
Elite sports players are characterized by the ability to produce successful outcomes while attending to changing environmental conditions. Few studies have assessed whether the perceptual environment affects motor skill execution. To test the effect of changing task complexity and stimulus conditions, the authors examined response times and target accuracy of 12 elite Australian football players using a passing-based laboratory test. Data were assessed using mixed modeling and chi-square analyses. No differences were found in target accuracy for changes in complexity or stimulus condition. Decision, movement and total disposal time increased with complexity and decision hesitations were greater when distractions were present. Decision, movement and disposal time were faster for auditory in comparison to visual signals, and when free to choose, players passed more frequently to auditory rather than visual targets. These results provide perspective on how basic motor control processes such as reaction and response to stimuli are influenced in a complex motor skill. Findings suggest auditory stimuli should be included in decision-making studies and may be an important part of a decision-training environment. PMID:25584721
Overlay improvements using a real time machine learning algorithm
NASA Astrophysics Data System (ADS)
Schmitt-Weaver, Emil; Kubis, Michael; Henke, Wolfgang; Slotboom, Daan; Hoogenboom, Tom; Mulkens, Jan; Coogans, Martyn; ten Berge, Peter; Verkleij, Dick; van de Mast, Frank
2014-04-01
While semiconductor manufacturing is moving towards the 14nm node using immersion lithography, the overlay requirements are tightened to below 5nm. Next to improvements in the immersion scanner platform, enhancements in the overlay optimization and process control are needed to enable these low overlay numbers. Whereas conventional overlay control methods address wafer and lot variation autonomously with wafer pre exposure alignment metrology and post exposure overlay metrology, we see a need to reduce these variations by correlating more of the TWINSCAN system's sensor data directly to the post exposure YieldStar metrology in time. In this paper we will present the results of a study on applying a real time control algorithm based on machine learning technology. Machine learning methods use context and TWINSCAN system sensor data paired with post exposure YieldStar metrology to recognize generic behavior and train the control system to anticipate on this generic behavior. Specific for this study, the data concerns immersion scanner context, sensor data and on-wafer measured overlay data. By making the link between the scanner data and the wafer data we are able to establish a real time relationship. The result is an inline controller that accounts for small changes in scanner hardware performance in time while picking up subtle lot to lot and wafer to wafer deviations introduced by wafer processing.
Woods, David L.; Yund, E. William; Wyma, John M.; Ruff, Ron; Herron, Timothy J.
2015-01-01
Questionnaire completion is a complex task that places demands on cognitive functions subserving reading, introspective memory, decision-making, and motor control. Although computerized questionnaires and surveys are used with increasing frequency in clinical practice, few studies have examined question completion time (QCT), the time required to complete each question. Here, we analyzed QCTs in 172 control subjects and 31 patients with traumatic brain injury (TBI) who completed two computerized questionnaires, the 17-question Post-Traumatic Stress Disorder (PTSD) Checklist (PCL) and the 25-question Cognitive Failures Questionnaire (CFQ). In control subjects, robust correlations were found between self-paced QCTs on the PCL and CFQ (r = 0.82). QCTs on individual questions correlated strongly with the number of words in the question, indicating the critical role of reading speed. QCTs increased significantly with age, and were reduced in females and in subjects with increased education and computer experience. QCT z-scores, corrected for age, education, computer use, and sex, correlated more strongly with each other than with the results of other cognitive tests. Patients with a history of severe TBI showed significantly delayed QCTs, but QCTs fell within the normal range in patients with a history of mild TBI. When questionnaires are used to gather relevant patient information, simultaneous QCT measures provide reliable and clinically sensitive measures of processing speed and executive function. PMID:26042021
A novel time-domain signal processing algorithm for real time ventricular fibrillation detection
NASA Astrophysics Data System (ADS)
Monte, G. E.; Scarone, N. C.; Liscovsky, P. O.; Rotter S/N, P.
2011-12-01
This paper presents an application of a novel algorithm for real time detection of ECG pathologies, especially ventricular fibrillation. It is based on segmentation and labeling process of an oversampled signal. After this treatment, analyzing sequence of segments, global signal behaviours are obtained in the same way like a human being does. The entire process can be seen as a morphological filtering after a smart data sampling. The algorithm does not require any ECG digital signal pre-processing, and the computational cost is low, so it can be embedded into the sensors for wearable and permanent applications. The proposed algorithms could be the input signal description to expert systems or to artificial intelligence software in order to detect other pathologies.
NASA Astrophysics Data System (ADS)
Mathe, Zoltan; Charpentier, Philippe
2014-06-01
The LHCb experiment produces a huge amount of data which has associated metadata such as run number, data taking condition (detector status when the data was taken), simulation condition, etc. The data are stored in files, replicated on the Computing Grid around the world. The LHCb Bookkeeping System provides methods for retrieving datasets based on their metadata. The metadata is stored in a hybrid database model, which is a mixture of Relational and Hierarchical database models and is based on the Oracle Relational Database Management System (RDBMS). The database access has to be reliable and fast. In order to achieve a high timing performance, the tables are partitioned and the queries are executed in parallel. When we store large amounts of data the partition pruning is essential for database performance, because it reduces the amount of data retrieved from the disk and optimises the resource utilisation. This research presented here is focusing on the extended composite partitioning strategy such as range-hash partition, partition pruning and usage of the Partition-Wise joins. The system has to serve thousands of queries per minute, the performance and capability of the system is measured when the above performance optimization techniques are used.
Cable Damage Detection System and Algorithms Using Time Domain Reflectometry
Clark, G A; Robbins, C L; Wade, K A; Souza, P R
2009-03-24
This report describes the hardware system and the set of algorithms we have developed for detecting damage in cables for the Advanced Development and Process Technologies (ADAPT) Program. This program is part of the W80 Life Extension Program (LEP). The system could be generalized for application to other systems in the future. Critical cables can undergo various types of damage (e.g. short circuits, open circuits, punctures, compression) that manifest as changes in the dielectric/impedance properties of the cables. For our specific problem, only one end of the cable is accessible, and no exemplars of actual damage are available. This work addresses the detection of dielectric/impedance anomalies in transient time domain reflectometry (TDR) measurements on the cables. The approach is to interrogate the cable using time domain reflectometry (TDR) techniques, in which a known pulse is inserted into the cable, and reflections from the cable are measured. The key operating principle is that any important cable damage will manifest itself as an electrical impedance discontinuity that can be measured in the TDR response signal. Machine learning classification algorithms are effectively eliminated from consideration, because only a small number of cables is available for testing; so a sufficient sample size is not attainable. Nonetheless, a key requirement is to achieve very high probability of detection and very low probability of false alarm. The approach is to compare TDR signals from possibly damaged cables to signals or an empirical model derived from reference cables that are known to be undamaged. This requires that the TDR signals are reasonably repeatable from test to test on the same cable, and from cable to cable. Empirical studies show that the repeatability issue is the 'long pole in the tent' for damage detection, because it is has been difficult to achieve reasonable repeatability. This one factor dominated the project. The two-step model-based approach is
A Dynamic Era-Based Time-Symmetric Block Time-Step Algorithm with Parallel Implementations
NASA Astrophysics Data System (ADS)
Kaplan, Murat; Saygin, Hasan
2012-06-01
The time-symmetric block time-step (TSBTS) algorithm is a newly developed efficient scheme for N-body integrations. It is constructed on an era-based iteration. In this work, we re-designed the TSBTS integration scheme with a dynamically changing era size. A number of numerical tests were performed to show the importance of choosing the size of the era, especially for long-time integrations. Our second aim was to show that the TSBTS scheme is as suitable as previously known schemes for developing parallel N-body codes. In this work, we relied on a parallel scheme using the copy algorithm for the time-symmetric scheme. We implemented a hybrid of data and task parallelization for force calculation to handle load balancing problems that can appear in practice. Using the Plummer model initial conditions for different numbers of particles, we obtained the expected efficiency and speedup for a small number of particles. Although parallelization of the direct N-body codes is negatively affected by the communication/calculation ratios, we obtained good load-balanced results. Moreover, we were able to conserve the advantages of the algorithm (e.g., energy conservation for long-term simulations).
ERIC Educational Resources Information Center
Haishi, Koichi; Okuzumi, Hideyuki; Kokubun, Mitsuru
2011-01-01
The current research aimed to clarify the influence of age, intelligence and executive control function on the central tendency and intraindividual variability of saccadic reaction time in persons with intellectual disabilities. Participants were 44 persons with intellectual disabilities aged between 13 and 57 years whose IQs were between 14 and…
Solving the time dependent vehicle routing problem by metaheuristic algorithms
NASA Astrophysics Data System (ADS)
Johar, Farhana; Potts, Chris; Bennell, Julia
2015-02-01
The problem we consider in this study is Time Dependent Vehicle Routing Problem (TDVRP) which has been categorized as non-classical VRP. It is motivated by the fact that multinational companies are currently not only manufacturing the demanded products but also distributing them to the customer location. This implies an efficient synchronization of production and distribution activities. Hence, this study will look into the routing of vehicles which departs from the depot at varies time due to the variation in manufacturing process. We consider a single production line where demanded products are being process one at a time once orders have been received from the customers. It is assumed that order released from the production line will be loaded into scheduled vehicle which ready to be delivered. However, the delivery could only be done once all orders scheduled in the vehicle have been released from the production line. Therefore, there could be lateness on the delivery process from awaiting all customers' order of the route to be released. Our objective is to determine a schedule for vehicle routing that minimizes the solution cost including the travelling and tardiness cost. A mathematical formulation is developed to represent the problem and will be solved by two metaheuristics; Variable Neighborhood Search (VNS) and Tabu Search (TS). These algorithms will be coded in C ++ programming and run using 56's Solomon instances with some modification. The outcome of this experiment can be interpreted as the quality criteria of the different approximation methods. The comparison done shown that VNS gave the better results while consuming reasonable computational efforts.
Improvement of algorithms for digital real-time n-γ discrimination
NASA Astrophysics Data System (ADS)
Wang, Song; Xu, Peng; Lu, Chang-Bing; Huo, Yong-Gang; Zhang, Jun-Jie
2016-02-01
Three algorithms (the Charge Comparison Method, n-γ Model Analysis and the Centroid Algorithm) have been revised to improve their accuracy and broaden the scope of applications to real-time digital n-γ discrimination. To evaluate the feasibility of the revised algorithms, a comparison between the improved and original versions of each is presented. To select an optimal real-time discrimination algorithm from these six algorithms (improved and original), the figure-of-merit (FOM), Peak-Threshold Ratio (PTR), Error Probability (EP) and Simulation Time (ST) for each were calculated to obtain a quantitatively comprehensive assessment of their performance. The results demonstrate that the improved algorithms have a higher accuracy, with an average improvement of 10% in FOM, 95% in PTR and 25% in EP, but all the STs are increased. Finally, the Adjustable Centroid Algorithm (ACA) is selected as the optimal algorithm for real-time digital n-γ discrimination.
NASA Astrophysics Data System (ADS)
Bradford, Robert W.; Harrison, Denise
2015-09-01
"We have a new strategy to grow our organization." Developing the plan is just the start. Implementing it in the organization is the real challenge. Many organizations don't fail due to lack of strategy; they struggle because it isn't effectively implemented. After working with hundreds of companies on strategy development, Denise and Robert have distilled the critical areas where organizations need to focus in order to enhance profitability through superior execution. If these questions are important to your organization, you'll find useful answers in the following articles: Do you find yourself overwhelmed by too many competing priorities? How do you limit how many strategic initiatives/projects your organization is working on at one time? How do you balance your resource requirements (time and money) with the availability of these resources? How do you balance your strategic initiative requirements with the day-to-day requirements of your organization?
Oomens, Wouter; Maes, Joseph H. R.; Hasselman, Fred; Egger, Jos I. M.
2015-01-01
The concept of executive functions plays a prominent role in contemporary experimental and clinical studies on cognition. One paradigm used in this framework is the random number generation (RNG) task, the execution of which demands aspects of executive functioning, specifically inhibition and working memory. Data from the RNG task are best seen as a series of successive events. However, traditional RNG measures that are used to quantify executive functioning are mostly summary statistics referring to deviations from mathematical randomness. In the current study, we explore the utility of recurrence quantification analysis (RQA), a non-linear method that keeps the entire sequence intact, as a better way to describe executive functioning compared to traditional measures. To this aim, 242 first- and second-year students completed a non-paced RNG task. Principal component analysis of their data showed that traditional and RQA measures convey more or less the same information. However, RQA measures do so more parsimoniously and have a better interpretation. PMID:26097449
Oomens, Wouter; Maes, Joseph H R; Hasselman, Fred; Egger, Jos I M
2015-01-01
The concept of executive functions plays a prominent role in contemporary experimental and clinical studies on cognition. One paradigm used in this framework is the random number generation (RNG) task, the execution of which demands aspects of executive functioning, specifically inhibition and working memory. Data from the RNG task are best seen as a series of successive events. However, traditional RNG measures that are used to quantify executive functioning are mostly summary statistics referring to deviations from mathematical randomness. In the current study, we explore the utility of recurrence quantification analysis (RQA), a non-linear method that keeps the entire sequence intact, as a better way to describe executive functioning compared to traditional measures. To this aim, 242 first- and second-year students completed a non-paced RNG task. Principal component analysis of their data showed that traditional and RQA measures convey more or less the same information. However, RQA measures do so more parsimoniously and have a better interpretation. PMID:26097449
Computationally efficient algorithms for real-time attitude estimation
NASA Technical Reports Server (NTRS)
Pringle, Steven R.
