Genetic Algorithms and Local Search
NASA Technical Reports Server (NTRS)
Whitley, Darrell
1996-01-01
The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.
Efficient Algorithm for Rectangular Spiral Search
NASA Technical Reports Server (NTRS)
Brugarolas, Paul; Breckenridge, William
2008-01-01
An algorithm generates grid coordinates for a computationally efficient spiral search pattern covering an uncertain rectangular area spanned by a coordinate grid. The algorithm does not require that the grid be fixed; the algorithm can search indefinitely, expanding the grid and spiral, as needed, until the target of the search is found. The algorithm also does not require memory of coordinates of previous points on the spiral to generate the current point on the spiral.
Evolutionary algorithms, simulated annealing, and Tabu search: a comparative study
NASA Astrophysics Data System (ADS)
Youssef, Habib; Sait, Sadiq M.; Adiche, Hakim
1998-10-01
Evolutionary algorithms, simulated annealing (SA), and Tabu Search (TS) are general iterative algorithms for combinatorial optimization. The term evolutionary algorithm is used to refer to any probabilistic algorithm whose design is inspired by evolutionary mechanisms found in biological species. Most widely known algorithms of this category are Genetic Algorithms (GA). GA, SA, and TS have been found to be very effective and robust in solving numerous problems from a wide range of application domains.Furthermore, they are even suitable for ill-posed problems where some of the parameters are not known before hand. These properties are lacking in all traditional optimization techniques. In this paper we perform a comparative study among GA, SA, and TS. These algorithms have many similarities, but they also possess distinctive features, mainly in their strategies for searching the solution state space. the three heuristics are applied on the same optimization problem and compared with respect to (1) quality of the best solution identified by each heuristic, (2) progress of the search from initial solution(s) until stopping criteria are met, (3) the progress of the cost of the best solution as a function of time, and (4) the number of solutions found at successive intervals of the cost function. The benchmark problem was is the floorplanning of very large scale integrated circuits. This is a hard multi-criteria optimization problem. Fuzzy logic is used to combine all objective criteria into a single fuzzy evaluation function, which is then used to rate competing solutions.
NASA Astrophysics Data System (ADS)
Igeta, Hideki; Hasegawa, Mikio
Chaotic dynamics have been effectively applied to improve various heuristic algorithms for combinatorial optimization problems in many studies. Currently, the most used chaotic optimization scheme is to drive heuristic solution search algorithms applicable to large-scale problems by chaotic neurodynamics including the tabu effect of the tabu search. Alternatively, meta-heuristic algorithms are used for combinatorial optimization by combining a neighboring solution search algorithm, such as tabu, gradient, or other search method, with a global search algorithm, such as genetic algorithms (GA), ant colony optimization (ACO), or others. In these hybrid approaches, the ACO has effectively optimized the solution of many benchmark problems in the quadratic assignment problem library. In this paper, we propose a novel hybrid method that combines the effective chaotic search algorithm that has better performance than the tabu search and global search algorithms such as ACO and GA. Our results show that the proposed chaotic hybrid algorithm has better performance than the conventional chaotic search and conventional hybrid algorithms. In addition, we show that chaotic search algorithm combined with ACO has better performance than when combined with GA.
Exactness of the original Grover search algorithm
Diao Zijian
2010-10-15
It is well-known that when searching one out of four, the original Grover's search algorithm is exact; that is, it succeeds with certainty. It is natural to ask the inverse question: If we are not searching one out of four, is Grover's algorithm definitely not exact? In this article we give a complete answer to this question through some rationality results of trigonometric functions.
Spatial search algorithms on Hanoi networks
NASA Astrophysics Data System (ADS)
Marquezino, Franklin de Lima; Portugal, Renato; Boettcher, Stefan
2013-01-01
We use the abstract search algorithm and its extension due to Tulsi to analyze a spatial quantum search algorithm that finds a marked vertex in Hanoi networks of degree 4 faster than classical algorithms. We also analyze the effect of using non-Groverian coins that take advantage of the small-world structure of the Hanoi networks. We obtain the scaling of the total cost of the algorithm as a function of the number of vertices. We show that Tulsi's technique plays an important role to speed up the searching algorithm. We can improve the algorithm's efficiency by choosing a non-Groverian coin if we do not implement Tulsi's method. Our conclusions are based on numerical implementations.
Searching Algorithm Using Bayesian Updates
ERIC Educational Resources Information Center
Caudle, Kyle
2010-01-01
In late October 1967, the USS Scorpion was lost at sea, somewhere between the Azores and Norfolk Virginia. Dr. Craven of the U.S. Navy's Special Projects Division is credited with using Bayesian Search Theory to locate the submarine. Bayesian Search Theory is a straightforward and interesting application of Bayes' theorem which involves searching…
Genetic algorithms as global random search methods
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that that schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solution and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
Genetic algorithms as global random search methods
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
Voltage and Reactive Power Control by Integration of Genetic Algorithm and Tabu Search
NASA Astrophysics Data System (ADS)
Aoki, Hidenori; Yamamoto, Kensei; Mizutani, Yoshibumi
This paper presents on the result of voltage and reactive power control by use of the proposed method. The feature of proposed method is integration of genetic algorithm (GA) and tabu search (TS). This method obtains an excellent fitness at shorter calculation time than GA considering conventional control process. The effectiveness of this method is shown by a practicable 15-bus system.
Firefly Algorithm for Structural Search.
Avendaño-Franco, Guillermo; Romero, Aldo H
2016-07-12
The problem of computational structure prediction of materials is approached using the firefly (FF) algorithm. Starting from the chemical composition and optionally using prior knowledge of similar structures, the FF method is able to predict not only known stable structures but also a variety of novel competitive metastable structures. This article focuses on the strengths and limitations of the algorithm as a multimodal global searcher. The algorithm has been implemented in software package PyChemia ( https://github.com/MaterialsDiscovery/PyChemia ), an open source python library for materials analysis. We present applications of the method to van der Waals clusters and crystal structures. The FF method is shown to be competitive when compared to other population-based global searchers. PMID:27232694
Algorithm to search for genomic rearrangements
NASA Astrophysics Data System (ADS)
Nałecz-Charkiewicz, Katarzyna; Nowak, Robert
2013-10-01
The aim of this article is to discuss the issue of comparing nucleotide sequences in order to detect chromosomal rearrangements (for example, in the study of genomes of two cucumber varieties, Polish and Chinese). Two basic algorithms for detecting rearrangements has been described: Smith-Waterman algorithm, as well as a new method of searching genetic markers in combination with Knuth-Morris-Pratt algorithm. The computer program in client-server architecture was developed. The algorithms properties were examined on genomes Escherichia coli and Arabidopsis thaliana genomes, and are prepared to compare two cucumber varieties, Polish and Chinese. The results are promising and further works are planned.
Adaptive Cuckoo Search Algorithm for Unconstrained Optimization
2014-01-01
Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971
Adaptive cuckoo search algorithm for unconstrained optimization.
Ong, Pauline
2014-01-01
Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971
Efficiency of tabu-search-based conformational search algorithms.
Grebner, Christoph; Becker, Johannes; Stepanenko, Svetlana; Engels, Bernd
2011-07-30
Efficient conformational search or sampling approaches play an integral role in molecular modeling, leading to a strong demand for even faster and more reliable conformer search algorithms. This article compares the efficiency of a molecular dynamics method, a simulated annealing method, and the basin hopping (BH) approach (which are widely used in this field) with a previously suggested tabu-search-based approach called gradient only tabu search (GOTS). The study emphasizes the success of the GOTS procedure and, more importantly, shows that an approach which combines BH and GOTS outperforms the single methods in efficiency and speed. We also show that ring structures built by a hydrogen bond are useful as starting points for conformational search investigations of peptides and organic ligands with biological activities, especially in structures that contain multiple rings. PMID:21541959
Global search algorithm for optimal control
NASA Technical Reports Server (NTRS)
Brocker, D. H.; Kavanaugh, W. P.; Stewart, E. C.
1970-01-01
Random-search algorithm employs local and global properties to solve two-point boundary value problem in Pontryagin maximum principle for either fixed or variable end-time problems. Mixed boundary value problem is transformed to an initial value problem. Mapping between initial and terminal values utilizes hybrid computer.
A Cuckoo Search Algorithm for Multimodal Optimization
2014-01-01
Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration. PMID:25147850
A cuckoo search algorithm for multimodal optimization.
Cuevas, Erik; Reyna-Orta, Adolfo
2014-01-01
Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration. PMID:25147850
Improving Search Algorithms by Using Intelligent Coordinates
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Tumer, Kagan; Bandari, Esfandiar
2004-01-01
We consider algorithms that maximize a global function G in a distributed manner, using a different adaptive computational agent to set each variable of the underlying space. Each agent eta is self-interested; it sets its variable to maximize its own function g (sub eta). Three factors govern such a distributed algorithm's performance, related to exploration/exploitation, game theory, and machine learning. We demonstrate how to exploit alI three factors by modifying a search algorithm's exploration stage: rather than random exploration, each coordinate of the search space is now controlled by a separate machine-learning-based player engaged in a noncooperative game. Experiments demonstrate that this modification improves simulated annealing (SA) by up to an order of magnitude for bin packing and for a model of an economic process run over an underlying network. These experiments also reveal interesting small-world phenomena.
A random search algorithm for laboratory computers
NASA Technical Reports Server (NTRS)
Curry, R. E.
1975-01-01
The small laboratory computer is ideal for experimental control and data acquisition. Postexperimental data processing is often performed on large computers because of the availability of sophisticated programs, but costs and data compatibility are negative factors. Parameter optimization can be accomplished on the small computer, offering ease of programming, data compatibility, and low cost. A previously proposed random-search algorithm ('random creep') was found to be very slow in convergence. A method is proposed (the 'random leap' algorithm) which starts in a global search mode and automatically adjusts step size to speed convergence. A FORTRAN executive program for the random-leap algorithm is presented which calls a user-supplied function subroutine. An example of a function subroutine is given which calculates maximum-likelihood estimates of receiver operating-characteristic parameters from binary response data. Other applications in parameter estimation, generalized least squares, and matrix inversion are discussed.
A Test Scheduling Algorithm Based on Two-Stage GA
NASA Astrophysics Data System (ADS)
Yu, Y.; Peng, X. Y.; Peng, Y.
2006-10-01
In this paper, we present a new algorithm to co-optimize the core wrapper design and the SOC test scheduling. The SOC test scheduling problem is first formulated into a twodimension floorplan problem and a sequence pair architecture is used to represent it. Then we propose a two-stage GA (Genetic Algorithm) to solve the SOC test scheduling problem. Experiments on ITC'02 benchmark show that our algorithm can effectively reduce test time so as to decrease SOC test cost.
Generalized Jaynes-Cummings model as a quantum search algorithm
Romanelli, A.
2009-07-15
We propose a continuous time quantum search algorithm using a generalization of the Jaynes-Cummings model. In this model the states of the atom are the elements among which the algorithm realizes the search, exciting resonances between the initial and the searched states. This algorithm behaves like Grover's algorithm; the optimal search time is proportional to the square root of the size of the search set and the probability to find the searched state oscillates periodically in time. In this frame, it is possible to reinterpret the usual Jaynes-Cummings model as a trivial case of the quantum search algorithm.
THE QUASIPERIODIC AUTOMATED TRANSIT SEARCH ALGORITHM
Carter, Joshua A.; Agol, Eric
2013-03-10
We present a new algorithm for detecting transiting extrasolar planets in time-series photometry. The Quasiperiodic Automated Transit Search (QATS) algorithm relaxes the usual assumption of strictly periodic transits by permitting a variable, but bounded, interval between successive transits. We show that this method is capable of detecting transiting planets with significant transit timing variations without any loss of significance-{sup s}mearing{sup -}as would be incurred with traditional algorithms; however, this is at the cost of a slightly increased stochastic background. The approximate times of transit are standard products of the QATS search. Despite the increased flexibility, we show that QATS has a run-time complexity that is comparable to traditional search codes and is comparably easy to implement. QATS is applicable to data having a nearly uninterrupted, uniform cadence and is therefore well suited to the modern class of space-based transit searches (e.g., Kepler, CoRoT). Applications of QATS include transiting planets in dynamically active multi-planet systems and transiting planets in stellar binary systems.
Backtracking search algorithm for effective and efficient surface wave analysis
NASA Astrophysics Data System (ADS)
Song, Xianhai; Zhang, Xueqiang; Zhao, Sutao; Li, Lei
2015-03-01
Surface wave dispersion analysis is widely used in geophysics to infer near-surface shear (S)-wave velocity profiles for a wide variety of applications. However, inversion of surface wave data is challenging for most local-search methods due to its high nonlinearity and to its multimodality. In this work, we proposed and implemented a new Rayleigh wave dispersion curve inversion scheme based on backtracking search algorithm (BSA), a novel and powerful evolutionary algorithm (EA). Development of BSA is motivated by studies that attempt to develop an algorithm that possesses desirable features for different optimization problems which include the ability to reach a problem's global minimum more quickly and successfully with a small number of control parameters and low computational cost, as well as robustness and ease of application to different problem models. The proposed inverse procedure is applied to nonlinear inversion of fundamental-mode Rayleigh wave dispersion curves for near-surface S-wave velocity profiles. To evaluate calculation efficiency and effectiveness of BSA, four noise-free and four noisy synthetic data sets are firstly inverted. Then, the performance of BSA is compared with that of genetic algorithms (GA) by two noise-free synthetic data sets. Finally, a real-world example from a waste disposal site in NE Italy is inverted to examine the applicability and robustness of the proposed approach on real surface wave data. Furthermore, the performance of BSA is compared against that of GA by real data to further evaluate scores of BSA. Results from both synthetic and actual data demonstrate that BSA applied to nonlinear inversion of surface wave data should be considered good not only in terms of the accuracy but also in terms of the convergence speed. The great advantages of BSA are that the algorithm is simple, robust and easy to implement. Also there are fewer control parameters to tune.
NASA Astrophysics Data System (ADS)
Yamamoto, Kensei; Aoki, Hidenori; Naoi, Kenji; Mizutani, Yoshibumi
This paper presents the result of executing the conventional genetic algorithm (GA) and a new method to the voltage and reactive power control (VQC). The conventional GA can give the control process and improve the fitness with the practical control times. And, the method to cancel the limited deviation as early as possible is implemented. Moreover, the method to reduce the control times to the fitness as much as possible is proposed. The proposed method is integrated the tabu search (TS) into the conventional GA. The proposed method generates next generation’s individual with the crossover of the conventional GA and the neighborhood search of the TS. Therefore, the proposed method executes an effective search. As a result, the proposed method can obtain better fitness than the conventional GA in the same calculation times. The effectiveness of the proposed method is demonstrated by practical 15-bus and 118-bus systems.
A novel complex valued cuckoo search algorithm.
Zhou, Yongquan; Zheng, Hongqing
2013-01-01
To expand the information of nest individuals, the idea of complex-valued encoding is used in cuckoo search (PCS); the gene of individuals is denoted by plurality, so a diploid swarm is structured by a sequence plurality. The value of independent variables for objective function is determined by modules, and a sign of them is determined by angles. The position of nest is divided into two parts, namely, real part gene and imaginary gene. The updating relation of complex-valued swarm is presented. Six typical functions are tested. The results are compared with cuckoo search based on real-valued encoding; the usefulness of the proposed algorithm is verified. PMID:23766699
A Novel Complex Valued Cuckoo Search Algorithm
Zhou, Yongquan; Zheng, Hongqing
2013-01-01
To expand the information of nest individuals, the idea of complex-valued encoding is used in cuckoo search (PCS); the gene of individuals is denoted by plurality, so a diploid swarm is structured by a sequence plurality. The value of independent variables for objective function is determined by modules, and a sign of them is determined by angles. The position of nest is divided into two parts, namely, real part gene and imaginary gene. The updating relation of complex-valued swarm is presented. Six typical functions are tested. The results are compared with cuckoo search based on real-valued encoding; the usefulness of the proposed algorithm is verified. PMID:23766699
Transitionless driving on adiabatic search algorithm
Oh, Sangchul; Kais, Sabre
2014-12-14
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Transitionless driving on adiabatic search algorithm
NASA Astrophysics Data System (ADS)
Oh, Sangchul; Kais, Sabre
2014-12-01
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Transitionless driving on adiabatic search algorithm.
Oh, Sangchul; Kais, Sabre
2014-12-14
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics. PMID:25494733
Satellite mission scheduling algorithm based on GA
NASA Astrophysics Data System (ADS)
Sun, Baolin; Mao, Lifei; Wang, Wenxiang; Xie, Xing; Qin, Qianqing
2007-11-01
The Satellite Mission Scheduling problem (SMS) involves scheduling tasks to be performed by a satellite, where new task requests can arrive at any time, non-deterministically, and must be scheduled in real-time. This paper describes a new Satellite Mission Scheduling problem based on Genetic Algorithm (SMSGA). In this paper, it investigates algorithmic approaches for determining an optimal or near-optimal sequence of tasks, allocated to a satellite payload over time, with dynamic tasking considerations. The simulation results show that the proposed approach is effective and efficient in applications to the real problems.
Easy and hard testbeds for real-time search algorithms
Koenig, S.; Simmons, R.G.
1996-12-31
Although researchers have studied which factors influence the behavior of traditional search algorithms, currently not much is known about how domain properties influence the performance of real-time search algorithms. In this paper we demonstrate, both theoretically and experimentally, that Eulerian state spaces (a super set of undirected state spaces) are very easy for some existing real-time search algorithms to solve: even real-time search algorithms that can be intractable, in general, are efficient for Eulerian state spaces. Because traditional real-time search testbeds (such as the eight puzzle and gridworlds) are Eulerian, they cannot be used to distinguish between efficient and inefficient real-time search algorithms. It follows that one has to use non-Eulerian domains to demonstrate the general superiority of a given algorithm. To this end, we present two classes of hard-to-search state spaces and demonstrate the performance of various real-time search algorithms on them.
A guided search genetic algorithm using mined rules for optimal affective product design
NASA Astrophysics Data System (ADS)
Fung, Chris K. Y.; Kwong, C. K.; Chan, Kit Yan; Jiang, H.
2014-08-01
Affective design is an important aspect of new product development, especially for consumer products, to achieve a competitive edge in the marketplace. It can help companies to develop new products that can better satisfy the emotional needs of customers. However, product designers usually encounter difficulties in determining the optimal settings of the design attributes for affective design. In this article, a novel guided search genetic algorithm (GA) approach is proposed to determine the optimal design attribute settings for affective design. The optimization model formulated based on the proposed approach applied constraints and guided search operators, which were formulated based on mined rules, to guide the GA search and to achieve desirable solutions. A case study on the affective design of mobile phones was conducted to illustrate the proposed approach and validate its effectiveness. Validation tests were conducted, and the results show that the guided search GA approach outperforms the GA approach without the guided search strategy in terms of GA convergence and computational time. In addition, the guided search optimization model is capable of improving GA to generate good solutions for affective design.
A parallel algorithm for random searches
NASA Astrophysics Data System (ADS)
Wosniack, M. E.; Raposo, E. P.; Viswanathan, G. M.; da Luz, M. G. E.
2015-11-01
We discuss a parallelization procedure for a two-dimensional random search of a single individual, a typical sequential process. To assure the same features of the sequential random search in the parallel version, we analyze the former spatial patterns of the encountered targets for different search strategies and densities of homogeneously distributed targets. We identify a lognormal tendency for the distribution of distances between consecutively detected targets. Then, by assigning the distinct mean and standard deviation of this distribution for each corresponding configuration in the parallel simulations (constituted by parallel random walkers), we are able to recover important statistical properties, e.g., the target detection efficiency, of the original problem. The proposed parallel approach presents a speedup of nearly one order of magnitude compared with the sequential implementation. This algorithm can be easily adapted to different instances, as searches in three dimensions. Its possible range of applicability covers problems in areas as diverse as automated computer searchers in high-capacity databases and animal foraging.
Differential Search Algorithm Based Edge Detection
NASA Astrophysics Data System (ADS)
Gunen, M. A.; Civicioglu, P.; Beşdok, E.
2016-06-01
In this paper, a new method has been presented for the extraction of edge information by using Differential Search Optimization Algorithm. The proposed method is based on using a new heuristic image thresholding method for edge detection. The success of the proposed method has been examined on fusion of two remote sensed images. The applicability of the proposed method on edge detection and image fusion problems have been analysed in detail and the empirical results exposed that the proposed method is useful for solving the mentioned problems.
Nonparametric algorithms for the search of signals
NASA Technical Reports Server (NTRS)
Myshenkova, T. S.
1978-01-01
Two algorithms for the search of signals in noise are constructed. Two independent measurable properties of a discreet time-dependent stochastic process F are described. The functions A sub K and B sub K fully satisfy conditions for the application of a test based on Spearman's rank correlation coefficient. A statistic to which the one-sided signal test can be applied is constructed under sufficiently natural assumptions about the noise process. The constructed statistics are simplified. Processing results from calculations of statistics constructed for concrete processes are presented.
A comparison of heuristic search algorithms for molecular docking.
Westhead, D R; Clark, D E; Murray, C W
1997-05-01
This paper describes the implementation and comparison of four heuristic search algorithms (genetic algorithm, evolutionary programming, simulated annealing and tabu search) and a random search procedure for flexible molecular docking. To our knowledge, this is the first application of the tabu search algorithm in this area. The algorithms are compared using a recently described fast molecular recognition potential function and a diverse set of five protein-ligand systems. Statistical analysis of the results indicates that overall the genetic algorithm performs best in terms of the median energy of the solutions located. However, tabu search shows a better performance in terms of locating solutions close to the crystallographic ligand conformation. These results suggest that a hybrid search algorithm may give superior results to any of the algorithms alone. PMID:9263849
The mGA1.0: A common LISP implementation of a messy genetic algorithm
NASA Technical Reports Server (NTRS)
Goldberg, David E.; Kerzic, Travis
1990-01-01
Genetic algorithms (GAs) are finding increased application in difficult search, optimization, and machine learning problems in science and engineering. Increasing demands are being placed on algorithm performance, and the remaining challenges of genetic algorithm theory and practice are becoming increasingly unavoidable. Perhaps the most difficult of these challenges is the so-called linkage problem. Messy GAs were created to overcome the linkage problem of simple genetic algorithms by combining variable-length strings, gene expression, messy operators, and a nonhomogeneous phasing of evolutionary processing. Results on a number of difficult deceptive test functions are encouraging with the mGA always finding global optima in a polynomial number of function evaluations. Theoretical and empirical studies are continuing, and a first version of a messy GA is ready for testing by others. A Common LISP implementation called mGA1.0 is documented and related to the basic principles and operators developed by Goldberg et. al. (1989, 1990). Although the code was prepared with care, it is not a general-purpose code, only a research version. Important data structures and global variations are described. Thereafter brief function descriptions are given, and sample input data are presented together with sample program output. A source listing with comments is also included.
Study of a global search algorithm for optimal control.
NASA Technical Reports Server (NTRS)
Brocker, D. H.; Kavanaugh, W. P.; Stewart, E. C.
1967-01-01
Adaptive random search algorithm utilizing boundary cost-function hypersurfaces measurement to implement Pontryagin maximum principle, discussing hybrid computer use, iterative solution and convergence properties
NASA Astrophysics Data System (ADS)
Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie
2015-12-01
The serious information redundancy in hyperspectral images (HIs) cannot contribute to the data analysis accuracy, instead it require expensive computational resources. Consequently, to identify the most useful and valuable information from the HIs, thereby improve the accuracy of data analysis, this paper proposed a novel hyperspectral band selection method using the hybrid genetic algorithm and gravitational search algorithm (GA-GSA). In the proposed method, the GA-GSA is mapped to the binary space at first. Then, the accuracy of the support vector machine (SVM) classifier and the number of selected spectral bands are utilized to measure the discriminative capability of the band subset. Finally, the band subset with the smallest number of spectral bands as well as covers the most useful and valuable information is obtained. To verify the effectiveness of the proposed method, studies conducted on an AVIRIS image against two recently proposed state-of-the-art GSA variants are presented. The experimental results revealed the superiority of the proposed method and indicated that the method can indeed considerably reduce data storage costs and efficiently identify the band subset with stable and high classification precision.
