Science.gov

Sample records for algorithm genetic algorithm

  1. Genetic algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  2. Software For Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steve E.

    1992-01-01

    SPLICER computer program is genetic-algorithm software tool used to solve search and optimization problems. Provides underlying framework and structure for building genetic-algorithm application program. Written in Think C.

  3. Genetic Algorithms and Local Search

    NASA Technical Reports Server (NTRS)

    Whitley, Darrell

    1996-01-01

    The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.

  4. Messy genetic algorithms: Recent developments

    SciTech Connect

    Kargupta, H.

    1996-09-01

    Messy genetic algorithms define a rare class of algorithms that realize the need for detecting appropriate relations among members of the search domain in optimization. This paper reviews earlier works in messy genetic algorithms and describes some recent developments. It also describes the gene expression messy GA (GEMGA)--an {Omicron}({Lambda}{sup {kappa}}({ell}{sup 2} + {kappa})) sample complexity algorithm for the class of order-{kappa} delineable problems (problems that can be solved by considering no higher than order-{kappa} relations) of size {ell} and alphabet size {Lambda}. Experimental results are presented to demonstrate the scalability of the GEMGA.

  5. Scheduling with genetic algorithms

    NASA Technical Reports Server (NTRS)

    Fennel, Theron R.; Underbrink, A. J., Jr.; Williams, George P. W., Jr.

    1994-01-01

    In many domains, scheduling a sequence of jobs is an important function contributing to the overall efficiency of the operation. At Boeing, we develop schedules for many different domains, including assembly of military and commercial aircraft, weapons systems, and space vehicles. Boeing is under contract to develop scheduling systems for the Space Station Payload Planning System (PPS) and Payload Operations and Integration Center (POIC). These applications require that we respect certain sequencing restrictions among the jobs to be scheduled while at the same time assigning resources to the jobs. We call this general problem scheduling and resource allocation. Genetic algorithms (GA's) offer a search method that uses a population of solutions and benefits from intrinsic parallelism to search the problem space rapidly, producing near-optimal solutions. Good intermediate solutions are probabalistically recombined to produce better offspring (based upon some application specific measure of solution fitness, e.g., minimum flowtime, or schedule completeness). Also, at any point in the search, any intermediate solution can be accepted as a final solution; allowing the search to proceed longer usually produces a better solution while terminating the search at virtually any time may yield an acceptable solution. Many processes are constrained by restrictions of sequence among the individual jobs. For a specific job, other jobs must be completed beforehand. While there are obviously many other constraints on processes, it is these on which we focussed for this research: how to allocate crews to jobs while satisfying job precedence requirements and personnel, and tooling and fixture (or, more generally, resource) requirements.

  6. Scheduling Jobs with Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Ferrolho, António; Crisóstomo, Manuel

    Most scheduling problems are NP-hard, the time required to solve the problem optimally increases exponentially with the size of the problem. Scheduling problems have important applications, and a number of heuristic algorithms have been proposed to determine relatively good solutions in polynomial time. Recently, genetic algorithms (GA) are successfully used to solve scheduling problems, as shown by the growing numbers of papers. GA are known as one of the most efficient algorithms for solving scheduling problems. But, when a GA is applied to scheduling problems various crossovers and mutations operators can be applicable. This paper presents and examines a new concept of genetic operators for scheduling problems. A software tool called hybrid and flexible genetic algorithm (HybFlexGA) was developed to examine the performance of various crossover and mutation operators by computing simulations of job scheduling problems.

  7. Algorithms

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The implementation of the algorithms used in the flight program to approximate elementary functions and mathematical procedures was checked. This was done by verifying that at least one, and in most cases, more than one function computed through the use of the algorithms was calculated properly. The following algorithms were checked: sine-cosine, arctangent, natural logarithm, square root, inverse square root, as well as the vector dot and cross products.

  8. Deceptiveness and genetic algorithm dynamics

    SciTech Connect

    Liepins, G.E. ); Vose, M.D. )

    1990-01-01

    We address deceptiveness, one of at least four reasons genetic algorithms can fail to converge to function optima. We construct fully deceptive functions and other functions of intermediate deceptiveness. For the fully deceptive functions of our construction, we generate linear transformations that induce changes of representation to render the functions fully easy. We further model genetic algorithm selection recombination as the interleaving of linear and quadratic operators. Spectral analysis of the underlying matrices allows us to draw preliminary conclusions about fixed points and their stability. We also obtain an explicit formula relating the nonuniform Walsh transform to the dynamics of genetic search. 21 refs.

  9. Genetic Algorithm for Optimization: Preprocessor and Algorithm

    NASA Technical Reports Server (NTRS)

    Sen, S. K.; Shaykhian, Gholam A.

    2006-01-01

    Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.

  10. Simultaneous stabilization using genetic algorithms

    SciTech Connect

    Benson, R.W.; Schmitendorf, W.E. . Dept. of Mechanical Engineering)

    1991-01-01

    This paper considers the problem of simultaneously stabilizing a set of plants using full state feedback. The problem is converted to a simple optimization problem which is solved by a genetic algorithm. Several examples demonstrate the utility of this method. 14 refs., 8 figs.

  11. Problem solving with genetic algorithms and Splicer

    NASA Technical Reports Server (NTRS)

    Bayer, Steven E.; Wang, Lui

    1991-01-01

    Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.

  12. Learning Intelligent Genetic Algorithms Using Japanese Nonograms

    ERIC Educational Resources Information Center

    Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen

    2012-01-01

    An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…

  13. Learning Intelligent Genetic Algorithms Using Japanese Nonograms

    ERIC Educational Resources Information Center

    Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen

    2012-01-01

    An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and

  14. New Results in Astrodynamics Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Coverstone-Carroll, V.; Hartmann, J. W.; Williams, S. N.; Mason, W. J.

    1998-01-01

    Generic algorithms have gained popularity as an effective procedure for obtaining solutions to traditionally difficult space mission optimization problems. In this paper, a brief survey of the use of genetic algorithms to solve astrodynamics problems is presented and is followed by new results obtained from applying a Pareto genetic algorithm to the optimization of low-thrust interplanetary spacecraft missions.

  15. Error thresholds in genetic algorithms.

    PubMed

    Ochoa, Gabriela

    2006-01-01

    The error threshold of replication is an important notion in the quasispecies evolution model; it is a critical mutation rate (error rate) beyond which structures obtained by an evolutionary process are destroyed more frequently than selection can reproduce them. With mutation rates above this critical value, an error catastrophe occurs and the genomic information is irretrievably lost. Therefore, studying the factors that alter this magnitude has important implications in the study of evolution. Here we use a genetic algorithm, instead of the quasispecies model, as the underlying model of evolution, and explore whether the phenomenon of error thresholds is found on finite populations of bit strings evolving on complex landscapes. Our empirical results verify the occurrence of error thresholds in genetic algorithms. In this way, this notion is brought from molecular evolution to evolutionary computation. We also study the effect of modifying the most prominent evolutionary parameters on the magnitude of this critical value, and found that error thresholds depend mainly on the selection pressure and genotype length. PMID:16831105

  16. MEMS optimization incorporating genetic algorithms

    NASA Astrophysics Data System (ADS)

    Kirkos, Gregory A.; Jurgilewicz, Robert P.; Duncan, Stephen J.

    1999-03-01

    Micromechanical sensors are routinely simulated using finite element software. Once a structure has ben proposed, various parameters are optimized using experience, intuition, and trial-and-error. However, using proven finite element modeling coupled with a genetic algorithm (GA), optimal designs can be 'evolved' using a hands-free approach on a workstation. Once a problem is defined, the sole task required of the designer is the specification of a mathematical objective function expressing the desired properties of the sensor; the sensor geometry that maximizes the given function is then synthesized by the algorithm. We have developed an optimization tool and have applied it to the design of tuning fork gyroscopes (TFG). In this paper, we demonstrate how a TFG was optimized using GA's. TFG suspension beam lengths were adjusted through the robust search technique, which is resistant to trapping in local maxima. Desired vibration mode order and mode frequency separations were governed by the objective function as specified by the designer. This multidimensional nonlinear optimization problem had a solution space of over eight million possible designs. Industry-standard mechanical computer-aided engineering tools were integrate along with a GA toolbox and a web-based control interface. Designs offering reduced vibration sensitivity and increased sensor dynamic range have been produced. A tenfold decrease in total sensor optimization time has been documented, resulting in reduced development time.

  17. Excursion-Set-Mediated Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Noever, David; Baskaran, Subbiah

    1995-01-01

    Excursion-set-mediated genetic algorithm (ESMGA) is embodiment of method of searching for and optimizing computerized mathematical models. Incorporates powerful search and optimization techniques based on concepts analogous to natural selection and laws of genetics. In comparison with other genetic algorithms, this one achieves stronger condition for implicit parallelism. Includes three stages of operations in each cycle, analogous to biological generation.

  18. Self-adaptive parameters in genetic algorithms

    NASA Astrophysics Data System (ADS)

    Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain

    2004-04-01

    Genetic algorithms are powerful search algorithms that can be applied to a wide range of problems. Generally, parameter setting is accomplished prior to running a Genetic Algorithm (GA) and this setting remains unchanged during execution. The problem of interest to us here is the self-adaptive parameters adjustment of a GA. In this research, we propose an approach in which the control of a genetic algorithm"s parameters can be encoded within the chromosome of each individual. The parameters" values are entirely dependent on the evolution mechanism and on the problem context. Our preliminary results show that a GA is able to learn and evaluate the quality of self-set parameters according to their degree of contribution to the resolution of the problem. These results are indicative of a promising approach to the development of GAs with self-adaptive parameter settings that do not require the user to pre-adjust parameters at the outset.

  19. Genetic algorithms at UC Davis/LLNL

    SciTech Connect

    Vemuri, V.R.

    1993-12-31

    A tutorial introduction to genetic algorithms is given. This brief tutorial should serve the purpose of introducing the subject to the novice. The tutorial is followed by a brief commentary on the term project reports that follow.

  20. Genetic algorithms as global random search methods

    NASA Technical Reports Server (NTRS)

    Peck, Charles C.; Dhawan, Atam P.

    1995-01-01

    Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.

  1. Genetic algorithms as global random search methods

    NASA Technical Reports Server (NTRS)

    Peck, Charles C.; Dhawan, Atam P.

    1995-01-01

    Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that that schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solution and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.

  2. Genetic algorithm solution for double digest problem.

    PubMed

    Ganjtabesh, Mohammad; Ahrabian, H; Nowzari-Dalini, A; Kashani Moghadam, Z Razaghi

    2012-01-01

    The strongly NP-Hard Double Digest Problem, for reconstructing the physical map of DNA sequence, in now using for efficient genotyping. Most of the existing methods are inefficient in tackling large instances due to the large search space for the problem which grows as a factorial function (a!)(b!) of the numbers a and b of the DNA fragments generated by the two restriction enzymes. Also, none of the existing methods are able to handle the erroneous data. In this paper, we develop a novel method based on genetic algorithm for solving this problem and it is adapted to handle the erroneous data. Our genetic algorithm is implemented and compared with the other well-known existing algorithms. The obtained results show the efficiency (speedup) of our algorithm with respect to the other methods, specially for erroneous data. PMID:22715298

  3. Combinatorial Multiobjective Optimization Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Martin. Eric T.

    2002-01-01

    The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.

  4. The Applications of Genetic Algorithms in Medicine

    PubMed Central

    Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin

    2015-01-01

    A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.] PMID:26676060

  5. Genetic Algorithm Approaches for Actuator Placement

    NASA Technical Reports Server (NTRS)

    Crossley, William A.

    2000-01-01

    This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.

  6. An investigation of messy genetic algorithms

    NASA Technical Reports Server (NTRS)

    Goldberg, David E.; Deb, Kalyanmoy; Korb, Bradley

    1990-01-01

    Genetic algorithms (GAs) are search procedures based on the mechanics of natural selection and natural genetics. They combine the use of string codings or artificial chromosomes and populations with the selective and juxtapositional power of reproduction and recombination to motivate a surprisingly powerful search heuristic in many problems. Despite their empirical success, there has been a long standing objection to the use of GAs in arbitrarily difficult problems. A new approach was launched. Results to a 30-bit, order-three-deception problem were obtained using a new type of genetic algorithm called a messy genetic algorithm (mGAs). Messy genetic algorithms combine the use of variable-length strings, a two-phase selection scheme, and messy genetic operators to effect a solution to the fixed-coding problem of standard simple GAs. The results of the study of mGAs in problems with nonuniform subfunction scale and size are presented. The mGA approach is summarized, both its operation and the theory of its use. Experiments on problems of varying scale, varying building-block size, and combined varying scale and size are presented.

  7. Applying a Genetic Algorithm to Reconfigurable Hardware

    NASA Technical Reports Server (NTRS)

    Wells, B. Earl; Weir, John; Trevino, Luis; Patrick, Clint; Steincamp, Jim

    2004-01-01

    This paper investigates the feasibility of applying genetic algorithms to solve optimization problems that are implemented entirely in reconfgurable hardware. The paper highlights the pe$ormance/design space trade-offs that must be understood to effectively implement a standard genetic algorithm within a modem Field Programmable Gate Array, FPGA, reconfgurable hardware environment and presents a case-study where this stochastic search technique is applied to standard test-case problems taken from the technical literature. In this research, the targeted FPGA-based platform and high-level design environment was the Starbridge Hypercomputing platform, which incorporates multiple Xilinx Virtex II FPGAs, and the Viva TM graphical hardware description language.

  8. Equilibrium stellar systems with genetic algorithms

    NASA Astrophysics Data System (ADS)

    Gularte, E.; Carpintero, D. D.

    In 1979, M Schwarzschild showed that it is possible to build an equilibrium triaxial stellar system. However, the linear programmation used to that goal was not able to determine the uniqueness of the solution, nor even if that solution was the optimum one. Genetic algorithms are ideal tools to find a solution to this problem. In this work, we use a genetic algorithm to reproduce an equilibrium spherical stellar system from a suitable set of predefined orbits, obtaining the best solution attainable with the provided set. FULL TEXT IN SPANISH

  9. Optimizing Hierarchical Menus with Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Matsui, Shouichi; Yamada, Seiji

    Hierarchical menus are widely used as a standard user interface in modern applications that use GUIs. The performance of the menu depends on many factors: structure, layout, colors and so on. There has been extensive research on novel menus, but there has been little work on improving performance by optimizing the menu's structure. This paper proposes an algorithm based on the genetic algorithm for optimizing the performance of menus. The algorithm aims to minimize the average selection time of menu items by considering the user's pointer movement and search/decision time. We will show the results on static hierarchical menus of a cellular phone and a PDA as examples where small screen and limited input device are assumed. We will show the effectiveness of the algorithm by using wide variety of usage patterns.

  10. Genetic algorithm solution for partial digest problem.

    PubMed

    Ahrabian, Hayedeh; Ganjtabesh, Mohammad; Nowzari-Dalini, Abbas; Razaghi-Moghadam-Kashani, Zahra

    2013-01-01

    One of the fundamental problems in computational biology is the construction of physical maps of chromosomes from the hybridisation experiments between unique probes and clones of chromosome fragments. Before introducing the shotgun sequencing method, Partial Digest Problem (PDP) was an intractable problem used to construct the physical maps of DNA sequence in molecular biology. In this paper, we develop a novel Genetic Algorithm (GA) for solving the PDP. This algorithm is implemented and compared with well-known existing algorithms on different types of random and real instances data, and the obtained results show the efficiency of our algorithm. Also, our GA is adapted to handle the erroneous data and their efficiency is presented for the large instances of this problem. PMID:24084239

  11. MULTIOBJECTIVE PARALLEL GENETIC ALGORITHM FOR WASTE MINIMIZATION

    EPA Science Inventory

    In this research we have developed an efficient multiobjective parallel genetic algorithm (MOPGA) for waste minimization problems. This MOPGA integrates PGAPack (Levine, 1996) and NSGA-II (Deb, 2000) with novel modifications. PGAPack is a master-slave parallel implementation of a...

  12. Convergence properties of simple genetic algorithms

    NASA Technical Reports Server (NTRS)

    Bethke, A. D.; Zeigler, B. P.; Strauss, D. M.

    1974-01-01

    The essential parameters determining the behaviour of genetic algorithms were investigated. Computer runs were made while systematically varying the parameter values. Results based on the progress curves obtained from these runs are presented along with results based on the variability of the population as the run progresses.

  13. Genetic Algorithms for Multiple-Choice Problems

    NASA Astrophysics Data System (ADS)

    Aickelin, Uwe

    2010-04-01

    This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems.It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.Two multiple-choice problems are considered.The first is constructing a feasible nurse roster that considers as many requests as possible.In the second problem, shops are allocated to locations in a mall subject to constraints and maximising the overall income.Genetic algorithms are chosen for their well-known robustness and ability to solve large and complex discrete optimisation problems.However, a survey of the literature reveals room for further research into generic ways to include constraints into a genetic algorithm framework.Hence, the main theme of this work is to balance feasibility and cost of solutions.In particular, co-operative co-evolution with hierarchical sub-populations, problem structure exploiting repair schemes and indirect genetic algorithms with self-adjusting decoder functions are identified as promising approaches.The research starts by applying standard genetic algorithms to the problems and explaining the failure of such approaches due to epistasis.To overcome this, problem-specific information is added in a variety of ways, some of which are designed to increase the number of feasible solutions found whilst others are intended to improve the quality of such solutions.As well as a theoretical discussion as to the underlying reasons for using each operator,extensive computational experiments are carried out on a variety of data.These show that the indirect approach relies less on problem structure and hence is easier to implement and superior in solution quality.

  14. Production scheduling and rescheduling with genetic algorithms.

    PubMed

    Bierwirth, C; Mattfeld, D C

    1999-01-01

    A general model for job shop scheduling is described which applies to static, dynamic and non-deterministic production environments. Next, a Genetic Algorithm is presented which solves the job shop scheduling problem. This algorithm is tested in a dynamic environment under different workload situations. Thereby, a highly efficient decoding procedure is proposed which strongly improves the quality of schedules. Finally, this technique is tested for scheduling and rescheduling in a non-deterministic environment. It is shown by experiment that conventional methods of production control are clearly outperformed at reasonable run-time costs. PMID:10199993

  15. Genetic algorithm optimization of atomic clusters

    SciTech Connect

    Morris, J.R.; Deaven, D.M.; Ho, K.M.; Wang, C.Z.; Pan, B.C.; Wacker, J.G.; Turner, D.E. |

    1996-12-31

    The authors have been using genetic algorithms to study the structures of atomic clusters and related problems. This is a problem where local minima are easy to locate, but barriers between the many minima are large, and the number of minima prohibit a systematic search. They use a novel mating algorithm that preserves some of the geometrical relationship between atoms, in order to ensure that the resultant structures are likely to inherit the best features of the parent clusters. Using this approach, they have been able to find lower energy structures than had been previously obtained. Most recently, they have been able to turn around the building block idea, using optimized structures from the GA to learn about systematic structural trends. They believe that an effective GA can help provide such heuristic information, and (conversely) that such information can be introduced back into the algorithm to assist in the search process.

  16. Quantum-Inspired Genetic Algorithm or Quantum Genetic Algorithm: Which Is It?

    NASA Astrophysics Data System (ADS)

    Jones, Erika

    2015-04-01

    Our everyday work focuses on genetic algorithms (GAs) related to quantum computing where we call ``related'' algorithms those falling into one of two classes: (1) GAs run on classical computers but making use of quantum mechanical (QM) constructs and (2) GAs run on quantum hardware. Though convention has yet to be set with respect to usage of the accepted terms quantum-inspired genetic algorithm (QIGA) and quantum genetic algorithm (QGA), we find the two terms highly suitable respectively as labels for the aforementioned classes. With these specific definitions in mind, the difference between the QIGA and QGA is greater than might first be appreciated, particularly by those coming from a perspective emphasizing GA use as a general computational tool irrespective of QM aspects (1) suggested by QIGAs and (2) inherent in QGAs. We offer a theoretical standpoint highlighting key differences-both obvious, and more significantly, subtle-to be considered in general design of a QIGA versus that of a QGA.

  17. Genetic algorithms for minimal source reconstructions

    SciTech Connect

    Lewis, P.S.; Mosher, J.C.

    1993-12-01

    Under-determined linear inverse problems arise in applications in which signals must be estimated from insufficient data. In these problems the number of potentially active sources is greater than the number of observations. In many situations, it is desirable to find a minimal source solution. This can be accomplished by minimizing a cost function that accounts from both the compatibility of the solution with the observations and for its ``sparseness``. Minimizing functions of this form can be a difficult optimization problem. Genetic algorithms are a relatively new and robust approach to the solution of difficult optimization problems, providing a global framework that is not dependent on local continuity or on explicit starting values. In this paper, the authors describe the use of genetic algorithms to find minimal source solutions, using as an example a simulation inspired by the reconstruction of neural currents in the human brain from magnetoencephalographic (MEG) measurements.

  18. The genetic algorithms for trajectory optimization

    NASA Astrophysics Data System (ADS)

    Janin, G.; Gomez-Tierno, M. A.

    1985-10-01

    Possible difficulties encountered when solving space flight trajectory optimization problems are recalled. The need of a global optimization scheme is realized. Nondeterministic methods, called here stochastic methods, seem to be good candidates for solving these types of problems. A particular class of such methods, modelled upon search strategies employed in natural adaptation, is proposed here: the genetic algorithms. Two models, the mutation-selection and the crossover-selection, are discussed and remarks resulting from applications to test problems and space flight problems are made. It is concluded that a considerable effort is still needed for developing efficient schemes using genetic algorithms. However, they appear to offer an entirely original way for solving a large class of global optimization problems and they are particularly well-suited for parallel processing to be used in the fifth generation computers.

  19. Predicting mining activity with parallel genetic algorithms

    USGS Publications Warehouse

    Talaie, S.; Leigh, R.; Louis, S.J.; Raines, G.L.

    2005-01-01

    We explore several different techniques in our quest to improve the overall model performance of a genetic algorithm calibrated probabilistic cellular automata. We use the Kappa statistic to measure correlation between ground truth data and data predicted by the model. Within the genetic algorithm, we introduce a new evaluation function sensitive to spatial correctness and we explore the idea of evolving different rule parameters for different subregions of the land. We reduce the time required to run a simulation from 6 hours to 10 minutes by parallelizing the code and employing a 10-node cluster. Our empirical results suggest that using the spatially sensitive evaluation function does indeed improve the performance of the model and our preliminary results also show that evolving different rule parameters for different regions tends to improve overall model performance. Copyright 2005 ACM.

  20. Fashion sketch design by interactive genetic algorithms

    NASA Astrophysics Data System (ADS)

    Mok, P. Y.; Wang, X. X.; Xu, J.; Kwok, Y. L.

    2012-11-01

    Computer aided design is vitally important for the modern industry, particularly for the creative industry. Fashion industry faced intensive challenges to shorten the product development process. In this paper, a methodology is proposed for sketch design based on interactive genetic algorithms. The sketch design system consists of a sketch design model, a database and a multi-stage sketch design engine. First, a sketch design model is developed based on the knowledge of fashion design to describe fashion product characteristics by using parameters. Second, a database is built based on the proposed sketch design model to define general style elements. Third, a multi-stage sketch design engine is used to construct the design. Moreover, an interactive genetic algorithm (IGA) is used to accelerate the sketch design process. The experimental results have demonstrated that the proposed method is effective in helping laypersons achieve satisfied fashion design sketches.

  1. Application of Genetic Algorithms in Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Soupios, Pantelis; Akca, Irfan; Mpogiatzis, Petros; Basokur, Ahmet; Papazachos, Constantinos

    2010-05-01

    In the earth sciences several inverse problems that require data fitting and parameter estimation are nonlinear and can involve a large number of unknown parameters. Consequently, the application of analytical inversion or optimization techniques may be quite restrictive. In practice, most analytical methods are local in nature and rely on a linearized form of the problem in question, adopting an iterative procedure using partial derivatives to improve an initial model. This approach can lead to a dependence of the final model solution on the starting model and is prone to entrapment in local misfit minima. Moreover, the calculation of derivatives can be computationally inefficient and create instabilities when numerical approximations are used. In contrast to these local minimization methods, global techniques that do not rely on partial derivatives, are independent of the form of the data misfit criterion, and are computationally robust. Such methods often use random processes to sample a selected wider span of the model space. In this situation, randomly generated models are assessed in terms of their data-fitting quality and the process may be stopped after a certain number of acceptable models is identified or continued until a satisfactory data fit is achieved. A new class of methods known as genetic algorithms achieves the aforementioned approximation through novel model representation and manipulations. Genetic algorithms (GAs) were originally developed in the field of artificial intelligence by John Holland more than 20 years ago, but even in this field it is less than a decade that the methodology has been more generally applied and only recently did the methodology attract the attention of the earth sciences community. Applications have been generally concentrated in geophysics and in particular seismology. As awareness of genetic algorithms grows there surely will be many more and varied applications to earth science problems. In the present work, the application of hybrid genetic algorithms in seismic tomography is examined and the efficiency of least squares and genetic methods as representative of the local and global optimization, respectively, is presented and evaluated. The robustness of both optimization methods has been tested and compared for the same source-receiver geometry and characteristics of the model structure (anomalies, etc.). A set of seismic refraction synthetic (noise free) data was used for modeling. Specifically, cross-well, down-hole and typical refraction studies using 24 geophones and 5 shoots were used to confirm the applicability of the genetic algorithms in seismic tomography. To solve the forward modeling and estimate the traveltimes, the revisited ray bending method was used supplemented by an approximate computation of the first Fresnel volume. The root mean square (rms) error as the misfit function was used and calculated for the entire random velocity model for each generation. After the end of each generation and based on the misfit of the individuals (velocity models), the selection, crossover and mutation (typical process steps of genetic algorithms) were selected continuing the evolution theory and coding the new generation. To optimize the computation time, since the whole procedure is quite time consuming, the Matlab Distributed Computing Environment (MDCE) was used in a multicore engine. During the tests, we noticed that the fast convergence that the algorithm initially exhibits (first 5 generations) is followed by progressively slower improvements of the reconstructed velocity models. Thus, to improve the final tomographic models, a hybrid genetic algorithm (GA) approach was adopted by combining the GAs with a local optimization method after several generations, on the basis of the convergence of the resulting models. This approach is shown to be efficient, as it directs the solution search towards a model region close to the global minimum solution.

  2. Genetic algorithms in adaptive fuzzy control

    NASA Technical Reports Server (NTRS)

    Karr, C. Lucas; Harper, Tony R.

    1992-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.

  3. Optical flow optimization using parallel genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zavala-Romero, Olmo; Botella, Guillermo; Meyer-Bäse, Anke; Meyer Base, Uwe

    2011-06-01

    A new approach to optimize the parameters of a gradient-based optical flow model using a parallel genetic algorithm (GA) is proposed. The main characteristics of the optical flow algorithm are its bio-inspiration and robustness against contrast, static patterns and noise, besides working consistently with several optical illusions where other algorithms fail. This model depends on many parameters which conform the number of channels, the orientations required, the length and shape of the kernel functions used in the convolution stage, among many more. The GA is used to find a set of parameters which improve the accuracy of the optical flow on inputs where the ground-truth data is available. This set of parameters helps to understand which of them are better suited for each type of inputs and can be used to estimate the parameters of the optical flow algorithm when used with videos that share similar characteristics. The proposed implementation takes into account the embarrassingly parallel nature of the GA and uses the OpenMP Application Programming Interface (API) to speedup the process of estimating an optimal set of parameters. The information obtained in this work can be used to dynamically reconfigure systems, with potential applications in robotics, medical imaging and tracking.

  4. A hybrid genetic algorithm for resolving closely spaced objects

    NASA Technical Reports Server (NTRS)

    Abbott, R. J.; Lillo, W. E.; Schulenburg, N.

    1995-01-01

    A hybrid genetic algorithm is described for performing the difficult optimization task of resolving closely spaced objects appearing in space based and ground based surveillance data. This application of genetic algorithms is unusual in that it uses a powerful domain-specific operation as a genetic operator. Results of applying the algorithm to real data from telescopic observations of a star field are presented.

  5. Estimating Photometric Redshifts Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Miles, Nicholas; Freitas, Alex; Serjeant, Stephen

    Photometry is used as a cheap and easy way to estimate redshifts of galaxies, which would otherwise require considerable amounts of expensive telescope time. However, the analysis of photometric redshift datasets is a task where it is sometimes difficultto achievea high classification accuracy. This work presents a custom Genetic Algorithm (GA) for mining the Hubble Deep Field North (HDF-N) datasets to achieve accurate IF-THEN classification rules. This kind of knowledge representation has the advantage of being intuitively comprehensible to the user, facilitating astronomers' interpretation of discovered knowledge. The GA is tested againstthe state of the art decision tree algorithm C5.0 [Rulequest, 2005] in two datasets, achieving better classification accuracy and simplerrule sets in both datasets.

  6. Improved Genetic Algorithms to Fuzzy Bimatrix Game

    NASA Astrophysics Data System (ADS)

    Wang, Ruijiang; Jiang, Jia; Zhu, Xiaoxia

    According to the features of fuzzy information, we put forward the concept of level effect function L(?), established a very practical and workable measurement method I L - which can quantify the location of fuzzy number intensively and globally, and set up the level of uncertainty for measurement I L - under the level effect function L(?). Thus we can improve the fuzzy bimatrix game. For this problem, after establishing the model involving fuzzy variable and fuzzy coefficient for each player, we introduced the theory of modern biological gene into equilibrium solution calculation of game, then designed the genetic algorithm model for solving Nash equilibrium solution of fuzzy bimatrix game and proved the validity of the algorithm by the examples of bimatrix game. It will lay a theoretical foundation for uncertain game under some consciousness and have strong maneuverability.

  7. A new genetic algorithm for polygonal approximation.

    PubMed

    Ruberto, Cecilia Di; Morgera, Andrea

    2011-01-01

    In this chapter, the problem of approximating a closed digital curve with a simplified representation by a set of feature points containing almost complete information of the contour, i.e., dominant points, is addressed. We adopt an approach based on genetic algorithms (GAs) since they use parallel search and have good performance in solving optimization problems. The chromosome coincides with an approximating polygon and is represented by a binary string. Each bit, called gene, represents a curve point where dominant points have 1-value. The proposed algorithm enhances the selection and mutation phase avoiding the premature convergence issue. Our method is compared to other similar approaches and its efficiency is clearly demonstrated by experimental results giving a better approximation by lowering the error norm with respect to the original curves. PMID:21431611

  8. Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories

    NASA Technical Reports Server (NTRS)

    Burchett, Bradley T.

    2003-01-01

    The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.

  9. Saving Resources with Plagues in Genetic Algorithms

    SciTech Connect

    de Vega, F F; Cantu-Paz, E; Lopez, J I; Manzano, T

    2004-06-15

    The population size of genetic algorithms (GAs) affects the quality of the solutions and the time required to find them. While progress has been made in estimating the population sizes required to reach a desired solution quality for certain problems, in practice the sizing of populations is still usually performed by trial and error. These trials might lead to find a population that is large enough to reach a satisfactory solution, but there may still be opportunities to optimize the computational cost by reducing the size of the population. This paper presents a technique called plague that periodically removes a number of individuals from the population as the GA executes. Recently, the usefulness of the plague has been demonstrated for genetic programming. The objective of this paper is to extend the study of plagues to genetic algorithms. We experiment with deceptive trap functions, a tunable difficult problem for GAs, and the experiments show that plagues can save computational time while maintaining solution quality and reliability.

  10. Genetic algorithm for intracavity laser beam shaping

    NASA Astrophysics Data System (ADS)

    Kostylev, Andrey; Sobolev, Alexander; Cherezova, Tatyana; Kudryashov, Alexis

    2005-08-01

    In this paper we implement a new technique of intracavity bimorph flexible mirror control, that allows to manipulate laser beam parameters (increase power, decrease divergence) and to form a given intensity profile at any distance including a far-field. Intracavity mirror surface profile is controlled by number of voltages calculated by means of genetic algorithm combined with hill-climbing one. Then the traditional Fox-Li approach is applied. We have numerically shown the possibility of successful formation of super Gaussian beam in near field, ring-like beam in far-field, and the possibility of significant power increase of TEM00 mode and far-field peak intensity enlargement.

  11. Genetic algorithms for modelling and optimisation

    NASA Astrophysics Data System (ADS)

    McCall, John

    2005-12-01

    Genetic algorithms (GAs) are a heuristic search and optimisation technique inspired by natural evolution. They have been successfully applied to a wide range of real-world problems of significant complexity. This paper is intended as an introduction to GAs aimed at immunologists and mathematicians interested in immunology. We describe how to construct a GA and the main strands of GA theory before speculatively identifying possible applications of GAs to the study of immunology. An illustrative example of using a GA for a medical optimal control problem is provided. The paper also includes a brief account of the related area of artificial immune systems.

  12. Dominant takeover regimes for genetic algorithms

    NASA Technical Reports Server (NTRS)

    Noever, David; Baskaran, Subbiah

    1995-01-01

    The genetic algorithm (GA) is a machine-based optimization routine which connects evolutionary learning to natural genetic laws. The present work addresses the problem of obtaining the dominant takeover regimes in the GA dynamics. Estimated GA run times are computed for slow and fast convergence in the limits of high and low fitness ratios. Using Euler's device for obtaining partial sums in closed forms, the result relaxes the previously held requirements for long time limits. Analytical solution reveal that appropriately accelerated regimes can mark the ascendancy of the most fit solution. In virtually all cases, the weak (logarithmic) dependence of convergence time on problem size demonstrates the potential for the GA to solve large N-P complete problems.

  13. Rational function optimization using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Valadan Zoej, M. J.; Mokhtarzade, M.; Mansourian, A.; Ebadi, H.; Sadeghian, S.

    2007-12-01

    In the absence of either satellite ephemeris information or camera model, rational functions are introduced by many investigators as mathematical model for image to ground coordinate system transformation. The dependency of this method on many ground control points (GCPs), numerical complexity, particularly terms selection, can be regarded as the most known disadvantages of rational functions. This paper presents a mathematical solution to overcome these problems. Genetic algorithms are used as an intelligent method for optimum rational function terms selection. The results from an experimental test carried out over a test field in Iran are presented as utilizing an IKONOS Geo image. Different numbers of GCPs are fed through a variety of genetic algorithms (GAs) with different control parameter settings. Some initial constraints are introduced to make the process stable and fast. The residual errors at independent check points proved that sub-pixel accuracies can be achieved even when only seven and five GCPs are used. GAs could select rational function terms in such a way that numerical problems are avoided without the need to normalize image and ground coordinates.

  14. Instrument design and optimization using genetic algorithms

    SciTech Connect

    Hoelzel, Robert; Bentley, Phillip M.; Fouquet, Peter

    2006-10-15

    This article describes the design of highly complex physical instruments by using a canonical genetic algorithm (GA). The procedure can be applied to all instrument designs where performance goals can be quantified. It is particularly suited to the optimization of instrument design where local optima in the performance figure of merit are prevalent. Here, a GA is used to evolve the design of the neutron spin-echo spectrometer WASP which is presently being constructed at the Institut Laue-Langevin, Grenoble, France. A comparison is made between this artificial intelligence approach and the traditional manual design methods. We demonstrate that the search of parameter space is more efficient when applying the genetic algorithm, and the GA produces a significantly better instrument design. Furthermore, it is found that the GA increases flexibility, by facilitating the reoptimization of the design after changes in boundary conditions during the design phase. The GA also allows the exploration of 'nonstandard' magnet coil geometries. We conclude that this technique constitutes a powerful complementary tool for the design and optimization of complex scientific apparatus, without replacing the careful thought processes employed in traditional design methods.

  15. Adaptive sensor tasking using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Shea, Peter J.; Kirk, Joe; Welchons, Dave

    2007-04-01

    Today's battlefield environment contains a large number of sensors, and sensor types, onboard multiple platforms. The set of sensor types includes SAR, EO/IR, GMTI, AMTI, HSI, MSI, and video, and for each sensor type there may be multiple sensing modalities to select from. In an attempt to maximize sensor performance, today's sensors employ either static tasking approaches or require an operator to manually change sensor tasking operations. In a highly dynamic environment this leads to a situation whereby the sensors become less effective as the sensing environments deviates from the assumed conditions. Through a Phase I SBIR effort we developed a system architecture and a common tasking approach for solving the sensor tasking problem for a multiple sensor mix. As part of our sensor tasking effort we developed a genetic algorithm based task scheduling approach and demonstrated the ability to automatically task and schedule sensors in an end-to-end closed loop simulation. Our approach allows for multiple sensors as well as system and sensor constraints. This provides a solid foundation for our future efforts including incorporation of other sensor types. This paper will describe our approach for scheduling using genetic algorithms to solve the sensor tasking problem in the presence of resource constraints and required task linkage. We will conclude with a discussion of results for a sample problem and of the path forward.