1993-01-01
For many practical spacecraft applications, algorithms for determining spacecraft attitude must combine inputs from diverse sensors and provide redundancy in the event of sensor failure. A Kalman filter is suitable for this task, however, it may impose a computational burden which may be avoided by sub optimal methods. A suboptimal estimator is presented which was implemented successfully on the Delta Star spacecraft which performed a 9 month SDI flight experiment in 1989. This design sought to minimize algorithm complexity to accommodate the limitations of an 8K guidance computer. The algorithm used is interpreted in the framework of Kalman filtering and a derivation is given for the computation.
Time scale algorithm: Definition of ensemble time and possible uses of the Kalman filter
NASA Technical Reports Server (NTRS)
Tavella, Patrizia; Thomas, Claudine
1990-01-01
The comparative study of two time scale algorithms, devised to satisfy different but related requirements, is presented. They are ALGOS(BIPM), producing the international reference TAI at the Bureau International des Poids et Mesures, and AT1(NIST), generating the real-time time scale AT1 at the National Institute of Standards and Technology. In each case, the time scale is a weighted average of clock readings, but the weight determination and the frequency prediction are different because they are adapted to different purposes. The possibility of using a mathematical tool, such as the Kalman filter, together with the definition of the time scale as a weighted average, is also analyzed. Results obtained by simulation are presented.
Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence
Pelikan, M.; Goldberg, D.E.; Cantu-Paz, E.
2000-01-19
This paper analyzes convergence properties of the Bayesian optimization algorithm (BOA). It settles the BOA into the framework of problem decomposition used frequently in order to model and understand the behavior of simple genetic algorithms. The growth of the population size and the number of generations until convergence with respect to the size of a problem is theoretically analyzed. The theoretical results are supported by a number of experiments.
Kao, T.; Horng, S.; Wang, Y.
1995-04-01
Instead of using the base-2 number system, we use a base-m number system to represent the numbers used in the proposed algorithms. Such a strategy can be used to design an O(T) time, T = (log(sub m) N) + 1, prefix sum algorithm for a binary sequence with N-bit on a cross-bridge reconfigurable array of processors using N processors, where the data bus is m-bit wide. Then, this basic operation can be used to compute the histogram of an n x n image with G gray-level value in constant time using G x n x n processors, and compute the Hough transform of an image with N edge pixels and n x n parameter space in constant time using n x n x N processors, respectively. This result is better than the previously known results proposed in the literature. Also, the execution time of the proposed algorithms is tunable by the bus bandwidth. 43 refs.
Time series change detection: Algorithms for land cover change
NASA Astrophysics Data System (ADS)
Boriah, Shyam
can be used for decision making and policy planning purposes. In particular, previous change detection studies have primarily relied on examining differences between two or more satellite images acquired on different dates. Thus, a technological solution that detects global land cover change using high temporal resolution time series data will represent a paradigm-shift in the field of land cover change studies. To realize these ambitious goals, a number of computational challenges in spatio-temporal data mining need to be addressed. Specifically, analysis and discovery approaches need to be cognizant of climate and ecosystem data characteristics such as seasonality, non-stationarity/inter-region variability, multi-scale nature, spatio-temporal autocorrelation, high-dimensionality and massive data size. This dissertation, a step in that direction, translates earth science challenges to computer science problems, and provides computational solutions to address these problems. In particular, three key technical capabilities are developed: (1) Algorithms for time series change detection that are effective and can scale up to handle the large size of earth science data; (2) Change detection algorithms that can handle large numbers of missing and noisy values present in satellite data sets; and (3) Spatio-temporal analysis techniques to identify the scale and scope of disturbance events.
Madeira, Sara C; Oliveira, Arlindo L
2009-01-01
Background The ability to monitor the change in expression patterns over time, and to observe the emergence of coherent temporal responses using gene expression time series, obtained from microarray experiments, is critical to advance our understanding of complex biological processes. In this context, biclustering algorithms have been recognized as an important tool for the discovery of local expression patterns, which are crucial to unravel potential regulatory mechanisms. Although most formulations of the biclustering problem are NP-hard, when working with time series expression data the interesting biclusters can be restricted to those with contiguous columns. This restriction leads to a tractable problem and enables the design of efficient biclustering algorithms able to identify all maximal contiguous column coherent biclusters. Methods In this work, we propose e-CCC-Biclustering, a biclustering algorithm that finds and reports all maximal contiguous column coherent biclusters with approximate expression patterns in time polynomial in the size of the time series gene expression matrix. This polynomial time complexity is achieved by manipulating a discretized version of the original matrix using efficient string processing techniques. We also propose extensions to deal with missing values, discover anticorrelated and scaled expression patterns, and different ways to compute the errors allowed in the expression patterns. We propose a scoring criterion combining the statistical significance of expression patterns with a similarity measure between overlapping biclusters. Results We present results in real data showing the effectiveness of e-CCC-Biclustering and its relevance in the discovery of regulatory modules describing the transcriptomic expression patterns occurring in Saccharomyces cerevisiae in response to heat stress. In particular, the results show the advantage of considering approximate patterns when compared to state of the art methods that require
Executive Function and Mathematics Achievement: Are Effects Construct- and Time-General or Specific?
ERIC Educational Resources Information Center
Duncan, Robert; Nguyen, Tutrang; Miao, Alicia; McClelland, Megan; Bailey, Drew
2016-01-01
Executive function (EF) is considered a set of interrelated cognitive processes, including inhibitory control, working memory, and attentional shifting, that are connected to the development of the prefrontal cortex and contribute to children's problem solving skills and self regulatory behavior (Best & Miller, 2010; Garon, Bryson, &…
Real-time intelligent pattern recognition algorithm for surface EMG signals
Khezri, Mahdi; Jahed, Mehran
2007-01-01
Background Electromyography (EMG) is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG) can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current systems designed for controlling the prosthetic hands either have limited functions or can only be used to perform simple movements or use excessive amount of electrodes in order to achieve acceptable results. In an attempt to overcome these problems we have proposed an intelligent system to recognize hand movements and have provided a user assessment routine to evaluate the correctness of executed movements. Methods We propose to use an intelligent approach based on adaptive neuro-fuzzy inference system (ANFIS) integrated with a real-time learning scheme to identify hand motion commands. For this purpose and to consider the effect of user evaluation on recognizing hand movements, vision feedback is applied to increase the capability of our system. By using this scheme the user may assess the correctness of the performed hand movement. In this work a hybrid method for training fuzzy system, consisting of back-propagation (BP) and least mean square (LMS) is utilized. Also in order to optimize the number of fuzzy rules, a subtractive clustering algorithm has been developed. To design an effective system, we consider a conventional scheme of EMG pattern recognition system. To design this system we propose to use two different sets of EMG features, namely time domain (TD) and time-frequency representation (TFR). Also in order to decrease the undesirable effects of the dimension of these feature sets, principle component analysis (PCA) is utilized. Results In this study, the myoelectric signals considered for classification consists of six unique hand movements. Features chosen for EMG signal are time and time
Fast time-reversible algorithms for molecular dynamics of rigid-body systems.
Kajima, Yasuhiro; Hiyama, Miyabi; Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki
2012-06-21
In this paper, we present time-reversible simulation algorithms for rigid bodies in the quaternion representation. By advancing a time-reversible algorithm [Y. Kajima, M. Hiyama, S. Ogata, and T. Tamura, J. Phys. Soc. Jpn. 80, 114002 (2011)] that requires iterations in calculating the angular velocity at each time step, we propose two kinds of iteration-free fast time-reversible algorithms. They are easily implemented in codes. The codes are compared with that of existing algorithms through demonstrative simulation of a nanometer-sized water droplet to find their stability of the total energy and computation speeds. PMID:22779579
NASA Technical Reports Server (NTRS)
Teren, F.
1977-01-01
Minimum time accelerations of aircraft turbofan engines are presented. The calculation of these accelerations was made by using a piecewise linear engine model, and an algorithm based on nonlinear programming. Use of this model and algorithm allows such trajectories to be readily calculated on a digital computer with a minimal expenditure of computer time.
A Simple Algorithm for Approximating Confidence on the Modified Allan Variance and the Time Variance
NASA Technical Reports Server (NTRS)
Weiss, Marc A.; Greenhall, Charles A.
1996-01-01
An approximating algorithm for computing equvalent degrees of freedom of the Modified Allan Variance and its square root, the Modified Allan Deviation (MVAR and MDEV), and the Time Variance and Time Deviation (TVAR and TDEV) is presented, along with an algorithm for approximating the inverse chi-square distribution.
Addition of random run FM noise to the KPW time scale algorithm
NASA Technical Reports Server (NTRS)
Greenhall, C. A.
2002-01-01
The KPW (Kalman plus weights) time scale algorithm uses a Kalman filter to provide frequency and drift information to a basic time scale equation. This paper extends the algorithm to three-state clocks nd gives results for a simulated eight-clock ensemble.
NASA Technical Reports Server (NTRS)
Knox, C. E.
1983-01-01
A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight tests flown with a T-39A (Sabreliner) airplane are presented.
A novel algorithm for real-time adaptive signal detection and identification
Sleefe, G.E.; Ladd, M.D.; Gallegos, D.E.; Sicking, C.W.; Erteza, I.A.
1998-04-01
This paper describes a novel digital signal processing algorithm for adaptively detecting and identifying signals buried in noise. The algorithm continually computes and updates the long-term statistics and spectral characteristics of the background noise. Using this noise model, a set of adaptive thresholds and matched digital filters are implemented to enhance and detect signals that are buried in the noise. The algorithm furthermore automatically suppresses coherent noise sources and adapts to time-varying signal conditions. Signal detection is performed in both the time-domain and the frequency-domain, thereby permitting the detection of both broad-band transients and narrow-band signals. The detection algorithm also provides for the computation of important signal features such as amplitude, timing, and phase information. Signal identification is achieved through a combination of frequency-domain template matching and spectral peak picking. The algorithm described herein is well suited for real-time implementation on digital signal processing hardware. This paper presents the theory of the adaptive algorithm, provides an algorithmic block diagram, and demonstrate its implementation and performance with real-world data. The computational efficiency of the algorithm is demonstrated through benchmarks on specific DSP hardware. The applications for this algorithm, which range from vibration analysis to real-time image processing, are also discussed.
Efficient time-slot assignment algorithms for SS/TDMA systems with variable-bandwidth beams
NASA Astrophysics Data System (ADS)
Chalasani, Suresh; Varma, Anujan
1994-02-01
In this paper, we present efficient sequential and parallel algorithms for computation of time-slot assignments in SS/TDMA (satellite-switched /time-division multiple-access) systems with variable-bandwidth beams. These algorithms are based on modeling the time-slot assignment (TSA) problem as a network-flow problem. Our sequential algorithm, in general, has a better time-complexity than a previous algorithm due to Gopal, et al. and generates fewer switching matrices. If M (N) is the number of uplink (downlink) beams, L is the length of any optimal TSA, and alpha is the maximum bandwidth of an uplink or downlink beam, our sequential algorithm takes O ((M x N)(exp 3)) min(MN alpha, L) time to compute an optimal TSA when the traffic-handling capacity of the satellite is of the same order as the total bandwidth of the links.
A shortest path algorithm for satellite time-varying topological network
NASA Astrophysics Data System (ADS)
Zhang, Tao; Liu, Zhongkan; Zhuang, Jun
2005-11-01
Mobile satellite network is a special time-varying network. It is different from the classical fixed network and other time-dependent networks which have been studied. Therefore some classical network theories, such as the shortest path algorithm, can not be applied to it availably. However, no study about its shortest path problem has been done. In this paper, based on the proposed model of satellite time-varying topological network, the classical shortest path algorithm of fixed network, such as the Dijkstra algorithm, is proved to be restrictive when it is applied in satellite network. Here, a novel shortest path algorithm for satellite time-varying topological network is given and optimized. Correlative simulation indicates that this algorithm can be effectively applied to the satellite time-varying topological network.
Run-time scheduling and execution of loops on message passing machines
NASA Technical Reports Server (NTRS)
Crowley, Kay; Saltz, Joel; Mirchandaney, Ravi; Berryman, Harry
1989-01-01
Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.
Run-time scheduling and execution of loops on message passing machines
NASA Technical Reports Server (NTRS)
Saltz, Joel; Crowley, Kathleen; Mirchandaney, Ravi; Berryman, Harry
1990-01-01
Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.
A Class Of Iterative Thresholding Algorithms For Real-Time Image Segmentation
NASA Astrophysics Data System (ADS)
Hassan, M. H.
1989-03-01
Thresholding algorithms are developed for segmenting gray-level images under nonuniform illumination. The algorithms are based on learning models generated from recursive digital filters which yield to continuously varying threshold tracking functions. A real-time region growing algorithm, which locates the objects in the image while thresholding, is developed and implemented. The algorithms work in a raster-scan format, thus making them attractive for real-time image segmentation in situations requiring fast data throughput such as robot vision and character recognition.