Harmony Search Algorithm for Word Sense Disambiguation.
Abed, Saad Adnan; Tiun, Sabrina; Omar, Nazlia
2015-01-01
Word Sense Disambiguation (WSD) is the task of determining which sense of an ambiguous word (word with multiple meanings) is chosen in a particular use of that word, by considering its context. A sentence is considered ambiguous if it contains ambiguous word(s). Practically, any sentence that has been classified as ambiguous usually has multiple interpretations, but just one of them presents the correct interpretation. We propose an unsupervised method that exploits knowledge based approaches for word sense disambiguation using Harmony Search Algorithm (HSA) based on a Stanford dependencies generator (HSDG). The role of the dependency generator is to parse sentences to obtain their dependency relations. Whereas, the goal of using the HSA is to maximize the overall semantic similarity of the set of parsed words. HSA invokes a combination of semantic similarity and relatedness measurements, i.e., Jiang and Conrath (jcn) and an adapted Lesk algorithm, to perform the HSA fitness function. Our proposed method was experimented on benchmark datasets, which yielded results comparable to the state-of-the-art WSD methods. In order to evaluate the effectiveness of the dependency generator, we perform the same methodology without the parser, but with a window of words. The empirical results demonstrate that the proposed method is able to produce effective solutions for most instances of the datasets used. PMID:26422368
Harmony Search Algorithm for Word Sense Disambiguation
Abed, Saad Adnan; Tiun, Sabrina; Omar, Nazlia
2015-01-01
Word Sense Disambiguation (WSD) is the task of determining which sense of an ambiguous word (word with multiple meanings) is chosen in a particular use of that word, by considering its context. A sentence is considered ambiguous if it contains ambiguous word(s). Practically, any sentence that has been classified as ambiguous usually has multiple interpretations, but just one of them presents the correct interpretation. We propose an unsupervised method that exploits knowledge based approaches for word sense disambiguation using Harmony Search Algorithm (HSA) based on a Stanford dependencies generator (HSDG). The role of the dependency generator is to parse sentences to obtain their dependency relations. Whereas, the goal of using the HSA is to maximize the overall semantic similarity of the set of parsed words. HSA invokes a combination of semantic similarity and relatedness measurements, i.e., Jiang and Conrath (jcn) and an adapted Lesk algorithm, to perform the HSA fitness function. Our proposed method was experimented on benchmark datasets, which yielded results comparable to the state-of-the-art WSD methods. In order to evaluate the effectiveness of the dependency generator, we perform the same methodology without the parser, but with a window of words. The empirical results demonstrate that the proposed method is able to produce effective solutions for most instances of the datasets used. PMID:26422368
An efficient cuckoo search algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Ong, Pauline; Zainuddin, Zarita
2013-04-01
Cuckoo search algorithm which reproduces the breeding strategy of the best known brood parasitic bird, the cuckoos has demonstrated its superiority in obtaining the global solution for numerical optimization problems. However, the involvement of fixed step approach in its exploration and exploitation behavior might slow down the search process considerably. In this regards, an improved cuckoo search algorithm with adaptive step size adjustment is introduced and its feasibility on a variety of benchmarks is validated. The obtained results show that the proposed scheme outperforms the standard cuckoo search algorithm in terms of convergence characteristic while preserving the fascinating features of the original method.
Tactical Synthesis Of Efficient Global Search Algorithms
NASA Technical Reports Server (NTRS)
Nedunuri, Srinivas; Smith, Douglas R.; Cook, William R.
2009-01-01
Algorithm synthesis transforms a formal specification into an efficient algorithm to solve a problem. Algorithm synthesis in Specware combines the formal specification of a problem with a high-level algorithm strategy. To derive an efficient algorithm, a developer must define operators that refine the algorithm by combining the generic operators in the algorithm with the details of the problem specification. This derivation requires skill and a deep understanding of the problem and the algorithmic strategy. In this paper we introduce two tactics to ease this process. The tactics serve a similar purpose to tactics used for determining indefinite integrals in calculus, that is suggesting possible ways to attack the problem.
An improved harmony search algorithm for emergency inspection scheduling
NASA Astrophysics Data System (ADS)
Kallioras, Nikos A.; Lagaros, Nikos D.; Karlaftis, Matthew G.
2014-11-01
The ability of nature-inspired search algorithms to efficiently handle combinatorial problems, and their successful implementation in many fields of engineering and applied sciences, have led to the development of new, improved algorithms. In this work, an improved harmony search (IHS) algorithm is presented, while a holistic approach for solving the problem of post-disaster infrastructure management is also proposed. The efficiency of IHS is compared with that of the algorithms of particle swarm optimization, differential evolution, basic harmony search and the pure random search procedure, when solving the districting problem that is the first part of post-disaster infrastructure management. The ant colony optimization algorithm is employed for solving the associated routing problem that constitutes the second part. The comparison is based on the quality of the results obtained, the computational demands and the sensitivity on the algorithmic parameters.
Genetic-Algorithm Tool For Search And Optimization
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steven
1995-01-01
SPLICER computer program used to solve search and optimization problems. Genetic algorithms adaptive search procedures (i.e., problem-solving methods) based loosely on processes of natural selection and Darwinian "survival of fittest." Algorithms apply genetically inspired operators to populations of potential solutions in iterative fashion, creating new populations while searching for optimal or nearly optimal solution to problem at hand. Written in Think C.
A Hybrid Search Algorithm for Swarm Robots Searching in an Unknown Environment
Li, Shoutao; Li, Lina; Lee, Gordon; Zhang, Hao
2014-01-01
This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency. PMID:25386855
A hybrid search algorithm for swarm robots searching in an unknown environment.
Li, Shoutao; Li, Lina; Lee, Gordon; Zhang, Hao
2014-01-01
This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency. PMID:25386855
Lattice models of peptide aggregation: evaluation of conformational search algorithms.
Oakley, Mark T; Garibaldi, Jonathan M; Hirst, Jonathan D
2005-11-30
We present a series of conformational search calculations on the aggregation of short peptide fragments that form fibrils similar to those seen in many protein mis-folding diseases. The proteins were represented by a face-centered cubic lattice model with the conformational energies calculated using the Miyazawa-Jernigan potential. The searches were performed using algorithms based on the Metropolis Monte Carlo method, including simulated annealing and replica exchange. We also present the results of searches using the tabu search method, an algorithm that has been used for many optimization problems, but has rarely been used in protein conformational searches. The replica exchange algorithm consistently found more stable structures then the other algorithms, and was particularly effective for the octamers and larger systems. PMID:16170797
Alien Genetic Algorithm for Exploration of Search Space
NASA Astrophysics Data System (ADS)
Patel, Narendra; Padhiyar, Nitin
2010-10-01
Genetic Algorithm (GA) is a widely accepted population based stochastic optimization technique used for single and multi objective optimization problems. Various versions of modifications in GA have been proposed in last three decades mainly addressing two issues, namely increasing convergence rate and increasing probability of global minima. While both these. While addressing the first issue, GA tends to converge to a local optima and addressing the second issue corresponds the large computational efforts. Thus, to reduce the contradictory effects of these two aspects, we propose a modification in GA by adding an alien member in the population at every generation. Addition of an Alien member in the current population at every generation increases the probability of obtaining global minima at the same time maintaining higher convergence rate. With two test cases, we have demonstrated the efficacy of the proposed GA by comparing with the conventional GA.
Ru, Xiao; Song, Ce; Lin, Zijing
2016-05-15
The genetic algorithm (GA) is an intelligent approach for finding minima in a highly dimensional parametric space. However, the success of GA searches for low energy conformations of biomolecules is rather limited so far. Herein an improved GA scheme is proposed for the conformational search of oligopeptides. A systematic analysis of the backbone dihedral angles of conformations of amino acids (AAs) and dipeptides is performed. The structural information is used to design a new encoding scheme to improve the efficiency of GA search. Local geometry optimizations based on the energy calculations by the density functional theory are employed to safeguard the quality and reliability of the GA structures. The GA scheme is applied to the conformational searches of Lys, Arg, Met-Gly, Lys-Gly, and Phe-Gly-Gly representative of AAs, dipeptides, and tripeptides with complicated side chains. Comparison with the best literature results shows that the new GA method is both highly efficient and reliable by providing the most complete set of the low energy conformations. Moreover, the computational cost of the GA method increases only moderately with the complexity of the molecule. The GA scheme is valuable for the study of the conformations and properties of oligopeptides. © 2016 Wiley Periodicals, Inc. PMID:26833761
Pattern Search Algorithms for Bound Constrained Minimization
NASA Technical Reports Server (NTRS)
Lewis, Robert Michael; Torczon, Virginia
1996-01-01
We present a convergence theory for pattern search methods for solving bound constrained nonlinear programs. The analysis relies on the abstract structure of pattern search methods and an understanding of how the pattern interacts with the bound constraints. This analysis makes it possible to develop pattern search methods for bound constrained problems while only slightly restricting the flexibility present in pattern search methods for unconstrained problems. We prove global convergence despite the fact that pattern search methods do not have explicit information concerning the gradient and its projection onto the feasible region and consequently are unable to enforce explicitly a notion of sufficient feasible decrease.
Search properties of some sequential decoding algorithms.
NASA Technical Reports Server (NTRS)
Geist, J. M.
1973-01-01
Sequential decoding procedures are studied in the context of selecting a path through a tree. Several algorithms are considered, and their properties are compared. It is shown that the stack algorithm introduced by Zigangirov (1966) and by Jelinek (1969) is essentially equivalent to the Fano algorithm with regard to the set of nodes examined and the path selected, although the description, implementation, and action of the two algorithms are quite different. A modified Fano algorithm is introduced, in which the quantizing parameter is eliminated. It can be inferred from limited simulation results that, at least in some applications, the new algorithm is computationally inferior to the old. However, it is of some theoretical interest since the conventional Fano algorithm may be considered to be a quantized version of it.
Gradient gravitational search: An efficient metaheuristic algorithm for global optimization.
Dash, Tirtharaj; Sahu, Prabhat K
2015-05-30
The adaptation of novel techniques developed in the field of computational chemistry to solve the concerned problems for large and flexible molecules is taking the center stage with regard to efficient algorithm, computational cost and accuracy. In this article, the gradient-based gravitational search (GGS) algorithm, using analytical gradients for a fast minimization to the next local minimum has been reported. Its efficiency as metaheuristic approach has also been compared with Gradient Tabu Search and others like: Gravitational Search, Cuckoo Search, and Back Tracking Search algorithms for global optimization. Moreover, the GGS approach has also been applied to computational chemistry problems for finding the minimal value potential energy of two-dimensional and three-dimensional off-lattice protein models. The simulation results reveal the relative stability and physical accuracy of protein models with efficient computational cost. PMID:25779670
LAHS: A novel harmony search algorithm based on learning automata
NASA Astrophysics Data System (ADS)
Enayatifar, Rasul; Yousefi, Moslem; Abdullah, Abdul Hanan; Darus, Amer Nordin
2013-12-01
This study presents a learning automata-based harmony search (LAHS) for unconstrained optimization of continuous problems. The harmony search (HS) algorithm performance strongly depends on the fine tuning of its parameters, including the harmony consideration rate (HMCR), pitch adjustment rate (PAR) and bandwidth (bw). Inspired by the spur-in-time responses in the musical improvisation process, learning capabilities are employed in the HS to select these parameters based on spontaneous reactions. An extensive numerical investigation is conducted on several well-known test functions, and the results are compared with the HS algorithm and its prominent variants, including the improved harmony search (IHS), global-best harmony search (GHS) and self-adaptive global-best harmony search (SGHS). The numerical results indicate that the LAHS is more efficient in finding optimum solutions and outperforms the existing HS algorithm variants.
An improved harmony search algorithm with dynamically varying bandwidth
NASA Astrophysics Data System (ADS)
Kalivarapu, J.; Jain, S.; Bag, S.
2016-07-01
The present work demonstrates a new variant of the harmony search (HS) algorithm where bandwidth (BW) is one of the deciding factors for the time complexity and the performance of the algorithm. The BW needs to have both explorative and exploitative characteristics. The ideology is to use a large BW to search in the full domain and to adjust the BW dynamically closer to the optimal solution. After trying a series of approaches, a methodology inspired by the functioning of a low-pass filter showed satisfactory results. This approach was implemented in the self-adaptive improved harmony search (SIHS) algorithm and tested on several benchmark functions. Compared to the existing HS algorithm and its variants, SIHS showed better performance on most of the test functions. Thereafter, the algorithm was applied to geometric parameter optimization of a friction stir welding tool.
Technology Transfer Automated Retrieval System (TEKTRAN)
The primary advantage of Dynamically Dimensioned Search algorithm (DDS) is that it outperforms many other optimization techniques in both convergence speed and the ability in searching for parameter sets that satisfy statistical guidelines while requiring only one algorithm parameter (perturbation f...
Multi-directional search: A direct search algorithm for parallel machines
Torczon, V.J.
1989-01-01
In recent years there has been a great deal in the development of optimization algorithms which exploit the computational power of parallel computer architectures. The author has developed a new direct search algorithm, which he calls multi-directional search, that is ideally suited for parallel computation. His algorithm belongs to the class of direct search methods, a class of optimization algorithms which neither compute nor approximate any derivatives of the objective function. His work, in fact, was inspired by the simplex method of Spendley, Hext, and Himsworth, and the simplex method of Nelder and Mead. The multi-directional search algorithm is inherently parallel. The basic idea of the algorithm is to perform concurrent searches in multiple directions. These searches are free of any interdependencies, so the information required can be computed in parallel. A central result of his work is the convergence analysis for his algorithm. By requiring only that the function be continuously differentiable over a bounded level set, he can prove that a subsequence of the points generated by the multi-directional search algorithm converges to a stationary point of the objective function. This is of great interest since he knows of few convergence results for practical direct search algorithms. He also presents numerical results indicating that the multidirectional search algorithm is robust, even in the presence of noise. His results include comparisons with the Nelder-Mead simplex algorithm, the method of steepest descent, and a quasi-Newton method. One surprising conclusion of his numerical tests is that the Nelder-Mead simplex algorithm is not robust. He closes with some comments about future directions of research.
A quantum search algorithm for future spacecraft attitude determination
NASA Astrophysics Data System (ADS)
Tsai, Jack; Hsiao, Fu-Yuen; Li, Yi-Ju; Shen, Jen-Fu
2011-04-01
In this paper we study the potential application of a quantum search algorithm to spacecraft navigation with a focus on attitude determination. Traditionally, attitude determination is achieved by recognizing the relative position/attitude with respect to the background stars using sun sensors, earth limb sensors, or star trackers. However, due to the massive celestial database, star pattern recognition is a complicated and power consuming job. We propose a new method of attitude determination by applying the quantum search algorithm to the search for a specific star or star pattern. The quantum search algorithm, proposed by Grover in 1996, could search the specific data out of an unstructured database containing a number N of data in only O(√{N}) steps, compared to an average of N/2 steps in conventional computers. As a result, by taking advantage of matching a particular star in a vast celestial database in very few steps, we derive a new algorithm for attitude determination, collaborated with Grover's search algorithm and star catalogues of apparent magnitude and absorption spectra. Numerical simulations and examples are also provided to demonstrate the feasibility and robustness of our new algorithm.
Genetic Algorithm and Tabu Search for Vehicle Routing Problems with Stochastic Demand
NASA Astrophysics Data System (ADS)
Ismail, Zuhaimy; Irhamah
2010-11-01
This paper presents a problem of designing solid waste collection routes, involving scheduling of vehicles where each vehicle begins at the depot, visits customers and ends at the depot. It is modeled as a Vehicle Routing Problem with Stochastic Demands (VRPSD). A data set from a real world problem (a case) is used in this research. We developed Genetic Algorithm (GA) and Tabu Search (TS) procedure and these has produced the best possible result. The problem data are inspired by real case of VRPSD in waste collection. Results from the experiment show the advantages of the proposed algorithm that are its robustness and better solution qualities.
Genetic Algorithm (GA)-Based Inclinometer Layout Optimization.
Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo
2015-01-01
This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors. PMID:25897500
Genetic Algorithm (GA)-Based Inclinometer Layout Optimization
Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo
2015-01-01
This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors. PMID:25897500
NASA Astrophysics Data System (ADS)
Kim, Eunsu; Kim, Manseok; Kim, Jong-Wook
In this paper, a humanoid is simulated and implemented to walk up and down a staircase using the blending polynomial and genetic algorithm (GA). Both ascending and descending a staircase are scheduled by four steps. Each step mimics natural gait of human being and is easy to analyze and implement. Optimal trajectories of ten motors in a lower extremity of a humanoid are rigorously computed to simultaneously satisfy stability condition, walking constraints, and energy efficiency requirements. As an optimization method, GA is applied to search optimal trajectory parameters in blending polynomials. The feasibility of this approach will be validated by simulation with a small humanoid robot.
Model Specification Searches Using Ant Colony Optimization Algorithms
ERIC Educational Resources Information Center
Marcoulides, George A.; Drezner, Zvi
2003-01-01
Ant colony optimization is a recently proposed heuristic procedure inspired by the behavior of real ants. This article applies the procedure to model specification searches in structural equation modeling and reports the results. The results demonstrate the capabilities of ant colony optimization algorithms for conducting automated searches.
Research on Chord Searching Algorithm Base on Cache Strategy
NASA Astrophysics Data System (ADS)
Jun, Guo; Chen, Chen
How to improve search efficiency is a core problem in P2P network, Chord is a successful searching algorithm, but its lookup efficiency is lower because finger table has redundant information proposed the recently visited table and improved to gain more useful information in Chord. The simulation experiments show that approach can availably improve the routing efficiently.
Detecting Outliers in Factor Analysis Using the Forward Search Algorithm
ERIC Educational Resources Information Center
Mavridis, Dimitris; Moustaki, Irini
2008-01-01
In this article we extend and implement the forward search algorithm for identifying atypical subjects/observations in factor analysis models. The forward search has been mainly developed for detecting aberrant observations in regression models (Atkinson, 1994) and in multivariate methods such as cluster and discriminant analysis (Atkinson, Riani,…
A Hybrid Monkey Search Algorithm for Clustering Analysis
Chen, Xin; Zhou, Yongquan; Luo, Qifang
2014-01-01
Clustering is a popular data analysis and data mining technique. The k-means clustering algorithm is one of the most commonly used methods. However, it highly depends on the initial solution and is easy to fall into local optimum solution. In view of the disadvantages of the k-means method, this paper proposed a hybrid monkey algorithm based on search operator of artificial bee colony algorithm for clustering analysis and experiment on synthetic and real life datasets to show that the algorithm has a good performance than that of the basic monkey algorithm for clustering analysis. PMID:24772039
A Practical Stemming Algorithm for Online Search Assistance.
ERIC Educational Resources Information Center
Ulmschneider, John E.; Doszkocs, Tamas
1983-01-01
Describes a two-phase stemming algorithm which consists of word root identification and automatic selection of word variants starting with same word root from inverted file. Use of algorithm in book catalog file is discussed. Ten references and example of subject search are appended. (EJS)
Global versus local quantum correlations in the Grover search algorithm
NASA Astrophysics Data System (ADS)
Batle, J.; Ooi, C. H. Raymond; Farouk, Ahmed; Alkhambashi, M. S.; Abdalla, S.
2016-02-01
Quantum correlations are thought to be the reason why certain quantum algorithms overcome their classical counterparts. Since the nature of this resource is still not fully understood, we shall investigate how entanglement and nonlocality among register qubits vary as the Grover search algorithm is run. We shall encounter pronounced differences between the measures employed as far as bipartite and global correlations are concerned.
A Functional Programming Approach to AI Search Algorithms
ERIC Educational Resources Information Center
Panovics, Janos
2012-01-01
The theory and practice of search algorithms related to state-space represented problems form the major part of the introductory course of Artificial Intelligence at most of the universities and colleges offering a degree in the area of computer science. Students usually meet these algorithms only in some imperative or object-oriented language…
A Methodology for the Hybridization Based in Active Components: The Case of cGA and Scatter Search.
Villagra, Andrea; Alba, Enrique; Leguizamón, Guillermo
2016-01-01
This work presents the results of a new methodology for hybridizing metaheuristics. By first locating the active components (parts) of one algorithm and then inserting them into second one, we can build efficient and accurate optimization, search, and learning algorithms. This gives a concrete way of constructing new techniques that contrasts the spread ad hoc way of hybridizing. In this paper, the enhanced algorithm is a Cellular Genetic Algorithm (cGA) which has been successfully used in the past to find solutions to such hard optimization problems. In order to extend and corroborate the use of active components as an emerging hybridization methodology, we propose here the use of active components taken from Scatter Search (SS) to improve cGA. The results obtained over a varied set of benchmarks are highly satisfactory in efficacy and efficiency when compared with a standard cGA. Moreover, the proposed hybrid approach (i.e., cGA+SS) has shown encouraging results with regard to earlier applications of our methodology. PMID:27403153
A Methodology for the Hybridization Based in Active Components: The Case of cGA and Scatter Search
Alba, Enrique; Leguizamón, Guillermo
2016-01-01
This work presents the results of a new methodology for hybridizing metaheuristics. By first locating the active components (parts) of one algorithm and then inserting them into second one, we can build efficient and accurate optimization, search, and learning algorithms. This gives a concrete way of constructing new techniques that contrasts the spread ad hoc way of hybridizing. In this paper, the enhanced algorithm is a Cellular Genetic Algorithm (cGA) which has been successfully used in the past to find solutions to such hard optimization problems. In order to extend and corroborate the use of active components as an emerging hybridization methodology, we propose here the use of active components taken from Scatter Search (SS) to improve cGA. The results obtained over a varied set of benchmarks are highly satisfactory in efficacy and efficiency when compared with a standard cGA. Moreover, the proposed hybrid approach (i.e., cGA+SS) has shown encouraging results with regard to earlier applications of our methodology. PMID:27403153
Combined string searching algorithm based on knuth-morris- pratt and boyer-moore algorithms
NASA Astrophysics Data System (ADS)
Tsarev, R. Yu; Chernigovskiy, A. S.; Tsareva, E. A.; Brezitskaya, V. V.; Nikiforov, A. Yu; Smirnov, N. A.
2016-04-01
The string searching task can be classified as a classic information processing task. Users either encounter the solution of this task while working with text processors or browsers, employing standard built-in tools, or this task is solved unseen by the users, while they are working with various computer programmes. Nowadays there are many algorithms for solving the string searching problem. The main criterion of these algorithms’ effectiveness is searching speed. The larger the shift of the pattern relative to the string in case of pattern and string characters’ mismatch is, the higher is the algorithm running speed. This article offers a combined algorithm, which has been developed on the basis of well-known Knuth-Morris-Pratt and Boyer-Moore string searching algorithms. These algorithms are based on two different basic principles of pattern matching. Knuth-Morris-Pratt algorithm is based upon forward pattern matching and Boyer-Moore is based upon backward pattern matching. Having united these two algorithms, the combined algorithm allows acquiring the larger shift in case of pattern and string characters’ mismatch. The article provides an example, which illustrates the results of Boyer-Moore and Knuth-Morris- Pratt algorithms and combined algorithm’s work and shows advantage of the latter in solving string searching problem.
Geometric direct search algorithms for image registration.
Lee, Seok; Choi, Minseok; Kim, Hyungmin; Park, Frank Chongwoo
2007-09-01
A widely used approach to image registration involves finding the general linear transformation that maximizes the mutual information between two images, with the transformation being rigid-body [i.e., belonging to SE(3)] or volume-preserving [i.e., belonging to SL(3)]. In this paper, we present coordinate-invariant, geometric versions of the Nelder-Mead optimization algorithm on the groups SL(3), SE(3), and their various subgroups, that are applicable to a wide class of image registration problems. Because the algorithms respect the geometric structure of the underlying groups, they are numerically more stable, and exhibit better convergence properties than existing local coordinate-based algorithms. Experimental results demonstrate the improved convergence properties of our geometric algorithms. PMID:17784595
A constrained optimization algorithm based on the simplex search method
NASA Astrophysics Data System (ADS)
Mehta, Vivek Kumar; Dasgupta, Bhaskar
2012-05-01
In this article, a robust method is presented for handling constraints with the Nelder and Mead simplex search method, which is a direct search algorithm for multidimensional unconstrained optimization. The proposed method is free from the limitations of previous attempts that demand the initial simplex to be feasible or a projection of infeasible points to the nonlinear constraint boundaries. The method is tested on several benchmark problems and the results are compared with various evolutionary algorithms available in the literature. The proposed method is found to be competitive with respect to the existing algorithms in terms of effectiveness and efficiency.