  16. Optimal array configuration search using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Fridman, Peter A.

    2001-12-01

    Radio astronomy interferometric arrays traditionally use Earth rotation aperture image synthesis. Existing radio telescopes consist of dozens antennas separated at hundreds and thousands wavelengths, and these arrays are very sparse comparing to the common radar & communications phased arrays. New projects of superlarge radio telescopes, Square Kilometer Array (SKA), Low Frequency Array (LOFAR), Atacama Large Millimeter Array (ALMA) presume both Earth rotation and snapshot imaging. Optimizing an array configuration is an important stage of the array design. Due to the sparseness of the radio interferometers, the following cost functions might be chosen during optimization process: sidelobe minimization, or, in more specific way, the maximum sidelobe amplitude or the baseline histogram. Genetic algorithm is proposed in this paper for solving the optimization problem. It provides the global maximum of a cost function in a multimodal task and admits easy implementation of different constrains: desirable angular resolution (maximal antenna spacing), sensitivity to extended image features (minimal spacing), topography limitations, etc. Several examples of array configuration optimization using genetic algorithms are given in the paper.

  17. Comparison of genetic algorithms with conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.

    1972-01-01

    Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.

  18. Genetic algorithm and particle swarm optimization combined with Powell method

    NASA Astrophysics Data System (ADS)

    Bento, David; Pinho, Diana; Pereira, Ana I.; Lima, Rui

    2013-10-01

    In recent years, the population algorithms are becoming increasingly robust and easy to use, based on Darwin's Theory of Evolution, perform a search for the best solution around a population that will progress according to several generations. This paper present variants of hybrid genetic algorithm - Genetic Algorithm and a bio-inspired hybrid algorithm - Particle Swarm Optimization, both combined with the local method - Powell Method. The developed methods were tested with twelve test functions from unconstrained optimization context.

  19. A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem

    PubMed Central

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389

  20. Multidisciplinary design optimization using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Unal, Resit

    1994-12-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared with efficient gradient methods. Applicaiton of GA is underway for a cost optimization study for a launch-vehicle fuel-tank and structural design of a wing.

  1. Multidisciplinary design optimization using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1994-01-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared with efficient gradient methods. Applicaiton of GA is underway for a cost optimization study for a launch-vehicle fuel-tank and structural design of a wing. The strengths and limitations of GA for launch vehicle design optimization is studied.

  2. Spacecraft Attitude Maneuver Planning Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Kornfeld, Richard P.

    2004-01-01

    A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This approach for attitude path planning makes full use of a priori constraint knowledge and is computationally tractable enough to be executed onboard a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used as is or as an initial solution to initialize additional deterministic optimization algorithms. A number of representative case examples for time-fixed and time-varying conditions yielded search times that are typically on the order of minutes, thus demonstrating the viability of this method. This approach is applicable to all deep space and planet Earth missions requiring greater spacecraft autonomy, and greatly facilitates navigation and science observation planning.

  3. Genetic Algorithm Approaches to Prebiobiotic Chemistry Modeling

    NASA Technical Reports Server (NTRS)

    Lohn, Jason; Colombano, Silvano

    1997-01-01

    We model an artificial chemistry comprised of interacting polymers by specifying two initial conditions: a distribution of polymers and a fixed set of reversible catalytic reactions. A genetic algorithm is used to find a set of reactions that exhibit a desired dynamical behavior. Such a technique is useful because it allows an investigator to determine whether a specific pattern of dynamics can be produced, and if it can, the reaction network found can be then analyzed. We present our results in the context of studying simplified chemical dynamics in theorized protocells - hypothesized precursors of the first living organisms. Our results show that given a small sample of plausible protocell reaction dynamics, catalytic reaction sets can be found. We present cases where this is not possible and also analyze the evolved reaction sets.

  4. Band-structure parameters by genetic algorithm

    SciTech Connect

    Starrost, F.; Bornholdt, S.; Solterbeck, C.; Schattke, W.

    1996-05-01

    A genetic algorithm has been used to solve a complex multidimensional parameter-fitting problem. We will focus on the parameters of an empirical tight-binding Hamiltonian. The method is used to approximate the electronic energy band structure if energy values are known for a few wave vectors of high symmetry. Compared to the usual manual procedure this method is more accurate and automatic. This approach, based on the extended H{umlt u}ckel theory (EHT), has provided a list of EHT parameters for IV-IV and III-V semiconductors with zinc-blende structure and helped us to find a symmetry in the EHT. {copyright} {ital 1996 The American Physical Society.}

  5. PDE Nozzle Optimization Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Billings, Dana; Turner, James E. (Technical Monitor)

    2000-01-01

    Genetic algorithms, which simulate evolution in natural systems, have been used to find solutions to optimization problems that seem intractable to standard approaches. In this study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse detonation engine (PDE) is demonstrated. The objective was to maximize impulse during the detonation wave passage and blow-down phases of operation. Impulse of each profile variant was obtained by using the CFD code Mozart/2.0 to simulate the transient flow. After 7 generations, the method has identified a nozzle profile that certainly is a candidate for optimum solution. The constraints on the generality of this possible solution remain to be clarified.

  6. School bus routing using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Thangiah, Sam R.; Nygard, Kendall E.

    1992-03-01

    The school bus routing problem involves transporting students from predefined locations to the school using a fleet of school buses with varying capacity. The objective is to minimize the fleet size in addition to minimizing the distance traveled by the buses and the travel time of the students. As the school bus routing problem belongs to the NP-complete class of problems, search strategies based on heuristic methods are most promising for problems in this class. GENROUTER is a system that uses genetic algorithms, an adaptive heuristic search strategy, for routing school buses. The GENROUTER system was used to route school buses for two school districts. The routes obtained by GENROUTER system were superior to those obtained by the CHOOSE school bus routing system and the current routes in use by the two school districts.

  7. Training product unit neural networks with genetic algorithms

    NASA Technical Reports Server (NTRS)

    Janson, D. J.; Frenzel, J. F.; Thelen, D. C.

    1991-01-01

    The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.

  8. GAMPMS: Genetic algorithm managed peptide mutant screening.

    PubMed

    Long, Thomas; McDougal, Owen M; Andersen, Tim

    2015-06-30

    The prominence of endogenous peptide ligands targeted to receptors makes peptides with the desired binding activity good molecular scaffolds for drug development. Minor modifications to a peptide's primary sequence can significantly alter its binding properties with a receptor, and screening collections of peptide mutants is a useful technique for probing the receptor-ligand binding domain. Unfortunately, the combinatorial growth of such collections can limit the number of mutations which can be explored using structure-based molecular docking techniques. Genetic algorithm managed peptide mutant screening (GAMPMS) uses a genetic algorithm to conduct a heuristic search of the peptide's mutation space for peptides with optimal binding activity, significantly reducing the computational requirements of the virtual screening. The GAMPMS procedure was implemented and used to explore the binding domain of the nicotinic acetylcholine receptor (nAChR) α3β2-isoform with a library of 64,000 α-conotoxin (α-CTx) MII peptide mutants. To assess GAMPMS's performance, it was compared with a virtual screening procedure that used AutoDock to predict the binding affinity of each of the α-CTx MII peptide mutants with the α3β2-nAChR. The GAMPMS implementation performed AutoDock simulations for as few as 1140 of the 64,000 α-CTx MII peptide mutants and could consistently identify a set of 10 peptides with an aggregated binding energy that was at least 98% of the aggregated binding energy of the 10 top peptides from the exhaustive AutoDock screening. PMID:25975567

  9. Genetic algorithms for optimization of optical fiber UV sensor

    NASA Astrophysics Data System (ADS)

    Sudolski, Grzegorz; Rayss, Jan; Kaminski, Wielsaw A.

    2004-09-01

    In the paper simple genetic algorithm (SGA) as well as its modifications were applied for optimization of an optical fiber UV sensor construction. Influence of the algorithm parameters i.e. the population size, the probability of crossover and mutation from the point of view of algorithm efficiency is discussed herein.

  10. A New Challenge for Compression Algorithms: Genetic Sequences.

    ERIC Educational Resources Information Center

    Grumbach, Stephane; Tahi, Fariza

    1994-01-01

    Analyzes the properties of genetic sequences that cause the failure of classical algorithms used for data compression. A lossless algorithm, which compresses the information contained in DNA and RNA sequences by detecting regularities such as palindromes, is presented. This algorithm combines substitutional and statistical methods and appears to…

  11. A New Challenge for Compression Algorithms: Genetic Sequences.

    ERIC Educational Resources Information Center

    Grumbach, Stephane; Tahi, Fariza

    1994-01-01

    Analyzes the properties of genetic sequences that cause the failure of classical algorithms used for data compression. A lossless algorithm, which compresses the information contained in DNA and RNA sequences by detecting regularities such as palindromes, is presented. This algorithm combines substitutional and statistical methods and appears to

  12. Transonic Wing Shape Optimization Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.

  13. A Test of Genetic Algorithms in Relevance Feedback.

    ERIC Educational Resources Information Center

    Lopez-Pujalte, Cristina; Guerrero Bote, Vicente P.; Moya Anegon, Felix de

    2002-01-01

    Discussion of information retrieval, query optimization techniques, and relevance feedback focuses on genetic algorithms, which are derived from artificial intelligence techniques. Describes an evaluation of different genetic algorithms using a residual collection method and compares results with the Ide dec-hi method (Salton and Buckley, 1990…

  14. A "Hands on" Strategy for Teaching Genetic Algorithms to Undergraduates

    ERIC Educational Resources Information Center

    Venables, Anne; Tan, Grace

    2007-01-01

    Genetic algorithms (GAs) are a problem solving strategy that uses stochastic search. Since their introduction (Holland, 1975), GAs have proven to be particularly useful for solving problems that are "intractable" using classical methods. The language of genetic algorithms (GAs) is heavily laced with biological metaphors from evolutionary

  15. A "Hands on" Strategy for Teaching Genetic Algorithms to Undergraduates

    ERIC Educational Resources Information Center

    Venables, Anne; Tan, Grace

    2007-01-01

    Genetic algorithms (GAs) are a problem solving strategy that uses stochastic search. Since their introduction (Holland, 1975), GAs have proven to be particularly useful for solving problems that are "intractable" using classical methods. The language of genetic algorithms (GAs) is heavily laced with biological metaphors from evolutionary…

  16. Automatic image generation by genetic algorithms for testing halftoning methods

    NASA Astrophysics Data System (ADS)

    Mantere, Timo J.; Alander, Jarmo T.

    2000-10-01

    Automatic test image generation by genetic algorithms is introduced in this work. In general the proposed method has potential in functional software testing. This study was done by joining two different projects: the first one concentrates on software test data generation by genetic algorithms and the second one studied digital halftoning for an ink jet marking machine also by genetic algorithm optimization. The object software halftones images with different image filters. The goal was to reveal, if genetic algorithm is able to generate images that re difficult for the object software to halftone, in other words to find if some prominent characteristics of the original image disappear or ghost images appear due to the halftoning process. The preliminary results showed that genetic algorithm is able to find images that are considerable changed when halftoned, and thus reveal potential problems with the halftoning method, i.e. essentially tests for errors in the halftoning software.

  17. Crack Identification of Plates Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Horibe, Tadashi; Watanabe, Kensuke

    In this paper, a method for identifying of a crack in a plate that uses a genetic algorithm (GA) based on changes in natural frequencies is presented. To calculate the natural frequencies of the cracked plates, a FEM (Finite Element Method) program, which is based on the BFM (Bogner, Fox and Schmidt) model, is developed since the accuracy of the forward solver is important. In the analysis, two types of cracks, i.e., internal and edge cracks are considered. To identify the crack location and the depth from frequency measurements, the width and position of the crack in a plate are coded into a fixed-length binary digit string. Using GA, the square sum of residuals between the measured data and the calculated data is minimized in the identification process and thus the crack is identified. To avoid a high calculation cost, the response surface method (RSM) is also adopted in the minimizing process. The combination of GA and RSM makes the identification more effective and robust. The applicability of the proposed method is confirmed by the results of numerical simulation.

  18. Closed Loop System Identification with Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    2004-01-01

    High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.

  19. Robot path planning using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu

    1988-01-01

    Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.

  20. Multiobjective Genetic Algorithm applied to dengue control.

    PubMed

    Florentino, Helenice O; Cantane, Daniela R; Santos, Fernando L P; Bannwart, Bettina F

    2014-12-01

    Dengue fever is an infectious disease caused by a virus of the Flaviridae family and transmitted to the person by a mosquito of the genus Aedes aegypti. This disease has been a global public health problem because a single mosquito can infect up to 300 people and between 50 and 100 million people are infected annually on all continents. Thus, dengue fever is currently a subject of research, whether in the search for vaccines and treatments for the disease or efficient and economical forms of mosquito control. The current study aims to study techniques of multiobjective optimization to assist in solving problems involving the control of the mosquito that transmits dengue fever. The population dynamics of the mosquito is studied in order to understand the epidemic phenomenon and suggest strategies of multiobjective programming for mosquito control. A Multiobjective Genetic Algorithm (MGA_DENGUE) is proposed to solve the optimization model treated here and we discuss the computational results obtained from the application of this technique. PMID:25230238

  1. Genetic algorithm-based form error evaluation

    NASA Astrophysics Data System (ADS)

    Cui, Changcai; Li, Bing; Huang, Fugui; Zhang, Rencheng

    2007-07-01

    Form error evaluation of geometrical products is a nonlinear optimization problem, for which a solution has been attempted by different methods with some complexity. A genetic algorithm (GA) was developed to deal with the problem, which was proved simple to understand and realize, and its key techniques have been investigated in detail. Firstly, the fitness function of GA was discussed emphatically as a bridge between GA and the concrete problems to be solved. Secondly, the real numbers-based representation of the desired solutions in the continual space optimization problem was discussed. Thirdly, many improved evolutionary strategies of GA were described on emphasis. These evolutionary strategies were the selection operation of 'odd number selection plus roulette wheel selection', the crossover operation of 'arithmetic crossover between near relatives and far relatives' and the mutation operation of 'adaptive Gaussian' mutation. After evolutions from generation to generation with the evolutionary strategies, the initial population produced stochastically around the least-squared solutions of the problem would be updated and improved iteratively till the best chromosome or individual of GA appeared. Finally, some examples were given to verify the evolutionary method. Experimental results show that the GA-based method can find desired solutions that are superior to the least-squared solutions except for a few examples in which the GA-based method can obtain similar results to those by the least-squared method. Compared with other optimization techniques, the GA-based method can obtain almost equal results but with less complicated models and computation time.

  2. Lunar Habitat Optimization Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    SanScoucie, M. P.; Hull, P. V.; Tinker, M. L.; Dozier, G. V.

    2007-01-01

    Long-duration surface missions to the Moon and Mars will require bases to accommodate habitats for the astronauts. Transporting the materials and equipment required to build the necessary habitats is costly and difficult. The materials chosen for the habitat walls play a direct role in protection against each of the mentioned hazards. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Clearly, an optimization method is warranted for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat wall design tool utilizing genetic algorithms (GAs) has been developed. GAs use a "survival of the fittest" philosophy where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multiobjective formulation of up-mass, heat loss, structural analysis, meteoroid impact protection, and radiation protection. This Technical Publication presents the research and development of this tool as well as a technique for finding the optimal GA search parameters.

  3. Effective Memetic Algorithms for VLSI design = Genetic Algorithms + local search + multi-level clustering.

    PubMed

    Areibi, Shawki; Yang, Zhen

    2004-01-01

    Combining global and local search is a strategy used by many successful hybrid optimization approaches. Memetic Algorithms (MAs) are Evolutionary Algorithms (EAs) that apply some sort of local search to further improve the fitness of individuals in the population. Memetic Algorithms have been shown to be very effective in solving many hard combinatorial optimization problems. This paper provides a forum for identifying and exploring the key issues that affect the design and application of Memetic Algorithms. The approach combines a hierarchical design technique, Genetic Algorithms, constructive techniques and advanced local search to solve VLSI circuit layout in the form of circuit partitioning and placement. Results obtained indicate that Memetic Algorithms based on local search, clustering and good initial solutions improve solution quality on average by 35% for the VLSI circuit partitioning problem and 54% for the VLSI standard cell placement problem. PMID:15355604

  4. G/SPLINES: A hybrid of Friedman's Multivariate Adaptive Regression Splines (MARS) algorithm with Holland's genetic algorithm

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1991-01-01

    G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.

  5. Grooming of arbitrary traffic using improved genetic algorithms

    NASA Astrophysics Data System (ADS)

    Jiao, Yueguang; Xu, Zhengchun; Zhang, Hanyi

    2004-04-01

    A genetic algorithm is proposed with permutation based chromosome presentation and roulette wheel selection to solve traffic grooming problems in WDM ring network. The parameters of the algorithm are evaluated by calculating of large amount of traffic patterns at different conditions. Four methods were developed to improve the algorithm, which can be used combining with each other. Effects of them on the algorithm are studied via computer simulations. The results show that they can all make the algorithm more powerful to reduce the number of add-drop multiplexers or wavelengths required in a network.

  6. Research on laser marking speed optimization by using genetic algorithm.

    PubMed

    Wang, Dongyun; Yu, Qiwei; Zhang, Yu

    2015-01-01

    Laser Marking Machine is the most common coding equipment on product packaging lines. However, the speed of laser marking has become a bottleneck of production. In order to remove this bottleneck, a new method based on a genetic algorithm is designed. On the basis of this algorithm, a controller was designed and simulations and experiments were performed. The results show that using this algorithm could effectively improve laser marking efficiency by 25%. PMID:25955831

  7. Research on Laser Marking Speed Optimization by Using Genetic Algorithm

    PubMed Central

    Wang, Dongyun; Yu, Qiwei; Zhang, Yu

    2015-01-01

    Laser Marking Machine is the most common coding equipment on product packaging lines. However, the speed of laser marking has become a bottleneck of production. In order to remove this bottleneck, a new method based on a genetic algorithm is designed. On the basis of this algorithm, a controller was designed and simulations and experiments were performed. The results show that using this algorithm could effectively improve laser marking efficiency by 25%. PMID:25955831

  8. Genetic Algorithm Based Neural Networks for Nonlinear Optimization

    Energy Science and Technology Software Center (ESTSC)

    1994-09-28

    This software develops a novel approach to nonlinear optimization using genetic algorithm based neural networks. To our best knowledge, this approach represents the first attempt at applying both neural network and genetic algorithm techniques to solve a nonlinear optimization problem. The approach constructs a neural network structure and an appropriately shaped energy surface whose minima correspond to optimal solutions of the problem. A genetic algorithm is employed to perform a parallel and powerful search ofmore » the energy surface.« less

  9. A Novel Algorithm Combining Finite State Method and Genetic Algorithm for Solving Crude Oil Scheduling Problem

    PubMed Central

    Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun

    2014-01-01

    A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method. PMID:24772031

  10. A novel algorithm combining finite state method and genetic algorithm for solving crude oil scheduling problem.

    PubMed

    Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun

    2014-01-01

    A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method. PMID:24772031

  11. Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Freeman, L. M.; Meredith, D. L.

    1990-01-01

    The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.

  12. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2004-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  13. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2005-01-01

    A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  14. Algorithms and Algorithmic Languages.

    ERIC Educational Resources Information Center

    Veselov, V. M.; Koprov, V. M.

    This paper is intended as an introduction to a number of problems connected with the description of algorithms and algorithmic languages, particularly the syntaxes and semantics of algorithmic languages. The terms "letter, word, alphabet" are defined and described. The concept of the algorithm is defined and the relation between the algorithm and

  15. An enhanced algorithm for multiple sequence alignment of protein sequences using genetic algorithm

    PubMed Central

    Kumar, Manish

    2015-01-01

    One of the most fundamental operations in biological sequence analysis is multiple sequence alignment (MSA). The basic of multiple sequence alignment problems is to determine the most biologically plausible alignments of protein or DNA sequences. In this paper, an alignment method using genetic algorithm for multiple sequence alignment has been proposed. Two different genetic operators mainly crossover and mutation were defined and implemented with the proposed method in order to know the population evolution and quality of the sequence aligned. The proposed method is assessed with protein benchmark dataset, e.g., BALIBASE, by comparing the obtained results to those obtained with other alignment algorithms, e.g., SAGA, RBT-GA, PRRP, HMMT, SB-PIMA, CLUSTALX, CLUSTAL W, DIALIGN and PILEUP8 etc. Experiments on a wide range of data have shown that the proposed algorithm is much better (it terms of score) than previously proposed algorithms in its ability to achieve high alignment quality. PMID:27065770

  16. Application of genetic algorithms to autopiloting in aerial combat simulation

    NASA Astrophysics Data System (ADS)

    Kim, Dai Hyun; Erwin, Daniel A.; Kostrzewski, Andrew A.; Kim, Jeongdal; Savant, Gajendra D.

    1998-10-01

    An autopilot algorithm that controls a fighter aircraft in simulated aerial combat is presented. A fitness function, whose arguments are the control settings of the simulated fighter, is continuously maximized by a fuzzied genetic algorithm. Results are presented for one-to-one combat simulated on a personal computer. Generalization to many-to-many combat is discussed.

  17. Calculation of substructural analysis weights using a genetic algorithm.

    PubMed

    Holliday, John D; Sani, Nor; Willett, Peter

    2015-02-23

    This work describes a genetic algorithm for the calculation of substructural analysis for use in ligand-based virtual screening. The algorithm is simple in concept and effective in operation, with simulated virtual screening experiments using the MDDR and WOMBAT data sets showing it to be superior to substructural analysis weights based on a naive Bayesian classifier. PMID:25615712

  18. Optimization of solar air collector using genetic algorithm and artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Şencan Şahin, Arzu

    2012-11-01

    Thermal performance of solar air collector depends on many parameters as inlet air temperature, air velocity, collector slope and properties related to collector. In this study, the effect of the different parameters which affect the performance of the solar air collector are investigated. In order to maximize the thermal performance of a solar air collector genetic algorithm (GA) and artificial bee colony algorithm (ABC) have been used. The results obtained indicate that GA and ABC algorithms can be applied successfully for the optimization of the thermal performance of solar air collector.

  19. A simple algorithm for optimization and model fitting: AGA (asexual genetic algorithm)

    NASA Astrophysics Data System (ADS)

    Cantó, J.; Curiel, S.; Martínez-Gómez, E.

    2009-07-01

    Context: Mathematical optimization can be used as a computational tool to obtain the optimal solution to a given problem in a systematic and efficient way. For example, in twice-differentiable functions and problems with no constraints, the optimization consists of finding the points where the gradient of the objective function is zero and using the Hessian matrix to classify the type of each point. Sometimes, however it is impossible to compute these derivatives and other type of techniques must be employed such as the steepest descent/ascent method and more sophisticated methods such as those based on the evolutionary algorithms. Aims: We present a simple algorithm based on the idea of genetic algorithms (GA) for optimization. We refer to this algorithm as AGA (asexual genetic algorithm) and apply it to two kinds of problems: the maximization of a function where classical methods fail and model fitting in astronomy. For the latter case, we minimize the chi-square function to estimate the parameters in two examples: the orbits of exoplanets by taking a set of radial velocity data, and the spectral energy distribution (SED) observed towards a YSO (Young Stellar Object). Methods: The algorithm AGA may also be called genetic, although it differs from standard genetic algorithms in two main aspects: a) the initial population is not encoded; and b) the new generations are constructed by asexual reproduction. Results: Applying our algorithm in optimizing some complicated functions, we find the global maxima within a few iterations. For model fitting to the orbits of exoplanets and the SED of a YSO, we estimate the parameters and their associated errors.

  20. Segmentation of color images using genetic algorithm with image histogram

    NASA Astrophysics Data System (ADS)

    Sneha Latha, P.; Kumar, Pawan; Kahu, Samruddhi; Bhurchandi, Kishor M.

    2015-02-01

    This paper proposes a family of color image segmentation algorithms using genetic approach and color similarity threshold in terns of Just noticeable difference. Instead of segmenting and then optimizing, the proposed technique directly uses GA for optimized segmentation of color images. Application of GA on larger size color images is computationally heavy so they are applied on 4D-color image histogram table. The performance of the proposed algorithms is benchmarked on BSD dataset with color histogram based segmentation and Fuzzy C-means Algorithm using Probabilistic Rand Index (PRI). The proposed algorithms yield better analytical and visual results.

  1. Mobile transporter path planning using a genetic algorithm approach

    NASA Technical Reports Server (NTRS)

    Baffes, Paul; Wang, Lui

    1988-01-01

    The use of an optimization technique known as a genetic algorithm for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the Space Station which must be able to reach any point of the structure autonomously. Specific elements of the genetic algorithm are explored in both a theoretical and experimental sense. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research. However, trajectory planning problems are common in space systems and the genetic algorithm provides an attractive alternative to the classical techniques used to solve these problems.

  2. Improved genetic algorithm for fast path planning of USV

    NASA Astrophysics Data System (ADS)

    Cao, Lu

    2015-12-01

    Due to the complex constraints, more uncertain factors and critical real-time demand of path planning for USV(Unmanned Surface Vehicle), an approach of fast path planning based on voronoi diagram and improved Genetic Algorithm is proposed, which makes use of the principle of hierarchical path planning. First the voronoi diagram is utilized to generate the initial paths and then the optimal path is searched by using the improved Genetic Algorithm, which use multiprocessors parallel computing techniques to improve the traditional genetic algorithm. Simulation results verify that the optimal time is greatly reduced and path planning based on voronoi diagram and the improved Genetic Algorithm is more favorable in the real-time operation.

  3. Mobile Transporter Path Planning Using A Genetic Algorithm Approach

    NASA Astrophysics Data System (ADS)

    Baffes, Paul; Wang, Lui

    1988-10-01

    The use of an optimization technique known as a genetic algorithm for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Specific elements of the genetic algorithm are explored in both a theoretical and experimental sense. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research. However, trajectory planning problems are common in space systems and the genetic algorithm provides an attractive alternative to the classical techniques used to solve these problems.

  4. Optimization of computer-generated binary holograms using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Cojoc, Dan; Alexandrescu, Adrian

    1999-11-01

    The aim of this paper is to compare genetic algorithms against direct point oriented coding in the design of binary phase Fourier holograms, computer generated. These are used as fan-out elements for free space optical interconnection. Genetic algorithms are optimization methods which model the natural process of genetic evolution. The configuration of the hologram is encoded to form a chromosome. To start the optimization, a population of different chromosomes randomly generated is considered. The chromosomes compete, mate and mutate until the best chromosome is obtained according to a cost function. After explaining the operators that are used by genetic algorithms, this paper presents two examples with 32 X 32 genes in a chromosome. The crossover type and the number of mutations are shown to be important factors which influence the convergence of the algorithm. GA is demonstrated to be a useful tool to design namely binary phase holograms of complicate structures.

  5. Genetic-algorithm-based tri-state neural networks

    NASA Astrophysics Data System (ADS)

    Uang, Chii-Maw; Chen, Wen-Gong; Horng, Ji-Bin

    2002-09-01

    A new method, using genetic algorithms, for constructing a tri-state neural network is presented. The global searching features of the genetic algorithms are adopted to help us easily find the interconnection weight matrix of a bipolar neural network. The construction method is based on the biological nervous systems, which evolve the parameters encoded in genes. Taking the advantages of conventional (binary) genetic algorithms, a two-level chromosome structure is proposed for training the tri-state neural network. A Matlab program is developed for simulating the network performances. The results show that the proposed genetic algorithms method not only has the features of accurate of constructing the interconnection weight matrix, but also has better network performance.

  6. Finding associations in dense genetic maps: a genetic algorithm approach.

    PubMed

    Clark, Taane G; De Iorio, Maria; Griffiths, Robert C; Farrall, Martin

    2005-01-01

    Large-scale association studies hold promise for discovering the genetic basis of common human disease. These studies will consist of a large number of individuals, as well as large number of genetic markers, such as single nucleotide polymorphisms (SNPs). The potential size of the data and the resulting model space require the development of efficient methodology to unravel associations between phenotypes and SNPs in dense genetic maps. Our approach uses a genetic algorithm (GA) to construct logic trees consisting of Boolean expressions involving strings or blocks of SNPs. These blocks or nodes of the logic trees consist of SNPs in high linkage disequilibrium (LD), that is, SNPs that are highly correlated with each other due to evolutionary processes. At each generation of our GA, a population of logic tree models is modified using selection, cross-over and mutation moves. Logic trees are selected for the next generation using a fitness function based on the marginal likelihood in a Bayesian regression frame-work. Mutation and cross-over moves use LD measures to pro pose changes to the trees, and facilitate the movement through the model space. We demonstrate our method and the flexibility of logic tree structure with variable nodal lengths on simulated data from a coalescent model, as well as data from a candidate gene study of quantitative genetic variation. PMID:16220001

  7. Genetic-Algorithm Tool For Search And Optimization

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steven

    1995-01-01

    SPLICER computer program used to solve search and optimization problems. Genetic algorithms adaptive search procedures (i.e., problem-solving methods) based loosely on processes of natural selection and Darwinian "survival of fittest." Algorithms apply genetically inspired operators to populations of potential solutions in iterative fashion, creating new populations while searching for optimal or nearly optimal solution to problem at hand. Written in Think C.

  8. Superscattering of light optimized by a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.

    2014-07-01

    We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.

  9. Superscattering of light optimized by a genetic algorithm

    SciTech Connect

    Mirzaei, Ali Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.

    2014-07-07

    We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.

  10. An Agent Inspired Reconfigurable Computing Implementation of a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Weir, John M.; Wells, B. Earl

    2003-01-01

    Many software systems have been successfully implemented using an agent paradigm which employs a number of independent entities that communicate with one another to achieve a common goal. The distributed nature of such a paradigm makes it an excellent candidate for use in high speed reconfigurable computing hardware environments such as those present in modem FPGA's. In this paper, a distributed genetic algorithm that can be applied to the agent based reconfigurable hardware model is introduced. The effectiveness of this new algorithm is evaluated by comparing the quality of the solutions found by the new algorithm with those found by traditional genetic algorithms. The performance of a reconfigurable hardware implementation of the new algorithm on an FPGA is compared to traditional single processor implementations.

  11. Immune allied genetic algorithm for Bayesian network structure learning

    NASA Astrophysics Data System (ADS)

    Song, Qin; Lin, Feng; Sun, Wei; Chang, KC

    2012-06-01

    Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.

  12. Kbigoplus1 Composite Genetic Algorithm and Its Properties

    NASA Astrophysics Data System (ADS)

    Li, Fachao; Liu, Limin

    In view of the slowness and the locality of convergence for Simple Genetic Algorithm (SGA for short) in solving complex optimization problems, Kbigoplus1 Composite Genetic Algorithm (Kbigoplus1-CGA for short), as an improved genetic algorithm, is proposed by reducing the optimization-search range gradually, the structure and the implementation steps of Kbigoplus1-CGA are also given; then consider its global convergence under the elitist preserving strategy using Markov chain theory, and analyze its performance from different aspects through simulation. All these indicate that the new algorithm possesses interesting advantages such as better convergence, less chance trapping into premature states. So it can be widely used in many optimization problems with large-scale and high- accuracy.

  13. Genetic-Annealing Algorithm in Grid Environment for Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Cruz-Chávez, Marco Antonio; Rodríguez-León, Abelardo; Ávila-Melgar, Erika Yesenia; Juárez-Pérez, Fredy; Cruz-Rosales, Martín H.; Rivera-López, Rafael

    This paper presents a parallel hybrid evolutionary algorithm executed in a grid environment. The algorithm executes local searches using simulated annealing within a Genetic Algorithm to solve the job shop scheduling problem. Experimental results of the algorithm obtained in the "Tarantula MiniGrid" are shown. Tarantula was implemented by linking two clusters from different geographic locations in Mexico (Morelos-Veracruz). The technique used to link the two clusters and configure the Tarantula MiniGrid is described. The effects of latency in communication between the two clusters are discussed. It is shown that the evolutionary algorithm presented is more efficient working in Grid environments because it can carry out major exploration and exploitation of the solution space.

  14. Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.

    ERIC Educational Resources Information Center

    Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand

    2003-01-01

    Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…

  15. Optimization of genomic selection training populations with a genetic algorithm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this article, we derive a computationally efficient statistic to measure the reliability of estimates of genetic breeding values for a fixed set of genotypes based on a given training set of genotypes and phenotypes. We adopt a genetic algorithm scheme to find a training set of certain size from ...

  16. Fuzzy Information Retrieval Using Genetic Algorithms and Relevance Feedback.

    ERIC Educational Resources Information Center

    Petry, Frederick E.; And Others

    1993-01-01

    Describes an approach that combines concepts from information retrieval, fuzzy set theory, and genetic programing to improve weighted Boolean query formulation via relevance feedback. Highlights include background on information retrieval systems; genetic algorithms; subproblem formulation; and preliminary results based on a testbed. (Contains 12…

  17. Genetic algorithm for chromaticity correction in diffraction limited storage rings

    NASA Astrophysics Data System (ADS)

    Ehrlichman, M. P.

    2016-04-01

    A multiobjective genetic algorithm is developed for optimizing nonlinearities in diffraction limited storage rings. This algorithm determines sextupole and octupole strengths for chromaticity correction that deliver optimized dynamic aperture and beam lifetime. The algorithm makes use of dominance constraints to breed desirable properties into the early generations. The momentum aperture is optimized indirectly by constraining the chromatic tune footprint and optimizing the off-energy dynamic aperture. The result is an effective and computationally efficient technique for correcting chromaticity in a storage ring while maintaining optimal dynamic aperture and beam lifetime.

  18. Genetic algorithms, path relinking, and the flowshop sequencing problem.

    PubMed

    Reeves, C R; Yamada, T

    1998-01-01

    In a previous paper, a simple genetic algorithm (GA) was developed for finding (approximately) the minimum makespan of the n-job, m-machine permutation flowshop sequencing problem (PFSP). The performance of the algorithm was comparable to that of a naive neighborhood search technique and a proven simulated annealing algorithm. However, recent results have demonstrated the superiority of a tabu search method in solving the PFSP. In this paper, we reconsider the implementation of a GA for this problem and show that by taking into account the features of the landscape generated by the operators used, we are able to improve its performance significantly. PMID:10021740

  19. Subsurface biological activity zone detection using genetic search algorithms

    SciTech Connect

    Mahinthakumar, G.; Gwo, J.P.; Moline, G.R.; Webb, O.F.

    1999-12-01

    Use of generic search algorithms for detection of subsurface biological activity zones (BAZ) is investigated through a series of hypothetical numerical biostimulation experiments. Continuous injection of dissolved oxygen and methane with periodically varying concentration stimulates the cometabolism of indigenous methanotropic bacteria. The observed breakthroughs of methane are used to deduce possible BAZ in the subsurface. The numerical experiments are implemented in a parallel computing environment to make possible the large number of simultaneous transport simulations required by the algorithm. The results show that genetic algorithms are very efficient in locating multiple activity zones, provided the observed signals adequately sample the BAZ.

  20. Parameter Estimation of Stellar Population Synthesis Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Han, J. Z.

    2015-03-01

    For the galaxies composed of all kinds of stars, it is important to estimate the parameters of stellar population synthesis quickly and accurately from the massive data of galactic spectra. It is presented in this paper that the genetic-simulated annealing (GA-SA) combined algorithm with a complementary advantage of the good global searching-ability and the fast convergence-ability of GA, as well as the strong local searching-ability of SA. In the aspect of the speed and the accuracy of the parameter estimation of stellar population synthesis, the experimental results show that the presented GA-SA combined algorithm is better than the single SA algorithm.

  1. Use of a genetic algorithm to analyze robust stability problems

    SciTech Connect

    Murdock, T.M.; Schmitendorf, W.E.; Forrest, S.

    1990-01-01

    This note resents a genetic algorithm technique for testing the stability of a characteristic polynomial whose coefficients are functions of unknown but bounded parameters. This technique is fast and can handle a large number of parametric uncertainties. We also use this method to determine robust stability margins for uncertain polynomials. Several benchmark examples are included to illustrate the two uses of the algorithm. 27 refs., 4 figs.

  2. Constrained minimization of smooth functions using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Moerder, Daniel D.; Pamadi, Bandu N.

    1994-01-01

    The use of genetic algorithms for minimization of differentiable functions that are subject to differentiable constraints is considered. A technique is demonstrated for converting the solution of the necessary conditions for a constrained minimum into an unconstrained function minimization. This technique is extended as a global constrained optimization algorithm. The theory is applied to calculating minimum-fuel ascent control settings for an energy state model of an aerospace plane.

  3. A parallel genetic algorithm for the set partitioning problem

    SciTech Connect

    Levine, D.

    1994-05-01

    In this dissertation the author reports on his efforts to develop a parallel genetic algorithm and apply it to the solution of set partitioning problem -- a difficult combinatorial optimization problem used by many airlines as a mathematical model for flight crew scheduling. He developed a distributed steady-state genetic algorithm in conjunction with a specialized local search heuristic for solving the set partitioning problem. The genetic algorithm is based on an island model where multiple independent subpopulations each run a steady-state genetic algorithm on their subpopulation and occasionally fit strings migrate between the subpopulations. Tests on forty real-world set partitioning problems were carried out on up to 128 nodes of an IBM SP1 parallel computer. The authors found that performance, as measured by the quality of the solution found and the iteration on which it was found, improved as additional subpopulation found and the iteration on which it was found, improved as additional subpopulations were added to the computation. With larger numbers of subpopulations the genetic algorithm was regularly able to find the optimal solution to problems having up to a few thousand integer variables. In two cases, high-quality integer feasible solutions were found for problems with 36,699 and 43,749 integer variables, respectively. A notable limitation they found was the difficulty solving problems with many constraints.

