Genetic Algorithm (GA)-Based Inclinometer Layout Optimization.
Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo
2015-01-01
This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors. PMID:25897500
Genetic Algorithm (GA)-Based Inclinometer Layout Optimization
Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo
2015-01-01
This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors. PMID:25897500
NASA Astrophysics Data System (ADS)
Kim, Eunsu; Kim, Manseok; Kim, Jong-Wook
In this paper, a humanoid is simulated and implemented to walk up and down a staircase using the blending polynomial and genetic algorithm (GA). Both ascending and descending a staircase are scheduled by four steps. Each step mimics natural gait of human being and is easy to analyze and implement. Optimal trajectories of ten motors in a lower extremity of a humanoid are rigorously computed to simultaneously satisfy stability condition, walking constraints, and energy efficiency requirements. As an optimization method, GA is applied to search optimal trajectory parameters in blending polynomials. The feasibility of this approach will be validated by simulation with a small humanoid robot.
NASA Astrophysics Data System (ADS)
Jamshidi, Saeid; Boozarjomehry, Ramin Bozorgmehry; Pishvaie, Mahmoud Reza
2009-10-01
In pore network modeling, the void space of a rock sample is represented at the microscopic scale by a network of pores connected by throats. Construction of a reasonable representation of the geometry and topology of the pore space will lead to a reliable prediction of the properties of porous media. Recently, the theory of multi-cellular growth (or L-systems) has been used as a flexible tool for generation of pore network models which do not require any special information such as 2D SEM or 3D pore space images. In general, the networks generated by this method are irregular pore network models which are inherently closer to the complicated nature of the porous media rather than regular lattice networks. In this approach, the construction process is controlled only by the production rules that govern the development process of the network. In this study, genetic algorithm has been used to obtain the optimum values of the uncertain parameters of these production rules to build an appropriate irregular lattice network capable of the prediction of both static and hydraulic information of the target porous medium.
Genetic Algorithm for Optimization: Preprocessor and Algorithm
NASA Technical Reports Server (NTRS)
Sen, S. K.; Shaykhian, Gholam A.
2006-01-01
Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.
Silva, Leonardo W. T.; Barros, Vitor F.; Silva, Sandro G.
2014-01-01
In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence. PMID:25196013
A novel stochastic optimization algorithm.
Li, B; Jiang, W
2000-01-01
This paper presents a new stochastic approach SAGACIA based on proper integration of simulated annealing algorithm (SAA), genetic algorithm (GA), and chemotaxis algorithm (CA) for solving complex optimization problems. SAGACIA combines the advantages of SAA, GA, and CA together. It has the following features: (1) it is not the simple mix of SAA, GA, and CA; (2) it works from a population; (3) it can be easily used to solve optimization problems either with continuous variables or with discrete variables, and it does not need coding and decoding,; and (4) it can easily escape from local minima and converge quickly. Good solutions can be obtained in a very short time. The search process of SAGACIA can be explained with Markov chains. In this paper, it is proved that SAGACIA has the property of global asymptotical convergence. SAGACIA has been applied to solve such problems as scheduling, the training of artificial neural networks, and the optimizing of complex functions. In all the test cases, the performance of SAGACIA is better than that of SAA, GA, and CA. PMID:18244742
An efficient algorithm for function optimization: modified stem cells algorithm
NASA Astrophysics Data System (ADS)
Taherdangkoo, Mohammad; Paziresh, Mahsa; Yazdi, Mehran; Bagheri, Mohammad
2013-03-01
In this paper, we propose an optimization algorithm based on the intelligent behavior of stem cell swarms in reproduction and self-organization. Optimization algorithms, such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Artificial Bee Colony (ABC) algorithm, can give solutions to linear and non-linear problems near to the optimum for many applications; however, in some case, they can suffer from becoming trapped in local optima. The Stem Cells Algorithm (SCA) is an optimization algorithm inspired by the natural behavior of stem cells in evolving themselves into new and improved cells. The SCA avoids the local optima problem successfully. In this paper, we have made small changes in the implementation of this algorithm to obtain improved performance over previous versions. Using a series of benchmark functions, we assess the performance of the proposed algorithm and compare it with that of the other aforementioned optimization algorithms. The obtained results prove the superiority of the Modified Stem Cells Algorithm (MSCA).
Combinatorial Multiobjective Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Crossley, William A.; Martin. Eric T.
2002-01-01
The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.
Tumuluru, J.S.; Sokhansanj, Shahabaddine
2008-12-01
Abstract In the present study, response surface method (RSM) and genetic algorithm (GA) were used to study the effects of process variables like screw speed, rpm (x1), L/D ratio (x2), barrel temperature ( C; x3), and feed mix moisture content (%; x4), on flow rate of biomass during single-screw extrusion cooking. A second-order regression equation was developed for flow rate in terms of the process variables. The significance of the process variables based on Pareto chart indicated that screw speed and feed mix moisture content had the most influence followed by L/D ratio and barrel temperature on the flow rate. RSM analysis indicated that a screw speed>80 rpm, L/D ratio> 12, barrel temperature>80 C, and feed mix moisture content>20% resulted in maximum flow rate. Increase in screw speed and L/D ratio increased the drag flow and also the path of traverse of the feed mix inside the extruder resulting in more shear. The presence of lipids of about 35% in the biomass feed mix might have induced a lubrication effect and has significantly influenced the flow rate. The second-order regression equations were further used as the objective function for optimization using genetic algorithm. A population of 100 and iterations of 100 have successfully led to convergence the optimum. The maximum and minimum flow rates obtained using GA were 13.19 10 7 m3/s (x1=139.08 rpm, x2=15.90, x3=99.56 C, and x4=59.72%) and 0.53 10 7 m3/s (x1=59.65 rpm, x2= 11.93, x3=68.98 C, and x4=20.04%).
A Test Scheduling Algorithm Based on Two-Stage GA
NASA Astrophysics Data System (ADS)
Yu, Y.; Peng, X. Y.; Peng, Y.
2006-10-01
In this paper, we present a new algorithm to co-optimize the core wrapper design and the SOC test scheduling. The SOC test scheduling problem is first formulated into a twodimension floorplan problem and a sequence pair architecture is used to represent it. Then we propose a two-stage GA (Genetic Algorithm) to solve the SOC test scheduling problem. Experiments on ITC'02 benchmark show that our algorithm can effectively reduce test time so as to decrease SOC test cost.
An Algorithmic Framework for Multiobjective Optimization
Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795
An algorithmic framework for multiobjective optimization.
Ganesan, T; Elamvazuthi, I; Shaari, Ku Zilati Ku; Vasant, P
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795
Multidisciplinary design optimization using genetic algorithms
NASA Astrophysics Data System (ADS)
Unal, Resit
1994-12-01
Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared
Multidisciplinary design optimization using genetic algorithms
NASA Technical Reports Server (NTRS)
Unal, Resit
1994-01-01
Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared
GA-optimization for rapid prototype system demonstration
NASA Technical Reports Server (NTRS)
Kim, Jinwoo; Zeigler, Bernard P.
1994-01-01
An application of the Genetic Algorithm (GA) is discussed. A novel scheme of Hierarchical GA was developed to solve complicated engineering problems which require optimization of a large number of parameters with high precision. High level GAs search for few parameters which are much more sensitive to the system performance. Low level GAs search in more detail and employ a greater number of parameters for further optimization. Therefore, the complexity of the search is decreased and the computing resources are used more efficiently.
Instrument design and optimization using genetic algorithms
Hoelzel, Robert; Bentley, Phillip M.; Fouquet, Peter
2006-10-15
This article describes the design of highly complex physical instruments by using a canonical genetic algorithm (GA). The procedure can be applied to all instrument designs where performance goals can be quantified. It is particularly suited to the optimization of instrument design where local optima in the performance figure of merit are prevalent. Here, a GA is used to evolve the design of the neutron spin-echo spectrometer WASP which is presently being constructed at the Institut Laue-Langevin, Grenoble, France. A comparison is made between this artificial intelligence approach and the traditional manual design methods. We demonstrate that the search of parameter space is more efficient when applying the genetic algorithm, and the GA produces a significantly better instrument design. Furthermore, it is found that the GA increases flexibility, by facilitating the reoptimization of the design after changes in boundary conditions during the design phase. The GA also allows the exploration of 'nonstandard' magnet coil geometries. We conclude that this technique constitutes a powerful complementary tool for the design and optimization of complex scientific apparatus, without replacing the careful thought processes employed in traditional design methods.
Genetic algorithm optimization of atomic clusters
Morris, J.R.; Deaven, D.M.; Ho, K.M.; Wang, C.Z.; Pan, B.C.; Wacker, J.G.; Turner, D.E. |
1996-12-31
The authors have been using genetic algorithms to study the structures of atomic clusters and related problems. This is a problem where local minima are easy to locate, but barriers between the many minima are large, and the number of minima prohibit a systematic search. They use a novel mating algorithm that preserves some of the geometrical relationship between atoms, in order to ensure that the resultant structures are likely to inherit the best features of the parent clusters. Using this approach, they have been able to find lower energy structures than had been previously obtained. Most recently, they have been able to turn around the building block idea, using optimized structures from the GA to learn about systematic structural trends. They believe that an effective GA can help provide such heuristic information, and (conversely) that such information can be introduced back into the algorithm to assist in the search process.
OPTIMIZATION OF LONG RURAL FEEDERS USING A GENETIC ALGORITHM
Wishart, Michael; Ledwich, Gerard; Ghosh, Arindam; Ivanovich, Grujica
2010-06-15
This paper describes the optimization of conductor size and the voltage regulator location and magnitude of long rural distribution lines. The optimization minimizes the lifetime cost of the lines, including capital costs and losses while observing voltage drop and operational constraints using a Genetic Algorithm (GA). The GA optimization is applied to a real Single Wire Earth Return (SWER) network in regional Queensland and results are presented.
Algorithms for bilevel optimization
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Dennis, J. E., Jr.
1994-01-01
General multilevel nonlinear optimization problems arise in design of complex systems and can be used as a means of regularization for multi-criteria optimization problems. Here, for clarity in displaying our ideas, we restrict ourselves to general bi-level optimization problems, and we present two solution approaches. Both approaches use a trust-region globalization strategy, and they can be easily extended to handle the general multilevel problem. We make no convexity assumptions, but we do assume that the problem has a nondegenerate feasible set. We consider necessary optimality conditions for the bi-level problem formulations and discuss results that can be extended to obtain multilevel optimization formulations with constraints at each level.
Satellite mission scheduling algorithm based on GA
NASA Astrophysics Data System (ADS)
Sun, Baolin; Mao, Lifei; Wang, Wenxiang; Xie, Xing; Qin, Qianqing
2007-11-01
The Satellite Mission Scheduling problem (SMS) involves scheduling tasks to be performed by a satellite, where new task requests can arrive at any time, non-deterministically, and must be scheduled in real-time. This paper describes a new Satellite Mission Scheduling problem based on Genetic Algorithm (SMSGA). In this paper, it investigates algorithmic approaches for determining an optimal or near-optimal sequence of tasks, allocated to a satellite payload over time, with dynamic tasking considerations. The simulation results show that the proposed approach is effective and efficient in applications to the real problems.
Constrained Multiobjective Biogeography Optimization Algorithm
Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping
2014-01-01
Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA. PMID:25006591
Constrained multiobjective biogeography optimization algorithm.
Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping
2014-01-01
Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA. PMID:25006591
Calibration of visual model for space manipulator with a hybrid LM-GA algorithm
NASA Astrophysics Data System (ADS)
Jiang, Wensong; Wang, Zhongyu
2016-01-01
A hybrid LM-GA algorithm is proposed to calibrate the camera system of space manipulator to improve its locational accuracy. This algorithm can dynamically fuse the Levenberg-Marqurdt (LM) algorithm and Genetic Algorithm (GA) together to minimize the error of nonlinear camera model. LM algorithm is called to optimize the initial camera parameters that are generated by genetic process previously. Iteration should be stopped if the optimized camera parameters meet the accuracy requirements. Otherwise, new populations are generated again by GA and optimized afresh by LM algorithm until the optimal solutions meet the accuracy requirements. A novel measuring machine of space manipulator is designed to on-orbit dynamic simulation and precision test. The camera system of space manipulator, calibrated by hybrid LM-GA algorithm, is used for locational precision test in this measuring instrument. The experimental results show that the mean composite errors are 0.074 mm for hybrid LM-GA camera calibration model, 1.098 mm for LM camera calibration model, and 1.202 mm for GA camera calibration model. Furthermore, the composite standard deviations are 0.103 mm for the hybrid LM-GA camera calibration model, 1.227 mm for LM camera calibration model, and 1.351 mm for GA camera calibration model. The accuracy of hybrid LM-GA camera calibration model is more than 10 times higher than that of other two methods. All in all, the hybrid LM-GA camera calibration model is superior to both the LM camera calibration model and GA camera calibration model.
Multilevel algorithms for nonlinear optimization
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Dennis, J. E., Jr.
1994-01-01
Multidisciplinary design optimization (MDO) gives rise to nonlinear optimization problems characterized by a large number of constraints that naturally occur in blocks. We propose a class of multilevel optimization methods motivated by the structure and number of constraints and by the expense of the derivative computations for MDO. The algorithms are an extension to the nonlinear programming problem of the successful class of local Brown-Brent algorithms for nonlinear equations. Our extensions allow the user to partition constraints into arbitrary blocks to fit the application, and they separately process each block and the objective function, restricted to certain subspaces. The methods use trust regions as a globalization strategy, and they have been shown to be globally convergent under reasonable assumptions. The multilevel algorithms can be applied to all classes of MDO formulations. Multilevel algorithms for solving nonlinear systems of equations are a special case of the multilevel optimization methods. In this case, they can be viewed as a trust-region globalization of the Brown-Brent class.
Improved hybrid optimization algorithm for 3D protein structure prediction.
Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang
2014-07-01
A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins. PMID:25069136
Bell-Curve Based Evolutionary Optimization Algorithm
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Laba, K.; Kincaid, R.
1998-01-01
The paper presents an optimization algorithm that falls in the category of genetic, or evolutionary algorithms. While the bit exchange is the basis of most of the Genetic Algorithms (GA) in research and applications in America, some alternatives, also in the category of evolutionary algorithms, but use a direct, geometrical approach have gained popularity in Europe and Asia. The Bell-Curve Based Evolutionary Algorithm (BCB) is in this alternative category and is distinguished by the use of a combination of n-dimensional geometry and the normal distribution, the bell-curve, in the generation of the offspring. The tool for creating a child is a geometrical construct comprising a line connecting two parents and a weighted point on that line. The point that defines the child deviates from the weighted point in two directions: parallel and orthogonal to the connecting line, the deviation in each direction obeying a probabilistic distribution. Tests showed satisfactory performance of BCB. The principal advantage of BCB is its controllability via the normal distribution parameters and the geometrical construct variables.
GA-Based Image Restoration by Isophote Constraint Optimization
NASA Astrophysics Data System (ADS)
Kim, Jong Bae; Kim, Hang Joon
2003-12-01
We propose an efficient technique for image restoration based on a genetic algorithm (GA) with an isophote constraint. In our technique, the image restoration problem is modeled as an optimization problem which, in our case, is solved by a cost function with isophote constraint that is minimized using a GA. We consider that an image is decomposed into isophotes based on connected components of constant intensity. The technique creates an optimal connection of all pairs of isophotes disconnected by a caption in the frame. For connecting the disconnected isophotes, we estimate the value of the smoothness, given by the best chromosomes of the GA and project this value in the isophote direction. Experimental results show a great possibility for automatic restoration of a region in an advertisement scene.
Optimization of solar air collector using genetic algorithm and artificial bee colony algorithm
NASA Astrophysics Data System (ADS)
Şencan Şahin, Arzu
2012-11-01
Thermal performance of solar air collector depends on many parameters as inlet air temperature, air velocity, collector slope and properties related to collector. In this study, the effect of the different parameters which affect the performance of the solar air collector are investigated. In order to maximize the thermal performance of a solar air collector genetic algorithm (GA) and artificial bee colony algorithm (ABC) have been used. The results obtained indicate that GA and ABC algorithms can be applied successfully for the optimization of the thermal performance of solar air collector.
NASA Astrophysics Data System (ADS)
Venkata Rao, R.; Patel, Vivek
2012-08-01
This study explores the use of teaching-learning-based optimization (TLBO) and artificial bee colony (ABC) algorithms for determining the optimum operating conditions of combined Brayton and inverse Brayton cycles. Maximization of thermal efficiency and specific work of the system are considered as the objective functions and are treated simultaneously for multi-objective optimization. Upper cycle pressure ratio and bottom cycle expansion pressure of the system are considered as design variables for the multi-objective optimization. An application example is presented to demonstrate the effectiveness and accuracy of the proposed algorithms. The results of optimization using the proposed algorithms are validated by comparing with those obtained by using the genetic algorithm (GA) and particle swarm optimization (PSO) on the same example. Improvement in the results is obtained by the proposed algorithms. The results of effect of variation of the algorithm parameters on the convergence and fitness values of the objective functions are reported.
Truss Optimization for a Manned Nuclear Electric Space Vehicle using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Benford, Andrew; Tinker, Michael L.
2004-01-01
The purpose of this paper is to utilize the genetic algorithm (GA) optimization method for structural design of a nuclear propulsion vehicle. Genetic algorithms provide a guided, random search technique that mirrors biological adaptation. To verify the GA capabilities, other traditional optimization methods were used to generate results for comparison to the GA results, first for simple two-dimensional structures, and then for full-scale three-dimensional truss designs.
Optimal Design of RF Energy Harvesting Device Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Mori, T.; Sato, Y.; Adriano, R.; Igarashi, H.
2015-11-01
This paper presents optimal design of an RF energy harvesting device using genetic algorithm (GA). In the present RF harvester, a planar spiral antenna (PSA) is loaded with matching and rectifying circuits. On the first stage of the optimal design, the shape parameters of PSA are optimized using . Then, the equivalent circuit of the optimized PSA is derived for optimization of the circuits. Finally, the parameters of RF energy harvesting circuit are optimized to maximize the output power using GA. It is shown that the present optimization increases the output power by a factor of five. The manufactured energy harvester starts working when the input electric field is greater than 0.5 V/m.
Lunar Habitat Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
SanScoucie, M. P.; Hull, P. V.; Tinker, M. L.; Dozier, G. V.
2007-01-01
Long-duration surface missions to the Moon and Mars will require bases to accommodate habitats for the astronauts. Transporting the materials and equipment required to build the necessary habitats is costly and difficult. The materials chosen for the habitat walls play a direct role in protection against each of the mentioned hazards. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Clearly, an optimization method is warranted for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat wall design tool utilizing genetic algorithms (GAs) has been developed. GAs use a "survival of the fittest" philosophy where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multiobjective formulation of up-mass, heat loss, structural analysis, meteoroid impact protection, and radiation protection. This Technical Publication presents the research and development of this tool as well as a technique for finding the optimal GA search parameters.
PDE Nozzle Optimization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Billings, Dana; Turner, James E. (Technical Monitor)
2000-01-01
Genetic algorithms, which simulate evolution in natural systems, have been used to find solutions to optimization problems that seem intractable to standard approaches. In this study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse detonation engine (PDE) is demonstrated. The objective was to maximize impulse during the detonation wave passage and blow-down phases of operation. Impulse of each profile variant was obtained by using the CFD code Mozart/2.0 to simulate the transient flow. After 7 generations, the method has identified a nozzle profile that certainly is a candidate for optimum solution. The constraints on the generality of this possible solution remain to be clarified.
Evaluation of a Particle Swarm Algorithm For Biomechanical Optimization
Schutte, Jaco F.; Koh, Byung; Reinbolt, Jeffrey A.; Haftka, Raphael T.; George, Alan D.; Fregly, Benjamin J.
2006-01-01
Optimization is frequently employed in biomechanics research to solve system identification problems, predict human movement, or estimate muscle or other internal forces that cannot be measured directly. Unfortunately, biomechanical optimization problems often possess multiple local minima, making it difficult to find the best solution. Furthermore, convergence in gradient-based algorithms can be affected by scaling to account for design variables with different length scales or units. In this study we evaluate a recently-developed version of the particle swarm optimization (PSO) algorithm to address these problems. The algorithm’s global search capabilities were investigated using a suite of difficult analytical test problems, while its scale-independent nature was proven mathematically and verified using a biomechanical test problem. For comparison, all test problems were also solved with three off-the-shelf optimization algorithms—a global genetic algorithm (GA) and multistart gradient-based sequential quadratic programming (SQP) and quasi-Newton (BFGS) algorithms. For the analytical test problems, only the PSO algorithm was successful on the majority of the problems. When compared to previously published results for the same problems, PSO was more robust than a global simulated annealing algorithm but less robust than a different, more complex genetic algorithm. For the biomechanical test problem, only the PSO algorithm was insensitive to design variable scaling, with the GA algorithm being mildly sensitive and the SQP and BFGS algorithms being highly sensitive. The proposed PSO algorithm provides a new off-the-shelf global optimization option for difficult biomechanical problems, especially those utilizing design variables with different length scales or units. PMID:16060353
Optimization of Power Coefficient of Wind Turbine Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Rajakumar, Sappani; Ravindran, Durairaj; Sivakumar, Mahalingam; Venkatachalam, Gopalan; Muthukumar, Shunmugavelu
2016-06-01
In the design of a wind turbine, the goal is to attain the highest possible power output under specified atmospheric conditions. The optimization of power coefficient of horizontal axis wind turbine has been carried out by integration of blade element momentum method and genetic algorithm (GA). The design variables considered are wind velocity, angle of attack and tip speed ratio. The objective function is power coefficient of wind turbine. The different combination of design variables are optimized using GA and then the Power coefficient is optimized. The optimized design variables are validated with the experimental results available in the literature. By this optimization work the optimum design variables of wind turbine can be found economically than experimental work. NACA44XX series airfoils are considered for this optimization work.