Nozawa, Takayuki; Sugiura, Motoaki; Yokoyama, Ryoichi; Ihara, Mizuki; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Kanno, Akitake; Kawashima, Ryuta
2014-01-01
Can ongoing fMRI BOLD signals predict fluctuations in swiftness of a person’s response to sporadic cognitive demands? This is an important issue because it clarifies whether intrinsic brain dynamics, for which spatio-temporal patterns are expressed as temporally coherent networks (TCNs), have effects not only on sensory or motor processes, but also on cognitive processes. Predictivity has been affirmed, although to a limited extent. Expecting a predictive effect on executive performance for a wider range of TCNs constituting the cingulo-opercular, fronto-parietal, and default mode networks, we conducted an fMRI study using a version of the color–word Stroop task that was specifically designed to put a higher load on executive control, with the aim of making its fluctuations more detectable. We explored the relationships between the fluctuations in ongoing pre-trial activity in TCNs and the task response time (RT). The results revealed the existence of TCNs in which fluctuations in activity several seconds before the onset of the trial predicted RT fluctuations for the subsequent trial. These TCNs were distributed in the cingulo-opercular and fronto-parietal networks, as well as in perceptual and motor networks. Our results suggest that intrinsic brain dynamics in these networks constitute “cognitive readiness,” which plays an active role especially in situations where information for anticipatory attention control is unavailable. Fluctuations in these networks lead to fluctuations in executive control performance. PMID:24901995
Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed
NASA Technical Reports Server (NTRS)
Tian, Ye; Song, Qi; Cattafesta, Louis
2005-01-01
This report summarizes the activities on "Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed." The work summarized consists primarily of two parts. The first part summarizes our previous work and the extensions to adaptive ID and control algorithms. The second part concentrates on the validation of adaptive algorithms by applying them to a vibration beam test bed. Extensions to flow control problems are discussed.
Numerical stability analysis of the pseudo-spectral analytical time-domain PIC algorithm
Godfrey, Brendan B.; Vay, Jean-Luc; Haber, Irving
2014-02-01
The pseudo-spectral analytical time-domain (PSATD) particle-in-cell (PIC) algorithm solves the vacuum Maxwell's equations exactly, has no Courant time-step limit (as conventionally defined), and offers substantial flexibility in plasma and particle beam simulations. It is, however, not free of the usual numerical instabilities, including the numerical Cherenkov instability, when applied to relativistic beam simulations. This paper derives and solves the numerical dispersion relation for the PSATD algorithm and compares the results with corresponding behavior of the more conventional pseudo-spectral time-domain (PSTD) and finite difference time-domain (FDTD) algorithms. In general, PSATD offers superior stability properties over a reasonable range of time steps. More importantly, one version of the PSATD algorithm, when combined with digital filtering, is almost completely free of the numerical Cherenkov instability for time steps (scaled to the speed of light) comparable to or smaller than the axial cell size.
Advanced time integration algorithms for dislocation dynamics simulations of work hardening
Sills, Ryan B.; Aghaei, Amin; Cai, Wei
2016-04-25
Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relativemore » to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.« less
Advanced time integration algorithms for dislocation dynamics simulations of work hardening
NASA Astrophysics Data System (ADS)
Sills, Ryan B.; Aghaei, Amin; Cai, Wei
2016-05-01
Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relative to traditional schemes. Subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.
Kuhn, Laura J; Willoughby, Michael T; Vernon-Feagans, Lynne; Blair, Clancy B
2016-08-01
To investigate whether children's early language skills support the development of executive functions (EFs), the current study used an epidemiological sample (N=1121) to determine whether two key language indicators, vocabulary and language complexity, were predictive of EF abilities over the preschool years. We examined vocabulary and language complexity both as time-varying covariates that predicted time-specific indicators of EF at 36 and 60 months of age and as time-invariant covariates that predicted children's EF at 60 months and change in EF from 36 to 60 months. We found that the rate of change in children's vocabulary between 15 and 36 months was associated with both the trajectory of EF from 36 to 60 months and the resulting abilities at 60 months. In contrast, children's language complexity had a time-specific association with EF only at 60 months. These findings suggest that children's early gains in vocabulary may be particularly relevant for emerging EF abilities. PMID:27101154
MEPSA: A flexible peak search algorithm designed for uniformly spaced time series
NASA Astrophysics Data System (ADS)
Guidorzi, C.
2015-04-01
We present a novel algorithm aimed at identifying peaks within a uniformly sampled time series affected by uncorrelated Gaussian noise. The algorithm, called "MEPSA" (multiple excess peak search algorithm), essentially scans the time series at different timescales by comparing a given peak candidate with a variable number of adjacent bins. While this has originally been conceived for the analysis of gamma-ray burst light (GRB) curves, its usage can be readily extended to other astrophysical transient phenomena, whose activity is recorded through different surveys. We tested and validated it through simulated featureless profiles as well as simulated GRB time profiles. We showcase the algorithm's potential by comparing with the popular algorithm by Li and Fenimore, that is frequently adopted in the literature. Thanks to its high flexibility, the mask of excess patterns used by MEPSA can be tailored and optimised to the kind of data to be analysed without modifying the code. The C code is made publicly available.
Towards Run-time Assurance of Advanced Propulsion Algorithms
NASA Technical Reports Server (NTRS)
Wong, Edmond; Schierman, John D.; Schlapkohl, Thomas; Chicatelli, Amy
2014-01-01
This paper covers the motivation and rationale for investigating the application of run-time assurance methods as a potential means of providing safety assurance for advanced propulsion control systems. Certification is becoming increasingly infeasible for such systems using current verification practices. Run-time assurance systems hold the promise of certifying these advanced systems by continuously monitoring the state of the feedback system during operation and reverting to a simpler, certified system if anomalous behavior is detected. The discussion will also cover initial efforts underway to apply a run-time assurance framework to NASA's model-based engine control approach. Preliminary experimental results are presented and discussed.
Genetic algorithms for adaptive real-time control in space systems
NASA Technical Reports Server (NTRS)
Vanderzijp, J.; Choudry, A.
1988-01-01
Genetic Algorithms that are used for learning as one way to control the combinational explosion associated with the generation of new rules are discussed. The Genetic Algorithm approach tends to work best when it can be applied to a domain independent knowledge representation. Applications to real time control in space systems are discussed.
NASA Technical Reports Server (NTRS)
Delaat, J. C.; Merrill, W. C.
1983-01-01
A sensor failure detection, isolation, and accommodation algorithm was developed which incorporates analytic sensor redundancy through software. This algorithm was implemented in a high level language on a microprocessor based controls computer. Parallel processing and state-of-the-art 16-bit microprocessors are used along with efficient programming practices to achieve real-time operation.
Mapping algorithm for 360-deg profilometry with time delayed integration imaging
NASA Astrophysics Data System (ADS)
Asundi, Anand K.; Zhou, Wensen
1999-02-01
A direct phase-to-radial distance mapping algorithm for 360 deg profilometry with time delay and integration imaging is presented. This method, based on an inherent mapping relationship, is capable of speedy and accurate measurement without the determination of any geometric parameter. The capability of the mapping algorithm is demonstrated by measuring a plane and a shoe.
Scaling of the running time of the quantum adiabatic algorithm for propositional satisfiability
Znidaric, Marko
2005-06-15
We numerically study the quantum adiabatic algorithm for propositional satisfiability. A new class of previously unknown hard instances is identified among random problems. We numerically find that the running time for such instances grows exponentially with their size. The worst case complexity of the quantum adiabatic algorithm therefore seems to be exponential.
On the Time Complexity of Dijkstra's Three-State Mutual Exclusion Algorithm
NASA Astrophysics Data System (ADS)
Kimoto, Masahiro; Tsuchiya, Tatsuhiro; Kikuno, Tohru
In this letter we give a lower bound on the worst-case time complexity of Dijkstra's three-state mutual exclusion algorithm by specifying a concrete behavior of the algorithm. We also show that our result is more accurate than the known best bound.
NASA Technical Reports Server (NTRS)
Delaat, J. C.
1984-01-01
An advanced, sensor failure detection, isolation, and accomodation algorithm has been developed by NASA for the F100 turbofan engine. The algorithm takes advantage of the analytical redundancy of the sensors to improve the reliability of the sensor set. The method requires the controls computer, to determine when a sensor failure has occurred without the help of redundant hardware sensors in the control system. The controls computer provides an estimate of the correct value of the output of the failed sensor. The algorithm has been programmed in FORTRAN using a real-time microprocessor-based controls computer. A detailed description of the algorithm and its implementation on a microprocessor is given.
Real-time robot deliberation by compilation and monitoring of anytime algorithms
NASA Technical Reports Server (NTRS)
Zilberstein, Shlomo
1994-01-01
Anytime algorithms are algorithms whose quality of results improves gradually as computation time increases. Certainty, accuracy, and specificity are metrics useful in anytime algorighm construction. It is widely accepted that a successful robotic system must trade off between decision quality and the computational resources used to produce it. Anytime algorithms were designed to offer such a trade off. A model of compilation and monitoring mechanisms needed to build robots that can efficiently control their deliberation time is presented. This approach simplifies the design and implementation of complex intelligent robots, mechanizes the composition and monitoring processes, and provides independent real time robotic systems that automatically adjust resource allocation to yield optimum performance.
Algorithm to extract the spanning clusters and calculate conductivity in strip geometries
NASA Astrophysics Data System (ADS)
Babalievski, F.
1995-06-01
I present an improved algorithm to solve the random resistor problem using a transfer-matrix technique. Preconditioning by spanning cluster extraction both reduces the size of the matrix and yields faster execution times when compared to previous algorithms.
Scaling Time Warp-based Discrete Event Execution to 10^{4} Processors on Blue Gene Supercomputer
Perumalla, Kalyan S
2007-01-01
Lately, important large-scale simulation applications, such as emergency/event planning and response, are emerging that are based on discrete event models. The applications are characterized by their scale (several millions of simulated entities), their fine-grained nature of computation (microseconds per event), and their highly dynamic inter-entity event interactions. The desired scale and speed together call for highly scalable parallel discrete event simulation (PDES) engines. However, few such parallel engines have been designed or tested on platforms with thousands of processors. Here an overview is given of a unique PDES engine that has been designed to support Time Warp-style optimistic parallel execution as well as a more generalized mixed, optimistic-conservative synchronization. The engine is designed to run on massively parallel architectures with minimal overheads. A performance study of the engine is presented, including the first results to date of PDES benchmarks demonstrating scalability to as many as 16,384 processors, on an IBM Blue Gene supercomputer. The results show, for the first time, the promise of effectively sustaining very large scale discrete event execution on up to 10^{4} processors.
NASA Astrophysics Data System (ADS)
Barkat, B.; Abed-Meraim, K.
2004-12-01
We propose novel algorithms to select and extract separately all the components, using the time-frequency distribution (TFD), of a given multicomponent frequency-modulated (FM) signal. These algorithms do not use any a priori information about the various components. However, their performances highly depend on the cross-terms suppression ability and high time-frequency resolution of the considered TFD. To illustrate the usefulness of the proposed algorithms, we applied them for the estimation of the instantaneous frequency coefficients of a multicomponent signal and the results are compared with those of the higher-order ambiguity function (HAF) algorithm. Monte Carlo simulation results show the superiority of the proposed algorithms over the HAF.
RB Particle Filter Time Synchronization Algorithm Based on the DPM Model.
Guo, Chunsheng; Shen, Jia; Sun, Yao; Ying, Na
2015-01-01
Time synchronization is essential for node localization, target tracking, data fusion, and various other Wireless Sensor Network (WSN) applications. To improve the estimation accuracy of continuous clock offset and skew of mobile nodes in WSNs, we propose a novel time synchronization algorithm, the Rao-Blackwellised (RB) particle filter time synchronization algorithm based on the Dirichlet process mixture (DPM) model. In a state-space equation with a linear substructure, state variables are divided into linear and non-linear variables by the RB particle filter algorithm. These two variables can be estimated using Kalman filter and particle filter, respectively, which improves the computational efficiency more so than if only the particle filter was used. In addition, the DPM model is used to describe the distribution of non-deterministic delays and to automatically adjust the number of Gaussian mixture model components based on the observational data. This improves the estimation accuracy of clock offset and skew, which allows achieving the time synchronization. The time synchronization performance of this algorithm is also validated by computer simulations and experimental measurements. The results show that the proposed algorithm has a higher time synchronization precision than traditional time synchronization algorithms. PMID:26404291
RB Particle Filter Time Synchronization Algorithm Based on the DPM Model
Guo, Chunsheng; Shen, Jia; Sun, Yao; Ying, Na
2015-01-01
Time synchronization is essential for node localization, target tracking, data fusion, and various other Wireless Sensor Network (WSN) applications. To improve the estimation accuracy of continuous clock offset and skew of mobile nodes in WSNs, we propose a novel time synchronization algorithm, the Rao-Blackwellised (RB) particle filter time synchronization algorithm based on the Dirichlet process mixture (DPM) model. In a state-space equation with a linear substructure, state variables are divided into linear and non-linear variables by the RB particle filter algorithm. These two variables can be estimated using Kalman filter and particle filter, respectively, which improves the computational efficiency more so than if only the particle filter was used. In addition, the DPM model is used to describe the distribution of non-deterministic delays and to automatically adjust the number of Gaussian mixture model components based on the observational data. This improves the estimation accuracy of clock offset and skew, which allows achieving the time synchronization. The time synchronization performance of this algorithm is also validated by computer simulations and experimental measurements. The results show that the proposed algorithm has a higher time synchronization precision than traditional time synchronization algorithms. PMID:26404291
False-nearest-neighbors algorithm and noise-corrupted time series
NASA Astrophysics Data System (ADS)
Rhodes, Carl; Morari, Manfred
1997-05-01
The false-nearest-neighbors (FNN) algorithm was originally developed to determine the embedding dimension for autonomous time series. For noise-free computer-generated time series, the algorithm does a good job in predicting the embedding dimension. However, the problem of predicting the embedding dimension when the time-series data are corrupted by noise was not fully examined in the original studies of the FNN algorithm. Here it is shown that with large data sets, even small amounts of noise can lead to incorrect prediction of the embedding dimension. Surprisingly, as the length of the time series analyzed by FNN grows larger, the cause of incorrect prediction becomes more pronounced. An analysis of the effect of noise on the FNN algorithm and a solution for dealing with the effects of noise are given here. Some results on the theoretically correct choice of the FNN threshold are also presented.