  4. Active flatness control of membrane structures using adaptive genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyun; Zheng, Wanping; Hu, Yan-Ru

    2007-04-01

    Membrane structures are attracting attention as excellent candidates for lightweight large space structures, which can be utilized to improve the performance and reduce the cost of space exploration and earth observation missions. Membrane structures can be stowed to a small volume during launch and function as large structures after deployed. For many applications, maintaining surface accuracy of membranes is extremely important to achieve satisfactory performance, especially for membrane antennas and adaptive optics. Active flatness control is a vital technology to maintain surface accuracy of membrane structures. In this research, multiple shape memory alloy (SMA) actuators around the boundary of a rectangular membrane are used to apply tension forces to membrane structures to compensate wrinkle effects. The dynamics of membrane structures is nonlinear and computationally expensive, hence unfeasible to be used in real-time active flatness control. As a parallel direct searching method, genetic algorithm (GA) is used search optimal tension force combination on a high dimensional nonlinear surface. Due to increasing number of tension forces to search, the convergence is more difficult to attain. In order to increase responsiveness and convergence of genetic algorithm, an adaptive genetic algorithm (AGA) is proposed. Adaptive rules are incorporated in a modified genetic algorithm to regulate control parameters of genetic algorithm. Through numerical simulation and experimental studies, it is demonstrated that AGA can expedite its search process and prevent premature convergence.

  5. Structural pattern recognition using genetic algorithms with specialized operators.

    PubMed

    Khoo, K G; Suganthan, P N

    2003-01-01

    This paper presents a genetic algorithm (GA)-based optimization procedure for structural pattern recognition in a model-based recognition system using attributed relational graph (ARG) matching technique. The objective of our work is to improve the GA-based ARG matching procedures leading to a faster convergence rate and better quality mapping between a scene ARG and a set of given model ARGs. In this study, potential solutions are represented by integer strings indicating the mapping between scene and model vertices. The fitness of each solution string is computed by accumulating the similarity between the unary and binary attributes of the matched vertex pairs. We propose novel crossover and mutation operators, specifically for this problem. With these specialized genetic operators, the proposed algorithm converges to better quality solutions at a faster rate than the standard genetic algorithm (SGA). In addition, the proposed algorithm is also capable of recognizing multiple instances of any model object. An efficient pose-clustering algorithm is used to eliminate occasional wrong mappings and to determine the presence/pose of the model in the scene. We demonstrate the superior performance of our proposed algorithm using extensive experimental results. PMID:18238167

  6. Comparison of genetic algorithm and imperialist competitive algorithms in predicting bed load transport in clean pipe.

    PubMed

    Ebtehaj, Isa; Bonakdari, Hossein

    2014-01-01

    The existence of sediments in wastewater greatly affects the performance of the sewer and wastewater transmission systems. Increased sedimentation in wastewater collection systems causes problems such as reduced transmission capacity and early combined sewer overflow. The article reviews the performance of the genetic algorithm (GA) and imperialist competitive algorithm (ICA) in minimizing the target function (mean square error of observed and predicted Froude number). To study the impact of bed load transport parameters, using four non-dimensional groups, six different models have been presented. Moreover, the roulette wheel selection method is used to select the parents. The ICA with root mean square error (RMSE) = 0.007, mean absolute percentage error (MAPE) = 3.5% show better results than GA (RMSE = 0.007, MAPE = 5.6%) for the selected model. All six models return better results than the GA. Also, the results of these two algorithms were compared with multi-layer perceptron and existing equations. PMID:25429460

  7. The multi-niche crowding genetic algorithm: Analysis and applications

    SciTech Connect

    Cedeno, W.

    1995-09-01

    The ability of organisms to evolve and adapt to the environment has provided mother nature with a rich and diverse set of species. Only organisms well adapted to their environment can survive from one generation to the next, transferring on the traits, that made them successful, to their offspring. Competition for resources and the ever changing environment drives some species to extinction and at the same time others evolve to maintain the delicate balance in nature. In this disertation we present the multi-niche crowding genetic algorithm, a computational metaphor to the survival of species in ecological niches in the face of competition. The multi-niche crowding genetic algorithm maintains stable subpopulations of solutions in multiple niches in multimodal landscapes. The algorithm introduces the concept of crowding selection to promote mating among members with qirnilar traits while allowing many members of the population to participate in mating. The algorithm uses worst among most similar replacement policy to promote competition among members with similar traits while allowing competition among members of different niches as well. We present empirical and theoretical results for the success of the multiniche crowding genetic algorithm for multimodal function optimization. The properties of the algorithm using different parameters are examined. We test the performance of the algorithm on problems of DNA Mapping, Aquifer Management, and the File Design Problem. Applications that combine the use of heuristics and special operators to solve problems in the areas of combinatorial optimization, grouping, and multi-objective optimization. We conclude by presenting the advantages and disadvantages of the algorithm and describing avenues for future investigation to answer other questions raised by this study.

  8. A genetic algorithm approach in interface and surface structure optimization

    SciTech Connect

    Zhang, Jian

    2010-05-16

    The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the material structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.

  9. Optimum design of composite laminates using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Callahan, Kelvin J.; Weeks, George E.

    1992-04-01

    The use of genetic algorithms (GAs) for the design of composite laminates is presented. Unlike the traditional hill-climbing techniques, GAs are global search procedures based on the mechanics of natural selection with the result that they are robust over a wide range of environments, particularly the multimodal search spaces encountered in composite design. The GA requires coding of the design variables as a finite-length string over a finite alphabet. Here, the design variables are the lamina orientations and stacking sequence required for maximum laminate strength and/or stiffness with minimum weight. Numerical results are presented to demonstrate that the genetic algorithm can be a viable alternative to traditional search procedures in the design of composite laminates. Finally, based on the results of this study several suggestions are mentioned for improvement in the performance of the genetic algorithm.

  10. Rules extraction in short memory time series using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Fong, L. Y.; Szeto, K. Y.

    2001-04-01

    Data mining is performed using genetic algorithm on artificially generated time series data with short memory. The extraction of rules from a training set and the subsequent testing of these rules provide a basis for the predictions on the test set. The artificial time series are generated using the inverse whitening transformation, and the correlation function has an exponential form with given time constant indicative of short memory. A vector quantization technique is employed to classify the daily rate of return of this artificial time series into four categories. A simple genetic algorithm based on a fixed format of rules is introduced to do the forecasting. Comparing to the benchmark tests with random walk and random guess, genetic algorithms yield substantially better prediction rates, between 50% to 60%. This is an improvement compared with the 47% for random walk prediction and 25% for random guessing method.

  11. Distributed genetic algorithms for the floorplan design problem

    NASA Technical Reports Server (NTRS)

    Cohoon, James P.; Hegde, Shailesh U.; Martin, Worthy N.; Richards, Dana S.

    1991-01-01

    Designing a VLSI floorplan calls for arranging a given set of modules in the plane to minimize the weighted sum of area and wire-length measures. A method of solving the floorplan design problem using distributed genetic algorithms is presented. Distributed genetic algorithms, based on the paleontological theory of punctuated equilibria, offer a conceptual modification to the traditional genetic algorithms. Experimental results on several problem instances demonstrate the efficacy of this method and indicate the advantages of this method over other methods, such as simulated annealing. The method has performed better than the simulated annealing approach, both in terms of the average cost of the solutions found and the best-found solution, in almost all the problem instances tried.

  12. Engineering design optimization using species-conserving genetic algorithms

    NASA Astrophysics Data System (ADS)

    Li, Jian-Ping; Balazs, M. E.; Parks, G. T.

    2007-03-01

    The species conservation technique described here, in which the population of a genetic algorithm is divided into several groups according to their similarity, is inspired by ecology. Each group with similar characteristics is called a species and is centred on a dominating individual, called the species seed. A genetic algorithm based on this species conservation technique, called the species-conserving genetic algorithm (SCGA), was established and has been proved to be effective in finding multiple solutions of multimodal optimization problems. In this article, the SCGA is used to solve engineering design optimization problems. Different distance measures (measures of similarity) are investigated to analyse the performance of the SCGA. It is shown that the Euclidean distance is not the only possible basis for defining a species and sometimes may not make sense in engineering applications. Two structural design problems are used to demonstrate how the choice of a meaningful measure of similarity will help the exploration for significant designs.

  13. Comparison study of genetic algorithms in feedback controller design

    NASA Astrophysics Data System (ADS)

    Fong, N. H. B.; Cole, Daniel G.; Robertshaw, Harry H.

    1995-05-01

    This paper discusses the use of genetic algorithms (GA) as a global search technique to solve a loading bridge regulator control problem. The theory, design and implementation of the algorithm is discussed in detail. An improved selection scheme and two advanced genetic operators are introduced. Three different GA-based feedback controllers are designed: Simple GA (SGA), Improved GA (IGA), and Advanced GA (AGA). Their results performance results are compared. Among the three GA approaches considered, AGA is the most robust one for the design of feedback controllers.

  14. Air data system optimization using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  15. Genetic algorithms and the search for viable string vacua

    NASA Astrophysics Data System (ADS)

    Abel, Steven; Rizos, John

    2014-08-01

    Genetic Algorithms are introduced as a search method for finding string vacua with viable phenomenological properties. It is shown, by testing them against a class of Free Fermionic models, that they are orders of magnitude more efficient than a randomised search. As an example, three generation, exophobic, Pati-Salam models with a top Yukawa occur once in every 1010 models, and yet a Genetic Algorithm can find them after constructing only 105 examples. Such non-deterministic search methods may be the only means to search for Standard Model string vacua with detailed phenomenological requirements.

  16. Optimization of multicast optical networks with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng

    2007-11-01

    In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.

  17. Algorithmic Trading with Developmental and Linear Genetic Programming

    NASA Astrophysics Data System (ADS)

    Wilson, Garnett; Banzhaf, Wolfgang

    A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.

  18. Genetic algorithm dose minimization for an operational layout.

    SciTech Connect

    McLawhorn, S. L.; Kornreich, D. E.; Dudziak, Donald J.

    2002-01-01

    In an effort to reduce the dose to operating technicians performing fixed-time procedures on encapsulated source material, a program has been developed to optimize the layout of workstations within a facility by use of a genetic algorithm. Taking into account the sources present at each station and the time required to complete each procedure, the program utilizes a point kernel dose calculation tool for dose estimates. The genetic algorithm driver employs the dose calculation code as a cost function to determine the optimal spatial arrangement of workstations to minimize the total worker dose.

  19. Acoustic design of rotor blades using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Wells, V. L.; Han, A. Y.; Crossley, W. A.

    1995-01-01

    A genetic algorithm coupled with a simplified acoustic analysis was used to generate low-noise rotor blade designs. The model includes thickness, steady loading and blade-vortex interaction noise estimates. The paper presents solutions for several variations in the fitness function, including thickness noise only, loading noise only, and combinations of the noise types. Preliminary results indicate that the analysis provides reasonable assessments of the noise produced, and that genetic algorithm successfully searches for 'good' designs. The results show that, for a given required thrust coefficient, proper blade design can noticeably reduce the noise produced at some expense to the power requirements.

  20. Using genetic algorithms to search for an optimal investment strategy

    NASA Astrophysics Data System (ADS)

    Mandere, Edward; Xi, Haowen

    2007-10-01

    In this experiment we used genetic algorithms to search for an investment strategy by dividing capital among different stocks with varying returns. The algorithm involves having a ``manager'' who divides his capital among various ``experts'' each of whom has a simple investment strategy. The expert strategies act like genes, experiencing mutation and crossover, in a selection process using previous returns as the fitness function. When algorithm was run with test data where the optimal strategy favored non-uniform investment in one stock it consistently beat a simple buy hold. However when the algorithm was run on actual stock data the system overwhelmingly stabilized at a population that closely resembled a simple buy hold portfolio, that is, evenly distribute the capital among all stocks.

  1. The ordered clustered travelling salesman problem: a hybrid genetic algorithm.

    PubMed

    Ahmed, Zakir Hussain

    2014-01-01

    The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances. PMID:24701148

  2. Economic Dispatch Using Genetic Algorithm Based Hybrid Approach

    SciTech Connect

    Tahir Nadeem Malik; Aftab Ahmad; Shahab Khushnood

    2006-07-01

    Power Economic Dispatch (ED) is vital and essential daily optimization procedure in the system operation. Present day large power generating units with multi-valves steam turbines exhibit a large variation in the input-output characteristic functions, thus non-convexity appears in the characteristic curves. Various mathematical and optimization techniques have been developed, applied to solve economic dispatch (ED) problem. Most of these are calculus-based optimization algorithms that are based on successive linearization and use the first and second order differentiations of objective function and its constraint equations as the search direction. They usually require heat input, power output characteristics of generators to be of monotonically increasing nature or of piecewise linearity. These simplifying assumptions result in an inaccurate dispatch. Genetic algorithms have used to solve the economic dispatch problem independently and in conjunction with other AI tools and mathematical programming approaches. Genetic algorithms have inherent ability to reach the global minimum region of search space in a short time, but then take longer time to converge the solution. GA based hybrid approaches get around this problem and produce encouraging results. This paper presents brief survey on hybrid approaches for economic dispatch, an architecture of extensible computational framework as common environment for conventional, genetic algorithm and hybrid approaches based solution for power economic dispatch, the implementation of three algorithms in the developed framework. The framework tested on standard test systems for its performance evaluation. (authors)

  3. Suboptimal MAP estimates using A* and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Himler, Allen; Wechsler, Harry

    1992-02-01

    We address the restoration problem for noisy and degraded signals. Novel algorithms for suboptimal MAP estimates have been developed using the A* and genetic algorithms (GAs). The experiments carried out have shown suboptimal A* (SA*) and suboptimal genetic (SGA*) algorithms to be competitive with dynamic programming (DP) for MAP estimation, and that the use of GAs (in SGA*) provides limited gains over SA*. In terms of restoration quality, the suboptimal approaches yield a solution that on the average is only 5% worse than that provided by DP as the noise and/or signal size increase. Our experiments suggest that for limited amounts of noise (about 10%) suboptimal MAP estimates compare favorably against DP in terms of runtime complexity.

  4. An Adaptive Immune Genetic Algorithm for Edge Detection

    NASA Astrophysics Data System (ADS)

    Li, Ying; Bai, Bendu; Zhang, Yanning

    An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.

  5. Study of genetic direct search algorithms for function optimization

    NASA Technical Reports Server (NTRS)

    Zeigler, B. P.

    1974-01-01

    The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.

  6. Virus evolutionary genetic algorithm for task collaboration of logistics distribution

    NASA Astrophysics Data System (ADS)

    Ning, Fanghua; Chen, Zichen; Xiong, Li

    2005-12-01

    In order to achieve JIT (Just-In-Time) level and clients' maximum satisfaction in logistics collaboration, a Virus Evolutionary Genetic Algorithm (VEGA) was put forward under double constraints of logistics resource and operation sequence. Based on mathematic description of a multiple objective function, the algorithm was designed to schedule logistics tasks with different due dates and allocate them to network members. By introducing a penalty item, make span and customers' satisfaction were expressed in fitness function. And a dynamic adaptive probability of infection was used to improve performance of local search. Compared to standard Genetic Algorithm (GA), experimental result illustrates the performance superiority of VEGA. So the VEGA can provide a powerful decision-making technique for optimizing resource configuration in logistics network.

  7. A systematic study of genetic algorithms with genotype editing

    SciTech Connect

    Huang, C. F.; Rocha, L. M.

    2004-01-01

    This paper presents our systematic study on an RNA-editing computational model of Genetic Algorithms (GA). This model is constructed based on several genetic editing characteristics that are gleaned from the RNA editing system as observed in several organisms. We have expanded the traditional Genetic Algorithm with artificial editing mechanisms as proposed by [15]. The incorporation of editing mechanisms provides a means for artificial agents with genetic descriptions to gain greater phenotypic plasticity, which may be environmentally regulated. The systematic study of this RNA-editing model has shed some light into the evolutionary implications of RNA editing and how to select proper RNA editors for design of more robust GAS. The results will also show promising applications to complex real-world problems. We expect that the framework proposed will both facilitate determining the evolutionary role of RNA editing in biology, and advance the current state of research in Evolutionary Computation.

  8. Applying Genetic Algorithms To Query Optimization in Document Retrieval.

    ERIC Educational Resources Information Center

    Horng, Jorng-Tzong; Yeh, Ching-Chang

    2000-01-01

    Proposes a novel approach to automatically retrieve keywords and then uses genetic algorithms to adapt the keyword weights. Discusses Chinese text retrieval, term frequency rating formulas, vector space models, bigrams, the PAT-tree structure for information retrieval, query vectors, and relevance feedback. (Author/LRW)

  9. Optimizing core-shell nanoparticle catalysts with a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Froemming, Nathan S.; Henkelman, Graeme

    2009-12-01

    A genetic algorithm is used with density functional theory to investigate the catalytic properties of 38- and 79-atom bimetallic core-shell nanoparticles for the oxygen reduction reaction. Each particle is represented by a two-gene chromosome that identifies its core and shell metals. The fitness of each particle is specified by how close the d-band level of the shell is to that of the Pt(111) surface, a catalyst known to be effective for oxygen reduction. The genetic algorithm starts by creating an initial population of random core-shell particles. The fittest particles are then bred and mutated to replace the least-fit particles in the population and form successive generations. The genetic algorithm iteratively refines the population of candidate catalysts more efficiently than Monte Carlo or random sampling, and we demonstrate how the average energy of the surface d-band can be tuned to that of Pt(111) by varying the core and shell metals. The binding of oxygen is a more direct measure of catalytic activity and is used to further investigate the fittest particles found by the genetic algorithm. The oxygen binding energy is found to vary linearly with the d-band level for particles with the same shell metal, but there is considerable variation in the trend across different shells. Several particles with oxygen binding energies similar to Pt(111) have already been investigated experimentally and found to be active for oxygen reduction. In this work, many other candidates are identified.

  10. A parallel genetic algorithm for the set partitioning problem

    SciTech Connect

    Levine, D.

    1996-12-31

    This paper describes a parallel genetic algorithm developed for the solution of the set partitioning problem- a difficult combinatorial optimization problem used by many airlines as a mathematical model for flight crew scheduling. The genetic algorithm is based on an island model where multiple independent subpopulations each run a steady-state genetic algorithm on their own subpopulation and occasionally fit strings migrate between the subpopulations. Tests on forty real-world set partitioning problems were carried out on up to 128 nodes of an IBM SP1 parallel computer. We found that performance, as measured by the quality of the solution found and the iteration on which it was found, improved as additional subpopulations were added to the computation. With larger numbers of subpopulations the genetic algorithm was regularly able to find the optimal solution to problems having up to a few thousand integer variables. In two cases, high- quality integer feasible solutions were found for problems with 36, 699 and 43,749 integer variables, respectively. A notable limitation we found was the difficulty solving problems with many constraints.

  11. USING GENETIC ALGORITHMS TO DESIGN ENVIRONMENTALLY FRIENDLY PROCESSES

    EPA Science Inventory

    Genetic algorithm calculations are applied to the design of chemical processes to achieve improvements in environmental and economic performance. By finding the set of Pareto (i.e., non-dominated) solutions one can see how different objectives, such as environmental and economic ...

  12. A Parallel Genetic Algorithm for Automated Electronic Circuit Design

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris; Norvig, Peter (Technical Monitor)

    2000-01-01

    We describe a parallel genetic algorithm (GA) that automatically generates circuit designs using evolutionary search. A circuit-construction programming language is introduced and we show how evolution can generate practical analog circuit designs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. We present experimental results as applied to analog filter and amplifier design tasks.

  13. Experiences with the PGAPack Parallel Genetic Algorithm library

    SciTech Connect

    Levine, D.; Hallstrom, P.; Noelle, D.; Walenz, B.

    1997-07-01

    PGAPack is the first widely distributed parallel genetic algorithm library. Since its release, several thousand copies have been distributed worldwide to interested users. In this paper we discuss the key components of the PGAPack design philosophy and present a number of application examples that use PGAPack.

  14. Crossover Improvement for the Genetic Algorithm in Information Retrieval.

    ERIC Educational Resources Information Center

    Vrajitoru, Dana

    1998-01-01

    In information retrieval (IR), the aim of genetic algorithms (GA) is to help a system to find, in a huge documents collection, a good reply to a query expressed by the user. Analysis of phenomena seen during the implementation of a GA for IR has led to a new crossover operation, which is introduced and compared to other learning methods.…

  15. Genetic algorithm for extracting rules in discrete domain

    SciTech Connect

    Neruda, R.

    1995-09-20

    We propose a genetic algorithm that evolves families of rules from a set of examples. Inputs and outputs of the problem are discrete and nominal values which makes it difficult to use alternative learning methods that implicitly regard a metric space. A way how to encode sets of rules is presented together with special variants of genetic operators suitable for this encoding. The solution found by means of this process can be used as a core of a rule-based expert system.

  16. Stochastic search in structural optimization - Genetic algorithms and simulated annealing

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat

    1993-01-01

    An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.

  17. Sampling protein conformations using segment libraries and a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Gunn, John R.

    1997-03-01

    We present a new simulation algorithm for minimizing empirical contact potentials for a simplified model of protein structure. The model consists of backbone atoms only (including Cβ) with the φ and ψ dihedral angles as the only degrees of freedom. In addition, φ and ψ are restricted to a finite set of 532 discrete pairs of values, and the secondary structural elements are held fixed in ideal geometries. The potential function consists of a look-up table based on discretized inter-residue atomic distances. The minimization consists of two principal elements: the use of preselected lists of trial moves and the use of a genetic algorithm. The trial moves consist of substitutions of one or two complete loop regions, and the lists are in turn built up using preselected lists of randomly-generated three-residue segments. The genetic algorithm consists of mutation steps (namely, the loop replacements), as well as a hybridization step in which new structures are created by combining parts of two "parents'' and a selection step in which hybrid structures are introduced into the population. These methods are combined into a Monte Carlo simulated annealing algorithm which has the overall structure of a random walk on a restricted set of preselected conformations. The algorithm is tested using two types of simple model potential. The first uses global information derived from the radius of gyration and the rms deviation to drive the folding, whereas the second is based exclusively on distance-geometry constraints. The hierarchical algorithm significantly outperforms conventional Monte Carlo simulation for a set of test proteins in both cases, with the greatest advantage being for the largest molecule having 193 residues. When tested on a realistic potential function, the method consistently generates structures ranked lower than the crystal structure. The results also show that the improved efficiency of the hierarchical algorithm exceeds that which would be anticipated from tests on either of the two main elements used independently.

  18. JavaGenes and Condor: Cycle-Scavenging Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Globus, Al; Langhirt, Eric; Livny, Miron; Ramamurthy, Ravishankar; Soloman, Marvin; Traugott, Steve

    2000-01-01

    A genetic algorithm code, JavaGenes, was written in Java and used to evolve pharmaceutical drug molecules and digital circuits. JavaGenes was run under the Condor cycle-scavenging batch system managing 100-170 desktop SGI workstations. Genetic algorithms mimic biological evolution by evolving solutions to problems using crossover and mutation. While most genetic algorithms evolve strings or trees, JavaGenes evolves graphs representing (currently) molecules and circuits. Java was chosen as the implementation language because the genetic algorithm requires random splitting and recombining of graphs, a complex data structure manipulation with ample opportunities for memory leaks, loose pointers, out-of-bound indices, and other hard to find bugs. Java garbage-collection memory management, lack of pointer arithmetic, and array-bounds index checking prevents these bugs from occurring, substantially reducing development time. While a run-time performance penalty must be paid, the only unacceptable performance we encountered was using standard Java serialization to checkpoint and restart the code. This was fixed by a two-day implementation of custom checkpointing. JavaGenes is minimally integrated with Condor; in other words, JavaGenes must do its own checkpointing and I/O redirection. A prototype Java-aware version of Condor was developed using standard Java serialization for checkpointing. For the prototype to be useful, standard Java serialization must be significantly optimized. JavaGenes is approximately 8700 lines of code and a few thousand JavaGenes jobs have been run. Most jobs ran for a few days. Results include proof that genetic algorithms can evolve directed and undirected graphs, development of a novel crossover operator for graphs, a paper in the journal Nanotechnology, and another paper in preparation.

  19. Global structual optimizations of surface systems with a genetic algorithm

    SciTech Connect

    Chuang, Feng-Chuan

    2005-05-01

    Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Al{sub n} (n up to 23) were performed using a genetic algorithm coupled with a tight-binding potential. Second, a genetic algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of {radical}3 x {radical}3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems.

  20. Optimal Design of Geodetic Network Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Vajedian, Sanaz; Bagheri, Hosein

    2010-05-01

    A geodetic network is a network which is measured exactly by techniques of terrestrial surveying based on measurement of angles and distances and can control stability of dams, towers and their around lands and can monitor deformation of surfaces. The main goals of an optimal geodetic network design process include finding proper location of control station (First order Design) as well as proper weight of observations (second order observation) in a way that satisfy all the criteria considered for quality of the network with itself is evaluated by the network's accuracy, reliability (internal and external), sensitivity and cost. The first-order design problem, can be dealt with as a numeric optimization problem. In this designing finding unknown coordinates of network stations is an important issue. For finding these unknown values, network geodetic observations that are angle and distance measurements must be entered in an adjustment method. In this regard, using inverse problem algorithms is needed. Inverse problem algorithms are methods to find optimal solutions for given problems and include classical and evolutionary computations. The classical approaches are analytical methods and are useful in finding the optimum solution of a continuous and differentiable function. Least squares (LS) method is one of the classical techniques that derive estimates for stochastic variables and their distribution parameters from observed samples. The evolutionary algorithms are adaptive procedures of optimization and search that find solutions to problems inspired by the mechanisms of natural evolution. These methods generate new points in the search space by applying operators to current points and statistically moving toward more optimal places in the search space. Genetic algorithm (GA) is an evolutionary algorithm considered in this paper. This algorithm starts with definition of initial population, and then the operators of selection, replication and variation are applied to obtain the solution of problem. In this research, the first step is to design a geodetic network and do the observations of the distances and angles between network's stations. The second step is to use the optimization algorithms to estimate unknown values of stations' coordinates, with regards to calculation equations of length and angle. The result indicates that The Genetic algorithms have been successfully employed for solving inverse problems in engineering disciplines. And it seems that many complex problems can be better solved using genetic algorithms than those of using conventional methods.

  1. Mass spectrometry cancer data classification using wavelets and genetic algorithm.

    PubMed

    Nguyen, Thanh; Nahavandi, Saeid; Creighton, Douglas; Khosravi, Abbas

    2015-12-21

    This paper introduces a hybrid feature extraction method applied to mass spectrometry (MS) data for cancer classification. Haar wavelets are employed to transform MS data into orthogonal wavelet coefficients. The most prominent discriminant wavelets are then selected by genetic algorithm (GA) to form feature sets. The combination of wavelets and GA yields highly distinct feature sets that serve as inputs to classification algorithms. Experimental results show the robustness and significant dominance of the wavelet-GA against competitive methods. The proposed method therefore can be applied to cancer classification models that are useful as real clinical decision support systems for medical practitioners. PMID:26611346

  2. A Dedicated Genetic Algorithm for Localization of Moving Magnetic Objects

    PubMed Central

    Alimi, Roger; Weiss, Eyal; Ram-Cohen, Tsuriel; Geron, Nir; Yogev, Idan

    2015-01-01

    A dedicated Genetic Algorithm (GA) has been developed to localize the trajectory of ferromagnetic moving objects within a bounded perimeter. Localization of moving ferromagnetic objects is an important tool because it can be employed in situations when the object is obscured. This work is innovative for two main reasons: first, the GA has been tuned to provide an accurate and fast solution to the inverse magnetic field equations problem. Second, the algorithm has been successfully tested using real-life experimental data. Very accurate trajectory localization estimations were obtained over a wide range of scenarios. PMID:26393598

  3. Acoustic Impedance Inversion of Seismic Data Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Eladj, Said; Djarfour, Noureddine; Ferahtia, Djalal; Ouadfeul, Sid-Ali

    2013-04-01

    The inversion of seismic data can be used to constrain estimates of the Earth's acoustic impedance structure. This kind of problem is usually known to be non-linear, high-dimensional, with a complex search space which may be riddled with many local minima, and results in irregular objective functions. We investigate here the performance and the application of a genetic algorithm, in the inversion of seismic data. The proposed algorithm has the advantage of being easily implemented without getting stuck in local minima. The effects of population size, Elitism strategy, uniform cross-over and lower mutation are examined. The optimum solution parameters and performance were decided as a function of the testing error convergence with respect to the generation number. To calculate the fitness function, we used L2 norm of the sample-to-sample difference between the reference and the inverted trace. The cross-over probability is of 0.9-0.95 and mutation has been tested at 0.01 probability. The application of such a genetic algorithm to synthetic data shows that the inverted acoustic impedance section was efficient. Keywords: Seismic, Inversion, acoustic impedance, genetic algorithm, fitness functions, cross-over, mutation.

  4. Distributed Query Plan Generation Using Multiobjective Genetic Algorithm

    PubMed Central

    Panicker, Shina; Vijay Kumar, T. V.

    2014-01-01

    A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability. PMID:24963513

  5. Strain gage selection in loads equations using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Traditionally, structural loads are measured using strain gages. A loads calibration test must be done before loads can be accurately measured. In one measurement method, a series of point loads is applied to the structure, and loads equations are derived via the least squares curve fitting algorithm using the strain gage responses to the applied point loads. However, many research structures are highly instrumented with strain gages, and the number and selection of gages used in a loads equation can be problematic. This paper presents an improved technique using a genetic algorithm to choose the strain gages used in the loads equations. Also presented are a comparison of the genetic algorithm performance with the current T-value technique and a variant known as the Best Step-down technique. Examples are shown using aerospace vehicle wings of high and low aspect ratio. In addition, a significant limitation in the current methods is revealed. The genetic algorithm arrived at a comparable or superior set of gages with significantly less human effort, and could be applied in instances when the current methods could not.

  6. A novel pipeline based FPGA implementation of a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Thirer, Nonel

    2014-05-01

    To solve problems when an analytical solution is not available, more and more bio-inspired computation techniques have been applied in the last years. Thus, an efficient algorithm is the Genetic Algorithm (GA), which imitates the biological evolution process, finding the solution by the mechanism of "natural selection", where the strong has higher chances to survive. A genetic algorithm is an iterative procedure which operates on a population of individuals called "chromosomes" or "possible solutions" (usually represented by a binary code). GA performs several processes with the population individuals to produce a new population, like in the biological evolution. To provide a high speed solution, pipelined based FPGA hardware implementations are used, with a nstages pipeline for a n-phases genetic algorithm. The FPGA pipeline implementations are constraints by the different execution time of each stage and by the FPGA chip resources. To minimize these difficulties, we propose a bio-inspired technique to modify the crossover step by using non identical twins. Thus two of the chosen chromosomes (parents) will build up two new chromosomes (children) not only one as in classical GA. We analyze the contribution of this method to reduce the execution time in the asynchronous and synchronous pipelines and also the possibility to a cheaper FPGA implementation, by using smaller populations. The full hardware architecture for a FPGA implementation to our target ALTERA development card is presented and analyzed.

  7. Protein folding simulations of the hydrophobic-hydrophilic model by combining tabu search with genetic algorithms

    NASA Astrophysics Data System (ADS)

    Jiang, Tianzi; Cui, Qinghua; Shi, Guihua; Ma, Songde

    2003-08-01

    In this paper, a novel hybrid algorithm combining genetic algorithms and tabu search is presented. In the proposed hybrid algorithm, the idea of tabu search is applied to the crossover operator. We demonstrate that the hybrid algorithm can be applied successfully to the protein folding problem based on a hydrophobic-hydrophilic lattice model. The results show that in all cases the hybrid algorithm works better than a genetic algorithm alone. A comparison with other methods is also made.

  8. Genetic algorithms and their use in Geophysical Problems

    SciTech Connect

    Parker, Paul B.

    1999-04-01

    Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.

  9. Genetic algorithms and their use in geophysical problems

    NASA Astrophysics Data System (ADS)

    Parker, Paul Bradley

    Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or "fittest" models from a "population" and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Also, optimal efficiency is usually achieved with smaller (<50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (>2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.

  10. An Airborne Conflict Resolution Approach Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Mondoloni, Stephane; Conway, Sheila

    2001-01-01

    An airborne conflict resolution approach is presented that is capable of providing flight plans forecast to be conflict-free with both area and traffic hazards. This approach is capable of meeting constraints on the flight plan such as required times of arrival (RTA) at a fix. The conflict resolution algorithm is based upon a genetic algorithm, and can thus seek conflict-free flight plans meeting broader flight planning objectives such as minimum time, fuel or total cost. The method has been applied to conflicts occurring 6 to 25 minutes in the future in climb, cruise and descent phases of flight. The conflict resolution approach separates the detection, trajectory generation and flight rules function from the resolution algorithm. The method is capable of supporting pilot-constructed resolutions, cooperative and non-cooperative maneuvers, and also providing conflict resolution on trajectories forecast by an onboard FMC.

  11. A New Genetic Algorithm for Scheduling for Large Communication Delays

    NASA Astrophysics Data System (ADS)

    Pecero, Johnatan E.; Trystram, Denis; Zomaya, Albert Y.

    In modern parallel and distributed systems, the time for exchanging data is usually larger than that for computing elementary operations. Consequently, these communications slow down the execution of the application scheduled on such systems. Accounting for these communications is essential for attaining efficient hardware and software utilization. Therefore, we provide in this paper a new combined approach for scheduling parallel applications with large communication delays on an arbitrary number of processors. In this approach, a genetic algorithm is improved with the introduction of some extra knowledge about the scheduling problem. This knowledge is represented by a class of clustering algorithms introduced recently, namely, convex clusters which are based on structural properties of the parallel applications. The developed algorithm is assessed by simulations run on some families of synthetic task graphs and randomly generated applications. The comparison with related approaches emphasizes its interest.

  12. Design of an acoustic metamaterial lens using genetic algorithms.

    PubMed

    Li, Dennis; Zigoneanu, Lucian; Popa, Bogdan-Ioan; Cummer, Steven A

    2012-10-01

    The present work demonstrates a genetic algorithm approach to optimizing the effective material parameters of an acoustic metamaterial. The target device is an acoustic gradient index (GRIN) lens in air, which ideally possesses a maximized index of refraction, minimized frequency dependence of the material properties, and minimized acoustic impedance mismatch. Applying this algorithm results in complex designs with certain common features, and effective material properties that are better than those present in previous designs. After modifying the optimized unit cell designs to make them suitable for fabrication, a two-dimensional lens was built and experimentally tested. Its performance was in good agreement with simulations. Overall, the optimization approach was able to improve the refractive index but at the cost of increased frequency dependence. The optimal solutions found by the algorithm provide a numerical description of how the material parameters compete with one another and thus describes the level of performance achievable in the GRIN lens. PMID:23039548

  13. Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Kraus, William F.; Haith, Gary L.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We present results from a study comparing a recently developed coevolutionary genetic algorithm (CGA) against a set of evolutionary algorithms using a suite of multiobjective optimization benchmarks. The CGA embodies competitive coevolution and employs a simple, straightforward target population representation and fitness calculation based on developmental theory of learning. Because of these properties, setting up the additional population is trivial making implementation no more difficult than using a standard GA. Empirical results using a suite of two-objective test functions indicate that this CGA performs well at finding solutions on convex, nonconvex, discrete, and deceptive Pareto-optimal fronts, while giving respectable results on a nonuniform optimization. On a multimodal Pareto front, the CGA finds a solution that dominates solutions produced by eight other algorithms, yet the CGA has poor coverage across the Pareto front.

  14. RCQ-GA: RDF Chain Query Optimization Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Hogenboom, Alexander; Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay

    The application of Semantic Web technologies in an Electronic Commerce environment implies a need for good support tools. Fast query engines are needed for efficient querying of large amounts of data, usually represented using RDF. We focus on optimizing a special class of SPARQL queries, the so-called RDF chain queries. For this purpose, we devise a genetic algorithm called RCQ-GA that determines the order in which joins need to be performed for an efficient evaluation of RDF chain queries. The approach is benchmarked against a two-phase optimization algorithm, previously proposed in literature. The more complex a query is, the more RCQ-GA outperforms the benchmark in solution quality, execution time needed, and consistency of solution quality. When the algorithms are constrained by a time limit, the overall performance of RCQ-GA compared to the benchmark further improves.