A hybrid artificial bee colony algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Alqattan, Zakaria N.; Abdullah, Rosni
2015-02-01
Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).
Genetic algorithm parameter optimization: applied to sensor coverage
NASA Astrophysics Data System (ADS)
Sahin, Ferat; Abbate, Giuseppe
2004-08-01
Genetic Algorithms are powerful tools, which when set upon a solution space will search for the optimal answer. These algorithms though have some associated problems, which are inherent to the method such as pre-mature convergence and lack of population diversity. These problems can be controlled with changes to certain parameters such as crossover, selection, and mutation. This paper attempts to tackle these problems in GA by having another GA controlling these parameters. The values for crossover parameter are: one point, two point, and uniform. The values for selection parameters are: best, worst, roulette wheel, inside 50%, outside 50%. The values for the mutation parameter are: random and swap. The system will include a control GA whose population will consist of different parameters settings. While this GA is attempting to find the best parameters it will be advancing into the search space of the problem and refining the population. As the population changes due to the search so will the optimal parameters. For every control GA generation each of the individuals in the population will be tested for fitness by being run through the problem GA with the assigned parameters. During these runs the population used in the next control generation is compiled. Thus, both the issue of finding the best parameters and the solution to the problem are attacked at the same time. The goal is to optimize the sensor coverage in a square field. The test case used was a 30 by 30 unit field with 100 sensor nodes. Each sensor node had a coverage area of 3 by 3 units. The algorithm attempts to optimize the sensor coverage in the field by moving the nodes. The results show that the control GA will provide better results when compared to a system with no parameter changes.
Optimization of an antenna array using genetic algorithms
Kiehbadroudinezhad, Shahideh; Noordin, Nor Kamariah; Sali, A.; Abidin, Zamri Zainal
2014-06-01
An array of antennas is usually used in long distance communication. The observation of celestial objects necessitates a large array of antennas, such as the Giant Metrewave Radio Telescope (GMRT). Optimizing this kind of array is very important when observing a high performance system. The genetic algorithm (GA) is an optimization solution for these kinds of problems that reconfigures the position of antennas to increase the u-v coverage plane or decrease the sidelobe levels (SLLs). This paper presents how to optimize a correlator antenna array using the GA. A brief explanation about the GA and operators used in this paper (mutation and crossover) is provided. Then, the results of optimization are discussed. The results show that the GA provides efficient and optimum solutions among a pool of candidate solutions in order to achieve the desired array performance for the purposes of radio astronomy. The proposed algorithm is able to distribute the u-v plane more efficiently than GMRT with a more than 95% distribution ratio at snapshot, and to fill the u-v plane from a 20% to more than 68% filling ratio as the number of generations increases in the hour tracking observations. Finally, the algorithm is able to reduce the SLL to –21.75 dB.
Parallel algorithms for unconstrained optimizations by multisplitting
He, Qing
1994-12-31
In this paper a new parallel iterative algorithm for unconstrained optimization using the idea of multisplitting is proposed. This algorithm uses the existing sequential algorithms without any parallelization. Some convergence and numerical results for this algorithm are presented. The experiments are performed on an Intel iPSC/860 Hyper Cube with 64 nodes. It is interesting that the sequential implementation on one node shows that if the problem is split properly, the algorithm converges much faster than one without splitting.
Feature optimization in chemometric algorithms for explosives detection
NASA Astrophysics Data System (ADS)
Pinkham, Daniel W.; Bonick, James R.; Woodka, Marc D.
2012-06-01
This paper details the use of a genetic algorithm (GA) as a method to preselect spectral feature variables for chemometric algorithms, using spectroscopic data gathered on explosive threat targets. The GA was applied to laserinduced breakdown spectroscopy (LIBS) and ultraviolet Raman spectroscopy (UVRS) data, in which the spectra consisted of approximately 10000 and 1000 distinct spectral values, respectively. The GA-selected variables were examined using two chemometric techniques: multi-class linear discriminant analysis (LDA) and support vector machines (SVM), and the performance from LDA and SVM was fed back to the GA through a fitness function evaluation. In each case, an optimal selection of features was achieved within 20 generations of the GA, with few improvements thereafter. The GA selected chemically significant signatures, such as oxygen and hydron peaks from LIBS spectra and characteristic Raman shifts for AN, TNT, and PETN. Successes documented herein suggest that this GA approach could be useful in analyzing spectroscopic data in complex environments, where the discriminating features of desired targets are not yet fully understood.
Optimizing scheduling problem using an estimation of distribution algorithm and genetic algorithm
NASA Astrophysics Data System (ADS)
Qun, Jiang; Yang, Ou; Dong, Shi-Du
2007-12-01
This paper presents a methodology for using heuristic search methods to optimize scheduling problem. Specifically, an Estimation of Distribution Algorithm (EDA)- Population Based Incremental Learning (PBIL), and Genetic Algorithm (GA) have been applied to finding effective arrangement of curriculum schedule of Universities. To our knowledge, EDAs have been applied to fewer real world problems compared to GAs, and the goal of the present paper is to expand the application domain of this technique. The experimental results indicate a good applicability of PBIL to optimize scheduling problem.
Intelligent perturbation algorithms for space scheduling optimization
NASA Technical Reports Server (NTRS)
Kurtzman, Clifford R.
1991-01-01
Intelligent perturbation algorithms for space scheduling optimization are presented in the form of the viewgraphs. The following subject areas are covered: optimization of planning, scheduling, and manifesting; searching a discrete configuration space; heuristic algorithms used for optimization; use of heuristic methods on a sample scheduling problem; intelligent perturbation algorithms are iterative refinement techniques; properties of a good iterative search operator; dispatching examples of intelligent perturbation algorithm and perturbation operator attributes; scheduling implementations using intelligent perturbation algorithms; major advances in scheduling capabilities; the prototype ISF (industrial Space Facility) experiment scheduler; optimized schedule (max revenue); multi-variable optimization; Space Station design reference mission scheduling; ISF-TDRSS command scheduling demonstration; and example task - communications check.
Optimization of computer-generated binary holograms using genetic algorithms
NASA Astrophysics Data System (ADS)
Cojoc, Dan; Alexandrescu, Adrian
1999-11-01
The aim of this paper is to compare genetic algorithms against direct point oriented coding in the design of binary phase Fourier holograms, computer generated. These are used as fan-out elements for free space optical interconnection. Genetic algorithms are optimization methods which model the natural process of genetic evolution. The configuration of the hologram is encoded to form a chromosome. To start the optimization, a population of different chromosomes randomly generated is considered. The chromosomes compete, mate and mutate until the best chromosome is obtained according to a cost function. After explaining the operators that are used by genetic algorithms, this paper presents two examples with 32 X 32 genes in a chromosome. The crossover type and the number of mutations are shown to be important factors which influence the convergence of the algorithm. GA is demonstrated to be a useful tool to design namely binary phase holograms of complicate structures.
Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Haith, Gary L.; Clancy, Daniel (Technical Monitor)
2002-01-01
We present results from a study comparing a recently developed coevolutionary genetic algorithm (CGA) against a set of evolutionary algorithms using a suite of multiobjective optimization benchmarks. The CGA embodies competitive coevolution and employs a simple, straightforward target population representation and fitness calculation based on developmental theory of learning. Because of these properties, setting up the additional population is trivial making implementation no more difficult than using a standard GA. Empirical results using a suite of two-objective test functions indicate that this CGA performs well at finding solutions on convex, nonconvex, discrete, and deceptive Pareto-optimal fronts, while giving respectable results on a nonuniform optimization. On a multimodal Pareto front, the CGA finds a solution that dominates solutions produced by eight other algorithms, yet the CGA has poor coverage across the Pareto front.
Quadruped Robot Locomotion using a Global Optimization Stochastic Algorithm
NASA Astrophysics Data System (ADS)
Oliveira, Miguel; Santos, Cristina; Costa, Lino; Ferreira, Manuel
2011-09-01
The problem of tuning nonlinear dynamical systems parameters, such that the attained results are considered good ones, is a relevant one. This article describes the development of a gait optimization system that allows a fast but stable robot quadruped crawl gait. We combine bio-inspired Central Patterns Generators (CPGs) and Genetic Algorithms (GA). CPGs are modelled as autonomous differential equations, that generate the necessar y limb movement to perform the required walking gait. The GA finds parameterizations of the CPGs parameters which attain good gaits in terms of speed, vibration and stability. Moreover, two constraint handling techniques based on tournament selection and repairing mechanism are embedded in the GA to solve the proposed constrained optimization problem and make the search more efficient. The experimental results, performed on a simulated Aibo robot, demonstrate that our approach allows low vibration with a high velocity and wide stability margin for a quadruped slow crawl gait.
Intelligent perturbation algorithms to space scheduling optimization
NASA Technical Reports Server (NTRS)
Kurtzman, Clifford R.
1991-01-01
The limited availability and high cost of crew time and scarce resources make optimization of space operations critical. Advances in computer technology coupled with new iterative search techniques permit the near optimization of complex scheduling problems that were previously considered computationally intractable. Described here is a class of search techniques called Intelligent Perturbation Algorithms. Several scheduling systems which use these algorithms to optimize the scheduling of space crew, payload, and resource operations are also discussed.
An optimal structural design algorithm using optimality criteria
NASA Technical Reports Server (NTRS)
Taylor, J. E.; Rossow, M. P.
1976-01-01
An algorithm for optimal design is given which incorporates several of the desirable features of both mathematical programming and optimality criteria, while avoiding some of the undesirable features. The algorithm proceeds by approaching the optimal solution through the solutions of an associated set of constrained optimal design problems. The solutions of the constrained problems are recognized at each stage through the application of optimality criteria based on energy concepts. Two examples are described in which the optimal member size and layout of a truss is predicted, given the joint locations and loads.
Genetic algorithm optimized triply compensated pulses in NMR spectroscopy
NASA Astrophysics Data System (ADS)
Manu, V. S.; Veglia, Gianluigi
2015-11-01
Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π / 2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-13C, 15N NAVL peptide as well as U-13C, 15N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.
Genetic algorithm optimized triply compensated pulses in NMR spectroscopy.
Manu, V S; Veglia, Gianluigi
2015-11-01
Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π/2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-(13)C, (15)N NAVL peptide as well as U-(13)C, (15)N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences. PMID:26473327
Global and Local Optimization Algorithms for Optimal Signal Set Design
Kearsley, Anthony J.
2001-01-01
The problem of choosing an optimal signal set for non-Gaussian detection was reduced to a smooth inequality constrained mini-max nonlinear programming problem by Gockenbach and Kearsley. Here we consider the application of several optimization algorithms, both global and local, to this problem. The most promising results are obtained when special-purpose sequential quadratic programming (SQP) algorithms are embedded into stochastic global algorithms.
A comprehensive review of swarm optimization algorithms.
Ab Wahab, Mohd Nadhir; Nefti-Meziani, Samia; Atyabi, Adham
2015-01-01
Many swarm optimization algorithms have been introduced since the early 60's, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches. PMID:25992655
A Comprehensive Review of Swarm Optimization Algorithms
2015-01-01
Many swarm optimization algorithms have been introduced since the early 60’s, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches. PMID:25992655
A Novel Particle Swarm Optimization Algorithm for Global Optimization
Wang, Chun-Feng; Liu, Kui
2016-01-01
Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms. PMID:26955387
A Novel Particle Swarm Optimization Algorithm for Global Optimization.
Wang, Chun-Feng; Liu, Kui
2016-01-01
Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms. PMID:26955387
Multidisciplinary Multiobjective Optimal Design for Turbomachinery Using Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
2005-01-01
This report summarizes Dr. Lian s efforts toward developing a robust and efficient tool for multidisciplinary and multi-objective optimal design for turbomachinery using evolutionary algorithms. This work consisted of two stages. The first stage (from July 2003 to June 2004) Dr. Lian focused on building essential capabilities required for the project. More specifically, Dr. Lian worked on two subjects: an enhanced genetic algorithm (GA) and an integrated optimization system with a GA and a surrogate model. The second stage (from July 2004 to February 2005) Dr. Lian formulated aerodynamic optimization and structural optimization into a multi-objective optimization problem and performed multidisciplinary and multi-objective optimizations on a transonic compressor blade based on the proposed model. Dr. Lian s numerical results showed that the proposed approach can effectively reduce the blade weight and increase the stage pressure ratio in an efficient manner. In addition, the new design was structurally safer than the original design. Five conference papers and three journal papers were published on this topic by Dr. Lian.
Spaceborne SAR Imaging Algorithm for Coherence Optimized
Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun
2016-01-01
This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446
Acoustic Radiation Optimization Using the Particle Swarm Optimization Algorithm
NASA Astrophysics Data System (ADS)
Jeon, Jin-Young; Okuma, Masaaki
The present paper describes a fundamental study on structural bending design to reduce noise using a new evolutionary population-based heuristic algorithm called the particle swarm optimization algorithm (PSOA). The particle swarm optimization algorithm is a parallel evolutionary computation technique proposed by Kennedy and Eberhart in 1995. This algorithm is based on the social behavior models for bird flocking, fish schooling and other models investigated by zoologists. Optimal structural design problems to reduce noise are highly nonlinear, so that most conventional methods are difficult to apply. The present paper investigates the applicability of PSOA to such problems. Optimal bending design of a vibrating plate using PSOA is performed in order to minimize noise radiation. PSOA can be effectively applied to such nonlinear acoustic radiation optimization.
Algorithmic Differentiation for Calculus-based Optimization
NASA Astrophysics Data System (ADS)
Walther, Andrea
2010-10-01
For numerous applications, the computation and provision of exact derivative information plays an important role for optimizing the considered system but quite often also for its simulation. This presentation introduces the technique of Algorithmic Differentiation (AD), a method to compute derivatives of arbitrary order within working precision. Quite often an additional structure exploitation is indispensable for a successful coupling of these derivatives with state-of-the-art optimization algorithms. The talk will discuss two important situations where the problem-inherent structure allows a calculus-based optimization. Examples from aerodynamics and nano optics illustrate these advanced optimization approaches.
Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)
NASA Astrophysics Data System (ADS)
Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman
2011-12-01
In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.
Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)
NASA Astrophysics Data System (ADS)
Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman
2012-01-01
In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.
Adaptive Cuckoo Search Algorithm for Unconstrained Optimization
2014-01-01
Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971
Adaptive cuckoo search algorithm for unconstrained optimization.
Ong, Pauline
2014-01-01
Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971
Evolutionary Algorithm for Optimal Vaccination Scheme
NASA Astrophysics Data System (ADS)
Parousis-Orthodoxou, K. J.; Vlachos, D. S.
2014-03-01
The following work uses the dynamic capabilities of an evolutionary algorithm in order to obtain an optimal immunization strategy in a user specified network. The produced algorithm uses a basic genetic algorithm with crossover and mutation techniques, in order to locate certain nodes in the inputted network. These nodes will be immunized in an SIR epidemic spreading process, and the performance of each immunization scheme, will be evaluated by the level of containment that provides for the spreading of the disease.
Global Optimality of the Successive Maxbet Algorithm.
ERIC Educational Resources Information Center
Hanafi, Mohamed; ten Berge, Jos M. F.
2003-01-01
It is known that the Maxbet algorithm, which is an alternative to the method of generalized canonical correlation analysis and Procrustes analysis, may converge to local maxima. Discusses an eigenvalue criterion that is sufficient, but not necessary, for global optimality of the successive Maxbet algorithm. (SLD)
NASA Astrophysics Data System (ADS)
Igeta, Hideki; Hasegawa, Mikio
Chaotic dynamics have been effectively applied to improve various heuristic algorithms for combinatorial optimization problems in many studies. Currently, the most used chaotic optimization scheme is to drive heuristic solution search algorithms applicable to large-scale problems by chaotic neurodynamics including the tabu effect of the tabu search. Alternatively, meta-heuristic algorithms are used for combinatorial optimization by combining a neighboring solution search algorithm, such as tabu, gradient, or other search method, with a global search algorithm, such as genetic algorithms (GA), ant colony optimization (ACO), or others. In these hybrid approaches, the ACO has effectively optimized the solution of many benchmark problems in the quadratic assignment problem library. In this paper, we propose a novel hybrid method that combines the effective chaotic search algorithm that has better performance than the tabu search and global search algorithms such as ACO and GA. Our results show that the proposed chaotic hybrid algorithm has better performance than the conventional chaotic search and conventional hybrid algorithms. In addition, we show that chaotic search algorithm combined with ACO has better performance than when combined with GA.
Genetic algorithms for the construction of D-optimal designs
Heredia-Langner, Alejandro; Carlyle, W M.; Montgomery, D C.; Borror, Connie M.; Runger, George C.
2003-01-01
Computer-generated designs are useful for situations where standard factorial, fractional factorial or response surface designs cannot be easily employed. Alphabetically-optimal designs are the most widely used type of computer-generated designs, and of these, the D-optimal (or D-efficient) class of designs are extremely popular. D-optimal designs are usually constructed by algorithms that sequentially add and delete points from a potential design based using a candidate set of points spaced over the region of interest. We present a technique to generate D-efficient designs using genetic algorithms (GA). This approach eliminates the need to explicitly consider a candidate set of experimental points and it can handle highly constrained regions while maintaining a level of performance comparable to more traditional design construction techniques.
Algorithms for optimal dyadic decision trees
Hush, Don; Porter, Reid
2009-01-01
A new algorithm for constructing optimal dyadic decision trees was recently introduced, analyzed, and shown to be very effective for low dimensional data sets. This paper enhances and extends this algorithm by: introducing an adaptive grid search for the regularization parameter that guarantees optimal solutions for all relevant trees sizes, revising the core tree-building algorithm so that its run time is substantially smaller for most regularization parameter values on the grid, and incorporating new data structures and data pre-processing steps that provide significant run time enhancement in practice.
Social Emotional Optimization Algorithm for Nonlinear Constrained Optimization Problems
NASA Astrophysics Data System (ADS)
Xu, Yuechun; Cui, Zhihua; Zeng, Jianchao
Nonlinear programming problem is one important branch in operational research, and has been successfully applied to various real-life problems. In this paper, a new approach called Social emotional optimization algorithm (SEOA) is used to solve this problem which is a new swarm intelligent technique by simulating the human behavior guided by emotion. Simulation results show that the social emotional optimization algorithm proposed in this paper is effective and efficiency for the nonlinear constrained programming problems.
Optimizing SRF Gun Cavity Profiles in a Genetic Algorithm Framework
Alicia Hofler, Pavel Evtushenko, Frank Marhauser
2009-09-01
Automation of DC photoinjector designs using a genetic algorithm (GA) based optimization is an accepted practice in accelerator physics. Allowing the gun cavity field profile shape to be varied can extend the utility of this optimization methodology to superconducting and normal conducting radio frequency (SRF/RF) gun based injectors. Finding optimal field and cavity geometry configurations can provide guidance for cavity design choices and verify existing designs. We have considered two approaches for varying the electric field profile. The first is to determine the optimal field profile shape that should be used independent of the cavity geometry, and the other is to vary the geometry of the gun cavity structure to produce an optimal field profile. The first method can provide a theoretical optimal and can illuminate where possible gains can be made in field shaping. The second method can produce more realistically achievable designs that can be compared to existing designs. In this paper, we discuss the design and implementation for these two methods for generating field profiles for SRF/RF guns in a GA based injector optimization scheme and provide preliminary results.
A simple algorithm for optimization and model fitting: AGA (asexual genetic algorithm)
NASA Astrophysics Data System (ADS)
Cantó, J.; Curiel, S.; Martínez-Gómez, E.
2009-07-01
Context: Mathematical optimization can be used as a computational tool to obtain the optimal solution to a given problem in a systematic and efficient way. For example, in twice-differentiable functions and problems with no constraints, the optimization consists of finding the points where the gradient of the objective function is zero and using the Hessian matrix to classify the type of each point. Sometimes, however it is impossible to compute these derivatives and other type of techniques must be employed such as the steepest descent/ascent method and more sophisticated methods such as those based on the evolutionary algorithms. Aims: We present a simple algorithm based on the idea of genetic algorithms (GA) for optimization. We refer to this algorithm as AGA (asexual genetic algorithm) and apply it to two kinds of problems: the maximization of a function where classical methods fail and model fitting in astronomy. For the latter case, we minimize the chi-square function to estimate the parameters in two examples: the orbits of exoplanets by taking a set of radial velocity data, and the spectral energy distribution (SED) observed towards a YSO (Young Stellar Object). Methods: The algorithm AGA may also be called genetic, although it differs from standard genetic algorithms in two main aspects: a) the initial population is not encoded; and b) the new generations are constructed by asexual reproduction. Results: Applying our algorithm in optimizing some complicated functions, we find the global maxima within a few iterations. For model fitting to the orbits of exoplanets and the SED of a YSO, we estimate the parameters and their associated errors.
Feature Selection via Modified Gravitational Optimization Algorithm
NASA Astrophysics Data System (ADS)
Nabizadeh, Nooshin; John, Nigel
2015-03-01
Feature selection is the process of selecting a subset of relevant and most informative features, which efficiently represents the input data. We proposed a feature selection algorithm based on n-dimensional gravitational optimization algorithm (NGOA), which is based on the principle of gravitational fields. The objective function of optimization algorithm is a non-linear function of variables, which are called masses and defined based on extracted features. The forces between the masses as well as their new locations are calculated using the value of the objective function and the values of masses. We extracted variety of features applying different wavelet transforms and statistical methods on FLAIR and T1-weighted MR brain images. There are two classes of normal and abnormal tissues. Extracted features are divided into groups of five features. The best feature is selected in each group using N-dimensional gravitational optimization algorithm and support vector machine classifier. Then the selected features from each group make several groups of five features again and so on till desired number of features is selected. The advantage of NGOA algorithm is that the possibility of being drawn into a local optimal solution is very low. The experimental results show that our method outperforms some standard feature selection algorithms on both real-data and simulated brain tumor data.