A New Approximate Chimera Donor Cell Search Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Nixon, David (Technical Monitor)
1998-01-01
The objectives of this study were to develop chimera-based full potential methodology which is compatible with overflow (Euler/Navier-Stokes) chimera flow solver and to develop a fast donor cell search algorithm that is compatible with the chimera full potential approach. Results of this work included presenting a new donor cell search algorithm suitable for use with a chimera-based full potential solver. This algorithm was found to be extremely fast and simple producing donor cells as fast as 60,000 per second.
Parameter identification using a creeping-random-search algorithm
NASA Technical Reports Server (NTRS)
Parrish, R. V.
1971-01-01
A creeping-random-search algorithm is applied to different types of problems in the field of parameter identification. The studies are intended to demonstrate that a random-search algorithm can be applied successfully to these various problems, which often cannot be handled by conventional deterministic methods, and, also, to introduce methods that speed convergence to an extremal of the problem under investigation. Six two-parameter identification problems with analytic solutions are solved, and two application problems are discussed in some detail. Results of the study show that a modified version of the basic creeping-random-search algorithm chosen does speed convergence in comparison with the unmodified version. The results also show that the algorithm can successfully solve problems that contain limits on state or control variables, inequality constraints (both independent and dependent, and linear and nonlinear), or stochastic models.
Data bank homology search algorithm with linear computation complexity.
Strelets, V B; Ptitsyn, A A; Milanesi, L; Lim, H A
1994-06-01
A new algorithm for data bank homology search is proposed. The principal advantages of the new algorithm are: (i) linear computation complexity; (ii) low memory requirements; and (iii) high sensitivity to the presence of local region homology. The algorithm first calculates indicative matrices of k-tuple 'realization' in the query sequence and then searches for an appropriate number of matching k-tuples within a narrow range in database sequences. It does not require k-tuple coordinates tabulation and in-memory placement for database sequences. The algorithm is implemented in a program for execution on PC-compatible computers and tested on PIR and GenBank databases with good results. A few modifications designed to improve the selectivity are also discussed. As an application example, the search for homology of the mouse homeotic protein HOX 3.1 is given. PMID:7922689
A parallelization of the row-searching algorithm
NASA Astrophysics Data System (ADS)
Yaici, Malika; Khaled, Hayet; Khaled, Zakia; Bentahar, Athmane
2012-11-01
The problem dealt in this paper concerns the parallelization of the row-searching algorithm which allows the search for linearly dependant rows on a given matrix and its implementation on MPI (Message Passing Interface) environment. This algorithm is largely used in control theory and more specifically in solving the famous diophantine equation. An introduction to the diophantine equation is presented, then two parallelization approaches of the algorithm are detailed. The first distributes a set of rows on processes (processors) and the second makes a distribution per blocks. The sequential algorithm and its two parallel forms are implemented using MPI routines, then modelled using UML (Unified Modelling Language) and finally evaluated using algorithmic complexity.
Effect of qubit losses on Grover's quantum search algorithm
NASA Astrophysics Data System (ADS)
Rao, D. D. Bhaktavatsala; Mølmer, Klaus
2012-10-01
We investigate the performance of Grover's quantum search algorithm on a register that is subject to a loss of particles that carry qubit information. Under the assumption that the basic steps of the algorithm are applied correctly on the correspondingly shrinking register, we show that the algorithm converges to mixed states with 50% overlap with the target state in the bit positions still present. As an alternative to error correction, we present a procedure that combines the outcome of different trials of the algorithm to determine the solution to the full search problem. The procedure may be relevant for experiments where the algorithm is adapted as the loss of particles is registered and for experiments with Rydberg blockade interactions among neutral atoms, where monitoring of atom losses is not even necessary.
Restarted local search algorithms for continuous black box optimization.
Pošík, Petr; Huyer, Waltraud
2012-01-01
Several local search algorithms for real-valued domains (axis parallel line search, Nelder-Mead simplex search, Rosenbrock's algorithm, quasi-Newton method, NEWUOA, and VXQR) are described and thoroughly compared in this article, embedding them in a multi-start method. Their comparison aims (1) to help the researchers from the evolutionary community to choose the right opponent for their algorithm (to choose an opponent that would constitute a hard-to-beat baseline algorithm), (2) to describe individual features of these algorithms and show how they influence the algorithm on different problems, and (3) to provide inspiration for the hybridization of evolutionary algorithms with these local optimizers. The recently proposed Comparing Continuous Optimizers (COCO) methodology was adopted as the basis for the comparison. The results show that in low dimensional spaces, the old method of Nelder and Mead is still the most successful among those compared, while in spaces of higher dimensions, it is better to choose an algorithm based on quadratic modeling, such as NEWUOA or a quasi-Newton method. PMID:22779407
Generalized Pattern Search Algorithm for Peptide Structure Prediction
Nicosia, Giuseppe; Stracquadanio, Giovanni
2008-01-01
Finding the near-native structure of a protein is one of the most important open problems in structural biology and biological physics. The problem becomes dramatically more difficult when a given protein has no regular secondary structure or it does not show a fold similar to structures already known. This situation occurs frequently when we need to predict the tertiary structure of small molecules, called peptides. In this research work, we propose a new ab initio algorithm, the generalized pattern search algorithm, based on the well-known class of Search-and-Poll algorithms. We performed an extensive set of simulations over a well-known set of 44 peptides to investigate the robustness and reliability of the proposed algorithm, and we compared the peptide conformation with a state-of-the-art algorithm for peptide structure prediction known as PEPstr. In particular, we tested the algorithm on the instances proposed by the originators of PEPstr, to validate the proposed algorithm; the experimental results confirm that the generalized pattern search algorithm outperforms PEPstr by 21.17% in terms of average root mean-square deviation, RMSD Cα. PMID:18487293
NASA Astrophysics Data System (ADS)
Hemmatian, Hossein; Fereidoon, Abdolhossein; Assareh, Ehsanolah
2014-09-01
The multi-objective gravitational search algorithm (MOGSA) technique is applied to hybrid laminates to achieve minimum weight and cost. The investigated laminate is made of glass-epoxy and carbon-epoxy plies to combine the economical attributes of the first with the light weight and high-stiffness properties of the second in order to make the trade-off between the cost and weight as the objective functions. The first natural flexural frequency was considered as a constraint. The results obtained using the MOGSA, including the Pareto set, optimum stacking sequences and number of plies made of either glass or carbon fibres, were compared with those using the genetic algorithm (GA) and ant colony optimization (ACO) reported in the literature. The comparisons confirmed the advantages of hybridization and showed that the MOGSA outperformed the GA and ACO in terms of the functions' value and constraint accuracy.
Exploratory Analysis of Stochastic Local Search Algorithms in Biobjective Optimization
NASA Astrophysics Data System (ADS)
López-Ibáñez, Manuel; Paquete, Luís; Stützle, Thomas
This chapter introduces two Perl programs that implement graphical tools for exploring the performance of stochastic local search algorithms for biobjective optimization problems. These tools are based on the concept of the empirical attainment function (EAF), which describes the probabilistic distribution of the outcomes obtained by a stochastic algorithm in the objective space. In particular, we consider the visualization of attainment surfaces and differences between the first-order EAFs of the outcomes of two algorithms. This visualization allows us to identify certain algorithmic behaviors in a graphical way. We explain the use of these visualization tools and illustrate them with examples arising from practice.
Graph Matching Algorithms for Business Process Model Similarity Search
NASA Astrophysics Data System (ADS)
Dijkman, Remco; Dumas, Marlon; García-Bañuelos, Luciano
We investigate the problem of ranking all process models in a repository according to their similarity with respect to a given process model. We focus specifically on the application of graph matching algorithms to this similarity search problem. Since the corresponding graph matching problem is NP-complete, we seek to find a compromise between computational complexity and quality of the computed ranking. Using a repository of 100 process models, we evaluate four graph matching algorithms, ranging from a greedy one to a relatively exhaustive one. The results show that the mean average precision obtained by a fast greedy algorithm is close to that obtained with the most exhaustive algorithm.
Grover's quantum search algorithm for an arbitrary initial mixed state
Biham, Eli; Kenigsberg, Dan
2002-12-01
The Grover quantum search algorithm is generalized to deal with an arbitrary mixed initial state. The probability to measure a marked state as a function of time is calculated, and found to depend strongly on the specific initial state. The form of the function, though, remains as it is in the case of initial pure state. We study the role of the von Neumann entropy of the initial state, and show that the entropy cannot be a measure for the usefulness of the algorithm. We give few examples and show that for some extremely mixed initial states (carrying high entropy), the generalized Grover algorithm is considerably faster than any classical algorithm.
Entropy-Based Search Algorithm for Experimental Design
NASA Astrophysics Data System (ADS)
Malakar, N. K.; Knuth, K. H.
2011-03-01
The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. This algorithm is inspired by Skilling's nested sampling algorithm used in inference and borrows the concept of a rising threshold while a set of experiment samples are maintained. We demonstrate that this algorithm not only selects highly relevant experiments, but also is more efficient than brute force search. Such entropic search techniques promise to greatly benefit autonomous experimental design.
Fast search algorithms for computational protein design.
Traoré, Seydou; Roberts, Kyle E; Allouche, David; Donald, Bruce R; André, Isabelle; Schiex, Thomas; Barbe, Sophie
2016-05-01
One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state-of-the-art combinatorial optimization technologies based on Cost Function Network (CFN) processing allow speeding up provable rigid backbone protein design methods by several orders of magnitudes. Building up on this, we improved and injected CFN technology into the well-established CPD package Osprey to allow all Osprey CPD algorithms to benefit from associated speedups. Because Osprey fundamentally relies on the ability of A* to produce conformations in increasing order of energy, we defined new A* strategies combining CFN lower bounds, with new side-chain positioning-based branching scheme. Beyond the speedups obtained in the new A*-CFN combination, this novel branching scheme enables a much faster enumeration of suboptimal sequences, far beyond what is reachable without it. Together with the immediate and important speedups provided by CFN technology, these developments directly benefit to all the algorithms that previously relied on the DEE/ A* combination inside Osprey* and make it possible to solve larger CPD problems with provable algorithms. PMID:26833706
Calibration of visual model for space manipulator with a hybrid LM-GA algorithm
NASA Astrophysics Data System (ADS)
Jiang, Wensong; Wang, Zhongyu
2016-01-01
A hybrid LM-GA algorithm is proposed to calibrate the camera system of space manipulator to improve its locational accuracy. This algorithm can dynamically fuse the Levenberg-Marqurdt (LM) algorithm and Genetic Algorithm (GA) together to minimize the error of nonlinear camera model. LM algorithm is called to optimize the initial camera parameters that are generated by genetic process previously. Iteration should be stopped if the optimized camera parameters meet the accuracy requirements. Otherwise, new populations are generated again by GA and optimized afresh by LM algorithm until the optimal solutions meet the accuracy requirements. A novel measuring machine of space manipulator is designed to on-orbit dynamic simulation and precision test. The camera system of space manipulator, calibrated by hybrid LM-GA algorithm, is used for locational precision test in this measuring instrument. The experimental results show that the mean composite errors are 0.074 mm for hybrid LM-GA camera calibration model, 1.098 mm for LM camera calibration model, and 1.202 mm for GA camera calibration model. Furthermore, the composite standard deviations are 0.103 mm for the hybrid LM-GA camera calibration model, 1.227 mm for LM camera calibration model, and 1.351 mm for GA camera calibration model. The accuracy of hybrid LM-GA camera calibration model is more than 10 times higher than that of other two methods. All in all, the hybrid LM-GA camera calibration model is superior to both the LM camera calibration model and GA camera calibration model.
Experimental implementation of Grover's search algorithm with neutral atom qubits
NASA Astrophysics Data System (ADS)
Sun, Yuan; Lichtman, Martin; Baker, Kevin; Saffman, Mark
2016-05-01
Grover's algorithm for searching an unsorted data base provides a provable speedup over the best possible classical search and is therefore a test bed for demonstrating the power of quantum computation. The algorithm has been demonstrated with NMR, trapped ion, photonic, and superconducting hardware, but only with two qubits encoding a four element database. We report on progress towards experimental demonstration of Grover's algorithm using two and three neutral atom qubits encoding a database with up to eight elements. Our approach uses a Rydberg blockade Ck NOT gate for efficient implementation of the Grover iterations. Quantum Monte Carlo simulations of the algorithm performance that account for gate errors and decoherence rates are compared with experimental results. Work supported by the IARPA MQCO program.
Stochastic search in structural optimization - Genetic algorithms and simulated annealing
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1993-01-01
An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.
GASAT: a genetic local search algorithm for the satisfiability problem.
Lardeux, Frédéric; Saubion, Frédéric; Hao, Jin-Kao
2006-01-01
This paper presents GASAT, a hybrid algorithm for the satisfiability problem (SAT). The main feature of GASAT is that it includes a recombination stage based on a specific crossover and a tabu search stage. We have conducted experiments to evaluate the different components of GASAT and to compare its overall performance with state-of-the-art SAT algorithms. These experiments show that GASAT provides very competitive results. PMID:16831107
Economic load dispatch using improved gravitational search algorithm
NASA Astrophysics Data System (ADS)
Huang, Yu; Wang, Jia-rong; Guo, Feng
2016-03-01
This paper presents an improved gravitational search algorithm(IGSA) to solve the economic load dispatch(ELD) problem. In order to avoid the local optimum phenomenon, mutation processing is applied to the GSA. The IGSA is applied to solve the economic load dispatch problems with the valve point effects, which has 13 generators and a load demand of 2520 MW. Calculation results show that the algorithm in this paper can deal with the ELD problems with high stability.
Parametric Quantum Search Algorithm as Quantum Walk: A Quantum Simulation
NASA Astrophysics Data System (ADS)
Ellinas, Demosthenes; Konstandakis, Christos
2016-02-01
Parametric quantum search algorithm (PQSA) is a form of quantum search that results by relaxing the unitarity of the original algorithm. PQSA can naturally be cast in the form of quantum walk, by means of the formalism of oracle algebra. This is due to the fact that the completely positive trace preserving search map used by PQSA, admits a unitarization (unitary dilation) a la quantum walk, at the expense of introducing auxiliary quantum coin-qubit space. The ensuing QW describes a process of spiral motion, chosen to be driven by two unitary Kraus generators, generating planar rotations of Bloch vector around an axis. The quadratic acceleration of quantum search translates into an equivalent quadratic saving of the number of coin qubits in the QW analogue. The associated to QW model Hamiltonian operator is obtained and is shown to represent a multi-particle long-range interacting quantum system that simulates parametric search. Finally, the relation of PQSA-QW simulator to the QW search algorithm is elucidated.
Adiabatic Quantum Algorithm for Search Engine Ranking
NASA Astrophysics Data System (ADS)
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.
2012-06-01
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)
NASA Astrophysics Data System (ADS)
Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman
2011-12-01
In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.
Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)
NASA Astrophysics Data System (ADS)
Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman
2012-01-01
In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.
An implementation of differential search algorithm (DSA) for inversion of surface wave data
NASA Astrophysics Data System (ADS)
Song, Xianhai; Li, Lei; Zhang, Xueqiang; Shi, Xinchun; Huang, Jianquan; Cai, Jianchao; Jin, Si; Ding, Jianping
2014-12-01
Surface wave dispersion analysis is widely used in geophysics to infer near-surface shear (S)-wave velocity profiles for a wide variety of applications. However, inversion of surface wave data is challenging for most local-search methods due to its high nonlinearity and to its multimodality. In this work, we proposed and implemented a new Rayleigh wave dispersion curve inversion scheme based on differential search algorithm (DSA), one of recently developed swarm intelligence-based algorithms. DSA is inspired from seasonal migration behavior of species of the living beings throughout the year for solving highly nonlinear, multivariable, and multimodal optimization problems. The proposed inverse procedure is applied to nonlinear inversion of fundamental-mode Rayleigh wave dispersion curves for near-surface S-wave velocity profiles. To evaluate calculation efficiency and stability of DSA, four noise-free and four noisy synthetic data sets are firstly inverted. Then, the performance of DSA is compared with that of genetic algorithms (GA) by two noise-free synthetic data sets. Finally, a real-world example from a waste disposal site in NE Italy is inverted to examine the applicability and robustness of the proposed approach on surface wave data. Furthermore, the performance of DSA is compared against that of GA by real data to further evaluate scores of the inverse procedure described here. Simulation results from both synthetic and actual field data demonstrate that differential search algorithm (DSA) applied to nonlinear inversion of surface wave data should be considered good not only in terms of the accuracy but also in terms of the convergence speed. The great advantages of DSA are that the algorithm is simple, robust and easy to implement. Also there are fewer control parameters to tune.
An ant colony algorithm on continuous searching space
NASA Astrophysics Data System (ADS)
Xie, Jing; Cai, Chao
2015-12-01
Ant colony algorithm is heuristic, bionic and parallel. Because of it is property of positive feedback, parallelism and simplicity to cooperate with other method, it is widely adopted in planning on discrete space. But it is still not good at planning on continuous space. After a basic introduction to the basic ant colony algorithm, we will propose an ant colony algorithm on continuous space. Our method makes use of the following three tricks. We search for the next nodes of the route according to fixed-step to guarantee the continuity of solution. When storing pheromone, it discretizes field of pheromone, clusters states and sums up the values of pheromone of these states. When updating pheromone, it makes good resolutions measured in relative score functions leave more pheromone, so that ant colony algorithm can find a sub-optimal solution in shorter time. The simulated experiment shows that our ant colony algorithm can find sub-optimal solution in relatively shorter time.
Optimal fractional order PID design via Tabu Search based algorithm.
Ateş, Abdullah; Yeroglu, Celaleddin
2016-01-01
This paper presents an optimization method based on the Tabu Search Algorithm (TSA) to design a Fractional-Order Proportional-Integral-Derivative (FOPID) controller. All parameter computations of the FOPID employ random initial conditions, using the proposed optimization method. Illustrative examples demonstrate the performance of the proposed FOPID controller design method. PMID:26652128
NASA Astrophysics Data System (ADS)
Bagheripour, Parisa; Asoodeh, Mojtaba
2013-12-01
Porosity, the void portion of reservoir rocks, determines the volume of hydrocarbon accumulation and has a great control on assessment and development of hydrocarbon reservoirs. Accurate determination of porosity from core analysis is highly cost, time, and labor intensive. Therefore, the mission of finding an accurate, fast and cheap way of determining porosity is unavoidable. On the other hand, conventional well log data, available in almost all wells contain invaluable implicit information about the porosity. Therefore, an intelligent system can explicate this information. Fuzzy logic is a powerful tool for handling geosciences problem which is associated with uncertainty. However, determination of the best fuzzy formulation is still an issue. This study purposes an improved strategy, called hybrid genetic algorithm-pattern search (GA-PS) technique, against the widely held subtractive clustering (SC) method for setting up fuzzy rules between core porosity and petrophysical logs. Hybrid GA-PS technique is capable of extracting optimal parameters for fuzzy clusters (membership functions) which consequently results in the best fuzzy formulation. Results indicate that GA-PS technique manipulates both mean and variance of Gaussian membership functions contrary to SC that only has a control on mean of Gaussian membership functions. A comparison between hybrid GA-PS technique and SC method confirmed the superiority of GA-PS technique in setting up fuzzy rules. The proposed strategy was successfully applied to one of the Iranian carbonate reservoir rocks.
Stochastic Leader Gravitational Search Algorithm for Enhanced Adaptive Beamforming Technique
Darzi, Soodabeh; Islam, Mohammad Tariqul; Tiong, Sieh Kiong; Kibria, Salehin; Singh, Mandeep
2015-01-01
In this paper, stochastic leader gravitational search algorithm (SL-GSA) based on randomized k is proposed. Standard GSA (SGSA) utilizes the best agents without any randomization, thus it is more prone to converge at suboptimal results. Initially, the new approach randomly choses k agents from the set of all agents to improve the global search ability. Gradually, the set of agents is reduced by eliminating the agents with the poorest performances to allow rapid convergence. The performance of the SL-GSA was analyzed for six well-known benchmark functions, and the results are compared with SGSA and some of its variants. Furthermore, the SL-GSA is applied to minimum variance distortionless response (MVDR) beamforming technique to ensure compatibility with real world optimization problems. The proposed algorithm demonstrates superior convergence rate and quality of solution for both real world problems and benchmark functions compared to original algorithm and other recent variants of SGSA. PMID:26552032
Locally-adaptive and memetic evolutionary pattern search algorithms.
Hart, William E
2003-01-01
Recent convergence analyses of evolutionary pattern search algorithms (EPSAs) have shown that these methods have a weak stationary point convergence theory for a broad class of unconstrained and linearly constrained problems. This paper describes how the convergence theory for EPSAs can be adapted to allow each individual in a population to have its own mutation step length (similar to the design of evolutionary programing and evolution strategies algorithms). These are called locally-adaptive EPSAs (LA-EPSAs) since each individual's mutation step length is independently adapted in different local neighborhoods. The paper also describes a variety of standard formulations of evolutionary algorithms that can be used for LA-EPSAs. Further, it is shown how this convergence theory can be applied to memetic EPSAs, which use local search to refine points within each iteration. PMID:12804096
A direct search algorithm for optimization with noisy function evaluations
Anderson, E.; Ferris, M.
1994-12-31
In this paper we describe a new direct search algorithm, reminiscent of the Nelder-Mead method, and related to a more recent pattern search algorithm proposed by Torczon. We believe that this method has applications in situations in which each function evaluation is noisy, but in which repeated function evaluations at the same point can be used to progressively reduce the error. For example, this will occur if the objective function value is given as a result of a simulation experiment. We investigate the convergence behaviour of the new algorithm for problems in which each function evaluation returns the true value of the function plus a random error drawn from a Normal distribution.
Stochastic Leader Gravitational Search Algorithm for Enhanced Adaptive Beamforming Technique.
Darzi, Soodabeh; Islam, Mohammad Tariqul; Tiong, Sieh Kiong; Kibria, Salehin; Singh, Mandeep
2015-01-01
In this paper, stochastic leader gravitational search algorithm (SL-GSA) based on randomized k is proposed. Standard GSA (SGSA) utilizes the best agents without any randomization, thus it is more prone to converge at suboptimal results. Initially, the new approach randomly choses k agents from the set of all agents to improve the global search ability. Gradually, the set of agents is reduced by eliminating the agents with the poorest performances to allow rapid convergence. The performance of the SL-GSA was analyzed for six well-known benchmark functions, and the results are compared with SGSA and some of its variants. Furthermore, the SL-GSA is applied to minimum variance distortionless response (MVDR) beamforming technique to ensure compatibility with real world optimization problems. The proposed algorithm demonstrates superior convergence rate and quality of solution for both real world problems and benchmark functions compared to original algorithm and other recent variants of SGSA. PMID:26552032
Study of genetic direct search algorithms for function optimization
NASA Technical Reports Server (NTRS)
Zeigler, B. P.
1974-01-01
The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.
Optimal fractional delay-IIR filter design using cuckoo search algorithm.