  15. A Multi-Objective Genetic Algorithm for Outlier Removal.

    PubMed

    Nahum, Oren E; Yosipof, Abraham; Senderowitz, Hanoch

    2015-12-28

    Quantitative structure activity relationship (QSAR) or quantitative structure property relationship (QSPR) models are developed to correlate activities for sets of compounds with their structure-derived descriptors by means of mathematical models. The presence of outliers, namely, compounds that differ in some respect from the rest of the data set, compromise the ability of statistical methods to derive QSAR models with good prediction statistics. Hence, outliers should be removed from data sets prior to model derivation. Here we present a new multi-objective genetic algorithm for the identification and removal of outliers based on the k nearest neighbors (kNN) method. The algorithm was used to remove outliers from three different data sets of pharmaceutical interest (logBBB, factor 7 inhibitors, and dihydrofolate reductase inhibitors), and its performances were compared with those of five other methods for outlier removal. The results suggest that the new algorithm provides filtered data sets that (1) better maintain the internal diversity of the parent data sets and (2) give rise to QSAR models with much better prediction statistics. Equally good filtered data sets in terms of these metrics were obtained when another objective function was added to the algorithm (termed "preservation"), forcing it to remove certain compounds with low probability only. This option is highly useful when specific compounds should be preferably kept in the final data set either because they have favorable activities or because they represent interesting molecular scaffolds. We expect this new algorithm to be useful in future QSAR applications. PMID:26553402

  16. Threshold matrix for digital halftoning by genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Alander, Jarmo T.; Mantere, Timo J.; Pyylampi, Tero

    1998-10-01

    Digital halftoning is used both in low and high resolution high quality printing technologies. Our method is designed to be mainly used for low resolution ink jet marking machines to produce both gray tone and color images. The main problem with digital halftoning is pink noise caused by the human eye's visual transfer function. To compensate for this the random dot patterns used are optimized to contain more blue than pink noise. Several such dot pattern generator threshold matrices have been created automatically by using genetic algorithm optimization, a non-deterministic global optimization method imitating natural evolution and genetics. A hybrid of genetic algorithm with a search method based on local backtracking was developed together with several fitness functions evaluating dot patterns for rectangular grids. By modifying the fitness function, a family of dot generators results, each with its particular statistical features. Several versions of genetic algorithms, backtracking and fitness functions were tested to find a reasonable combination. The generated threshold matrices have been tested by simulating a set of test images using the Khoros image processing system. Even though the work was focused on developing low resolution marking technology, the resulting family of dot generators can be applied also in other halftoning application areas including high resolution printing technology.

  17. A genetic algorithm for layered multisource video distribution

    NASA Astrophysics Data System (ADS)

    Cheok, Lai-Tee; Eleftheriadis, Alexandros

    2005-03-01

    We propose a genetic algorithm -- MckpGen -- for rate scaling and adaptive streaming of layered video streams from multiple sources in a bandwidth-constrained environment. A genetic algorithm (GA) consists of several components: a representation scheme; a generator for creating an initial population; a crossover operator for producing offspring solutions from parents; a mutation operator to promote genetic diversity and a repair operator to ensure feasibility of solutions produced. We formulated the problem as a Multiple-Choice Knapsack Problem (MCKP), a variant of Knapsack Problem (KP) and a decision problem in combinatorial optimization. MCKP has many successful applications in fault tolerance, capital budgeting, resource allocation for conserving energy on mobile devices, etc. Genetic algorithms have been used to solve NP-complete problems effectively, such as the KP, however, to the best of our knowledge, there is no GA for MCKP. We utilize a binary chromosome representation scheme for MCKP and design and implement the components, utilizing problem-specific knowledge for solving MCKP. In addition, for the repair operator, we propose two schemes (RepairSimple and RepairBRP). Results show that RepairBRP yields significantly better performance. We further show that the average fitness of the entire population converges towards the best fitness (optimal) value and compare the performance at various bit-rates.

  18. Scope of Gradient and Genetic Algorithms in Multivariable Function Optimization

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali; Sen, S. K.

    2007-01-01

    Global optimization of a multivariable function - constrained by bounds specified on each variable and also unconstrained - is an important problem with several real world applications. Deterministic methods such as the gradient algorithms as well as the randomized methods such as the genetic algorithms may be employed to solve these problems. In fact, there are optimization problems where a genetic algorithm/an evolutionary approach is preferable at least from the quality (accuracy) of the results point of view. From cost (complexity) point of view, both gradient and genetic approaches are usually polynomial-time; there are no serious differences in this regard, i.e., the computational complexity point of view. However, for certain types of problems, such as those with unacceptably erroneous numerical partial derivatives and those with physically amplified analytical partial derivatives whose numerical evaluation involves undesirable errors and/or is messy, a genetic (stochastic) approach should be a better choice. We have presented here the pros and cons of both the approaches so that the concerned reader/user can decide which approach is most suited for the problem at hand. Also for the function which is known in a tabular form, instead of an analytical form, as is often the case in an experimental environment, we attempt to provide an insight into the approaches focusing our attention toward accuracy. Such an insight will help one to decide which method, out of several available methods, should be employed to obtain the best (least error) output. *

  19. A comparison of binary and continuous genetic algorithm in parameter estimation of a logistic growth model

    NASA Astrophysics Data System (ADS)

    Windarto, Indratno, S. W.; Nuraini, N.; Soewono, E.

    2014-02-01

    Genetic algorithm is an optimization method based on the principles of genetics and natural selection in life organisms. The algorithm begins by defining the optimization variables, defining the cost function (in a minimization problem) or the fitness function (in a maximization problem) and selecting genetic algorithm parameters. The main procedures in genetic algorithm are generating initial population, selecting some chromosomes (individual) as parent's individual, mating, and mutation. In this paper, binary and continuous genetic algorithms were implemented to estimate growth rate and carrying capacity parameter from poultry data cited from literature. For simplicity, all genetic algorithm parameters (selection rate and mutation rate) are set to be constant along implementation of the algorithm. It was found that by selecting suitable mutation rate, both algorithms can estimate these parameters well. Suitable range for mutation rate in continuous genetic algorithm is wider than the binary one.

  20. Application of coevolutionary genetic algorithms for multiobjective optimization

    NASA Astrophysics Data System (ADS)

    Liu, Jian-guo; Li, Zu-shu; Wu, Wei-ping

    2007-12-01

    Multiobjective optimization is clearly one of the most important classes of problems in science and engineering. The solution of real problem involved in multiobjective optimization must satisfy all optimization objectives simultaneously, and in general the solution is a set of indeterminacy points. The task of multiobjective optimization is to estimate the distribution of this solution set, then to find the satisfying solution in it. Many methods solving multiobjective optimization using genetic algorithm have been proposed in recent twenty years. But these approaches tend to work negatively, causing that the population converges to small number of solutions due to the random genetic drift. To avoid this phenomenon, a multiobjective coevolutionary genetic algorithm (MoCGA) for multiobjective optimization is proposed. The primary design goal of the proposed approach is to produce a reasonably good approximation of the true Pareto front of a problem. In the algorithms, each objective corresponds to a population. At each generation, these populations compete among themselves. An ecological population density competition equation is used for reference to describe the relation between multiple objectives and to direct the adjustment over the relation at individual and population levels. The proposed approach store the Pareto optimal point obtained along the evolutionary process into external set. The proposed approach is validated using Schaffer's test function f II and it is compared with the Niched Pareto GA (nPGA). Simulation experiments prove that the algorithm has a better performance in finding the Pareto solutions, and the MoCGA can have advantages over the other algorithms under consideration in convergence to the Pareto-optimal front.

  1. Locomotive assignment problem with train precedence using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Noori, Siamak; Ghannadpour, Seyed Farid

    2012-07-01

    This paper aims to study the locomotive assignment problem which is very important for railway companies, in view of high cost of operating locomotives. This problem is to determine the minimum cost assignment of homogeneous locomotives located in some central depots to a set of pre-scheduled trains in order to provide sufficient power to pull the trains from their origins to their destinations. These trains have different degrees of priority for servicing, and the high class of trains should be serviced earlier than others. This problem is modeled using vehicle routing and scheduling problem where trains representing the customers are supposed to be serviced in pre-specified hard/soft fuzzy time windows. A two-phase approach is used which, in the first phase, the multi-depot locomotive assignment is converted to a set of single depot problems, and after that, each single depot problem is solved heuristically by a hybrid genetic algorithm. In the genetic algorithm, various heuristics and efficient operators are used in the evolutionary search. The suggested algorithm is applied to solve the medium sized numerical example to check capabilities of the model and algorithm. Moreover, some of the results are compared with those solutions produced by branch-and-bound technique to determine validity and quality of the model. Results show that suggested approach is rather effective in respect of quality and time.

  2. A sustainable genetic algorithm for satellite resource allocation

    NASA Technical Reports Server (NTRS)

    Abbott, R. J.; Campbell, M. L.; Krenz, W. C.

    1995-01-01

    A hybrid genetic algorithm is used to schedule tasks for 8 satellites, which can be modelled as a robot whose task is to retrieve objects from a two dimensional field. The objective is to find a schedule that maximizes the value of objects retrieved. Typical of the real-world tasks to which this corresponds is the scheduling of ground contacts for a communications satellite. An important feature of our application is that the amount of time available for running the scheduler is not necessarily known in advance. This requires that the scheduler produce reasonably good results after a short period but that it also continue to improve its results if allowed to run for a longer period. We satisfy this requirement by developing what we call a sustainable genetic algorithm.

  3. Adaptive Process Control with Fuzzy Logic and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  4. Adaptive process control using fuzzy logic and genetic algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  5. Users guide to the PGAPack parallel genetic algorithm library

    SciTech Connect

    Levine, D.

    1996-01-01

    PGAPack is a parallel genetic algorithm library that is intended to provide most capabilities desired in a genetic algorithm package, in an integrated, seamless, and portable manner. Key features of PGAPack are as follows: Ability to be called from Fortran or C. Executable on uniprocessors, multiprocessors, multicomputers, and workstation networks. Binary-, integer-, real-, and character-valued native data types. Object-oriented data structure neutral design. Parameterized population replacement. Multiple choices for selection, crossover, and mutation operators. Easy integration of hill-climbing heuristics. Easy-to-use interface for novice and application users. Multiple levels of access for expert users. Full extensibility to support custom operators and new data types. Extensive debugging facilities. Large set of example problems.

  6. Genetic Algorithm Application in Optimization of Wireless Sensor Networks

    PubMed Central

    Norouzi, Ali; Zaim, A. Halim

    2014-01-01

    There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs. PMID:24693235

  7. Optimum Actuator Selection with a Genetic Algorithm for Aircraft Control

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    2004-01-01

    The placement of actuators on a wing determines the control effectiveness of the airplane. One approach to placement maximizes the moments about the pitch, roll, and yaw axes, while minimizing the coupling. For example, the desired actuators produce a pure roll moment without at the same time causing much pitch or yaw. For a typical wing, there is a large set of candidate locations for placing actuators, resulting in a substantially larger number of combinations to examine in order to find an optimum placement satisfying the mission requirements and mission constraints. A genetic algorithm has been developed for finding the best placement for four actuators to produce an uncoupled pitch moment. The genetic algorithm has been extended to find the minimum number of actuators required to provide uncoupled pitch, roll, and yaw control. A simplified, untapered, unswept wing is the model for each application.

  8. Designing a competent simple genetic algorithm for search and optimization

    NASA Astrophysics Data System (ADS)

    Reed, Patrick; Minsker, Barbara; Goldberg, David E.

    2000-12-01

    Simple genetic algorithms have been used to solve many water resources problems, but specifying the parameters that control how adaptive search is performed can be a difficult and time-consuming trial-and-error process. However, theoretical relationships for population sizing and timescale analysis have been developed that can provide pragmatic tools for vastly limiting the number of parameter combinations that must be considered. The purpose of this technical note is to summarize these relationships for the water resources community and to illustrate their practical utility in a long-term groundwater monitoring design application. These relationships, which model the effects of the primary operators of a simple genetic algorithm (selection, recombination, and mutation), provide a highly efficient method for ensuring convergence to near-optimal or optimal solutions. Application of the method to a monitoring design test case identified robust parameter values using only three trial runs.

  9. GAz: a genetic algorithm for photometric redshift estimation

    NASA Astrophysics Data System (ADS)

    Hogan, Robert; Fairbairn, Malcolm; Seeburn, Navin

    2015-05-01

    We present a new approach to the problem of estimating the redshift of galaxies from photometric data. The approach uses a genetic algorithm combined with non-linear regression to model the 2SLAQ LRG data set with SDSS DR7 photometry. The genetic algorithm explores the very large space of high order polynomials while only requiring optimization of a small number of terms. We find a σrms = 0.0408 ± 0.0006 for redshifts in the range 0.4 < z < 0.7. These results are competitive with the current state-of-the-art but can be presented simply as a polynomial which does not require the user to run any code. We demonstrate that the method generalizes well to other data sets and redshift ranges by testing it on SDSS DR11 and on simulated data. For other data sets or applications the code has been made available at https://github.com/rbrthogan/GAz.

  10. A genetic algorithm solution to the unit commitment problem

    SciTech Connect

    Kazarlis, S.A.; Bakirtzis, A.G.; Petridis, V.

    1996-02-01

    This paper presents a Genetic Algorithm (GA) solution to the Unit Commitment problem. GAs are general purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms such as natural selection, genetic recombination and survival of the fittest. A simple Ga algorithm implementation using the standard crossover and mutation operators could locate near optimal solutions but in most cases failed to converge to the optimal solution. However, using the Varying Quality Function technique and adding problem specific operators, satisfactory solutions to the Unit Commitment problem were obtained. Test results for systems of up to 100 units and comparisons with results obtained using Lagrangian Relaxation and Dynamic Programming are also reported.

  11. Quantum control using genetic algorithms in quantum communication: superdense coding

    NASA Astrophysics Data System (ADS)

    Domínguez-Serna, Francisco; Rojas, Fernando

    2015-06-01

    We present a physical example model of how Quantum Control with genetic algorithms is applied to implement the quantum superdense code protocol. We studied a model consisting of two quantum dots with an electron with spin, including spin-orbit interaction. The electron and the spin get hybridized with the site acquiring two degrees of freedom, spin and charge. The system has tunneling and site energies as time dependent control parameters that are optimized by means of genetic algorithms to prepare a hybrid Bell-like state used as a transmission channel. This state is transformed to obtain any state of the four Bell basis as required by superdense protocol to transmit two bits of classical information. The control process protocol is equivalent to implement one of the quantum gates in the charge subsystem. Fidelities larger than 99.5% are achieved for the hybrid entangled state preparation and the superdense operations.

  12. Optimal design of plasmonic waveguide using multiobjective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jung, Jaehoon

    2016-01-01

    An approach for multiobjective optimal design of a plasmonic waveguide is presented. We use a multiobjective extension of a genetic algorithm to find the Pareto-optimal geometries. The design variables are the geometrical parameters of the waveguide. The objective functions are chosen as the figure of merit defined as the ratio between the propagation distance and effective mode size and the normalized coupling length between adjacent waveguides at the telecom wavelength of 1550 nm.

  13. First flights of genetic-algorithm Kitty Hawk

    SciTech Connect

    Goldberg, D.E.

    1994-12-31

    The design of complex systems requires an effective methodology of invention. This paper considers the methodology of the Wright brothers in inventing the powered airplane and suggests how successes in the design of genetic algorithms have come at the hands of a Wright-brothers-like approach. Recent reliable subquadratic results in solving hard problems with nontraditional GAs and predictions of the limits of simple GAs are presented as two accomplishments achieved in this manner.

  14. Optical design with the aid of a genetic algorithm.

    PubMed

    van Leijenhorst, D C; Lucasius, C B; Thijssen, J M

    1996-01-01

    Natural evolution is widely accepted as being the process underlying the design and optimization of the sensory functions of biological organisms. Using a genetic algorithm, this process is extended to the automatic optimization and design of optical systems, e.g. as used in astronomical telescopes. The results of this feasibility study indicate that various types of aberrations can be corrected quickly and simultaneously, even on small computers. PMID:8924643

  15. Neural-network-biased genetic algorithms for materials design

    NASA Astrophysics Data System (ADS)

    Patra, Tarak; Meenakshisundaram, Venkatesh; Simmons, David

    Machine learning tools have been progressively adopted by the materials science community to accelerate design of materials with targeted properties. However, in the search for new materials exhibiting properties and performance beyond that previously achieved, machine learning approaches are frequently limited by two major shortcomings. First, they are intrinsically interpolative. They are therefore better suited to the optimization of properties within the known range of accessible behavior than to the discovery of new materials with extremal behavior. Second, they require the availability of large datasets, which in some fields are not available and would be prohibitively expensive to produce. Here we describe a new strategy for combining genetic algorithms, neural networks and other machine learning tools, and molecular simulation to discover materials with extremal properties in the absence of pre-existing data. Predictions from progressively constructed machine learning tools are employed to bias the evolution of a genetic algorithm, with fitness evaluations performed via direct molecular dynamics simulation. We survey several initial materials design problems we have addressed with this framework and compare its performance to that of standard genetic algorithm approaches. We acknowledge the W. M. Keck Foundation for support of this work.

  16. Genetic Algorithm Optimizes Q-LAW Control Parameters

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard

    2008-01-01

    A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.

  17. MAC protocol for ad hoc networks using a genetic algorithm.

    PubMed

    Elizarraras, Omar; Panduro, Marco; Mndez, Aldo L; Reyna, Alberto

    2014-01-01

    The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339

  18. Investigation of new operators for a diploid genetic algorithm

    NASA Astrophysics Data System (ADS)

    Uyar, Sima E.; Harmanci, A. Emre

    1999-11-01

    This study involves diploid genetic algorithms in which a diploid representation of individuals is used. This type of representation allows characteristics that may not be visible in the current population to the preserved in the structure of the individuals and then be expressed in a later generation. Thus it prevents traits that may be useful from being lost. It also helps add diversity to the genetic pool of the population. In conformance with the diploid representation of individuals, a reproductive scheme which models the meiotic cell division for gamete formation in diploid organisms in nature is employed. A domination strategy is applied for mapping an individual's genotype onto its phenotype. The domination factor of each allele at each location is determined by way of a statistical scan of the population in the previous generation. Classical operators such as cross-over and mutation are also used in the new reproductive routine. The next generation of individuals are chosen via a fitness proportional method from among the parents and the offspring combined. To prevent early convergence and the population overtake of certain individuals over generations, an age counter is added. The effectiveness of this algorithm is shown by comparing it with the simple genetic algorithm using various test functions.

  19. MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm

    PubMed Central

    Elizarraras, Omar; Panduro, Marco; Méndez, Aldo L.

    2014-01-01

    The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339

  20. A genetic algorithm to reduce stream channel cross section data

    USGS Publications Warehouse

    Berenbrock, C.

    2006-01-01

    A genetic algorithm (GA) was used to reduce cross section data for a hypothetical example consisting of 41 data points and for 10 cross sections on the Kootenai River. The number of data points for the Kootenai River cross sections ranged from about 500 to more than 2,500. The GA was applied to reduce the number of data points to a manageable dataset because most models and other software require fewer than 100 data points for management, manipulation, and analysis. Results indicated that the program successfully reduced the data. Fitness values from the genetic algorithm were lower (better) than those in a previous study that used standard procedures of reducing the cross section data. On average, fitnesses were 29 percent lower, and several were about 50 percent lower. Results also showed that cross sections produced by the genetic algorithm were representative of the original section and that near-optimal results could be obtained in a single run, even for large problems. Other data also can be reduced in a method similar to that for cross section data.

  1. A meta-learning system based on genetic algorithms

    NASA Astrophysics Data System (ADS)

    Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain

    2004-04-01

    The design of an efficient machine learning process through self-adaptation is a great challenge. The goal of meta-learning is to build a self-adaptive learning system that is constantly adapting to its specific (and dynamic) environment. To that end, the meta-learning mechanism must improve its bias dynamically by updating the current learning strategy in accordance with its available experiences or meta-knowledge. We suggest using genetic algorithms as the basis of an adaptive system. In this work, we propose a meta-learning system based on a combination of the a priori and a posteriori concepts. A priori refers to input information and knowledge available at the beginning in order to built and evolve one or more sets of parameters by exploiting the context of the system"s information. The self-learning component is based on genetic algorithms and neural Darwinism. A posteriori refers to the implicit knowledge discovered by estimation of the future states of parameters and is also applied to the finding of optimal parameters values. The in-progress research presented here suggests a framework for the discovery of knowledge that can support human experts in their intelligence information assessment tasks. The conclusion presents avenues for further research in genetic algorithms and their capability to learn to learn.

  2. Genetic algorithm testbed for expert system testing. Final report

    SciTech Connect

    Roache, E.

    1996-01-01

    In recent years, the electric utility industry has developed advisory and control software that makes use of expert system technology. The validation of the underlying knowledge representation in these expert systems is critical to their success. Most expert systems currently deployed have been validated by certifying that the expert system provides appropriate conclusions for specific test cases. While this type of testing is important, it does not test cases where unexpected inputs are presented to the expert system and potential errors are exposed. Exhaustive testing is not typically an option due to the complexity of the knowledge representation and the combinatorial effects associated with checking all possible inputs through all possible execution paths. Genetic algorithms are general purpose search techniques modeled on natural adaptive systems and selective breeding methods. Genetic algorithms have been used successfully for parameter optimization and efficient search. The goal of this project was to confirm or reject the hypothesis that genetic algorithms (GAs) are useful in expert system validation. The GA system specifically targeted errors in the study`s expert system that would be exposed by unexpected input cases. The GA system found errors in the expert system and the hypothesis was confirmed. This report describes the process and results of the project.

  3. Automatic Data Filter Customization Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Mandrake, Lukas

    2013-01-01

    This work predicts whether a retrieval algorithm will usefully determine CO2 concentration from an input spectrum of GOSAT (Greenhouse Gases Observing Satellite). This was done to eliminate needless runtime on atmospheric soundings that would never yield useful results. A space of 50 dimensions was examined for predictive power on the final CO2 results. Retrieval algorithms are frequently expensive to run, and wasted effort defeats requirements and expends needless resources. This algorithm could be used to help predict and filter unneeded runs in any computationally expensive regime. Traditional methods such as the Fischer discriminant analysis and decision trees can attempt to predict whether a sounding will be properly processed. However, this work sought to detect a subsection of the dimensional space that can be simply filtered out to eliminate unwanted runs. LDAs (linear discriminant analyses) and other systems examine the entire data and judge a "best fit," giving equal weight to complex and problematic regions as well as simple, clear-cut regions. In this implementation, a genetic space of "left" and "right" thresholds outside of which all data are rejected was defined. These left/right pairs are created for each of the 50 input dimensions. A genetic algorithm then runs through countless potential filter settings using a JPL computer cluster, optimizing the tossed-out data s yield (proper vs. improper run removal) and number of points tossed. This solution is robust to an arbitrary decision boundary within the data and avoids the global optimization problem of whole-dataset fitting using LDA or decision trees. It filters out runs that would not have produced useful CO2 values to save needless computation. This would be an algorithmic preprocessing improvement to any computationally expensive system.

  4. A test sheet generating algorithm based on intelligent genetic algorithm and hierarchical planning

    NASA Astrophysics Data System (ADS)

    Gu, Peipei; Niu, Zhendong; Chen, Xuting; Chen, Wei

    2013-03-01

    In recent years, computer-based testing has become an effective method to evaluate students' overall learning progress so that appropriate guiding strategies can be recommended. Research has been done to develop intelligent test assembling systems which can automatically generate test sheets based on given parameters of test items. A good multisubject test sheet depends on not only the quality of the test items but also the construction of the sheet. Effective and efficient construction of test sheets according to multiple subjects and criteria is a challenging problem. In this paper, a multi-subject test sheet generation problem is formulated and a test sheet generating approach based on intelligent genetic algorithm and hierarchical planning (GAHP) is proposed to tackle this problem. The proposed approach utilizes hierarchical planning to simplify the multi-subject testing problem and adopts genetic algorithm to process the layered criteria, enabling the construction of good test sheets according to multiple test item requirements. Experiments are conducted and the results show that the proposed approach is capable of effectively generating multi-subject test sheets that meet specified requirements and achieve good performance.

  5. Optimization in optical systems revisited: Beyond genetic algorithms

    NASA Astrophysics Data System (ADS)

    Gagnon, Denis; Dumont, Joey; Dubé, Louis

    2013-05-01

    Designing integrated photonic devices such as waveguides, beam-splitters and beam-shapers often requires optimization of a cost function over a large solution space. Metaheuristics - algorithms based on empirical rules for exploring the solution space - are specifically tailored to those problems. One of the most widely used metaheuristics is the standard genetic algorithm (SGA), based on the evolution of a population of candidate solutions. However, the stochastic nature of the SGA sometimes prevents access to the optimal solution. Our goal is to show that a parallel tabu search (PTS) algorithm is more suited to optimization problems in general, and to photonics in particular. PTS is based on several search processes using a pool of diversified initial solutions. To assess the performance of both algorithms (SGA and PTS), we consider an integrated photonics design problem, the generation of arbitrary beam profiles using a two-dimensional waveguide-based dielectric structure. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).

  6. An implementation of continuous genetic algorithm in parameter estimation of predator-prey model

    NASA Astrophysics Data System (ADS)

    Windarto

    2016-03-01

    Genetic algorithm is an optimization method based on the principles of genetics and natural selection in life organisms. The main components of this algorithm are chromosomes population (individuals population), parent selection, crossover to produce new offspring, and random mutation. In this paper, continuous genetic algorithm was implemented to estimate parameters in a predator-prey model of Lotka-Volterra type. For simplicity, all genetic algorithm parameters (selection rate and mutation rate) are set to be constant along implementation of the algorithm. It was found that by selecting suitable mutation rate, the algorithms can estimate these parameters well.

  7. Library design using genetic algorithms for catalyst discovery and optimization

    NASA Astrophysics Data System (ADS)

    Clerc, Frederic; Lengliz, Mourad; Farrusseng, David; Mirodatos, Claude; Pereira, Sílvia R. M.; Rakotomalala, Ricco

    2005-06-01

    This study reports a detailed investigation of catalyst library design by genetic algorithm (GA). A methodology for assessing GA configurations is described. Operators, which promote the optimization speed while being robust to noise and outliers, are revealed through statistical studies. The genetic algorithms were implemented in GA platform software called OptiCat, which enables the construction of custom-made workflows using a tool box of operators. Two separate studies were carried out (i) on a virtual benchmark and (ii) on real surface response which is derived from HT screening. Additionally, we report a methodology to model a complex surface response by binning the search space in small zones that are then independently modeled by linear regression. In contrast to artificial neural networks, this approach allows one to obtain an explicit model in an analogical form that can be further used in Excel or entered in OptiCat to perform simulations. While speeding the implementation of a hybrid algorithm combining a GA with a knowledge-based extraction engine is described, while speeding up the optimization process by means of virtual prescreening the hybrid GA enables one to open the "black-box" by providing knowledge as a set of association rules.

  8. Optimal design of link systems using successive zooming genetic algorithm

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Doo; Sohn, Chang-hyun; Kwon, Soon-Bum; Lim, Jae-gyoo

    2009-07-01

    Link-systems have been around for a long time and are still used to control motion in diverse applications such as automobiles, robots and industrial machinery. This study presents a procedure involving the use of a genetic algorithm for the optimal design of single four-bar link systems and a double four-bar link system used in diesel engine. We adopted the Successive Zooming Genetic Algorithm (SZGA), which has one of the most rapid convergence rates among global search algorithms. The results are verified by experiment and the Recurdyn dynamic motion analysis package. During the optimal design of single four-bar link systems, we found in the case of identical input/output (IO) angles that the initial and final configurations show certain symmetry. For the double link system, we introduced weighting factors for the multi-objective functions, which minimize the difference between output angles, providing balanced engine performance, as well as the difference between final output angle and the desired magnitudes of final output angle. We adopted a graphical method to select a proper ratio between the weighting factors.

  9. EVOLVING RETRIEVAL ALGORITHMS WITH A GENETIC PROGRAMMING SCHEME

    SciTech Connect

    J. THEILER; ET AL

    1999-06-01

    The retrieval of scene properties (surface temperature, material type, vegetation health, etc.) from remotely sensed data is the ultimate goal of many earth observing satellites. The algorithms that have been developed for these retrievals are informed by physical models of how the raw data were generated. This includes models of radiation as emitted and/or rejected by the scene, propagated through the atmosphere, collected by the optics, detected by the sensor, and digitized by the electronics. To some extent, the retrieval is the inverse of this ''forward'' modeling problem. But in contrast to this forward modeling, the practical task of making inferences about the original scene usually requires some ad hoc assumptions, good physical intuition, and a healthy dose of trial and error. The standard MTI data processing pipeline will employ algorithms developed with this traditional approach. But we will discuss some preliminary research on the use of a genetic programming scheme to ''evolve'' retrieval algorithms. Such a scheme cannot compete with the physical intuition of a remote sensing scientist, but it may be able to automate some of the trial and error. In this scenario, a training set is used, which consists of multispectral image data and the associated ''ground truth;'' that is, a registered map of the desired retrieval quantity. The genetic programming scheme attempts to combine a core set of image processing primitives to produce an IDL (Interactive Data Language) program which estimates this retrieval quantity from the raw data.

  10. Genetic Algorithms: A New Method for Neutron Beam Spectral Characterization

    SciTech Connect

    David W. Freeman

    2000-06-04

    A revolutionary new concept for solving the neutron spectrum unfolding problem using genetic algorithms (GAs) has recently been introduced. GAs are part of a new field of evolutionary solution techniques that mimic living systems with computer-simulated chromosome solutions that mate, mutate, and evolve to create improved solutions. The original motivation for the research was to improve spectral characterization of neutron beams associated with boron neutron capture therapy (BNCT). The GA unfolding technique has been successfully applied to problems with moderate energy resolution (up to 47 energy groups). Initial research indicates that the GA unfolding technique may well be superior to popular unfolding methods in common use. Research now under way at Kansas State University is focused on optimizing the unfolding algorithm and expanding its energy resolution to unfold detailed beam spectra based on multiple foil measurements. Indications are that the final code will significantly outperform current, state-of-the-art codes in use by the scientific community.

  11. A genetic algorithm based method for docking flexible molecules

    SciTech Connect

    Judson, R.S.; Jaeger, E.P.; Treasurywala, A.M.

    1993-11-01

    The authors describe a computational method for docking flexible molecules into protein binding sites. The method uses a genetic algorithm (GA) to search the combined conformation/orientation space of the molecule to find low energy conformation. Several techniques are described that increase the efficiency of the basic search method. These include the use of several interacting GA subpopulations or niches; the use of a growing algorithm that initially docks only a small part of the molecule; and the use of gradient minimization during the search. To illustrate the method, they dock Cbz-GlyP-Leu-Leu (ZGLL) into thermolysin. This system was chosen because a well refined crystal structure is available and because another docking method had previously been tested on this system. Their method is able to find conformations that lie physically close to and in some cases lower in energy than the crystal conformation in reasonable periods of time on readily available hardware.

  12. Genetic algorithm for multiple bus line coordination on urban arterial.

    PubMed

    Yang, Zhen; Wang, Wei; Chen, Shuyan; Ding, Haoyang; Li, Xiaowei

    2015-01-01

    Bus travel time on road section is defined and analyzed with the effect of multiple bus lines. An analytical model is formulated to calculate the total red time a bus encounters when travelling along the arterial. Genetic algorithm is used to optimize the offset scheme of traffic signals to minimize the total red time that all bus lines encounter in two directions of the arterial. The model and algorithm are applied to the major part of Zhongshan North Street in the city of Nanjing. The results show that the methods in this paper can reduce total red time of all the bus lines by 31.9% on the object arterial and thus improve the traffic efficiency of the whole arterial and promote public transport priority. PMID:25663837

  13. Application of genetic algorithms to tuning fuzzy control systems

    NASA Technical Reports Server (NTRS)

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  14. Genetic algorithms for the construction of D-optimal designs

    SciTech Connect

    Heredia-Langner, Alejandro; Carlyle, W M.; Montgomery, D C.; Borror, Connie M.; Runger, George C.

    2003-01-01

    Computer-generated designs are useful for situations where standard factorial, fractional factorial or response surface designs cannot be easily employed. Alphabetically-optimal designs are the most widely used type of computer-generated designs, and of these, the D-optimal (or D-efficient) class of designs are extremely popular. D-optimal designs are usually constructed by algorithms that sequentially add and delete points from a potential design based using a candidate set of points spaced over the region of interest. We present a technique to generate D-efficient designs using genetic algorithms (GA). This approach eliminates the need to explicitly consider a candidate set of experimental points and it can handle highly constrained regions while maintaining a level of performance comparable to more traditional design construction techniques.

  15. An Island Grouping Genetic Algorithm for Fuzzy Partitioning Problems

    PubMed Central

    Salcedo-Sanz, S.; Del Ser, J.; Geem, Z. W.

    2014-01-01

    This paper presents a novel fuzzy clustering technique based on grouping genetic algorithms (GGAs), which are a class of evolutionary algorithms especially modified to tackle grouping problems. Our approach hinges on a GGA devised for fuzzy clustering by means of a novel encoding of individuals (containing elements and clusters sections), a new fitness function (a superior modification of the Davies Bouldin index), specially tailored crossover and mutation operators, and the use of a scheme based on a local search and a parallelization process, inspired from an island-based model of evolution. The overall performance of our approach has been assessed over a number of synthetic and real fuzzy clustering problems with different objective functions and distance measures, from which it is concluded that the proposed approach shows excellent performance in all cases. PMID:24977235

  16. Optimized hyperspectral band selection using hybrid genetic algorithm and gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie

    2015-12-01

    The serious information redundancy in hyperspectral images (HIs) cannot contribute to the data analysis accuracy, instead it require expensive computational resources. Consequently, to identify the most useful and valuable information from the HIs, thereby improve the accuracy of data analysis, this paper proposed a novel hyperspectral band selection method using the hybrid genetic algorithm and gravitational search algorithm (GA-GSA). In the proposed method, the GA-GSA is mapped to the binary space at first. Then, the accuracy of the support vector machine (SVM) classifier and the number of selected spectral bands are utilized to measure the discriminative capability of the band subset. Finally, the band subset with the smallest number of spectral bands as well as covers the most useful and valuable information is obtained. To verify the effectiveness of the proposed method, studies conducted on an AVIRIS image against two recently proposed state-of-the-art GSA variants are presented. The experimental results revealed the superiority of the proposed method and indicated that the method can indeed considerably reduce data storage costs and efficiently identify the band subset with stable and high classification precision.

  17. A Hybrid Metaheuristic for Biclustering Based on Scatter Search and Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Nepomuceno, Juan A.; Troncoso, Alicia; Aguilar–Ruiz, Jesús S.

    In this paper a hybrid metaheuristic for biclustering based on Scatter Search and Genetic Algorithms is presented. A general scheme of Scatter Search has been used to obtain high-quality biclusters, but a way of generating the initial population and a method of combination based on Genetic Algorithms have been chosen. Experimental results from yeast cell cycle and human B-cell lymphoma are reported. Finally, the performance of the proposed hybrid algorithm is compared with a genetic algorithm recently published.

  18. A Parallel Genetic Algorithm for Automated Electronic Circuit Design

    NASA Technical Reports Server (NTRS)

    Long, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris

    2000-01-01

    Parallelized versions of genetic algorithms (GAs) are popular primarily for three reasons: the GA is an inherently parallel algorithm, typical GA applications are very compute intensive, and powerful computing platforms, especially Beowulf-style computing clusters, are becoming more affordable and easier to implement. In addition, the low communication bandwidth required allows the use of inexpensive networking hardware such as standard office ethernet. In this paper we describe a parallel GA and its use in automated high-level circuit design. Genetic algorithms are a type of trial-and-error search technique that are guided by principles of Darwinian evolution. Just as the genetic material of two living organisms can intermix to produce offspring that are better adapted to their environment, GAs expose genetic material, frequently strings of 1s and Os, to the forces of artificial evolution: selection, mutation, recombination, etc. GAs start with a pool of randomly-generated candidate solutions which are then tested and scored with respect to their utility. Solutions are then bred by probabilistically selecting high quality parents and recombining their genetic representations to produce offspring solutions. Offspring are typically subjected to a small amount of random mutation. After a pool of offspring is produced, this process iterates until a satisfactory solution is found or an iteration limit is reached. Genetic algorithms have been applied to a wide variety of problems in many fields, including chemistry, biology, and many engineering disciplines. There are many styles of parallelism used in implementing parallel GAs. One such method is called the master-slave or processor farm approach. In this technique, slave nodes are used solely to compute fitness evaluations (the most time consuming part). The master processor collects fitness scores from the nodes and performs the genetic operators (selection, reproduction, variation, etc.). Because of dependency issues in the GA, it is possible to have idle processors. However, as long as the load at each processing node is similar, the processors are kept busy nearly all of the time. In applying GAs to circuit design, a suitable genetic representation 'is that of a circuit-construction program. We discuss one such circuit-construction programming language and show how evolution can generate useful analog circuit designs. This language has the desirable property that virtually all sets of combinations of primitives result in valid circuit graphs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. Using a parallel genetic algorithm and circuit simulation software, we present experimental results as applied to three analog filter and two amplifier design tasks. For example, a figure shows an 85 dB amplifier design evolved by our system, and another figure shows the performance of that circuit (gain and frequency response). In all tasks, our system is able to generate circuits that achieve the target specifications.

  19. Fringe Pattern Demodulation by Independent Windows Fitting Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Toledo, L. E.; Cuevas, F. J.

    2008-04-01

    It is presented a new method to retrieve the phase map from a fringe pattern with closed and sub-sampled fringes. The Fringe Processing on Independent Windows method (FPIW) find a parametric function that estimate the phase of a given segmented region that comes from the fringe pattern. FPIW method is a modification of the Window Fringe Pattern Demodulation technique (WFPD), that uses a genetic algorithm to find the parametric function. A population of randomly generated chromosomes, that codifies different parametric functions, is used by the genetic algorithm to simulate natural selection. A fitness value is associated to all chromosomes by a function that uses two criterion in FPIW method: fringe similarity between the segmented interferogram and the fringe pattern generated by the cosine of the phase given by the parametric function, and the smoothness of these function. The best chromosome produced by the evolution is decoded to obtain the parametric function that estimates the phase in a given region. The genetic algorithm is applied on a set of partially overlapped windows extracted from the original fringe pattern. The independent phases obtained by the GA's, are used to reconstruct the whole phase field. A given window is chosen to be the reference. Phase in adjacent windows is spliced with the phase in the reference window to form a phase map of the joined regions. The RMS value between reference phase and adjacent phase is minimized in the overlapped area to find the DC bias and the correct concavity of the adjacent phase, so continuity between reference and adjacent spliced phase is assured. The new phase map is used as the new reference. This process is repeated until the whole phase map is reconstructed.