A Cuckoo Search Algorithm for Multimodal Optimization
2014-01-01
Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration. PMID:25147850
A cuckoo search algorithm for multimodal optimization.
Cuevas, Erik; Reyna-Orta, Adolfo
2014-01-01
Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration. PMID:25147850
A novel bee swarm optimization algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Akbari, Reza; Mohammadi, Alireza; Ziarati, Koorush
2010-10-01
The optimization algorithms which are inspired from intelligent behavior of honey bees are among the most recently introduced population based techniques. In this paper, a novel algorithm called bee swarm optimization, or BSO, and its two extensions for improving its performance are presented. The BSO is a population based optimization technique which is inspired from foraging behavior of honey bees. The proposed approach provides different patterns which are used by the bees to adjust their flying trajectories. As the first extension, the BSO algorithm introduces different approaches such as repulsion factor and penalizing fitness (RP) to mitigate the stagnation problem. Second, to maintain efficiently the balance between exploration and exploitation, time-varying weights (TVW) are introduced into the BSO algorithm. The proposed algorithm (BSO) and its two extensions (BSO-RP and BSO-RPTVW) are compared with existing algorithms which are based on intelligent behavior of honey bees, on a set of well known numerical test functions. The experimental results show that the BSO algorithms are effective and robust; produce excellent results, and outperform other algorithms investigated in this consideration.
NASA Astrophysics Data System (ADS)
Que, Dashun; Li, Gang; Yue, Peng
2007-12-01
An adaptive optimization watermarking algorithm based on Genetic Algorithm (GA) and discrete wavelet transform (DWT) is proposed in this paper. The core of this algorithm is the fitness function optimization model for digital watermarking based on GA. The embedding intensity for digital watermarking can be modified adaptively, and the algorithm can effectively ensure the imperceptibility of watermarking while the robustness is ensured. The optimization model research may provide a new idea for anti-coalition attacks of digital watermarking algorithm. The paper has fulfilled many experiments, including the embedding and extracting experiments of watermarking, the influence experiments by the weighting factor, the experiments of embedding same watermarking to the different cover image, the experiments of embedding different watermarking to the same cover image, the comparative analysis experiments between this optimization algorithm and human visual system (HVS) algorithm and etc. The simulation results and the further analysis show the effectiveness and advantage of the new algorithm, which also has versatility and expandability. And meanwhile it has better ability of anti-coalition attacks. Moreover, the robustness and security of watermarking algorithm are improved by scrambling transformation and chaotic encryption while preprocessing the watermarking.
An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization.
Bechikh, Slim; Chaabani, Abir; Ben Said, Lamjed
2015-10-01
Recently, a new metaheuristic called chemical reaction optimization was proposed. This search algorithm, inspired by chemical reactions launched during collisions, inherits several features from other metaheuristics such as simulated annealing and particle swarm optimization. This fact has made it, nowadays, one of the most powerful search algorithms in solving mono-objective optimization problems. In this paper, we propose a multiobjective variant of chemical reaction optimization, called nondominated sorting chemical reaction optimization, in an attempt to exploit chemical reaction optimization features in tackling problems involving multiple conflicting criteria. Since our approach is based on nondominated sorting, one of the main contributions of this paper is the proposal of a new quasi-linear average time complexity quick nondominated sorting algorithm; thereby making our multiobjective algorithm efficient from a computational cost viewpoint. The experimental comparisons against several other multiobjective algorithms on a variety of benchmark problems involving various difficulties show the effectiveness and the efficiency of this multiobjective version in providing a well-converged and well-diversified approximation of the Pareto front. PMID:25373137
Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem
Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing
2015-01-01
Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA. PMID:26167171
Algorithm Optimally Allocates Actuation of a Spacecraft
NASA Technical Reports Server (NTRS)
Motaghedi, Shi
2007-01-01
A report presents an algorithm that solves the following problem: Allocate the force and/or torque to be exerted by each thruster and reaction-wheel assembly on a spacecraft for best performance, defined as minimizing the error between (1) the total force and torque commanded by the spacecraft control system and (2) the total of forces and torques actually exerted by all the thrusters and reaction wheels. The algorithm incorporates the matrix vector relationship between (1) the total applied force and torque and (2) the individual actuator force and torque values. It takes account of such constraints as lower and upper limits on the force or torque that can be applied by a given actuator. The algorithm divides the aforementioned problem into two optimization problems that it solves sequentially. These problems are of a type, known in the art as semi-definite programming problems, that involve linear matrix inequalities. The algorithm incorporates, as sub-algorithms, prior algorithms that solve such optimization problems very efficiently. The algorithm affords the additional advantage that the solution requires the minimum rate of consumption of fuel for the given best performance.
Protein structure optimization with a "Lamarckian" ant colony algorithm.
Oakley, Mark T; Richardson, E Grace; Carr, Harriet; Johnston, Roy L
2013-01-01
We describe the LamarckiAnt algorithm: a search algorithm that combines the features of a "Lamarckian" genetic algorithm and ant colony optimization. We have implemented this algorithm for the optimization of BLN model proteins, which have frustrated energy landscapes and represent a challenge for global optimization algorithms. We demonstrate that LamarckiAnt performs competitively with other state-of-the-art optimization algorithms. PMID:24407312
Optimal Design of Geodetic Network Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Vajedian, Sanaz; Bagheri, Hosein
2010-05-01
A geodetic network is a network which is measured exactly by techniques of terrestrial surveying based on measurement of angles and distances and can control stability of dams, towers and their around lands and can monitor deformation of surfaces. The main goals of an optimal geodetic network design process include finding proper location of control station (First order Design) as well as proper weight of observations (second order observation) in a way that satisfy all the criteria considered for quality of the network with itself is evaluated by the network's accuracy, reliability (internal and external), sensitivity and cost. The first-order design problem, can be dealt with as a numeric optimization problem. In this designing finding unknown coordinates of network stations is an important issue. For finding these unknown values, network geodetic observations that are angle and distance measurements must be entered in an adjustment method. In this regard, using inverse problem algorithms is needed. Inverse problem algorithms are methods to find optimal solutions for given problems and include classical and evolutionary computations. The classical approaches are analytical methods and are useful in finding the optimum solution of a continuous and differentiable function. Least squares (LS) method is one of the classical techniques that derive estimates for stochastic variables and their distribution parameters from observed samples. The evolutionary algorithms are adaptive procedures of optimization and search that find solutions to problems inspired by the mechanisms of natural evolution. These methods generate new points in the search space by applying operators to current points and statistically moving toward more optimal places in the search space. Genetic algorithm (GA) is an evolutionary algorithm considered in this paper. This algorithm starts with definition of initial population, and then the operators of selection, replication and variation are applied
Optimization of a chemical identification algorithm
NASA Astrophysics Data System (ADS)
Chyba, Thomas H.; Fisk, Brian; Gunning, Christin; Farley, Kevin; Polizzi, Amber; Baughman, David; Simpson, Steven; Slamani, Mohamed-Adel; Almassy, Robert; Da Re, Ryan; Li, Eunice; MacDonald, Steve; Slamani, Ahmed; Mitchell, Scott A.; Pendell-Jones, Jay; Reed, Timothy L.; Emge, Darren
2010-04-01
A procedure to evaluate and optimize the performance of a chemical identification algorithm is presented. The Joint Contaminated Surface Detector (JCSD) employs Raman spectroscopy to detect and identify surface chemical contamination. JCSD measurements of chemical warfare agents, simulants, toxic industrial chemicals, interferents and bare surface backgrounds were made in the laboratory and under realistic field conditions. A test data suite, developed from these measurements, is used to benchmark algorithm performance throughout the improvement process. In any one measurement, one of many possible targets can be present along with interferents and surfaces. The detection results are expressed as a 2-category classification problem so that Receiver Operating Characteristic (ROC) techniques can be applied. The limitations of applying this framework to chemical detection problems are discussed along with means to mitigate them. Algorithmic performance is optimized globally using robust Design of Experiments and Taguchi techniques. These methods require figures of merit to trade off between false alarms and detection probability. Several figures of merit, including the Matthews Correlation Coefficient and the Taguchi Signal-to-Noise Ratio are compared. Following the optimization of global parameters which govern the algorithm behavior across all target chemicals, ROC techniques are employed to optimize chemical-specific parameters to further improve performance.
A novel metaheuristic for continuous optimization problems: Virus optimization algorithm
NASA Astrophysics Data System (ADS)
Liang, Yun-Chia; Rodolfo Cuevas Juarez, Josue
2016-01-01
A novel metaheuristic for continuous optimization problems, named the virus optimization algorithm (VOA), is introduced and investigated. VOA is an iteratively population-based method that imitates the behaviour of viruses attacking a living cell. The number of viruses grows at each replication and is controlled by an immune system (a so-called 'antivirus') to prevent the explosive growth of the virus population. The viruses are divided into two classes (strong and common) to balance the exploitation and exploration effects. The performance of the VOA is validated through a set of eight benchmark functions, which are also subject to rotation and shifting effects to test its robustness. Extensive comparisons were conducted with over 40 well-known metaheuristic algorithms and their variations, such as artificial bee colony, artificial immune system, differential evolution, evolutionary programming, evolutionary strategy, genetic algorithm, harmony search, invasive weed optimization, memetic algorithm, particle swarm optimization and simulated annealing. The results showed that the VOA is a viable solution for continuous optimization.
NASA Astrophysics Data System (ADS)
Wang, Xuewu; Shi, Yingpan; Ding, Dongyan; Gu, Xingsheng
2016-02-01
Spot-welding robots have a wide range of applications in manufacturing industries. There are usually many weld joints in a welding task, and a reasonable welding path to traverse these weld joints has a significant impact on welding efficiency. Traditional manual path planning techniques can handle a few weld joints effectively, but when the number of weld joints is large, it is difficult to obtain the optimal path. The traditional manual path planning method is also time consuming and inefficient, and cannot guarantee optimality. Double global optimum genetic algorithm-particle swarm optimization (GA-PSO) based on the GA and PSO algorithms is proposed to solve the welding robot path planning problem, where the shortest collision-free paths are used as the criteria to optimize the welding path. Besides algorithm effectiveness analysis and verification, the simulation results indicate that the algorithm has strong searching ability and practicality, and is suitable for welding robot path planning.
Nonlinear Global Optimization Using Curdling Algorithm
Energy Science and Technology Software Center (ESTSC)
1996-03-01
An algorithm for performing curdling optimization which is a derivative-free, grid-refinement approach to nonlinear optimization was developed and implemented in software. This approach overcomes a number of deficiencies in existing approaches. Most notably, it finds extremal regions rather than only single external extremal points. The program is interactive and collects information on control parameters and constraints using menus. For up to four dimensions, function convergence is displayed graphically. Because the algorithm does not compute derivatives,more » gradients or vectors, it is numerically stable. It can find all the roots of a polynomial in one pass. It is an inherently parallel algorithm. Constraints are handled as being initially fuzzy, but become tighter with each iteration.« less
Optimized TRIAD Algorithm for Attitude Determination
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, Richard R.
1996-01-01
TRIAD is a well known simple algorithm that generates the attitude matrix between two coordinate systems when the components of two abstract vectors are given in the two systems. TRIAD however, is sensitive to the order in which the algorithm handles the vectors, such that the resulting attitude matrix is influenced more by the vector processed first. In this work we present a new algorithm, which we call Optimized TRIAD, that blends in a specified manner the two matrices generated by TRIAD when processing one vector first, and then when processing the other vector first. On the average, Optimized TRIAD yields a matrix which is better than either one of the two matrices in that is ti the closest to the correct matrix. This result is demonstrated through simulation.
Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm
NASA Astrophysics Data System (ADS)
Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda
2016-06-01
Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.
Reactive power optimization by genetic algorithm
Iba, Kenji )
1994-05-01
This paper presents a new approach to optimal reactive power planning based on a genetic algorithm. Many outstanding methods to this problem have been proposed in the past. However, most of these approaches have the common defect of being caught to a local minimum solution. The integer problem which yields integer value solutions for discrete controllers/banks still remains as a difficult one. The genetic algorithm is a kind of search algorithm based on the mechanics of natural selection and genetics. This algorithm can search for a global solution using multiple paths and treat integer problems naturally. The proposed method was applied to practical 51-bus and 224-bus systems to show its feasibility and capabilities. Although this method is not as fast as sophisticated traditional methods, the concept is quite promising and useful.
Optimal configuration algorithm of a satellite transponder
NASA Astrophysics Data System (ADS)
Sukhodoev, M. S.; Savenko, I. I.; Martynov, Y. A.; Savina, N. I.; Asmolovskiy, V. V.
2016-04-01
This paper describes the algorithm of determining the optimal transponder configuration of the communication satellite while in service. This method uses a mathematical model of the pay load scheme based on the finite-state machine. The repeater scheme is shown as a weighted oriented graph that is represented as plexus in the program view. This paper considers an algorithm example for application with a typical transparent repeater scheme. In addition, the complexity of the current algorithm has been calculated. The main peculiarity of this algorithm is that it takes into account the functionality and state of devices, reserved equipment and input-output ports ranged in accordance with their priority. All described limitations allow a significant decrease in possible payload commutation variants and enable a satellite operator to make reconfiguration solutions operatively.
The genetic algorithms for trajectory optimization
NASA Astrophysics Data System (ADS)
Janin, G.; Gomez-Tierno, M. A.
1985-10-01
Possible difficulties encountered when solving space flight trajectory optimization problems are recalled. The need of a global optimization scheme is realized. Nondeterministic methods, called here stochastic methods, seem to be good candidates for solving these types of problems. A particular class of such methods, modelled upon search strategies employed in natural adaptation, is proposed here: the genetic algorithms. Two models, the mutation-selection and the crossover-selection, are discussed and remarks resulting from applications to test problems and space flight problems are made. It is concluded that a considerable effort is still needed for developing efficient schemes using genetic algorithms. However, they appear to offer an entirely original way for solving a large class of global optimization problems and they are particularly well-suited for parallel processing to be used in the fifth generation computers.
NASA Astrophysics Data System (ADS)
Ogren, Ryan M.
For this work, Hybrid PSO-GA and Artificial Bee Colony Optimization (ABC) algorithms are applied to the optimization of experimental diesel engine performance, to meet Environmental Protection Agency, off-road, diesel engine standards. This work is the first to apply ABC optimization to experimental engine testing. All trials were conducted at partial load on a four-cylinder, turbocharged, John Deere engine using neat-Biodiesel for PSO-GA and regular pump diesel for ABC. Key variables were altered throughout the experiments, including, fuel pressure, intake gas temperature, exhaust gas recirculation flow, fuel injection quantity for two injections, pilot injection timing and main injection timing. Both forms of optimization proved effective for optimizing engine operation. The PSO-GA hybrid was able to find a superior solution to that of ABC within fewer engine runs. Both solutions call for high exhaust gas recirculation to reduce oxide of nitrogen (NOx) emissions while also moving pilot and main fuel injections to near top dead center for improved tradeoffs between NOx and particulate matter.
Optimization Algorithms in Optimal Predictions of Atomistic Properties by Kriging.
Di Pasquale, Nicodemo; Davie, Stuart J; Popelier, Paul L A
2016-04-12
The machine learning method kriging is an attractive tool to construct next-generation force fields. Kriging can accurately predict atomistic properties, which involves optimization of the so-called concentrated log-likelihood function (i.e., fitness function). The difficulty of this optimization problem quickly escalates in response to an increase in either the number of dimensions of the system considered or the size of the training set. In this article, we demonstrate and compare the use of two search algorithms, namely, particle swarm optimization (PSO) and differential evolution (DE), to rapidly obtain the maximum of this fitness function. The ability of these two algorithms to find a stationary point is assessed by using the first derivative of the fitness function. Finally, the converged position obtained by PSO and DE is refined through the limited-memory Broyden-Fletcher-Goldfarb-Shanno bounded (L-BFGS-B) algorithm, which belongs to the class of quasi-Newton algorithms. We show that both PSO and DE are able to come close to the stationary point, even in high-dimensional problems. They do so in a reasonable amount of time, compared to that with the Newton and quasi-Newton algorithms, regardless of the starting position in the search space of kriging hyperparameters. The refinement through L-BFGS-B is able to give the position of the maximum with whichever precision is desired. PMID:26930135
The mGA1.0: A common LISP implementation of a messy genetic algorithm
NASA Technical Reports Server (NTRS)
Goldberg, David E.; Kerzic, Travis
1990-01-01
Genetic algorithms (GAs) are finding increased application in difficult search, optimization, and machine learning problems in science and engineering. Increasing demands are being placed on algorithm performance, and the remaining challenges of genetic algorithm theory and practice are becoming increasingly unavoidable. Perhaps the most difficult of these challenges is the so-called linkage problem. Messy GAs were created to overcome the linkage problem of simple genetic algorithms by combining variable-length strings, gene expression, messy operators, and a nonhomogeneous phasing of evolutionary processing. Results on a number of difficult deceptive test functions are encouraging with the mGA always finding global optima in a polynomial number of function evaluations. Theoretical and empirical studies are continuing, and a first version of a messy GA is ready for testing by others. A Common LISP implementation called mGA1.0 is documented and related to the basic principles and operators developed by Goldberg et. al. (1989, 1990). Although the code was prepared with care, it is not a general-purpose code, only a research version. Important data structures and global variations are described. Thereafter brief function descriptions are given, and sample input data are presented together with sample program output. A source listing with comments is also included.
A reliable algorithm for optimal control synthesis
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1992-01-01
In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.
Wind farm optimization using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Ituarte-Villarreal, Carlos M.
In recent years, the wind power industry has focused its efforts on solving the Wind Farm Layout Optimization (WFLO) problem. Wind resource assessment is a pivotal step in optimizing the wind-farm design and siting and, in determining whether a project is economically feasible or not. In the present work, three (3) different optimization methods are proposed for the solution of the WFLO: (i) A modified Viral System Algorithm applied to the optimization of the proper location of the components in a wind-farm to maximize the energy output given a stated wind environment of the site. The optimization problem is formulated as the minimization of energy cost per unit produced and applies a penalization for the lack of system reliability. The viral system algorithm utilized in this research solves three (3) well-known problems in the wind-energy literature; (ii) a new multiple objective evolutionary algorithm to obtain optimal placement of wind turbines while considering the power output, cost, and reliability of the system. The algorithm presented is based on evolutionary computation and the objective functions considered are the maximization of power output, the minimization of wind farm cost and the maximization of system reliability. The final solution to this multiple objective problem is presented as a set of Pareto solutions and, (iii) A hybrid viral-based optimization algorithm adapted to find the proper component configuration for a wind farm with the introduction of the universal generating function (UGF) analytical approach to discretize the different operating or mechanical levels of the wind turbines in addition to the various wind speed states. The proposed methodology considers the specific probability functions of the wind resource to describe their proper behaviors to account for the stochastic comportment of the renewable energy components, aiming to increase their power output and the reliability of these systems. The developed heuristic considers a
Stroke volume optimization: the new hemodynamic algorithm.
Johnson, Alexander; Ahrens, Thomas
2015-02-01
Critical care practices have evolved to rely more on physical assessments for monitoring cardiac output and evaluating fluid volume status because these assessments are less invasive and more convenient to use than is a pulmonary artery catheter. Despite this trend, level of consciousness, central venous pressure, urine output, heart rate, and blood pressure remain assessments that are slow to be changed, potentially misleading, and often manifested as late indications of decreased cardiac output. The hemodynamic optimization strategy called stroke volume optimization might provide a proactive guide for clinicians to optimize a patient's status before late indications of a worsening condition occur. The evidence supporting use of the stroke volume optimization algorithm to treat hypovolemia is increasing. Many of the cardiac output monitor technologies today measure stroke volume, as well as the parameters that comprise stroke volume: preload, afterload, and contractility. PMID:25639574
Algorithm For Optimal Control Of Large Structures
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Garba, John A..; Utku, Senol
1989-01-01
Cost of computation appears competitive with other methods. Problem to compute optimal control of forced response of structure with n degrees of freedom identified in terms of smaller number, r, of vibrational modes. Article begins with Hamilton-Jacobi formulation of mechanics and use of quadratic cost functional. Complexity reduced by alternative approach in which quadratic cost functional expressed in terms of control variables only. Leads to iterative solution of second-order time-integral matrix Volterra equation of second kind containing optimal control vector. Cost of algorithm, measured in terms of number of computations required, is of order of, or less than, cost of prior algoritms applied to similar problems.
Use of Algorithm of Changes for Optimal Design of Heat Exchanger
NASA Astrophysics Data System (ADS)
Tam, S. C.; Tam, H. K.; Chio, C. H.; Tam, L. M.
2010-05-01
For economic reasons, the optimal design of heat exchanger is required. Design of heat exchanger is usually based on the iterative process. The design conditions, equipment geometries, the heat transfer and friction factor correlations are totally involved in the process. Using the traditional iterative method, many trials are needed for satisfying the compromise between the heat exchange performance and the cost consideration. The process is cumbersome and the optimal design is often depending on the design engineer's experience. Therefore, in the recent studies, many researchers, reviewed in [1], applied the genetic algorithm (GA) [2] for designing the heat exchanger. The results outperformed the traditional method. In this study, the alternative approach, algorithm of changes, is proposed for optimal design of shell-tube heat exchanger [3]. This new method, algorithm of changes based on I Ching (???), is developed originality by the author. In the algorithms, the hexagram operations in I Ching has been generalized to binary string case and the iterative procedure which imitates the I Ching inference is also defined. On the basis of [3], the shell inside diameter, tube outside diameter, and baffles spacing were treated as the design (or optimized) variables. The cost of the heat exchanger was arranged as the objective function. Through the case study, the results show that the algorithm of changes is comparable to the GA method. Both of method can find the optimal solution in a short time. However, without interchanging information between binary strings, the algorithm of changes has advantage on parallel computation over GA.