Parallel algorithms for simulating continuous time Markov chains
NASA Technical Reports Server (NTRS)
Nicol, David M.; Heidelberger, Philip
1992-01-01
We have previously shown that the mathematical technique of uniformization can serve as the basis of synchronization for the parallel simulation of continuous-time Markov chains. This paper reviews the basic method and compares five different methods based on uniformization, evaluating their strengths and weaknesses as a function of problem characteristics. The methods vary in their use of optimism, logical aggregation, communication management, and adaptivity. Performance evaluation is conducted on the Intel Touchstone Delta multiprocessor, using up to 256 processors.
Higher-Order, Space-Time Adaptive Finite Volume Methods: Algorithms, Analysis and Applications
Minion, Michael
2014-04-29
The four main goals outlined in the proposal for this project were: 1. Investigate the use of higher-order (in space and time) finite-volume methods for fluid flow problems. 2. Explore the embedding of iterative temporal methods within traditional block-structured AMR algorithms. 3. Develop parallel in time methods for ODEs and PDEs. 4. Work collaboratively with the Center for Computational Sciences and Engineering (CCSE) at Lawrence Berkeley National Lab towards incorporating new algorithms within existing DOE application codes.
Piloted simulation of an algorithm for onboard control of time-optimal intercept
NASA Technical Reports Server (NTRS)
Price, D. B.; Calise, A. J.; Moerder, D. D.
1985-01-01
A piloted simulation of algorithms for onboard computation of trajectories for time-optimal intercept of a moving target by an F-8 aircraft is described. The algorithms, use singular perturbation techniques, generate commands in the cockpit. By centering the horizontal and vertical needles, the pilot flies an approximation to a time-optimal intercept trajectory. Example simulations are shown and statistical data on the pilot's performance when presented with different display and computation modes are described.
Jankovic, Marko; Ogawa, Hidemitsu
2004-10-01
Principal Component Analysis (PCA) and Principal Subspace Analysis (PSA) are classic techniques in statistical data analysis, feature extraction and data compression. Given a set of multivariate measurements, PCA and PSA provide a smaller set of "basis vectors" with less redundancy, and a subspace spanned by them, respectively. Artificial neurons and neural networks have been shown to perform PSA and PCA when gradient ascent (descent) learning rules are used, which is related to the constrained maximization (minimization) of statistical objective functions. Due to their low complexity, such algorithms and their implementation in neural networks are potentially useful in cases of tracking slow changes of correlations in the input data or in updating eigenvectors with new samples. In this paper we propose PCA learning algorithm that is fully homogeneous with respect to neurons. The algorithm is obtained by modification of one of the most famous PSA learning algorithms--Subspace Learning Algorithm (SLA). Modification of the algorithm is based on Time-Oriented Hierarchical Method (TOHM). The method uses two distinct time scales. On a faster time scale PSA algorithm is responsible for the "behavior" of all output neurons. On a slower scale, output neurons will compete for fulfillment of their "own interests". On this scale, basis vectors in the principal subspace are rotated toward the principal eigenvectors. At the end of the paper it will be briefly analyzed how (or why) time-oriented hierarchical method can be used for transformation of any of the existing neural network PSA method, into PCA method. PMID:15593379
A compensatory algorithm for the slow-down effect on constant-time-separation approaches
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
1991-01-01
In seeking methods to improve airport capacity, the question arose as to whether an electronic display could provide information which would enable the pilot to be responsible for self-separation under instrument conditions to allow for the practical implementation of reduced separation, multiple glide path approaches. A time based, closed loop algorithm was developed and simulator validated for in-trail (one aircraft behind the other) approach and landing. The algorithm was designed to reduce the effects of approach speed reduction prior to landing for the trailing aircraft as well as the dispersion of the interarrival times. The operational task for the validation was an instrument approach to landing while following a single lead aircraft on the same approach path. The desired landing separation was 60 seconds for these approaches. An open loop algorithm, previously developed, was used as a basis for comparison. The results showed that relative to the open loop algorithm, the closed loop one could theoretically provide for a 6 pct. increase in runway throughput. Also, the use of the closed loop algorithm did not affect the path tracking performance and pilot comments indicated that the guidance from the closed loop algorithm would be acceptable from an operational standpoint. From these results, it is concluded that by using a time based, closed loop spacing algorithm, precise interarrival time intervals may be achievable with operationally acceptable pilot workload.
A Gaussian Process Based Online Change Detection Algorithm for Monitoring Periodic Time Series
Chandola, Varun; Vatsavai, Raju
2011-01-01
Online time series change detection is a critical component of many monitoring systems, such as space and air-borne remote sensing instruments, cardiac monitors, and network traffic profilers, which continuously analyze observations recorded by sensors. Data collected by such sensors typically has a periodic (seasonal) component. Most existing time series change detection methods are not directly applicable to handle such data, either because they are not designed to handle periodic time series or because they cannot operate in an online mode. We propose an online change detection algorithm which can handle periodic time series. The algorithm uses a Gaussian process based non-parametric time series prediction model and monitors the difference between the predictions and actual observations within a statistically principled control chart framework to identify changes. A key challenge in using Gaussian process in an online mode is the need to solve a large system of equations involving the associated covariance matrix which grows with every time step. The proposed algorithm exploits the special structure of the covariance matrix and can analyze a time series of length T in O(T^2) time while maintaining a O(T) memory footprint, compared to O(T^4) time and O(T^2) memory requirement of standard matrix manipulation methods. We experimentally demonstrate the superiority of the proposed algorithm over several existing time series change detection algorithms on a set of synthetic and real time series. Finally, we illustrate the effectiveness of the proposed algorithm for identifying land use land cover changes using Normalized Difference Vegetation Index (NDVI) data collected for an agricultural region in Iowa state, USA. Our algorithm is able to detect different types of changes in a NDVI validation data set (with ~80% accuracy) which occur due to crop type changes as well as disruptive changes (e.g., natural disasters).
A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique
Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A.; Shaygan, Mohammad Amin; Jalali, Alireza
2014-01-01
Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets. PMID:24982966
Robust algorithm for estimation of time-varying transfer functions.
Zou, Rui; Chon, Ki H
2004-02-01
We introduce a new method to estimate reliable time-varying (TV) transfer functions (TFs) and TV impulse response functions. The method is based on TV autoregressive moving average models in which the TV parameters are accurately obtained using the optimal parameter search method which we have previously developed. The new method is more accurate than the recursive least-squares (RLS), and remains robust even in the case of significant noise contamination. Furthermore, the new method is able to track dynamics that change abruptly, which is certainly a deficiency of the RLS. Application of the new method to renal blood pressure and flow revealed that hypertensive rats undergo more complex and TV autoregulation in maintaining stable blood flow than do normotensive rats. This observation has not been previously revealed using time-invariant TF analyses. The newly developed approach may promote the broader use of TV system identification in studies of physiological systems and makes linear and nonlinear TV modeling possible in certain cases previously thought intractable. PMID:14765694
A processor-time-minimal systolic array for cubical mesh algorithms
Cappello, P. . Dept. of Computer Science)
1992-01-01
Using a directed acyclic graph (dag) model of algorithms, the paper focuses on time-minimal multiprocessor schedules that use as few processors as possible. Such a processor-time-minimal scheduling of an algorithm's dag first is illustrated using a triangular shaped 2-D directed mesh (representing, for example, an algorithm for solving a triangular system of linear equations). Then, algorithms represented by an n {times} n {times} n directed mesh are investigated. This cubical directed mesh is fundamental; it represents the standard algorithm for computing matrix product as well as many other algorithms. Completion of the cubical mesh requires 3n - 2 steps. It is shown that the number of processing elements needed to achieve this time bound is at least (3n{sup 2/4}). A systolic array for the cubical directed mesh is then presented. It completes the mesh using the minimum number of steps and exactly (3n{sup 2/4}) processing elements: it is processor-time-minimal. The systolic array's topology is that of a hexagonally shaped, cylindrically- connected, 2-D directed mesh.
Diamond, Adele
2014-01-01
Executive functions (EFs) make possible mentally playing with ideas; taking the time to think before acting; meeting novel, unanticipated challenges; resisting temptations; and staying focused. Core EFs are inhibition [response inhibition (self-control—resisting temptations and resisting acting impulsively) and interference control (selective attention and cognitive inhibition)], working memory, and cognitive flexibility (including creatively thinking “outside the box,” seeing anything from different perspectives, and quickly and flexibly adapting to changed circumstances). The developmental progression and representative measures of each are discussed. Controversies are addressed (e.g., the relation between EFs and fluid intelligence, self-regulation, executive attention, and effortful control, and the relation between working memory and inhibition and attention). The importance of social, emotional, and physical health for cognitive health is discussed because stress, lack of sleep, loneliness, or lack of exercise each impair EFs. That EFs are trainable and can be improved with practice is addressed, including diverse methods tried thus far. PMID:23020641
PRESEE: an MDL/MML algorithm to time-series stream segmenting.
Xu, Kaikuo; Jiang, Yexi; Tang, Mingjie; Yuan, Changan; Tang, Changjie
2013-01-01
Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream. PMID:23956693
Time Estimation in Alzheimer's Disease and the Role of the Central Executive
ERIC Educational Resources Information Center
Papagno, Costanza; Allegra, Adele; Cardaci, Maurizio
2004-01-01
The aim of this study was to evaluate the role of short-term memory and attention in time estimation. For this purpose we studied prospective time verbal estimation in 21 patients with Alzheimer's disease (AD), and compared their performance with that of 21 matched normal controls in two different conditions: during a digit span task and during an…
Real-time image denoising algorithm in teleradiology systems
NASA Astrophysics Data System (ADS)
Gupta, Pradeep Kumar; Kanhirodan, Rajan
2006-02-01
Denoising of medical images in wavelet domain has potential application in transmission technologies such as teleradiology. This technique becomes all the more attractive when we consider the progressive transmission in a teleradiology system. The transmitted images are corrupted mainly due to noisy channels. In this paper, we present a new real time image denoising scheme based on limited restoration of bit-planes of wavelet coefficients. The proposed scheme exploits the fundamental property of wavelet transform - its ability to analyze the image at different resolution levels and the edge information associated with each sub-band. The desired bit-rate control is achieved by applying the restoration on a limited number of bit-planes subject to the optimal smoothing. The proposed method adapts itself to the preference of the medical expert; a single parameter can be used to balance the preservation of (expert-dependent) relevant details against the degree of noise reduction. The proposed scheme relies on the fact that noise commonly manifests itself as a fine-grained structure in image and wavelet transform allows the restoration strategy to adapt itself according to directional features of edges. The proposed approach shows promising results when compared with unrestored case, in context of error reduction. It also has capability to adapt to situations where noise level in the image varies and with the changing requirements of medical-experts. The applicability of the proposed approach has implications in restoration of medical images in teleradiology systems. The proposed scheme is computationally efficient.
A contourlet transform based algorithm for real-time video encoding
NASA Astrophysics Data System (ADS)
Katsigiannis, Stamos; Papaioannou, Georgios; Maroulis, Dimitris
2012-06-01
In recent years, real-time video communication over the internet has been widely utilized for applications like video conferencing. Streaming live video over heterogeneous IP networks, including wireless networks, requires video coding algorithms that can support various levels of quality in order to adapt to the network end-to-end bandwidth and transmitter/receiver resources. In this work, a scalable video coding and compression algorithm based on the Contourlet Transform is proposed. The algorithm allows for multiple levels of detail, without re-encoding the video frames, by just dropping the encoded information referring to higher resolution than needed. Compression is achieved by means of lossy and lossless methods, as well as variable bit rate encoding schemes. Furthermore, due to the transformation utilized, it does not suffer from blocking artifacts that occur with many widely adopted compression algorithms. Another highly advantageous characteristic of the algorithm is the suppression of noise induced by low-quality sensors usually encountered in web-cameras, due to the manipulation of the transform coefficients at the compression stage. The proposed algorithm is designed to introduce minimal coding delay, thus achieving real-time performance. Performance is enhanced by utilizing the vast computational capabilities of modern GPUs, providing satisfactory encoding and decoding times at relatively low cost. These characteristics make this method suitable for applications like video-conferencing that demand real-time performance, along with the highest visual quality possible for each user. Through the presented performance and quality evaluation of the algorithm, experimental results show that the proposed algorithm achieves better or comparable visual quality relative to other compression and encoding methods tested, while maintaining a satisfactory compression ratio. Especially at low bitrates, it provides more human-eye friendly images compared to
Riemannian mean and space-time adaptive processing using projection and inversion algorithms
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam; Barbaresco, Frédéric
2013-05-01
The estimation of the covariance matrix from real data is required in the application of space-time adaptive processing (STAP) to an airborne ground moving target indication (GMTI) radar. A natural approach to estimation of the covariance matrix that is based on the information geometry has been proposed. In this paper, the output of the Riemannian mean is used in inversion and projection algorithms. It is found that the projection class of algorithms can yield very significant gains, even when the gains due to inversion-based algorithms are marginal over standard algorithms. The performance of the projection class of algorithms does not appear to be overly sensitive to the projected subspace dimension.