  20. Full design of fuzzy controllers using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah; Mccormick, ED

    1992-01-01

    This paper examines the applicability of genetic algorithms in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.

  1. A new chromatic dispersion compensation method based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Chun-wu; Qin, Jiang-yi; Huang, Zhi-ping; Zhang, Yi-meng

    2013-08-01

    In the 40Gbps high-speed optical fiber communication system, chromatic dispersion of optical signal brings about to generation of inter-symbol interface which influences the quality of optical fiber communication. In order to solve the above questions in the 40Gbps differential quarter phase-shift keying (DQPSK) optical fiber communication system, a new method of chromatic dispersion compensation based on genetic algorithm is proposed according to the demodulation of DQPSK optical signal and the trait of chromatic dispersion. Result shows that the system's receiving sensitivity has been enhanced up to six orders of magnitude.

  2. Intracavity genetic algorithm for any distance beam parameters control

    NASA Astrophysics Data System (ADS)

    Kostylev, Andrey; Sobolev, Alexander; Cherezova, Tatiana; Sheldakova, Yulia; Kudryashov, Alexis

    2007-05-01

    In this paper we implement technique of intracavity bimorph flexible mirror control that allows to manipulate laser beam parameters (increase power, decrease divergence) and to form a given intensity profile at any distance including a far-field formation. Intracavity mirror surface profile is controlled by number of voltages calculated by means of genetic algorithm combined with hill-climbing one. Then the traditional Fox-Li approach is applied. It is numerically shown the possibility of successful formation of super Gaussian beam shape in near field, ring-like beam in far-field, possibility of significant power increase of TEM 00 mode and far-field peak intensity enlargement.

  3. Random search optimization based on genetic algorithm and discriminant function

    NASA Technical Reports Server (NTRS)

    Kiciman, M. O.; Akgul, M.; Erarslanoglu, G.

    1990-01-01

    The general problem of optimization with arbitrary merit and constraint functions, which could be convex, concave, monotonic, or non-monotonic, is treated using stochastic methods. To improve the efficiency of the random search methods, a genetic algorithm for the search phase and a discriminant function for the constraint-control phase were utilized. The validity of the technique is demonstrated by comparing the results to published test problem results. Numerical experimentation indicated that for cases where a quick near optimum solution is desired, a general, user-friendly optimization code can be developed without serious penalties in both total computer time and accuracy.

  4. Parameterization of interatomic potential by genetic algorithms: A case study

    SciTech Connect

    Ghosh, Partha S. Arya, A.; Dey, G. K.; Ranawat, Y. S.

    2015-06-24

    A framework for Genetic Algorithm based methodology is developed to systematically obtain and optimize parameters for interatomic force field functions for MD simulations by fitting to a reference data base. This methodology is applied to the fitting of ThO{sub 2} (CaF{sub 2} prototype) – a representative of ceramic based potential fuel for nuclear applications. The resulting GA optimized parameterization of ThO{sub 2} is able to capture basic structural, mechanical, thermo-physical properties and also describes defect structures within the permissible range.

  5. Overdetermined broadband spectroscopic Mueller matrix polarimeter designed by genetic algorithms.

    PubMed

    Aas, Lars Martin Sandvik; Ellingsen, Pål Gunnar; Fladmark, Bent Even; Letnes, Paul Anton; Kildemo, Morten

    2013-04-01

    This paper reports on the design and implementation of a liquid crystal variable retarder based overdetermined spectroscopic Mueller matrix polarimeter, with parallel processing of all wavelengths. The system was designed using a modified version of a recently developed genetic algorithm [Letnes et al. Opt. Express 18, 22, 23095 (2010)]. A generalization of the eigenvalue calibration method is reported that allows the calibration of such overdetermined polarimetric systems. Out of several possible designs, one of the designs was experimentally implemented and calibrated. It is reported that the instrument demonstrated good performance, with a measurement accuracy in the range of 0.1% for the measurement of air. PMID:23571964

  6. Application of Genetic Algorithms in Nonlinear Heat Conduction Problems

    PubMed Central

    Khan, Waqar A.

    2014-01-01

    Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry. PMID:24695517

  7. Hydrogenerator system identification using a simple genetic algorithm

    SciTech Connect

    Wrate, C.A.; Wozniak, L.

    1997-03-01

    This paper investigates an identification procedure for a hydrogenerator plant using an adaptive technique. The procedure operates on field data consisting of sampled gate position and electrical frequency. The field data was recorded while the plant was operating under various load conditions. The procedure adapted to ongoing plant changes by continuously updating the identification results. It is shown that the adaptive technique, in this case genetic algorithm based, was capable of identifying the hydrogenerator system and following plant parameter changes while the plant operated under conditions of sufficient frequency excursions. These conditions include off-line and isolated network operation where effective control is critical.

  8. Simulating and Synthesizing Substructures Using Neural Network and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Liu, Youhua; Kapania, Rakesh K.; VanLandingham, Hugh F.

    1997-01-01

    The feasibility of simulating and synthesizing substructures by computational neural network models is illustrated by investigating a statically indeterminate beam, using both a 1-D and a 2-D plane stress modelling. The beam can be decomposed into two cantilevers with free-end loads. By training neural networks to simulate the cantilever responses to different loads, the original beam problem can be solved as a match-up between two subsystems under compatible interface conditions. The genetic algorithms are successfully used to solve the match-up problem. Simulated results are found in good agreement with the analytical or FEM solutions.

  9. Full design of fuzzy controllers using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah; Mccormick, ED

    1992-01-01

    This paper examines the applicability of genetic algorithms (GA) in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.

  10. Optimal Topology Design of Products Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Swaminathan, N.; Ramakrisnan, C. V.; Balamurugan, R.

    2004-06-01

    Design of optimal topology for engineering products subject to mechanical loads has been traditionally approached through homogenization and more recently through introducing constraints on perimeter to ensure well-posedness. This paper reports attempts to obtain numerical solution to the problem of maximization of stiffness by distributing a given material in a discretized domain, with constraints on perimeter and appearance of small chattering voids, using Genetic Algorithm. Convergence of the numerical procedure is established and detailed topologies are obtained for various values of volume constraints.

  11. Evaluation of Mechanical Losses in Piezoelectric Plates using Genetic algorithm

    NASA Astrophysics Data System (ADS)

    Arnold, F. J.; Gonçalves, M. S.; Massaro, F. R.; Martins, P. S.

    Numerical methods are used for the characterization of piezoelectric ceramics. A procedure based on genetic algorithm is applied to find the physical coefficients and mechanical losses. The coefficients are estimated from a minimum scoring of cost function. Electric impedances are calculated from Mason's model including mechanical losses constant and dependent on frequency as a linear function. The results show that the electric impedance percentage error in the investigated interval of frequencies decreases when mechanical losses depending on frequency are inserted in the model. A more accurate characterization of the piezoelectric ceramics mechanical losses should be considered as frequency dependent.

  12. Multidisciplinary Optimization of Airborne Radome Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Tang, Xinggang; Zhang, Weihong; Zhu, Jihong

    A multidisciplinary optimization scheme of airborne radome is proposed. The optimization procedure takes into account the structural and the electromagnetic responses simultaneously. The structural analysis is performed with the finite element method using Patran/Nastran, while the electromagnetic analysis is carried out using the Plane Wave Spectrum and Surface Integration technique. The genetic algorithm is employed for the multidisciplinary optimization process. The thicknesses of multilayer radome wall are optimized to maximize the overall transmission coefficient of the antenna-radome system under the constraint of the structural failure criteria. The proposed scheme and the optimization approach are successfully assessed with an illustrative numerical example.

  13. Properties of nucleon resonances by means of a genetic algorithm

    SciTech Connect

    Fernandez-Ramirez, C.; Moya de Guerra, E.; Udias, A.

    2008-06-15

    We present an optimization scheme that employs a genetic algorithm (GA) to determine the properties of low-lying nucleon excitations within a realistic photo-pion production model based upon an effective Lagrangian. We show that with this modern optimization technique it is possible to reliably assess the parameters of the resonances and the associated error bars as well as to identify weaknesses in the models. To illustrate the problems the optimization process may encounter, we provide results obtained for the nucleon resonances {delta}(1230) and {delta}(1700). The former can be easily isolated and thus has been studied in depth, while the latter is not as well known experimentally.

  14. An evolved wavelet library based on genetic algorithm.

    PubMed

    Vaithiyanathan, D; Seshasayanan, R; Kunaraj, K; Keerthiga, J

    2014-01-01

    As the size of the images being captured increases, there is a need for a robust algorithm for image compression which satiates the bandwidth limitation of the transmitted channels and preserves the image resolution without considerable loss in the image quality. Many conventional image compression algorithms use wavelet transform which can significantly reduce the number of bits needed to represent a pixel and the process of quantization and thresholding further increases the compression. In this paper the authors evolve two sets of wavelet filter coefficients using genetic algorithm (GA), one for the whole image portion except the edge areas and the other for the portions near the edges in the image (i.e., global and local filters). Images are initially separated into several groups based on their frequency content, edges, and textures and the wavelet filter coefficients are evolved separately for each group. As there is a possibility of the GA settling in local maximum, we introduce a new shuffling operator to prevent the GA from this effect. The GA used to evolve filter coefficients primarily focuses on maximizing the peak signal to noise ratio (PSNR). The evolved filter coefficients by the proposed method outperform the existing methods by a 0.31 dB improvement in the average PSNR and a 0.39 dB improvement in the maximum PSNR. PMID:25405225

  15. An Evolved Wavelet Library Based on Genetic Algorithm

    PubMed Central

    Vaithiyanathan, D.; Seshasayanan, R.; Kunaraj, K.; Keerthiga, J.

    2014-01-01

    As the size of the images being captured increases, there is a need for a robust algorithm for image compression which satiates the bandwidth limitation of the transmitted channels and preserves the image resolution without considerable loss in the image quality. Many conventional image compression algorithms use wavelet transform which can significantly reduce the number of bits needed to represent a pixel and the process of quantization and thresholding further increases the compression. In this paper the authors evolve two sets of wavelet filter coefficients using genetic algorithm (GA), one for the whole image portion except the edge areas and the other for the portions near the edges in the image (i.e., global and local filters). Images are initially separated into several groups based on their frequency content, edges, and textures and the wavelet filter coefficients are evolved separately for each group. As there is a possibility of the GA settling in local maximum, we introduce a new shuffling operator to prevent the GA from this effect. The GA used to evolve filter coefficients primarily focuses on maximizing the peak signal to noise ratio (PSNR). The evolved filter coefficients by the proposed method outperform the existing methods by a 0.31?dB improvement in the average PSNR and a 0.39?dB improvement in the maximum PSNR. PMID:25405225

  16. Experience with a Genetic Algorithm Implemented on a Multiprocessor Computer

    NASA Technical Reports Server (NTRS)

    Plassman, Gerald E.; Sobieszczanski-Sobieski, Jaroslaw

    2000-01-01

    Numerical experiments were conducted to find out the extent to which a Genetic Algorithm (GA) may benefit from a multiprocessor implementation, considering, on one hand, that analyses of individual designs in a population are independent of each other so that they may be executed concurrently on separate processors, and, on the other hand, that there are some operations in a GA that cannot be so distributed. The algorithm experimented with was based on a gaussian distribution rather than bit exchange in the GA reproductive mechanism, and the test case was a hub frame structure of up to 1080 design variables. The experimentation engaging up to 128 processors confirmed expectations of radical elapsed time reductions comparing to a conventional single processor implementation. It also demonstrated that the time spent in the non-distributable parts of the algorithm and the attendant cross-processor communication may have a very detrimental effect on the efficient utilization of the multiprocessor machine and on the number of processors that can be used effectively in a concurrent manner. Three techniques were devised and tested to mitigate that effect, resulting in efficiency increasing to exceed 99 percent.

  17. Optimization of an antenna array using genetic algorithms

    SciTech Connect

    Kiehbadroudinezhad, Shahideh; Noordin, Nor Kamariah; Sali, A.; Abidin, Zamri Zainal

    2014-06-01

    An array of antennas is usually used in long distance communication. The observation of celestial objects necessitates a large array of antennas, such as the Giant Metrewave Radio Telescope (GMRT). Optimizing this kind of array is very important when observing a high performance system. The genetic algorithm (GA) is an optimization solution for these kinds of problems that reconfigures the position of antennas to increase the u-v coverage plane or decrease the sidelobe levels (SLLs). This paper presents how to optimize a correlator antenna array using the GA. A brief explanation about the GA and operators used in this paper (mutation and crossover) is provided. Then, the results of optimization are discussed. The results show that the GA provides efficient and optimum solutions among a pool of candidate solutions in order to achieve the desired array performance for the purposes of radio astronomy. The proposed algorithm is able to distribute the u-v plane more efficiently than GMRT with a more than 95% distribution ratio at snapshot, and to fill the u-v plane from a 20% to more than 68% filling ratio as the number of generations increases in the hour tracking observations. Finally, the algorithm is able to reduce the SLL to –21.75 dB.

  18. Prostate segmentation on pelvic CT images using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ghosh, Payel; Mitchell, Melanie

    2008-03-01

    A genetic algorithm (GA) for automating the segmentation of the prostate on pelvic computed tomography (CT) images is presented here. The images consist of slices from three-dimensional CT scans. Segmentation is typically performed manually on these images for treatment planning by an expert physician, who uses the "learned" knowledge of organ shapes, textures and locations to draw a contour around the prostate. Using a GA brings the flexibility to incorporate new "learned" information into the segmentation process without modifying the fitness function that is used to train the GA. Currently the GA uses prior knowledge in the form of texture and shape of the prostate for segmentation. We compare and contrast our algorithm with a level-set based segmentation algorithm, thereby providing justification for using a GA. Each individual of the GA population represents a segmenting contour. Shape variability of the prostate derived from manually segmented images is used to form a shape representation from which an individual of the GA population is randomly generated. The fitness of each individual is evaluated based on the texture of the region it encloses. The segmenting contour that encloses the prostate region is considered more fit than others and is more likely to be selected to produce an offspring over successive generations of the GA run. This process of selection, crossover and mutation is iterated until the desired region is segmented. Results of 2D and 3D segmentation are presented and future work is also discussed here.

  19. Parallel genetic algorithms for large-scale fixed charge networks

    SciTech Connect

    Meyer, R.R.

    1994-12-31

    We present parallel genetic algorithms (GA`s) for several classes of fixed-charge multicommodity flow problems arising from applications in parallel database design, domain decomposition, and telecommunications. These algorithms utilize a high-level approach based upon representing individual (in the GA sense) in terms of selections from a library of pre-computed {open_quotes}building blocks{close_quotes} of sets of variables rather than as values of individual binary variables corresponding to single links. The fitness function for this form of representation is then evaluated by applying heuristics to the starting point represented by an individual, thereby allowing for modifications in the original {open_quotes}blueprint{close_quotes} represented by the individual. These heuristics lead to objective function improvements and are also used to force feasibility. With this type of fitness function, the amount of time spent on the other operations of the GA (selection, mutation, etc.) is relatively small, so that high efficiency may be achieved in parallel implementations of the algorithm. We present computational results on the CM-5 supercomputer, demonstrating the ability to solve to optimality certain fixed-charge problems with more than one million binary variables.

  20. An Introduction to Genetic Algorithms and to Their Use in Information Retrieval.

    ERIC Educational Resources Information Center

    Jones, Gareth; And Others

    1994-01-01

    Genetic algorithms, a class of nondeterministic algorithms in which the role of chance makes the precise nature of a solution impossible to guarantee, seem to be well suited to combinatorial-optimization problems in information retrieval. Provides an introduction to techniques and characteristics of genetic algorithms and illustrates their…

  1. Genetic algorithm in the structural design of Cooke triplet lenses

    NASA Astrophysics Data System (ADS)

    Hazra, Lakshminarayan; Banerjee, Saswatee

    1999-08-01

    This paper is in tune with our efforts to develop a systematic method for multicomponent lens design. Our aim is to find a suitable starting point in the final configuration space, so that popular local search methods like damped least squares (DLS) may directly lead to a useful solution. For 'ab initio' design problems, a thin lens layout specifying the powers of the individual components and the intercomponent separations are worked out analytically. Requirements of central aberration targets for the individual components in order to satisfy the prespecified primary aberration targets for the overall system are then determined by nonlinear optimization. The next step involves structural design of the individual components by optimization techniques. This general method may be adapted for the design of triplets and their derivatives. However, for the thin lens design of a Cooke triplet composed of three airspaced singlets, the two steps of optimization mentioned above may be combined into a single optimization procedure. The optimum configuration for each of the single set, catering to the required Gaussian specification and primary aberration targets for the Cooke triplet, are determined by an application of genetic algorithm (GA). Our implementation of this algorithm is based on simulations of some complex tools of natural evolution, like selection, crossover and mutation. Our version of GA may or may not converge to a unique optimum, depending on some of the algorithm specific parameter values. With our algorithm, practically useful solutions are always available, although convergence to a global optimum can not be guaranteed. This is perfectly in keeping with our need to allow 'floating' of aberration targets in the subproblem level. Some numerical results dealing with our preliminary investigations on this problem are presented.

  2. Ancestral genome inference using a genetic algorithm approach.

    PubMed

    Gao, Nan; Yang, Ning; Tang, Jijun

    2013-01-01

    Recent advancement of technologies has now made it routine to obtain and compare gene orders within genomes. Rearrangements of gene orders by operations such as reversal and transposition are rare events that enable researchers to reconstruct deep evolutionary histories. An important application of genome rearrangement analysis is to infer gene orders of ancestral genomes, which is valuable for identifying patterns of evolution and for modeling the evolutionary processes. Among various available methods, parsimony-based methods (including GRAPPA and MGR) are the most widely used. Since the core algorithms of these methods are solvers for the so called median problem, providing efficient and accurate median solver has attracted lots of attention in this field. The "double-cut-and-join" (DCJ) model uses the single DCJ operation to account for all genome rearrangement events. Because mathematically it is much simpler than handling events directly, parsimony methods using DCJ median solvers has better speed and accuracy. However, the DCJ median problem is NP-hard and although several exact algorithms are available, they all have great difficulties when given genomes are distant. In this paper, we present a new algorithm that combines genetic algorithm (GA) with genomic sorting to produce a new method which can solve the DCJ median problem in limited time and space, especially in large and distant datasets. Our experimental results show that this new GA-based method can find optimal or near optimal results for problems ranging from easy to very difficult. Compared to existing parsimony methods which may severely underestimate the true number of evolutionary events, the sorting-based approach can infer ancestral genomes which are much closer to their true ancestors. The code is available at http://phylo.cse.sc.edu. PMID:23658708

  3. Evolving neural networks using a genetic algorithm for heartbeat classification.

    PubMed

    Sekkal, Mansouria; Chikh, Mohamed Amine; Settouti, Nesma

    2011-07-01

    This study investigates the effectiveness of a genetic algorithm (GA) evolved neural network (NN) classifier and its application to the classification of premature ventricular contraction (PVC) beats. As there is no standard procedure to determine the network structure for complicated cases, generally the design of the NN would be dependent on the user's experience. To prevent this problem, we propose a neural classifier that uses a GA for the determination of optimal connections between neurons for better recognition. The MIT-BIH arrhythmia database is employed to evaluate its accuracy. First, the topology of the NN was determined using the trial and error method. Second, the genetic operators were carefully designed to optimize the neural network structure. Performance and accuracy of the two techniques are presented and compared. PMID:21574910

  4. Actuator Placement Via Genetic Algorithm for Aircraft Morphing

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Cook, Andrea M.

    2001-01-01

    This research continued work that began under the support of NASA Grant NAG1-2119. The focus of this effort was to continue investigations of Genetic Algorithm (GA) approaches that could be used to solve an actuator placement problem by treating this as a discrete optimization problem. In these efforts, the actuators are assumed to be "smart" devices that change the aerodynamic shape of an aircraft wing to alter the flow past the wing, and, as a result, provide aerodynamic moments that could provide flight control. The earlier work investigated issued for the problem statement, developed the appropriate actuator modeling, recognized the importance of symmetry for this problem, modified the aerodynamic analysis routine for more efficient use with the genetic algorithm, and began a problem size study to measure the impact of increasing problem complexity. The research discussed in this final summary further investigated the problem statement to provide a "combined moment" problem statement to simultaneously address roll, pitch and yaw. Investigations of problem size using this new problem statement provided insight into performance of the GA as the number of possible actuator locations increased. Where previous investigations utilized a simple wing model to develop the GA approach for actuator placement, this research culminated with application of the GA approach to a high-altitude unmanned aerial vehicle concept to demonstrate that the approach is valid for an aircraft configuration.

  5. Internal Lattice Reconfiguration for Diversity Tuning in Cellular Genetic Algorithms

    PubMed Central

    Morales-Reyes, Alicia; Erdogan, Ahmet T.

    2012-01-01

    Cellular Genetic Algorithms (cGAs) have attracted the attention of researchers due to their high performance, ease of implementation and massive parallelism. Maintaining an adequate balance between exploitative and explorative search is essential when studying evolutionary optimization techniques. In this respect, cGAs inherently possess a number of structural configuration parameters that are able to sustain diversity during evolution. In this study, the internal reconfiguration of the lattice is proposed to constantly or adaptively control the exploration-exploitation trade-off. Genetic operators are characterized in their simplest form since algorithmic performance is assessed on implemented reconfiguration mechanisms. Moreover, internal reconfiguration allows the adjacency of individuals to be maintained. Hence, any improvement in performance is only a consequence of topological changes. Two local selection methods presenting opposite selection pressures are used in order to evaluate the influence of the proposed techniques. Problems ranging from continuous to real world and combinatorial are tackled. Empirical results are supported statistically in terms of efficiency and efficacy. PMID:22859973

  6. Segmentation of thermographic images of hands using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ghosh, Payel; Mitchell, Melanie; Gold, Judith

    2010-01-01

    This paper presents a new technique for segmenting thermographic images using a genetic algorithm (GA). The individuals of the GA also known as chromosomes consist of a sequence of parameters of a level set function. Each chromosome represents a unique segmenting contour. An initial population of segmenting contours is generated based on the learned variation of the level set parameters from training images. Each segmenting contour (an individual) is evaluated for its fitness based on the texture of the region it encloses. The fittest individuals are allowed to propagate to future generations of the GA run using selection, crossover and mutation. The dataset consists of thermographic images of hands of patients suffering from upper extremity musculo-skeletal disorders (UEMSD). Thermographic images are acquired to study the skin temperature as a surrogate for the amount of blood flow in the hands of these patients. Since entire hands are not visible on these images, segmentation of the outline of the hands on these images is typically performed by a human. In this paper several different methods have been tried for segmenting thermographic images: Gabor-wavelet-based texture segmentation method, the level set method of segmentation and our GA which we termed LSGA because it combines level sets with genetic algorithms. The results show a comparative evaluation of the segmentation performed by all the methods. We conclude that LSGA successfully segments entire hands on images in which hands are only partially visible.

  7. Using the Genetic Algorithm to Find Coils for Compact Stellarators

    NASA Astrophysics Data System (ADS)

    Miner, , Jr.; Valanju, P. M.; Hirshman, S. P.; Brooks, A.; Pomphrey, N.

    1999-11-01

    Stellarators are now optimized by finding the shape of the plasma surface that produces a desired mix of physics properties. The challenge is to find a practical coil set that creates that optimized surface with sufficient accuracy to retain the desired physics properties and still meet engineering and experimental constraints. Given the wide range of possible coil geometries, this is a daunting task requiring iterations between a practical coil geometry and the physics properties produced by it. A novel technique, the Genetic Algorithm (GA) (D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Leaning), (Addison Wesley, New York) 1989., has recently been applied to this problem. The GA is a computational search procedure for finding the global minimum of a target function using natural selection. This technique has been applied to the design of coils for the NCSX. Typically > 30 coil contours are needed to reproduce the necessary accuracy. Using GA, the result can be improved by choosing a small subset (e.g. 10) contours, each carrying different currents from among a much larger number (e.g. 50).

  8. Learning lung nodule similarity using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Seitz, Kerry A., Jr.; Giuca, Anne-Marie; Furst, Jacob; Raicu, Daniela

    2012-03-01

    The effectiveness and efficiency of content-based image retrieval (CBIR) can be improved by determining an optimal combination of image features to use in determining similarity between images. This combination of features can be optimized using a genetic algorithm (GA). Although several studies have used genetic algorithms to refine image features and similarity measures in CBIR, the present study is the first to apply these techniques to medical image retrieval. By implementing a GA to test different combinations of image features for pulmonary nodules in CT scans, the set of image features was reduced to 29 features from a total of 63 extracted features. The performance of the CBIR system was assessed by calculating the average precision across all query nodules. The precision values obtained using the GA-reduced set of features were significantly higher than those found using all 63 image features. Using radiologist-annotated malignancy ratings as ground truth resulted in an average precision of 85.95% after 3 images retrieved per query nodule when using the feature set identified by the GA. Using computer-predicted malignancy ratings as ground truth resulted in an average precision of 86.91% after 3 images retrieved. The results suggest that in the absence of radiologist semantic ratings, using computer-predicted malignancy as ground truth is a valid substitute given the closeness of the two precision values.

  9. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    SciTech Connect

    Bornholdt, S.; Graudenz, D.

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  10. Genetic algorithm parameter optimization: applied to sensor coverage

    NASA Astrophysics Data System (ADS)

    Sahin, Ferat; Abbate, Giuseppe

    2004-08-01

    Genetic Algorithms are powerful tools, which when set upon a solution space will search for the optimal answer. These algorithms though have some associated problems, which are inherent to the method such as pre-mature convergence and lack of population diversity. These problems can be controlled with changes to certain parameters such as crossover, selection, and mutation. This paper attempts to tackle these problems in GA by having another GA controlling these parameters. The values for crossover parameter are: one point, two point, and uniform. The values for selection parameters are: best, worst, roulette wheel, inside 50%, outside 50%. The values for the mutation parameter are: random and swap. The system will include a control GA whose population will consist of different parameters settings. While this GA is attempting to find the best parameters it will be advancing into the search space of the problem and refining the population. As the population changes due to the search so will the optimal parameters. For every control GA generation each of the individuals in the population will be tested for fitness by being run through the problem GA with the assigned parameters. During these runs the population used in the next control generation is compiled. Thus, both the issue of finding the best parameters and the solution to the problem are attacked at the same time. The goal is to optimize the sensor coverage in a square field. The test case used was a 30 by 30 unit field with 100 sensor nodes. Each sensor node had a coverage area of 3 by 3 units. The algorithm attempts to optimize the sensor coverage in the field by moving the nodes. The results show that the control GA will provide better results when compared to a system with no parameter changes.

  11. Genetic Algorithm Optimization of Artificial Neural Networks for Hydrological Modelling

    NASA Astrophysics Data System (ADS)

    Abrahart, R. J.

    2004-05-01

    This paper will consider the case for genetic algorithm optimization in the development of an artificial neural network model. It will provide a methodological evaluation of reported investigations with respect to hydrological forecasting and prediction. The intention in such operations is to develop a superior modelling solution that will be: \\begin{itemize} more accurate in terms of output precision and model estimation skill; more tractable in terms of personal requirements and end-user control; and/or more robust in terms of conceptual and mechanical power with respect to adverse conditions. The genetic algorithm optimization toolbox could be used to perform a number of specific roles or purposes and it is the harmonious and supportive relationship between neural networks and genetic algorithms that will be highlighted and assessed. There are several neural network mechanisms and procedures that could be enhanced and potential benefits are possible at different stages in the design and construction of an operational hydrological model e.g. division of inputs; identification of structure; initialization of connection weights; calibration of connection weights; breeding operations between successful models; and output fusion associated with the development of ensemble solutions. Each set of opportunities will be discussed and evaluated. Two strategic questions will also be considered: [i] should optimization be conducted as a set of small individual procedures or as one large holistic operation; [ii] what specific function or set of weighted vectors should be optimized in a complex software product e.g. timings, volumes, or quintessential hydrological attributes related to the 'problem situation' - that might require the development flood forecasting, drought estimation, or record infilling applications. The paper will conclude with a consideration of hydrological forecasting solutions developed on the combined methodologies of co-operative co-evolution and operational specialization. The standard approach to neural-evolution is at the network level such that a population of working solutions is manipulated until the fittest member is found. SANE [Symbiotic Adaptive Neuro-Evolution]1 source code offers an alternative method based on co-operative co-evolution in which a population of hidden neurons is evolved. The task of each hidden neuron is to establish appropriate connections that will provide: [i] a functional solution and [ii] performance improvements. Each member of the population attempts to optimize one particular aspect of the overall modelling process and evolution can lead to several different forms of specialization. This method of adaptive evolution also facilitates the creation of symbiotic relationships in which individual members must co-operate with others - who must be present - to permit survival. 1http://www.cs.utexas.edu/users/nn/pages/software/abstracts.html#sane-c

  12. First-Principles Molecular Structure Search with a Genetic Algorithm.

    PubMed

    Supady, Adriana; Blum, Volker; Baldauf, Carsten

    2015-11-23

    The identification of low-energy conformers for a given molecule is a fundamental problem in computational chemistry and cheminformatics. We assess here a conformer search that employs a genetic algorithm for sampling the low-energy segment of the conformation space of molecules. The algorithm is designed to work with first-principles methods, facilitated by the incorporation of local optimization and blacklisting conformers to prevent repeated evaluations of very similar solutions. The aim of the search is not only to find the global minimum but to predict all conformers within an energy window above the global minimum. The performance of the search strategy is (i) evaluated for a reference data set extracted from a database with amino acid dipeptide conformers obtained by an extensive combined force field and first-principles search and (ii) compared to the performance of a systematic search and a random conformer generator for the example of a drug-like ligand with 43 atoms, 8 rotatable bonds, and 1 cis/trans bond. PMID:26484612

  13. Human emotion detector based on genetic algorithm using lip features

    NASA Astrophysics Data System (ADS)

    Brown, Terrence; Fetanat, Gholamreza; Homaifar, Abdollah; Tsou, Brian; Mendoza-Schrock, Olga

    2010-04-01

    We predicted human emotion using a Genetic Algorithm (GA) based lip feature extractor from facial images to classify all seven universal emotions of fear, happiness, dislike, surprise, anger, sadness and neutrality. First, we isolated the mouth from the input images using special methods, such as Region of Interest (ROI) acquisition, grayscaling, histogram equalization, filtering, and edge detection. Next, the GA determined the optimal or near optimal ellipse parameters that circumvent and separate the mouth into upper and lower lips. The two ellipses then went through fitness calculation and were followed by training using a database of Japanese women's faces expressing all seven emotions. Finally, our proposed algorithm was tested using a published database consisting of emotions from several persons. The final results were then presented in confusion matrices. Our results showed an accuracy that varies from 20% to 60% for each of the seven emotions. The errors were mainly due to inaccuracies in the classification, and also due to the different expressions in the given emotion database. Detailed analysis of these errors pointed to the limitation of detecting emotion based on the lip features alone. Similar work [1] has been done in the literature for emotion detection in only one person, we have successfully extended our GA based solution to include several subjects.

  14. Use of genetic algorithm for the selection of EEG features

    NASA Astrophysics Data System (ADS)

    Asvestas, P.; Korda, A.; Kostopoulos, S.; Karanasiou, I.; Ouzounoglou, A.; Sidiropoulos, K.; Ventouras, E.; Matsopoulos, G.

    2015-09-01

    Genetic Algorithm (GA) is a popular optimization technique that can detect the global optimum of a multivariable function containing several local optima. GA has been widely used in the field of biomedical informatics, especially in the context of designing decision support systems that classify biomedical signals or images into classes of interest. The aim of this paper is to present a methodology, based on GA, for the selection of the optimal subset of features that can be used for the efficient classification of Event Related Potentials (ERPs), which are recorded during the observation of correct or incorrect actions. In our experiment, ERP recordings were acquired from sixteen (16) healthy volunteers who observed correct or incorrect actions of other subjects. The brain electrical activity was recorded at 47 locations on the scalp. The GA was formulated as a combinatorial optimizer for the selection of the combination of electrodes that maximizes the performance of the Fuzzy C Means (FCM) classification algorithm. In particular, during the evolution of the GA, for each candidate combination of electrodes, the well-known (Σ, Φ, Ω) features were calculated and were evaluated by means of the FCM method. The proposed methodology provided a combination of 8 electrodes, with classification accuracy 93.8%. Thus, GA can be the basis for the selection of features that discriminate ERP recordings of observations of correct or incorrect actions.

  15. An enhanced nonparametric streamflow disaggregation model with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Lee, T.; Salas, J. D.; Prairie, J.

    2010-08-01

    Stochastic streamflow generation is generally utilized for planning and management of water resources systems. For this purpose, a number of parametric and nonparametric models have been suggested in literature. Among them, temporal and spatial disaggregation approaches play an important role particularly to make sure that historical variance-covariance properties are preserved at various temporal and spatial scales. In this paper, we review the underlying features of existing nonparametric disaggregation methods, identify some of their pros and cons, and propose a disaggregation algorithm that is capable of surmounting some of the shortcomings of the current models. The proposed models hinge on k-nearest neighbor resampling, the accurate adjusting procedure, and a genetic algorithm. The models have been tested and compared to an existing nonparametric disaggregation approach using data of the Colorado River system. It has been shown that the model is capable of (1) reproducing the season-to-season correlations including the correlation between the last season of the previous year and the first season of the current year, (2) minimizing or avoiding the generation of flow patterns across the year that are literally the same as those of the historical records, and (3) minimizing or avoiding the generation of negative flows. In addition, it is applicable to intermittent river regimes.

  16. Optimizing the controllability of arbitrary networks with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Li, Xin-Feng; Lu, Zhe-Ming

    2016-04-01

    Recently, as the controllability of complex networks attracts much attention, how to optimize networks' controllability has become a common and urgent problem. In this paper, we develop an efficient genetic algorithm oriented optimization tool to optimize the controllability of arbitrary networks consisting of both state nodes and control nodes under Popov-Belevitch-Hautus rank condition. The experimental results on a number of benchmark networks show the effectiveness of this method and the evolution of network topology is captured. Furthermore, we explore how network structure affects its controllability and find that the sparser a network is, the more control nodes are needed to control it and the larger the differences between node degrees, the more control nodes are needed to achieve the full control. Our framework provides an alternative to controllability optimization and can be applied to arbitrary networks without any limitations.

  17. An Intelligent Model for Pairs Trading Using Genetic Algorithms

    PubMed Central

    Huang, Chien-Feng; Hsu, Chi-Jen; Chen, Chi-Chung; Chang, Bao Rong; Li, Chen-An

    2015-01-01

    Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice. PMID:26339236

  18. Application of genetic algorithms to lubrication pump stacking design

    NASA Astrophysics Data System (ADS)

    Kelner, V.; Leonard, O.

    2004-07-01

    Sizing a pump stacking used in an aircraft lubrication system is a challenging task. The combination of several pumps, in parallel and in a single casing, must deliver specified oil flow rates, on a variable number of circuits, and under given flight conditions. Furthermore, the optimal assembly has to minimize overall dimensions, weight and cost. This optimization problem involves a large space search, continuous and discrete variables and multi-objectives. Genetic Algorithms (GA)--stochastic search methods that mimic the metaphor of natural biological evolution--seem well suited to solve that kind of problems. A new GA is proposed. The efficiency of this GA is first demonstrated in solving various mathematical test-cases and then applied to the industrial problem.

  19. An adaptive genetic algorithm for crystal structure prediction

    SciTech Connect

    Wu, Shunqing; Ji, Min; Wang, Cai-Zhuang; Nguyen, Manh Cuong; Zhao, Xin; Umemoto, K.; Wentzcovitch, R. M.; Ho, Kai-Ming

    2013-10-31

    We present a genetic algorithm (GA) for structural search that combines the speed of structure exploration by classical potentials with the accuracy of density functional theory (DFT) calculations in an adaptive and iterative way. This strategy increases the efficiency of the DFT-based GA by several orders of magnitude. This gain allows a considerable increase in the size and complexity of systems that can be studied by first principles. The performance of the method is illustrated by successful structure identifications of complex binary and ternary intermetallic compounds with 36 and 54 atoms per cell, respectively. The discovery of a multi-TPa Mg-silicate phase with unit cell containing up to 56 atoms is also reported. Such a phase is likely to be an essential component of terrestrial exoplanetary mantles.

  20. Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Story, George

    2015-01-01

    Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. One remaining issue is the cost of hybrids versus the existing launch propulsion systems. This paper will review the known state-of-the-art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.

  1. Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Story, George

    2014-01-01

    Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and later on solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. A remaining issue is the cost of hybrids vs the existing launch propulsion systems. This paper will review the known state of the art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.