Inner Random Restart Genetic Algorithm for Practical Delivery Schedule Optimization
NASA Astrophysics Data System (ADS)
Sakurai, Yoshitaka; Takada, Kouhei; Onoyama, Takashi; Tsukamoto, Natsuki; Tsuruta, Setsuo
A delivery route optimization that improves the efficiency of real time delivery or a distribution network requires solving several tens to hundreds but less than 2 thousands cities Traveling Salesman Problems (TSP) within interactive response time (less than about 3 second), with expert-level accuracy (less than about 3% of error rate). Further, to make things more difficult, the optimization is subjects to special requirements or preferences of each various delivery sites, persons, or societies. To meet these requirements, an Inner Random Restart Genetic Algorithm (Irr-GA) is proposed and developed. This method combines meta-heuristics such as random restart and GA having different types of simple heuristics. Such simple heuristics are 2-opt and NI (Nearest Insertion) methods, each applied for gene operations. The proposed method is hierarchical structured, integrating meta-heuristics and heuristics both of which are multiple but simple. This method is elaborated so that field experts as well as field engineers can easily understand to make the solution or method easily customized and extended according to customers' needs or taste. Comparison based on the experimental results and consideration proved that the method meets the above requirements more than other methods judging from not only optimality but also simplicity, flexibility, and expandability in order for this method to be practically used.
Optimal caching algorithm based on dynamic programming
NASA Astrophysics Data System (ADS)
Guo, Changjie; Xiang, Zhe; Zhong, Yuzhuo; Long, Jidong
2001-07-01
With the dramatic growth of multimedia streams, the efficient distribution of stored videos has become a major concern. There are two basic caching strategies: the whole caching strategy and the caching strategy based on layered encoded video, the latter can satisfy the requirement of the highly heterogeneous access to the Internet. Conventional caching strategies assign each object a cache gain by calculating popularity or density popularity, and determine which videos and which layers should be cached. In this paper, we first investigate the delivery model of stored video based on proxy, and propose two novel caching algorithms, DPLayer (for layered encoded caching scheme) and DPWhole (for whole caching scheme) for multimedia proxy caching. The two algorithms are based on the resource allocation model of dynamic programming to select the optimal subset of objects to be cached in proxy. Simulation proved that our algorithms achieve better performance than other existing schemes. We also analyze the computational complexity and space complexity of the algorithms, and introduce a regulative parameter to compress the states space of the dynamic programming problem and reduce the complexity of algorithms.
Algorithms for optimizing CT fluence control
NASA Astrophysics Data System (ADS)
Hsieh, Scott S.; Pelc, Norbert J.
2014-03-01
The ability to customize the incident x-ray fluence in CT via beam-shaping filters or mA modulation is known to improve image quality and/or reduce radiation dose. Previous work has shown that complete control of x-ray fluence (ray-by-ray fluence modulation) would further improve dose efficiency. While complete control of fluence is not currently possible, emerging concepts such as dynamic attenuators and inverse-geometry CT allow nearly complete control to be realized. Optimally using ray-by-ray fluence modulation requires solving a very high-dimensional optimization problem. Most optimization techniques fail or only provide approximate solutions. We present efficient algorithms for minimizing mean or peak variance given a fixed dose limit. The reductions in variance can easily be translated to reduction in dose, if the original variance met image quality requirements. For mean variance, a closed form solution is derived. The peak variance problem is recast as iterated, weighted mean variance minimization, and at each iteration it is possible to bound the distance to the optimal solution. We apply our algorithms in simulations of scans of the thorax and abdomen. Peak variance reductions of 45% and 65% are demonstrated in the abdomen and thorax, respectively, compared to a bowtie filter alone. Mean variance shows smaller gains (about 15%).
GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS
Rogers, Adam; Fiege, Jason D.
2011-02-01
Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point-spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least-squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automatically, which represents the trade-off between the image {chi}{sup 2} and regularization effects, and allows an estimate of the optimally regularized solution for each lens parameter set. In the final step of the optimization procedure, the lens model with the lowest {chi}{sup 2} is used while the global optimizer solves for the source intensity distribution directly. This allows us to accurately determine the number of degrees of freedom in the problem to facilitate comparison between lens models and enforce positivity on the source profile. In practice, we find that the GA conducts a more thorough search of the parameter space than the PSO.
Bicriteria Network Optimization Problem using Priority-based Genetic Algorithm
NASA Astrophysics Data System (ADS)
Gen, Mitsuo; Lin, Lin; Cheng, Runwei
Network optimization is being an increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. In many applications, however, there are several criteria associated with traversing each edge of a network. For example, cost and flow measures are both important in the networks. As a result, there has been recent interest in solving Bicriteria Network Optimization Problem. The Bicriteria Network Optimization Problem is known a NP-hard. The efficient set of paths may be very large, possibly exponential in size. Thus the computational effort required to solve it can increase exponentially with the problem size in the worst case. In this paper, we propose a genetic algorithm (GA) approach used a priority-based chromosome for solving the bicriteria network optimization problem including maximum flow (MXF) model and minimum cost flow (MCF) model. The objective is to find the set of Pareto optimal solutions that give possible maximum flow with minimum cost. This paper also combines Adaptive Weight Approach (AWA) that utilizes some useful information from the current population to readjust weights for obtaining a search pressure toward a positive ideal point. Computer simulations show the several numerical experiments by using some difficult-to-solve network design problems, and show the effectiveness of the proposed method.
Application of genetic algorithm on optimization of laser beam shaping.
Tsai, Cheng-Mu; Fang, Yi-Chin; Lin, Chia-Te
2015-06-15
This study proposes a newly developed optimization method for an aspherical lens system employed in a refractive laser beam shaping system, which performs transformations on laser spots such that they are transformed into flat-tops of any size. In this paper, a genetic algorithm (GA) with multipoint search is proposed as the optimization method, together with macro language in optical simulation software, in order to search for ideal and optimized parameters. In comparison to a traditional two-dimensional (2D) computational method, using the one-dimensional (1D) computation for laser beam shaping can search for the optimal solution approximately twice as fast (after experiments). The optimal results show that when the laser spot shrinks from 3 mm to 1.07 mm, 88% uniformity is achieved, and when the laser spot increases from 3 mm to 5.273 mm, 90% uniformity is achieved. The distances between the lenses for both systems described above are even smaller than the thickness for the first lens, enabling us to conclude that our design objectives of extra light and slimness in the system are achieved. PMID:26193566
Intervals in evolutionary algorithms for global optimization
Patil, R.B.
1995-05-01
Optimization is of central concern to a number of disciplines. Interval Arithmetic methods for global optimization provide us with (guaranteed) verified results. These methods are mainly restricted to the classes of objective functions that are twice differentiable and use a simple strategy of eliminating a splitting larger regions of search space in the global optimization process. An efficient approach that combines the efficient strategy from Interval Global Optimization Methods and robustness of the Evolutionary Algorithms is proposed. In the proposed approach, search begins with randomly created interval vectors with interval widths equal to the whole domain. Before the beginning of the evolutionary process, fitness of these interval parameter vectors is defined by evaluating the objective function at the center of the initial interval vectors. In the subsequent evolutionary process the local optimization process returns an estimate of the bounds of the objective function over the interval vectors. Though these bounds may not be correct at the beginning due to large interval widths and complicated function properties, the process of reducing interval widths over time and a selection approach similar to simulated annealing helps in estimating reasonably correct bounds as the population evolves. The interval parameter vectors at these estimated bounds (local optima) are then subjected to crossover and mutation operators. This evolutionary process continues for predetermined number of generations in the search of the global optimum.
Material design using surrogate optimization algorithm
NASA Astrophysics Data System (ADS)
Khadke, Kunal R.
Nanocomposite ceramics have been widely studied in order to tailor desired properties at high temperatures. Methodologies for development of material design are still under effect . While finite element modeling (FEM) provides significant insight on material behavior, few design researchers have addressed the design paradox that accompanies this rapid design space expansion. A surrogate optimization model management framework has been proposed to make this design process tractable. In the surrogate optimization material design tool, the analysis cost is reduced by performing simulations on the surrogate model instead of high density finite element model. The methodology is incorporated to find the optimal number of silicon carbide (SiC) particles, in a silicon-nitride Si3N 4 composite with maximum fracture energy [2]. Along with a deterministic optimization algorithm, model uncertainties have also been considered with the use of robust design optimization (RDO) method ensuring a design of minimum sensitivity to changes in the parameters. These methodologies applied to nanocomposites design have a signicant impact on cost and design cycle time reduced.
Global optimization algorithm for heat exchanger networks
Quesada, I.; Grossmann, I.E. )
1993-03-01
This paper deals with the global optimization of heat exchanger networks with fixed topology. It is shown that if linear area cost functions are assumed, as well as arithmetic mean driving force temperature differences in networks with isothermal mixing, the corresponding nonlinear programming (NLP) optimization problem involves linear constraints and a sum of linear fractional functions in the objective which are nonconvex. A rigorous algorithm is proposed that is based on a convex NLP underestimator that involves linear and nonlinear estimators for fractional and bilinear terms which provide a tight lower bound to the global optimum. This NLP problem is used within a spatial branch and bound method for which branching rules are given. Basic properties of the proposed method are presented, and its application is illustrated with several example problems. The results show that the proposed method only requires few nodes in the branch and bound search.
NASA Astrophysics Data System (ADS)
Pahlavani, Parham; Delavar, Mahmoud R.; Frank, Andrew U.
2012-08-01
The personalized urban multi-criteria quasi-optimum path problem (PUMQPP) is a branch of multi-criteria shortest path problems (MSPPs) and it is classified as a NP-hard problem. To solve the PUMQPP, by considering dependent criteria in route selection, there is a need for approaches that achieve the best compromise of possible solutions/routes. Recently, invasive weed optimization (IWO) algorithm is introduced and used as a novel algorithm to solve many continuous optimization problems. In this study, the modified algorithm of IWO was designed, implemented, evaluated, and compared with the genetic algorithm (GA) to solve the PUMQPP in a directed urban transportation network. In comparison with the GA, the results have shown the significant superiority of the proposed modified IWO algorithm in exploring a discrete search-space of the urban transportation network. In this regard, the proposed modified IWO algorithm has reached better results in fitness function, quality metric and running-time values in comparison with those of the GA.
NASA Astrophysics Data System (ADS)
Javad Kazemzadeh-Parsi, Mohammad; Daneshmand, Farhang; Ahmadfard, Mohammad Amin; Adamowski, Jan; Martel, Richard
2015-01-01
In the present study, an optimization approach based on the firefly algorithm (FA) is combined with a finite element simulation method (FEM) to determine the optimum design of pump and treat remediation systems. Three multi-objective functions in which pumping rate and clean-up time are design variables are considered and the proposed FA-FEM model is used to minimize operating costs, total pumping volumes and total pumping rates in three scenarios while meeting water quality requirements. The groundwater lift and contaminant concentration are also minimized through the optimization process. The obtained results show the applicability of the FA in conjunction with the FEM for the optimal design of groundwater remediation systems. The performance of the FA is also compared with the genetic algorithm (GA) and the FA is found to have a better convergence rate than the GA.
Optimization Algorithm for Designing Diffractive Optical Elements
NASA Astrophysics Data System (ADS)
Agudelo, Viviana A.; Orozco, Ricardo Amézquita
2008-04-01
Diffractive Optical Elements (DOEs) are commonly used in many applications such as laser beam shaping, recording of micro reliefs, wave front analysis, metrology and many others where they can replace single or multiple conventional optical elements (diffractive or refractive). One of the most versatile way to produce them, is to use computer assisted techniques for their design and optimization, as well as optical or electron beam micro-lithography techniques for the final fabrication. The fundamental figures of merit involved in the optimization of such devices are both the diffraction efficiency and the signal to noise ratio evaluated in the reconstructed wave front at the image plane. A design and optimization algorithm based on the error—reduction method (Gerchberg and Saxton) is proposed to obtain binary discrete phase-only Fresnel DOEs that will be used to produce specific intensity patterns. Some experimental results were obtained using a spatial light modulator acting as a binary programmable diffractive phase element. Although the DOEs optimized here are discrete in phase, they present an acceptable signal noise relation and diffraction efficiency.
Efficient use of hybrid Genetic Algorithms in the gain optimization of distributed Raman amplifiers.
Neto, B; Teixeira, A L J; Wada, N; André, P S
2007-12-24
In this paper, we propose an efficient and accurate method that combines the Genetic Algorithm (GA) with the Nelder-Mead method in order to obtain the gain optimization of distributed Raman amplifiers. By using these two methods together, the advantages of both are combined: the convergence of the GA and the high accuracy of the Nelder-Mead. To enhance the convergence of the GA, several features were examined and correlated with fitting errors. It is also shown that when the right moment to switch between methods is chosen, the computation time can be reduced by a factor of two. PMID:19551045
Robustness of ‘cut and splice’ genetic algorithms in the structural optimization of atomic clusters
NASA Astrophysics Data System (ADS)
Froltsov, Vladimir A.; Reuter, Karsten
2009-05-01
We return to the geometry optimization problem of Lennard-Jones clusters to analyze the performance dependence of 'cut and splice' genetic algorithms (GAs) on the employed population size. We generally find that admixing twinning mutation moves leads to an improved robustness of the algorithm efficiency with respect to this a priori unknown technical parameter. The resulting very stable performance of the corresponding mutation + mating GA implementation over a wide range of population sizes is an important feature when addressing unknown systems with computationally involved first-principles based GA sampling.
A coupled model tree (MT) genetic algorithm (GA) scheme for biofouling assessment in pipelines.
Opher, Tamar; Ostfeld, Avi
2011-11-15
A computerized learning algorithm was developed for assessing the extent of biofouling formations on the inner surfaces of water supply pipelines. Four identical pipeline experimental systems with four different types of inlet waters were set up as part of a large cooperative project between academia and industry in Israel on biofouling modeling, prediction, and prevention in pipeline systems. Samples were taken periodically for hydraulic, chemical, and biological analyses. Biofilm sampling was done using Robbins devices, carrying stainless steel coupons. An MT-GA, a hybrid model combining model trees (MTs) and genetic algorithms (GAs) in which the sampled input data are selected by the proposed methodology, was developed. The method outcome is a set of empirical linear rules which form a model tree, iteratively optimized by a GA and verified using the dataset resulting from the empirical field studies. Good correlations were achieved between modeled and observed cell coverage area within the biofilm. Sensitivity analysis was conducted by testing the model's response to changes in: (1) the biofilm measure used as output (target) variable; (2) variability of GA parameters; and (3) input attributes. The proposed methodology provides a new tool for biofouling assessment in pipelines. PMID:21978570
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Hosein; Nazemi, Ali; Hafezalkotob, Ashkan
2015-12-01
With the formation of the competitive electricity markets in the world, optimization of bidding strategies has become one of the main discussions in studies related to market designing. Market design is challenged by multiple objectives that need to be satisfied. The solution of those multi-objective problems is searched often over the combined strategy space, and thus requires the simultaneous optimization of multiple parameters. The problem is formulated analytically using the Nash equilibrium concept for games composed of large numbers of players having discrete and large strategy spaces. The solution methodology is based on a characterization of Nash equilibrium in terms of minima of a function and relies on a metaheuristic optimization approach to find these minima. This paper presents some metaheuristic algorithms to simulate how generators bid in the spot electricity market viewpoint of their profit maximization according to the other generators' strategies, such as genetic algorithm (GA), simulated annealing (SA) and hybrid simulated annealing genetic algorithm (HSAGA) and compares their results. As both GA and SA are generic search methods, HSAGA is also a generic search method. The model based on the actual data is implemented in a peak hour of Tehran's wholesale spot market in 2012. The results of the simulations show that GA outperforms SA and HSAGA on computing time, number of function evaluation and computing stability, as well as the results of calculated Nash equilibriums by GA are less various and different from each other than the other algorithms.
A quadratic weight selection algorithm. [for optimal flight control
NASA Technical Reports Server (NTRS)
Broussard, J. R.
1981-01-01
A new numerical algorithm is presented which determines a positive semi-definite state weighting matrix in the linear-quadratic optimal control design problem. The algorithm chooses the weighting matrix by placing closed-loop eigenvalues and eigenvectors near desired locations using optimal feedback gains. A simplified flight control design example is used to illustrate the algorithms capabilities.
Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping
NASA Astrophysics Data System (ADS)
Yang, Wenlong; Sokolov, Alexei
2010-10-01
The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.
Genetic Algorithm for Optimization: Preprocessing with n Dimensional Bisection and Error Estimation
NASA Technical Reports Server (NTRS)
Sen, S. K.; Shaykhian, Gholam Ali
2006-01-01
A knowledge of the appropriate values of the parameters of a genetic algorithm (GA) such as the population size, the shrunk search space containing the solution, crossover and mutation probabilities is not available a priori for a general optimization problem. Recommended here is a polynomial-time preprocessing scheme that includes an n-dimensional bisection and that determines the foregoing parameters before deciding upon an appropriate GA for all problems of similar nature and type. Such a preprocessing is not only fast but also enables us to get the global optimal solution and its reasonably narrow error bounds with a high degree of confidence.
Mohamed, Ahmed F; Elarini, Mahdi M; Othman, Ahmed M
2014-05-01
One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA) optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt. PMID:25685507
Application of GA-SVM method with parameter optimization for landslide development prediction
NASA Astrophysics Data System (ADS)
Li, X. Z.; Kong, J. M.
2014-03-01
Prediction of the landslide development process is always a hot issue in landslide research. So far, many methods for landslide displacement series prediction have been proposed. The support vector machine (SVM) has been proved to be a novel algorithm with good performance. However, the performance strongly depends on the right selection of the parameters (C and γ) of the SVM model. In this study, we present an application of genetic algorithm and support vector machine (GA-SVM) method with parameter optimization in landslide displacement rate prediction. We selected a typical large-scale landslide in a hydro-electrical engineering area of southwest China as a case. On the basis of analyzing the basic characteristics and monitoring data of the landslide, a single-factor GA-SVM model and a multi-factor GA-SVM model of the landslide were built. Moreover, the models were compared with single-factor and multi-factor SVM models of the landslide. The results show that the four models have high prediction accuracies, but the accuracies of GA-SVM models are slightly higher than those of SVM models, and the accuracies of multi-factor models are slightly higher than those of single-factor models for the landslide prediction. The accuracy of the multi-factor GA-SVM models is the highest, with the smallest root mean square error (RMSE) of 0.0009 and the highest relation index (RI) of 0.9992.
NASA Astrophysics Data System (ADS)
Wu, Qiong; Wang, Jihua; Wang, Cheng; Xu, Tongyu
2016-09-01
Genetic algorithm (GA) has a significant effect in the band optimization selection of Partial Least Squares (PLS) correction model. Application of genetic algorithm in selection of characteristic bands can achieve the optimal solution more rapidly, effectively improve measurement accuracy and reduce variables used for modeling. In this study, genetic algorithm as a module conducted band selection for the application of hyperspectral imaging in nondestructive testing of corn seedling leaves, and GA-PLS model was established. In addition, PLS quantitative model of full spectrum and experienced-spectrum region were established in order to suggest the feasibility of genetic algorithm optimizing wave bands, and model robustness was evaluated. There were 12 characteristic bands selected by genetic algorithm. With reflectance values of corn seedling component information at spectral characteristic wavelengths corresponding to 12 characteristic bands as variables, a model about SPAD values of corn leaves acquired was established by PLS, and modeling results showed r = 0.7825. The model results were better than those of PLS model established in full spectrum and experience-based selected bands. The results suggested that genetic algorithm can be used for data optimization and screening before establishing the corn seedling component information model by PLS method and effectively increase measurement accuracy and greatly reduce variables used for modeling.
A cross-layer optimization algorithm for wireless sensor network
NASA Astrophysics Data System (ADS)
Wang, Yan; Liu, Le Qing
2010-07-01
Energy is critical for typical wireless sensor networks (WSN) and how to energy consumption and maximize network lifetime are big challenges for Wireless sensor networks; cross layer algorithm is main method to solve this problem. In this paper, firstly, we analyze current layer-based optimal methods in wireless sensor network and summarize the physical, link and routing optimization techniques. Secondly we compare some strategies in cross-layer optimization algorithms. According to the analysis and summary of the current lifetime algorithms in wireless sensor network A cross layer optimization algorithm is proposed,. Then this optimization algorithm proposed in the paper is adopted to improve the traditional Leach routing protocol. Simulation results show that this algorithm is an excellent cross layer algorithm for reducing energy consumption.
Modified artificial bee colony algorithm for reactive power optimization
NASA Astrophysics Data System (ADS)
Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani
2015-05-01
Bio-inspired algorithms (BIAs) implemented to solve various optimization problems have shown promising results which are very important in this severely complex real-world. Artificial Bee Colony (ABC) algorithm, a kind of BIAs has demonstrated tremendous results as compared to other optimization algorithms. This paper presents a new modified ABC algorithm referred to as JA-ABC3 with the aim to enhance convergence speed and avoid premature convergence. The proposed algorithm has been simulated on ten commonly used benchmarks functions. Its performance has also been compared with other existing ABC variants. To justify its robust applicability, the proposed algorithm has been tested to solve Reactive Power Optimization problem. The results have shown that the proposed algorithm has superior performance to other existing ABC variants e.g. GABC, BABC1, BABC2, BsfABC dan IABC in terms of convergence speed. Furthermore, the proposed algorithm has also demonstrated excellence performance in solving Reactive Power Optimization problem.