Kumar, Manjeet; Rawat, Tarun Kumar
2015-11-01
This paper applied a novel global meta-heuristic optimization algorithm, cuckoo search algorithm (CSA) to determine optimal coefficients of a fractional delay-infinite impulse response (FD-IIR) filter and trying to meet the ideal frequency response characteristics. Since fractional delay-IIR filter design is a multi-modal optimization problem, it cannot be computed efficiently using conventional gradient based optimization techniques. A weighted least square (WLS) based fitness function is used to improve the performance to a great extent. FD-IIR filters of different orders have been designed using the CSA. The simulation results of the proposed CSA based approach have been compared to those of well accepted evolutionary algorithms like Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The performance of the CSA based FD-IIR filter is superior to those obtained by GA and PSO. The simulation and statistical results affirm that the proposed approach using CSA outperforms GA and PSO, not only in the convergence rate but also in optimal performance of the designed FD-IIR filter (i.e., smaller magnitude error, smaller phase error, higher percentage improvement in magnitude and phase error, fast convergence rate). The absolute magnitude and phase error obtained for the designed 5th order FD-IIR filter are as low as 0.0037 and 0.0046, respectively. The percentage improvement in magnitude error for CSA based 5th order FD-IIR design with respect to GA and PSO are 80.93% and 74.83% respectively, and phase error are 76.04% and 71.25%, respectively. PMID:26391486
PCB Drill Path Optimization by Combinatorial Cuckoo Search Algorithm
Lim, Wei Chen Esmonde; Kanagaraj, G.; Ponnambalam, S. G.
2014-01-01
Optimization of drill path can lead to significant reduction in machining time which directly improves productivity of manufacturing systems. In a batch production of a large number of items to be drilled such as printed circuit boards (PCB), the travel time of the drilling device is a significant portion of the overall manufacturing process. To increase PCB manufacturing productivity and to reduce production costs, a good option is to minimize the drill path route using an optimization algorithm. This paper reports a combinatorial cuckoo search algorithm for solving drill path optimization problem. The performance of the proposed algorithm is tested and verified with three case studies from the literature. The computational experience conducted in this research indicates that the proposed algorithm is capable of efficiently finding the optimal path for PCB holes drilling process. PMID:24707198
PCB drill path optimization by combinatorial cuckoo search algorithm.
Lim, Wei Chen Esmonde; Kanagaraj, G; Ponnambalam, S G
2014-01-01
Optimization of drill path can lead to significant reduction in machining time which directly improves productivity of manufacturing systems. In a batch production of a large number of items to be drilled such as printed circuit boards (PCB), the travel time of the drilling device is a significant portion of the overall manufacturing process. To increase PCB manufacturing productivity and to reduce production costs, a good option is to minimize the drill path route using an optimization algorithm. This paper reports a combinatorial cuckoo search algorithm for solving drill path optimization problem. The performance of the proposed algorithm is tested and verified with three case studies from the literature. The computational experience conducted in this research indicates that the proposed algorithm is capable of efficiently finding the optimal path for PCB holes drilling process. PMID:24707198
Moon search algorithms for NASA's Dawn Mission to asteroid Vesta
NASA Astrophysics Data System (ADS)
Memarsadeghi, Nargess; McFadden, Lucy A.; Skillman, David R.; McLean, Brian; Mutchler, Max; Carsenty, Uri; Palmer, Eric E.
2012-03-01
A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid (4) Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet (1) Ceres.
Moon Search Algorithms for NASA's Dawn Mission to Asteroid Vesta
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mcfadden, Lucy A.; Skillman, David R.; McLean, Brian; Mutchler, Max; Carsenty, Uri; Palmer, Eric E.
2012-01-01
A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet Ceres.
Generalized pattern search algorithms with adaptive precision function evaluations
Polak, Elijah; Wetter, Michael
2003-05-14
In the literature on generalized pattern search algorithms, convergence to a stationary point of a once continuously differentiable cost function is established under the assumption that the cost function can be evaluated exactly. However, there is a large class of engineering problems where the numerical evaluation of the cost function involves the solution of systems of differential algebraic equations. Since the termination criteria of the numerical solvers often depend on the design parameters, computer code for solving these systems usually defines a numerical approximation to the cost function that is discontinuous with respect to the design parameters. Standard generalized pattern search algorithms have been applied heuristically to such problems, but no convergence properties have been stated. In this paper we extend a class of generalized pattern search algorithms to a form that uses adaptive precision approximations to the cost function. These numerical approximations need not define a continuous function. Our algorithms can be used for solving linearly constrained problems with cost functions that are at least locally Lipschitz continuous. Assuming that the cost function is smooth, we prove that our algorithms converge to a stationary point. Under the weaker assumption that the cost function is only locally Lipschitz continuous, we show that our algorithms converge to points at which the Clarke generalized directional derivatives are nonnegative in predefined directions. An important feature of our adaptive precision scheme is the use of coarse approximations in the early iterations, with the approximation precision controlled by a test. Such an approach leads to substantial time savings in minimizing computationally expensive functions.
Random search optimization based on genetic algorithm and discriminant function
NASA Technical Reports Server (NTRS)
Kiciman, M. O.; Akgul, M.; Erarslanoglu, G.
1990-01-01
The general problem of optimization with arbitrary merit and constraint functions, which could be convex, concave, monotonic, or non-monotonic, is treated using stochastic methods. To improve the efficiency of the random search methods, a genetic algorithm for the search phase and a discriminant function for the constraint-control phase were utilized. The validity of the technique is demonstrated by comparing the results to published test problem results. Numerical experimentation indicated that for cases where a quick near optimum solution is desired, a general, user-friendly optimization code can be developed without serious penalties in both total computer time and accuracy.
Evolutionary pattern search algorithms for unconstrained and linearly constrained optimization
HART,WILLIAM E.
2000-06-01
The authors describe a convergence theory for evolutionary pattern search algorithms (EPSAs) on a broad class of unconstrained and linearly constrained problems. EPSAs adaptively modify the step size of the mutation operator in response to the success of previous optimization steps. The design of EPSAs is inspired by recent analyses of pattern search methods. The analysis significantly extends the previous convergence theory for EPSAs. The analysis applies to a broader class of EPSAs,and it applies to problems that are nonsmooth, have unbounded objective functions, and which are linearly constrained. Further, they describe a modest change to the algorithmic framework of EPSAs for which a non-probabilistic convergence theory applies. These analyses are also noteworthy because they are considerably simpler than previous analyses of EPSAs.
Haque, Mohammad Nazmul; Noman, Nasimul; Berretta, Regina; Moscato, Pablo
2016-01-01
Classification of datasets with imbalanced sample distributions has always been a challenge. In general, a popular approach for enhancing classification performance is the construction of an ensemble of classifiers. However, the performance of an ensemble is dependent on the choice of constituent base classifiers. Therefore, we propose a genetic algorithm-based search method for finding the optimum combination from a pool of base classifiers to form a heterogeneous ensemble. The algorithm, called GA-EoC, utilises 10 fold-cross validation on training data for evaluating the quality of each candidate ensembles. In order to combine the base classifiers decision into ensemble’s output, we used the simple and widely used majority voting approach. The proposed algorithm, along with the random sub-sampling approach to balance the class distribution, has been used for classifying class-imbalanced datasets. Additionally, if a feature set was not available, we used the (α, β) − k Feature Set method to select a better subset of features for classification. We have tested GA-EoC with three benchmarking datasets from the UCI-Machine Learning repository, one Alzheimer’s disease dataset and a subset of the PubFig database of Columbia University. In general, the performance of the proposed method on the chosen datasets is robust and better than that of the constituent base classifiers and many other well-known ensembles. Based on our empirical study we claim that a genetic algorithm is a superior and reliable approach to heterogeneous ensemble construction and we expect that the proposed GA-EoC would perform consistently in other cases. PMID:26764911
Private algorithms for the protected in social network search
Kearns, Michael; Roth, Aaron; Wu, Zhiwei Steven; Yaroslavtsev, Grigory
2016-01-01
Motivated by tensions between data privacy for individual citizens and societal priorities such as counterterrorism and the containment of infectious disease, we introduce a computational model that distinguishes between parties for whom privacy is explicitly protected, and those for whom it is not (the targeted subpopulation). The goal is the development of algorithms that can effectively identify and take action upon members of the targeted subpopulation in a way that minimally compromises the privacy of the protected, while simultaneously limiting the expense of distinguishing members of the two groups via costly mechanisms such as surveillance, background checks, or medical testing. Within this framework, we provide provably privacy-preserving algorithms for targeted search in social networks. These algorithms are natural variants of common graph search methods, and ensure privacy for the protected by the careful injection of noise in the prioritization of potential targets. We validate the utility of our algorithms with extensive computational experiments on two large-scale social network datasets. PMID:26755606
Private algorithms for the protected in social network search.
Kearns, Michael; Roth, Aaron; Wu, Zhiwei Steven; Yaroslavtsev, Grigory
2016-01-26
Motivated by tensions between data privacy for individual citizens and societal priorities such as counterterrorism and the containment of infectious disease, we introduce a computational model that distinguishes between parties for whom privacy is explicitly protected, and those for whom it is not (the targeted subpopulation). The goal is the development of algorithms that can effectively identify and take action upon members of the targeted subpopulation in a way that minimally compromises the privacy of the protected, while simultaneously limiting the expense of distinguishing members of the two groups via costly mechanisms such as surveillance, background checks, or medical testing. Within this framework, we provide provably privacy-preserving algorithms for targeted search in social networks. These algorithms are natural variants of common graph search methods, and ensure privacy for the protected by the careful injection of noise in the prioritization of potential targets. We validate the utility of our algorithms with extensive computational experiments on two large-scale social network datasets. PMID:26755606
Real-time algorithm for robust coincidence search
Petrovic, T.; Vencelj, M.; Lipoglavsek, M.; Gajevic, J.; Pelicon, P.
2012-10-20
In in-beam {gamma}-ray spectroscopy experiments, we often look for coincident detection events. Among every N events detected, coincidence search is naively of principal complexity O(N{sup 2}). When we limit the approximate width of the coincidence search window, the complexity can be reduced to O(N), permitting the implementation of the algorithm into real-time measurements, carried out indefinitely. We have built an algorithm to find simultaneous events between two detection channels. The algorithm was tested in an experiment where coincidences between X and {gamma} rays detected in two HPGe detectors were observed in the decay of {sup 61}Cu. Functioning of the algorithm was validated by comparing calculated experimental branching ratio for EC decay and theoretical calculation for 3 selected {gamma}-ray energies for {sup 61}Cu decay. Our research opened a question on the validity of the adopted value of total angular momentum of the 656 keV state (J{sup {pi}} = 1/2{sup -}) in {sup 61}Ni.
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm. PMID:24697395
Sheng, Zheng; Wang, Jun; Zhou, Bihua; Zhou, Shudao
2014-03-15
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
Statistical evaluation of the big bang search algorithm
Jackson, Koblar A.; Horoi, Mihai; Chaudhuri, Indira; Frauenheim, Thomas; Shvartsburg, Alexandre A.
2006-03-01
We probe the statistical performance of the big bang search algorithm, a highly parallel method involving large numbers of gradient quenches from random, but highly compressed initial geometries. Using Lennard-Jones clusters as test system, we find that the number of energy evaluations required to locate global minima follows an exponential distribution and that the width of the distribution is reduced by starting from compressed geometries. With a volume compression of about 1/100, the efficiency of the method is comparable to that of more sophisticated algorithms for clusters containing up to 40 atoms. We apply the algorithm to the problem of Si clusters, obtaining the ground state structures for sin and sin + for n = 20 to 27, a range that spans the well-known silicon cluster shape transition. The results provide a detailed accounting of the transition, including a simple explanation of the three structural families observed in this size range.
A search algorithm for quantum state engineering and metrology
NASA Astrophysics Data System (ADS)
Knott, P. A.
2016-07-01
In this paper we present a search algorithm that finds useful optical quantum states which can be created with current technology. We apply the algorithm to the field of quantum metrology with the goal of finding states that can measure a phase shift to a high precision. Our algorithm efficiently produces a number of novel solutions: we find experimentally ready schemes to produce states that show significant improvements over the state-of-the-art, and can measure with a precision that beats the shot noise limit by over a factor of 4. Furthermore, these states demonstrate a robustness to moderate/high photon losses, and we present a conceptually simple measurement scheme that saturates the Cramér–Rao bound.
Quantum discord and entanglement in grover search algorithm
NASA Astrophysics Data System (ADS)
Ye, Bin; Zhang, Tingzhong; Qiu, Liang; Wang, Xuesong
2016-06-01
Imperfections and noise in realistic quantum computers may seriously affect the accuracy of quantum algorithms. In this article we explore the impact of static imperfections on quantum entanglement as well as non-entangled quantum correlations in Grover's search algorithm. Using the metrics of concurrence and geometric quantum discord, we show that both the evolution of entanglement and quantum discord in Grover algorithm can be restrained with the increasing strength of static imperfections. For very weak imperfections, the quantum entanglement and discord exhibit periodic behavior, while the periodicity will most certainly be destroyed with stronger imperfections. Moreover, entanglement sudden death may occur when the strength of static imperfections is greater than a certain threshold.
NASA Astrophysics Data System (ADS)
Ramazani, Saba; Jackson, Delvin L.; Selmic, Rastko R.
2013-05-01
In search and surveillance operations, deploying a team of mobile agents provides a robust solution that has multiple advantages over using a single agent in efficiency and minimizing exploration time. This paper addresses the challenge of identifying a target in a given environment when using a team of mobile agents by proposing a novel method of mapping and movement of agent teams in a cooperative manner. The approach consists of two parts. First, the region is partitioned into a hexagonal beehive structure in order to provide equidistant movements in every direction and to allow for more natural and flexible environment mapping. Additionally, in search environments that are partitioned into hexagons, mobile agents have an efficient travel path while performing searches due to this partitioning approach. Second, we use a team of mobile agents that move in a cooperative manner and utilize the Tabu Random algorithm to search for the target. Due to the ever-increasing use of robotics and Unmanned Aerial Vehicle (UAV) platforms, the field of cooperative multi-agent search has developed many applications recently that would benefit from the use of the approach presented in this work, including: search and rescue operations, surveillance, data collection, and border patrol. In this paper, the increased efficiency of the Tabu Random Search algorithm method in combination with hexagonal partitioning is simulated, analyzed, and advantages of this approach are presented and discussed.
Stride search: A general algorithm for storm detection in high resolution climate data
Bosler, Peter Andrew; Roesler, Erika Louise; Taylor, Mark A.; Mundt, Miranda
2015-09-08
This article discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared. The commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. Stride Search is designed to work at all latitudes, while grid point searches may fail in polar regions. Results from the two algorithms are compared for the application of tropical cyclone detection, and shown to produce similar results for the same set of storm identification criteria. The time required for both algorithms to search the same data set is compared. Furthermore, Stride Search's ability to search extreme latitudes is demonstrated for the case of polar low detection.
Stride search: A general algorithm for storm detection in high resolution climate data
Bosler, Peter Andrew; Roesler, Erika Louise; Taylor, Mark A.; Mundt, Miranda
2015-09-08
This article discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared. The commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. Stride Search is designed to work at all latitudes, while grid point searches may fail in polar regions. Results from the two algorithms are compared for the application of tropicalmore » cyclone detection, and shown to produce similar results for the same set of storm identification criteria. The time required for both algorithms to search the same data set is compared. Furthermore, Stride Search's ability to search extreme latitudes is demonstrated for the case of polar low detection.« less
Chen, Tinggui; Xiao, Renbin
2014-01-01
Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023
Chen, Tinggui; Xiao, Renbin
2014-01-01
Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023
NASA Astrophysics Data System (ADS)
Jiang, Tianzi; Cui, Qinghua; Shi, Guihua; Ma, Songde
2003-08-01
In this paper, a novel hybrid algorithm combining genetic algorithms and tabu search is presented. In the proposed hybrid algorithm, the idea of tabu search is applied to the crossover operator. We demonstrate that the hybrid algorithm can be applied successfully to the protein folding problem based on a hydrophobic-hydrophilic lattice model. The results show that in all cases the hybrid algorithm works better than a genetic algorithm alone. A comparison with other methods is also made.
Algorithm for Rapid Searching Among Star-Catalog Entries
NASA Technical Reports Server (NTRS)
Liebe, Carl Christian
2006-01-01
An algorithm searches a star catalog to identify guide stars within the field of view of a telescope or camera. The algorithm is fast: the number of computations needed to perform the search is approximately proportional to the logarithm of the number of stars in the catalog. The algorithm requires the prior organization of the star catalog into a hierarchy utilizing independent spherical coverings (see figure), such that each successively higher level contains fewer elements. In the lowest and most numerous level of the hierarchy, the elements are individual stars in the star catalog. The next higher level contains a spherical covering (a constellation of n points on a sphere that minimizes the maximum distance of any point on the sphere from the closest one of the n points), the next higher level contains a smaller spherical covering, and so forth, ending at the highest level, which contains one element representing the point of entry into the search structure. With necessary exceptions at the lowest and highest levels, each element at each level is labeled in terms of the element to which it is linked in the next higher level and the first element to which it is linked in the next lower level. Each element is also labeled in terms of (1) its coordinates on the celestial sphere and (2) the largest angular distance to any element in any lower level in the hierarchy. The elements at all levels of the hierarchy are numbered on a single list, such that the elements of each constellation at each level are numbered consecutively. The algorithm is recursive. The input required to start the algorithm comprises the coordinates of a point on the celestial sphere. Attention is then focused on individual elements of the hierarchy, starting from the topmost one, as follows: The angle between the input point and the element under consideration is calculated. If the calculated angle is larger than the sum of (1) the predetermined angle to the most distant element plus (2) the
Protein structure prediction with local adjust tabu search algorithm
2014-01-01
Background Protein folding structure prediction is one of the most challenging problems in the bioinformatics domain. Because of the complexity of the realistic protein structure, the simplified structure model and the computational method should be adopted in the research. The AB off-lattice model is one of the simplification models, which only considers two classes of amino acids, hydrophobic (A) residues and hydrophilic (B) residues. Results The main work of this paper is to discuss how to optimize the lowest energy configurations in 2D off-lattice model and 3D off-lattice model by using Fibonacci sequences and real protein sequences. In order to avoid falling into local minimum and faster convergence to the global minimum, we introduce a novel method (SATS) to the protein structure problem, which combines simulated annealing algorithm and tabu search algorithm. Various strategies, such as the new encoding strategy, the adaptive neighborhood generation strategy and the local adjustment strategy, are adopted successfully for high-speed searching the optimal conformation corresponds to the lowest energy of the protein sequences. Experimental results show that some of the results obtained by the improved SATS are better than those reported in previous literatures, and we can sure that the lowest energy folding state for short Fibonacci sequences have been found. Conclusions Although the off-lattice models is not very realistic, they can reflect some important characteristics of the realistic protein. It can be found that 3D off-lattice model is more like native folding structure of the realistic protein than 2D off-lattice model. In addition, compared with some previous researches, the proposed hybrid algorithm can more effectively and more quickly search the spatial folding structure of a protein chain. PMID:25474708
Designing a competent simple genetic algorithm for search and optimization
NASA Astrophysics Data System (ADS)
Reed, Patrick; Minsker, Barbara; Goldberg, David E.
2000-12-01
Simple genetic algorithms have been used to solve many water resources problems, but specifying the parameters that control how adaptive search is performed can be a difficult and time-consuming trial-and-error process. However, theoretical relationships for population sizing and timescale analysis have been developed that can provide pragmatic tools for vastly limiting the number of parameter combinations that must be considered. The purpose of this technical note is to summarize these relationships for the water resources community and to illustrate their practical utility in a long-term groundwater monitoring design application. These relationships, which model the effects of the primary operators of a simple genetic algorithm (selection, recombination, and mutation), provide a highly efficient method for ensuring convergence to near-optimal or optimal solutions. Application of the method to a monitoring design test case identified robust parameter values using only three trial runs.
A hybrid cuckoo search algorithm with Nelder Mead method for solving global optimization problems.
Ali, Ahmed F; Tawhid, Mohamed A
2016-01-01
Cuckoo search algorithm is a promising metaheuristic population based method. It has been applied to solve many real life problems. In this paper, we propose a new cuckoo search algorithm by combining the cuckoo search algorithm with the Nelder-Mead method in order to solve the integer and minimax optimization problems. We call the proposed algorithm by hybrid cuckoo search and Nelder-Mead method (HCSNM). HCSNM starts the search by applying the standard cuckoo search for number of iterations then the best obtained solution is passing to the Nelder-Mead algorithm as an intensification process in order to accelerate the search and overcome the slow convergence of the standard cuckoo search algorithm. The proposed algorithm is balancing between the global exploration of the Cuckoo search algorithm and the deep exploitation of the Nelder-Mead method. We test HCSNM algorithm on seven integer programming problems and ten minimax problems and compare against eight algorithms for solving integer programming problems and seven algorithms for solving minimax problems. The experiments results show the efficiency of the proposed algorithm and its ability to solve integer and minimax optimization problems in reasonable time. PMID:27217988
Stride Search: a general algorithm for storm detection in high-resolution climate data
NASA Astrophysics Data System (ADS)
Bosler, Peter A.; Roesler, Erika L.; Taylor, Mark A.; Mundt, Miranda R.
2016-04-01
This article discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared: the commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. The Stride Search algorithm is defined independently of the spatial discretization associated with a particular data set. Results from the two algorithms are compared for the application of tropical cyclone detection, and shown to produce similar results for the same set of storm identification criteria. Differences between the two algorithms arise for some storms due to their different definition of search regions in physical space. The physical space associated with each Stride Search region is constant, regardless of data resolution or latitude, and Stride Search is therefore capable of searching all regions of the globe in the same manner. Stride Search's ability to search high latitudes is demonstrated for the case of polar low detection. Wall clock time required for Stride Search is shown to be smaller than a grid point search of the same data, and the relative speed up associated with Stride Search increases as resolution increases.
Voigt, C A; Gordon, D B; Mayo, S L
2000-06-01
Finding the minimum energy amino acid side-chain conformation is a fundamental problem in both homology modeling and protein design. To address this issue, numerous computational algorithms have been proposed. However, there have been few quantitative comparisons between methods and there is very little general understanding of the types of problems that are appropriate for each algorithm. Here, we study four common search techniques: Monte Carlo (MC) and Monte Carlo plus quench (MCQ); genetic algorithms (GA); self-consistent mean field (SCMF); and dead-end elimination (DEE). Both SCMF and DEE are deterministic, and if DEE converges, it is guaranteed that its solution is the global minimum energy conformation (GMEC). This provides a means to compare the accuracy of SCMF and the stochastic methods. For the side-chain placement calculations, we find that DEE rapidly converges to the GMEC in all the test cases. The other algorithms converge on significantly incorrect solutions; the average fraction of incorrect rotamers for SCMF is 0.12, GA 0.09, and MCQ 0.05. For the protein design calculations, design positions are progressively added to the side-chain placement calculation until the time required for DEE diverges sharply. As the complexity of the problem increases, the accuracy of each method is determined so that the results can be extrapolated into the region where DEE is no longer tractable. We find that both SCMF and MCQ perform reasonably well on core calculations (fraction amino acids incorrect is SCMF 0.07, MCQ 0.04), but fail considerably on the boundary (SCMF 0.28, MCQ 0.32) and surface calculations (SCMF 0.37, MCQ 0.44). PMID:10835284
Performance Comparison of Binary Search Tree and Framed ALOHA Algorithms for RFID Anti-Collision
NASA Astrophysics Data System (ADS)
Chen, Wen-Tzu
Binary search tree and framed ALOHA algorithms are commonly adopted to solve the anti-collision problem in RFID systems. In this letter, the read efficiency of these two anti-collision algorithms is compared through computer simulations. Simulation results indicate the framed ALOHA algorithm requires less total read time than the binary search tree algorithm. The initial frame length strongly affects the uplink throughput for the framed ALOHA algorithm.
SPLICER - A GENETIC ALGORITHM TOOL FOR SEARCH AND OPTIMIZATION, VERSION 1.0 (MACINTOSH VERSION)
NASA Technical Reports Server (NTRS)
Wang, L.