  2. An adaptive genetic algorithm for crystal structure prediction.

    PubMed

    Wu, S Q; Ji, M; Wang, C Z; Nguyen, M C; Zhao, X; Umemoto, K; Wentzcovitch, R M; Ho, K M

    2014-01-22

    We present a genetic algorithm (GA) for structural search that combines the speed of structure exploration by classical potentials with the accuracy of density functional theory (DFT) calculations in an adaptive and iterative way. This strategy increases the efficiency of the DFT-based GA by several orders of magnitude. This gain allows a considerable increase in the size and complexity of systems that can be studied by first principles. The performance of the method is illustrated by successful structure identifications of complex binary and ternary intermetallic compounds with 36 and 54 atoms per cell, respectively. The discovery of a multi-TPa Mg-silicate phase with unit cell containing up to 56 atoms is also reported. Such a phase is likely to be an essential component of terrestrial exoplanetary mantles. PMID:24351274

  3. Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Akturk, Cemal; Karaaslan, Muharrem; Ozdemir, Ersin; Ozkaner, Vedat; Dincer, Furkan; Bakir, Mehmet; Ozer, Zafer

    2015-03-01

    Chiral metamaterials have been a research area for many researchers due to their polarization rotation properties on electromagnetic waves. However, most of the proposed chiral metamaterials are designed depending on experience or time-consuming inefficient simulations. A method is investigated for designing a chiral metamaterial with a strong and natural chirality admittance by optimizing a grid of metallic pixels through both sides of a dielectric sheet placed perpendicular to the incident wave by using a genetic algorithm (GA) technique based on finite element method solver. The effective medium parameters are obtained by using constitutive equations and S parameters. The proposed methodology is very efficient for designing a chiral metamaterial with the desired effective medium parameters. By using GA-based topology, it is proven that a chiral metamaterial can be designed and manufactured more easily and with a low cost.

  4. Optimal Design of RF Energy Harvesting Device Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Mori, T.; Sato, Y.; Adriano, R.; Igarashi, H.

    2015-11-01

    This paper presents optimal design of an RF energy harvesting device using genetic algorithm (GA). In the present RF harvester, a planar spiral antenna (PSA) is loaded with matching and rectifying circuits. On the first stage of the optimal design, the shape parameters of PSA are optimized using . Then, the equivalent circuit of the optimized PSA is derived for optimization of the circuits. Finally, the parameters of RF energy harvesting circuit are optimized to maximize the output power using GA. It is shown that the present optimization increases the output power by a factor of five. The manufactured energy harvester starts working when the input electric field is greater than 0.5 V/m.

  5. Optimization and implementation of piezoelectric radiators using the genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bai, Mingsian R.; Huang, Chinghong

    2003-06-01

    Very thin and small (45 mm×35 mm×0.35 mm) piezoelectric radiators have been developed in this research. The system is modeled by using the energy method in conjunction with the assumed-modes method. Electrical system, mechanical system, and acoustic loading have all been accounted for during the modeling stage. On the basis of the simulation model, the genetic algorithm (GA) is employed to optimize the overall configurations for a low resonance frequency and a large gain. The resulting designs are then implemented and evaluated experimentally. Performance indices for the experimental evaluation include the frequency response, the directional response, the sensitivity, and the efficiency. It is found in the experimental results that the piezoelectric radiators are able to produce comparable acoustical output with significantly less electrical input than the voice-coil panel speakers.

  6. Optimization and implementation of piezoelectric radiators using the genetic algorithm.

    PubMed

    Bai, Mingsian R; Huang, Chinghong

    2003-06-01

    Very thin and small (45 mm x 35 mm x 0.35 mm) piezoelectric radiators have been developed in this research. The system is modeled by using the energy method in conjunction with the assumed-modes method. Electrical system, mechanical system, and acoustic loading have all been accounted for during the modeling stage. On the basis of the simulation model, the genetic algorithm (GA) is employed to optimize the overall configurations for a low resonance frequency and a large gain. The resulting designs are then implemented and evaluated experimentally. Performance indices for the experimental evaluation include the frequency response, the directional response, the sensitivity, and the efficiency. It is found in the experimental results that the piezoelectric radiators are able to produce comparable acoustical output with significantly less electrical input than the voice-coil panel speakers. PMID:12822792

  7. Alien Genetic Algorithm for Exploration of Search Space

    NASA Astrophysics Data System (ADS)

    Patel, Narendra; Padhiyar, Nitin

    2010-10-01

    Genetic Algorithm (GA) is a widely accepted population based stochastic optimization technique used for single and multi objective optimization problems. Various versions of modifications in GA have been proposed in last three decades mainly addressing two issues, namely increasing convergence rate and increasing probability of global minima. While both these. While addressing the first issue, GA tends to converge to a local optima and addressing the second issue corresponds the large computational efforts. Thus, to reduce the contradictory effects of these two aspects, we propose a modification in GA by adding an alien member in the population at every generation. Addition of an Alien member in the current population at every generation increases the probability of obtaining global minima at the same time maintaining higher convergence rate. With two test cases, we have demonstrated the efficacy of the proposed GA by comparing with the conventional GA.

  8. Genetic Algorithms and Nucleation in VIH-AIDS transition.

    NASA Astrophysics Data System (ADS)

    Barranon, Armando

    2003-03-01

    VIH to AIDS transition has been modeled via a genetic algorithm that uses boom-boom principle and where population evolution is simulated with a cellular automaton based on SIR model. VIH to AIDS transition is signed by nucleation of infected cells and low probability of infection are obtained for different mutation rates in agreement with clinical results. A power law is obtained with a critical exponent close to the critical exponent of cubic, spherical percolation, colossal magnetic resonance, Ising Model and liquid-gas phase transition in heavy ion collisions. Computations were carried out at UAM-A Supercomputing Lab and author acknowledges financial support from Division of CBI at UAM-A.

  9. Tuning of active vibration controllers for ACTEX by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  10. Evolutionary Design of Rule Changing Artificial Society Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Wu, Yun; Kanoh, Hitoshi

    Socioeconomic phenomena, cultural progress and political organization have recently been studied by creating artificial societies consisting of simulated agents. In this paper we propose a new method to design action rules of agents in artificial society that can realize given requests using genetic algorithms (GAs). In this paper we propose an efficient method for designing the action rules of agents that will constitute an artificial society that meets a specified demand by using a GAs. In the proposed method, each chromosome in the GA population represents a candidate set of action rules and the number of rule iterations. While a conventional method applies distinct rules in order of precedence, the present method applies a set of rules repeatedly for a certain period. The present method is aiming at both firm evolution of agent population and continuous action by that. Experimental results using the artificial society proved that the present method can generate artificial society which fills a demand in high probability.

  11. Using Genetic Algorithms to Converge on Molecules with Specific Properties

    NASA Astrophysics Data System (ADS)

    Foster, Stephen; Lindzey, Nathan; Rogers, Jon; West, Carl; Potter, Walt; Smith, Sean; Alexander, Steven

    2007-10-01

    Although it can be a straightforward matter to determine the properties of a molecule from its structure, the inverse problem is much more difficult. We have chosen to generate molecules by using a genetic algorithm, a computer simulation that models biological evolution and natural selection. By creating a population of randomly generated molecules, we can apply a process of selection, mutation, and recombination to ensure that the best members of the population (i.e. those molecules that possess many of the qualities we are looking for) survive, while the worst members of the population ``die.'' The best members are then modified by random mutation and by ``mating'' with other molecules to produce ``offspring.'' After many hundreds (or thousands) of iterations, one hopes that the population will get better and better---that is, that the properties of the individuals in the population will more and more closely match the properties we want.

  12. Population Induced Instabilities in Genetic Algorithms for Constrained Optimization

    NASA Astrophysics Data System (ADS)

    Vlachos, D. S.; Parousis-Orthodoxou, K. J.

    2013-02-01

    Evolutionary computation techniques, like genetic algorithms, have received a lot of attention as optimization techniques but, although they exhibit a very promising potential in curing the problem, they have not produced a significant breakthrough in the area of systematic treatment of constraints. There are two mainly ways of handling the constraints: the first is to produce an infeasibility measure and add it to the general cost function (the well known penalty methods) and the other is to modify the mutation and crossover operation in a way that they only produce feasible members. Both methods have their drawbacks and are strongly correlated to the problem that they are applied. In this work, we propose a different treatment of the constraints: we induce instabilities in the evolving population, in a way that infeasible solution cannot survive as they are. Preliminary results are presented in a set of well known from the literature constrained optimization problems.

  13. Genetic algorithms and solid state NMR pulse sequences.

    PubMed

    Bechmann, Matthias; Clark, John; Sebald, Angelika

    2013-03-01

    The use of genetic algorithms for the optimisation of magic angle spinning NMR pulse sequences is discussed. The discussion uses as an example the optimisation of the C7(2)(1) dipolar recoupling pulse sequence, aiming to achieve improved efficiency for spin systems characterised by large chemical shielding anisotropies and/or small dipolar coupling interactions. The optimised pulse sequence is found to be robust over a wide range of parameters, requires only minimal a priori knowledge of the spin system for experimental implementations with buildup rates being solely determined by the magnitude of the dipolar coupling interaction, but is found to be less broadbanded than the original C7(2)(1) pulse sequence. The optimised pulse sequence breaks the synchronicity between r.f. pulses and sample spinning. PMID:23357428

  14. Strawberry Maturity Neural Network Detectng System Based on Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Liming

    The quick and non-detective detection of agriculture product is one of the measures to increase the precision and productivity of harvesting and grading. Having analyzed H frequency of different maturities in different light intensities, the results show that H frequency for the same maturity has little influence in different light intensities; Under the same light intensity, three strawberry maturities are changing in order. After having confirmed the H frequency section to distinguish the different strawberry maturity, the triplelayer feed-forward neural network system to detect strawberry maturity was designed by using genetic algorithm. The test results show that the detecting precision ratio is 91.7%, it takes 160ms to distinguish one strawberry. Therefore, the online non-detective detecting the strawberry maturity could be realized.

  15. Hierarchical Stochastic Simulation Algorithm for SBML Models of Genetic Circuits

    PubMed Central

    Watanabe, Leandro H.; Myers, Chris J.

    2014-01-01

    This paper describes a hierarchical stochastic simulation algorithm, which has been implemented within iBioSim, a tool used to model, analyze, and visualize genetic circuits. Many biological analysis tools flatten out hierarchy before simulation, but there are many disadvantages associated with this approach. First, the memory required to represent the model can quickly expand in the process. Second, the flattening process is computationally expensive. Finally, when modeling a dynamic cellular population within iBioSim, inlining the hierarchy of the model is inefficient since models must grow dynamically over time. This paper discusses a new approach to handle hierarchy on the fly to make the tool faster and more memory-efficient. This approach yields significant performance improvements as compared to the former flat analysis method. PMID:25506588

  16. Determination of material parameters of failure criteria for concrete materials using genetic algorithm

    SciTech Connect

    Zhao, S.; Salami, M.R.

    1995-06-01

    This paper examines the applicability of Genetic Algorithms in the parameter evaluation for some constitutive models of concrete. Genetic Algorithms (GA) is relatively new general purpose optimization algorithm which applies the rules of natural genetics to explore a given search space. In this study, GA is used to determine parameters for failure conditions of concrete. Numerical results indicate that GA is capable of optimizing the system parameters quickly and accurately.

  17. Cloud identification using genetic algorithms and massively parallel computation

    NASA Technical Reports Server (NTRS)

    Buckles, Bill P.; Petry, Frederick E.

    1996-01-01

    As a Guest Computational Investigator under the NASA administered component of the High Performance Computing and Communication Program, we implemented a massively parallel genetic algorithm on the MasPar SIMD computer. Experiments were conducted using Earth Science data in the domains of meteorology and oceanography. Results obtained in these domains are competitive with, and in most cases better than, similar problems solved using other methods. In the meteorological domain, we chose to identify clouds using AVHRR spectral data. Four cloud speciations were used although most researchers settle for three. Results were remarkedly consistent across all tests (91% accuracy). Refinements of this method may lead to more timely and complete information for Global Circulation Models (GCMS) that are prevalent in weather forecasting and global environment studies. In the oceanographic domain, we chose to identify ocean currents from a spectrometer having similar characteristics to AVHRR. Here the results were mixed (60% to 80% accuracy). Given that one is willing to run the experiment several times (say 10), then it is acceptable to claim the higher accuracy rating. This problem has never been successfully automated. Therefore, these results are encouraging even though less impressive than the cloud experiment. Successful conclusion of an automated ocean current detection system would impact coastal fishing, naval tactics, and the study of micro-climates. Finally we contributed to the basic knowledge of GA (genetic algorithm) behavior in parallel environments. We developed better knowledge of the use of subpopulations in the context of shared breeding pools and the migration of individuals. Rigorous experiments were conducted based on quantifiable performance criteria. While much of the work confirmed current wisdom, for the first time we were able to submit conclusive evidence. The software developed under this grant was placed in the public domain. An extensive user's manual was written and distributed nationwide to scientists whose work might benefit from its availability. Several papers, including two journal articles, were produced.

  18. Tuning parameters of PID controller based on fuzzy logic controlled genetic algorithms

    NASA Astrophysics Data System (ADS)

    Feng, Dongqing; Wang, Xiaopei; Fei, Minrui; Chen, Tiejun

    2006-11-01

    To solve the problem of tuning parameters of PID controller using the conventional genetic algorithm, an improved genetic algorithm based on fuzzy inference is proposed. On the basis of generalizing heuristic knowledge about crossover and mutation operations, a fuzzy controller is designed to adaptively adjust the crossover rate and mutation rate. The fuzzy logic controlled genetic algorithm (FCGA) improves global optimization ability of the standard genetic algorithm. We apply it to adaptive PID controller. The comparison between the FCGA and the SGA is performed, which demonstrates that the FCGA has much better capability of parameters optimization and convergent speed, and it can also fulfill the requirement of real-time control.

  19. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  20. Optimization of genomic selection training populations with a genetic algorithm.

    PubMed

    Akdemir, Deniz; Sanchez, Julio I; Jannink, Jean-Luc

    2015-01-01

    In this article, we imagine a breeding scenario with a population of individuals that have been genotyped but not phenotyped. We derived a computationally efficient statistic that uses this genetic information to measure the reliability of genomic estimated breeding values (GEBV) for a given set of individuals (test set) based on a training set of individuals. We used this reliability measure with a genetic algorithm scheme to find an optimized training set from a larger set of candidate individuals. This subset was phenotyped to create the training set that was used in a genomic selection model to estimate GEBV in the test set. Our results show that, compared to a random sample of the same size, the use of a set of individuals selected by our method improved accuracies. We implemented the proposed training selection methodology on four sets of data on Arabidopsis, wheat, rice and maize. This dynamic model building process that takes genotypes of the individuals in the test sample into account while selecting the training individuals improves the performance of genomic selection models. PMID:25943105

  1. GASAT: a genetic local search algorithm for the satisfiability problem.

    PubMed

    Lardeux, Frédéric; Saubion, Frédéric; Hao, Jin-Kao

    2006-01-01

    This paper presents GASAT, a hybrid algorithm for the satisfiability problem (SAT). The main feature of GASAT is that it includes a recombination stage based on a specific crossover and a tabu search stage. We have conducted experiments to evaluate the different components of GASAT and to compare its overall performance with state-of-the-art SAT algorithms. These experiments show that GASAT provides very competitive results. PMID:16831107

  2. GenMin: An enhanced genetic algorithm for global optimization

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Lagaris, I. E.

    2008-06-01

    A new method that employs grammatical evolution and a stopping rule for finding the global minimum of a continuous multidimensional, multimodal function is considered. The genetic algorithm used is a hybrid genetic algorithm in conjunction with a local search procedure. We list results from numerical experiments with a series of test functions and we compare with other established global optimization methods. The accompanying software accepts objective functions coded either in Fortran 77 or in C++. Program summaryProgram title: GenMin Catalogue identifier: AEAR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 810 No. of bytes in distributed program, including test data, etc.: 436 613 Distribution format: tar.gz Programming language: GNU-C++, GNU-C, GNU Fortran 77 Computer: The tool is designed to be portable in all systems running the GNU C++ compiler Operating system: The tool is designed to be portable in all systems running the GNU C++ compiler RAM: 200 KB Word size: 32 bits Classification: 4.9 Nature of problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a nonlinear system of equations via optimization, employing a least squares type of objective, one may encounter many local minima that do not correspond to solutions (i.e. they are far from zero). Solution method: Grammatical evolution and a stopping rule. Running time: Depending on the objective function. The test example given takes only a few seconds to run.

  3. Efficient Improvement of Silage Additives by Using Genetic Algorithms

    PubMed Central

    Davies, Zoe S.; Gilbert, Richard J.; Merry, Roger J.; Kell, Douglas B.; Theodorou, Michael K.; Griffith, Gareth W.

    2000-01-01

    The enormous variety of substances which may be added to forage in order to manipulate and improve the ensilage process presents an empirical, combinatorial optimization problem of great complexity. To investigate the utility of genetic algorithms for designing effective silage additive combinations, a series of small-scale proof of principle silage experiments were performed with fresh ryegrass. Having established that significant biochemical changes occur over an ensilage period as short as 2 days, we performed a series of experiments in which we used 50 silage additive combinations (prepared by using eight bacterial and other additives, each of which was added at six different levels, including zero [i.e., no additive]). The decrease in pH, the increase in lactate concentration, and the free amino acid concentration were measured after 2 days and used to calculate a “fitness” value that indicated the quality of the silage (compared to a control silage made without additives). This analysis also included a “cost” element to account for different total additive levels. In the initial experiment additive levels were selected randomly, but subsequently a genetic algorithm program was used to suggest new additive combinations based on the fitness values determined in the preceding experiments. The result was very efficient selection for silages in which large decreases in pH and high levels of lactate occurred along with low levels of free amino acids. During the series of five experiments, each of which comprised 50 treatments, there was a steady increase in the amount of lactate that accumulated; the best treatment combination was that used in the last experiment, which produced 4.6 times more lactate than the untreated silage. The additive combinations that were found to yield the highest fitness values in the final (fifth) experiment were assessed to determine a range of biochemical and microbiological quality parameters during full-term silage fermentation. We found that these combinations compared favorably both with uninoculated silage and with a commercial silage additive. The evolutionary computing methods described here are a convenient and efficient approach for designing silage additives. PMID:10742224

  4. Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2001-01-01

    A new method for aerodynamic shape optimization using a genetic algorithm with real number encoding is presented. The algorithm is used to optimize three different problems, a simple hill climbing problem, a quasi-one-dimensional nozzle problem using an Euler equation solver and a three-dimensional transonic wing problem using a nonlinear potential solver. Results indicate that the genetic algorithm is easy to implement and extremely reliable, being relatively insensitive to design space noise.

  5. Genetic algorithms approach for the extraction of the polygonal approximation of planar objects

    NASA Astrophysics Data System (ADS)

    Erives, Hector; Parra-Loera, Ramon

    1996-06-01

    A new approach to the extraction of the polygonal approximation is presented. The method obtains a smaller set of the important features by means of an evolutionary algorithm. A genetic approach with some heuristics, improves contour approximation search by starting with a parallel search at various points in the contour. The algorithm uses genetic algorithms to encode a polygonal approximation as a chromosome and evolve it to provide a polygonal approximation. Experimental results are provided.

  6. Using genetic algorithms to select and create features for pattern classification. Technical report

    SciTech Connect

    Chang, E.I.; Lippmann, R.P.

    1991-03-11

    Genetic algorithms were used to select and create features and to select reference exemplar patterns for machine vision and speech pattern classification tasks. On a 15-feature machine-vision inspection task, it was found that genetic algorithms performed no better than conventional approaches to feature selection but required much more computation. For a speech recognition task, genetic algorithms required no more computation time than traditional approaches but reduced the number of features required by a factor of five (from 153 to 33 features). On a difficult artificial machine-vision task, genetic algorithms were able to create new features (polynomial functions of the original features) that reduced classification error rates from 10 to almost 0 percent. Neural net and nearest-neighbor classifiers were unable to provide such low error rates using only the original features. Genetic algorithms were also used to reduce the number of reference exemplar patterns and to select the value of k for a k-nearest-neighbor classifier. On a .338 training pattern vowel recognition problem with 10 classes, genetic algorithms simultaneously reduced the number of stored exemplars from 338 to 63 and selected k without significantly decreasing classification accuracy. In all applications, genetic algorithms were easy to apply and found good solutions in many fewer trials than would be required by an exhaustive search. Run times were long but not unreasonable. These results suggest that genetic algorithms may soon be practical for pattern classification problems as faster serial and parallel computers are developed.

  7. Genetic algorithms for adaptive real-time control in space systems

    NASA Technical Reports Server (NTRS)

    Vanderzijp, J.; Choudry, A.

    1988-01-01

    Genetic Algorithms that are used for learning as one way to control the combinational explosion associated with the generation of new rules are discussed. The Genetic Algorithm approach tends to work best when it can be applied to a domain independent knowledge representation. Applications to real time control in space systems are discussed.

  8. New knowledge-based genetic algorithm for excavator boom structural optimization

    NASA Astrophysics Data System (ADS)

    Hua, Haiyan; Lin, Shuwen

    2014-03-01

    Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.

  9. Order-Based Fitness Functions for Genetic Algorithms Applied to Relevance Feedback.

    ERIC Educational Resources Information Center

    Lopez-Pujalte, Cristina; Guerrero-Bote, Vicente P.; de Moya-Anegon, Felix

    2003-01-01

    Discusses genetic algorithms in information retrieval, especially for relevance feedback, and evaluates the efficacy of a genetic algorithm with various order-based fitness functions for relevance feedback in a test database. Compares results with the Ide dec-hi method, one of the best traditional methods. (Contains 56 references.) (Author/LRW)

  10. User-Based Document Clustering by Redescribing Subject Descriptions with a Genetic Algorithm.

    ERIC Educational Resources Information Center

    Gordon, Michael D.

    1991-01-01

    Discussion of clustering of documents and queries in information retrieval systems focuses on the use of a genetic algorithm to adapt subject descriptions so that documents become more effective in matching relevant queries. Various types of clustering are explained, and simulation experiments used to test the genetic algorithm are described. (27…

  11. Quantum Algorithms

    NASA Technical Reports Server (NTRS)

    Abrams, D.; Williams, C.

    1999-01-01

    This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases for which all know classical algorithms require exponential time.

  12. Scheduling trucks in container terminals using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ng, W. C.; Mak, K. L.; Zhang, Y. X.

    2007-01-01

    Trucks are the most popular transport equipment in most mega-terminals, and scheduling them to minimize makespan is a challenge that this article addresses and attempts to resolve. Specifically, the problem of scheduling a fleet of trucks to perform a set of transportation jobs with sequence-dependent processing times and different ready times is investigated, and the use of a genetic algorithm (GA) to address the scheduling problem is proposed. The scheduling problem is formulated as a mixed integer program. It is noted that the scheduling problem is NP-hard and the computational effort required to solve even small-scale test problems is prohibitively large. A crossover scheme has been developed for the proposed GA. Computational experiments are carried out to compare the performance of the proposed GA with that of GAs using six popular crossover schemes. Computational results show that the proposed GA performs best, with its solutions on average 4.05% better than the best solutions found by the other six GAs.

  13. Orbit determination by genetic algorithm and application to GEO observation

    NASA Astrophysics Data System (ADS)

    Hinagawa, Hideaki; Yamaoka, Hitoshi; Hanada, Toshiya

    2014-02-01

    This paper demonstrates an initial orbit determination method that solves the problem by a genetic algorithm using two well-known solutions for the Lambert's problem: universal variable method and Battin method. This paper also suggests an intuitive error evaluation method in terms of rotational angle and orbit shape by separating orbit elements into two groups. As reference orbit, mean orbit elements (original two-lines elements) and osculating orbit elements considering the J2 effect are adopted and compared. Our proposed orbit determination method has been tested with actual optical observations of a geosynchronous spacecraft. It should be noted that this demonstration of the orbit determination is limited to one test case. This observation was conducted during approximately 70 min on 2013/05/15 UT. Our method was compared with the orbit elements propagated by SGP4 using the TLE of the spacecraft. The result indicates that our proposed method had a slightly better performance on estimating orbit shape than Gauss's methods and Escobal's method by 120 km. In addition, the result of the rotational angle is closer to the osculating orbit elements than the mean orbit elements by 0.02°, which supports that the estimated orbit is valid.

  14. A Moving Target Environment for Computer Configurations Using Genetic Algorithms

    SciTech Connect

    Crouse, Michael; Fulp, Errin W.

    2011-10-31

    Moving Target (MT) environments for computer systems provide security through diversity by changing various system properties that are explicitly defined in the computer configuration. Temporal diversity can be achieved by making periodic configuration changes; however in an infrastructure of multiple similarly purposed computers diversity must also be spatial, ensuring multiple computers do not simultaneously share the same configuration and potential vulnerabilities. Given the number of possible changes and their potential interdependencies discovering computer configurations that are secure, functional, and diverse is challenging. This paper describes how a Genetic Algorithm (GA) can be employed to find temporally and spatially diverse secure computer configurations. In the proposed approach a computer configuration is modeled as a chromosome, where an individual configuration setting is a trait or allele. The GA operates by combining multiple chromosomes (configurations) which are tested for feasibility and ranked based on performance which will be measured as resistance to attack. The result of successive iterations of the GA are secure configurations that are diverse due to the crossover and mutation processes. Simulations results will demonstrate this approach can provide at MT environment for a large infrastructure of similarly purposed computers by discovering temporally and spatially diverse secure configurations.

  15. Optimizing SRF Gun Cavity Profiles in a Genetic Algorithm Framework

    SciTech Connect

    Alicia Hofler, Pavel Evtushenko, Frank Marhauser

    2009-09-01

    Automation of DC photoinjector designs using a genetic algorithm (GA) based optimization is an accepted practice in accelerator physics. Allowing the gun cavity field profile shape to be varied can extend the utility of this optimization methodology to superconducting and normal conducting radio frequency (SRF/RF) gun based injectors. Finding optimal field and cavity geometry configurations can provide guidance for cavity design choices and verify existing designs. We have considered two approaches for varying the electric field profile. The first is to determine the optimal field profile shape that should be used independent of the cavity geometry, and the other is to vary the geometry of the gun cavity structure to produce an optimal field profile. The first method can provide a theoretical optimal and can illuminate where possible gains can be made in field shaping. The second method can produce more realistically achievable designs that can be compared to existing designs. In this paper, we discuss the design and implementation for these two methods for generating field profiles for SRF/RF guns in a GA based injector optimization scheme and provide preliminary results.

  16. Optimization of process parameters in stereolithography using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Chockalingam, K.; Jawahar, N.; Vijaybabu, E. R.

    2003-10-01

    Stereolithography is the most popular RP process in which intricate models are directly constructed from a CAD package by polymerizing a plastic monomer. The application range is still limited, because dimensional accuracy is still inferior to that of conventional machining process. The ultimate dimensional accuracy of a part built on a layer-by-layer basis depends on shrinkage which depend on many factors such as layer thickness, hatch spacing, hatch style, hatch over cure and fill cure depth. The influence of the above factors on shrinkage in X and Y directions fit to the nonlinear pattern. A particular combination of process variables that would result same shrinkage rate in both directions would enable to predict shrinkage allowance to be provided on a part and hence the CAD model could be constructed including shrinkage allowance. In this concern, the objective of the present work is set as determination of process parameters to have same shrinkage rate in both X and Y directions. A genetic algorithm (GA) is proposed to find optimal process parameters for the above objective. This approach is an analytical approach with experimental sample data and has great potential to predict process parameters for better dimensional accuracy in stereolithography process.

  17. Inner Random Restart Genetic Algorithm for Practical Delivery Schedule Optimization

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshitaka; Takada, Kouhei; Onoyama, Takashi; Tsukamoto, Natsuki; Tsuruta, Setsuo

    A delivery route optimization that improves the efficiency of real time delivery or a distribution network requires solving several tens to hundreds but less than 2 thousands cities Traveling Salesman Problems (TSP) within interactive response time (less than about 3 second), with expert-level accuracy (less than about 3% of error rate). Further, to make things more difficult, the optimization is subjects to special requirements or preferences of each various delivery sites, persons, or societies. To meet these requirements, an Inner Random Restart Genetic Algorithm (Irr-GA) is proposed and developed. This method combines meta-heuristics such as random restart and GA having different types of simple heuristics. Such simple heuristics are 2-opt and NI (Nearest Insertion) methods, each applied for gene operations. The proposed method is hierarchical structured, integrating meta-heuristics and heuristics both of which are multiple but simple. This method is elaborated so that field experts as well as field engineers can easily understand to make the solution or method easily customized and extended according to customers' needs or taste. Comparison based on the experimental results and consideration proved that the method meets the above requirements more than other methods judging from not only optimality but also simplicity, flexibility, and expandability in order for this method to be practically used.

  18. Genetic Algorithm (GA)-Based Inclinometer Layout Optimization.

    PubMed

    Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo

    2015-01-01

    This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors. PMID:25897500

  19. Improved interpretation of satellite altimeter data using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Messa, Kenneth; Lybanon, Matthew

    1992-01-01

    Genetic algorithms (GA) are optimization techniques that are based on the mechanics of evolution and natural selection. They take advantage of the power of cumulative selection, in which successive incremental improvements in a solution structure become the basis for continued development. A GA is an iterative procedure that maintains a 'population' of 'organisms' (candidate solutions). Through successive 'generations' (iterations) the population as a whole improves in simulation of Darwin's 'survival of the fittest'. GA's have been shown to be successful where noise significantly reduces the ability of other search techniques to work effectively. Satellite altimetry provides useful information about oceanographic phenomena. It provides rapid global coverage of the oceans and is not as severely hampered by cloud cover as infrared imagery. Despite these and other benefits, several factors lead to significant difficulty in interpretation. The GA approach to the improved interpretation of satellite data involves the representation of the ocean surface model as a string of parameters or coefficients from the model. The GA searches in parallel, a population of such representations (organisms) to obtain the individual that is best suited to 'survive', that is, the fittest as measured with respect to some 'fitness' function. The fittest organism is the one that best represents the ocean surface model with respect to the altimeter data.

  20. Experimental optimization of protein refolding with a genetic algorithm.

    PubMed

    Anselment, Bernd; Baerend, Danae; Mey, Elisabeth; Buchner, Johannes; Weuster-Botz, Dirk; Haslbeck, Martin

    2010-11-01

    Refolding of proteins from solubilized inclusion bodies still represents a major challenge for many recombinantly expressed proteins and often constitutes a major bottleneck. As in vitro refolding is a complex reaction with a variety of critical parameters, suitable refolding conditions are typically derived empirically in extensive screening experiments. Here, we introduce a new strategy that combines screening and optimization of refolding yields with a genetic algorithm (GA). The experimental setup was designed to achieve a robust and universal method that should allow optimizing the folding of a variety of proteins with the same routine procedure guided by the GA. In the screen, we incorporated a large number of common refolding additives and conditions. Using this design, the refolding of four structurally and functionally different model proteins was optimized experimentally, achieving 74-100% refolding yield for all of them. Interestingly, our results show that this new strategy provides optimum conditions not only for refolding but also for the activity of the native enzyme. It is designed to be generally applicable and seems to be eligible for all enzymes. PMID:20799347

  1. Genetic Algorithm (GA)-Based Inclinometer Layout Optimization

    PubMed Central

    Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo

    2015-01-01

    This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors. PMID:25897500

  2. Optimal vaccination schedule search using genetic algorithm over MPI technology

    PubMed Central

    2012-01-01

    Background Immunological strategies that achieve the prevention of tumor growth are based on the presumption that the immune system, if triggered before tumor onset, could be able to defend from specific cancers. In supporting this assertion, in the last decade active immunization approaches prevented some virus-related cancers in humans. An immunopreventive cell vaccine for the non-virus-related human breast cancer has been recently developed. This vaccine, called Triplex, targets the HER-2-neu oncogene in HER-2/neu transgenic mice and has shown to almost completely prevent HER-2/neu-driven mammary carcinogenesis when administered with an intensive and life-long schedule. Methods To better understand the preventive efficacy of the Triplex vaccine in reduced schedules we employed a computational approach. The computer model developed allowed us to test in silico specific vaccination schedules in the quest for optimality. Specifically here we present a parallel genetic algorithm able to suggest optimal vaccination schedule. Results & Conclusions The enormous complexity of combinatorial space to be explored makes this approach the only possible one. The suggested schedule was then tested in vivo, giving good results. Finally, biologically relevant outcomes of optimization are presented. PMID:23148787

  3. Optimal vaccination schedule search using genetic algorithm over MPI technology.

    TOXLINE Toxicology Bibliographic Information

    Calonaci C; Chiacchio F; Pappalardo F

    2012-01-01

    BACKGROUND: Immunological strategies that achieve the prevention of tumor growth are based on the presumption that the immune system, if triggered before tumor onset, could be able to defend from specific cancers. In supporting this assertion, in the last decade active immunization approaches prevented some virus-related cancers in humans. An immunopreventive cell vaccine for the non-virus-related human breast cancer has been recently developed. This vaccine, called Triplex, targets the HER-2-neu oncogene in HER-2/neu transgenic mice and has shown to almost completely prevent HER-2/neu-driven mammary carcinogenesis when administered with an intensive and life-long schedule.METHODS: To better understand the preventive efficacy of the Triplex vaccine in reduced schedules we employed a computational approach. The computer model developed allowed us to test in silico specific vaccination schedules in the quest for optimality. Specifically here we present a parallel genetic algorithm able to suggest optimal vaccination schedule.RESULTS & CONCLUSIONS: The enormous complexity of combinatorial space to be explored makes this approach the only possible one. The suggested schedule was then tested in vivo, giving good results. Finally, biologically relevant outcomes of optimization are presented.

  4. Bearing Fault Detection Using Artificial Neural Networks and Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Samanta, B.; Al-Balushi, Khamis R.; Al-Araimi, Saeed A.

    2004-12-01

    A study is presented to compare the performance of bearing fault detection using three types of artificial neural networks (ANNs), namely, multilayer perceptron (MLP), radial basis function (RBF) network, and probabilistic neural network (PNN). The time domain vibration signals of a rotating machine with normal and defective bearings are processed for feature extraction. The extracted features from original and preprocessed signals are used as inputs to all three ANN classifiers: MLP, RBF, and PNN for two-class (normal or fault) recognition. The characteristic parameters like number of nodes in the hidden layer of MLP and the width of RBF, in case of RBF and PNN along with the selection of input features, are optimized using genetic algorithms (GA). For each trial, the ANNs are trained with a subset of the experimental data for known machine conditions. The ANNs are tested using the remaining set of data. The procedure is illustrated using the experimental vibration data of a rotating machine with and without bearing faults. The results show the relative effectiveness of three classifiers in detection of the bearing condition.

  5. Optimization on robot arm machining by using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Tung-Kuan; Chen, Chiu-Hung; Tsai, Shang-En

    2007-12-01

    In this study, an optimization problem on the robot arm machining is formulated and solved by using genetic algorithms (GAs). The proposed approach adopts direct kinematics model and utilizes GA's global search ability to find the optimum solution. The direct kinematics equations of the robot arm are formulated and can be used to compute the end-effector coordinates. Based on these, the objective of optimum machining along a set of points can be evolutionarily evaluated with the distance between machining points and end-effector positions. Besides, a 3D CAD application, CATIA, is used to build up the 3D models of the robot arm, work-pieces and their components. A simulated experiment in CATIA is used to verify the computation results first and a practical control on the robot arm through the RS232 port is also performed. From the results, this approach is proved to be robust and can be suitable for most machining needs when robot arms are adopted as the machining tools.

  6. Improvement of unsupervised texture classification based on genetic algorithms

    NASA Astrophysics Data System (ADS)

    Okumura, Hiroshi; Togami, Yuuki; Arai, Kohei

    2004-11-01

    At the previous conference, the authors are proposed a new unsupervised texture classification method based on the genetic algorithms (GA). In the method, the GA are employed to determine location and size of the typical textures in the target image. The proposed method consists of the following procedures: 1) the determination of the number of classification category; 2) each chromosome used in the GA consists of coordinates of center pixel of each training area candidate and those size; 3) 50 chromosomes are generated using random number; 4) fitness of each chromosome is calculated; the fitness is the product of the Classification Reliability in the Mixed Texture Cases (CRMTC) and the Stability of NZMV against Scanning Field of View Size (SNSFS); 5) in the selection operation in the GA, the elite preservation strategy is employed; 6) in the crossover operation, multi point crossover is employed and two parent chromosomes are selected by the roulette strategy; 7) in mutation operation, the locuses where the bit inverting occurs are decided by a mutation rate; 8) go to the procedure 4. However, this method has not been automated because it requires not only target image but also the number of categories for classification. In this paper, we describe some improvement for implementation of automated texture classification. Some experiments are conducted to evaluate classification capability of the proposed method by using images from Brodatz's photo album and actual airborne multispectral scanner. The experimental results show that the proposed method can select appropriate texture samples and can provide reasonable classification results.