Optimal structural design of the midship of a VLCC based on the strategy integrating SVM and GA
NASA Astrophysics Data System (ADS)
Sun, Li; Wang, Deyu
2012-03-01
In this paper a hybrid process of modeling and optimization, which integrates a support vector machine (SVM) and genetic algorithm (GA), was introduced to reduce the high time cost in structural optimization of ships. SVM, which is rooted in statistical learning theory and an approximate implementation of the method of structural risk minimization, can provide a good generalization performance in metamodeling the input-output relationship of real problems and consequently cuts down on high time cost in the analysis of real problems, such as FEM analysis. The GA, as a powerful optimization technique, possesses remarkable advantages for the problems that can hardly be optimized with common gradient-based optimization methods, which makes it suitable for optimizing models built by SVM. Based on the SVM-GA strategy, optimization of structural scantlings in the midship of a very large crude carrier (VLCC) ship was carried out according to the direct strength assessment method in common structural rules (CSR), which eventually demonstrates the high efficiency of SVM-GA in optimizing the ship structural scantlings under heavy computational complexity. The time cost of this optimization with SVM-GA has been sharply reduced, many more loops have been processed within a small amount of time and the design has been improved remarkably.
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
Genetic algorithm and particle swarm optimization combined with Powell method
NASA Astrophysics Data System (ADS)
Bento, David; Pinho, Diana; Pereira, Ana I.; Lima, Rui
2013-10-01
In recent years, the population algorithms are becoming increasingly robust and easy to use, based on Darwin's Theory of Evolution, perform a search for the best solution around a population that will progress according to several generations. This paper present variants of hybrid genetic algorithm - Genetic Algorithm and a bio-inspired hybrid algorithm - Particle Swarm Optimization, both combined with the local method - Powell Method. The developed methods were tested with twelve test functions from unconstrained optimization context.
A guided search genetic algorithm using mined rules for optimal affective product design
NASA Astrophysics Data System (ADS)
Fung, Chris K. Y.; Kwong, C. K.; Chan, Kit Yan; Jiang, H.
2014-08-01
Affective design is an important aspect of new product development, especially for consumer products, to achieve a competitive edge in the marketplace. It can help companies to develop new products that can better satisfy the emotional needs of customers. However, product designers usually encounter difficulties in determining the optimal settings of the design attributes for affective design. In this article, a novel guided search genetic algorithm (GA) approach is proposed to determine the optimal design attribute settings for affective design. The optimization model formulated based on the proposed approach applied constraints and guided search operators, which were formulated based on mined rules, to guide the GA search and to achieve desirable solutions. A case study on the affective design of mobile phones was conducted to illustrate the proposed approach and validate its effectiveness. Validation tests were conducted, and the results show that the guided search GA approach outperforms the GA approach without the guided search strategy in terms of GA convergence and computational time. In addition, the guided search optimization model is capable of improving GA to generate good solutions for affective design.
Optimal band selection for high dimensional remote sensing data using genetic algorithm
NASA Astrophysics Data System (ADS)
Zhang, Xianfeng; Sun, Quan; Li, Jonathan
2009-06-01
A 'fused' method may not be suitable for reducing the dimensionality of data and a band/feature selection method needs to be used for selecting an optimal subset of original data bands. This study examined the efficiency of GA in band selection for remote sensing classification. A GA-based algorithm for band selection was designed deliberately in which a Bhattacharyya distance index that indicates separability between classes of interest is used as fitness function. A binary string chromosome is designed in which each gene location has a value of 1 representing a feature being included or 0 representing a band being not included. The algorithm was implemented in MATLAB programming environment, and a band selection task for lithologic classification in the Chocolate Mountain area (California) was used to test the proposed algorithm. The proposed feature selection algorithm can be useful in multi-source remote sensing data preprocessing, especially in hyperspectral dimensionality reduction.
Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA
NASA Astrophysics Data System (ADS)
Rong, Youmin; Zhang, Zhen; Zhang, Guojun; Yue, Chen; Gu, Yafei; Huang, Yu; Wang, Chunming; Shao, Xinyu
2015-04-01
The laser brazing (LB) is widely used in the automotive industry due to the advantages of high speed, small heat affected zone, high quality of welding seam, and low heat input. Welding parameters play a significant role in determining the bead geometry and hence quality of the weld joint. This paper addresses the optimization of the seam shape in LB process with welding crimping butt of 0.8 mm thickness using back propagation neural network (BPNN) and genetic algorithm (GA). A 3-factor, 5-level welding experiment is conducted by Taguchi L25 orthogonal array through the statistical design method. Then, the input parameters are considered here including welding speed, wire speed rate, and gap with 5 levels. The output results are efficient connection length of left side and right side, top width (WT) and bottom width (WB) of the weld bead. The experiment results are embed into the BPNN network to establish relationship between the input and output variables. The predicted results of the BPNN are fed to GA algorithm that optimizes the process parameters subjected to the objectives. Then, the effects of welding speed (WS), wire feed rate (WF), and gap (GAP) on the sum values of bead geometry is discussed. Eventually, the confirmation experiments are carried out to demonstrate the optimal values were effective and reliable. On the whole, the proposed hybrid method, BPNN-GA, can be used to guide the actual work and improve the efficiency and stability of LB process.
Optimal Pid Controller Design Using Adaptive Vurpso Algorithm
NASA Astrophysics Data System (ADS)
Zirkohi, Majid Moradi
2015-04-01
The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.
NASA Technical Reports Server (NTRS)
Tinker, Michael L.; Steincamp, James W.; Stewart, Eric T.; Patton, Bruce W.; Pannell, William P.; Newby, Ronald L.; Coffman, Mark E.; Qualls, A. L.; Bancroft, S.; Molvik, Greg
2003-01-01
The Nuclear Electric Vehicle Optimization Toolset (NEVOT) optimizes the design of all major Nuclear Electric Propulsion (NEP) vehicle subsystems for a defined mission within constraints and optimization parameters chosen by a user. The tool uses a Genetic Algorithm (GA) search technique to combine subsystem designs and evaluate the fitness of the integrated design to fulfill a mission. The fitness of an individual is used within the GA to determine its probability of survival through successive generations in which the designs with low fitness are eliminated and replaced with combinations or mutations of designs with higher fitness. The program can find optimal solutions for different sets of fitness metrics without modification and can create and evaluate vehicle designs that might never be conceived of through traditional design techniques. It is anticipated that the flexible optimization methodology will expand present knowledge of the design trade-offs inherent in designing nuclear powered space vehicles and lead to improved NEP designs.
Long, Yi; Du, Zhi-jiang; Wang, Wei-dong; Dong, Wei
2016-01-01
A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems. PMID:27069353
Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Dong, Wei
2016-01-01
A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems. PMID:27069353
Optimal fractional delay-IIR filter design using cuckoo search algorithm.
Kumar, Manjeet; Rawat, Tarun Kumar
2015-11-01
This paper applied a novel global meta-heuristic optimization algorithm, cuckoo search algorithm (CSA) to determine optimal coefficients of a fractional delay-infinite impulse response (FD-IIR) filter and trying to meet the ideal frequency response characteristics. Since fractional delay-IIR filter design is a multi-modal optimization problem, it cannot be computed efficiently using conventional gradient based optimization techniques. A weighted least square (WLS) based fitness function is used to improve the performance to a great extent. FD-IIR filters of different orders have been designed using the CSA. The simulation results of the proposed CSA based approach have been compared to those of well accepted evolutionary algorithms like Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The performance of the CSA based FD-IIR filter is superior to those obtained by GA and PSO. The simulation and statistical results affirm that the proposed approach using CSA outperforms GA and PSO, not only in the convergence rate but also in optimal performance of the designed FD-IIR filter (i.e., smaller magnitude error, smaller phase error, higher percentage improvement in magnitude and phase error, fast convergence rate). The absolute magnitude and phase error obtained for the designed 5th order FD-IIR filter are as low as 0.0037 and 0.0046, respectively. The percentage improvement in magnitude error for CSA based 5th order FD-IIR design with respect to GA and PSO are 80.93% and 74.83% respectively, and phase error are 76.04% and 71.25%, respectively. PMID:26391486
Honey Bees Inspired Optimization Method: The Bees Algorithm.
Yuce, Baris; Packianather, Michael S; Mastrocinque, Ernesto; Pham, Duc Truong; Lambiase, Alfredo
2013-01-01
Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem. PMID:26462528
NASA Astrophysics Data System (ADS)
La Foy, Roderick; Vlachos, Pavlos
2011-11-01
An optimally designed MLOS tomographic reconstruction algorithm for use in 3D PIV and PTV applications is analyzed. Using a set of optimized reconstruction parameters, the reconstructions produced by the MLOS algorithm are shown to be comparable to reconstructions produced by the MART algorithm for a range of camera geometries, camera numbers, and particle seeding densities. The resultant velocity field error calculated using PIV and PTV algorithms is further minimized by applying both pre and post processing to the reconstructed data sets.
Linear antenna array optimization using flower pollination algorithm.
Saxena, Prerna; Kothari, Ashwin
2016-01-01
Flower pollination algorithm (FPA) is a new nature-inspired evolutionary algorithm used to solve multi-objective optimization problems. The aim of this paper is to introduce FPA to the electromagnetics and antenna community for the optimization of linear antenna arrays. FPA is applied for the first time to linear array so as to obtain optimized antenna positions in order to achieve an array pattern with minimum side lobe level along with placement of deep nulls in desired directions. Various design examples are presented that illustrate the use of FPA for linear antenna array optimization, and subsequently the results are validated by benchmarking along with results obtained using other state-of-the-art, nature-inspired evolutionary algorithms such as particle swarm optimization, ant colony optimization and cat swarm optimization. The results suggest that in most cases, FPA outperforms the other evolutionary algorithms and at times it yields a similar performance. PMID:27066339
Optimization of experimental design in fMRI: a general framework using a genetic algorithm.
Wager, Tor D; Nichols, Thomas E
2003-02-01
This article describes a method for selecting design parameters and a particular sequence of events in fMRI so as to maximize statistical power and psychological validity. Our approach uses a genetic algorithm (GA), a class of flexible search algorithms that optimize designs with respect to single or multiple measures of fitness. Two strengths of the GA framework are that (1) it operates with any sort of model, allowing for very specific parameterization of experimental conditions, including nonstandard trial types and experimentally observed scanner autocorrelation, and (2) it is flexible with respect to fitness criteria, allowing optimization over known or novel fitness measures. We describe how genetic algorithms may be applied to experimental design for fMRI, and we use the framework to explore the space of possible fMRI design parameters, with the goal of providing information about optimal design choices for several types of designs. In our simulations, we considered three fitness measures: contrast estimation efficiency, hemodynamic response estimation efficiency, and design counterbalancing. Although there are inherent trade-offs between these three fitness measures, GA optimization can produce designs that outperform random designs on all three criteria simultaneously. PMID:12595184
Specific optimization of genetic algorithm on special algebras
NASA Astrophysics Data System (ADS)
Habiballa, Hashim; Novak, Vilem; Dyba, Martin; Schenk, Jiri
2016-06-01
Searching for complex finite algebras can be succesfully done by the means of genetic algorithm as we showed in former works. This genetic algorithm needs specific optimization of crossover and mutation. We present details about these optimizations which are already implemented in software application for this task - EQCreator.
HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN
While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...
NASA Astrophysics Data System (ADS)
Khehra, Baljit Singh; Pharwaha, Amar Partap Singh
2016-06-01
Ductal carcinoma in situ (DCIS) is one type of breast cancer. Clusters of microcalcifications (MCCs) are symptoms of DCIS that are recognized by mammography. Selection of robust features vector is the process of selecting an optimal subset of features from a large number of available features in a given problem domain after the feature extraction and before any classification scheme. Feature selection reduces the feature space that improves the performance of classifier and decreases the computational burden imposed by using many features on classifier. Selection of an optimal subset of features from a large number of available features in a given problem domain is a difficult search problem. For n features, the total numbers of possible subsets of features are 2n. Thus, selection of an optimal subset of features problem belongs to the category of NP-hard problems. In this paper, an attempt is made to find the optimal subset of MCCs features from all possible subsets of features using genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO). For simulation, a total of 380 benign and malignant MCCs samples have been selected from mammogram images of DDSM database. A total of 50 features extracted from benign and malignant MCCs samples are used in this study. In these algorithms, fitness function is correct classification rate of classifier. Support vector machine is used as a classifier. From experimental results, it is also observed that the performance of PSO-based and BBO-based algorithms to select an optimal subset of features for classifying MCCs as benign or malignant is better as compared to GA-based algorithm.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2004-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Transonic Wing Shape Optimization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)
2002-01-01
A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.
Optimization of aeroelastic composite structures using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Manan, A.; Vio, G. A.; Harmin, M. Y.; Cooper, J. E.
2010-02-01
The flutter/divergence speed of a simple rectangular composite wing is maximized through the use of different ply orientations. Four different biologically inspired optimization algorithms (binary genetic algorithm, continuous genetic algorithm, particle swarm optimization, and ant colony optimization) and a simple meta-modeling approach are employed statistically on the same problem set. In terms of the best flutter speed, it was found that similar results were obtained using all of the methods, although the continuous methods gave better answers than the discrete methods. When the results were considered in terms of the statistical variation between different solutions, ant colony optimization gave estimates with much less scatter.
A new algorithm for L2 optimal model reduction
NASA Technical Reports Server (NTRS)
Spanos, J. T.; Milman, M. H.; Mingori, D. L.
1992-01-01
In this paper the quadratically optimal model reduction problem for single-input, single-output systems is considered. The reduced order model is determined by minimizing the integral of the magnitude-squared of the transfer function error. It is shown that the numerator coefficients of the optimal approximant satisfy a weighted least squares problem and, on this basis, a two-step iterative algorithm is developed combining a least squares solver with a gradient minimizer. Convergence of the proposed algorithm to stationary values of the quadratic cost function is proved. The formulation is extended to handle the frequency-weighted optimal model reduction problem. Three examples demonstrate the optimization algorithm.
A genetic algorithm for first principles global structure optimization of supported nano structures
Vilhelmsen, Lasse B.; Hammer, Bjørk
2014-07-28
We present a newly developed publicly available genetic algorithm (GA) for global structure optimisation within atomic scale modeling. The GA is focused on optimizations using first principles calculations, but it works equally well with empirical potentials. The implementation is described and benchmarked through a detailed statistical analysis employing averages across many independent runs of the GA. This analysis focuses on the practical use of GA’s with a description of optimal parameters to use. New results for the adsorption of M{sub 8} clusters (M = Ru, Rh, Pd, Ag, Pt, Au) on the stoichiometric rutile TiO{sub 2}(110) surface are presented showing the power of automated structure prediction and highlighting the diversity of metal cluster geometries at the atomic scale.
Application of GA-SVM method with parameter optimization for landslide development prediction
NASA Astrophysics Data System (ADS)
Li, X. Z.; Kong, J. M.
2013-10-01
Prediction of landslide development process is always a hot issue in landslide research. So far, many methods for landslide displacement series prediction have been proposed. Support vector machine (SVM) has been proved to be a novel algorithm with good performance. However, the performance strongly depends on the right selection of the parameters (C and γ) of SVM model. In this study, we presented an application of GA-SVM method with parameter optimization in landslide displacement rate prediction. We selected a typical large-scale landslide in some hydro - electrical engineering area of Southwest China as a case. On the basis of analyzing the basic characteristics and monitoring data of the landslide, a single-factor GA-SVM model and a multi-factor GA-SVM model of the landslide were built. Moreover, the models were compared with single-factor and multi-factor SVM models of the landslide. The results show that, the four models have high prediction accuracies, but the accuracies of GA-SVM models are slightly higher than those of SVM models and the accuracies of multi-factor models are slightly higher than those of single-factor models for the landslide prediction. The accuracy of the multi-factor GA-SVM models is the highest, with the smallest RSME of 0.0009 and the biggest RI of 0.9992.
Abstract models for the synthesis of optimization algorithms.
NASA Technical Reports Server (NTRS)
Meyer, G. G. L.; Polak, E.
1971-01-01
Systematic approach to the problem of synthesis of optimization algorithms. Abstract models for algorithms are developed which guide the inventive process toward ?conceptual' algorithms which may consist of operations that are inadmissible in a practical method. Once the abstract models are established a set of methods for converting ?conceptual' algorithms falling into the class defined by the abstract models into ?implementable' iterative procedures is presented.
Genetic-Algorithm Tool For Search And Optimization
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steven
1995-01-01
SPLICER computer program used to solve search and optimization problems. Genetic algorithms adaptive search procedures (i.e., problem-solving methods) based loosely on processes of natural selection and Darwinian "survival of fittest." Algorithms apply genetically inspired operators to populations of potential solutions in iterative fashion, creating new populations while searching for optimal or nearly optimal solution to problem at hand. Written in Think C.
Iterative phase retrieval algorithms. I: optimization.
Guo, Changliang; Liu, Shi; Sheridan, John T
2015-05-20
Two modified Gerchberg-Saxton (GS) iterative phase retrieval algorithms are proposed. The first we refer to as the spatial phase perturbation GS algorithm (SPP GSA). The second is a combined GS hybrid input-output algorithm (GS/HIOA). In this paper (Part I), it is demonstrated that the SPP GS and GS/HIO algorithms are both much better at avoiding stagnation during phase retrieval, allowing them to successfully locate superior solutions compared with either the GS or the HIO algorithms. The performances of the SPP GS and GS/HIO algorithms are also compared. Then, the error reduction (ER) algorithm is combined with the HIO algorithm (ER/HIOA) to retrieve the input object image and the phase, given only some knowledge of its extent and the amplitude in the Fourier domain. In Part II, the algorithms developed here are applied to carry out known plaintext and ciphertext attacks on amplitude encoding and phase encoding double random phase encryption systems. Significantly, ER/HIOA is then used to carry out a ciphertext-only attack on AE DRPE systems. PMID:26192504
Celik, Yuksel; Ulker, Erkan
2013-01-01
Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms. PMID:23935416
Celik, Yuksel; Ulker, Erkan
2013-01-01
Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms. PMID:23935416
Time optimal route planning algorithm of LBS online navigation
NASA Astrophysics Data System (ADS)
Li, Yong; Bao, Shitai; Su, Kui; Fang, Qiushui; Yang, Jingfeng
2011-02-01
This paper proposes a time optimal route planning optimization algorithm in the mode of LBS online navigation based on the improved Dijkstra algorithms. Combined with the returning real-time location information by on-line users' handheld terminals, the algorithm can satisfy requirement of the optimal time in the mode of LBS online navigation. A navigation system is developed and applied in actual navigation operations. Operating results show that the algorithm could form a reasonable coordination on the basis of shortest route and fastest velocity in the requirement of optimal time. The algorithm could also store the calculated real-time route information in the cache to improve the efficiency of route planning and to reduce the planning time-consuming.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2005-01-01
A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Genetic optimization of the HSTAMIDS landmine detection algorithm
NASA Astrophysics Data System (ADS)
Konduri, Ravi K.; Solomon, Geoff Z.; DeJong, Keith; Duvoisin, Herbert A.; Bartosz, Elizabeth E.
2004-09-01
CyTerra's dual sensor HSTAMIDS system has demonstrated exceptional landmine detection capabilities in extensive government-run field tests. Further optimization of the highly successful PentAD-class algorithms for Humanitarian Demining (HD) use (to enhance detection (Pd) and to lower the false alarm rate (FAR)) may be possible. PentAD contains several input parameters, making such optimization computationally intensive. Genetic algorithm techniques, which formerly provided substantial improvement in the detection performance of the metal detector sensor algorithm alone, have been applied to optimize the numerical values of the dual-sensor algorithm parameters. Genetic algorithm techniques have also been applied to choose among several sub-models and fusion techniques to potentially train the HSTAMIDS HD system in new ways. In this presentation we discuss the performance of the resulting algorithm as applied to field data.
A Danger-Theory-Based Immune Network Optimization Algorithm
Li, Tao; Xiao, Xin; Shi, Yuanquan
2013-01-01
Existing artificial immune optimization algorithms reflect a number of shortcomings, such as premature convergence and poor local search ability. This paper proposes a danger-theory-based immune network optimization algorithm, named dt-aiNet. The danger theory emphasizes that danger signals generated from changes of environments will guide different levels of immune responses, and the areas around danger signals are called danger zones. By defining the danger zone to calculate danger signals for each antibody, the algorithm adjusts antibodies' concentrations through its own danger signals and then triggers immune responses of self-regulation. So the population diversity can be maintained. Experimental results show that the algorithm has more advantages in the solution quality and diversity of the population. Compared with influential optimization algorithms, CLONALG, opt-aiNet, and dopt-aiNet, the algorithm has smaller error values and higher success rates and can find solutions to meet the accuracies within the specified function evaluation times. PMID:23483853
Heuristic rules embedded genetic algorithm for in-core fuel management optimization
NASA Astrophysics Data System (ADS)
Alim, Fatih
The objective of this study was to develop a unique methodology and a practical tool for designing loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and BP placement in order to achieve maximum cycle length while satisfying the safety constraints. Genetic Algorithms (GA) have been already used to solve this problem for LP optimization for both PWR and Boiling Water Reactor (BWR). The GA, which is a stochastic method works with a group of solutions and uses random variables to make decisions. Based on the theories of evaluation, the GA involves natural selection and reproduction of the individuals in the population for the next generation. The GA works by creating an initial population, evaluating it, and then improving the population by using the evaluation operators. To solve this optimization problem, a LP optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed in the framework of this thesis. This code is applicable for all types of PWR cores having different geometries and structures with an unlimited number of FA types in the inventory. To reach this goal, an innovative GA is developed by modifying the classical representation of the genotype. To obtain the best result in a shorter time, not only the representation is changed but also the algorithm is changed to use in-core fuel management heuristics rules. The improved GA code was tested to demonstrate and verify the advantages of the new enhancements. The developed methodology is explained in this thesis and preliminary results are shown for the VVER-1000 reactor hexagonal geometry core and the TMI-1 PWR. The improved GA code was tested to verify the advantages of new enhancements. The core physics code
NASA Astrophysics Data System (ADS)
Radosavljević, S.; Radovanović, J.; Milanović, V.; Tomić, S.