NASA Astrophysics Data System (ADS)
Jang, Dong-Doo; Park, Jeongsu; Jung, Hyung-Jo
2013-04-01
The feasibility of an active mass damper (AMD) system employing the time delay control (TDC) algorithm, which is one of the robust and adaptive control algorithms, for effectively suppressing the wind-induced vibration of a building structure is investigated. The TDC algorithm has several attractive features such as the simplicity and the excellent robustness to unknown system dynamics and disturbance. Based on the characteristics of the algorithm, it has the potential to be an effective control system for mitigating excessive vibration of civil engineering structures such as buildings, bridges and towers. However, it has not been used for structural response reduction yet. In order to verify the effectiveness of the proposed active control method combining an AMD system with the TDC algorithm, a series of labscale tests are carried out.
Wan, Xinwang; Liang, Juan
2013-01-01
This article introduces a biologically inspired localization algorithm using two microphones, for a mobile robot. The proposed algorithm has two steps. First, the coarse azimuth angle of the sound source is estimated by cross-correlation algorithm based on interaural time difference. Then, the accurate azimuth angle is obtained by cross-channel algorithm based on head-related impulse responses. The proposed algorithm has lower computational complexity compared to the cross-channel algorithm. Experimental results illustrate that the localization performance of the proposed algorithm is better than those of the cross-correlation and cross-channel algorithms. PMID:23298016
Schlueter, Anne; Lemke, Ulrike; Kollmeier, Birger; Holube, Inga
2014-03-01
For assessing hearing aid algorithms, a method is sought to shift the threshold of a speech-in-noise test to (mostly positive) signal-to-noise ratios (SNRs) that allow discrimination across algorithmic settings and are most relevant for hearing-impaired listeners in daily life. Hence, time-compressed speech with higher speech rates was evaluated to parametrically increase the difficulty of the test while preserving most of the relevant acoustical speech cues. A uniform and a non-uniform algorithm were used to compress the sentences of the German Oldenburg Sentence Test at different speech rates. In comparison, the non-uniform algorithm exhibited greater deviations from the targeted time compression, as well as greater changes of the phoneme duration, spectra, and modulation spectra. Speech intelligibility for fast Oldenburg sentences in background noise at different SNRs was determined with 48 normal-hearing listeners. The results confirmed decreasing intelligibility with increasing speech rate. Speech had to be compressed to more than 30% of its original length to reach 50% intelligibility at positive SNRs. Characteristics influencing the discrimination ability of the test for assessing effective SNR changes were investigated. Subjective and objective measures indicated a clear advantage of the uniform algorithm in comparison to the non-uniform algorithm for the application in speech-in-noise tests. PMID:24606289
Tian, Qu; Resnick, Susan M; Ferrucci, Luigi; Studenski, Stephanie A
2015-12-01
Higher intra-individual lap time variation (LTV) of the 400-m walk is cross-sectionally associated with poorer attention in older adults. Whether higher LTV predicts decline in executive function and whether the relationship is accounted for by slower walking remain unanswered. The main objective of this study was to examine the relationship between baseline LTV and longitudinal change in executive function. We used data from 347 participants aged 60 years and older (50.7% female) from the Baltimore Longitudinal Study of Aging. Longitudinal assessments of executive function were conducted between 2007 and 2013, including attention (Trails A, Digit Span Forward Test), cognitive flexibility and set shifting (Trails B, Delta TMT: Trials B minus Trials A), visuoperceptual speed (Digit Symbol Substitution Test), and working memory (Digit Span Backward Test). LTV and mean lap time (MLT) were obtained from the 400-m walk test concurrent with the baseline executive function assessment. LTV was computed as variability of lap time across ten 40-m laps based on individual trajectories. A linear mixed-effects model was used to examine LTV in relation to changes in executive function, adjusted for age, sex, education, and MLT. Higher LTV was associated with greater decline in performance on Trails B (β = 4.322, p < 0.001) and delta TMT (β = 4.230, p < 0.001), independent of covariates. Findings remained largely unchanged after further adjustment for MLT. LTV was not associated with changes in other executive function measures (all p > 0.05). In high-functioning older adults, higher LTV in the 400-m walk predicts executive function decline involving cognitive flexibility and set shifting over a long period of time. High LTV may be an early indicator of executive function decline independent of MLT. PMID:26561401
Importance of variable time-step algorithms in spatial kinetics calculations
Aviles, B.N.
1994-12-31
The use of spatial kinetics codes in conjunction with advanced thermal-hydraulics codes is becoming more widespread as better methods and faster computers appear. The integrated code packages are being used for routine nuclear power plant design and analysis, including simulations with instrumentation and control systems initiating system perturbations such as rod motion and scrams. As a result, it is important to include a robust variable time-step algorithm that can accurately and efficiently follow widely varying plant neutronic behavior. This paper describes the variable time-step algorithm in SPANDEX and compares the automatic time-step scheme with a more traditional fixed time-step scheme.
Algorithmic recognition of anomalous time intervals in sea-level observations
NASA Astrophysics Data System (ADS)
Getmanov, V. G.; Gvishiani, A. D.; Kamaev, D. A.; Kornilov, A. S.
2016-03-01
The problem of the algorithmic recognition of anomalous time intervals in the time series of the sea-level observations conducted by the Russian Tsunami Warning Survey (RTWS) is considered. The normal and anomalous sea-level observations are described. The polyharmonic models describing the sea-level fluctuations on the short time intervals are constructed, and sea-level forecasting based on these models is suggested. The algorithm for the recognition of anomalous time intervals is developed and its work is tested on the real RTWS data.
Massively parallel algorithms for real-time wavefront control of a dense adaptive optics system
Fijany, A.; Milman, M.; Redding, D.
1994-12-31
In this paper massively parallel algorithms and architectures for real-time wavefront control of a dense adaptive optic system (SELENE) are presented. The authors have already shown that the computation of a near optimal control algorithm for SELENE can be reduced to the solution of a discrete Poisson equation on a regular domain. Although, this represents an optimal computation, due the large size of the system and the high sampling rate requirement, the implementation of this control algorithm poses a computationally challenging problem since it demands a sustained computational throughput of the order of 10 GFlops. They develop a novel algorithm, designated as Fast Invariant Imbedding algorithm, which offers a massive degree of parallelism with simple communication and synchronization requirements. Due to these features, this algorithm is significantly more efficient than other Fast Poisson Solvers for implementation on massively parallel architectures. The authors also discuss two massively parallel, algorithmically specialized, architectures for low-cost and optimal implementation of the Fast Invariant Imbedding algorithm.
Two neural network algorithms for designing optimal terminal controllers with open final time
NASA Technical Reports Server (NTRS)
Plumer, Edward S.
1992-01-01
Multilayer neural networks, trained by the backpropagation through time algorithm (BPTT), have been used successfully as state-feedback controllers for nonlinear terminal control problems. Current BPTT techniques, however, are not able to deal systematically with open final-time situations such as minimum-time problems. Two approaches which extend BPTT to open final-time problems are presented. In the first, a neural network learns a mapping from initial-state to time-to-go. In the second, the optimal number of steps for each trial run is found using a line-search. Both methods are derived using Lagrange multiplier techniques. This theoretical framework is used to demonstrate that the derived algorithms are direct extensions of forward/backward sweep methods used in N-stage optimal control. The two algorithms are tested on a Zermelo problem and the resulting trajectories compare favorably to optimal control results.
TaDb: A time-aware diffusion-based recommender algorithm
NASA Astrophysics Data System (ADS)
Li, Wen-Jun; Xu, Yuan-Yuan; Dong, Qiang; Zhou, Jun-Lin; Fu, Yan
2015-02-01
Traditional recommender algorithms usually employ the early and recent records indiscriminately, which overlooks the change of user interests over time. In this paper, we show that the interests of a user remain stable in a short-term interval and drift during a long-term period. Based on this observation, we propose a time-aware diffusion-based (TaDb) recommender algorithm, which assigns different temporal weights to the leading links existing before the target user's collection and the following links appearing after that in the diffusion process. Experiments on four real datasets, Netflix, MovieLens, FriendFeed and Delicious show that TaDb algorithm significantly improves the prediction accuracy compared with the algorithms not considering temporal effects.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Establishing Federal Capability for the Timely Provision of Medical Countermeasures Following a Biological... Following a Biological Attack By the authority vested in me as President by the Constitution and the laws of... American people in the event of a biological attack in the United States through a rapid Federal...
Gainotti, G; Marra, C; Villa, G
2001-04-01
Two cancellation/attentional tasks: (i) Lines Cancellation (LC) and Multiple Features Targets Cancellation (MFTC) and (ii) a standard battery of neuropsychological tests, the Mental Deterioration Battery (MDB), were administered to 68 patients with dementia of the Alzheimer's type (DAT) and 40 patients with multi-infarct dementia (MID), who were accurately matched for the overall severity of dementia, and to 40 normal controls. Both accuracy and time of execution were considered in evaluating performance on the two cancellation tasks, which involved visuospatial exploration and psychomotor speed, but were differently demanding in terms of selective attention. On the first cancellation task (LC), requiring a lower attentional load, the two demented patient groups performed at the same level of accuracy. On the second cancellation task (MFTC), which was more demanding in terms of selective and divided attention, DAT patients were significantly less accurate than MID patients, making a higher number of 'false-alarm' errors. Conversely, the time employed in the execution of both LC and MFTC took longer for MID than for DAT patients, suggesting a greater impairment of psychomotor speed in MID. In the MDB, DAT patients scored significantly worse than MID patients on several measures of episodic memory (the immediate recall, delayed recall and delayed recognition of Rey's Auditory Verbal Learning Test) and on a test of visual-spatial memory. These data suggest that, while psychomotor speed and the lower (sensorimotor) levels of attention are preferentially impaired in subcortical forms of dementia such as MID, the higher levels of selective and divided attention are more markedly disrupted in the Alzheimer type of dementia. PMID:11287373
NASA Technical Reports Server (NTRS)
Delaat, J. C.; Merrill, W. C.
1984-01-01
A sensor failure detection, isolation, and accommodation algorithm was developed which incorporates analytic sensor redundancy through software. This algorithm was implemented in a high level language on a microprocessor based controls computer. Parallel processing and state-of-the-art 16-bit microprocessors are used along with efficient programming practices to achieve real-time operation. Previously announced in STAR as N84-13140
The use of knowledge-based Genetic Algorithm for starting time optimisation in a lot-bucket MRP
NASA Astrophysics Data System (ADS)
Ridwan, Muhammad; Purnomo, Andi
2016-01-01
In production planning, Material Requirement Planning (MRP) is usually developed based on time-bucket system, a period in the MRP is representing the time and usually weekly. MRP has been successfully implemented in Make To Stock (MTS) manufacturing, where production activity must be started before customer demand is received. However, to be implemented successfully in Make To Order (MTO) manufacturing, a modification is required on the conventional MRP in order to make it in line with the real situation. In MTO manufacturing, delivery schedule to the customers is defined strictly and must be fulfilled in order to increase customer satisfaction. On the other hand, company prefers to keep constant number of workers, hence production lot size should be constant as well. Since a bucket in conventional MRP system is representing time and usually weekly, hence, strict delivery schedule could not be accommodated. Fortunately, there is a modified time-bucket MRP system, called as lot-bucket MRP system that proposed by Casimir in 1999. In the lot-bucket MRP system, a bucket is representing a lot, and the lot size is preferably constant. The time to finish every lot could be varying depends on due date of lot. Starting time of a lot must be determined so that every lot has reasonable production time. So far there is no formal method to determine optimum starting time in the lot-bucket MRP system. Trial and error process usually used for it but some time, it causes several lots have very short production time and the lot-bucket MRP would be infeasible to be executed. This paper presents the use of Genetic Algorithm (GA) for optimisation of starting time in a lot-bucket MRP system. Even though GA is well known as powerful searching algorithm, however, improvement is still required in order to increase possibility of GA in finding optimum solution in shorter time. A knowledge-based system has been embedded in the proposed GA as the improvement effort, and it is proven that the
A pheromone-rate-based analysis on the convergence time of ACO algorithm.
Huang, Han; Wu, Chun-Guo; Hao, Zhi-Feng
2009-08-01
Ant colony optimization (ACO) has widely been applied to solve combinatorial optimization problems in recent years. There are few studies, however, on its convergence time, which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Based on the absorbing Markov chain model, we analyze the ACO convergence time in this paper. First, we present a general result for the estimation of convergence time to reveal the relationship between convergence time and pheromone rate. This general result is then extended to a two-step analysis of the convergence time, which includes the following: 1) the iteration time that the pheromone rate spends on reaching the objective value and 2) the convergence time that is calculated with the objective pheromone rate in expectation. Furthermore, four brief ACO algorithms are investigated by using the proposed theoretical results as case studies. Finally, the conclusions of the case studies that the pheromone rate and its deviation determine the expected convergence time are numerically verified with the experiment results of four one-ant ACO algorithms and four ten-ant ACO algorithms. PMID:19380276
A novel adaptive, real-time algorithm to detect gait events from wearable sensors.