  7. Constrained genetic algorithms for optimizing multi-use reservoir operation

    NASA Astrophysics Data System (ADS)

    Chang, Li-Chiu; Chang, Fi-John; Wang, Kuo-Wei; Dai, Shin-Yi

    2010-08-01

    To derive an optimal strategy for reservoir operations to assist the decision-making process, we propose a methodology that incorporates the constrained genetic algorithm (CGA) where the ecological base flow requirements are considered as constraints to water release of reservoir operation when optimizing the 10-day reservoir storage. Furthermore, a number of penalty functions designed for different types of constraints are integrated into reservoir operational objectives to form the fitness function. To validate the applicability of this proposed methodology for reservoir operations, the Shih-Men Reservoir and its downstream water demands are used as a case study. By implementing the proposed CGA in optimizing the operational performance of the Shih-Men Reservoir for the last 20 years, we find this method provides much better performance in terms of a small generalized shortage index (GSI) for human water demands and greater ecological base flows for most of the years than historical operations do. We demonstrate the CGA approach can significantly improve the efficiency and effectiveness of water supply capability to both human and ecological base flow requirements and thus optimize reservoir operations for multiple water users. The CGA can be a powerful tool in searching for the optimal strategy for multi-use reservoir operations in water resources management.

  8. Innovative Applications of Genetic Algorithms to Problems in Accelerator Physics

    SciTech Connect

    Hofler, Alicia; Terzic, Balsa; Kramer, Matthew; Zvezdin, Anton; Morozov, Vasiliy; Roblin, Yves; Lin, Fanglei; Jarvis, Colin

    2013-01-01

    The genetic algorithm (GA) is a relatively new technique that implements the principles nature uses in biological evolution in order to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others) fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing CEBAF facility, the proposed MEIC at Jefferson Lab, and a radio frequency (RF) gun based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, including a newly devised enhancement, which leads to improved convergence to the optimum and make recommendations for future GA developments and accelerator applications.

  9. Sequence-Specific Copolymer Compatibilizers designed via a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Meenakshisundaram, Venkatesh; Patra, Tarak; Hung, Jui-Hsiang; Simmons, David

    For several decades, block copolymers have been employed as surfactants to reduce interfacial energy for applications from emulsification to surface adhesion. While the simplest approach employs symmetric diblocks, studies have examined asymmetric diblocks, multiblock copolymers, gradient copolymers, and copolymer-grafted nanoparticles. However, there exists no established approach to determining the optimal copolymer compatibilizer sequence for a given application. Here we employ molecular dynamics simulations within a genetic algorithm to identify copolymer surfactant sequences yielding maximum reductions the interfacial energy of model immiscible polymers. The optimal copolymer sequence depends significantly on surfactant concentration. Most surprisingly, at high surface concentrations, where the surfactant achieves the greatest interfacial energy reduction, specific non-periodic sequences are found to significantly outperform any regularly blocky sequence. This emergence of polymer sequence-specificity within a non-sequenced environment adds to a recent body of work suggesting that specific sequence may have the potential to play a greater role in polymer properties than previously understood. We acknowledge the W. M. Keck Foundation for financial support of this research.

  10. Genetic algorithm for optimization and specification of a neuron model.

    PubMed

    Gerken, W; Purvis, L; Butera, R

    2005-01-01

    We present a novel approach for neuron model specification using a Genetic Algorithm (GA) to develop simple firing neuron models consisting of a single compartment with one inward and one outward current. The GA not only chooses the model parameters, but also chooses the formulation of the ionic currents (i.e. single-variable, two-variable, instantaneous, or leak). The fitness function of the GA compares the frequency output of the GA generated models to an I-F curve of a nominal Morris-Lecar (ML) model. Initially, several different classes of models compete among the population. Eventually, the GA converges to a population containing only ML-type firing models with an instantaneous inward and single-variable outward current. Simulations where ML-type models are restricted from the population are also investigated. This GA approach allows the exploration of a universe of feasible model classes that is less constrained by model formulation assumptions than traditional parameter estimation approaches. While we use a simple model, this technique is scalable to much larger and more complex formulations. PMID:17281191

  11. Toward Developing Genetic Algorithms to Aid in Critical Infrastructure Modeling

    SciTech Connect

    Not Available

    2007-05-01

    Today’s society relies upon an array of complex national and international infrastructure networks such as transportation, telecommunication, financial and energy. Understanding these interdependencies is necessary in order to protect our critical infrastructure. The Critical Infrastructure Modeling System, CIMS©, examines the interrelationships between infrastructure networks. CIMS© development is sponsored by the National Security Division at the Idaho National Laboratory (INL) in its ongoing mission for providing critical infrastructure protection and preparedness. A genetic algorithm (GA) is an optimization technique based on Darwin’s theory of evolution. A GA can be coupled with CIMS© to search for optimum ways to protect infrastructure assets. This includes identifying optimum assets to enforce or protect, testing the addition of or change to infrastructure before implementation, or finding the optimum response to an emergency for response planning. This paper describes the addition of a GA to infrastructure modeling for infrastructure planning. It first introduces the CIMS© infrastructure modeling software used as the modeling engine to support the GA. Next, the GA techniques and parameters are defined. Then a test scenario illustrates the integration with CIMS© and the preliminary results.

  12. Equivalent tree representation of electrocardiogram using genetic algorithm.

    PubMed

    Kumaravel, N; Rajesh, J; Nithiyanandam, N

    1997-01-01

    Electrocardiogram (ECG) gives the electrical activity of the heart. The number of data points required to represent the ECG signal is reduced by using a complete-tree representation. This reduced data structure (ECG Tree) is obtained by fitting the ECG signal in a grid structure consisting of both horizontal and vertical lines. The leaf nodes are the points where the vertical grid lines intersect with the ECG signal. These leaf nodes now form the features of the ECG signal. Some of these leaf nodes may be redundant and hence the reduction in the number of leaf nodes and thus optimization of the tree (equivalent tree) is done using a novel technique based on the Genetic Algorithm (GA). In this work, the equivalent tree is formed using GA consisting of four stages. First, from the group of generated leaf nodes various combinations of strings are constructed to form the population. Second, the fitness function is taken as the measure of the vertical distances between two neighbouring leaf nodes in order to evaluate the population with respect to their fitness values. Third, the selection procedure is used to give offsprings based on an assigned threshold value. Finally, crossover and mutation operations are performed repeatedly till an optimized population is obtained. The optimal nodes represent the equivalent tree. The Backpropagation Neural Network as a classifier is used to test the efficacy of the GA in this optimization problem. PMID:9731424

  13. Innovative applications of genetic algorithms to problems in accelerator physics

    NASA Astrophysics Data System (ADS)

    Hofler, Alicia; Terzić, Balša; Kramer, Matthew; Zvezdin, Anton; Morozov, Vasiliy; Roblin, Yves; Lin, Fanglei; Jarvis, Colin

    2013-01-01

    The genetic algorithm (GA) is a powerful technique that implements the principles nature uses in biological evolution to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others) fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing Continuous Electron Beam Accelerator Facility nuclear physics machine, the proposed Medium-energy Electron-Ion Collider at Jefferson Lab, and a radio frequency gun-based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, include a newly devised enhancement which leads to improved convergence to the optimum, and make recommendations for future GA developments and accelerator applications.

  14. Parameter Estimation of Stellar Population Synthesis Using A Combined Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Jin-shu, HAN

    2015-10-01

    For the galaxies composed of different kinds of stars, it is important to estimate the parameters of stellar population synthesis quickly and accurately from the massive data of galactic spectra. It is presented in this paper that the combination of the genetic algorithm (GA) with the simulated annealing (SA) algorithm has the complementary advantages of the good global search ability and fast convergence of GA, as well as the strong local search ability of the SA algorithm. In both the speed and accuracy of the parameter estimation of stellar population synthesis, the GA-SA combined algorithm is superior to the single SA algorithm.

  15. In-Space Radiator Shape Optimization using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Hull, Patrick V.; Kittredge, Ken; Tinker, Michael; SanSoucie, Michael

    2006-01-01

    Future space exploration missions will require the development of more advanced in-space radiators. These radiators should be highly efficient and lightweight, deployable heat rejection systems. Typical radiators for in-space heat mitigation commonly comprise a substantial portion of the total vehicle mass. A small mass savings of even 5-10% can greatly improve vehicle performance. The objective of this paper is to present the development of detailed tools for the analysis and design of in-space radiators using evolutionary computation techniques. The optimality criterion is defined as a two-dimensional radiator with a shape demonstrating the smallest mass for the greatest overall heat transfer, thus the end result is a set of highly functional radiator designs. This cross-disciplinary work combines topology optimization and thermal analysis design by means of a genetic algorithm The proposed design tool consists of the following steps; design parameterization based on the exterior boundary of the radiator, objective function definition (mass minimization and heat loss maximization), objective function evaluation via finite element analysis (thermal radiation analysis) and optimization based on evolutionary algorithms. The radiator design problem is defined as follows: the input force is a driving temperature and the output reaction is heat loss. Appropriate modeling of the space environment is added to capture its effect on the radiator. The design parameters chosen for this radiator shape optimization problem fall into two classes, variable height along the width of the radiator and a spline curve defining the -material boundary of the radiator. The implementation of multiple design parameter schemes allows the user to have more confidence in the radiator optimization tool upon demonstration of convergence between the two design parameter schemes. This tool easily allows the user to manipulate the driving temperature regions thus permitting detailed design of in-space radiators for unique situations. Preliminary results indicate an optimized shape following that of the temperature distribution regions in the "cooler" portions of the radiator. The results closely follow the expected radiator shape.

  16. Double Motor Coordinated Control Based on Hybrid Genetic Algorithm and CMAC

    NASA Astrophysics Data System (ADS)

    Cao, Shaozhong; Tu, Ji

    A novel hybrid cerebellar model articulation controller (CMAC) and online adaptive genetic algorithm (GA) controller is introduced to control two Brushless DC motor (BLDCM) which applied in a biped robot. Genetic Algorithm simulates the random learning among the individuals of a group, and CMAC simulates the self-learning of an individual. To validate the ability and superiority of the novel algorithm, experiments have been done in MATLAB/SIMULINK. Analysis among GA, hybrid GA-CMAC and CMAC feed-forward control is also given. The results prove that the torque ripple of the coordinated control system is eliminated by using the hybrid GA-CMAC algorithm.

  17. Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification.

    PubMed

    Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A

    2015-06-01

    Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. PMID:25880524

  18. A Genetic Algorithm Approach to Nonlinear Least Squares Estimation

    ERIC Educational Resources Information Center

    Olinsky, Alan D.; Quinn, John T.; Mangiameli, Paul M.; Chen, Shaw K.

    2004-01-01

    A common type of problem encountered in mathematics is optimizing nonlinear functions. Many popular algorithms that are currently available for finding nonlinear least squares estimators, a special class of nonlinear problems, are sometimes inadequate. They might not converge to an optimal value, or if they do, it could be to a local rather than…

  19. A weight based genetic algorithm for selecting views

    NASA Astrophysics Data System (ADS)

    Talebian, Seyed H.; Kareem, Sameem A.

    2013-03-01

    Data warehouse is a technology designed for supporting decision making. Data warehouse is made by extracting large amount of data from different operational systems; transforming it to a consistent form and loading it to the central repository. The type of queries in data warehouse environment differs from those in operational systems. In contrast to operational systems, the analytical queries that are issued in data warehouses involve summarization of large volume of data and therefore in normal circumstance take a long time to be answered. On the other hand, the result of these queries must be answered in a short time to enable managers to make decisions as short time as possible. As a result, an essential need in this environment is in improving the performances of queries. One of the most popular methods to do this task is utilizing pre-computed result of queries. In this method, whenever a new query is submitted by the user instead of calculating the query on the fly through a large underlying database, the pre-computed result or views are used to answer the queries. Although, the ideal option would be pre-computing and saving all possible views, but, in practice due to disk space constraint and overhead due to view updates it is not considered as a feasible choice. Therefore, we need to select a subset of possible views to save on disk. The problem of selecting the right subset of views is considered as an important challenge in data warehousing. In this paper we suggest a Weighted Based Genetic Algorithm (WBGA) for solving the view selection problem with two objectives.

  20. The use of genetic algorithms to model protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Hetem, Annibal; Gregorio-Hetem, Jane

    2007-12-01

    The protoplanetary discs of T Tauri and Herbig Ae/Be stars have previously been studied using geometric disc models to fit their spectral energy distribution (SED). The simulations provide a means to reproduce the signatures of various circumstellar structures, which are related to different levels of infrared excess. With the aim of improving our previous model, which assumed a simple flat-disc configuration, we adopt here a reprocessing flared-disc model that assumes hydrostatic, radiative equilibrium. We have developed a method to optimize the parameter estimation based on genetic algorithms (GAs). This paper describes the implementation of the new code, which has been applied to Herbig stars from the Pico dos Dias Survey catalogue, in order to illustrate the quality of the fitting for a variety of SED shapes. The star AB Aur was used as a test of the GA parameter estimation, and demonstrates that the new code reproduces successfully a canonical example of the flared-disc model. The GA method gives a good quality of fit, but the range of input parameters must be chosen with caution, as unrealistic disc parameters can be derived. It is confirmed that the flared-disc model fits the flattened SEDs typical of Herbig stars; however, embedded objects (increasing SED slope) and debris discs (steeply decreasing SED slope) are not well fitted with this configuration. Even considering the limitation of the derived parameters, the automatic process of SED fitting provides an interesting tool for the statistical analysis of the circumstellar luminosity of large samples of young stars.

  1. The Frontiers of Real-coded Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shigenobu

    Real-coded genetic algorithms (RCGA) are expected to solve efficiently real parameter optimization problems of multimodality, parameter dependency, and ill-scale. Multi-parental crossovers such as the simplex crossover (SPX) and the UNDX-m as extensions of the unimodal normal distribution crossove (UNDX) show relatively good performance for RCGA. The minimal generation gap (MGG) is used widely as a generation alternation model for RCGA. However, the MGG is not suited for multi-parental crossovers. Both the SPX and the UNDX-m have their own drawbacks respectively. Therefore, RCGA composed of them cannot be applied to highly dimensional problems, because their hidden faults appear. This paper presents a new and robust faramework for RCGA. First, we propose a generation alternation model called JGG (just generation gap) suited for multi-parental crossovers. The JGG replaces parents with children completely every generation. To solve the asymmetry and bias of children distribution generated by the SPX and the UNDX-m, an enhanced SPX (e-SPX) and an enhanced UNDX (e-UNDX) are proposed. Moreover, we propose a crossover called REX(φ,n+k) as a generlization of the e-UNDX, where φ and n+k denote some probability distribution and the number of parents respectively. A concept of the globally descent direction (GDD) is introduced to handle the situations where the population does not cover any optimum. The GDD can be used under the big valley structure. Then, we propose REXstar as an extention of the REX(φ,n+k) that can generate children to the GDD efficiently. Several experiments show excellent performance and robustness of the REXstar. Finally, the future work is discussed.

  2. Design optimization of space launch vehicles using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bayley, Douglas James

    The United States Air Force (USAF) continues to have a need for assured access to space. In addition to flexible and responsive spacelift, a reduction in the cost per launch of space launch vehicles is also desirable. For this purpose, an investigation of the design optimization of space launch vehicles has been conducted. Using a suite of custom codes, the performance aspects of an entire space launch vehicle were analyzed. A genetic algorithm (GA) was employed to optimize the design of the space launch vehicle. A cost model was incorporated into the optimization process with the goal of minimizing the overall vehicle cost. The other goals of the design optimization included obtaining the proper altitude and velocity to achieve a low-Earth orbit. Specific mission parameters that are particular to USAF space endeavors were specified at the start of the design optimization process. Solid propellant motors, liquid fueled rockets, and air-launched systems in various configurations provided the propulsion systems for two, three and four-stage launch vehicles. Mass properties models, an aerodynamics model, and a six-degree-of-freedom (6DOF) flight dynamics simulator were all used to model the system. The results show the feasibility of this method in designing launch vehicles that meet mission requirements. Comparisons to existing real world systems provide the validation for the physical system models. However, the ability to obtain a truly minimized cost was elusive. The cost model uses an industry standard approach, however, validation of this portion of the model was challenging due to the proprietary nature of cost figures and due to the dependence of many existing systems on surplus hardware.

  3. A Genetic-Based Scheduling Algorithm to Minimize the Makespan of the Grid Applications

    NASA Astrophysics Data System (ADS)

    Entezari-Maleki, Reza; Movaghar, Ali

    Task scheduling algorithms in grid environments strive to maximize the overall throughput of the grid. In order to maximize the throughput of the grid environments, the makespan of the grid tasks should be minimized. In this paper, a new task scheduling algorithm is proposed to assign tasks to the grid resources with goal of minimizing the total makespan of the tasks. The algorithm uses the genetic approach to find the suitable assignment within grid resources. The experimental results obtained from applying the proposed algorithm to schedule independent tasks within grid environments demonstrate the applicability of the algorithm in achieving schedules with comparatively lower makespan in comparison with other well-known scheduling algorithms such as, Min-min, Max-min, RASA and Sufferage algorithms.

  4. Synthesis of optimal digital shapers with arbitrary noise using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Regadío, Alberto; Sánchez-Prieto, Sebastián; Tabero, Jesús; González-Castaño, Diego M.

    2015-09-01

    This paper presents structure, design and implementation of a novel technique for determining the optimal shaping, in time-domain, for spectrometers by means of a Genetic Algorithm (GA) specifically designed for this purpose. The proposed algorithm is able to adjust automatically the coefficients for shaping an input signal. Results of this experiment have been compared to a previous simulated annealing algorithm. Finally, its performance and capabilities were tested using simulation data and a real particle detector, as a scintillator.

  5. The potential of genetic algorithms for conceptual design of rotor systems

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Wells, Valana L.; Laananen, David H.

    1993-01-01

    The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors.

  6. Self-calibration of a noisy multiple-sensor system with genetic algorithms

    NASA Astrophysics Data System (ADS)

    Brooks, Richard R.; Iyengar, S. Sitharama; Chen, Jianhua

    1996-01-01

    This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray-scale images corrupted with noise. Both taboo search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results. The presentation includes a graphic presentation of the paths taken by tabu search and genetic algorithms when trying to find the best possible match between two corrupted images.

  7. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio

    2016-02-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners.

  8. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm.

    PubMed

    Yoshimaru, Eriko S; Randtke, Edward A; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2016-02-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners. PMID:26778301

  9. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm

    PubMed Central

    Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio

    2016-01-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners. PMID:26778301

  10. Classification of urban vegetation patterns from hyperspectral imagery: hybrid algorithm based on genetic algorithm tuned fuzzy support vector machine

    NASA Astrophysics Data System (ADS)

    Zhou, Mandi; Shu, Jiong; Chen, Zhigang; Ji, Minhe

    2012-11-01

    Hyperspectral imagery has been widely used in terrain classification for its high resolution. Urban vegetation, known as an essential part of the urban ecosystem, can be difficult to discern due to high similarity of spectral signatures among some land-cover classes. In this paper, we investigate a hybrid approach of the genetic-algorithm tuned fuzzy support vector machine (GA-FSVM) technique and apply it to urban vegetation classification from aerial hyperspectral urban imagery. The approach adopts the genetic algorithm to optimize parameters of support vector machine, and employs the K-nearest neighbor algorithm to calculate the membership function for each fuzzy parameter, aiming to reduce the effects of the isolated and noisy samples. Test data come from push-broom hyperspectral imager (PHI) hyperspectral remote sensing image which partially covers a corner of the Shanghai World Exposition Park, while PHI is a hyper-spectral sensor developed by Shanghai Institute of Technical Physics. Experimental results show the GA-FSVM model generates overall accuracy of 71.2%, outperforming the maximum likelihood classifier with 49.4% accuracy and the artificial neural network method with 60.8% accuracy. It indicates GA-FSVM is a promising model for vegetation classification from hyperspectral urban data, and has good advantage in the application of classification involving abundant mixed pixels and small samples problem.

  11. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

    ERIC Educational Resources Information Center

    Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

    2016-01-01

    In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

  12. Machine Learning for Information Retrieval: Neural Networks, Symbolic Learning, and Genetic Algorithms.

    ERIC Educational Resources Information Center

    Chen, Hsinchun

    1995-01-01

    Presents an overview of artificial-intelligence-based inductive learning techniques and their use in information science research. Three methods are discussed: the connectionist Hopfield network; the symbolic ID3/ID5R; evolution-based genetic algorithms. The knowledge representations and algorithms of these methods are examined in the context of…

  13. Automated Test Assembly for Cognitive Diagnosis Models Using a Genetic Algorithm

    ERIC Educational Resources Information Center

    Finkelman, Matthew; Kim, Wonsuk; Roussos, Louis A.

    2009-01-01

    Much recent psychometric literature has focused on cognitive diagnosis models (CDMs), a promising class of instruments used to measure the strengths and weaknesses of examinees. This article introduces a genetic algorithm to perform automated test assembly alongside CDMs. The algorithm is flexible in that it can be applied whether the goal is to…

  14. Ensemble of hybrid genetic algorithm for two-dimensional phase unwrapping

    NASA Astrophysics Data System (ADS)

    Balakrishnan, D.; Quan, C.; Tay, C. J.

    2013-06-01

    The phase unwrapping is the final and trickiest step in any phase retrieval technique. Phase unwrapping by artificial intelligence methods (optimization algorithms) such as hybrid genetic algorithm, reverse simulated annealing, particle swarm optimization, minimum cost matching showed better results than conventional phase unwrapping methods. In this paper, Ensemble of hybrid genetic algorithm with parallel populations is proposed to solve the branch-cut phase unwrapping problem. In a single populated hybrid genetic algorithm, the selection, cross-over and mutation operators are applied to obtain new population in every generation. The parameters and choice of operators will affect the performance of the hybrid genetic algorithm. The ensemble of hybrid genetic algorithm will facilitate to have different parameters set and different choice of operators simultaneously. Each population will use different set of parameters and the offspring of each population will compete against the offspring of all other populations, which use different set of parameters. The effectiveness of proposed algorithm is demonstrated by phase unwrapping examples and advantages of the proposed method are discussed.

  15. Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)

    NASA Astrophysics Data System (ADS)

    Li, X. R.; Wang, X.

    2016-03-01

    When using the genetic algorithm to solve the problem of too-short-arc (TSA) determination, due to the difference of computing processes between the genetic algorithm and classical method, the methods for outliers editing are no longer applicable. In the genetic algorithm, the robust estimation is acquired by means of using different loss functions in the fitness function, then the outlier problem of TSAs is solved. Compared with the classical method, the application of loss functions in the genetic algorithm is greatly simplified. Through the comparison of results of different loss functions, it is clear that the methods of least median square and least trimmed square can greatly improve the robustness of TSAs, and have a high breakdown point.

  16. Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity

    USGS Publications Warehouse

    Louis, S.J.; Raines, G.L.

    2003-01-01

    We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.

  17. A Genetic Algorithm Tool (splicer) for Complex Scheduling Problems and the Space Station Freedom Resupply Problem

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Valenzuela-Rendon, Manuel

    1993-01-01

    The Space Station Freedom will require the supply of items in a regular fashion. A schedule for the delivery of these items is not easy to design due to the large span of time involved and the possibility of cancellations and changes in shuttle flights. This paper presents the basic concepts of a genetic algorithm model, and also presents the results of an effort to apply genetic algorithms to the design of propellant resupply schedules. As part of this effort, a simple simulator and an encoding by which a genetic algorithm can find near optimal schedules have been developed. Additionally, this paper proposes ways in which robust schedules, i.e., schedules that can tolerate small changes, can be found using genetic algorithms.

  18. Genetic algorithms - A new technique for solving the neutron spectrum unfolding problem

    NASA Astrophysics Data System (ADS)

    Freeman, David W.; Ray Edwards, D.; Bolon, Albert E.

    1999-04-01

    A new technique utilizing genetic algorithms has been applied to the Bonner sphere neutron spectrum unfolding problem. Genetic algorithms are part of a relatively new field of "evolutionary" solution techniques that mimic living systems with computer-simulated "chromosome" solutions. Solutions mate and mutate to create better solutions. Several benchmark problems, considered representative of radiation protection environments, have been evaluated using the newly developed UMRGA code which implements the genetic algorithm unfolding technique. The results are compared with results from other well-established unfolding codes. The genetic algorithm technique works remarkably well and produces solutions with relatively high spectral qualities. UMRGA appears to be a superior technique in the absence of a priori data - it does not rely on "lucky" guesses of input spectra. Calculated personnel doses associated with the unfolded spectra match benchmark values within a few percent.

  19. Quantum algorithms

    NASA Astrophysics Data System (ADS)

    Abrams, Daniel S.

    This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases (commonly found in ab initio physics and chemistry problems) for which all known classical algorithms require exponential time. Fast algorithms for simulating many body Fermi systems are also provided in both first and second quantized descriptions. An efficient quantum algorithm for anti-symmetrization is given as well as a detailed discussion of a simulation of the Hubbard model. In addition, quantum algorithms that calculate numerical integrals and various characteristics of stochastic processes are described. Two techniques are given, both of which obtain an exponential speed increase in comparison to the fastest known classical deterministic algorithms and a quadratic speed increase in comparison to classical Monte Carlo (probabilistic) methods. I derive a simpler and slightly faster version of Grover's mean algorithm, show how to apply quantum counting to the problem, develop some variations of these algorithms, and show how both (apparently distinct) approaches can be understood from the same unified framework. Finally, the relationship between physics and computation is explored in some more depth, and it is shown that computational complexity theory depends very sensitively on physical laws. In particular, it is shown that nonlinear quantum mechanics allows for the polynomial time solution of NP-complete and #P oracle problems. Using the Weinberg model as a simple example, the explicit construction of the necessary gates is derived from the underlying physics. Nonlinear quantum algorithms are also presented using Polchinski type nonlinearities which do not allow for superluminal communication. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  20. A High-Performance Genetic Algorithm: Using Traveling Salesman Problem as a Case

    PubMed Central

    Tsai, Chun-Wei; Tseng, Shih-Pang; Yang, Chu-Sing

    2014-01-01

    This paper presents a simple but efficient algorithm for reducing the computation time of genetic algorithm (GA) and its variants. The proposed algorithm is motivated by the observation that genes common to all the individuals of a GA have a high probability of surviving the evolution and ending up being part of the final solution; as such, they can be saved away to eliminate the redundant computations at the later generations of a GA. To evaluate the performance of the proposed algorithm, we use it not only to solve the traveling salesman problem but also to provide an extensive analysis on the impact it may have on the quality of the end result. Our experimental results indicate that the proposed algorithm can significantly reduce the computation time of GA and GA-based algorithms while limiting the degradation of the quality of the end result to a very small percentage compared to traditional GA. PMID:24892038

  1. Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

    PubMed Central

    Fernandez-Lozano, C.; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; Rabuñal, J. R.; Dorado, J.; Pazos, A.

    2013-01-01

    Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933

  2. Truss Optimization for a Manned Nuclear Electric Space Vehicle using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Benford, Andrew; Tinker, Michael L.

    2004-01-01

    The purpose of this paper is to utilize the genetic algorithm (GA) optimization method for structural design of a nuclear propulsion vehicle. Genetic algorithms provide a guided, random search technique that mirrors biological adaptation. To verify the GA capabilities, other traditional optimization methods were used to generate results for comparison to the GA results, first for simple two-dimensional structures, and then for full-scale three-dimensional truss designs.

  3. Genetic Algorithm Based Approach For The Optimal Allocation of Facts Devices

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, B.; Goswami, S. K.

    2010-06-01

    This paper presents Genetic Algorithm (GA) based approach for the allocation of FACTS devices for the improvement of Power transfer capacity in an interconnected Power System. Simulations are done on IEEE 30 BUS System. The result obtained by the GA (Genetic Algorithm) approach is compared with that of obtained by PSO (Particle Swarm Optimization) method. The comparison shows how the system performance can be greatly improved with the GA based proposed approach.

  4. Hybrid model based on Genetic Algorithms and SVM applied to variable selection within fruit juice classification.

    PubMed

    Fernandez-Lozano, C; Canto, C; Gestal, M; Andrade-Garda, J M; Rabuñal, J R; Dorado, J; Pazos, A

    2013-01-01

    Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933

  5. Dynamic Frequencies Correction in Piezoelectric Transducers using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Arnold, F. J.; Battilana, R. B.; Aranda, M. C.

    The performance of piezoelectric transducers is affected by variation of the acoustic loads. Correction of the excitation frequency are needed to maintain the performance. This paper presents an algorithm for dynamic correction of the operating frequency based on adaptive systems able to correct the frequency applying artificial intelligence techniques to a survey of impedance profiles. When the impedance is changed, a searching of similar values is performed in previously stored files and an iterative process finds the final frequency closer to the original impedance for the required performance. Simulations has been carried out using electric models. The results show the system is robust and the average response time is 6 ms.

  6. Research on Formation of Microsatellite Communication with Genetic Algorithm

    PubMed Central

    Wu, Guoqiang; Bai, Yuguang; Sun, Zhaowei

    2013-01-01

    For the formation of three microsatellites which fly in the same orbit and perform three-dimensional solid mapping for terra, this paper proposes an optimizing design method of space circular formation order based on improved generic algorithm and provides an intersatellite direct spread spectrum communication system. The calculating equation of LEO formation flying satellite intersatellite links is guided by the special requirements of formation-flying microsatellite intersatellite links, and the transmitter power is also confirmed throughout the simulation. The method of space circular formation order optimizing design based on improved generic algorithm is given, and it can keep formation order steady for a long time under various absorb impetus. The intersatellite direct spread spectrum communication system is also provided. It can be found that, when the distance is 1 km and the data rate is 1 Mbps, the input wave matches preferably with the output wave. And LDPC code can improve the communication performance. The correct capability of (512, 256) LDPC code is better than (2, 1, 7) convolution code, distinctively. The design system can satisfy the communication requirements of microsatellites. So, the presented method provides a significant theory foundation for formation-flying and intersatellite communication. PMID:24078796

  7. Modelling and genetic algorithm based optimisation of inverse supply chain

    NASA Astrophysics Data System (ADS)

    Bányai, T.

    2009-04-01

    The design and control of recycling systems of products with environmental risk have been discussed in the world already for a long time. The main reasons to address this subject are the followings: reduction of waste volume, intensification of recycling of materials, closing the loop, use of less resource, reducing environmental risk [1, 2]. The development of recycling systems is based on the integrated solution of technological and logistic resources and know-how [3]. However the financial conditions of recycling systems is partly based on the recovery, disassembly and remanufacturing options of the used products [4, 5, 6], but the investment and operation costs of recycling systems can be characterised with high logistic costs caused by the geographically wide collection system with more collection level and a high number of operation points of the inverse supply chain. The reduction of these costs is a popular area of the logistics researches. These researches include the design and implementation of comprehensive environmental waste and recycling program to suit business strategies (global system), design and supply all equipment for production line collection (external system), design logistics process to suit the economical and ecological requirements (external system) [7]. To the knowledge of the author, there has been no research work on supply chain design problems that purpose is the logistics oriented optimisation of inverse supply chain in the case of non-linear total cost function consisting not only operation costs but also environmental risk cost. The antecedent of this research is, that the author has taken part in some research projects in the field of closed loop economy ("Closing the loop of electr(on)ic products and domestic appliances from product planning to end-of-life technologies), environmental friendly disassembly (Concept for logistical and environmental disassembly technologies) and design of recycling systems of household appliances (Recycling of household appliances with emphasis on reuse options). The purpose of this paper is the presentation of a possible method for avoiding the unnecessary environmental risk and landscape use through unprovoked large supply chain of collection systems of recycling processes. In the first part of the paper the author presents the mathematical model of recycling related collection systems (applied especially for wastes of electric and electronic products) and in the second part of the work a genetic algorithm based optimisation method will be demonstrated, by the aid of which it is possible to determine the optimal structure of the inverse supply chain from the point of view economical, ecological and logistic objective functions. The model of the inverse supply chain is based on a multi-level, hierarchical collection system. In case of this static model it is assumed that technical conditions are permanent. The total costs consist of three parts: total infrastructure costs, total material handling costs and environmental risk costs. The infrastructure-related costs are dependent only on the specific fixed costs and the specific unit costs of the operation points (collection, pre-treatment, treatment, recycling and reuse plants). The costs of warehousing and transportation are represented by the material handling related costs. The most important factors determining the level of environmental risk cost are the number of out of time recycled (treated or reused) products, the number of supply chain objects and the length of transportation routes. The objective function is the minimization of the total cost taking into consideration the constraints. However a lot of research work discussed the design of supply chain [8], but most of them concentrate on linear cost functions. In the case of this model non-linear cost functions were used. The non-linear cost functions and the possible high number of objects of the inverse supply chain leaded to the problem of choosing a possible solution method. By the aid of analytical methods, the problem can not be solved, so a genetic algorithm based heuristic optimisation method was chosen to find the optimal solution. The input parameters of the optimisation are the followings: specific fixed, unit and environmental risk costs of the collection points of the inverse supply chain, specific warehousing and transportation costs and environmental risk costs of transportation. The output parameters are the followings: the number of objects in the different hierarchical levels of the collection system, infrastructure costs, logistics costs and environmental risk costs from used infrastructures, transportation and number of products recycled out of time. The next step of the research work was the application of the above mentioned method. The developed application makes it possible to define the input parameters of the real system, the graphical view of the chosen optimal solution in the case of the given input parameters, graphical view of the cost structure of the optimal solution, determination of the parameters of the algorithm (e.g. number of individuals, operators and termination conditions). The sensibility analysis of the objective function and the test results showed that the structure of the inverse supply chain depends on the proportion of the specific costs. Especially the proportion of the specific environmental risk costs influences the structure of the system and the number of objects at each hierarchical level of the collection system. The sensitivity analysis of the total cost function was performed in three cases. In the first case the effect of the proportion of specific infrastructure and logistics costs were analysed. If the infrastructure costs are significantly lower than the total costs of warehousing and transportation, then almost all objects of the first hierarchical level of the collection (collection directly from the users) were set up. In the other case of the proportion of costs the first level of the collection is not necessary, because it is replaceable by the more expensive transportation directly to the objects of the second or lower hierarchical level. In the second case the effect of the proportion of the logistics and environmental risk costs were analysed. In this case the analysis resulted to the followings: if the logistics costs are significantly higher than the total environmental risk costs, then because of the constant infrastructure costs the preference of logistics operations depends on the proportion of the environmental risk costs caused by of out of time recycled products and transportation. In the third case of the analysis the effect of the proportion of infrastructure and environmental risk costs were examined. If the infrastructure costs are significantly lower than the environmental risk costs, then almost all objects of the first hierarchical level of the collection (collection directly from the users) were set up. In the other case of the proportion of costs the first collection phase will be shifted near to the last hierarchical level of the supply chain to avoid a very high infrastructure set up and operation cost. The advantages of the presented model and solution method can be summarised in the followings: the model makes it possible to decide the structure of the inverse supply chain (which object to open or close); reduces infrastructure cost, especially for supply chain with high specific fixed costs; reduces the environmental risk cost through finding an optimal balance between number of objects of the system and out of time recycled products, reduces the logistics costs through determining the optimal quantitative parameters of material flow operations. The future of this research work is the use of differentiated lead-time, which makes it possible to take into consideration the above mentioned non-linear infrastructure, transportation, warehousing and environmental risk costs in the case of a given product portfolio segmented by lead-time. This publication was supported by the National Office for Research and Technology within the frame of Pázmány Péter programme. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Office for Research and Technology. Literature: [1] H. F. Lund: McGraw-Hill Recycling Handbook. McGraw-Hill. 2000. [2] P. T. Williams: Waste Treatment and Disposal. John Wiley and Sons Ltd. 2005. [3] M. Christopher: Logistics & Supply Chain Management: creating value-adding networks. Pearson Education [4] A. Gungor, S. M. Gupta: Issues in environmentally conscious manufacturing and product recovery: a survey. Computers & Industrial Engineering. Volume 36. Issue 4. 1999. pp. 811-853. [5] H. C. Zhang, T. C. Kuo, H. Lu, S. H. Huang: Environmentally conscious design and manufacturing: A state-of-the-art survey. Journal of Manufacturing Systems. Volume 16. Issue 5. 1997. pp. 352-371. [6] P. Veerakamolmal, S. Gupta: Design for Disassembly, Reuse, and Recycling. Green Electronics/Green Bottom Line. 2000. pp. 69-82. [7] A. Rushton, P. Croucher, P. Baker: The Handbook of Logistics and Distribution Management. Kogan P.page Limited. 2006. [8] H. Stadtler, C. Kilger: Supply Chain Management and Advanced Planning: Concepts, Models, Software, and Case Studies. Springer. 2005.

  8. GADEM: a genetic algorithm guided formation of spaced dyads coupled with an EM algorithm for motif discovery.

    PubMed

    Li, Leping

    2009-02-01

    Genome-wide analyses of protein binding sites generate large amounts of data; a ChIP dataset might contain 10,000 sites. Unbiased motif discovery in such datasets is not generally feasible using current methods that employ probabilistic models. We propose an efficient method, GADEM, which combines spaced dyads and an expectation-maximization (EM) algorithm. Candidate words (four to six nucleotides) for constructing spaced dyads are prioritized by their degree of overrepresentation in the input sequence data. Spaced dyads are converted into starting position weight matrices (PWMs). GADEM then employs a genetic algorithm (GA), with an embedded EM algorithm to improve starting PWMs, to guide the evolution of a population of spaced dyads toward one whose entropy scores are more statistically significant. Spaced dyads whose entropy scores reach a pre-specified significance threshold are declared motifs. GADEM performed comparably with MEME on 500 sets of simulated "ChIP" sequences with embedded known P53 binding sites. The major advantage of GADEM is its computational efficiency on large ChIP datasets compared to competitors. We applied GADEM to six genome-wide ChIP datasets. Approximately, 15 to 30 motifs of various lengths were identified in each dataset. Remarkably, without any prior motif information, the expected known motif (e.g., P53 in P53 data) was identified every time. GADEM discovered motifs of various lengths (6-40 bp) and characteristics in these datasets containing from 0.5 to >13 million nucleotides with run times of 5 to 96 h. GADEM can be viewed as an extension of the well-known MEME algorithm and is an efficient tool for de novo motif discovery in large-scale genome-wide data. The GADEM software is available at (www.niehs.nih.gov/research/resources/software/GADEM/). PMID:19193149

  9. The convergence analysis of parallel genetic algorithm based on allied strategy

    NASA Astrophysics Data System (ADS)

    Lin, Feng; Sun, Wei; Chang, K. C.