2014-07-01
We have described a method for structural parameters optimization of GaN/AlGaN multiple quantum well based up-converter for silicon solar cells. It involves a systematic tuning of individual step quantum wells by use of the genetic algorithm for global optimization. In quantum well structures, the up-conversion process can be achieved by utilizing nonlinear optical effects based on intersubband transitions. Both single and double step quantum wells have been tested in order to maximize the second order susceptibility derived from the density matrix formalism. The results obtained for single step wells proved slightly better and have been further pursued to obtain a more complex design, optimized for conversion of an entire range of incident photon energies.
Radosavljević, S.; Radovanović, J. Milanović, V.; Tomić, S.
2014-07-21
We have described a method for structural parameters optimization of GaN/AlGaN multiple quantum well based up-converter for silicon solar cells. It involves a systematic tuning of individual step quantum wells by use of the genetic algorithm for global optimization. In quantum well structures, the up-conversion process can be achieved by utilizing nonlinear optical effects based on intersubband transitions. Both single and double step quantum wells have been tested in order to maximize the second order susceptibility derived from the density matrix formalism. The results obtained for single step wells proved slightly better and have been further pursued to obtain a more complex design, optimized for conversion of an entire range of incident photon energies.
Multicycle Optimization of Advanced Gas-Cooled Reactor Loading Patterns Using Genetic Algorithms
Ziver, A. Kemal; Carter, Jonathan N.; Pain, Christopher C.; Oliveira, Cassiano R.E. de; Goddard, Antony J. H.; Overton, Richard S.
2003-02-15
A genetic algorithm (GA)-based optimizer (GAOPT) has been developed for in-core fuel management of advanced gas-cooled reactors (AGRs) at HINKLEY B and HARTLEPOOL, which employ on-load and off-load refueling, respectively. The optimizer has been linked to the reactor analysis code PANTHER for the automated evaluation of loading patterns in a two-dimensional geometry, which is collapsed from the three-dimensional reactor model. GAOPT uses a directed stochastic (Monte Carlo) algorithm to generate initial population members, within predetermined constraints, for use in GAs, which apply the standard genetic operators: selection by tournament, crossover, and mutation. The GAOPT is able to generate and optimize loading patterns for successive reactor cycles (multicycle) within acceptable CPU times even on single-processor systems. The algorithm allows radial shuffling of fuel assemblies in a multicycle refueling optimization, which is constructed to aid long-term core management planning decisions. This paper presents the application of the GA-based optimization to two AGR stations, which apply different in-core management operational rules. Results obtained from the testing of GAOPT are discussed.
Genetic algorithms - What fitness scaling is optimal?
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik; Quintana, Chris; Fuentes, Olac
1993-01-01
A problem of choosing the best scaling function as a mathematical optimization problem is formulated and solved under different optimality criteria. A list of functions which are optimal under different criteria is presented which includes both the best functions empirically proved and new functions that may be worth trying.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations. PMID:26502409
An Adaptive Unified Differential Evolution Algorithm for Global Optimization
Qiang, Ji; Mitchell, Chad
2014-11-03
In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.
Optimization of lamp arrangement in a closed-conduit UV reactor based on a genetic algorithm.
Sultan, Tipu; Ahmad, Zeshan; Cho, Jinsoo
2016-01-01
The choice for the arrangement of the UV lamps in a closed-conduit ultraviolet (CCUV) reactor significantly affects the performance. However, a systematic methodology for the optimal lamp arrangement within the chamber of the CCUV reactor is not well established in the literature. In this research work, we propose a viable systematic methodology for the lamp arrangement based on a genetic algorithm (GA). In addition, we analyze the impacts of the diameter, angle, and symmetry of the lamp arrangement on the reduction equivalent dose (RED). The results are compared based on the simulated RED values and evaluated using the computational fluid dynamics simulations software ANSYS FLUENT. The fluence rate was calculated using commercial software UVCalc3D, and the GA-based lamp arrangement optimization was achieved using MATLAB. The simulation results provide detailed information about the GA-based methodology for the lamp arrangement, the pathogen transport, and the simulated RED values. A significant increase in the RED values was achieved by using the GA-based lamp arrangement methodology. This increase in RED value was highest for the asymmetric lamp arrangement within the chamber of the CCUV reactor. These results demonstrate that the proposed GA-based methodology for symmetric and asymmetric lamp arrangement provides a viable technical solution to the design and optimization of the CCUV reactor. PMID:27191576
A parallel Jacobson-Oksman optimization algorithm. [parallel processing (computers)
NASA Technical Reports Server (NTRS)
Straeter, T. A.; Markos, A. T.
1975-01-01
A gradient-dependent optimization technique which exploits the vector-streaming or parallel-computing capabilities of some modern computers is presented. The algorithm, derived by assuming that the function to be minimized is homogeneous, is a modification of the Jacobson-Oksman serial minimization method. In addition to describing the algorithm, conditions insuring the convergence of the iterates of the algorithm and the results of numerical experiments on a group of sample test functions are presented. The results of these experiments indicate that this algorithm will solve optimization problems in less computing time than conventional serial methods on machines having vector-streaming or parallel-computing capabilities.
Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.
Flower pollination algorithm: A novel approach for multiobjective optimization
NASA Astrophysics Data System (ADS)
Yang, Xin-She; Karamanoglu, Mehmet; He, Xingshi
2014-09-01
Multiobjective design optimization problems require multiobjective optimization techniques to solve, and it is often very challenging to obtain high-quality Pareto fronts accurately. In this article, the recently developed flower pollination algorithm (FPA) is extended to solve multiobjective optimization problems. The proposed method is used to solve a set of multiobjective test functions and two bi-objective design benchmarks, and a comparison of the proposed algorithm with other algorithms has been made, which shows that the FPA is efficient with a good convergence rate. Finally, the importance for further parametric studies and theoretical analysis is highlighted and discussed.
Genetic Algorithm Based Neural Networks for Nonlinear Optimization
Energy Science and Technology Software Center (ESTSC)
1994-09-28
This software develops a novel approach to nonlinear optimization using genetic algorithm based neural networks. To our best knowledge, this approach represents the first attempt at applying both neural network and genetic algorithm techniques to solve a nonlinear optimization problem. The approach constructs a neural network structure and an appropriately shaped energy surface whose minima correspond to optimal solutions of the problem. A genetic algorithm is employed to perform a parallel and powerful search ofmore » the energy surface.« less
An active set algorithm for nonlinear optimization with polyhedral constraints
NASA Astrophysics Data System (ADS)
Hager, William W.; Zhang, Hongchao
2016-08-01
A polyhedral active set algorithm PASA is developed for solving a nonlinear optimization problem whose feasible set is a polyhedron. Phase one of the algorithm is the gradient projection method, while phase two is any algorithm for solving a linearly constrained optimization problem. Rules are provided for branching between the two phases. Global convergence to a stationary point is established, while asymptotically PASA performs only phase two when either a nondegeneracy assumption holds, or the active constraints are linearly independent and a strong second-order sufficient optimality condition holds.
A parallel variable metric optimization algorithm
NASA Technical Reports Server (NTRS)
Straeter, T. A.
1973-01-01
An algorithm, designed to exploit the parallel computing or vector streaming (pipeline) capabilities of computers is presented. When p is the degree of parallelism, then one cycle of the parallel variable metric algorithm is defined as follows: first, the function and its gradient are computed in parallel at p different values of the independent variable; then the metric is modified by p rank-one corrections; and finally, a single univariant minimization is carried out in the Newton-like direction. Several properties of this algorithm are established. The convergence of the iterates to the solution is proved for a quadratic functional on a real separable Hilbert space. For a finite-dimensional space the convergence is in one cycle when p equals the dimension of the space. Results of numerical experiments indicate that the new algorithm will exploit parallel or pipeline computing capabilities to effect faster convergence than serial techniques.
Jiang, Wenjuan; Shi, Yunbo; Zhao, Wenjie; Wang, Xiangxin
2016-01-01
The main part of the magnetic fluxgate sensor is the magnetic core, the hysteresis characteristic of which affects the performance of the sensor. When the fluxgate sensors are modelled for design purposes, an accurate model of hysteresis characteristic of the cores is necessary to achieve good agreement between modelled and experimental data. The Jiles-Atherton model is simple and can reflect the hysteresis properties of the magnetic material precisely, which makes it widely used in hysteresis modelling and simulation of ferromagnetic materials. However, in practice, it is difficult to determine the parameters accurately owing to the sensitivity of the parameters. In this paper, the Biogeography-Based Optimization (BBO) algorithm is applied to identify the Jiles-Atherton model parameters. To enhance the performances of the BBO algorithm such as global search capability, search accuracy and convergence rate, an improved Biogeography-Based Optimization (IBBO) algorithm is put forward by using Arnold map and mutation strategy of Differential Evolution (DE) algorithm. Simulation results show that IBBO algorithm is superior to Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Differential Evolution algorithm and BBO algorithm in identification accuracy and convergence rate. The IBBO algorithm is applied to identify Jiles-Atherton model parameters of selected permalloy. The simulation hysteresis loop is in high agreement with experimental data. Using permalloy as core of fluxgate probe, the simulation output is consistent with experimental output. The IBBO algorithm can identify the parameters of Jiles-Atherton model accurately, which provides a basis for the precise analysis and design of instruments and equipment with magnetic core. PMID:27347974
Jiang, Wenjuan; Shi, Yunbo; Zhao, Wenjie; Wang, Xiangxin
2016-01-01
The main part of the magnetic fluxgate sensor is the magnetic core, the hysteresis characteristic of which affects the performance of the sensor. When the fluxgate sensors are modelled for design purposes, an accurate model of hysteresis characteristic of the cores is necessary to achieve good agreement between modelled and experimental data. The Jiles-Atherton model is simple and can reflect the hysteresis properties of the magnetic material precisely, which makes it widely used in hysteresis modelling and simulation of ferromagnetic materials. However, in practice, it is difficult to determine the parameters accurately owing to the sensitivity of the parameters. In this paper, the Biogeography-Based Optimization (BBO) algorithm is applied to identify the Jiles-Atherton model parameters. To enhance the performances of the BBO algorithm such as global search capability, search accuracy and convergence rate, an improved Biogeography-Based Optimization (IBBO) algorithm is put forward by using Arnold map and mutation strategy of Differential Evolution (DE) algorithm. Simulation results show that IBBO algorithm is superior to Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Differential Evolution algorithm and BBO algorithm in identification accuracy and convergence rate. The IBBO algorithm is applied to identify Jiles-Atherton model parameters of selected permalloy. The simulation hysteresis loop is in high agreement with experimental data. Using permalloy as core of fluxgate probe, the simulation output is consistent with experimental output. The IBBO algorithm can identify the parameters of Jiles-Atherton model accurately, which provides a basis for the precise analysis and design of instruments and equipment with magnetic core. PMID:27347974
A Unified Differential Evolution Algorithm for Global Optimization
Qiang, Ji; Mitchell, Chad
2014-06-24
Abstract?In this paper, we propose a new unified differential evolution (uDE) algorithm for single objective global optimization. Instead of selecting among multiple mutation strategies as in the conventional differential evolution algorithm, this algorithm employs a single equation as the mutation strategy. It has the virtue of mathematical simplicity and also provides users the flexbility for broader exploration of different mutation strategies. Numerical tests using twelve basic unimodal and multimodal functions show promising performance of the proposed algorithm in comparison to convential differential evolution algorithms.
An algorithm for the systematic disturbance of optimal rotational solutions
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Kaiser, Mary K.
1989-01-01
An algorithm for introducing a systematic rotational disturbance into an optimal (i.e., single axis) rotational trajectory is described. This disturbance introduces a motion vector orthogonal to the quaternion-defined optimal rotation axis. By altering the magnitude of this vector, the degree of non-optimality can be controlled. The metric properties of the distortion parameter are described, with analogies to two-dimensional translational motion. This algorithm was implemented in a motion-control program on a three-dimensional graphic workstation. It supports a series of human performance studies on the detectability of rotational trajectory optimality by naive observers.
Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem
NASA Astrophysics Data System (ADS)
Chen, Wei
2015-07-01
In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.
PCB Drill Path Optimization by Combinatorial Cuckoo Search Algorithm
Lim, Wei Chen Esmonde; Kanagaraj, G.; Ponnambalam, S. G.
2014-01-01
Optimization of drill path can lead to significant reduction in machining time which directly improves productivity of manufacturing systems. In a batch production of a large number of items to be drilled such as printed circuit boards (PCB), the travel time of the drilling device is a significant portion of the overall manufacturing process. To increase PCB manufacturing productivity and to reduce production costs, a good option is to minimize the drill path route using an optimization algorithm. This paper reports a combinatorial cuckoo search algorithm for solving drill path optimization problem. The performance of the proposed algorithm is tested and verified with three case studies from the literature. The computational experience conducted in this research indicates that the proposed algorithm is capable of efficiently finding the optimal path for PCB holes drilling process. PMID:24707198
PCB drill path optimization by combinatorial cuckoo search algorithm.
Lim, Wei Chen Esmonde; Kanagaraj, G; Ponnambalam, S G
2014-01-01
Optimization of drill path can lead to significant reduction in machining time which directly improves productivity of manufacturing systems. In a batch production of a large number of items to be drilled such as printed circuit boards (PCB), the travel time of the drilling device is a significant portion of the overall manufacturing process. To increase PCB manufacturing productivity and to reduce production costs, a good option is to minimize the drill path route using an optimization algorithm. This paper reports a combinatorial cuckoo search algorithm for solving drill path optimization problem. The performance of the proposed algorithm is tested and verified with three case studies from the literature. The computational experience conducted in this research indicates that the proposed algorithm is capable of efficiently finding the optimal path for PCB holes drilling process. PMID:24707198
NASA Astrophysics Data System (ADS)
Zhang, Liqiang; Li, Luoxing; Wang, Shiuping; Zhu, Biwu
2012-04-01
In this article, the low-pressure die-cast (LPDC) process parameters of aluminum alloy thin-walled component with permanent mold are optimized using a combining artificial neural network and genetic algorithm (ANN/GA) method. In this method, an ANN model combining learning vector quantization (LVQ) and back-propagation (BP) algorithm is proposed to map the complex relationship between process conditions and quality indexes of LPDC. The genetic algorithm is employed to optimize the process parameters with the fitness function based on the trained ANN model. Then, by applying the optimized parameters, a thin-walled component with 300 mm in length, 100 mm in width, and 1.5 mm in thickness is successfully prepared and no obvious defects such as shrinkage, gas porosity, distortion, and crack were found in the component. The results indicate that the combining ANN/GA method is an effective tool for the process optimization of LPDC, and they also provide valuable reference on choosing the right process parameters for LPDC thin-walled aluminum alloy casting.
Multi-Objective Optimization of Heat Load and Run Time for CEBAF Linacs Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Reeves, Cody; Terzic, Balsa; Hofler, Alicia
2014-09-01
The Continuous Electron Beam Accelerator Facility (CEBAF) consists of two linear accelerators (Linacs) connected by arcs. Within each Linac, there are 200 niobium cavities that use superconducting radio frequency (SRF) to accelerate electrons. The gradients for the cavities are selected to optimize two competing objectives: heat load (the energy required to cool the cavities) and trip rate (how often the beam turns off within an hour). This results in a multidimensional, multi-objective, nonlinear system of equations that is not readily solved by analytical methods. This study improved a genetic algorithm (GA), which applies the concept of natural selection. The primary focus was making this GA more efficient to allow for more cost-effective solutions in the same amount of computation time. Two methods used were constraining the maximum value of the ob-jectives and also utilizing previously simulated solutions as the initial generation. A third method of interest involved refining the GA by combining the two objectives into a single weighted-sum objective, which collapses the set of optimal solutions into a single point. By combining these methods, the GA can be made 128 times as effective, reducing computation time from 30 min to 12 sec. This is crucial for when a cavity must be turned off, a new solution needs to be computed quickly. This work is of particular interest since it provides an efficient algorithm that can be easily adapted to any Linac facility.
Modeling of CMM dynamic error based on optimization of neural network using genetic algorithm
NASA Astrophysics Data System (ADS)
Ying, Qu; Zai, Luo; Yi, Lu
2010-08-01
By analyzing the dynamic error of CMM, a model is established using BP neural network for CMM .The most important 5 input parameters which affect the dynamic error of CMM are approximate rate, length of rod, diameter of probe, coordinate values of X and coordinate values of Y. But the training of BP neural network can be easily trapped in local minimums and its training speed is slow. In order to overcome these disadvantages, genetic algorithm (GA) is introduced for optimization. So the model of GA-BP network is built up. In order to verify the model, experiments are done on the CMM of type 9158. Experimental results indicate that the entire optimizing capability of genetic algorithm is perfect. Compared with traditional BP network, the GA-BP network has better accuracy and adaptability and the training time is halved using GA-BP network. The average dynamic error can be reduced from 3.5μm to 0.7μm. So the precision is improved by 76%.
Salcedo-Sanz, S; Del Ser, J; Landa-Torres, I; Gil-López, S; Portilla-Figueras, J A
2014-01-01
This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860
Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.
2014-01-01
This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860
Superscattering of light optimized by a genetic algorithm
Mirzaei, Ali Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.
2014-07-07
We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.
Optimization algorithm in adaptive PMD compensation in 10Gb/s optical communication system
NASA Astrophysics Data System (ADS)
Diao, Cao; Li, Tangjun; Wang, Muguang; Gong, Xiangfeng
2005-02-01
In this paper, the optimization algorithms are introduced in adaptive PMD compensation in 10Gb/s optical communication system. The PMD monitoring technique based on degree of polarization (DOP) is adopted. DOP can be a good indicator of PMD with monotonically deceasing of DOP as differential group delay (DGD) increasing. In order to use DOP as PMD monitoring feedback signal, it is required to emulate the state of DGD in the transmission circuitry. A PMD emulator is designed. A polarization controller (PC) is used in fiber multiplexer to adjust the polarization state of optical signal, and at the output of the fiber multiplexer a polarizer is used. After the feedback signal reach the control computer, the optimization program run to search the global optimization spot and through the PC to control the PMD. Several popular modern nonlinear optimization algorithms (Tabu Search, Simulated Annealing, Genetic Algorithm, Artificial Neural Networks, Ant Colony Optimization etc.) are discussed and the comparisons among them are made to choose the best optimization algorithm. Every algorithm has its advantage and disadvantage, but in this circs the Genetic Algorithm (GA) may be the best. It eliminates the worsen spots constantly and lets them have no chance to enter the circulation. So it has the quicker convergence velocity and less time. The PMD can be compensated in very few steps by using this algorithm. As a result, the maximum compensation ability of the one-stage PMD and two-stage PMD can be made in very short time, and the dynamic compensation time is no more than 10ms.
Advanced optimization of permanent magnet wigglers using a genetic algorithm
Hajima, Ryoichi
1995-12-31
In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms.
Parallel optimization algorithms and their implementation in VLSI design
NASA Technical Reports Server (NTRS)
Lee, G.; Feeley, J. J.
1991-01-01
Two new parallel optimization algorithms based on the simplex method are described. They may be executed by a SIMD parallel processor architecture and be implemented in VLSI design. Several VLSI design implementations are introduced. An application example is reported to demonstrate that the algorithms are effective.
Designing Stochastic Optimization Algorithms for Real-world Applications
NASA Astrophysics Data System (ADS)
Someya, Hiroshi; Handa, Hisashi; Koakutsu, Seiichi
This article presents a review of recent advances in stochastic optimization algorithms. Novel algorithms achieving highly adaptive and efficient searches, theoretical analyses to deepen our understanding of search behavior, successful implementation on parallel computers, attempts to build benchmark suites for industrial use, and techniques applied to real-world problems are included. A list of resources is provided.
Nonlinear Global Optimization Using Curdling Algorithm in Mathematica Environmet
Energy Science and Technology Software Center (ESTSC)
1997-08-05
An algorithm for performing optimization which is a derivative-free, grid-refinement approach to nonlinear optimization was developed and implemented in software as OPTIMIZE. This approach overcomes a number of deficiencies in existing approaches. Most notably, it finds extremal regions rather than only single extremal points. the program is interactive and collects information on control parameters and constraints using menus. For up to two (and potentially three) dimensions, function convergence is displayed graphically. Because the algorithm doesmore » not compute derivatives, gradients, or vectors, it is numerically stable. It can find all the roots of a polynomial in one pass. It is an inherently parallel algorithm. OPTIMIZE-M is a modification of OPTIMIZE designed for use within the Mathematica environment created by Wolfram Research.« less
Applying new optimization algorithms to more predictive control
Wright, S.J.
1996-03-01
The connections between optimization and control theory have been explored by many researchers and optimization algorithms have been applied with success to optimal control. The rapid pace of developments in model predictive control has given rise to a host of new problems to which optimization has yet to be applied. Concurrently, developments in optimization, and especially in interior-point methods, have produced a new set of algorithms that may be especially helpful in this context. In this paper, we reexamine the relatively simple problem of control of linear processes subject to quadratic objectives and general linear constraints. We show how new algorithms for quadratic programming can be applied efficiently to this problem. The approach extends to several more general problems in straightforward ways.
Evaluation of Genetic Algorithm Concepts using Model Problems. Part 1; Single-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic-algorithm-based optimization approach is described and evaluated using a simple hill-climbing model problem. The model problem utilized herein allows for the broad specification of a large number of search spaces including spaces with an arbitrary number of genes or decision variables and an arbitrary number hills or modes. In the present study, only single objective problems are considered. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all problems attempted. The most difficult problems - those with large hyper-volumes and multi-mode search spaces containing a large number of genes - require a large number of function evaluations for GA convergence, but they always converge.