Chia Bejarano, Noelia; Ambrosini, Emilia; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Monticone, Marco; Ferrante, Simona
2015-05-01
A real-time, adaptive algorithm based on two inertial and magnetic sensors placed on the shanks was developed for gait-event detection. For each leg, the algorithm detected the Initial Contact (IC), as the minimum of the flexion/extension angle, and the End Contact (EC) and the Mid-Swing (MS), as minimum and maximum of the angular velocity, respectively. The algorithm consisted of calibration, real-time detection, and step-by-step update. Data collected from 22 healthy subjects (21 to 85 years) walking at three self-selected speeds were used to validate the algorithm against the GaitRite system. Comparable levels of accuracy and significantly lower detection delays were achieved with respect to other published methods. The algorithm robustness was tested on ten healthy subjects performing sudden speed changes and on ten stroke subjects (43 to 89 years). For healthy subjects, F1-scores of 1 and mean detection delays lower than 14 ms were obtained. For stroke subjects, F1-scores of 0.998 and 0.944 were obtained for IC and EC, respectively, with mean detection delays always below 31 ms. The algorithm accurately detected gait events in real time from a heterogeneous dataset of gait patterns and paves the way for the design of closed-loop controllers for customized gait trainings and/or assistive devices. PMID:25069118
NASA Technical Reports Server (NTRS)
Moore, J. E.
1975-01-01
An enumeration algorithm is presented for solving a scheduling problem similar to the single machine job shop problem with sequence dependent setup times. The scheduling problem differs from the job shop problem in two ways. First, its objective is to select an optimum subset of the available tasks to be performed during a fixed period of time. Secondly, each task scheduled is constrained to occur within its particular scheduling window. The algorithm is currently being used to develop typical observational timelines for a telescope that will be operated in earth orbit. Computational times associated with timeline development are presented.
Killgore, William D S; Singh, Prabhjyot; Kipman, Maia; Pisner, Derek; Fridman, Andrew; Weber, Mareen
2016-01-26
Most people who sustain a mild traumatic brain injury (mTBI) will recover to baseline functioning within a period of several days to weeks. A substantial minority of patients, however, will show persistent symptoms and mild cognitive complaints for much longer. To more clearly delineate how the duration of time since injury (TSI) is associated with neuroplastic cortical volume changes and cognitive recovery, we employed voxel-based morphometry (VBM) and select neuropsychological measures in a cross-sectional sample of 26 patients with mTBI assessed at either two-weeks, one-month, three-months, six-months, or one-year post injury, and a sample of 12 healthy controls. Longer duration of TSI was associated with larger gray matter volume (GMV) within the ventromedial prefrontal cortex (vmPFC) and right fusiform gyrus, and better neurocognitive performance on measures of visuospatial design fluency and emotional functioning. In particular, volume within the vmPFC was positively correlated with design fluency and negatively correlated with symptoms of anxiety, whereas GMV of the fusiform gyrus was associated with greater design fluency and sustained visual psychomotor vigilance performance. Moreover, the larger GMV seen among the more chronic individuals was significantly greater than healthy controls, suggesting possible enlargement of these regions with time since injury. These findings are interpreted in light of burgeoning evidence suggesting that cortical regions often exhibit structural changes following experience or practice, and suggest that with greater time since an mTBI, the brain displays compensatory remodeling of cortical regions involved in emotional regulation, which may reduce distractibility during attention demanding visuo-motor tasks. PMID:26711488
Jawarneh, Sana; Abdullah, Salwani
2015-01-01
This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon’s 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results. PMID:26132158
Bao, Weimin; Tang, Guojian; Jiang, Yuewen; Liu, Jie
2014-01-01
It is very time consuming to solve fractional differential equations. The computational complexity of two-dimensional fractional differential equation (2D-TFDE) with iterative implicit finite difference method is O(MxMyN2). In this paper, we present a parallel algorithm for 2D-TFDE and give an in-depth discussion about this algorithm. A task distribution model and data layout with virtual boundary are designed for this parallel algorithm. The experimental results show that the parallel algorithm compares well with the exact solution. The parallel algorithm on single Intel Xeon X5540 CPU runs 3.16–4.17 times faster than the serial algorithm on single CPU core. The parallel efficiency of 81 processes is up to 88.24% compared with 9 processes on a distributed memory cluster system. We do think that the parallel computing technology will become a very basic method for the computational intensive fractional applications in the near future. PMID:24744680
Automatic, Real-Time Algorithms for Anomaly Detection in High Resolution Satellite Imagery
NASA Astrophysics Data System (ADS)
Srivastava, A. N.; Nemani, R. R.; Votava, P.
2008-12-01
Earth observing satellites are generating data at an unprecedented rate, surpassing almost all other data intensive applications. However, most of the data that arrives from the satellites is not analyzed directly. Rather, multiple scientific teams analyze only a small fraction of the total data available in the data stream. Although there are many reasons for this situation one paramount concern is developing algorithms and methods that can analyze the vast, high dimensional, streaming satellite images. This paper describes a new set of methods that are among the fastest available algorithms for real-time anomaly detection. These algorithms were built to maximize accuracy and speed for a variety of applications in fields outside of the earth sciences. However, our studies indicate that with appropriate modifications, these algorithms can be extremely valuable for identifying anomalies rapidly using only modest computational power. We review two algorithms which are used as benchmarks in the field: Orca, One-Class Support Vector Machines and discuss the anomalies that are discovered in MODIS data taken over the Central California region. We are especially interested in automatic identification of disturbances within the ecosystems (e,g, wildfires, droughts, floods, insect/pest damage, wind damage, logging). We show the scalability of the algorithms and demonstrate that with appropriately adapted technology, the dream of real-time analysis can be made a reality.
Gong, Chunye; Bao, Weimin; Tang, Guojian; Jiang, Yuewen; Liu, Jie
2014-01-01
It is very time consuming to solve fractional differential equations. The computational complexity of two-dimensional fractional differential equation (2D-TFDE) with iterative implicit finite difference method is O(M(x)M(y)N(2)). In this paper, we present a parallel algorithm for 2D-TFDE and give an in-depth discussion about this algorithm. A task distribution model and data layout with virtual boundary are designed for this parallel algorithm. The experimental results show that the parallel algorithm compares well with the exact solution. The parallel algorithm on single Intel Xeon X5540 CPU runs 3.16-4.17 times faster than the serial algorithm on single CPU core. The parallel efficiency of 81 processes is up to 88.24% compared with 9 processes on a distributed memory cluster system. We do think that the parallel computing technology will become a very basic method for the computational intensive fractional applications in the near future. PMID:24744680
Lu, Hao; Zhao, Kaichun; Wang, Xiaochu; You, Zheng; Huang, Kaoli
2016-01-01
Bio-inspired imaging polarization navigation which can provide navigation information and is capable of sensing polarization information has advantages of high-precision and anti-interference over polarization navigation sensors that use photodiodes. Although all types of imaging polarimeters exist, they may not qualify for the research on the imaging polarization navigation algorithm. To verify the algorithm, a real-time imaging orientation determination system was designed and implemented. Essential calibration procedures for the type of system that contained camera parameter calibration and the inconsistency of complementary metal oxide semiconductor calibration were discussed, designed, and implemented. Calibration results were used to undistort and rectify the multi-camera system. An orientation determination experiment was conducted. The results indicated that the system could acquire and compute the polarized skylight images throughout the calibrations and resolve orientation by the algorithm to verify in real-time. An orientation determination algorithm based on image processing was tested on the system. The performance and properties of the algorithm were evaluated. The rate of the algorithm was over 1 Hz, the error was over 0.313°, and the population standard deviation was 0.148° without any data filter. PMID:26805851
Lu, Hao; Zhao, Kaichun; Wang, Xiaochu; You, Zheng; Huang, Kaoli
2016-01-01
Bio-inspired imaging polarization navigation which can provide navigation information and is capable of sensing polarization information has advantages of high-precision and anti-interference over polarization navigation sensors that use photodiodes. Although all types of imaging polarimeters exist, they may not qualify for the research on the imaging polarization navigation algorithm. To verify the algorithm, a real-time imaging orientation determination system was designed and implemented. Essential calibration procedures for the type of system that contained camera parameter calibration and the inconsistency of complementary metal oxide semiconductor calibration were discussed, designed, and implemented. Calibration results were used to undistort and rectify the multi-camera system. An orientation determination experiment was conducted. The results indicated that the system could acquire and compute the polarized skylight images throughout the calibrations and resolve orientation by the algorithm to verify in real-time. An orientation determination algorithm based on image processing was tested on the system. The performance and properties of the algorithm were evaluated. The rate of the algorithm was over 1 Hz, the error was over 0.313°, and the population standard deviation was 0.148° without any data filter. PMID:26805851
Results from the New IGS Time Scale Algorithm (version 2.0)
NASA Astrophysics Data System (ADS)
Senior, K.; Ray, J.
2009-12-01
Since 2004 the IGS Rapid and Final clock products have been aligned to a highly stable time scale derived from a weighted ensemble of clocks in the IGS network. The time scale is driven mostly by Hydrogen Maser ground clocks though the GPS satellite clocks also carry non-negligible weight, resulting in a time scale having a one-day frequency stability of about 1E-15. However, because of the relatively simple weighting scheme used in the time scale algorithm and because the scale is aligned to UTC by steering it to GPS Time the resulting stability beyond several days suffers. The authors present results of a new 2.0 version of the IGS time scale highlighting the improvements to the algorithm, new modeling considerations, as well as improved time scale stability.
Xu, Sheng-Hua; Liu, Ji-Ping; Zhang, Fu-Hao; Wang, Liang; Sun, Li-Jian
2015-01-01
A combination of genetic algorithm and particle swarm optimization (PSO) for vehicle routing problems with time windows (VRPTW) is proposed in this paper. The improvements of the proposed algorithm include: using the particle real number encoding method to decode the route to alleviate the computation burden, applying a linear decreasing function based on the number of the iterations to provide balance between global and local exploration abilities, and integrating with the crossover operator of genetic algorithm to avoid the premature convergence and the local minimum. The experimental results show that the proposed algorithm is not only more efficient and competitive with other published results but can also obtain more optimal solutions for solving the VRPTW issue. One new well-known solution for this benchmark problem is also outlined in the following. PMID:26343655
Study on algorithm and real-time implementation of infrared image processing based on FPGA
NASA Astrophysics Data System (ADS)
Pang, Yulin; Ding, Ruijun; Liu, Shanshan; Chen, Zhe
2010-10-01
With the fast development of Infrared Focal Plane Arrays (IRFPA) detectors, high quality real-time image processing becomes more important in infrared imaging system. Facing the demand of better visual effect and good performance, we find FPGA is an ideal choice of hardware to realize image processing algorithm that fully taking advantage of its high speed, high reliability and processing a great amount of data in parallel. In this paper, a new idea of dynamic linear extension algorithm is introduced, which has the function of automatically finding the proper extension range. This image enhancement algorithm is designed in Verilog HDL and realized on FPGA. It works on higher speed than serial processing device like CPU and DSP. Experiment shows that this hardware unit of dynamic linear extension algorithm enhances the visual effect of infrared image effectively.
A real-time ECG data compression algorithm for a digital holter system.
Lee, Sangjoon; Lee, Myoungho
2008-01-01
This paper describes a real time ECG compression algorithm for a digital holter system. Proposed algorithm consists of five main procedures. First procedure is to differentiate signals, second is to choose a period of the differentiated signals and store them in memory, third is to perform the DCT(Discrete Cosine Transform) on the stored data, fourth is to apply a window filter, and fifth procedure is to apply Huffman Coding compression method on the data. This developed algorithm has been tested by applying 12 ECGs(electrocardiograms) from the MIT-BIH database and the PRD(Percent RMS Difference) and the CR(Compression Ratio) are calculated. It is found that the algorithm achieved a high level of compression performance with 1.82 of PRD and 8.82:1 of CR in average. PMID:19163774
Xu, Sheng-Hua; Liu, Ji-Ping; Zhang, Fu-Hao; Wang, Liang; Sun, Li-Jian
2015-01-01
A combination of genetic algorithm and particle swarm optimization (PSO) for vehicle routing problems with time windows (VRPTW) is proposed in this paper. The improvements of the proposed algorithm include: using the particle real number encoding method to decode the route to alleviate the computation burden, applying a linear decreasing function based on the number of the iterations to provide balance between global and local exploration abilities, and integrating with the crossover operator of genetic algorithm to avoid the premature convergence and the local minimum. The experimental results show that the proposed algorithm is not only more efficient and competitive with other published results but can also obtain more optimal solutions for solving the VRPTW issue. One new well-known solution for this benchmark problem is also outlined in the following. PMID:26343655
Methods of reducing program-execution time under RT-11 FORTRAN
Isidoro, R J; Trellue, R E
1982-04-01
The Quality Assurance (QA) Department of Sandia National Laboratories is responsible to the Department of Energy for assurance that weapons remain functional throughout their stockpile life. To accomplish this, QA conducts laboratory system tests on the Sandia-designed components of the weapon system. Joint flight tests with the Department of Defense are also conducted. The data acquisition and processing system used to acquire and analyze test results was designed by the QA Systems Test Equipment Design Division. The acquisition systems are built around PDP 11/34 computers. There are six similar acquisition systems that collect data independently from many unique weapon testers. A test usually lasts several minutes. After the data are acquired, the system engineers are interested in seeing the results as soon as possible. The complete test analysis must be known before disassembling the test equipment and moving on to the next scheduled test. If anomalies were present, disassembling would compromise posttest trouble-shooting procedures. The analysis for each test is therefore performed on the acquisition machine immediately after each test and must be completed in as short a time as possible. The FORTRAN software package used to analyze the results of laboratory system tests is considered. How the software works, problems encountered when it was decided to double the number of data acquisition channels to analyze, and the solution to the problems arrived at by benchmarking the programs with optional equipment that could be added to the existing configuration are discussed. (WHK)
Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm
NASA Technical Reports Server (NTRS)
Baskaran, Subbiah; Noever, D.