1994-01-01
SPLICER is a genetic algorithm tool which can be used to solve search and optimization problems. Genetic algorithms are adaptive search procedures (i.e. problem solving methods) based loosely on the processes of natural selection and Darwinian "survival of the fittest." SPLICER provides the underlying framework and structure for building a genetic algorithm application. These algorithms apply genetically-inspired operators to populations of potential solutions in an iterative fashion, creating new populations while searching for an optimal or near-optimal solution to the problem at hand. SPLICER 1.0 was created using a modular architecture that includes a Genetic Algorithm Kernel, interchangeable Representation Libraries, Fitness Modules and User Interface Libraries, and well-defined interfaces between these components. The architecture supports portability, flexibility, and extensibility. SPLICER comes with all source code and several examples. For instance, a "traveling salesperson" example searches for the minimum distance through a number of cities visiting each city only once. Stand-alone SPLICER applications can be used without any programming knowledge. However, to fully utilize SPLICER within new problem domains, familiarity with C language programming is essential. SPLICER's genetic algorithm (GA) kernel was developed independent of representation (i.e. problem encoding), fitness function or user interface type. The GA kernel comprises all functions necessary for the manipulation of populations. These functions include the creation of populations and population members, the iterative population model, fitness scaling, parent selection and sampling, and the generation of population statistics. In addition, miscellaneous functions are included in the kernel (e.g., random number generators). Different problem-encoding schemes and functions are defined and stored in interchangeable representation libraries. This allows the GA kernel to be used with any
Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred
2013-01-01
A new regression model search algorithm was developed in 2011 that may be used to analyze both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The new algorithm is a simplified version of a more complex search algorithm that was originally developed at the NASA Ames Balance Calibration Laboratory. The new algorithm has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression models. Therefore, the simplified search algorithm is not intended to replace the original search algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm either fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new regression model search algorithm.
NASA Astrophysics Data System (ADS)
Zhou, Xu; Liu, Yanheng; Li, Bin
2016-03-01
Detecting community is a challenging task in analyzing networks. Solving community detection problem by evolutionary algorithm is a heated topic in recent years. In this paper, a multi-objective discrete cuckoo search algorithm with local search (MDCL) for community detection is proposed. To the best of our knowledge, it is first time to apply cuckoo search algorithm for community detection. Two objective functions termed as negative ratio association and ratio cut are to be minimized. These two functions can break through the modularity limitation. In the proposed algorithm, the nest location updating strategy and abandon operator of cuckoo are redefined in discrete form. A local search strategy and a clone operator are proposed to obtain the optimal initial population. The experimental results on synthetic and real-world networks show that the proposed algorithm has better performance than other algorithms and can discover the higher quality community structure without prior information.
Optimization of air monitoring networks using chemical transport model and search algorithm
NASA Astrophysics Data System (ADS)
Araki, Shin; Iwahashi, Koki; Shimadera, Hikari; Yamamoto, Kouhei; Kondo, Akira
2015-12-01
Air monitoring network design is a critical issue because monitoring stations should be allocated properly so that they adequately represent the concentrations in the domain of interest. Although the optimization methods using observations from existing monitoring networks are often applied to a network with a considerable number of stations, they are difficult to be applied to a sparse network or a network under development: there are too few observations to define an optimization criterion and the high number of potential monitor location combinations cannot be tested exhaustively. This paper develops a hybrid of genetic algorithm and simulated annealing to combine their power to search a big space and to find local optima. The hybrid algorithm as well as the two single algorithms are applied to optimize an air monitoring network of PM2.5, NO2 and O3 respectively, by minimization of the mean kriging variance derived from simulated values of a chemical transport model instead of observations. The hybrid algorithm performs best among the algorithms: kriging variance is on average about 4% better than for GA and variability between trials is less than 30% compared to SA. The optimized networks for the three pollutants are similar and maps interpolated from the simulated values at these locations are close to the original simulations (RMSE below 9% relative to the range of the field). This also holds for hourly and daily values although the networks are optimized for annual values. It is demonstrated that the method using the hybrid algorithm and the model simulated values for the calculation of the mean kriging variance is of benefit to the optimization of air monitoring networks.
Quantum search algorithm tailored to clause-satisfaction problems
NASA Astrophysics Data System (ADS)
Tulsi, Avatar
2015-05-01
Many important computer science problems can be reduced to the clause-satisfaction problem. We are given n Boolean variables xk and m clauses cj where each clause is a function of values of some xk. We want to find an assignment i of xk for which all m clauses are satisfied. Let fj(i ) be a binary function, which is 1 if the j th clause is satisfied by the assignment i , else fj(i ) =0 . Then the solution is r for which f (i =r )=1 , where f (i ) is the and function of all fj(i ) . In quantum computing, Grover's algorithm can be used to find r . A crucial component of this algorithm is the selective phase inversion Ir of the solution state encoding r . Ir is implemented by computing f (i ) for all i in superposition which requires computing and of all m binary functions fj(i ) . Hence there must be coupling between the computation circuits for each fj(i ) . In this paper, we present an alternative quantum search algorithm which relaxes the requirement of such couplings. Hence it offers implementation advantages for clause-satisfaction problems.
DeMAID/GA USER'S GUIDE Design Manager's Aid for Intelligent Decomposition with a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Rogers, James L.
1996-01-01
Many companies are looking for new tools and techniques to aid a design manager in making decisions that can reduce the time and cost of a design cycle. One tool that is available to aid in this decision making process is the Design Manager's Aid for Intelligent Decomposition (DeMAID). Since the initial release of DEMAID in 1989, numerous enhancements have been added to aid the design manager in saving both cost and time in a design cycle. The key enhancement is a genetic algorithm (GA) and the enhanced version is called DeMAID/GA. The GA orders the sequence of design processes to minimize the cost and time to converge to a solution. These enhancements as well as the existing features of the original version of DEMAID are described. Two sample problems are used to show how these enhancements can be applied to improve the design cycle. This report serves as a user's guide for DeMAID/GA.
The royal road for genetic algorithms: Fitness landscapes and GA performance
Mitchell, M.; Holland, J.H. ); Forrest, S. . Dept. of Computer Science)
1991-01-01
Genetic algorithms (GAs) play a major role in many artificial-life systems, but there is often little detailed understanding of why the GA performs as it does, and little theoretical basis on which to characterize the types of fitness landscapes that lead to successful GA performance. In this paper we propose a strategy for addressing these issues. Our strategy consists of defining a set of features of fitness landscapes that are particularly relevant to the GA, and experimentally studying how various configurations of these features affect the GA's performance along a number of dimensions. In this paper we informally describe an initial set of proposed feature classes, describe in detail one such class ( Royal Road'' functions), and present some initial experimental results concerning the role of crossover and building blocks'' on landscapes constructed from features of this class. 27 refs., 1 fig., 5 tabs.
Automated docking of peptides and proteins by using a genetic algorithm combined with a tabu search.
Hou, T; Wang, J; Chen, L; Xu, X
1999-08-01
A genetic algorithm (GA) combined with a tabu search (TA) has been applied as a minimization method to rake the appropriate associated sites for some biomolecular systems. In our docking procedure, surface complementarity and energetic complementarity of a ligand with its receptor have been considered separately in a two-stage docking method. The first stage was to find a set of potential associated sites mainly based on surface complementarity using a genetic algorithm combined with a tabu search. This step corresponds with the process of finding the potential binding sites where pharmacophores will bind. In the second stage, several hundreds of GA minimization steps were performed for each associated site derived from the first stage mainly based on the energetic complementarity. After calculations for both of the two stages, we can offer several solutions of associated sites for every complex. In this paper, seven biomolecular systems, including five bound complexes and two unbound complexes, were chosen from the Protein Data Bank (PDB) to test our method. The calculated results were very encouraging-the hybrid minimization algorithm successfully reaches the correct solutions near the best binded modes for these protein complexes. The docking results not only predict the bound complexes very well, but also get a relatively accurate complexed conformation for unbound systems. For the five bound complexes, the results show that surface complementarity is enough to find the precise binding modes, the top solution from the tabu list generally corresponds to the correct binding mode. For the two unbound complexes, due to the conformational changes upon binding, it seems more difficult to get their correct binding conformations. The predicted results show that the correct binding mode also corresponds to a relatively large surface complementarity score. In these two test cases, the correct solution can be found in the top several solutions from the tabu list. For
Algorithm for shortest path search in Geographic Information Systems by using reduced graphs.
Rodríguez-Puente, Rafael; Lazo-Cortés, Manuel S
2013-01-01
The use of Geographic Information Systems has increased considerably since the eighties and nineties. As one of their most demanding applications we can mention shortest paths search. Several studies about shortest path search show the feasibility of using graphs for this purpose. Dijkstra's algorithm is one of the classic shortest path search algorithms. This algorithm is not well suited for shortest path search in large graphs. This is the reason why various modifications to Dijkstra's algorithm have been proposed by several authors using heuristics to reduce the run time of shortest path search. One of the most used heuristic algorithms is the A* algorithm, the main goal is to reduce the run time by reducing the search space. This article proposes a modification of Dijkstra's shortest path search algorithm in reduced graphs. It shows that the cost of the path found in this work, is equal to the cost of the path found using Dijkstra's algorithm in the original graph. The results of finding the shortest path, applying the proposed algorithm, Dijkstra's algorithm and A* algorithm, are compared. This comparison shows that, by applying the approach proposed, it is possible to obtain the optimal path in a similar or even in less time than when using heuristic algorithms. PMID:24010024
Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm.
Yang, Zhang; Shufan, Ye; Li, Guo; Weifeng, Ding
2016-01-01
The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method. PMID:27403428
Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm
Yang, Zhang; Li, Guo; Weifeng, Ding
2016-01-01
The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method. PMID:27403428
Visual tracking method based on cuckoo search algorithm
NASA Astrophysics Data System (ADS)
Gao, Ming-Liang; Yin, Li-Ju; Zou, Guo-Feng; Li, Hai-Tao; Liu, Wei
2015-07-01
Cuckoo search (CS) is a new meta-heuristic optimization algorithm that is based on the obligate brood parasitic behavior of some cuckoo species in combination with the Lévy flight behavior of some birds and fruit flies. It has been found to be efficient in solving global optimization problems. An application of CS is presented to solve the visual tracking problem. The relationship between optimization and visual tracking is comparatively studied and the parameters' sensitivity and adjustment of CS in the tracking system are experimentally studied. To demonstrate the tracking ability of a CS-based tracker, a comparative study of tracking accuracy and speed of the CS-based tracker with six "state-of-art" trackers, namely, particle filter, meanshift, PSO, ensemble tracker, fragments tracker, and compressive tracker are presented. Comparative results show that the CS-based tracker outperforms the other trackers.
Quantum Associative Neural Network with Nonlinear Search Algorithm
NASA Astrophysics Data System (ADS)
Zhou, Rigui; Wang, Huian; Wu, Qian; Shi, Yang
2012-03-01
Based on analysis on properties of quantum linear superposition, to overcome the complexity of existing quantum associative memory which was proposed by Ventura, a new storage method for multiply patterns is proposed in this paper by constructing the quantum array with the binary decision diagrams. Also, the adoption of the nonlinear search algorithm increases the pattern recalling speed of this model which has multiply patterns to O( {log2}^{2^{n -t}} ) = O( n - t ) time complexity, where n is the number of quantum bit and t is the quantum information of the t quantum bit. Results of case analysis show that the associative neural network model proposed in this paper based on quantum learning is much better and optimized than other researchers' counterparts both in terms of avoiding the additional qubits or extraordinary initial operators, storing pattern and improving the recalling speed.
On the application of evolutionary pattern search algorithms
Hart, W.E.
1997-02-01
This paper presents an experimental evaluation of evolutionary pattern search algorithms (EPSAs). Our experimental evaluation of EPSAs indicates that EPSAs can achieve similar performance to EAs on challenging global optimization problems. Additionally, we describe a stopping rule for EPSAs that reliably terminated them near a stationary point of the objective function. The ability for EPSAs to reliably terminate near stationary points offers a practical advantage over other EAs, which are typically stopped by heuristic stopping rules or simple bounds on the number of iterations. Our experiments also illustrate how the rate of the crossover operator can influence the tradeoff between the number of iterations before termination and the quality of the solution found by an EPSA.
Grover's search algorithm with an entangled database state
NASA Astrophysics Data System (ADS)
Alsing, Paul M.; McDonald, Nathan
2011-05-01
Grover's oracle based unstructured search algorithm is often stated as "given a phone number in a directory, find the associated name." More formally, the problem can be stated as "given as input a unitary black box Uf for computing an unknown function f:{0,1}n ->{0,1}find x=x0 an element of {0,1}n such that f(x0) =1, (and zero otherwise). The crucial role of the externally supplied oracle Uf (whose inner workings are unknown to the user) is to change the sign of the solution 0 x , while leaving all other states unaltered. Thus, Uf depends on the desired solution x0. This paper examines an amplitude amplification algorithm in which the user encodes the directory (e.g. names and telephone numbers) into an entangled database state, which at a later time can be queried on one supplied component entry (e.g. a given phone number t0) to find the other associated unknown component (e.g. name x0). For N=2n names x with N associated phone numbers t , performing amplitude amplification on a subspace of size N of the total space of size N2 produces the desired state 0 0 x t in √N steps. We discuss how and why sequential (though not concurrent parallel) searches can be performed on multiple database states. Finally, we show how this procedure can be generalized to databases with more than two correlated lists (e.g. x t s r ...).
A Hybrid Metaheuristic for Biclustering Based on Scatter Search and Genetic Algorithms
NASA Astrophysics Data System (ADS)
Nepomuceno, Juan A.; Troncoso, Alicia; Aguilar–Ruiz, Jesús S.
In this paper a hybrid metaheuristic for biclustering based on Scatter Search and Genetic Algorithms is presented. A general scheme of Scatter Search has been used to obtain high-quality biclusters, but a way of generating the initial population and a method of combination based on Genetic Algorithms have been chosen. Experimental results from yeast cell cycle and human B-cell lymphoma are reported. Finally, the performance of the proposed hybrid algorithm is compared with a genetic algorithm recently published.
SNPs Selection using Gravitational Search Algorithm and Exhaustive Search for Association Mapping
NASA Astrophysics Data System (ADS)
Kusuma, W. A.; Hasibuan, L. S.; Istiadi, M. A.
2016-01-01
Single Nucleotide Polymorphisms (SNPs) are known having association to phenotipic variations. The study of linking SNPs to interest phenotype is refer to Association Mapping (AM), which is classified as a combinatorial problem. Exhaustive Search (ES) approach is able to be implemented to select targeted SNPs exactly since it evaluate all possible combinations of SNPs, but it is not efficient in terms of computer resources and computation time. Heuristic Search (HS) approach is an alternative to improve the performance of ES in those terms, but it still suffers high false positive SNPs in each combinations. Gravitational Search Algorithm (GSA) is a new HS algorithm that yields better performance than other nature inspired HS. This paper proposed a new method which combined GSA and ES to identify the most appropriate combination of SNPs linked to interest phenotype. Testing was conducted using dataset without epistasis and dataset with epistasis. Using dataset without epistasis with 7 targeted SNPs, the proposed method identified 7 SNPs - 6 True Positive (TP) SNPs and 1 False Positive (FP) SNP- with association value of 0.83. In addition, the proposed method could identified 3 SNPs- 2 TP SNP and 1 FP SNP with association value of 0.87 by using dataset with epistases and 5 targeted SNPs. The results showed that the method is robust in reducing redundant SNPs and identifying main markers.
Evolutionary algorithm based structure search for hard ruthenium carbides
NASA Astrophysics Data System (ADS)
Harikrishnan, G.; Ajith, K. M.; Chandra, Sharat; Valsakumar, M. C.
2015-12-01
An exhaustive structure search employing evolutionary algorithm and density functional theory has been carried out for ruthenium carbides, for the three stoichiometries Ru1C1, Ru2C1 and Ru3C1, yielding five lowest energy structures. These include the structures from the two reported syntheses of ruthenium carbides. Their emergence in the present structure search in stoichiometries, unlike the previously reported ones, is plausible in the light of the high temperature required for their synthesis. The mechanical stability and ductile character of all these systems are established by their elastic constants, and the dynamical stability of three of them by the phonon data. Rhombohedral structure ≤ft(R\\bar{3}m\\right) is found to be energetically the most stable one in Ru1C1 stoichiometry and hexagonal structure ≤ft( P\\bar{6}m2\\right) , the most stable in Ru3C1 stoichiometry. RuC-Zinc blende system is a semiconductor with a band gap of 0.618 eV while the other two stable systems are metallic. Employing a semi-empirical model based on the bond strength, the hardness of RuC-Zinc blende is found to be a significantly large value of ~37 GPa while a fairly large value of ~21GPa is obtained for the RuC-Rhombohedral system. The positive formation energies of these systems show that high temperature and possibly high pressure are necessary for their synthesis.
Polynomial search and global modeling: Two algorithms for modeling chaos.
Mangiarotti, S; Coudret, R; Drapeau, L; Jarlan, L
2012-10-01
Global modeling aims to build mathematical models of concise description. Polynomial Model Search (PoMoS) and Global Modeling (GloMo) are two complementary algorithms (freely downloadable at the following address: http://www.cesbio.ups-tlse.fr/us/pomos_et_glomo.html) designed for the modeling of observed dynamical systems based on a small set of time series. Models considered in these algorithms are based on ordinary differential equations built on a polynomial formulation. More specifically, PoMoS aims at finding polynomial formulations from a given set of 1 to N time series, whereas GloMo is designed for single time series and aims to identify the parameters for a selected structure. GloMo also provides basic features to visualize integrated trajectories and to characterize their structure when it is simple enough: One allows for drawing the first return map for a chosen Poincaré section in the reconstructed space; another one computes the Lyapunov exponent along the trajectory. In the present paper, global modeling from single time series is considered. A description of the algorithms is given and three examples are provided. The first example is based on the three variables of the Rössler attractor. The second one comes from an experimental analysis of the copper electrodissolution in phosphoric acid for which a less parsimonious global model was obtained in a previous study. The third example is an exploratory case and concerns the cycle of rainfed wheat under semiarid climatic conditions as observed through a vegetation index derived from a spatial sensor. PMID:23214661
Multipath Separation-Direction of Arrival (MS-DOA) with Genetic Search Algorithm for HF channels
NASA Astrophysics Data System (ADS)
Arikan, Feza; Koroglu, Ozan; Fidan, Serdar; Arikan, Orhan; Guldogan, Mehmet B.
2009-09-01
Direction-of-Arrival (DOA) defines the estimation of arrival angles of an electromagnetic wave impinging on a set of sensors. For dispersive and time-varying HF channels, where the propagating wave also suffers from the multipath phenomena, estimation of DOA is a very challenging problem. Multipath Separation-Direction of Arrival (MS-DOA), that is developed to estimate both the arrival angles in elevation and azimuth and the incoming signals at the output of the reference antenna with very high accuracy, proves itself as a strong alternative in DOA estimation for HF channels. In MS-DOA, a linear system of equations is formed using the coefficients of the basis vector for the array output vector, the incoming signal vector and the array manifold. The angles of arrival in elevation and azimuth are obtained as the maximizers of the sum of the magnitude squares of the projection of the signal coefficients on the column space of the array manifold. In this study, alternative Genetic Search Algorithms (GA) for the maximizers of the projection sum are investigated using simulated and experimental ionospheric channel data. It is observed that GA combined with MS-DOA is a powerful alternative in online DOA estimation and can be further developed according to the channel characteristics of a specific HF link.
Enhanced hybrid search algorithm for protein structure prediction using the 3D-HP lattice model.
Zhou, Changjun; Hou, Caixia; Zhang, Qiang; Wei, Xiaopeng
2013-09-01
The problem of protein structure prediction in the hydrophobic-polar (HP) lattice model is the prediction of protein tertiary structure. This problem is usually referred to as the protein folding problem. This paper presents a method for the application of an enhanced hybrid search algorithm to the problem of protein folding prediction, using the three dimensional (3D) HP lattice model. The enhanced hybrid search algorithm is a combination of the particle swarm optimizer (PSO) and tabu search (TS) algorithms. Since the PSO algorithm entraps local minimum in later evolution extremely easily, we combined PSO with the TS algorithm, which has properties of global optimization. Since the technologies of crossover and mutation are applied many times to PSO and TS algorithms, so enhanced hybrid search algorithm is called the MCMPSO-TS (multiple crossover and mutation PSO-TS) algorithm. Experimental results show that the MCMPSO-TS algorithm can find the best solutions so far for the listed benchmarks, which will help comparison with any future paper approach. Moreover, real protein sequences and Fibonacci sequences are verified in the 3D HP lattice model for the first time. Compared with the previous evolutionary algorithms, the new hybrid search algorithm is novel, and can be used effectively to predict 3D protein folding structure. With continuous development and changes in amino acids sequences, the new algorithm will also make a contribution to the study of new protein sequences. PMID:23824509
Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert M.
2013-01-01
A new regression model search algorithm was developed that may be applied to both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The algorithm is a simplified version of a more complex algorithm that was originally developed for the NASA Ames Balance Calibration Laboratory. The new algorithm performs regression model term reduction to prevent overfitting of data. It has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a regression model search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression model. Therefore, the simplified algorithm is not intended to replace the original algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new search algorithm.
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
DFT algorithms for bit-serial GaAs array processor architectures
NASA Technical Reports Server (NTRS)
Mcmillan, Gary B.
1988-01-01
Systems and Processes Engineering Corporation (SPEC) has developed an innovative array processor architecture for computing Fourier transforms and other commonly used signal processing algorithms. This architecture is designed to extract the highest possible array performance from state-of-the-art GaAs technology. SPEC's architectural design includes a high performance RISC processor implemented in GaAs, along with a Floating Point Coprocessor and a unique Array Communications Coprocessor, also implemented in GaAs technology. Together, these data processors represent the latest in technology, both from an architectural and implementation viewpoint. SPEC has examined numerous algorithms and parallel processing architectures to determine the optimum array processor architecture. SPEC has developed an array processor architecture with integral communications ability to provide maximum node connectivity. The Array Communications Coprocessor embeds communications operations directly in the core of the processor architecture. A Floating Point Coprocessor architecture has been defined that utilizes Bit-Serial arithmetic units, operating at very high frequency, to perform floating point operations. These Bit-Serial devices reduce the device integration level and complexity to a level compatible with state-of-the-art GaAs device technology.
Teaching AI Search Algorithms in a Web-Based Educational System
ERIC Educational Resources Information Center
Grivokostopoulou, Foteini; Hatzilygeroudis, Ioannis
2013-01-01
In this paper, we present a way of teaching AI search algorithms in a web-based adaptive educational system. Teaching is based on interactive examples and exercises. Interactive examples, which use visualized animations to present AI search algorithms in a step-by-step way with explanations, are used to make learning more attractive. Practice…
Experimental Results in the Comparison of Search Algorithms Used with Room Temperature Detectors
Guss, P., Yuan, D., Cutler, M., Beller, D.
2010-11-01
Analysis of time sequence data was run for several higher resolution scintillation detectors using a variety of search algorithms, and results were obtained in predicting the relative performance for these detectors, which included a slightly superior performance by CeBr{sub 3}. Analysis of several search algorithms shows that inclusion of the RSPRT methodology can improve sensitivity.
A Search Algorithm for Generating Alternative Process Plans in Flexible Manufacturing System
NASA Astrophysics Data System (ADS)
Tehrani, Hossein; Sugimura, Nobuhiro; Tanimizu, Yoshitaka; Iwamura, Koji
Capabilities and complexity of manufacturing systems are increasing and striving for an integrated manufacturing environment. Availability of alternative process plans is a key factor for integration of design, process planning and scheduling. This paper describes an algorithm for generation of alternative process plans by extending the existing framework of the process plan networks. A class diagram is introduced for generating process plans and process plan networks from the viewpoint of the integrated process planning and scheduling systems. An incomplete search algorithm is developed for generating and searching the process plan networks. The benefit of this algorithm is that the whole process plan network does not have to be generated before the search algorithm starts. This algorithm is applicable to large and enormous process plan networks and also to search wide areas of the network based on the user requirement. The algorithm can generate alternative process plans and to select a suitable one based on the objective functions.
Good, David M; Wenger, Craig D; Coon, Joshua J
2010-01-01
Collision-activated dissociation and electron-transfer dissociation (ETD) each produce spectra containing unique features. Though several database search algorithms (e.g. SEQUEST, MASCOT, and Open Mass Spectrometry Search Algorithm) have been modified to search ETD data, this consists chiefly of the ability to search for c- and z(*)-ions; additional ETD-specific features are often unaccounted for and may hinder identification. Removal of these features via spectral processing increased total search sensitivity by approximately 20% for both human and yeast data sets; unique peptide identifications increased by approximately 17% for the yeast data sets and approximately 16% for the human data set. PMID:19899080
Sampling design for classifying contaminant level using annealing search algorithms
NASA Astrophysics Data System (ADS)
Christakos, George; Killam, Bart R.