Global search algorithm for optimal control
NASA Technical Reports Server (NTRS)
Brocker, D. H.; Kavanaugh, W. P.; Stewart, E. C.
1970-01-01
Random-search algorithm employs local and global properties to solve two-point boundary value problem in Pontryagin maximum principle for either fixed or variable end-time problems. Mixed boundary value problem is transformed to an initial value problem. Mapping between initial and terminal values utilizes hybrid computer.
NASA Astrophysics Data System (ADS)
Hemmatian, Hossein; Fereidoon, Abdolhossein; Assareh, Ehsanolah
2014-09-01
The multi-objective gravitational search algorithm (MOGSA) technique is applied to hybrid laminates to achieve minimum weight and cost. The investigated laminate is made of glass-epoxy and carbon-epoxy plies to combine the economical attributes of the first with the light weight and high-stiffness properties of the second in order to make the trade-off between the cost and weight as the objective functions. The first natural flexural frequency was considered as a constraint. The results obtained using the MOGSA, including the Pareto set, optimum stacking sequences and number of plies made of either glass or carbon fibres, were compared with those using the genetic algorithm (GA) and ant colony optimization (ACO) reported in the literature. The comparisons confirmed the advantages of hybridization and showed that the MOGSA outperformed the GA and ACO in terms of the functions' value and constraint accuracy.
Optimization of composite structures by estimation of distribution algorithms
NASA Astrophysics Data System (ADS)
Grosset, Laurent
The design of high performance composite laminates, such as those used in aerospace structures, leads to complex combinatorial optimization problems that cannot be addressed by conventional methods. These problems are typically solved by stochastic algorithms, such as evolutionary algorithms. This dissertation proposes a new evolutionary algorithm for composite laminate optimization, named Double-Distribution Optimization Algorithm (DDOA). DDOA belongs to the family of estimation of distributions algorithms (EDA) that build a statistical model of promising regions of the design space based on sets of good points, and use it to guide the search. A generic framework for introducing statistical variable dependencies by making use of the physics of the problem is proposed. The algorithm uses two distributions simultaneously: the marginal distributions of the design variables, complemented by the distribution of auxiliary variables. The combination of the two generates complex distributions at a low computational cost. The dissertation demonstrates the efficiency of DDOA for several laminate optimization problems where the design variables are the fiber angles and the auxiliary variables are the lamination parameters. The results show that its reliability in finding the optima is greater than that of a simple EDA and of a standard genetic algorithm, and that its advantage increases with the problem dimension. A continuous version of the algorithm is presented and applied to a constrained quadratic problem. Finally, a modification of the algorithm incorporating probabilistic and directional search mechanisms is proposed. The algorithm exhibits a faster convergence to the optimum and opens the way for a unified framework for stochastic and directional optimization.
Imperialist competitive algorithm combined with chaos for global optimization
NASA Astrophysics Data System (ADS)
Talatahari, S.; Farahmand Azar, B.; Sheikholeslami, R.; Gandomi, A. H.
2012-03-01
A novel chaotic improved imperialist competitive algorithm (CICA) is presented for global optimization. The ICA is a new meta-heuristic optimization developed based on a socio-politically motivated strategy and contains two main steps: the movement of the colonies and the imperialistic competition. Here different chaotic maps are utilized to improve the movement step of the algorithm. Seven different chaotic maps are investigated and the Logistic and Sinusoidal maps are found as the best choices. Comparing the new algorithm with the other ICA-based methods demonstrates the superiority of the CICA for the benchmark functions.
Piloted simulation of an on-board trajectory optimization algorithm
NASA Technical Reports Server (NTRS)
Price, D. B.; Calise, A. J.; Moerder, D. D.
1981-01-01
This paper will describe a real time piloted simulation of algorithms designed for on-board computation of time-optimal intercept trajectories for an F-8 aircraft. The algorithms, which were derived using singular perturbation theory, generate commands that are displayed to the pilot on flight director needles on the 8-ball. By flying the airplane so as to zero the horizontal and vertical needles, the pilot flies an approximation to a time-optimal intercept trajectory. The various display and computation modes that are available will be described and results will be presented illustrating the performance of the algorithms with a pilot in the loop.
Model Specification Searches Using Ant Colony Optimization Algorithms
ERIC Educational Resources Information Center
Marcoulides, George A.; Drezner, Zvi
2003-01-01
Ant colony optimization is a recently proposed heuristic procedure inspired by the behavior of real ants. This article applies the procedure to model specification searches in structural equation modeling and reports the results. The results demonstrate the capabilities of ant colony optimization algorithms for conducting automated searches.
Optimal fractional order PID design via Tabu Search based algorithm.
Ateş, Abdullah; Yeroglu, Celaleddin
2016-01-01
This paper presents an optimization method based on the Tabu Search Algorithm (TSA) to design a Fractional-Order Proportional-Integral-Derivative (FOPID) controller. All parameter computations of the FOPID employ random initial conditions, using the proposed optimization method. Illustrative examples demonstrate the performance of the proposed FOPID controller design method. PMID:26652128
Peng, Tingting; Jiang, Bo; Guo, Jiangfeng; Lu, Hongfei; Du, Liqun
2015-01-01
Temperature is a predominant environmental factor affecting grass germination and distribution. Various thermal-germination models for prediction of grass seed germination have been reported, in which the relationship between temperature and germination were defined with kernel functions, such as quadratic or quintic function. However, their prediction accuracies warrant further improvements. The purpose of this study is to evaluate the relative prediction accuracies of genetic algorithm (GA) models, which are automatically parameterized with observed germination data. The seeds of five P. pratensis (Kentucky bluegrass, KB) cultivars were germinated under 36 day/night temperature regimes ranging from 5/5 to 40/40°C with 5°C increments. Results showed that optimal germination percentages of all five tested KB cultivars were observed under a fluctuating temperature regime of 20/25°C. Meanwhile, the constant temperature regimes (e.g., 5/5, 10/10, 15/15°C, etc.) suppressed the germination of all five cultivars. Furthermore, the back propagation artificial neural network (BP-ANN) algorithm was integrated to optimize temperature-germination response models from these observed germination data. It was found that integrations of GA-BP-ANN (back propagation aided genetic algorithm artificial neural network) significantly reduced the Root Mean Square Error (RMSE) values from 0.21~0.23 to 0.02~0.09. In an effort to provide a more reliable prediction of optimum sowing time for the tested KB cultivars in various regions in the country, the optimized GA-BP-ANN models were applied to map spatial and temporal germination percentages of blue grass cultivars in China. Our results demonstrate that the GA-BP-ANN model is a convenient and reliable option for constructing thermal-germination response models since it automates model parameterization and has excellent prediction accuracy. PMID:26154163
Diffusion Limited Aggregation: Algorithm optimization revisited
NASA Astrophysics Data System (ADS)
Braga, F. L.; Ribeiro, M. S.
2011-08-01
The Diffusion Limited Aggregation (DLA) model developed by Witten and Sander in 1978 is useful in modeling a large class of growth phenomena with local dependence. Besides its simplicity this aggregation model has a complex behavior that can be observed at the patterns generated. We propose on this work a brief review of some important proprieties of this model and present an algorithm to simulate a DLA aggregates that simpler and efficient compared to others found in the literature.
Artificial Bee Colony Algorithm for Solving Optimal Power Flow Problem
Le Dinh, Luong; Vo Ngoc, Dieu
2013-01-01
This paper proposes an artificial bee colony (ABC) algorithm for solving optimal power flow (OPF) problem. The objective of the OPF problem is to minimize total cost of thermal units while satisfying the unit and system constraints such as generator capacity limits, power balance, line flow limits, bus voltages limits, and transformer tap settings limits. The ABC algorithm is an optimization method inspired from the foraging behavior of honey bees. The proposed algorithm has been tested on the IEEE 30-bus, 57-bus, and 118-bus systems. The numerical results have indicated that the proposed algorithm can find high quality solution for the problem in a fast manner via the result comparisons with other methods in the literature. Therefore, the proposed ABC algorithm can be a favorable method for solving the OPF problem. PMID:24470790
Artificial bee colony algorithm for solving optimal power flow problem.
Le Dinh, Luong; Vo Ngoc, Dieu; Vasant, Pandian
2013-01-01
This paper proposes an artificial bee colony (ABC) algorithm for solving optimal power flow (OPF) problem. The objective of the OPF problem is to minimize total cost of thermal units while satisfying the unit and system constraints such as generator capacity limits, power balance, line flow limits, bus voltages limits, and transformer tap settings limits. The ABC algorithm is an optimization method inspired from the foraging behavior of honey bees. The proposed algorithm has been tested on the IEEE 30-bus, 57-bus, and 118-bus systems. The numerical results have indicated that the proposed algorithm can find high quality solution for the problem in a fast manner via the result comparisons with other methods in the literature. Therefore, the proposed ABC algorithm can be a favorable method for solving the OPF problem. PMID:24470790
Exploratory Analysis of Stochastic Local Search Algorithms in Biobjective Optimization
NASA Astrophysics Data System (ADS)
López-Ibáñez, Manuel; Paquete, Luís; Stützle, Thomas
This chapter introduces two Perl programs that implement graphical tools for exploring the performance of stochastic local search algorithms for biobjective optimization problems. These tools are based on the concept of the empirical attainment function (EAF), which describes the probabilistic distribution of the outcomes obtained by a stochastic algorithm in the objective space. In particular, we consider the visualization of attainment surfaces and differences between the first-order EAFs of the outcomes of two algorithms. This visualization allows us to identify certain algorithmic behaviors in a graphical way. We explain the use of these visualization tools and illustrate them with examples arising from practice.
A Discrete Lagrangian Algorithm for Optimal Routing Problems
Kosmas, O. T.; Vlachos, D. S.; Simos, T. E.
2008-11-06
The ideas of discrete Lagrangian methods for conservative systems are exploited for the construction of algorithms applicable in optimal ship routing problems. The algorithm presented here is based on the discretisation of Hamilton's principle of stationary action Lagrangian and specifically on the direct discretization of the Lagrange-Hamilton principle for a conservative system. Since, in contrast to the differential equations, the discrete Euler-Lagrange equations serve as constrains for the optimization of a given cost functional, in the present work we utilize this feature in order to minimize the cost function for optimal ship routing.
Genetic algorithm based design optimization of a permanent magnet brushless dc motor
NASA Astrophysics Data System (ADS)
Upadhyay, P. R.; Rajagopal, K. R.
2005-05-01
Genetic algorithm (GA) based design optimization of a permanent magnet brushless dc motor is presented in this paper. A 70 W, 350 rpm, ceiling fan motor with radial-filed configuration is designed by considering the efficiency as the objective function. Temperature-rise and motor weight are the constraints and the slot electric loading, magnet-fraction, slot-fraction, airgap, and airgap flux density are the design variables. The efficiency and the phase-inductance of the motor designed using the developed CAD program are improved by using the GA based optimization technique; from 84.75% and 5.55 mH to 86.06% and 2.4 mH, respectively.
Optimization of air monitoring networks using chemical transport model and search algorithm
NASA Astrophysics Data System (ADS)
Araki, Shin; Iwahashi, Koki; Shimadera, Hikari; Yamamoto, Kouhei; Kondo, Akira
2015-12-01
Air monitoring network design is a critical issue because monitoring stations should be allocated properly so that they adequately represent the concentrations in the domain of interest. Although the optimization methods using observations from existing monitoring networks are often applied to a network with a considerable number of stations, they are difficult to be applied to a sparse network or a network under development: there are too few observations to define an optimization criterion and the high number of potential monitor location combinations cannot be tested exhaustively. This paper develops a hybrid of genetic algorithm and simulated annealing to combine their power to search a big space and to find local optima. The hybrid algorithm as well as the two single algorithms are applied to optimize an air monitoring network of PM2.5, NO2 and O3 respectively, by minimization of the mean kriging variance derived from simulated values of a chemical transport model instead of observations. The hybrid algorithm performs best among the algorithms: kriging variance is on average about 4% better than for GA and variability between trials is less than 30% compared to SA. The optimized networks for the three pollutants are similar and maps interpolated from the simulated values at these locations are close to the original simulations (RMSE below 9% relative to the range of the field). This also holds for hourly and daily values although the networks are optimized for annual values. It is demonstrated that the method using the hybrid algorithm and the model simulated values for the calculation of the mean kriging variance is of benefit to the optimization of air monitoring networks.
A Hybrid Ant Colony Algorithm for Loading Pattern Optimization
NASA Astrophysics Data System (ADS)
Hoareau, F.
2014-06-01
Electricité de France (EDF) operates 58 nuclear power plant (NPP), of the Pressurized Water Reactor (PWR) type. The loading pattern (LP) optimization of these NPP is currently done by EDF expert engineers. Within this framework, EDF R&D has developed automatic optimization tools that assist the experts. The latter can resort, for instance, to a loading pattern optimization software based on ant colony algorithm. This paper presents an analysis of the search space of a few realistic loading pattern optimization problems. This analysis leads us to introduce a hybrid algorithm based on ant colony and a local search method. We then show that this new algorithm is able to generate loading patterns of good quality.
A superlinear interior points algorithm for engineering design optimization
NASA Technical Reports Server (NTRS)
Herskovits, J.; Asquier, J.
1990-01-01
We present a quasi-Newton interior points algorithm for nonlinear constrained optimization. It is based on a general approach consisting of the iterative solution in the primal and dual spaces of the equalities in Karush-Kuhn-Tucker optimality conditions. This is done in such a way to have primal and dual feasibility at each iteration, which ensures satisfaction of those optimality conditions at the limit points. This approach is very strong and efficient, since at each iteration it only requires the solution of two linear systems with the same matrix, instead of quadratic programming subproblems. It is also particularly appropriate for engineering design optimization inasmuch at each iteration a feasible design is obtained. The present algorithm uses a quasi-Newton approximation of the second derivative of the Lagrangian function in order to have superlinear asymptotic convergence. We discuss theoretical aspects of the algorithm and its computer implementation.
An algorithm for computationally expensive engineering optimization problems
NASA Astrophysics Data System (ADS)
Yoel, Tenne
2013-07-01
Modern engineering design often relies on computer simulations to evaluate candidate designs, a scenario which results in an optimization of a computationally expensive black-box function. In these settings, there will often exist candidate designs which cause the simulation to fail, and can therefore degrade the search effectiveness. To address this issue, this paper proposes a new metamodel-assisted computational intelligence optimization algorithm which incorporates classifiers into the optimization search. The classifiers predict which candidate designs are expected to cause the simulation to fail, and this prediction is used to bias the search towards designs predicted to be valid. To enhance the search effectiveness, the proposed algorithm uses an ensemble approach which concurrently employs several metamodels and classifiers. A rigorous performance analysis based on a set of simulation-driven design optimization problems shows the effectiveness of the proposed algorithm.
Optimization algorithm based characterization scheme for tunable semiconductor lasers.
Chen, Quanan; Liu, Gonghai; Lu, Qiaoyin; Guo, Weihua
2016-09-01
In this paper, an optimization algorithm based characterization scheme for tunable semiconductor lasers is proposed and demonstrated. In the process of optimization, the ratio between the power of the desired frequency and the power except of the desired frequency is used as the figure of merit, which approximately represents the side-mode suppression ratio. In practice, we use tunable optical band-pass and band-stop filters to obtain the power of the desired frequency and the power except of the desired frequency separately. With the assistance of optimization algorithms, such as the particle swarm optimization (PSO) algorithm, we can get stable operation conditions for tunable lasers at designated frequencies directly and efficiently. PMID:27607701
Optimal well locations using genetic algorithm for Tushki Project, Western Desert, Egypt
NASA Astrophysics Data System (ADS)
Khalaf, S.; Gad, M. I.
2014-10-01
Groundwater depletion is one of the most important problems threaten the national projects in Egypt. The optimal distribution of well locations and pumping rates mitigate this problem. In this paper, a trial to mitigate this problem in Tushki National Project, south western desert, Egypt was carried out via delineating the optimal well locations and optimal pumping rates. The methodology of combination between simulation and optimization techniques was applied. A linked simulation-optimization model for obtaining the optimum management of groundwater flow is used in this research. MODFLOW packages are used to simulate the groundwater flow system. This model is integrated with an optimization model OLGA (Optimal well Location using Genetic Algorithm technique) which is based on the genetic algorithm (GA). Two management cases were considered by running the model in Abu Simbel-Tushki area with adopted steady and transit calibrated parameters. The first case (fixed well location) is found that the optimum value of the objective function (maximum pumping rate). In the second case (flexible well location with the moving well option) locations of wells are to be decided by the OLGA model itself within a user defined region of the model grid until the optimal location is reached. Also, the prediction of the future changes in both head and flow were made in steady and transient states.
Optimization of Blended Wing Body Composite Panels Using Both NASTRAN and Genetic Algorithm
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.
2006-01-01
The blended wing body (BWB) is a concept that has been investigated for improving the performance of transport aircraft. A trade study was conducted by evaluating four regions from a BWB design characterized by three fuselage bays and a 400,000 lb. gross take-off weight (GTW). This report describes the structural optimization of these regions via computational analysis and compares them to the baseline designs of the same construction. The identified regions were simplified for use in the optimization. The regions were represented by flat panels having appropriate classical boundary conditions and uniform force resultants along the panel edges. Panel-edge tractions and internal pressure values applied during the study were those determined by nonlinear NASTRAN analyses. Only one load case was considered in the optimization analysis for each panel region. Optimization was accomplished using both NASTRAN solution 200 and Genetic Algorithm (GA), with constraints imposed on stress, buckling, and minimum thicknesses. The NASTRAN optimization analyses often resulted in infeasible solutions due to violation of the constraints, whereas the GA enforced satisfaction of the constraints and, therefore, always ensured a feasible solution. However, both optimization methods encountered difficulties when the number of design variables was increased. In general, the optimized panels weighed less than the comparable baseline panels.
Optimizing long-term reservoir operation through multi-tier interactive genetic algorithm
NASA Astrophysics Data System (ADS)
Wang, K.-W.; Chang, L.-C.; Chang, F.-J.
2012-04-01
For long-term reservoir planning and management problems, the reservoir optimal operation in each period is commonly searched year by year. The search domain for the initial reservoir storage for each year is limited to certain ranges, the over-year conditions cannot be adequately delivered over time, and therefore such operation fails to integrate the conditions of all the considered years as a whole situation. In this study, a multi-tier interactive genetic algorithm (MIGA) was applied to searching the long-term reservoir optimal solution. MIGA can decompose a large-scale task into several small-scale sub-tasks with GAs applied to each sub-task, where the multi-tier optimal solutions mutually interact among individual sub-tasks to produce the optimal solution for the original task. In such way, the long-term reservoir operation task can be divided into several independent single-year tasks; therefore, the difficulty of the optimal search for a great number of decision variables can dramatically be reduced. The Shihmen Reservoir in northern Taiwan was used as a case study, and the long-term optimal reservoir storages (decision variables) were investigated. The objective was to best satisfy water demands in the downstream area; and a 10-day period, the traditional time frame in Chinese agricultural society, was used as a time step. According to this time scale, there were two cases with different time intervals (variables): Case I- five relative drought consecutive years (2001 to 2006) with 180 variables (i.e. 36×5=180); and Case II- twenty consecutive years (1986 to 2006) with 720 variables (i.e. 36×20=720). For the purpose of comparison, a simulation based on the reservoir operating rule curves and a sole GA search would be implemented to find the solutions. In Case I, despite the number of the decision variables which was 180, the sole GA could still well search the optimal solution. In Case II (720 variables), the sole GA could not reach the optimal solution
A solution quality assessment method for swarm intelligence optimization algorithms.
Zhang, Zhaojun; Wang, Gai-Ge; Zou, Kuansheng; Zhang, Jianhua
2014-01-01
Nowadays, swarm intelligence optimization has become an important optimization tool and wildly used in many fields of application. In contrast to many successful applications, the theoretical foundation is rather weak. Therefore, there are still many problems to be solved. One problem is how to quantify the performance of algorithm in finite time, that is, how to evaluate the solution quality got by algorithm for practical problems. It greatly limits the application in practical problems. A solution quality assessment method for intelligent optimization is proposed in this paper. It is an experimental analysis method based on the analysis of search space and characteristic of algorithm itself. Instead of "value performance," the "ordinal performance" is used as evaluation criteria in this method. The feasible solutions were clustered according to distance to divide solution samples into several parts. Then, solution space and "good enough" set can be decomposed based on the clustering results. Last, using relative knowledge of statistics, the evaluation result can be got. To validate the proposed method, some intelligent algorithms such as ant colony optimization (ACO), particle swarm optimization (PSO), and artificial fish swarm algorithm (AFS) were taken to solve traveling salesman problem. Computational results indicate the feasibility of proposed method. PMID:25013845
Restarted local search algorithms for continuous black box optimization.
Pošík, Petr; Huyer, Waltraud
2012-01-01
Several local search algorithms for real-valued domains (axis parallel line search, Nelder-Mead simplex search, Rosenbrock's algorithm, quasi-Newton method, NEWUOA, and VXQR) are described and thoroughly compared in this article, embedding them in a multi-start method. Their comparison aims (1) to help the researchers from the evolutionary community to choose the right opponent for their algorithm (to choose an opponent that would constitute a hard-to-beat baseline algorithm), (2) to describe individual features of these algorithms and show how they influence the algorithm on different problems, and (3) to provide inspiration for the hybridization of evolutionary algorithms with these local optimizers. The recently proposed Comparing Continuous Optimizers (COCO) methodology was adopted as the basis for the comparison. The results show that in low dimensional spaces, the old method of Nelder and Mead is still the most successful among those compared, while in spaces of higher dimensions, it is better to choose an algorithm based on quadratic modeling, such as NEWUOA or a quasi-Newton method. PMID:22779407
Optimization of reliability allocation strategies through use of genetic algorithms
Campbell, J.E.; Painton, L.A.