1999-01-01
Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.
ERIC Educational Resources Information Center
Hahn, Constanze; Cowell, Jason M.; Wiprzycka, Ursula J.; Goldstein, David; Ralph, Martin; Hasher, Lynn; Zelazo, Philip David
2012-01-01
To explore the influence of circadian rhythms on executive function during early adolescence, we administered a battery of executive function measures (including a Go-Nogo task, the Iowa Gambling Task, a Self-ordered Pointing task, and an Intra/Extradimensional Shift task) to Morning-preference and Evening-preference participants (N = 80) between…
Development of a rule-based algorithm for rice cultivation mapping using Landsat 8 time series
NASA Astrophysics Data System (ADS)
Karydas, Christos G.; Toukiloglou, Pericles; Minakou, Chara; Gitas, Ioannis Z.
2015-06-01
In the framework of ERMES project (FP7 66983), an algorithm for mapping rice cultivation extents using mediumhigh resolution satellite data was developed. ERMES (An Earth obseRvation Model based RicE information Service) aims to develop a prototype of downstream service for rice yield modelling based on a combination of Earth Observation and in situ data. The algorithm was designed as a set of rules applied on a time series of Landsat 8 images, acquired throughout the rice cultivation season of 2014 from the plain of Thessaloniki, Greece. The rules rely on the use of spectral indices, such as the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), and the Normalized Seasonal Wetness Index (NSWI), extracted from the Landsat 8 dataset. The algorithm is subdivided into two phases: a) a hard classification phase, resulting in a binary map (rice/no-rice), where pixels are judged according to their performance in all the images of the time series, while index thresholds were defined after a trial and error approach; b) a soft classification phase, resulting in a fuzzy map, by assigning scores to the pixels which passed (as `rice') the first phase. Finally, a user-defined threshold of the fuzzy score will discriminate rice from no-rice pixels in the output map. The algorithm was tested in a subset of Thessaloniki plain against a set of selected field data. The results indicated an overall accuracy of the algorithm higher than 97%. The algorithm was also applied in a study are in Spain (Valencia) and a preliminary test indicated a similar performance, i.e. about 98%. Currently, the algorithm is being modified, so as to map rice extents early in the cultivation season (by the end of June), with a view to contribute more substantially to the rice yield prediction service of ERMES. Both algorithm modes (late and early) are planned to be tested in extra Mediterranean study areas, in Greece, Italy, and Spain.
A Hybrid Procedural/Deductive Executive for Autonomous Spacecraft
NASA Technical Reports Server (NTRS)
Pell, Barney; Gamble, Edward B.; Gat, Erann; Kessing, Ron; Kurien, James; Millar, William; Nayak, P. Pandurang; Plaunt, Christian; Williams, Brian C.; Lau, Sonie (Technical Monitor)
1998-01-01
The New Millennium Remote Agent (NMRA) will be the first AI system to control an actual spacecraft. The spacecraft domain places a strong premium on autonomy and requires dynamic recoveries and robust concurrent execution, all in the presence of tight real-time deadlines, changing goals, scarce resource constraints, and a wide variety of possible failures. To achieve this level of execution robustness, we have integrated a procedural executive based on generic procedures with a deductive model-based executive. A procedural executive provides sophisticated control constructs such as loops, parallel activity, locks, and synchronization which are used for robust schedule execution, hierarchical task decomposition, and routine configuration management. A deductive executive provides algorithms for sophisticated state inference and optimal failure recover), planning. The integrated executive enables designers to code knowledge via a combination of procedures and declarative models, yielding a rich modeling capability suitable to the challenges of real spacecraft control. The interface between the two executives ensures both that recovery sequences are smoothly merged into high-level schedule execution and that a high degree of reactivity is retained to effectively handle additional failures during recovery.
Chin, Siu A.; Krotscheck, Eckhard
2005-09-01
By implementing the exact density matrix for the rotating anisotropic harmonic trap, we derive a class of very fast and accurate fourth-order algorithms for evolving the Gross-Pitaevskii equation in imaginary time. Such fourth-order algorithms are possible only with the use of forward, positive time step factorization schemes. These fourth-order algorithms converge at time-step sizes an order-of-magnitude larger than conventional second-order algorithms. Our use of time-dependent factorization schemes provides a systematic way of devising algorithms for solving this type of nonlinear equations.
Directed Incremental Symbolic Execution
NASA Technical Reports Server (NTRS)
Person, Suzette; Yang, Guowei; Rungta, Neha; Khurshid, Sarfraz
2011-01-01
The last few years have seen a resurgence of interest in the use of symbolic execution -- a program analysis technique developed more than three decades ago to analyze program execution paths. Scaling symbolic execution and other path-sensitive analysis techniques to large systems remains challenging despite recent algorithmic and technological advances. An alternative to solving the problem of scalability is to reduce the scope of the analysis. One approach that is widely studied in the context of regression analysis is to analyze the differences between two related program versions. While such an approach is intuitive in theory, finding efficient and precise ways to identify program differences, and characterize their effects on how the program executes has proved challenging in practice. In this paper, we present Directed Incremental Symbolic Execution (DiSE), a novel technique for detecting and characterizing the effects of program changes. The novelty of DiSE is to combine the efficiencies of static analysis techniques to compute program difference information with the precision of symbolic execution to explore program execution paths and generate path conditions affected by the differences. DiSE is a complementary technique to other reduction or bounding techniques developed to improve symbolic execution. Furthermore, DiSE does not require analysis results to be carried forward as the software evolves -- only the source code for two related program versions is required. A case-study of our implementation of DiSE illustrates its effectiveness at detecting and characterizing the effects of program changes.
NASA Astrophysics Data System (ADS)
Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; Carlson, Thomas J.
2016-04-01
Locating the position of fixed or mobile sources (i.e., transmitters) based on measurements obtained from sensors (i.e., receivers) is an important research area that is attracting much interest. In this paper, we review several representative localization algorithms that use time of arrivals (TOAs) and time difference of arrivals (TDOAs) to achieve high signal source position estimation accuracy when a transmitter is in the line-of-sight of a receiver. Circular (TOA) and hyperbolic (TDOA) position estimation approaches both use nonlinear equations that relate the known locations of receivers and unknown locations of transmitters. Estimation of the location of transmitters using the standard nonlinear equations may not be very accurate because of receiver location errors, receiver measurement errors, and computational efficiency challenges that result in high computational burdens. Least squares and maximum likelihood based algorithms have become the most popular computational approaches to transmitter location estimation. In this paper, we summarize the computational characteristics and position estimation accuracies of various positioning algorithms. By improving methods for estimating the time-of-arrival of transmissions at receivers and transmitter location estimation algorithms, transmitter location estimation may be applied across a range of applications and technologies such as radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.
Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T; Carlson, Thomas J
2016-04-01
Locating the position of fixed or mobile sources (i.e., transmitters) based on measurements obtained from sensors (i.e., receivers) is an important research area that is attracting much interest. In this paper, we review several representative localization algorithms that use time of arrivals (TOAs) and time difference of arrivals (TDOAs) to achieve high signal source position estimation accuracy when a transmitter is in the line-of-sight of a receiver. Circular (TOA) and hyperbolic (TDOA) position estimation approaches both use nonlinear equations that relate the known locations of receivers and unknown locations of transmitters. Estimation of the location of transmitters using the standard nonlinear equations may not be very accurate because of receiver location errors, receiver measurement errors, and computational efficiency challenges that result in high computational burdens. Least squares and maximum likelihood based algorithms have become the most popular computational approaches to transmitter location estimation. In this paper, we summarize the computational characteristics and position estimation accuracies of various positioning algorithms. By improving methods for estimating the time-of-arrival of transmissions at receivers and transmitter location estimation algorithms, transmitter location estimation may be applied across a range of applications and technologies such as radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia. PMID:27131647
Enhancing Sensitivity of a Miniature Spectrometer Using a Real-Time Image Processing Algorithm.
Chandramohan, Sabarish; Avrutsky, Ivan
2016-05-01
A real-time image processing algorithm is developed to enhance the sensitivity of a planar single-mode waveguide miniature spectrometer with integrated waveguide gratings. A novel approach of averaging along the arcs in a curved coordinate system is introduced which allows for collecting more light, thereby enhancing the sensitivity. The algorithm is tested using CdSeS/ZnS quantum dots drop casted on the surface of a single-mode waveguide. Measurements indicate that a monolayer of quantum dots is expected to produce guided mode attenuation approximately 11 times above the noise level. PMID:27170777
The FPGA realization of a real-time Bayer image restoration algorithm with better performance
NASA Astrophysics Data System (ADS)
Ma, Huaping; Liu, Shuang; Zhou, Jiangyong; Tang, Zunlie; Deng, Qilin; Zhang, Hongliu
2014-11-01
Along with the wide usage of realizing Bayer color interpolation algorithm through FPGA, better performance, real-time processing, and less resource consumption have become the pursuits for the users. In order to realize the function of high speed and high quality processing of the Bayer image restoration with less resource consumption, the color reconstruction is designed and optimized from the interpolation algorithm and the FPGA realization in this article. Then the hardware realization is finished with FPGA development platform, and the function of real-time and high-fidelity image processing with less resource consumption is realized in the embedded image acquisition systems.
Real time tracking with a silicon telescope prototype using the "artificial retina" algorithm
NASA Astrophysics Data System (ADS)
Abba, A.; Bedeschi, F.; Caponio, F.; Cenci, R.; Citterio, M.; Coelli, S.; Fu, J.; Geraci, A.; Grizzuti, M.; Lusardi, N.; Marino, P.; Monti, M.; Morello, M. J.; Neri, N.; Ninci, D.; Petruzzo, M.; Piucci, A.; Punzi, G.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.; Walsh, J.
2016-07-01
We present the first prototype of a silicon tracker using the artificial retina algorithm for fast track finding. The algorithm is inspired by the neurobiological mechanism of recognition of edges in mammals visual cortex. It is based on extensive parallelization and is implemented on commercial FPGAs allowing us to reconstruct real time tracks with offline-like quality and < 1 μs latencies. The practical device consists of a telescope with 8 single-sided silicon strip sensors and custom DAQ boards equipped with Xilinx Kintex 7 FPGAs that perform the readout of the sensors and the track reconstruction in real time.
Novel algorithm for coexpression detection in time-varying microarray data sets.
Yin, Zong-Xian; Chiang, Jung-Hsien
2008-01-01
When analyzing the results of microarray experiments, biologists generally use unsupervised categorization tools. However, such tools regard each time point as an independent dimension and utilize the Euclidean distance to compute the similarities between expressions. Furthermore, some of these methods require the number of clusters to be determined in advance, which is clearly impossible in the case of a new dataset. Therefore, this study proposes a novel scheme, designated as the Variation-based Coexpression Detection (VCD) algorithm, to analyze the trends of expressions based on their variation over time. The proposed algorithm has two advantages. First, it is unnecessary to determine the number of clusters in advance since the algorithm automatically detects those genes whose profiles are grouped together and creates patterns for these groups. Second, the algorithm features a new measurement criterion for calculating the degree of change of the expressions between adjacent time points and evaluating their trend similarities. Three real-world microarray datasets are employed to evaluate the performance of the proposed algorithm. PMID:18245881
NASA Astrophysics Data System (ADS)
Liu, Chen-Chung; Chan, Yin-Tsung
2011-02-01
In radio-requency identification (RFID) systems, when multiple tags transmit data to a reader simultaneously, these data may collide and create unsuccessful identifications; hence, anticollision algorithms are needed to reduce collisions (collision cycles) to improve the tag identification speed. We propose a one-time collision arbitration algorithm to reduce both the number of collisions and the time consumption for tags' identification in RFID. The proposed algorithm uses Manchester coding to detect the locations of collided bits, uses the divide-and-conquer strategy to find the structure of colliding bits to generate 96-bit query strings as the 96-bit candidate query strings (96BCQSs), and uses query-tree anticollision schemes with 96BCQSs to identify tags. The performance analysis and experimental results show that the proposed algorithm has three advantages: (i) reducing the number of collisions to only one, so that the time complexity of tag identification is the simplest O(1), (ii) storing identified identification numbers (IDs) and the 96BCQSs in a register to save the used memory, and (iii) resulting in the number of bits transmitted by both the reader and tags being evidently less than the other algorithms in one-tag identification or in all tags identification.
Flexible algorithm for real-time convolution supporting dynamic event-related fMRI
NASA Astrophysics Data System (ADS)
Eaton, Brent L.; Frank, Randall J.; Bolinger, Lizann; Grabowski, Thomas J.