1993-12-01
A stochastic method for sampling spatially distributed contaminant level is presented. The purpose of sampling is to partition the contaminated region into zones of high and low pollutant concentration levels. In particular, given an initial set of observations of a contaminant within a site, it is desired to find a set of additional sampling locations in a way that takes into consideration the spatial variability characteristics of the site and optimizes certain objective functions emerging from the physical, regulatory and monetary considerations of the specific site cleanup process. Since the interest is in classifying the domain into zones above and below a pollutant threshold level, a natural criterion is the cost of misclassification. The resulting objective function is the expected value of a spatial loss function associated with sampling. Stochastic expectation involves the joint probability distribution of the pollutant level and its estimate, where the latter is calculated by means of spatial estimation techniques. Actual computation requires the discretization of the contaminated domain. As a consequence, any reasonably sized problem results in combinatorics precluding an exhaustive search. The use of an annealing algorithm, although suboptimal, can find a good set of future sampling locations quickly and efficiently. In order to obtain insight about the parameters and the computational requirements of the method, an example is discussed in detail. The implementation of spatial sampling design in practice will provide the model inputs necessary for waste site remediation, groundwater management, and environmental decision making.
WS-BP: An efficient wolf search based back-propagation algorithm
NASA Astrophysics Data System (ADS)
Nawi, Nazri Mohd; Rehman, M. Z.; Khan, Abdullah
2015-05-01
Wolf Search (WS) is a heuristic based optimization algorithm. Inspired by the preying and survival capabilities of the wolves, this algorithm is highly capable to search large spaces in the candidate solutions. This paper investigates the use of WS algorithm in combination with back-propagation neural network (BPNN) algorithm to overcome the local minima problem and to improve convergence in gradient descent. The performance of the proposed Wolf Search based Back-Propagation (WS-BP) algorithm is compared with Artificial Bee Colony Back-Propagation (ABC-BP), Bat Based Back-Propagation (Bat-BP), and conventional BPNN algorithms. Specifically, OR and XOR datasets are used for training the network. The simulation results show that the WS-BP algorithm effectively avoids the local minima and converge to global minima.
Dynamic Harmony Search with Polynomial Mutation Algorithm for Valve-Point Economic Load Dispatch
Karthikeyan, M.; Sree Ranga Raja, T.
2015-01-01
Economic load dispatch (ELD) problem is an important issue in the operation and control of modern control system. The ELD problem is complex and nonlinear with equality and inequality constraints which makes it hard to be efficiently solved. This paper presents a new modification of harmony search (HS) algorithm named as dynamic harmony search with polynomial mutation (DHSPM) algorithm to solve ORPD problem. In DHSPM algorithm the key parameters of HS algorithm like harmony memory considering rate (HMCR) and pitch adjusting rate (PAR) are changed dynamically and there is no need to predefine these parameters. Additionally polynomial mutation is inserted in the updating step of HS algorithm to favor exploration and exploitation of the search space. The DHSPM algorithm is tested with three power system cases consisting of 3, 13, and 40 thermal units. The computational results show that the DHSPM algorithm is more effective in finding better solutions than other computational intelligence based methods. PMID:26491710
Hybrid feature selection algorithm using symmetrical uncertainty and a harmony search algorithm
NASA Astrophysics Data System (ADS)
Salameh Shreem, Salam; Abdullah, Salwani; Nazri, Mohd Zakree Ahmad
2016-04-01
Microarray technology can be used as an efficient diagnostic system to recognise diseases such as tumours or to discriminate between different types of cancers in normal tissues. This technology has received increasing attention from the bioinformatics community because of its potential in designing powerful decision-making tools for cancer diagnosis. However, the presence of thousands or tens of thousands of genes affects the predictive accuracy of this technology from the perspective of classification. Thus, a key issue in microarray data is identifying or selecting the smallest possible set of genes from the input data that can achieve good predictive accuracy for classification. In this work, we propose a two-stage selection algorithm for gene selection problems in microarray data-sets called the symmetrical uncertainty filter and harmony search algorithm wrapper (SU-HSA). Experimental results show that the SU-HSA is better than HSA in isolation for all data-sets in terms of the accuracy and achieves a lower number of genes on 6 out of 10 instances. Furthermore, the comparison with state-of-the-art methods shows that our proposed approach is able to obtain 5 (out of 10) new best results in terms of the number of selected genes and competitive results in terms of the classification accuracy.
NASA Astrophysics Data System (ADS)
Abedini, M. J.; Nasseri, M.; Burn, D. H.
2012-04-01
In any geostatistical study, an important consideration is the choice of an appropriate, repeatable, and objective search strategy that controls the nearby samples to be included in the location-specific estimation procedure. Almost all geostatistical software available in the market puts the onus on the user to supply search strategy parameters in a heuristic manner. These parameters are solely controlled by geographical coordinates that are defined for the entire area under study, and the user has no guidance as to how to choose these parameters. The main thesis of the current study is that the selection of search strategy parameters has to be driven by data—both the spatial coordinates and the sample values—and cannot be chosen beforehand. For this purpose, a genetic-algorithm-based ordinary kriging with moving neighborhood technique is proposed. The search capability of a genetic algorithm is exploited to search the feature space for appropriate, either local or global, search strategy parameters. Radius of circle/sphere and/or radii of standard or rotated ellipse/ellipsoid are considered as the decision variables to be optimized by GA. The superiority of GA-based ordinary kriging is demonstrated through application to the Wolfcamp Aquifer piezometric head data. Assessment of numerical results showed that definition of search strategy parameters based on both geographical coordinates and sample values improves cross-validation statistics when compared with that based on geographical coordinates alone. In the case of a variable search neighborhood for each estimation point, optimization of local search strategy parameters for an elliptical support domain—the orientation of which is dictated by anisotropic axes—via GA was able to capture the dynamics of piezometric head in west Texas/New Mexico in an efficient way.
A coupled model tree (MT) genetic algorithm (GA) scheme for biofouling assessment in pipelines.
Opher, Tamar; Ostfeld, Avi
2011-11-15
A computerized learning algorithm was developed for assessing the extent of biofouling formations on the inner surfaces of water supply pipelines. Four identical pipeline experimental systems with four different types of inlet waters were set up as part of a large cooperative project between academia and industry in Israel on biofouling modeling, prediction, and prevention in pipeline systems. Samples were taken periodically for hydraulic, chemical, and biological analyses. Biofilm sampling was done using Robbins devices, carrying stainless steel coupons. An MT-GA, a hybrid model combining model trees (MTs) and genetic algorithms (GAs) in which the sampled input data are selected by the proposed methodology, was developed. The method outcome is a set of empirical linear rules which form a model tree, iteratively optimized by a GA and verified using the dataset resulting from the empirical field studies. Good correlations were achieved between modeled and observed cell coverage area within the biofilm. Sensitivity analysis was conducted by testing the model's response to changes in: (1) the biofilm measure used as output (target) variable; (2) variability of GA parameters; and (3) input attributes. The proposed methodology provides a new tool for biofouling assessment in pipelines. PMID:21978570
Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.
Mei, Gang; Xu, Nengxiong; Xu, Liangliang
2016-01-01
This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm. PMID:27610308
Abedini, Mohammad; Moradi, Mohammad H; Hosseinian, S M
2016-03-01
This paper proposes a novel method to address reliability and technical problems of microgrids (MGs) based on designing a number of self-adequate autonomous sub-MGs via adopting MGs clustering thinking. In doing so, a multi-objective optimization problem is developed where power losses reduction, voltage profile improvement and reliability enhancement are considered as the objective functions. To solve the optimization problem a hybrid algorithm, named HS-GA, is provided, based on genetic and harmony search algorithms, and a load flow method is given to model different types of DGs as droop controller. The performance of the proposed method is evaluated in two case studies. The results provide support for the performance of the proposed method. PMID:26767800
Lu Dawei; Peng Xinhua; Du Jiangfeng; Zhu Jing; Zou Ping; Yu Yihua; Zhang Shanmin; Chen Qun
2010-02-15
An important quantum search algorithm based on the quantum random walk performs an oracle search on a database of N items with O({radical}(phN)) calls, yielding a speedup similar to the Grover quantum search algorithm. The algorithm was implemented on a quantum information processor of three-qubit liquid-crystal nuclear magnetic resonance (NMR) in the case of finding 1 out of 4, and the diagonal elements' tomography of all the final density matrices was completed with comprehensible one-dimensional NMR spectra. The experimental results agree well with the theoretical predictions.
New Tabu Search based global optimization methods outline of algorithms and study of efficiency.
Stepanenko, Svetlana; Engels, Bernd
2008-04-15
The study presents two new nonlinear global optimization routines; the Gradient Only Tabu Search (GOTS) and the Tabu Search with Powell's Algorithm (TSPA). They are based on the Tabu-Search strategy, which tries to determine the global minimum of a function by the steepest descent-mildest ascent strategy. The new algorithms are explained and their efficiency is compared with other approaches by determining the global minima of various well-known test functions with varying dimensionality. These tests show that for most tests the GOTS possesses a much faster convergence than global optimizer taken from the literature. The efficiency of the TSPA compares to the efficiency of genetic algorithms. PMID:17910004
NASA Astrophysics Data System (ADS)
Lu, Dawei; Zhu, Jing; Zou, Ping; Peng, Xinhua; Yu, Yihua; Zhang, Shanmin; Chen, Qun; Du, Jiangfeng
2010-02-01
An important quantum search algorithm based on the quantum random walk performs an oracle search on a database of N items with O(phN) calls, yielding a speedup similar to the Grover quantum search algorithm. The algorithm was implemented on a quantum information processor of three-qubit liquid-crystal nuclear magnetic resonance (NMR) in the case of finding 1 out of 4, and the diagonal elements’ tomography of all the final density matrices was completed with comprehensible one-dimensional NMR spectra. The experimental results agree well with the theoretical predictions.
An almost-parameter-free harmony search algorithm for groundwater pollution source identification
NASA Astrophysics Data System (ADS)
Jiang, S.; Zhang, Y.; Zhao, L.; Zheng, M.
2012-12-01
The spatiotemporal characterization of unknown groundwater pollution sources is frequently encountered in environment problems. This study adopts the use of optimization approach that combines a numerical groundwater flow and transport model with heuristic harmony search algorithm to identify the unknown pollution sources. In the proposed methodology, an almost-parameter-free harmony search algorithm is developed to overcome the inherent shortcoming (tedious and skillful parameter-setting process for the algorithm parameters) in harmony search algorithm. Another advantage in the new proposed harmony search algorithm is that it uses individual parameter values for each decision variable, while the classical harmony search algorithm uses lump parameter values for all decision variables. The performance of this methodology is evaluated on an illustrative groundwater pollution source identification problem, and the identified results indicate that the proposed almost-parameter-free harmony search algorithm based optimization model can give satisfactory estimations, even though the irregular geometry, erroneous monitoring data, and prior information shortage on potential locations are considered.Identification results of pollution sources; L: error level of observation dataRE: relative errorSD: standard deviationE: objective functionNEE: Source identification error Actual values of pollution sources;
A tabu search algorithm for post-processing multiple sequence alignment.
Riaz, Tariq; Yi, Wang; Li, Kuo-Bin
2005-02-01
Tabu search is a meta-heuristic approach that is proven to be useful in solving combinatorial optimization problems. We implement the adaptive memory features of tabu search to refine a multiple sequence alignment. Adaptive memory helps the search process to avoid local optima and explores the solution space economically and effectively without getting trapped into cycles. The algorithm is further enhanced by introducing extended tabu search features such as intensification and diversification. The neighborhoods of a solution are generated stochastically and a consistency-based objective function is employed to measure its quality. The algorithm is tested with the datasets from BAliBASE benchmarking database. We have observed through experiments that tabu search is able to improve the quality of multiple alignments generated by other software such as ClustalW and T-Coffee. The source code of our algorithm is available at http://www.bii.a-star.edu.sg/~tariq/tabu/. PMID:15751117
Multifactorial global search algorithm in the problem of optimizing a reactive force field
NASA Astrophysics Data System (ADS)
Stepanova, M. M.; Shefov, K. S.; Slavyanov, S. Yu.
2016-04-01
We present a new multifactorial global search algorithm ( MGSA) and check the operability of the algorithm on the Michalewicz and Rastrigin functions. We discuss the choice of an objective function and additional search criteria in the context of the problem of reactive force field ( ReaxFF) optimization and study the ranking of the ReaxFF parameters together with their impact on the objective function.
Beyond Hydrodynamics via a Fluid Element PIC algorithm, GaPH
NASA Astrophysics Data System (ADS)
Bateson, William; Hewett, Dennis; Lambert, Michael
1996-11-01
For strongly-driven gas and plasma systems, issues of interpenetration and turbulence have led to difficulties with fluid models. For example, a Maxwell distribution within the finite volume could miss the interpenetration and shear regions between two fluids. To address these and other issues, we have extended our Grid and Particle Hydrodynamics (GaPH), a fluid element PIC code, beyond the initial high-precision, 1-D collisionless solutions[2] to 2-D with both binary and viscous drag collisions. The GaPH algorithm still aggressively probes for emerging phase space features by fitting new "particles" to the "hydrodynamic" evolution of individual particles and aggressively merges to preserves economy if interesting features fail to materialize. Recent extensions add collisonal diffusion to the hydrodynamics. Through these and other extensions, GaPH approximates Boltzmann transport thus leaving the fluid model assumption of a local Maxwell distribution behind. [1] This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48 and by Sandia National Laboratory under Contract DE-AC04-94AL85000. [2] "Beyond Hydrodynamics via Fluid Element Particle-In-Cell", WB Bateson and DW Hewett, (submitted J. Comp. Phys. July 1996).
Renaut, R.; He, Q.
1994-12-31
In a new parallel iterative algorithm for unconstrained optimization by multisplitting is proposed. In this algorithm the original problem is split into a set of small optimization subproblems which are solved using well known sequential algorithms. These algorithms are iterative in nature, e.g. DFP variable metric method. Here the authors use sequential algorithms based on an inexact subspace search, which is an extension to the usual idea of an inexact fine search. Essentially the idea of the inexact line search for nonlinear minimization is that at each iteration the authors only find an approximate minimum in the line search direction. Hence by inexact subspace search, they mean that, instead of finding the minimum of the subproblem at each interation, they do an incomplete down hill search to give an approximate minimum. Some convergence and numerical results for this algorithm will be presented. Further, the original theory will be generalized to the situation with a singular Hessian. Applications for nonlinear least squares problems will be presented. Experimental results will be presented for implementations on an Intel iPSC/860 Hypercube with 64 nodes as well as on the Intel Paragon.
Angus, Simon D.; Piotrowska, Monika Joanna
2014-01-01
Multi-dose radiotherapy protocols (fraction dose and timing) currently used in the clinic are the product of human selection based on habit, received wisdom, physician experience and intra-day patient timetabling. However, due to combinatorial considerations, the potential treatment protocol space for a given total dose or treatment length is enormous, even for relatively coarse search; well beyond the capacity of traditional in-vitro methods. In constrast, high fidelity numerical simulation of tumor development is well suited to the challenge. Building on our previous single-dose numerical simulation model of EMT6/Ro spheroids, a multi-dose irradiation response module is added and calibrated to the effective dose arising from 18 independent multi-dose treatment programs available in the experimental literature. With the developed model a constrained, non-linear, search for better performing cadidate protocols is conducted within the vicinity of two benchmarks by genetic algorithm (GA) techniques. After evaluating less than 0.01% of the potential benchmark protocol space, candidate protocols were identified by the GA which conferred an average of 9.4% (max benefit 16.5%) and 7.1% (13.3%) improvement (reduction) on tumour cell count compared to the two benchmarks, respectively. Noticing that a convergent phenomenon of the top performing protocols was their temporal synchronicity, a further series of numerical experiments was conducted with periodic time-gap protocols (10 h to 23 h), leading to the discovery that the performance of the GA search candidates could be replicated by 17–18 h periodic candidates. Further dynamic irradiation-response cell-phase analysis revealed that such periodicity cohered with latent EMT6/Ro cell-phase temporal patterning. Taken together, this study provides powerful evidence towards the hypothesis that even simple inter-fraction timing variations for a given fractional dose program may present a facile, and highly cost
Direct tabu search algorithm for the fiber Bragg grating distributed strain sensing
NASA Astrophysics Data System (ADS)
Karim, F.; Seddiki, O.
2010-09-01
A direct tabu search (DTS) algorithm used for determining the strain profile along a fiber Bragg grating (FBG) from its reflection spectrum has been demonstrated. By combining the transfer matrix method (TMM) for calculating the reflection spectrum of an FBG and the DTS method, we obtain a new method for the distributed sensing. Direct search based strategies are used to direct a tabu search. These strategies are based on a new pattern search procedure called an adaptive pattern search (APS). In addition, the well-known Nelder-Mead (NME) algorithm is used as a local search method in the final stage of the optimization process. The numerical simulations show good agreement between the original and the reconstructed strain profiles.
On the use of harmony search algorithm in the training of wavelet neural networks
NASA Astrophysics Data System (ADS)
Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline
2015-10-01
Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.
Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang
2016-01-01
Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938
Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang
2016-01-01
Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938
NASA Astrophysics Data System (ADS)
Nawi, Nazri Mohd.; Khan, Abdullah; Rehman, M. Z.
2015-05-01
A nature inspired behavior metaheuristic techniques which provide derivative-free solutions to solve complex problems. One of the latest additions to the group of nature inspired optimization procedure is Cuckoo Search (CS) algorithm. Artificial Neural Network (ANN) training is an optimization task since it is desired to find optimal weight set of a neural network in training process. Traditional training algorithms have some limitation such as getting trapped in local minima and slow convergence rate. This study proposed a new technique CSLM by combining the best features of two known algorithms back-propagation (BP) and Levenberg Marquardt algorithm (LM) for improving the convergence speed of ANN training and avoiding local minima problem by training this network. Some selected benchmark classification datasets are used for simulation. The experiment result show that the proposed cuckoo search with Levenberg Marquardt algorithm has better performance than other algorithm used in this study.
NASA Astrophysics Data System (ADS)
Kanagaraj, G.; Ponnambalam, S. G.; Jawahar, N.; Mukund Nilakantan, J.
2014-10-01
This article presents an effective hybrid cuckoo search and genetic algorithm (HCSGA) for solving engineering design optimization problems involving problem-specific constraints and mixed variables such as integer, discrete and continuous variables. The proposed algorithm, HCSGA, is first applied to 13 standard benchmark constrained optimization functions and subsequently used to solve three well-known design problems reported in the literature. The numerical results obtained by HCSGA show competitive performance with respect to recent algorithms for constrained design optimization problems.
NASA Astrophysics Data System (ADS)
Chappell, James M.; Iqbal, Azhar; Lohe, M. A.; von Smekal, Lorenz; Abbott, Derek
2013-04-01
The Grover search algorithm is one of the two key algorithms in the field of quantum computing, and hence it is desirable to represent it in the simplest and most intuitive formalism possible. We show firstly, that Clifford's geometric algebra, provides a significantly simpler representation than the conventional bra-ket notation, and secondly, that the basis defined by the states of maximum and minimum weight in the Grover search space, allows a simple visualization of the Grover search analogous to the precession of a spin-{1/2} particle. Using this formalism we efficiently solve the exact search problem, as well as easily representing more general search situations. We do not claim the development of an improved algorithm, but show in a tutorial paper that geometric algebra provides extremely compact and elegant expressions with improved clarity for the Grover search algorithm. Being a key algorithm in quantum computing and one of the most studied, it forms an ideal basis for a tutorial on how to elucidate quantum operations in terms of geometric algebra—this is then of interest in extending the applicability of geometric algebra to more complicated problems in fields of quantum computing, quantum decision theory, and quantum information.
An Efficient Search Algorithm for Finding Genomic-Range Overlaps Based on the Maximum Range Length.
Seok, Ho-Sik; Song, Taemin; Kong, Sek Won; Hwang, Kyu-Baek
2015-01-01
Efficient search algorithms for finding genomic-range overlaps are essential for various bioinformatics applications. A majority of fast algorithms for searching the overlaps between a query range (e.g., a genomic variant) and a set of N reference ranges (e.g., exons) has time complexity of O(k + logN), where kdenotes a term related to the length and location of the reference ranges. Here, we present a simple but efficient algorithm that reduces k, based on the maximum reference range length. Specifically, for a given query range and the maximum reference range length, the proposed method divides the reference range set into three subsets: always, potentially, and never overlapping. Therefore, search effort can be reduced by excluding never overlapping subset. We demonstrate that the running time of the proposed algorithm is proportional to potentially overlapping subset size, that is proportional to the maximum reference range length if all the other conditions are the same. Moreover, an implementation of our algorithm was 13.8 to 30.0 percent faster than one of the fastest range search methods available when tested on various genomic-range data sets. The proposed algorithm has been incorporated into a disease-linked variant prioritization pipeline for WGS (http://gnome.tchlab.org) and its implementation is available at http://ml.ssu.ac.kr/gSearch. PMID:26357316
Zhang, Jinkai; Rivard, Benoit; Rogge, D.M.
2008-01-01
Spectral mixing is a problem inherent to remote sensing data and results in few image pixel spectra representing ″pure″ targets. Linear spectral mixture analysis is designed to address this problem and it assumes that the pixel-to-pixel variability in a scene results from varying proportions of spectral endmembers. In this paper we present a different endmember-search algorithm called the Successive Projection Algorithm (SPA). SPA builds on convex geometry and orthogonal projection common to other endmember search algorithms by including a constraint on the spatial adjacency of endmember candidate pixels. Consequently it can reduce the susceptibility to outlier pixels and generates realistic endmembers.This is demonstrated using two case studies (AVIRIS Cuprite cube and Probe-1 imagery for Baffin Island) where image endmembers can be validated with ground truth data. The SPA algorithm extracts endmembers from hyperspectral data without having to reduce the data dimensionality. It uses the spectral angle (alike IEA) and the spatial adjacency of pixels in the image to constrain the selection of candidate pixels representing an endmember. We designed SPA based on the observation that many targets have spatial continuity (e.g. bedrock lithologies) in imagery and thus a spatial constraint would be beneficial in the endmember search. An additional product of the SPA is data describing the change of the simplex volume ratio between successive iterations during the endmember extraction. It illustrates the influence of a new endmember on the data structure, and provides information on the convergence of the algorithm. It can provide a general guideline to constrain the total number of endmembers in a search.
NASA Technical Reports Server (NTRS)
Lewis, Robert Michael; Torczon, Virginia
1998-01-01
We give a pattern search adaptation of an augmented Lagrangian method due to Conn, Gould, and Toint. The algorithm proceeds by successive bound constrained minimization of an augmented Lagrangian. In the pattern search adaptation we solve this subproblem approximately using a bound constrained pattern search method. The stopping criterion proposed by Conn, Gould, and Toint for the solution of this subproblem requires explicit knowledge of derivatives. Such information is presumed absent in pattern search methods; however, we show how we can replace this with a stopping criterion based on the pattern size in a way that preserves the convergence properties of the original algorithm. In this way we proceed by successive, inexact, bound constrained minimization without knowing exactly how inexact the minimization is. So far as we know, this is the first provably convergent direct search method for general nonlinear programming.
NASA Astrophysics Data System (ADS)
Li, Xiang-Tao; Yin, Ming-Hao
2012-05-01
We study the parameter estimation of a nonlinear chaotic system, which can be essentially formulated as a multidimensional optimization problem. In this paper, an orthogonal learning cuckoo search algorithm is used to estimate the parameters of chaotic systems. This algorithm can combine the stochastic exploration of the cuckoo search and the exploitation capability of the orthogonal learning strategy. Experiments are conducted on the Lorenz system and the Chen system. The proposed algorithm is used to estimate the parameters for these two systems. Simulation results and comparisons demonstrate that the proposed algorithm is better or at least comparable to the particle swarm optimization and the genetic algorithm when considering the quality of the solutions obtained.
The Effect of Interfering Ions on Search Algorithm Performance for ETD Data
Good, David M.; Wenger, Craig D.; Coon, Joshua J.