1996-08-01
This paper examines a novel optimization technique called genetic algorithms and its application to the optimization of reliability allocation strategies. Reliability allocation should occur in the initial stages of design, when the objective is to determine an optimal breakdown or allocation of reliability to certain components or subassemblies in order to meet system specifications. The reliability allocation optimization is applied to the design of a cluster tool, a highly complex piece of equipment used in semiconductor manufacturing. The problem formulation is presented, including decision variables, performance measures and constraints, and genetic algorithm parameters. Piecewise ``effort curves`` specifying the amount of effort required to achieve a certain level of reliability for each component of subassembly are defined. The genetic algorithm evolves or picks those combinations of ``effort`` or reliability levels for each component which optimize the objective of maximizing Mean Time Between Failures while staying within a budget. The results show that the genetic algorithm is very efficient at finding a set of robust solutions. A time history of the optimization is presented, along with histograms or the solution space fitness, MTBF, and cost for comparative purposes.
NASA Astrophysics Data System (ADS)
Rao, R. V.; Savsani, V. J.; Balic, J.
2012-12-01
An efficient optimization algorithm called teaching-learning-based optimization (TLBO) is proposed in this article to solve continuous unconstrained and constrained optimization problems. The proposed method is based on the effect of the influence of a teacher on the output of learners in a class. The basic philosophy of the method is explained in detail. The algorithm is tested on 25 different unconstrained benchmark functions and 35 constrained benchmark functions with different characteristics. For the constrained benchmark functions, TLBO is tested with different constraint handling techniques such as superiority of feasible solutions, self-adaptive penalty, ɛ-constraint, stochastic ranking and ensemble of constraints. The performance of the TLBO algorithm is compared with that of other optimization algorithms and the results show the better performance of the proposed algorithm.
Benchmarking derivative-free optimization algorithms.
More', J. J.; Wild, S. M.; Mathematics and Computer Science; Cornell Univ.
2009-01-01
We propose data profiles as a tool for analyzing the performance of derivative-free optimization solvers when there are constraints on the computational budget. We use performance and data profiles, together with a convergence test that measures the decrease in function value, to analyze the performance of three solvers on sets of smooth, noisy, and piecewise-smooth problems. Our results provide estimates for the performance difference between these solvers, and show that on these problems, the model-based solver tested performs better than the two direct search solvers tested.
Performance Trend of Different Algorithms for Structural Design Optimization
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.
1996-01-01
Nonlinear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Center, a project was initiated to assess performance of different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with the sequential unconstrained minimizations technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.
Comparative Evaluation of Different Optimization Algorithms for Structural Design Applications
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.
1996-01-01
Non-linear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Centre, a project was initiated to assess the performance of eight different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using the eight different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems, however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with Sequential Unconstrained Minimizations Technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.
A Novel, Real-Valued Genetic Algorithm for Optimizing Radar Absorbing Materials
NASA Technical Reports Server (NTRS)
Hall, John Michael
2004-01-01
A novel, real-valued Genetic Algorithm (GA) was designed and implemented to minimize the reflectivity and/or transmissivity of an arbitrary number of homogeneous, lossy dielectric or magnetic layers of arbitrary thickness positioned at either the center of an infinitely long rectangular waveguide, or adjacent to the perfectly conducting backplate of a semi-infinite, shorted-out rectangular waveguide. Evolutionary processes extract the optimal physioelectric constants falling within specified constraints which minimize reflection and/or transmission over the frequency band of interest. This GA extracted the unphysical dielectric and magnetic constants of three layers of fictitious material placed adjacent to the conducting backplate of a shorted-out waveguide such that the reflectivity of the configuration was 55 dB or less over the entire X-band. Examples of the optimization of realistic multi-layer absorbers are also presented. Although typical Genetic Algorithms require populations of many thousands in order to function properly and obtain correct results, verified correct results were obtained for all test cases using this GA with a population of only four.
Improved Clonal Selection Algorithm Combined with Ant Colony Optimization
NASA Astrophysics Data System (ADS)
Gao, Shangce; Wang, Wei; Dai, Hongwei; Li, Fangjia; Tang, Zheng
Both the clonal selection algorithm (CSA) and the ant colony optimization (ACO) are inspired by natural phenomena and are effective tools for solving complex problems. CSA can exploit and explore the solution space parallely and effectively. However, it can not use enough environment feedback information and thus has to do a large redundancy repeat during search. On the other hand, ACO is based on the concept of indirect cooperative foraging process via secreting pheromones. Its positive feedback ability is nice but its convergence speed is slow because of the little initial pheromones. In this paper, we propose a pheromone-linker to combine these two algorithms. The proposed hybrid clonal selection and ant colony optimization (CSA-ACO) reasonably utilizes the superiorities of both algorithms and also overcomes their inherent disadvantages. Simulation results based on the traveling salesman problems have demonstrated the merit of the proposed algorithm over some traditional techniques.
Optimized Algorithms for Prediction within Robotic Tele-Operative Interfaces
NASA Technical Reports Server (NTRS)
Martin, Rodney A.; Wheeler, Kevin R.; SunSpiral, Vytas; Allan, Mark B.
2006-01-01
Robonaut, the humanoid robot developed at the Dexterous Robotics Laboratory at NASA Johnson Space Center serves as a testbed for human-robot collaboration research and development efforts. One of the primary efforts investigates how adjustable autonomy can provide for a safe and more effective completion of manipulation-based tasks. A predictive algorithm developed in previous work was deployed as part of a software interface that can be used for long-distance tele-operation. In this paper we provide the details of this algorithm, how to improve upon the methods via optimization, and also present viable alternatives to the original algorithmic approach. We show that all of the algorithms presented can be optimized to meet the specifications of the metrics shown as being useful for measuring the performance of the predictive methods. Judicious feature selection also plays a significant role in the conclusions drawn.
Jin, Junchen
2016-01-01
The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality. PMID:27436998
Wang, Jiaxi; Lin, Boliang; Jin, Junchen
2016-01-01
The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality. PMID:27436998
Study of genetic direct search algorithms for function optimization
NASA Technical Reports Server (NTRS)
Zeigler, B. P.
1974-01-01
The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.
SamACO: variable sampling ant colony optimization algorithm for continuous optimization.
Hu, Xiao-Min; Zhang, Jun; Chung, Henry Shu-Hung; Li, Yun; Liu, Ou
2010-12-01
An ant colony optimization (ACO) algorithm offers algorithmic techniques for optimization by simulating the foraging behavior of a group of ants to perform incremental solution constructions and to realize a pheromone laying-and-following mechanism. Although ACO is first designed for solving discrete (combinatorial) optimization problems, the ACO procedure is also applicable to continuous optimization. This paper presents a new way of extending ACO to solving continuous optimization problems by focusing on continuous variable sampling as a key to transforming ACO from discrete optimization to continuous optimization. The proposed SamACO algorithm consists of three major steps, i.e., the generation of candidate variable values for selection, the ants' solution construction, and the pheromone update process. The distinct characteristics of SamACO are the cooperation of a novel sampling method for discretizing the continuous search space and an efficient incremental solution construction method based on the sampled values. The performance of SamACO is tested using continuous numerical functions with unimodal and multimodal features. Compared with some state-of-the-art algorithms, including traditional ant-based algorithms and representative computational intelligence algorithms for continuous optimization, the performance of SamACO is seen competitive and promising. PMID:20371409
A limited-memory algorithm for bound-constrained optimization
Byrd, R.H.; Peihuang, L.; Nocedal, J. |
1996-03-01
An algorithm for solving large nonlinear optimization problems with simple bounds is described. It is based on the gradient projection method and uses a limited-memory BFGS matrix to approximate the Hessian of the objective function. We show how to take advantage of the form of the limited-memory approximation to implement the algorithm efficiently. The results of numerical tests on a set of large problems are reported.
Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence
Pelikan, M.; Goldberg, D.E.; Cantu-Paz, E.
2000-01-19
This paper analyzes convergence properties of the Bayesian optimization algorithm (BOA). It settles the BOA into the framework of problem decomposition used frequently in order to model and understand the behavior of simple genetic algorithms. The growth of the population size and the number of generations until convergence with respect to the size of a problem is theoretically analyzed. The theoretical results are supported by a number of experiments.
Optimal control of FES-assisted standing up in paraplegia using genetic algorithms.
Davoodi, R; Andrews, B J
1999-11-01
A practical system for Functional Electrical Stimulation (FES) assisted standing up in paraplegia should involve only a minimum of manual set up and tuning. An improved tuning method, using a genetic algorithm (GA) is proposed and demonstrated using computer simulation. Specifically, the GA adjusts the parameters of fuzzy logic (FL) and gain-scheduling proportional integral derivative (GS-PID) controllers that electrically stimulate the hip and knee musculature during the sit-stand maneuver. These new GA designed controllers were found to be effective in coordinating volitional and FES control according to formulated criteria. The latter was based on the deviations from a desired trajectory of the knee and hip joints and the magnitude of the voluntary upper body forces. The magnitude of the average arm forces were slightly higher when compared with the open-loop maximal stimulation of the hip and knee musculature; however, the terminal knee velocities were significantly reduced to less than 10 degrees /s. For practical implementation, the number of trials required to optimize the FL and GS-PID controllers can be reduced by a proposed pre-training procedure using a computer model scaled to the individual. The GA designed controllers remain near optimal provided the model-subject mismatch is small. PMID:10699563
Genetic Algorithm Optimizes Q-LAW Control Parameters
NASA Technical Reports Server (NTRS)
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
Wang, Peng; Zhu, Zhouquan; Huang, Shuai
2013-01-01
This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions. PMID:24385879
Zhu, Zhouquan
2013-01-01
This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions. PMID:24385879
Concurrent genetic algorithms for optimization of large structures
Adeli, H.; Cheng, N. )
1994-07-01
In a recent article, the writers presented an augmented Lagrangian genetic algorithm for optimization of structures. The optimization of large structures such as high-rise building structures and space stations with several hundred members by the hybrid genetic algorithm requires the creation of thousands of strings in the population and the corresponding large number of structural analyses. In this paper, the writers extend their previous work by presenting two concurrent augmented Lagrangian genetic algorithms for optimization of large structures utilizing the multiprocessing capabilities of high-performance computers such as the Cray Y-MP 8/864 supercomputer. Efficiency of the algorithms has been investigated by applying them to four space structures including two high-rise building structures. It is observed that the performance of both algorithms improves with the size of the structure, making them particularly suitable for optimization of large structures. A maximum parallel processing speed of 7.7 is achieved for a 35-story tower (with 1,262 elements and 936 degrees of freedom), using eight processors. 9 refs.
A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations
NASA Technical Reports Server (NTRS)
Venter, Gerhard; Sobieszczanski-Sobieski, Jaroslaw
2005-01-01
A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.
Shape Optimization of Rubber Bushing Using Differential Evolution Algorithm
2014-01-01
The objective of this study is to design rubber bushing at desired level of stiffness characteristics in order to achieve the ride quality of the vehicle. A differential evolution algorithm based approach is developed to optimize the rubber bushing through integrating a finite element code running in batch mode to compute the objective function values for each generation. Two case studies were given to illustrate the application of proposed approach. Optimum shape parameters of 2D bushing model were determined by shape optimization using differential evolution algorithm. PMID:25276848
Optimization of multilayer cylindrical cloaks using genetic algorithms and NEWUOA
NASA Astrophysics Data System (ADS)
Sakr, Ahmed A.; Abdelmageed, Alaa K.
2016-06-01
The problem of minimizing the scattering from a multilayer cylindrical cloak is studied. Both TM and TE polarizations are considered. A two-stage optimization procedure using genetic algorithms and NEWUOA (new unconstrained optimization algorithm) is adopted for realizing the cloak using homogeneous isotropic layers. The layers are arranged such that they follow a repeated pattern of alternating DPS and DNG materials. The results show that a good level of invisibility can be realized using a reasonable number of layers. Maintaining the cloak performance over a finite range of frequencies without sacrificing the level of invisibility is achieved.
An algorithm for the empirical optimization of antenna arrays
NASA Technical Reports Server (NTRS)
Blank, S.
1983-01-01
A numerical technique is presented to optimize the performance of arbitrary antenna arrays under realistic conditions. An experimental-computational algorithm is formulated in which n-dimensional minimization methods are applied to measured data obtained from the antenna array. A numerical update formula is used to induce partial derivative information without requiring special perturbations of the array parameters. The algorithm provides a new design for the antenna array, and the method proceeds in an iterative fashion. Test case results are presented showing the effectiveness of the algorithm.
A constrained optimization algorithm based on the simplex search method
NASA Astrophysics Data System (ADS)
Mehta, Vivek Kumar; Dasgupta, Bhaskar
2012-05-01
In this article, a robust method is presented for handling constraints with the Nelder and Mead simplex search method, which is a direct search algorithm for multidimensional unconstrained optimization. The proposed method is free from the limitations of previous attempts that demand the initial simplex to be feasible or a projection of infeasible points to the nonlinear constraint boundaries. The method is tested on several benchmark problems and the results are compared with various evolutionary algorithms available in the literature. The proposed method is found to be competitive with respect to the existing algorithms in terms of effectiveness and efficiency.
An efficient cuckoo search algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Ong, Pauline; Zainuddin, Zarita
2013-04-01
Cuckoo search algorithm which reproduces the breeding strategy of the best known brood parasitic bird, the cuckoos has demonstrated its superiority in obtaining the global solution for numerical optimization problems. However, the involvement of fixed step approach in its exploration and exploitation behavior might slow down the search process considerably. In this regards, an improved cuckoo search algorithm with adaptive step size adjustment is introduced and its feasibility on a variety of benchmarks is validated. The obtained results show that the proposed scheme outperforms the standard cuckoo search algorithm in terms of convergence characteristic while preserving the fascinating features of the original method.
Optimal classification of standoff bioaerosol measurements using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Nyhavn, Ragnhild; Moen, Hans J. F.; Farsund, Øystein; Rustad, Gunnar
2011-05-01
Early warning systems based on standoff detection of biological aerosols require real-time signal processing of a large quantity of high-dimensional data, challenging the systems efficiency in terms of both computational complexity and classification accuracy. Hence, optimal feature selection is essential in forming a stable and efficient classification system. This involves finding optimal signal processing parameters, characteristic spectral frequencies and other data transformations in large magnitude variable space, stating the need for an efficient and smart search algorithm. Evolutionary algorithms are population-based optimization methods inspired by Darwinian evolutionary theory. These methods focus on application of selection, mutation and recombination on a population of competing solutions and optimize this set by evolving the population of solutions for each generation. We have employed genetic algorithms in the search for optimal feature selection and signal processing parameters for classification of biological agents. The experimental data were achieved with a spectrally resolved lidar based on ultraviolet laser induced fluorescence, and included several releases of 5 common simulants. The genetic algorithm outperform benchmark methods involving analytic, sequential and random methods like support vector machines, Fisher's linear discriminant and principal component analysis, with significantly improved classification accuracy compared to the best classical method.
Optimized approximation algorithm in neural networks without overfitting.
Liu, Yinyin; Starzyk, Janusz A; Zhu, Zhen
2008-06-01
In this paper, an optimized approximation algorithm (OAA) is proposed to address the overfitting problem in function approximation using neural networks (NNs). The optimized approximation algorithm avoids overfitting by means of a novel and effective stopping criterion based on the estimation of the signal-to-noise-ratio figure (SNRF). Using SNRF, which checks the goodness-of-fit in the approximation, overfitting can be automatically detected from the training error only without use of a separate validation set. The algorithm has been applied to problems of optimizing the number of hidden neurons in a multilayer perceptron (MLP) and optimizing the number of learning epochs in MLP's backpropagation training using both synthetic and benchmark data sets. The OAA algorithm can also be utilized in the optimization of other parameters of NNs. In addition, it can be applied to the problem of function approximation using any kind of basis functions, or to the problem of learning model selection when overfitting needs to be considered. PMID:18541499
Chen, Tinggui; Xiao, Renbin
2014-01-01
Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023
Chen, Tinggui; Xiao, Renbin
2014-01-01
Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023
Optimization algorithm for the generation of ONCV pseudopotentials
NASA Astrophysics Data System (ADS)
Schlipf, Martin; Gygi, François
2015-11-01
We present an optimization algorithm to construct pseudopotentials and use it to generate a set of Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials for elements up to Z = 83 (Bi) (excluding Lanthanides). We introduce a quality function that assesses the agreement of a pseudopotential calculation with all-electron FLAPW results, and the necessary plane-wave energy cutoff. This quality function allows us to use a Nelder-Mead optimization algorithm on a training set of materials to optimize the input parameters of the pseudopotential construction for most of the periodic table. We control the accuracy of the resulting pseudopotentials on a test set of materials independent of the training set. We find that the automatically constructed pseudopotentials
Optimization Algorithm for the Generation of ONCV Pseudopotentials
NASA Astrophysics Data System (ADS)
Schlipf, Martin; Gygi, Francois
2015-03-01
We present an optimization algorithm to construct pseudopotentials and use it to generate a set of Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials for elements up to Z=83 (Bi) (excluding Lanthanides). We introduce a quality function that assesses the agreement of a pseudopotential calculation with all-electron FLAPW results, and the necessary plane-wave energy cutoff. This quality function allows us to use a Nelder-Mead optimization algorithm on a training set of materials to optimize the input parameters of the pseudopotential construction for most of the periodic table. We control the accuracy of the resulting pseudopotentials on a test set of materials independent of the training set. We find that the automatically constructed pseudopotentials provide a good agreement with the all-electron results obtained using the FLEUR code with a plane-wave energy cutoff of approximately 60 Ry. Supported by DOE/BES Grant DE-SC0008938.
Wavelet phase estimation using ant colony optimization algorithm
NASA Astrophysics Data System (ADS)
Wang, Shangxu; Yuan, Sanyi; Ma, Ming; Zhang, Rui; Luo, Chunmei
2015-11-01
Eliminating seismic wavelet is important in seismic high-resolution processing. However, artifacts may arise in seismic interpretation when the wavelet phase is inaccurately estimated. Therefore, we propose a frequency-dependent wavelet phase estimation method based on the ant colony optimization (ACO) algorithm with global optimization capacity. The wavelet phase can be optimized with the ACO algorithm by fitting nearby-well seismic traces with well-log data. Our proposed method can rapidly produce a frequency-dependent wavelet phase and optimize the seismic-to-well tie, particularly for weak signals. Synthetic examples demonstrate the effectiveness of the proposed ACO-based wavelet phase estimation method, even in the presence of a colored noise. Real data example illustrates that seismic deconvolution using an optimum mixed-phase wavelet can provide more information than that using an optimum constant-phase wavelet.
Optimization of phononic filters via genetic algorithms
NASA Astrophysics Data System (ADS)
Hussein, M. I.; El-Beltagy, M. A.
2007-12-01
A phononic crystal is commonly characterized by its dispersive frequency spectrum. With appropriate spatial distribution of the constituent material phases, spectral stop bands could be generated. Moreover, it is possible to control the number, the width, and the location of these bands within a frequency range of interest. This study aims at exploring the relationship between unit cell configuration and frequency spectrum characteristics. Focusing on 1D layered phononic crystals, and longitudinal wave propagation in the direction normal to the layering, the unit cell features of interest are the number of layers and the material phase and relative thickness of each layer. An evolutionary search for binary- and ternary-phase cell designs exhibiting a series of stop bands at predetermined frequencies is conducted. A specially formulated representation and set of genetic operators that break the symmetries in the problem are developed for this purpose. An array of optimal designs for a range of ratios in Young's modulus and density are obtained and the corresponding objective values (the degrees to which the resulting bands match the predetermined targets) are examined as a function of these ratios. It is shown that a rather complex filtering objective could be met with a high degree of success. Structures composed of the designed phononic crystals are excellent candidates for use in a wide range of applications including sound and vibration filtering.
Control optimization, stabilization and computer algorithms for aircraft applications
NASA Technical Reports Server (NTRS)
1975-01-01
Research related to reliable aircraft design is summarized. Topics discussed include systems reliability optimization, failure detection algorithms, analysis of nonlinear filters, design of compensators incorporating time delays, digital compensator design, estimation for systems with echoes, low-order compensator design, descent-phase controller for 4-D navigation, infinite dimensional mathematical programming problems and optimal control problems with constraints, robust compensator design, numerical methods for the Lyapunov equations, and perturbation methods in linear filtering and control.
Optimal design of plasmonic waveguide using multiobjective genetic algorithm
NASA Astrophysics Data System (ADS)
Jung, Jaehoon
2016-01-01
An approach for multiobjective optimal design of a plasmonic waveguide is presented. We use a multiobjective extension of a genetic algorithm to find the Pareto-optimal geometries. The design variables are the geometrical parameters of the waveguide. The objective functions are chosen as the figure of merit defined as the ratio between the propagation distance and effective mode size and the normalized coupling length between adjacent waveguides at the telecom wavelength of 1550 nm.
Fully efficient time-parallelized quantum optimal control algorithm
NASA Astrophysics Data System (ADS)
Riahi, M. K.; Salomon, J.; Glaser, S. J.; Sugny, D.
2016-04-01
We present a time-parallelization method that enables one to accelerate the computation of quantum optimal control algorithms. We show that this approach is approximately fully efficient when based on a gradient method as optimization solver: the computational time is approximately divided by the number of available processors. The control of spin systems, molecular orientation, and Bose-Einstein condensates are used as illustrative examples to highlight the wide range of applications of this numerical scheme.