2002-04-01
An efficient algorithm for generation of the task reference function has been developed that allows real-time statistical analysis of fMRI data, within the framework of the general linear model, for experiments with event-related stimulus designs. By leveraging time-stamped data collection in the Input/Output time-aWare Architecture (I/OWA), we detect the onset time of a stimulus as it is delivered to a subject. A dynamically updated list of detected stimulus event times is maintained in shared memory as a data stream and delivered as input to a real-time convolution algorithm. As each image is acquired from the MR scanner, the time-stamp of its acquisition is delivered via a second dynamically updated stream to the convolution algorithm, where a running convolution of the events with an estimated hemodynamic response function is computed at the image acquisition time and written to a third stream in memory. Output is interpreted as the activation reference function and treated as the covariate of interest in the I/OWA implementation of the general linear model. Statistical parametric maps are computed and displayed to the I/OWA user interface in less than the time between successive image acquisitions.
Detrending Algorithms in Large Time Series: Application to TFRM-PSES Data
NASA Astrophysics Data System (ADS)
del Ser, D.; Fors, O.; Núñez, J.; Voss, H.; Rosich, A.; Kouprianov, V.
2015-07-01
Certain instrumental effects and data reduction anomalies introduce systematic errors in photometric time series. Detrending algorithms such as the Trend Filtering Algorithm (TFA; Kovács et al. 2004) have played a key role in minimizing the effects caused by these systematics. Here we present the results obtained after applying the TFA, Savitzky & Golay (1964) detrending algorithms, and the Box Least Square phase-folding algorithm (Kovács et al. 2002) to the TFRM-PSES data (Fors et al. 2013). Tests performed on these data show that by applying these two filtering methods together the photometric RMS is on average improved by a factor of 3-4, with better efficiency towards brighter magnitudes, while applying TFA alone yields an improvement of a factor 1-2. As a result of this improvement, we are able to detect and analyze a large number of stars per TFRM-PSES field which present some kind of variability. Also, after porting these algorithms to Python and parallelizing them, we have improved, even for large data samples, the computational performance of the overall detrending+BLS algorithm by a factor of ˜10 with respect to Kovács et al. (2004).
Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm
Thanh, Vo Hong; Priami, Corrado
2015-08-07
We address the problem of simulating biochemical reaction networks with time-dependent rates and propose a new algorithm based on our rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)]. The computation for selecting next reaction firings by our time-dependent RSSA (tRSSA) is computationally efficient. Furthermore, the generated trajectory is exact by exploiting the rejection-based mechanism. We benchmark tRSSA on different biological systems with varying forms of reaction rates to demonstrate its applicability and efficiency. We reveal that for nontrivial cases, the selection of reaction firings in existing algorithms introduces approximations because the integration of reaction rates is very computationally demanding and simplifying assumptions are introduced. The selection of the next reaction firing by our approach is easier while preserving the exactness.
A Linear Time Algorithm for the Minimum Spanning Caterpillar Problem for Bounded Treewidth Graphs
NASA Astrophysics Data System (ADS)
Dinneen, Michael J.; Khosravani, Masoud
We consider the Minimum Spanning Caterpillar Problem (MSCP) in a graph where each edge has two costs, spine (path) cost and leaf cost, depending on whether it is used as a spine or a leaf edge. The goal is to find a spanning caterpillar in which the sum of its edge costs is the minimum. We show that the problem has a linear time algorithm when a tree decomposition of the graph is given as part of the input. Despite the fast growing constant factor of the time complexity of our algorithm, it is still practical and efficient for some classes of graphs, such as outerplanar, series-parallel (K 4 minor-free), and Halin graphs. We also briefly explain how one can modify our algorithm to solve the Minimum Spanning Ring Star and the Dual Cost Minimum Spanning Tree Problems.
An automatic cloud mask algorithm based on time series of MODIS measurements
NASA Astrophysics Data System (ADS)
Lyapustin, A.; Wang, Y.; Frey, R.
2008-08-01
Quality of aerosol retrievals and atmospheric correction over land depends strongly on accuracy of the cloud mask (CM) algorithm. The heritage CM algorithms developed for AVHRR and MODIS use the latest sensor measurements of spectral reflectance and brightness temperature and perform processing at the pixel level. The algorithms are threshold-based and empirically tuned. They do not explicitly address the classical problem of cloud search, wherein the baseline clear-skies scene is defined for comparison. Here we report on a new land CM algorithm, which explicitly builds and maintains a reference clear-skies image of the surface (refcm) using a time series of MODIS measurements. The new algorithm, developed as part of the multiangle implementation of atmospheric correction (MAIAC) algorithm for MODIS, relies on the fact that clear-skies images of the same surface area have a common textural pattern, defined by the surface topography, boundaries of rivers and lakes, distribution of soils and vegetation, etc. This pattern changes slowly given the daily rate of global Earth observations, whereas clouds introduce high-frequency random disturbances. Under clear skies, consecutive gridded images of the same surface area have a high covariance, whereas in presence of clouds covariance is usually low. This idea is central to initialization of refcm, which is used to derive cloud mask in combination with spectral and brightness temperature tests. The refcm is continuously updated with the latest clear-skies MODIS measurements, thus adapting to seasonal and rapid surface changes. The algorithm is enhanced by an internal dynamic land-water-snow classification coupled with a surface change mask. An initial comparison shows that the new algorithm offers the potential to perform better than the MODIS MOD35 cloud mask in situations where the land surface is changing rapidly and over Earth regions covered by snow and ice.
[A study for time-history waveform synthesis of algorithm in shock response spectrum (SRS)].
Liu, Hong-ying; Ma, Ai-jun
2002-12-01
Objective. To present an effective on-line SRS time-history waveform synthesis method for simulating pyrotechnic shock environment with electrodynamic shakers. Method. A procedure was developed for synthesizing a SRS time-history waveform according to a general principle. The effect of three main parameters to waveform's shape, amplitude of acceleration and duration were investigated. A modification method of SRS's amplitude and an optimal algorithm of time-history waveform were presented. Result. The algorithm was used to generate a time-history waveform that could satisfy SRS's accuracy requirement and electrodynamic shaker's acceleration limitation. Conclusion. The numerical example indicates that the developed method is effective. The synthesized time-history waveform can be used to simulate pyrotechnic shock environment using electrodynamic shakers. PMID:12622083
Lothschuetz Montgomery, Kathryn; Geiger-Brown, Jeanne
2010-04-01
This article is part 2 of the series "Pulling the Plug on 12-Hour Shifts." In part 1 (March 2010), the authors provided an update on recent evidence that challenges the current scheduling paradigm that supports the lack of safety of long work hours. Part 2 describes the barriers to change and challenges for the nurse executive in moving away from the practice of 12-hour shifts. This is an executive-level analysis of barriers and recommends strategies for change. Translation of evidence into administrative practice requires examination of external environmental factors, internal system consequences, organizational culture, and measures of executive performance. PMID:20305457
Software algorithm and hardware design for real-time implementation of new spectral estimator
2014-01-01
Background Real-time spectral analyzers can be difficult to implement for PC computer-based systems because of the potential for high computational cost, and algorithm complexity. In this work a new spectral estimator (NSE) is developed for real-time analysis, and compared with the discrete Fourier transform (DFT). Method Clinical data in the form of 216 fractionated atrial electrogram sequences were used as inputs. The sample rate for acquisition was 977 Hz, or approximately 1 millisecond between digital samples. Real-time NSE power spectra were generated for 16,384 consecutive data points. The same data sequences were used for spectral calculation using a radix-2 implementation of the DFT. The NSE algorithm was also developed for implementation as a real-time spectral analyzer electronic circuit board. Results The average interval for a single real-time spectral calculation in software was 3.29 μs for NSE versus 504.5 μs for DFT. Thus for real-time spectral analysis, the NSE algorithm is approximately 150× faster than the DFT. Over a 1 millisecond sampling period, the NSE algorithm had the capability to spectrally analyze a maximum of 303 data channels, while the DFT algorithm could only analyze a single channel. Moreover, for the 8 second sequences, the NSE spectral resolution in the 3-12 Hz range was 0.037 Hz while the DFT spectral resolution was only 0.122 Hz. The NSE was also found to be implementable as a standalone spectral analyzer board using approximately 26 integrated circuits at a cost of approximately $500. The software files used for analysis are included as a supplement, please see the Additional files 1 and 2. Conclusions The NSE real-time algorithm has low computational cost and complexity, and is implementable in both software and hardware for 1 millisecond updates of multichannel spectra. The algorithm may be helpful to guide radiofrequency catheter ablation in real time. PMID:24886214
Independent component analysis algorithm FPGA design to perform real-time blind source separation
NASA Astrophysics Data System (ADS)
Meyer-Baese, Uwe; Odom, Crispin; Botella, Guillermo; Meyer-Baese, Anke
2015-05-01
The conditions that arise in the Cocktail Party Problem prevail across many fields creating a need for of Blind Source Separation. The need for BSS has become prevalent in several fields of work. These fields include array processing, communications, medical signal processing, and speech processing, wireless communication, audio, acoustics and biomedical engineering. The concept of the cocktail party problem and BSS led to the development of Independent Component Analysis (ICA) algorithms. ICA proves useful for applications needing real time signal processing. The goal of this research was to perform an extensive study on ability and efficiency of Independent Component Analysis algorithms to perform blind source separation on mixed signals in software and implementation in hardware with a Field Programmable Gate Array (FPGA). The Algebraic ICA (A-ICA), Fast ICA, and Equivariant Adaptive Separation via Independence (EASI) ICA were examined and compared. The best algorithm required the least complexity and fewest resources while effectively separating mixed sources. The best algorithm was the EASI algorithm. The EASI ICA was implemented on hardware with Field Programmable Gate Arrays (FPGA) to perform and analyze its performance in real time.
Algorithms for real-time fault detection of the Space Shuttle Main Engine
NASA Astrophysics Data System (ADS)
Ruiz, C. A.; Hawman, M. W.; Galinaitis, W. S.
1992-07-01
This paper reports on the results of a program to develop and demonstrate concepts related to a realtime health management system (HMS) for the Space Shuttle Main Engine (SSME). An HMS framework was developed on the basis of a top-down analysis of the current rocket engine failure modes and the engine monitoring requirements. One result of Phase I of this program was the identification of algorithmic approaches for detecting failures of the SSME. Three different analytical techniques were developed which demonstrated the capability to detect failures significantly earlier than the existing redlines. Based on promising initial results, Phase II of the program was initiated to further validate and refine the fault detection strategy on a large data base of 140 SSME test firings, and implement the resultant algorithms in real time. The paper begins with an overview of the refined algorithms used to detect failures during SSME start-up and main-stage operation. Results of testing these algorithms on a data base of nominal and off-nominal SSME test firings is discussed. The paper concludes with a discussion of the performance of the algorithms operating on a real-time computer system.
Algorithms for real-time fault detection of the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Ruiz, C. A.; Hawman, M. W.; Galinaitis, W. S.
1992-01-01
This paper reports on the results of a program to develop and demonstrate concepts related to a realtime health management system (HMS) for the Space Shuttle Main Engine (SSME). An HMS framework was developed on the basis of a top-down analysis of the current rocket engine failure modes and the engine monitoring requirements. One result of Phase I of this program was the identification of algorithmic approaches for detecting failures of the SSME. Three different analytical techniques were developed which demonstrated the capability to detect failures significantly earlier than the existing redlines. Based on promising initial results, Phase II of the program was initiated to further validate and refine the fault detection strategy on a large data base of 140 SSME test firings, and implement the resultant algorithms in real time. The paper begins with an overview of the refined algorithms used to detect failures during SSME start-up and main-stage operation. Results of testing these algorithms on a data base of nominal and off-nominal SSME test firings is discussed. The paper concludes with a discussion of the performance of the algorithms operating on a real-time computer system.
Validation of Learning Effort Algorithm for Real-Time Non-Interfering Based Diagnostic Technique
ERIC Educational Resources Information Center
Hsu, Pi-Shan; Chang, Te-Jeng
2011-01-01
The objective of this research is to validate the algorithm of learning effort which is an indicator of a new real-time and non-interfering based diagnostic technique. IC3 Mentor, the adaptive e-learning platform fulfilling the requirements of intelligent tutor system, was applied to 165 university students. The learning records of the subjects…
Algorithmic improvements to the real-time implementation of a synthetic aperture sonar beam former
NASA Astrophysics Data System (ADS)
Freeman, Douglas K.
1997-07-01
Coastal Systems Station has translated its synthetic aperture sonar beamformer from linear processing to parallel processing. The initial implementation included many linear processes delegated to individual processors and neglected algorithmic refinements available to parallel processing. The steps taken to achieve increased computational speed for real-time beam forming are presented.
ERIC Educational Resources Information Center
Tataw, Oben Moses
2013-01-01
Interdisciplinary research in computer science requires the development of computational techniques for practical application in different domains. This usually requires careful integration of different areas of technical expertise. This dissertation presents image and time series analysis algorithms, with practical interdisciplinary applications…
Maximum Principles and Application to the Analysis of An Explicit Time Marching Algorithm
NASA Technical Reports Server (NTRS)
LeTallec, Patrick; Tidriri, Moulay D.
1996-01-01
In this paper we develop local and global estimates for the solution of convection-diffusion problems. We then study the convergence properties of a Time Marching Algorithm solving Advection-Diffusion problems on two domains using incompatible discretizations. This study is based on a De-Giorgi-Nash maximum principle.