2009-01-01
Collision-activated dissociation (CAD) and electron-transfer dissociation (ETD) each produce spectra containing unique features. Though several database search algorithms (e.g., SEQUEST, Mascot, and OMSSA) have been modified to search ETD data, this consists chiefly of the ability to search for c- and z•-ions; additional ETD-specific features are often unaccounted for, and may hinder identification. Removal of these features via spectral processing increased total search sensitivity by ∼20% for both human and yeast datasets; unique identifications increased by ∼17% for the yeast datasets and ∼16% for the human dataset. PMID:19899080
Development of the algorithm for life for the search for extraterrestrial life
NASA Astrophysics Data System (ADS)
Kolb, Vera M.
2013-09-01
We first introduce a concept of algorithms in a form which is useful to astrobiology. We follow Dennett's description of algorithms, which he has used to introduce the idea that evolution takes place via natural selection in an algorithmic process. We then bring up various examples and principles of evolution, including inventive evolution for the biosynthesis of secondary metabolites, and propose them as candidates for constituting evolutionary algorithms. Finally, we discuss philosophy papers of Rescher about extraterrestrials and their science and attempt to extract from them some generalized principles for the search for extraterrestrial life.
A fast algorithm for exact sequence search in biological sequences using polyphase decomposition
Srikantha, Abhilash; Bopardikar, Ajit S.; Kaipa, Kalyan Kumar; Venkataraman, Parthasarathy; Lee, Kyusang; Ahn, TaeJin; Narayanan, Rangavittal
2010-01-01
Motivation: Exact sequence search allows a user to search for a specific DNA subsequence in a larger DNA sequence or database. It serves as a vital block in many areas such as Pharmacogenetics, Phylogenetics and Personal Genomics. As sequencing of genomic data becomes increasingly affordable, the amount of sequence data that must be processed will also increase exponentially. In this context, fast sequence search algorithms will play an important role in exploiting the information contained in the newly sequenced data. Many existing algorithms do not scale up well for large sequences or databases because of their high-computational costs. This article describes an efficient algorithm for performing fast searches on large DNA sequences. It makes use of hash tables of Q-grams that are constructed after downsampling the database, to enable efficient search and memory use. Time complexity for pattern search is reduced using beam pruning techniques. Theoretical complexity calculations and performance figures are presented to indicate the potential of the proposed algorithm. Contact: s.abhilash@samsung.com; ajit.b@samsung.com PMID:20823301
Darzi, Soodabeh; Tiong, Sieh Kiong; Tariqul Islam, Mohammad; Rezai Soleymanpour, Hassan; Kibria, Salehin
2016-01-01
An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents’ positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness. PMID:27399904
Darzi, Soodabeh; Tiong, Sieh Kiong; Tariqul Islam, Mohammad; Rezai Soleymanpour, Hassan; Kibria, Salehin
2016-01-01
An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents' positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness. PMID:27399904
NASA Astrophysics Data System (ADS)
Zainuddin, Zarita; Lai, Kee Huong; Ong, Pauline
2013-04-01
Artificial neural networks (ANNs) are powerful mathematical models that are used to solve complex real world problems. Wavelet neural networks (WNNs), which were developed based on the wavelet theory, are a variant of ANNs. During the training phase of WNNs, several parameters need to be initialized; including the type of wavelet activation functions, translation vectors, and dilation parameter. The conventional k-means and fuzzy c-means clustering algorithms have been used to select the translation vectors. However, the solution vectors might get trapped at local minima. In this regard, the evolutionary harmony search algorithm, which is capable of searching for near-optimum solution vectors, both locally and globally, is introduced to circumvent this problem. In this paper, the conventional k-means and fuzzy c-means clustering algorithms were hybridized with the metaheuristic harmony search algorithm. In addition to obtaining the estimation of the global minima accurately, these hybridized algorithms also offer more than one solution to a particular problem, since many possible solution vectors can be generated and stored in the harmony memory. To validate the robustness of the proposed WNNs, the real world problem of epileptic seizure detection was presented. The overall classification accuracy from the simulation showed that the hybridized metaheuristic algorithms outperformed the standard k-means and fuzzy c-means clustering algorithms.
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhang, FeiHao
2015-07-01
The success probability of searching an objective item from an unsorted database using standard Grover's algorithm is usually not exactly 1. It is exactly 1 only when it is used to find the target state from a database with four items. Exact search is always important in theoretical and practical applications. The failure rate of Grover's algorithm becomes big when the database is small, and this hinders the use of the commonly used divide-and-verify strategy. Even for large database, the failure rate becomes considerably large when there are many marked items. This has put a serious limitation on the usability of the Grover's algorithm. An important improved version of the Grover's algorithm, also known as the improved Grover algorithm, solves this problem. The improved Grover algorithm searches arbitrary number of target states from an unsorted database with full success rate. Here, we give the first experimental realization of the improved Grover algorithm, which finds a marked state with certainty, in a nuclear magnetic resonance system. The optimal control theory is used to obtain an optimized control sequence. The experimental results agree well with the theoretical predictions.
Wang, Gai-Ge; Feng, Qingjiang; Zhao, Xiang-Jun
2014-01-01
An effective hybrid cuckoo search algorithm (CS) with improved shuffled frog-leaping algorithm (ISFLA) is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability, a novel CS model is proposed with considering the specific advantages of Lévy flights and frog-leap operator. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations are carried out on six different types of 0-1 knapsack instances, and the comparative results have shown the effectiveness of the proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary differential evolution, and the genetic algorithm. PMID:25404940
Feng, Yanhong; Wang, Gai-Ge; Feng, Qingjiang; Zhao, Xiang-Jun
2014-01-01
An effective hybrid cuckoo search algorithm (CS) with improved shuffled frog-leaping algorithm (ISFLA) is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability, a novel CS model is proposed with considering the specific advantages of Lévy flights and frog-leap operator. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations are carried out on six different types of 0-1 knapsack instances, and the comparative results have shown the effectiveness of the proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary differential evolution, and the genetic algorithm. PMID:25404940
Wang, Jie-sheng; Li, Shu-xia; Song, Jiang-di
2015-01-01
In order to improve convergence velocity and optimization accuracy of the cuckoo search (CS) algorithm for solving the function optimization problems, a new improved cuckoo search algorithm based on the repeat-cycle asymptotic self-learning and self-evolving disturbance (RC-SSCS) is proposed. A disturbance operation is added into the algorithm by constructing a disturbance factor to make a more careful and thorough search near the bird's nests location. In order to select a reasonable repeat-cycled disturbance number, a further study on the choice of disturbance times is made. Finally, six typical test functions are adopted to carry out simulation experiments, meanwhile, compare algorithms of this paper with two typical swarm intelligence algorithms particle swarm optimization (PSO) algorithm and artificial bee colony (ABC) algorithm. The results show that the improved cuckoo search algorithm has better convergence velocity and optimization accuracy. PMID:26366164
Wang, Jie-sheng; Li, Shu-xia; Song, Jiang-di
2015-01-01
In order to improve convergence velocity and optimization accuracy of the cuckoo search (CS) algorithm for solving the function optimization problems, a new improved cuckoo search algorithm based on the repeat-cycle asymptotic self-learning and self-evolving disturbance (RC-SSCS) is proposed. A disturbance operation is added into the algorithm by constructing a disturbance factor to make a more careful and thorough search near the bird's nests location. In order to select a reasonable repeat-cycled disturbance number, a further study on the choice of disturbance times is made. Finally, six typical test functions are adopted to carry out simulation experiments, meanwhile, compare algorithms of this paper with two typical swarm intelligence algorithms particle swarm optimization (PSO) algorithm and artificial bee colony (ABC) algorithm. The results show that the improved cuckoo search algorithm has better convergence velocity and optimization accuracy. PMID:26366164
Multiparty controlled quantum secure direct communication based on quantum search algorithm
NASA Astrophysics Data System (ADS)
Kao, Shih-Hung; Hwang, Tzonelih
2013-12-01
In this study, a new controlled quantum secure direct communication (CQSDC) protocol using the quantum search algorithm as the encoding function is proposed. The proposed protocol is based on the multi-particle Greenberger-Horne-Zeilinger entangled state and the one-step quantum transmission strategy. Due to the one-step transmission of qubits, the proposed protocol can be easily extended to a multi-controller environment, and is also free from the Trojan horse attacks. The analysis shows that the use of quantum search algorithm in the construction of CQSDC appears very promising.
The fast simulated annealing algorithm applied to the search problem in LEED
NASA Astrophysics Data System (ADS)
Nascimento, V. B.; de Carvalho, V. E.; de Castilho, C. M. C.; Costa, B. V.; Soares, E. A.
2001-07-01
In this work we present new results obtained from the application of the fast simulated algorithm (FSA) to the surface structure determination of the Ag(1 1 0) and CdTe(1 1 0) systems. The influence of a control parameter, the "initial temperature", on the FSA search process was investigated. A scaling behaviour, that measures the efficiency of a search method as a function of the number of parameters to be varied, was obtained for the FSA algorithm, and indicated a favourable linear scaling ( N1).
NASA Technical Reports Server (NTRS)
Braun, W. R.
1982-01-01
An approach is described for approximating the cumulative probability distribution of the acquisition time of the serial pseudonoise (PN) search algorithm. The results are applicable to both variable and fixed dwell time systems. The theory is developed for the case where some a priori information is available on the PN code epoch (reacquisition problem or acquisition of very long codes). Also considered is the special case of a search over the whole code. The accuracy of the approximation is demonstrated by comparisons with published exact results for the fixed dwell time algorithm.
A novel artificial bee colony algorithm based on modified search equation and orthogonal learning.
Gao, Wei-feng; Liu, San-yang; Huang, Ling-ling
2013-06-01
The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, ABC has an insufficiency regarding its solution search equation, which is good at exploration but poor at exploitation. To address this concerning issue, we first propose an improved ABC method called as CABC where a modified search equation is applied to generate a candidate solution to improve the search ability of ABC. Furthermore, we use the orthogonal experimental design (OED) to form an orthogonal learning (OL) strategy for variant ABCs to discover more useful information from the search experiences. Owing to OED's good character of sampling a small number of well representative combinations for testing, the OL strategy can construct a more promising and efficient candidate solution. In this paper, the OL strategy is applied to three versions of ABC, i.e., the standard ABC, global-best-guided ABC (GABC), and CABC, which yields OABC, OGABC, and OCABC, respectively. The experimental results on a set of 22 benchmark functions demonstrate the effectiveness and efficiency of the modified search equation and the OL strategy. The comparisons with some other ABCs and several state-of-the-art algorithms show that the proposed algorithms significantly improve the performance of ABC. Moreover, OCABC offers the highest solution quality, fastest global convergence, and strongest robustness among all the contenders on almost all the test functions. PMID:23086528
Grover search algorithm with Rydberg-blockaded atoms: quantum Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Petrosyan, David; Saffman, Mark; Mølmer, Klaus
2016-05-01
We consider the Grover search algorithm implementation for a quantum register of size N={2}k using k (or k+1) microwave- and laser-driven Rydberg-blockaded atoms, following the proposal by Mølmer et al (2011 J. Phys. B 44 184016). We suggest some simplifications for the microwave and laser couplings, and analyze the performance of the algorithm for up to k = 4 multilevel atoms under realistic experimental conditions using quantum stochastic (Monte Carlo) wavefunction simulations.
Algorithms for Lunar Flash Video Search, Measurement, and Archiving
NASA Technical Reports Server (NTRS)
Swift, Wesley; Suggs, Robert; Cooke, Bill
2007-01-01
Lunar meteoroid impact flashes provide a method to estimate the flux of the large meteoroid flux and thus their hazard to spacecraft. Although meteoroid impacts on the Moon have been detected using video methods for over a decade, the difficulty of manually searching hours of video for the rare, extremely brief impact flashes has discouraged the technique's systematic implementation. A prototype has been developed for the purpose of automatically searching lunar video records for impact flashes, eliminating false detections, editing the returned possible flashes, Z and archiving and documenting the results. The theory and organization of the program is discussed with emphasis on the filtering out of several classes of false detections and retaining the brief portions of the raw video necessary for in depth analysis of the flashes detected. Several utilities for measurement, analysis, and location of the flashes on the moon included in the program are demonstrated. Application of the program to a year's worth of lunar observations is discussed along with examples of impact flashes as well as several classes of false impact flashes.
Algorithms for Lunar Flash Video Search, Measurement, and Archiving
NASA Technical Reports Server (NTRS)
Swift, Wesley; Suggs, Robert; Cooke, William
2007-01-01
Lunar meteoroid impact flashes provide a method to estimate the flux of the large meteoroid flux and thus their hazard to spacecraft. Although meteoroid impacts on the Moon have been detected using video methods for over a decade, the difficulty of manually searching hours of video for the rare, extremely brief impact flashes has discouraged the technique's systematic implementation. A prototype has been developed for the purpose of automatically searching Lunar video records for impact flashes, eliminating false detections, editing the returned possible flashes, and archiving and documenting the results. The theory and organization of the program is discussed with emphasis on the filtering out of several classes of false detections and retaining the brief portions of the raw video necessary for in depth analysis of the flashes detected. Several utilities for measurement, analysis, and location of the flashes on the moon included in the program are demonstrated. Application of the program to a year's worth of Lunar observations is discussed along with examples of impact flashes as well as several classes of false impact flashes.
An iterative searching and ranking algorithm for prioritising pharmacogenomics genes.
Xu, Rong; Wang, Quanqiu
2013-01-01
Pharmacogenomics (PGx) studies are to identify genetic variants that may affect drug efficacy and toxicity. A machine understandable drug-gene relationship knowledge is important for many computational PGx studies and for personalised medicine. A comprehensive and accurate PGx-specific gene lexicon is important for automatic drug-gene relationship extraction from the scientific literature, rich knowledge source for PGx studies. In this study, we present a bootstrapping learning technique to rank 33,310 human genes with respect to their relevance to drug response. The algorithm uses only one seed PGx gene to iteratively extract and rank co-occurred genes using 20 million MEDLINE abstracts. Our ranking method is able to accurately rank PGx-specific genes highly among all human genes. Compared to randomly ranked genes (precision: 0.032, recall: 0.013, F1: 0.018), the algorithm has achieved significantly better performance (precision: 0.861, recall: 0.548, F1: 0.662) in ranking the top 2.5% of genes. PMID:23428471
Improvement of Service Searching Algorithm in the JVO Portal Site
NASA Astrophysics Data System (ADS)
Eguchi, S.; Shirasak, Y.; Komiya, Y.; Ohishi, M.; Mizumoto, Y.; Ishihara, Y.; Tsutsumi, J.; Hiyama, T.; Nakamoto, H.; Sakamoto, M.
2012-09-01
The Virtual Observatory (VO) consists of a huge amount of astronomical databases which contain both of theoretical and observational data obtained with various methods, telescopes, and instruments. Since VO provides raw and processed observational data, astronomers can concentrate themselves on their scientific interests without awareness of instruments; all they have to know is which service provides their interested data. On the other hand, services on the VO system will be better used if queries can be made by means of telescopes, wavelengths, and object types; currently it is difficult for newcomers to find desired ones. We have recently started a project towards improving the data service functionality and usability on the Japanese VO (JVO) portal site. We are now working on implementation of a function to automatically classify all services on VO in terms of telescopes and instruments without referring to the facility and instrument keywords, which are not always filled in most cases. In the paper, we report a new algorithm towards constructing the facility and instrument keywords from other information of a service, and discuss its effectiveness. We also propose a new user interface of the portal site with this algorithm.
Box length search algorithm for molecular simulation of systems containing periodic structures.
Schultz, A J; Hall, C K; Genzer, J
2004-01-22
We have developed a box length search algorithm to efficiently find the appropriate box dimensions for constant-volume molecular simulation of periodic structures. The algorithm works by finding the box lengths that equalize the pressure in each direction while maintaining constant total volume. Maintaining the volume at a fixed value ensures that quantitative comparisons can be made between simulation and experimental, theoretical or other simulation results for systems that are incompressible or nearly incompressible. We test the algorithm on a system of phase-separated block copolymers that has a preferred box length in one dimension. We also describe and test a Monte Carlo algorithm that allows the box lengths to change while maintaining constant volume. We find that the box length search algorithm converges at least two orders of magnitude more quickly than the variable box length Monte Carlo method. Although the box length search algorithm is not ergodic, it successfully finds the box length that minimizes the free energy of the system. We verify this by examining the free energy as determined by the Monte Carlo simulation. PMID:15268341
LC-Grid: a linear global contact search algorithm for finite element analysis
NASA Astrophysics Data System (ADS)
Chen, Hu; Lei, Zhou; Zang, Mengyan
2014-11-01
The contact searching is computationally intensive and its memory requirement is highly demanding; therefore, it is significant to develop an efficient contact search algorithm with less memory required. In this paper, we propose an efficient global contact search algorithm with linear complexity in terms of computational cost and memory requirement for the finite element analysis of contact problems. This algorithm is named LC-Grid (Lei devised the algorithm and Chen implemented it). The contact space is decomposed; thereafter, all contact nodes and segments are firstly mapped onto layers, then onto rows and lastly onto cells. In each mapping level, the linked-list technique is used for the efficient storing and retrieval of contact nodes and segments. The contact detection is performed in each non-empty cell along non-empty rows in each non-empty layer, and moves to the next non-empty layer once a layer is completed. The use of migration strategy makes the algorithm insensitive to mesh size. The properties of this algorithm are investigated and numerically verified to be linearly proportional to the number of contact segments. Besides, the ideal ranges of two significant scale factors of cell size and buffer zone which strongly affect computational efficiency are determined via an illustrative example.
Novel Back Propagation Optimization by Cuckoo Search Algorithm
Yi, Jiao-hong; Xu, Wei-hong; Chen, Yuan-tao
2014-01-01
The traditional Back Propagation (BP) has some significant disadvantages, such as training too slowly, easiness to fall into local minima, and sensitivity of the initial weights and bias. In order to overcome these shortcomings, an improved BP network that is optimized by Cuckoo Search (CS), called CSBP, is proposed in this paper. In CSBP, CS is used to simultaneously optimize the initial weights and bias of BP network. Wine data is adopted to study the prediction performance of CSBP, and the proposed method is compared with the basic BP and the General Regression Neural Network (GRNN). Moreover, the parameter study of CSBP is conducted in order to make the CSBP implement in the best way. PMID:25028682
Novel back propagation optimization by Cuckoo Search algorithm.
Yi, Jiao-hong; Xu, Wei-hong; Chen, Yuan-tao
2014-01-01
The traditional Back Propagation (BP) has some significant disadvantages, such as training too slowly, easiness to fall into local minima, and sensitivity of the initial weights and bias. In order to overcome these shortcomings, an improved BP network that is optimized by Cuckoo Search (CS), called CSBP, is proposed in this paper. In CSBP, CS is used to simultaneously optimize the initial weights and bias of BP network. Wine data is adopted to study the prediction performance of CSBP, and the proposed method is compared with the basic BP and the General Regression Neural Network (GRNN). Moreover, the parameter study of CSBP is conducted in order to make the CSBP implement in the best way. PMID:25028682
NASA Technical Reports Server (NTRS)
Bosworth, Edward L., Jr.
1987-01-01
The focus of this research is the investigation of data structures and associated search algorithms for automated fault diagnosis of complex systems such as the Hubble Space Telescope. Such data structures and algorithms will form the basis of a more sophisticated Knowledge Based Fault Diagnosis System. As a part of the research, several prototypes were written in VAXLISP and implemented on one of the VAX-11/780's at the Marshall Space Flight Center. This report describes and gives the rationale for both the data structures and algorithms selected. A brief discussion of a user interface is also included.
Soft-Decision Decoding of Binary Linear Block Codes Based on an Iterative Search Algorithm
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao; Moorthy, H. T.
1997-01-01
This correspondence presents a suboptimum soft-decision decoding scheme for binary linear block codes based on an iterative search algorithm. The scheme uses an algebraic decoder to iteratively generate a sequence of candidate codewords one at a time using a set of test error patterns that are constructed based on the reliability information of the received symbols. When a candidate codeword is generated, it is tested based on an optimality condition. If it satisfies the optimality condition, then it is the most likely (ML) codeword and the decoding stops. If it fails the optimality test, a search for the ML codeword is conducted in a region which contains the ML codeword. The search region is determined by the current candidate codeword and the reliability of the received symbols. The search is conducted through a purged trellis diagram for the given code using the Viterbi algorithm. If the search fails to find the ML codeword, a new candidate is generated using a new test error pattern, and the optimality test and search are renewed. The process of testing and search continues until either the MEL codeword is found or all the test error patterns are exhausted and the decoding process is terminated. Numerical results show that the proposed decoding scheme achieves either practically optimal performance or a performance only a fraction of a decibel away from the optimal maximum-likelihood decoding with a significant reduction in decoding complexity compared with the Viterbi decoding based on the full trellis diagram of the codes.
A multiobjective scatter search algorithm for fault-tolerant NoC mapping optimisation
NASA Astrophysics Data System (ADS)
Le, Qianqi; Yang, Guowu; Hung, William N. N.; Zhang, Xinpeng; Fan, Fuyou
2014-08-01
Mapping IP cores to an on-chip network is an important step in Network-on-Chip (NoC) design and affects the performance of NoC systems. A mapping optimisation algorithm and a fault-tolerant mechanism are proposed in this article. The fault-tolerant mechanism and the corresponding routing algorithm can recover NoC communication from switch failures, while preserving high performance. The mapping optimisation algorithm is based on scatter search (SS), which is an intelligent algorithm with a powerful combinatorial search ability. To meet the requests of the NoC mapping application, the standard SS is improved for multiple objective optimisation. This method helps to obtain high-performance mapping layouts. The proposed algorithm was implemented on the Embedded Systems Synthesis Benchmarks Suite (E3S). Experimental results show that this optimisation algorithm achieves low-power consumption, little communication time, balanced link load and high reliability, compared to particle swarm optimisation and genetic algorithm.
MEPSA: A flexible peak search algorithm designed for uniformly spaced time series
NASA Astrophysics Data System (ADS)
Guidorzi, C.
2015-04-01
We present a novel algorithm aimed at identifying peaks within a uniformly sampled time series affected by uncorrelated Gaussian noise. The algorithm, called "MEPSA" (multiple excess peak search algorithm), essentially scans the time series at different timescales by comparing a given peak candidate with a variable number of adjacent bins. While this has originally been conceived for the analysis of gamma-ray burst light (GRB) curves, its usage can be readily extended to other astrophysical transient phenomena, whose activity is recorded through different surveys. We tested and validated it through simulated featureless profiles as well as simulated GRB time profiles. We showcase the algorithm's potential by comparing with the popular algorithm by Li and Fenimore, that is frequently adopted in the literature. Thanks to its high flexibility, the mask of excess patterns used by MEPSA can be tailored and optimised to the kind of data to be analysed without modifying the code. The C code is made publicly available.
NASA Astrophysics Data System (ADS)
Goswami, D.; Chakraborty, S.
2014-11-01
Laser machining is a promising non-contact process for effective machining of difficult-to-process advanced engineering materials. Increasing interest in the use of lasers for various machining operations can be attributed to its several unique advantages, like high productivity, non-contact processing, elimination of finishing operations, adaptability to automation, reduced processing cost, improved product quality, greater material utilization, minimum heat-affected zone and green manufacturing. To achieve the best desired machining performance and high quality characteristics of the machined components, it is extremely important to determine the optimal values of the laser machining process parameters. In this paper, fireworks algorithm and cuckoo search (CS) algorithm are applied for single as well as multi-response optimization of two laser machining processes. It is observed that although almost similar solutions are obtained for both these algorithms, CS algorithm outperforms fireworks algorithm with respect to average computation time, convergence rate and performance consistency.
An Improved Greedy Search Algorithm for the Development of a Phonetically Rich Speech Corpus
NASA Astrophysics Data System (ADS)
Zhang, Jin-Song; Nakamura, Satoshi
An efficient way to develop large scale speech corpora is to collect phonetically rich ones that have high coverage of phonetic contextual units. The sentence set, usually called as the minimum set, should have small text size in order to reduce the collection cost. It can be selected by a greedy search algorithm from a large mother text corpus. With the inclusion of more and more phonetic contextual effects, the number of different phonetic contextual units increased dramatically, making the search not a trivial issue. In order to improve the search efficiency, we previously proposed a so-called least-to-most-ordered greedy search based on the conventional algorithms. This paper evaluated these algorithms in order to show their different characteristics. The experimental results showed that the least-to-most-ordered methods successfully achieved smaller objective sets at significantly less computation time, when compared with the conventional ones. This algorithm has already been applied to the development a number of speech corpora, including a large scale phonetically rich Chinese speech corpus ATRPTH which played an important role in developing our multi-language translation system.
NASA Technical Reports Server (NTRS)
Boussalis, Dhemetrios; Wang, Shyh J.
1992-01-01
This paper presents a method for utilizing artificial neural networks for direct adaptive control of dynamic systems with poorly known dynamics. The neural network weights (controller gains) are adapted in real time using state measurements and a random search optimization algorithm. The results are demonstrated via simulation using two highly nonlinear systems.
Robust Mokken Scale Analysis by Means of the Forward Search Algorithm for Outlier Detection
ERIC Educational Resources Information Center
Zijlstra, Wobbe P.; van der Ark, L. Andries; Sijtsma, Klaas
2011-01-01
Exploratory Mokken scale analysis (MSA) is a popular method for identifying scales from larger sets of items. As with any statistical method, in MSA the presence of outliers in the data may result in biased results and wrong conclusions. The forward search algorithm is a robust diagnostic method for outlier detection, which we adapt here to…
An Algorithm for Constructing and Searching Spaces of Alternative Hypotheses
Testa, Kelly M; Griffin, Christopher H
2011-01-01
In this paper, we develop techniques for automated hypothesis-space exploration over data sets that may contain contradictions. To do so, we make use of the equivalence between two formulations: those of first-order predicate logic with prefix modal quantifiers under the finite-model hypothesis and those of mixed-integer linear programming (MILP) problems. Unlike other approaches, we do not assume that all logical assertions are true without doubt. Instead, we look for alternative hypotheses about the validity of the claims by identifying alternative optimal solutions to a corresponding MILP. We use a collection of slack variables in the derived linear constraints to indicate the presence of contradictory data or assumptions. The objective is to minimize contradictions between data and assertions represented by the presence of nonzero slack in the set of linear constraints. In this paper, we present the following: 1) a correspondence between first-order predicate logic with modal quantifier prefixes under the finite-model hypothesis and MILP problems and 2) an implicit enumeration algorithm for exploring the contradiction hypothesis space.
Optimal vaccination schedule search using genetic algorithm over MPI technology
2012-01-01
Background Immunological strategies that achieve the prevention of tumor growth are based on the presumption that the immune system, if triggered before tumor onset, could be able to defend from specific cancers. In supporting this assertion, in the last decade active immunization approaches prevented some virus-related cancers in humans. An immunopreventive cell vaccine for the non-virus-related human breast cancer has been recently developed. This vaccine, called Triplex, targets the HER-2-neu oncogene in HER-2/neu transgenic mice and has shown to almost completely prevent HER-2/neu-driven mammary carcinogenesis when administered with an intensive and life-long schedule. Methods To better understand the preventive efficacy of the Triplex vaccine in reduced schedules we employed a computational approach. The computer model developed allowed us to test in silico specific vaccination schedules in the quest for optimality. Specifically here we present a parallel genetic algorithm able to suggest optimal vaccination schedule. Results & Conclusions The enormous complexity of combinatorial space to be explored makes this approach the only possible one. The suggested schedule was then tested in vivo, giving good results. Finally, biologically relevant outcomes of optimization are presented. PMID:23148787
An algorithm for constructing and searching spaces of alternative hypotheses.
Griffin, Christopher; Testa, Kelly; Racunas, Stephen
2011-06-01
In this paper, we develop techniques for automated hypothesis-space exploration over data sets that may contain contradictions. To do so, we make use of the equivalence between two formulations: those of first-order predicate logic with prefix modal quantifiers under the finite-model hypothesis and those of mixed-integer linear programming (MILP) problems. Unlike other approaches, we do not assume that all logical assertions are true without doubt. Instead, we look for alternative hypotheses about the validity of the claims by identifying alternative optimal solutions to a corresponding MILP. We use a collection of slack variables in the derived linear constraints to indicate the presence of contradictory data or assumptions. The objective is to minimize contradictions between data and assertions represented by the presence of nonzero slack in the set of linear constraints. In this paper, we present the following: 1) a correspondence between first-order predicate logic with modal quantifier prefixes under the finite-model hypothesis and MILP problems and 2) an implicit enumeration algorithm for exploring the contradiction hypothesis space. PMID:21147596
ERIC Educational Resources Information Center
Robertson, Alexander M.; Willett, Peter
1996-01-01
Describes a genetic algorithm (GA) that assigns weights to query terms in a ranked-output document retrieval system. Experiments showed the GA often found weights slightly superior to those produced by deterministic weighting (F4). Many times, however, the two methods gave the same results and sometimes the F4 results were superior, indicating…
Matrix Algebra for Quantum Search Algorithm: Non Unitary Symmetries and Entanglement
NASA Astrophysics Data System (ADS)
Ellinas, Demosthenes; Konstandakis, Christos
2011-10-01
An algebraic reformulation of the quantum search algorithm associated to a k-valued oracle function, is introduced in terms of the so called oracle matrix algebra, by means of which a Bloch sphere like description of search is obtained. A parametric family of symmetric completely positive trace preserving (CPTP) maps, that formalize the presence of quantum noise but preserves the complexity of the algorithm, is determined. Dimensional reduction of representations of oracle Lie algebra is introduced in order to determine the reduced density matrix of subsets of qubits in database. The L1 vector-induced norm of reduced density matrix is employed to define an index function for the quantum entanglement between database qubits, in the presence of non invariant noise CPTP maps. Analytic investigations provide a causal relation between entanglement and fidelity of the algorithm, which is controlled by quantum noise parameter.
Adaptively resizing populations: Algorithm, analysis, and first results
NASA Technical Reports Server (NTRS)
Smith, Robert E.; Smuda, Ellen
1993-01-01
Deciding on an appropriate population size for a given Genetic Algorithm (GA) application can often be critical to the algorithm's success. Too small, and the GA can fall victim to sampling error, affecting the efficacy of its search. Too large, and the GA wastes computational resources. Although advice exists for sizing GA populations, much of this advice involves theoretical aspects that are not accessible to the novice user. An algorithm for adaptively resizing GA populations is suggested. This algorithm is based on recent theoretical developments that relate population size to schema fitness variance. The suggested algorithm is developed theoretically, and simulated with expected value equations. The algorithm is then tested on a problem where population sizing can mislead the GA. The work presented suggests that the population sizing algorithm may be a viable way to eliminate the population sizing decision from the application of GA's.
NASA Astrophysics Data System (ADS)
Aungkulanon, P.; Luangpaiboon, P.
2010-10-01
Nowadays, the engineering problem systems are large and complicated. An effective finite sequence of instructions for solving these problems can be categorised into optimisation and meta-heuristic algorithms. Though the best decision variable levels from some sets of available alternatives cannot be done, meta-heuristics is an alternative for experience-based techniques that rapidly help in problem solving, learning and discovery in the hope of obtaining a more efficient or more robust procedure. All meta-heuristics provide auxiliary procedures in terms of their own tooled box functions. It has been shown that the effectiveness of all meta-heuristics depends almost exclusively on these auxiliary functions. In fact, the auxiliary procedure from one can be implemented into other meta-heuristics. Well-known meta-heuristics of harmony search (HSA) and shuffled frog-leaping algorithms (SFLA) are compared with their hybridisations. HSA is used to produce a near optimal solution under a consideration of the perfect state of harmony of the improvisation process of musicians. A meta-heuristic of the SFLA, based on a population, is a cooperative search metaphor inspired by natural memetics. It includes elements of local search and global information exchange. This study presents solution procedures via constrained and unconstrained problems with different natures of single and multi peak surfaces including a curved ridge surface. Both meta-heuristics are modified via variable neighbourhood search method (VNSM) philosophy including a modified simplex method (MSM). The basic idea is the change of neighbourhoods during searching for a better solution. The hybridisations proceed by a descent method to a local minimum exploring then, systematically or at random, increasingly distant neighbourhoods of this local solution. The results show that the variant of HSA with VNSM and MSM seems to be better in terms of the mean and variance of design points and yields.
NASA Astrophysics Data System (ADS)
Obara, Lukasz; Żarnecki, Aleksander Filip
2015-09-01
Pi of the Sky is a system of wide field-of-view robotic telescopes, which search for short timescale astrophysical phenomena, especially for prompt optical GRB emission. The system was designed for autonomous operation, monitoring a large fraction of the sky with 12m-13m range and time resolution of the order of 1 - 100 seconds. LUIZA is a dedicated framework developed for efficient off-line processing of the Pi of the Sky data, implemented in C++. The photometric algorithm based on ASAS photometry was implemented in LUIZA and compared with the algorithm based on the pixel cluster reconstruction and simple aperture photometry algorithm. Optimized photometry algorithms were then applied to the sample of test images, which were modified to include different patterns of variability of the stars (training sample). Different statistical estimators are considered for developing the general variable star identification algorithm. The algorithm will then be used to search for short-period variable stars in the real data.
2011-01-01
Background Database searching is the most frequently used approach for automated peptide assignment and protein inference of tandem mass spectra. The results, however, depend on the sequences in target databases and on search algorithms. Recently by using an alternative splicing database, we identified more proteins than with the annotated proteins in Aspergillus flavus. In this study, we aimed at finding a greater number of eligible splice variants based on newly available transcript sequences and the latest genome annotation. The improved database was then used to compare four search algorithms: Mascot, OMSSA, X! Tandem, and InsPecT. Results The updated alternative splicing database predicted 15833 putative protein variants, 61% more than the previous results. There was transcript evidence for 50% of the updated genes compared to the previous 35% coverage. Database searches were conducted using the same set of spectral data, search parameters, and protein database but with different algorithms. The false discovery rates of the peptide-spectrum matches were estimated < 2%. The numbers of the total identified proteins varied from 765 to 867 between algorithms. Whereas 42% (1651/3891) of peptide assignments were unanimous, the comparison showed that 51% (568/1114) of the RefSeq proteins and 15% (11/72) of the putative splice variants were inferred by all algorithms. 12 plausible isoforms were discovered by focusing on the consensus peptides which were detected by at least three different algorithms. The analysis found different conserved domains in two putative isoforms of UDP-galactose 4-epimerase. Conclusions We were able to detect dozens of new peptides using the improved alternative splicing database with the recently updated annotation of the A. flavus genome. Unlike the identifications of the peptides and the RefSeq proteins, large variations existed between the putative splice variants identified by different algorithms. 12 candidates of putative isoforms
Fast String Search on Multicore Processors: Mapping fundamental algorithms onto parallel hardware
Scarpazza, Daniele P.; Villa, Oreste; Petrini, Fabrizio
2008-04-01
String searching is one of these basic algorithms. It has a host of applications, including search engines, network intrusion detection, virus scanners, spam filters, and DNA analysis, among others. The Cell processor, with its multiple cores, promises to speed-up string searching a lot. In this article, we show how we mapped string searching efficiently on the Cell. We present two implementations: • The fast implementation supports a small dictionary size (approximately 100 patterns) and provides a throughput of 40 Gbps, which is 100 times faster than reference implementations on x86 architectures. • The heavy-duty implementation is slower (3.3-4.3 Gbps), but supports dictionaries with tens of thousands of strings.
A novel algorithm for validating peptide identification from a shotgun proteomics search engine.
Jian, Ling; Niu, Xinnan; Xia, Zhonghang; Samir, Parimal; Sumanasekera, Chiranthani; Mu, Zheng; Jennings, Jennifer L; Hoek, Kristen L; Allos, Tara; Howard, Leigh M; Edwards, Kathryn M; Weil, P Anthony; Link, Andrew J
2013-03-01
Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has revolutionized the proteomics analysis of complexes, cells, and tissues. In a typical proteomic analysis, the tandem mass spectra from a LC-MS/MS experiment are assigned to a peptide by a search engine that compares the experimental MS/MS peptide data to theoretical peptide sequences in a protein database. The peptide spectra matches are then used to infer a list of identified proteins in the original sample. However, the search engines often fail to distinguish between correct and incorrect peptides assignments. In this study, we designed and implemented a novel algorithm called De-Noise to reduce the number of incorrect peptide matches and maximize the number of correct peptides at a fixed false discovery rate using a minimal number of scoring outputs from the SEQUEST search engine. The novel algorithm uses a three-step process: data cleaning, data refining through a SVM-based decision function, and a final data refining step based on proteolytic peptide patterns. Using proteomics data generated on different types of mass spectrometers, we optimized the De-Noise algorithm on the basis of the resolution and mass accuracy of the mass spectrometer employed in the LC-MS/MS experiment. Our results demonstrate De-Noise improves peptide identification compared to other methods used to process the peptide sequence matches assigned by SEQUEST. Because De-Noise uses a limited number of scoring attributes, it can be easily implemented with other search engines. PMID:23402659
Efficient estimation algorithms for a satellite-aided search and rescue mission
NASA Technical Reports Server (NTRS)
Argentiero, P.; Garza-Robles, R.
1977-01-01
It has been suggested to establish a search and rescue orbiting satellite system as a means for locating distress signals from downed aircraft, small boats, and overland expeditions. Emissions from Emergency Locator Transmitters (ELT), now available in most U.S. aircraft are to be utilized in the positioning procedure. A description is presented of a set of Doppler navigation algorithms for extracting ELT position coordinates from Doppler data. The algorithms have been programmed for a small computing machine and the resulting system has successfully processed both real and simulated Doppler data. A software system for solving the Doppler navigation problem must include an orbit propagator, a first guess algorithm, and an algorithm for estimating longitude and latitude from Doppler data. Each of these components is considered.
Quality of Service Routing in Manet Using a Hybrid Intelligent Algorithm Inspired by Cuckoo Search
Rajalakshmi, S.; Maguteeswaran, R.
2015-01-01
A hybrid computational intelligent algorithm is proposed by integrating the salient features of two different heuristic techniques to solve a multiconstrained Quality of Service Routing (QoSR) problem in Mobile Ad Hoc Networks (MANETs) is presented. The QoSR is always a tricky problem to determine an optimum route that satisfies variety of necessary constraints in a MANET. The problem is also declared as NP-hard due to the nature of constant topology variation of the MANETs. Thus a solution technique that embarks upon the challenges of the QoSR problem is needed to be underpinned. This paper proposes a hybrid algorithm by modifying the Cuckoo Search Algorithm (CSA) with the new position updating mechanism. This updating mechanism is derived from the differential evolution (DE) algorithm, where the candidates learn from diversified search regions. Thus the CSA will act as the main search procedure guided by the updating mechanism derived from DE, called tuned CSA (TCSA). Numerical simulations on MANETs are performed to demonstrate the effectiveness of the proposed TCSA method by determining an optimum route that satisfies various Quality of Service (QoS) constraints. The results are compared with some of the existing techniques in the literature; therefore the superiority of the proposed method is established. PMID:26495429
Wang, Shuaiqun; Aorigele; Kong, Wei; Zeng, Weiming; Hong, Xiaomin
2016-01-01
Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis. Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting informative genes, many computational methods face difficulties in selecting small subsets for cancer classification due to the huge number of genes (high dimension) compared to the small number of samples, noisy genes, and irrelevant genes. In this paper, we propose a new hybrid algorithm HICATS incorporating imperialist competition algorithm (ICA) which performs global search and tabu search (TS) that conducts fine-tuned search. In order to verify the performance of the proposed algorithm HICATS, we have tested it on 10 well-known benchmark gene expression classification datasets with dimensions varying from 2308 to 12600. The performance of our proposed method proved to be superior to other related works including the conventional version of binary optimization algorithm in terms of classification accuracy and the number of selected genes. PMID:27579323
Aorigele; Zeng, Weiming; Hong, Xiaomin
2016-01-01
Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis. Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting informative genes, many computational methods face difficulties in selecting small subsets for cancer classification due to the huge number of genes (high dimension) compared to the small number of samples, noisy genes, and irrelevant genes. In this paper, we propose a new hybrid algorithm HICATS incorporating imperialist competition algorithm (ICA) which performs global search and tabu search (TS) that conducts fine-tuned search. In order to verify the performance of the proposed algorithm HICATS, we have tested it on 10 well-known benchmark gene expression classification datasets with dimensions varying from 2308 to 12600. The performance of our proposed method proved to be superior to other related works including the conventional version of binary optimization algorithm in terms of classification accuracy and the number of selected genes. PMID:27579323
Quality of Service Routing in Manet Using a Hybrid Intelligent Algorithm Inspired by Cuckoo Search.
Rajalakshmi, S; Maguteeswaran, R
2015-01-01
A hybrid computational intelligent algorithm is proposed by integrating the salient features of two different heuristic techniques to solve a multiconstrained Quality of Service Routing (QoSR) problem in Mobile Ad Hoc Networks (MANETs) is presented. The QoSR is always a tricky problem to determine an optimum route that satisfies variety of necessary constraints in a MANET. The problem is also declared as NP-hard due to the nature of constant topology variation of the MANETs. Thus a solution technique that embarks upon the challenges of the QoSR problem is needed to be underpinned. This paper proposes a hybrid algorithm by modifying the Cuckoo Search Algorithm (CSA) with the new position updating mechanism. This updating mechanism is derived from the differential evolution (DE) algorithm, where the candidates learn from diversified search regions. Thus the CSA will act as the main search procedure guided by the updating mechanism derived from DE, called tuned CSA (TCSA). Numerical simulations on MANETs are performed to demonstrate the effectiveness of the proposed TCSA method by determining an optimum route that satisfies various Quality of Service (QoS) constraints. The results are compared with some of the existing techniques in the literature; therefore the superiority of the proposed method is established. PMID:26495429
Free Energy-Based Conformational Search Algorithm Using the Movable Type Sampling Method.
Pan, Li-Li; Zheng, Zheng; Wang, Ting; Merz, Kenneth M
2015-12-01
In this article, we extend the movable type (MT) sampling method to molecular conformational searches (MT-CS) on the free energy surface of the molecule in question. Differing from traditional systematic and stochastic searching algorithms, this method uses Boltzmann energy information to facilitate the selection of the best conformations. The generated ensembles provided good coverage of the available conformational space including available crystal structures. Furthermore, our approach directly provides the solvation free energies and the relative gas and aqueous phase free energies for all generated conformers. The method is validated by a thorough analysis of thrombin ligands as well as against structures extracted from both the Protein Data Bank (PDB) and the Cambridge Structural Database (CSD). An in-depth comparison between OMEGA and MT-CS is presented to illustrate the differences between the two conformational searching strategies, i.e., energy-based versus free energy-based searching. These studies demonstrate that our MT-based ligand conformational search algorithm is a powerful approach to delineate the conformational ensembles of molecular species on free energy surfaces. PMID:26605406
An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network.
Cheng, Jing; Xia, Linyuan
2016-01-01
Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm. PMID:27589756
A graph isomorphism algorithm using signatures computed via quantum walk search model
NASA Astrophysics Data System (ADS)
Wang, Huiquan; Wu, Junjie; Yang, Xuejun; Yi, Xun
2015-03-01
In this paper, we propose a new algorithm based on a quantum walk search model to distinguish strongly similar graphs. Our algorithm computes a signature for each graph via the quantum walk search model and uses signatures to distinguish non-isomorphic graphs. Our method is less complex than those of previous works. In addition, our algorithm can be extended by raising the signature levels. The higher the level adopted, the stronger the distinguishing ability and the higher the complexity of the algorithm. Our algorithm was tested with standard benchmarks from four databases. We note that the weakest signature at level 1 can distinguish all similar graphs, with a time complexity of O({{N}3.5}), which that outperforms the previous best work except when it comes to strongly regular graphs (SRGs). Once the signature is raised to level 3, all SRGs tested can be distinguished successfully. In this case, the time complexity is O({{N}5.5}), also better than the previous best work.
Certain integrable system on a space associated with a quantum search algorithm
Uwano, Y. Hino, H.; Ishiwatari, Y.
2007-04-15
On thinking up a Grover-type quantum search algorithm for an ordered tuple of multiqubit states, a gradient system associated with the negative von Neumann entropy is studied on the space of regular relative configurations of multiqubit states (SR{sup 2}CMQ). The SR{sup 2}CMQ emerges, through a geometric procedure, from the space of ordered tuples of multiqubit states for the quantum search. The aim of this paper is to give a brief report on the integrability of the gradient dynamical system together with quantum information geometry of the underlying space, SR{sup 2}CMQ, of that system.
NASA Astrophysics Data System (ADS)
Yang, Cui-Li; Tang, Kit-Sang
2011-12-01
By considering the eigenratio of the Laplacian matrix as the synchronizability measure, this paper presents an efficient method to enhance the synchronizability of undirected and unweighted networks via rewiring. The rewiring method combines the use of tabu search and a local greedy algorithm so that an effective search of solutions can be achieved. As demonstrated in the simulation results, the performance of the proposed approach outperforms the existing methods for a large variety of initial networks, both in terms of speed and quality of solutions.
Parallel simulations of Grover's algorithm for closest match search in neutron monitor data
NASA Astrophysics Data System (ADS)
Kussainov, Arman; White, Yelena
We are studying the parallel implementations of Grover's closest match search algorithm for neutron monitor data analysis. This includes data formatting, and matching quantum parameters to a conventional structure of a chosen programming language and selected experimental data type. We have employed several workload distribution models based on acquired data and search parameters. As a result of these simulations, we have an understanding of potential problems that may arise during configuration of real quantum computational devices and the way they could run tasks in parallel. The work was supported by the Science Committee of the Ministry of Science and Education of the Republic of Kazakhstan Grant #2532/GF3.
NASA Astrophysics Data System (ADS)
Campo, Lorenzo; Castelli, Fabio; Caparrini, Francesca
2010-05-01
The modern distributed hydrological models allow the representation of the different surface and subsurface phenomena with great accuracy and high spatial and temporal resolution. Such complexity requires, in general, an equally accurate parametrization. A number of approaches have been followed in this respect, from simple local search method (like Nelder-Mead algorithm), that minimize a cost function representing some distance between model's output and available measures, to more complex approaches like dynamic filters (such as the Ensemble Kalman Filter) that carry on an assimilation of the observations. In this work the first approach was followed in order to compare the performances of three different direct search algorithms on the calibration of a distributed hydrological balance model. The direct search family can be defined as that category of algorithms that make no use of derivatives of the cost function (that is, in general, a black box) and comprehend a large number of possible approaches. The main benefit of this class of methods is that they don't require changes in the implementation of the numerical codes to be calibrated. The first algorithm is the classical Nelder-Mead, often used in many applications and utilized as reference. The second algorithm is a GSS (Generating Set Search) algorithm, built in order to guarantee the conditions of global convergence and suitable for a parallel and multi-start implementation, here presented. The third one is the EGO algorithm (Efficient Global Optimization), that is particularly suitable to calibrate black box cost functions that require expensive computational resource (like an hydrological simulation). EGO minimizes the number of evaluations of the cost function balancing the need to minimize a response surface that approximates the problem and the need to improve the approximation sampling where prediction error may be high. The hydrological model to be calibrated was MOBIDIC, a complete balance
Zhou, Xian; Zhong, Kangping; Gao, Yuliang; Lu, Chao; Lau, Alan Pak Tao; Long, Keping
2014-10-01
Modulation format independence is one of the key challenges in digital signal processing (DSP) techniques for future elastic optical transmissions. We proposed a modulation-format-independent blind phase search (MFI-BPS) algorithm for square M-ary quadrature amplitude modulation (M-QAM) systems, in which modulation format recognition (MFR) and carrier phase estimation (CPE), are included and implemented both in a feed-forward manner. Comprehensive simulation and the experimental studies on 224 Gbit/s polarization multiplexing 16-QAM (PM-16QAM) systems demonstrate the feasibility and the effectiveness of the proposed MFI-BPS algorithm. PMID:25321980