    2010-04-01

    Genetic algorithms (GAs) have been applied to many difficult optimization problems such as track assignment and hypothesis managements for multisensor integration and data fusion. However, premature convergence has been a main problem for GAs. In order to prevent premature convergence, we introduce an allied strategy based on biological evolution and present a parallel Genetic Algorithm with the allied strategy (PGAAS). The PGAAS can prevent premature convergence, increase the optimization speed, and has been successfully applied in a few applications. In this paper, we first present a Markov chain model in the PGAAS. Based on this model, we analyze the convergence property of PGAAS. We then present the proof of global convergence for the PGAAS algorithm. The experiments results show that PGAAS is an efficient and effective parallel Genetic algorithm. Finally, we discuss several potential applications of the proposed methodology.

  10. Development of the enhanced self-adaptive hybrid genetic algorithm (e-SAHGA)

    NASA Astrophysics Data System (ADS)

    Espinoza, Felipe P.; Minsker, Barbara S.

    2006-08-01

    Genetic algorithms allow solution of more complex, nonlinear groundwater remediation design problems than traditional gradient-based approaches, but they are more computationally intensive. One way to improve performance is through inclusion of local search, creating a hybrid genetic algorithm (HGA). The inclusion of local search helps to speed up the solution process and to make the solution technique more robust. This technical note focuses on the development and application of a new HGA, the enhanced self-adaptive hybrid genetic algorithm (e-SAHGA), which is an enhancement of a previously developed HGA called SAHGA. The application of the e-SAHGA algorithm to a hypothetical groundwater remediation design problem showed 90% reliability in identifying the optimal solution faster than the SGA, with average savings of 64% across 100 random initial populations. These results are considerably improved over SAHGA, which attained only 80% reliability and 14% average savings on the same initial populations.

  11. A new hybrid genetic algorithm and its application in the RCPSP

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Qin, Jinlei

    2012-01-01

    A new hybrid genetic algorithm is generated in this paper, which is based on the simple genetic algorithm. In this algorithm, some genetic operators such as crossover operator are improved. In the crossover operator, the crossover method based on threshold and the two-points-crossover method are combined into a new hybrid crossover method. An example which is Resource-Constrained Project Scheduling Problem (RCPSP) is given, whose activity network, the execution time and the number of resource required for each activity, selection and crossover operator are also referred. In addition, there are examples to prove the superior of the new algorithm, which is benefit to speed up the evolution and get the optimal solution.

  12. A new hybrid genetic algorithm and its application in the RCPSP

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Qin, Jinlei

    2011-12-01

    A new hybrid genetic algorithm is generated in this paper, which is based on the simple genetic algorithm. In this algorithm, some genetic operators such as crossover operator are improved. In the crossover operator, the crossover method based on threshold and the two-points-crossover method are combined into a new hybrid crossover method. An example which is Resource-Constrained Project Scheduling Problem (RCPSP) is given, whose activity network, the execution time and the number of resource required for each activity, selection and crossover operator are also referred. In addition, there are examples to prove the superior of the new algorithm, which is benefit to speed up the evolution and get the optimal solution.

  13. Using genetic algorithms to search for an optimal portfolio strategy and test market efficiency

    NASA Astrophysics Data System (ADS)

    Xi, Haowen; Mandere, Edward

    2008-03-01

    In this numerical experiment we used genetic algorithms to search for an optimal portfolio investment strategy. The algorithm involves having a ``manager'' who divides his capital among various ``experts'' each of whom has a simple fixed investment strategy. The expert strategies act like population of genes which experiencing selection, mutation and crossover during evolution process. The genetic algorithm was run on actual portfolio with stock data (DowJones 30 stocks). We found that the genetic algorithm overwhelmingly selected optimal strategy that closely resembles a simple buy and hold portfolio, that is, evenly distribute the capital among all stocks. This study shows that market is very efficient, and one possible practical way to gauge market efficiency is to measure the difference between an optimal portfolio return and a simple buy and hold portfolio return.

  14. Phase Reconstruction from FROG Using Genetic Algorithms[Frequency-Resolved Optical Gating

    SciTech Connect

    Omenetto, F.G.; Nicholson, J.W.; Funk, D.J.; Taylor, A.J.

    1999-04-12

    The authors describe a new technique for obtaining the phase and electric field from FROG measurements using genetic algorithms. Frequency-Resolved Optical Gating (FROG) has gained prominence as a technique for characterizing ultrashort pulses. FROG consists of a spectrally resolved autocorrelation of the pulse to be measured. Typically a combination of iterative algorithms is used, applying constraints from experimental data, and alternating between the time and frequency domain, in order to retrieve an optical pulse. The authors have developed a new approach to retrieving the intensity and phase from FROG data using a genetic algorithm (GA). A GA is a general parallel search technique that operates on a population of potential solutions simultaneously. Operators in a genetic algorithm, such as crossover, selection, and mutation are based on ideas taken from evolution.

  15. A New Model for Redundancy Allocation Problem in Series Systems with Repairable Components by Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Sharifi, Mani; Rezaei Moayed, Reza; Haratizadeh, Sara

    2011-09-01

    This paper presents two models for redundancy allocation problem (RAP) with cold standby redundancy policy subject to weight and cost constraints. Also, each element of the system can be damaged exponentially. And, damaged elements can be repaired exponentially by hiring some repairmen. The problem is to determine: (1) element type used in the system, (2) number of elements, and (3) number of repairmen. As the models are not solvable by exact solution methods in reasonable CPU time, an efficient genetic algorithm is developed for it. The genetic algorithm (GA) is hybridized with a local search procedure. Also, the algorithm accepts infeasible solutions after penalizing them based on their amounts of infeasibilities. Thereby, by using these two features, an efficient genetic algorithm is obtained.

  16. A Constrained Genetic Algorithm with Adaptively Defined Fitness Function in MRS Quantification

    NASA Astrophysics Data System (ADS)

    Papakostas, G. A.; Karras, D. A.; Mertzios, B. G.; Graveron-Demilly, D.; van Ormondt, D.

    MRS Signal quantification is a rather involved procedure and has attracted the interest of the medical engineering community, regarding the development of computationally efficient methodologies. Significant contributions based on Computational Intelligence tools, such as Neural Networks (NNs), demonstrated a good performance but not without drawbacks already discussed by the authors. On the other hand preliminary application of Genetic Algorithms (GA) has already been reported in the literature by the authors regarding the peak detection problem encountered in MRS quantification using the Voigt line shape model. This paper investigates a novel constrained genetic algorithm involving a generic and adaptively defined fitness function which extends the simple genetic algorithm methodology in case of noisy signals. The applicability of this new algorithm is scrutinized through experimentation in artificial MRS signals interleaved with noise, regarding its signal fitting capabilities. Although extensive experiments with real world MRS signals are necessary, the herein shown performance illustrates the method's potential to be established as a generic MRS metabolites quantification procedure.

  17. An improved hierarchical genetic algorithm for sheet cutting scheduling with process constraints.

    PubMed

    Rao, Yunqing; Qi, Dezhong; Li, Jinling

    2013-01-01

    For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony--hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem. PMID:24489491

  18. Research on Prediction Model of Time Series Based on Fuzzy Theory and Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Xiao-qin, Wu

    Fuzzy theory is one of the newly adduced self-adaptive strategies,which is applied to dynamically adjust the parameters o genetic algorithms for the purpose of enhancing the performance.In this paper, the financial time series analysis and forecasting as the main case study to the theory of soft computing technology framework that focuses on the fuzzy theory and genetic algorithms(FGA) as a method of integration. the financial time series forecasting model based on fuzzy theory and genetic algorithms was built. the ShangZheng index cards as an example. The experimental results show that FGA perform s much better than BP neural network, not only in the precision, but also in the searching speed.The hybrid algorithm has a strong feasibility and superiority.

  19. The study of genetic information flux network properties in genetic algorithms

    NASA Astrophysics Data System (ADS)

    Wu, Zhengping; Xu, Qiong; Ni, Gaosheng; Yu, Gaoming

    2015-04-01

    In this paper, an empirical analysis is done on the information flux network (IFN) statistical properties of genetic algorithms (GA) and the results suggest that the node degree distribution of IFN is scale-free when there is at least some selection pressure, and it has two branches as node degree is small. Increasing crossover, decreasing the mutation rate or decreasing the selective pressure will increase the average node degree, thus leading to the decrease of scaling exponent. These studies will be helpful in understanding the combination and distribution of excellent gene segments of the population in GA evolving, and will be useful in devising an efficient GA.

  20. Optimization of the genetic operators and algorithm parameters for the design of a multilayer anti-reflection coating using the genetic algorithm

    NASA Astrophysics Data System (ADS)

    Patel, Sanjaykumar J.; Kheraj, Vipul

    2015-07-01

    This paper describes a systematic investigation on the use of the genetic algorithm (GA) to accomplish ultra-low reflective multilayer coating designs for optoelectronic device applications. The algorithm is implemented using LabVIEW as a programming tool. The effects of the genetic operators, such as the type of crossover and mutation, as well as algorithm parameters, such as population size and range of search space, on the convergence of design-solution were studied. Finally, the optimal design is obtained in terms of the thickness of each layer for the multilayer AR coating using optimized genetic operators and algorithm parameters. The program is successfully tested to design AR coating in NIR wavelength range to achieve average reflectivity (R) below 10-3 over the spectral bandwidth of 200 nm with different combinations of coating materials in the stack. The random-point crossover operator is found to exhibit a better convergence rate of the solution than single-point and double-point crossover. Periodically re-initializing the thickness value of a randomly selected layer from the stack effectively prevents the solution from becoming trapped in local minima and improves the convergence probability.

  1. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm

    USGS Publications Warehouse

    Chen, C.; Xia, J.; Liu, J.; Feng, G.

    2006-01-01

    Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.

  2. MULTI-OBJECTIVE OPTIMAL DESIGN OF GROUNDWATER REMEDIATION SYSTEMS: APPLICATION OF THE NICHED PARETO GENETIC ALGORITHM (NPGA). (R826614)

    EPA Science Inventory

    A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...

  3. Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict Resolution

    NASA Technical Reports Server (NTRS)

    Karr, David A.; Vivona, Robert A.; Roscoe, David A.; DePascale, Stephen M.; Consiglio, Maria

    2009-01-01

    The Autonomous Operations Planner, a research prototype flight-deck decision support tool to enable airborne self-separation, uses a pattern-based genetic algorithm to resolve predicted conflicts between the ownship and traffic aircraft. Conflicts are resolved by modifying the active route within the ownship's flight management system according to a predefined set of maneuver pattern templates. The performance of this pattern-based genetic algorithm was evaluated in the context of batch-mode Monte Carlo simulations running over 3600 flight hours of autonomous aircraft in en-route airspace under conditions ranging from typical current traffic densities to several times that level. Encountering over 8900 conflicts during two simulation experiments, the genetic algorithm was able to resolve all but three conflicts, while maintaining a required time of arrival constraint for most aircraft. Actual elapsed running time for the algorithm was consistent with conflict resolution in real time. The paper presents details of the genetic algorithm's design, along with mathematical models of the algorithm's performance and observations regarding the effectiveness of using complimentary maneuver patterns when multiple resolutions by the same aircraft were required.

  4. Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict Resolution

    NASA Technical Reports Server (NTRS)

    Karr, David A.; Vivona, Robert A.; Roscoe, David A.; DePascale, Stephen M.; Consiglio, Maria

    2009-01-01

    The Autonomous Operations Planner, a research prototype flight-deck decision support tool to enable airborne self-separation, uses a pattern-based genetic algorithm to resolve predicted conflicts between the ownship and traffic aircraft. Conflicts are resolved by modifying the active route within the ownship s flight management system according to a predefined set of maneuver pattern templates. The performance of this pattern-based genetic algorithm was evaluated in the context of batch-mode Monte Carlo simulations running over 3600 flight hours of autonomous aircraft in en-route airspace under conditions ranging from typical current traffic densities to several times that level. Encountering over 8900 conflicts during two simulation experiments, the genetic algorithm was able to resolve all but three conflicts, while maintaining a required time of arrival constraint for most aircraft. Actual elapsed running time for the algorithm was consistent with conflict resolution in real time. The paper presents details of the genetic algorithm s design, along with mathematical models of the algorithm s performance and observations regarding the effectiveness of using complimentary maneuver patterns when multiple resolutions by the same aircraft were required.

  5. Road Traffic Control Based on Genetic Algorithm for Reducing Traffic Congestion

    NASA Astrophysics Data System (ADS)

    Shigehiro, Yuji; Miyakawa, Takuya; Masuda, Tatsuya

    In this paper, we propose a road traffic control method for reducing traffic congestion with genetic algorithm. In the not too distant future, the system which controls the routes of all vehicles in a certain area must be realized. The system should optimize the routes of all vehicles, however the solution space of this problem is enormous. Therefore we apply the genetic algorithm to this problem, by encoding the route of all vehicles to a fixed length chromosome. To improve the search performance, a new genetic operator called “path shortening” is also designed. The effectiveness of the proposed method is shown by the experiment.

  6. A Fuzzy Genetic Algorithm Approach to an Adaptive Information Retrieval Agent.

    ERIC Educational Resources Information Center

    Martin-Bautista, Maria J.; Vila, Maria-Amparo; Larsen, Henrik Legind

    1999-01-01

    Presents an approach to a Genetic Information Retrieval Agent Filter (GIRAF) that filters and ranks documents retrieved from the Internet according to users' preferences by using a Genetic Algorithm and fuzzy set theory to handle the imprecision of users' preferences and users' evaluation of the retrieved documents. (Author/LRW)

  7. Real-Time Scheduling in Heterogeneous Systems Considering Cache Reload Time Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Miryani, Mohammad Reza; Naghibzadeh, Mahmoud

    Since optimal assignment of tasks in a multiprocessor system is, in almost all practical cases, an NP-hard problem, in recent years some algorithms based on genetic algorithms have been proposed. Some of these algorithms have considered real-time applications with multiple objectives, total tardiness, completion time, etc. Here, we propose a suboptimal static scheduler of nonpreemptable tasks in hard real-time heterogeneous multiprocessor systems considering time constraints and cache reload time. The approach makes use of genetic algorithm to minimize total completion time and number of processors used, simultaneously. One important issue which makes this research different from previous ones is cache reload time. The method is implemented and the results are compared against a similar method.

  8. Genetic Algorithm to minimize flowtime in a no-wait flowshop scheduling problem

    NASA Astrophysics Data System (ADS)

    Chaudhry, Imran A.; Ahmed, Riaz; Munem Khan, Abdul

    2014-07-01

    No-wait flowshop is an important scheduling environment having application in many industries. This paper addresses a no-wait flowshop scheduling problem, where the objective function is to minimise total flowtime. A Genetic Algorithm (GA) optimization approach implemented in a spreadsheet environment is suggested to solve this important class of problem. The proposed algorithm employs a general purpose genetic algorithm which can be customised with ease to address any objective function without modifying the optimization routine. Performance of the proposed approach is compared with eight previously reported algorithms for two sets of benchmark problems. Experimental analysis shows that the performance of the suggested approach is comparable with earlier approaches in terms of quality of solution.

  9. High Quality Typhoon Cloud Image Restoration by Combining Genetic Algorithm with Contourlet Transform

    SciTech Connect

    Zhang Changjiang; Wang Xiaodong

    2008-11-06

    An efficient typhoon cloud image restoration algorithm is proposed. Having implemented contourlet transform to a typhoon cloud image, noise is reduced in the high sub-bands. Weight median value filter is used to reduce the noise in the contourlet domain. Inverse contourlet transform is done to obtain the de-noising image. In order to enhance the global contrast of the typhoon cloud image, in-complete Beta transform (IBT) is used to determine non-linear gray transform curve so as to enhance global contrast for the de-noising typhoon cloud image. Genetic algorithm is used to obtain the optimal gray transform curve. Information entropy is used as the fitness function of the genetic algorithm. Experimental results show that the new algorithm is able to well enhance the global for the typhoon cloud image while well reducing the noises in the typhoon cloud image.

  10. A genetic algorithm for predicting the structures of interfaces in multicomponent systems.

    PubMed

    Chua, Alvin L-S; Benedek, Nicole A; Chen, Lin; Finnis, Mike W; Sutton, Adrian P

    2010-05-01

    Recent years have seen great advances in our ability to predict crystal structures from first principles. However, previous algorithms have focused on the prediction of bulk crystal structures, where the global minimum is the target. Here, we present a general atomistic approach to simulate in multicomponent systems the structures and free energies of grain boundaries and heterophase interfaces with fixed stoichiometric and non-stoichiometric compositions. The approach combines a new genetic algorithm using empirical interatomic potentials to explore the configurational phase space of boundaries, and thereafter refining structures and free energies with first-principles electronic structure methods. We introduce a structural order parameter to bias the genetic algorithm search away from the global minimum (which would be bulk crystal), while not favouring any particular structure types, unless they lower the energy. We demonstrate the power and efficiency of the algorithm by considering non-stoichiometric grain boundaries in a ternary oxide, SrTiO(3). PMID:20190770

  11. A Combination of Genetic Algorithm and Particle Swarm Optimization for Vehicle Routing Problem with Time Windows

    PubMed Central

    Xu, Sheng-Hua; Liu, Ji-Ping; Zhang, Fu-Hao; Wang, Liang; Sun, Li-Jian

    2015-01-01

    A combination of genetic algorithm and particle swarm optimization (PSO) for vehicle routing problems with time windows (VRPTW) is proposed in this paper. The improvements of the proposed algorithm include: using the particle real number encoding method to decode the route to alleviate the computation burden, applying a linear decreasing function based on the number of the iterations to provide balance between global and local exploration abilities, and integrating with the crossover operator of genetic algorithm to avoid the premature convergence and the local minimum. The experimental results show that the proposed algorithm is not only more efficient and competitive with other published results but can also obtain more optimal solutions for solving the VRPTW issue. One new well-known solution for this benchmark problem is also outlined in the following. PMID:26343655

  12. Learning Cue Phrase Patterns from Radiology Reports Using a Genetic Algorithm

    SciTech Connect

    Patton, Robert M; Beckerman, Barbara G; Potok, Thomas E

    2009-01-01

    Various computer-assisted technologies have been developed to assist radiologists in detecting cancer; however, the algorithms still lack high degrees of sensitivity and specificity, and must undergo machine learning against a training set with known pathologies in order to further refine the algorithms with higher validity of truth. This work describes an approach to learning cue phrase patterns in radiology reports that utilizes a genetic algorithm (GA) as the learning method. The approach described here successfully learned cue phrase patterns for two distinct classes of radiology reports. These patterns can then be used as a basis for automatically categorizing, clustering, or retrieving relevant data for the user.

  13. Color tongue image segmentation using fuzzy Kohonen networks and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Aimin; Shen, Lansun; Zhao, Zhongxu

    2000-04-01

    A Tongue Imaging and Analysis System is being developed to acquire digital color tongue images, and to automatically classify and quantify the tongue characteristics for traditional Chinese medical examinations. An important processing step is to segment the tongue pixels into two categories, the tongue body (no coating) and the coating. In this paper, we present a two-stage clustering algorithm that combines Fuzzy Kohonen Clustering Networks and Genetic Algorithm for the segmentation, of which the major concern is to increase the interclass distance and at the same time decrease the intraclass distance. Experimental results confirm the effectiveness of this algorithm.

  14. Genetic programming applied to automatic algorithm design in multi-scale inspection systems

    NASA Astrophysics Data System (ADS)

    Burla, Avinash; Haist, Tobias; Lyda, Wolfram; Osten, Wolfgang

    2012-06-01

    In recent years image-processing has become a central part of optical inspection and measurement systems. Typically, after measuring the given specimen by utilizing a suitable sensor, image-processing algorithms are used to detect dedicated features such as surface defects. These algorithms are usually designed, optimized, and tested by an image-processing expert according to the task specifications. A methodology (based on genetic programming) is presented to automatically generate, optimize, and test such algorithms without the necessity of an image-processing expert. We also present several examples of inspection tasks to support the concept. For efficiency, an automated multi-scale multi-sensor inspection strategy is employed.

  15. Analysis of charge-exchange spectroscopy data by combining genetic and Gauss-Newton algorithms

    NASA Astrophysics Data System (ADS)

    Qian, Ma; Haoyi, Zuo; Yanling, Wei; Liang, Liu; Wenjin, Chen; Xiaoxue, He; Shirong, Luo

    2015-11-01

    The temperature and rotation velocity profile of ions in a tokamak are two characteristic parameters that reflect the plasma's behavior. Measurement of the two parameters relies on analyzing an active charge exchange spectroscopy diagnostic. However, a very challenging problem in such a diagnostic is the existence of interfering spectral lines, which can mislead the spectrum analysis process. This work proposes combining a genetic algorithm with the Gauss-Newton method (GAGN) to address this problem. Using this GAGN algorithm, we can effectively distinguish between the useful spectrum line and the interfering spectral lines within the spectroscopic output. The accuracy and stability of this algorithm are verified using both numerical simulation and actual measurements.

  16. Distributed Genetic Algorithm for Feature Selection in Gaia RVS Spectra: Application to ANN Parameterization

    NASA Astrophysics Data System (ADS)

    Fustes, Diego; Ordóñez, Diego; Dafonte, Carlos; Manteiga, Minia; Arcay, Bernardino

    This work presents an algorithm that was developed to select the most relevant areas of a stellar spectrum to extract its basic atmospheric parameters. We consider synthetic spectra obtained from models of stellar atmospheres in the spectral region of the radial velocity spectrograph instrument of the European Space Agency's Gaia space mission. The algorithm that demarcates the areas of the spectra sensitive to each atmospheric parameter (effective temperature and gravity, metallicity, and abundance of alpha elements) is a genetic algorithm, and the parameterization takes place through the learning of artificial neural networks. Due to the high computational cost of processing, we present a distributed implementation in both multiprocessor and multicomputer environments.

  17. Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Abdullah, Abdul Hanan; Isnin, Ismail Fauzi

    2014-05-01

    The paper studies a recently developed evolutionary-based image encryption algorithm. A novel image encryption algorithm based on a hybrid model of deoxyribonucleic acid (DNA) masking, a genetic algorithm (GA) and a logistic map is proposed. This study uses DNA and logistic map functions to create the number of initial DNA masks and applies GA to determine the best mask for encryption. The significant advantage of this approach is improving the quality of DNA masks to obtain the best mask that is compatible with plain images. The experimental results and computer simulations both confirm that the proposed scheme not only demonstrates excellent encryption but also resists various typical attacks.

  18. Application of BP Neural Network Based on Genetic Algorithm in Quantitative Analysis of Mixed GAS

    NASA Astrophysics Data System (ADS)

    Chen, Hongyan; Liu, Wenzhen; Qu, Jian; Zhang, Bing; Li, Zhibin

    Aiming at the problem of mixed gas detection in neural network and analysis on the principle of gas detection. Combining BP algorithm of genetic algorithm with hybrid gas sensors, a kind of quantitative analysis system of mixed gas is designed. The local minimum of network learning is the main reason which affects the precision of gas analysis. On the basis of the network study to improve the learning algorithms, the analyses and tests for CO, CO2 and HC compounds were tested. The results showed that the above measures effectively improve and enhance the accuracy of the neural network for gas analysis.

  19. Inherited Platelet Function Disorders: Algorithms for Phenotypic and Genetic Investigation.

    PubMed

    Gresele, Paolo; Bury, Loredana; Falcinelli, Emanuela

    2016-04-01

    Inherited platelet function disorders (IPFDs) manifest with mucocutaneous bleeding and are frequently difficult to diagnose due to their heterogeneity, the complexity of the platelet activation pathways and a lack of standardization of the platelet function laboratory assays and of their use for this purpose. A rational diagnostic approach to IPFDs should follow an algorithm where clinical examination and a stepwise laboratory evaluation play a crucial role. A streamlined panel of laboratory tests, with consecutive steps of increasing level of complexity, allows the phenotypic characterization of most IPFDs. A first-line diagnosis of a significant fraction of the IPFD may be made also at nonspecialized centers by using relatively simple tests, including platelet count, peripheral blood smear, light transmission aggregometry, measurement of platelet granule content and release, and the expression of glycoproteins by flow cytometry. Some of the most complex, second- and third-step tests may be performed only in highly specialized laboratories. Genotyping, including the widespread application of next-generation sequencing, has enabled discovery in the last few years of several novel genes associated with platelet disorders and this method may eventually become a first-line diagnostic approach; however, a preliminary clinical and laboratory phenotypic characterization nowadays still remains crucial for diagnosis of IPFDs. PMID:26962877

  20. Optimal Parameter for the Training of Multilayer Perceptron Neural Networks by Using Hierarchical Genetic Algorithm

    SciTech Connect

    Orozco-Monteagudo, Maykel; Taboada-Crispi, Alberto; Gutierrez-Hernandez, Liliana

    2008-11-06

    This paper deals with the controversial topic of the selection of the parameters of a genetic algorithm, in this case hierarchical, used for training of multilayer perceptron neural networks for the binary classification. The parameters to select are the crossover and mutation probabilities of the control and parametric genes and the permanency percent. The results can be considered as a guide for using this kind of algorithm.

  1. Inverse RNA folding solution based on multi-objective genetic algorithm and Gibbs sampling method.

    PubMed

    Ganjtabesh, M; Zare-Mirakabad, F; Nowzari-Dalini, A

    2013-01-01

    In living systems, RNAs play important biological functions. The functional form of an RNA frequently requires a specific tertiary structure. The scaffold for this structure is provided by secondary structural elements that are hydrogen bonds within the molecule. Here, we concentrate on the inverse RNA folding problem. In this problem, an RNA secondary structure is given as a target structure and the goal is to design an RNA sequence that its structure is the same (or very similar) to the given target structure. Different heuristic search methods have been proposed for this problem. One common feature among these methods is to use a folding algorithm to evaluate the accuracy of the designed RNA sequence during the generation process. The well known folding algorithms take O(n(3)) times where n is the length of the RNA sequence. In this paper, we introduce a new algorithm called GGI-Fold based on multi-objective genetic algorithm and Gibbs sampling method for the inverse RNA folding problem. Our algorithm generates a sequence where its structure is the same or very similar to the given target structure. The key feature of our method is that it never uses any folding algorithm to improve the quality of the generated sequences. We compare our algorithm with RNA-SSD for some biological test samples. In all test samples, our algorithm outperforms the RNA-SSD method for generating a sequence where its structure is more stable. PMID:26933401

  2. Inverse RNA folding solution based on multi-objective genetic algorithm and Gibbs sampling method

    PubMed Central

    Ganjtabesh, M; Zare-Mirakabad, F; Nowzari-Dalini, A

    2013-01-01

    In living systems, RNAs play important biological functions. The functional form of an RNA frequently requires a specific tertiary structure. The scaffold for this structure is provided by secondary structural elements that are hydrogen bonds within the molecule. Here, we concentrate on the inverse RNA folding problem. In this problem, an RNA secondary structure is given as a target structure and the goal is to design an RNA sequence that its structure is the same (or very similar) to the given target structure. Different heuristic search methods have been proposed for this problem. One common feature among these methods is to use a folding algorithm to evaluate the accuracy of the designed RNA sequence during the generation process. The well known folding algorithms take O(n3) times where n is the length of the RNA sequence. In this paper, we introduce a new algorithm called GGI-Fold based on multi-objective genetic algorithm and Gibbs sampling method for the inverse RNA folding problem. Our algorithm generates a sequence where its structure is the same or very similar to the given target structure. The key feature of our method is that it never uses any folding algorithm to improve the quality of the generated sequences. We compare our algorithm with RNA-SSD for some biological test samples. In all test samples, our algorithm outperforms the RNA-SSD method for generating a sequence where its structure is more stable.

  3. Optimization of laminated stacking sequence for buckling load maximization by genetic algorithm

    NASA Technical Reports Server (NTRS)

    Le Riche, Rodolphe; Haftka, Raphael T.

    1992-01-01

    The use of a genetic algorithm to optimize the stacking sequence of a composite laminate for buckling load maximization is studied. Various genetic parameters including the population size, the probability of mutation, and the probability of crossover are optimized by numerical experiments. A new genetic operator - permutation - is proposed and shown to be effective in reducing the cost of the genetic search. Results are obtained for a graphite-epoxy plate, first when only the buckling load is considered, and then when constraints on ply contiguity and strain failure are added. The influence on the genetic search of the penalty parameter enforcing the contiguity constraint is studied. The advantage of the genetic algorithm in producing several near-optimal designs is discussed.

  4. Comparison and calibration of a real-time virtual stenting algorithm using Finite Element Analysis and Genetic Algorithms

    PubMed Central

    Spranger, K.; Capelli, C.; Bosi, G.M.; Schievano, S.; Ventikos, Y.

    2015-01-01

    In this paper, we perform a comparative analysis between two computational methods for virtual stent deployment: a novel fast virtual stenting method, which is based on a spring–mass model, is compared with detailed finite element analysis in a sequence of in silico experiments. Given the results of the initial comparison, we present a way to optimise the fast method by calibrating a set of parameters with the help of a genetic algorithm, which utilises the outcomes of the finite element analysis as a learning reference. As a result of the calibration phase, we were able to substantially reduce the force measure discrepancy between the two methods and validate the fast stenting method by assessing the differences in the final device configurations. PMID:26664007

  5. Distribution Network Reconfiguration Considering Power Losses and Outages Costs Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Nuhanović, Amir; Hivziefendić, Jasna; Hadžimehmedović, Amir

    2013-09-01

    This paper discusses the problem of finding the optimal network topological configuration by changing the feeder status. The reconfiguration problem is considered as a multiobjective problem aiming to minimize power losses and total interruptions costs subject to the system constraints: the network radiality voltage limits and feeder capability limits. Due to its complexity, the metaheuristic methods can be applied to solve the problem and often the choice is genetic algorithm. NSGA II is used to solve the multiobjective optimization problem in order to get Pareto optimal set with possible solutions. The proposed method has been tested on real 35 kV distribution network. The numerical results are presented to illustrate the feasibility of the proposed genetic algorithm. radial distribution network, multiobjective optimization, reconfiguration, genetic algorithms, NSGA II

  6. A high fuel consumption efficiency management scheme for PHEVs using an adaptive genetic algorithm.

    PubMed

    Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah

    2015-01-01

    A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974

  7. A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm.

    PubMed

    Song, Jiancai; Xue, Guixiang; Kang, Yanan

    2016-01-01

    In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones. PMID:26943638

  8. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  9. Learning to play like a human: case injected genetic algorithms for strategic computer gaming

    NASA Astrophysics Data System (ADS)

    Louis, Sushil J.; Miles, Chris

    2006-05-01

    We use case injected genetic algorithms to learn how to competently play computer strategy games that involve long range planning across complex dynamics. Imperfect knowledge presented to players requires them adapt their strategies in order to anticipate opponent moves. We focus on the problem of acquiring knowledge learned from human players, in particular we learn general routing information from a human player in the context of a strike force planning game. By incorporating case injection into a genetic algorithm, we show methods for incorporating general knowledge elicited from human players into future plans. In effect allowing the GA to take important strategic elements from human play and merging those elements into its own strategic thinking. Results show that with an appropriate representation, case injection is effective at biasing the genetic algorithm toward producing plans that contain important strategic elements used by human players.

  10. Genetic Algorithm-Based Test Data Generation for Multiple Paths via Individual Sharing

    PubMed Central

    Gong, Dunwei

    2014-01-01

    The application of genetic algorithms in automatically generating test data has aroused broad concerns and obtained delightful achievements in recent years. However, the efficiency of genetic algorithm-based test data generation for path testing needs to be further improved. In this paper, we establish a mathematical model of generating test data for multiple paths coverage. Then, a multipopulation genetic algorithm with individual sharing is presented to solve the established model. We not only analyzed the performance of the proposed method theoretically, but also applied it to various programs under test. The experimental results show that the proposed method can improve the efficiency of generating test data for many paths' coverage significantly. PMID:25691894

  11. A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm

    PubMed Central

    Song, Jiancai; Xue, Guixiang; Kang, Yanan

    2016-01-01

    In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones. PMID:26943638

  12. Genetic algorithm based image binarization approach and its quantitative evaluation via pooling

    NASA Astrophysics Data System (ADS)

    Hu, Huijun; Liu, Ya; Liu, Maofu

    2015-12-01

    The binarized image is very critical to image visual feature extraction, especially shape feature, and the image binarization approaches have been attracted more attentions in the past decades. In this paper, the genetic algorithm is applied to optimizing the binarization threshold of the strip steel defect image. In order to evaluate our genetic algorithm based image binarization approach in terms of quantity, we propose the novel pooling based evaluation metric, motivated by information retrieval community, to avoid the lack of ground-truth binary image. Experimental results show that our genetic algorithm based binarization approach is effective and efficiency in the strip steel defect images and our quantitative evaluation metric on image binarization via pooling is also feasible and practical.

  13. A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm

    PubMed Central

    Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah

    2015-01-01

    A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974

  14. A study on ionospheric TEC forecast using genetic algorithm and neural network

    NASA Astrophysics Data System (ADS)

    Huang, Zhi; Yuan, Hong

    Back propagation artificial neural network (ANN) augmented by genetic algorithm (GA) is introduced to forecast ionospheric TEC with the dual-frequency GPS measurements from the low and high solar activity years in this paper due to ionosphere space characterizing by the highly nonlinear and time-varying with random variations. First, with different number of neurons in the hidden layer, different transfer function and training function, the training performance of network model is analyzed and then optimized network structure is determined. The ionospheric TEC values one hour in advance are forecasted and further the prediction performance of the developed network model is evaluated at the given criterions. The results show that predicted TEC using BP neural network improved by genetic algorithm has good agreement with observed data. In addition, the prediction errors are smaller in middle and high latitudes than in low latitudes, smaller in low solar activity than in high solar activity. Compared with BP Network with three layers structure, Prediction precision of network model optimized by genetic algorithm is further improved. The resolution quality indicate that the proposed algorithm can offer a powerful and reliable alternative to the design of ionospheric TEC forecast technologies, and provide advice for the regional ionospheric TEC maps. Key words: Neural network, Genetic algorithm, Ionospheric TEC, Forecast,

  15. A Multiparametric Computational Algorithm for Comprehensive Assessment of Genetic Mutations in Mucopolysaccharidosis Type IIIA (Sanfilippo Syndrome)

    PubMed Central

    Thomas, Clayton L.; Lee, Shaun W.

    2015-01-01

    Mucopolysaccharidosis type IIIA (MPS-IIIA, Sanfilippo syndrome) is a Lysosomal Storage Disease caused by cellular deficiency of N-sulfoglucosamine sulfohydrolase (SGSH). Given the large heterogeneity of genetic mutations responsible for the disease, a comprehensive understanding of the mechanisms by which these mutations affect enzyme function is needed to guide effective therapies. We developed a multiparametric computational algorithm to assess how patient genetic mutations in SGSH affect overall enzyme biogenesis, stability, and function. 107 patient mutations for the SGSH gene were obtained from the Human Gene Mutation Database representing all of the clinical mutations documented for Sanfilippo syndrome. We assessed each mutation individually using ten distinct parameters to give a comprehensive predictive score of the stability and misfolding capacity of the SGSH enzyme resulting from each of these mutations. The predictive score generated by our multiparametric algorithm yielded a standardized quantitative assessment of the severity of a given SGSH genetic mutation toward overall enzyme activity. Application of our algorithm has identified SGSH mutations in which enzymatic malfunction of the gene product is specifically due to impairments in protein folding. These scores provide an assessment of the degree to which a particular mutation could be treated using approaches such as chaperone therapies. Our multiparametric protein biogenesis algorithm advances a key understanding in the overall biochemical mechanism underlying Sanfilippo syndrome. Importantly, the design of our multiparametric algorithm can be tailored to many other diseases of genetic heterogeneity for which protein misfolding phenotypes may constitute a major component of disease manifestation. PMID:25807448

  16. Sewing algorithm

    SciTech Connect

    Booth, Thomas E; Gubernatis, James E

    2008-01-01

    We present a procedure that in many cases enables the Monte Carlo sampling of states of a large system from the sampling of states of a smaller system. We illustrate this procedure, which we call the sewing algorithm, for sampling states from the transfer matrix of the two-dimensional Ising model.

  17. Algorithm development

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Lomax, Harvard

    1987-01-01

    The past decade has seen considerable activity in algorithm development for the Navier-Stokes equations. This has resulted in a wide variety of useful new techniques. Some examples for the numerical solution of the Navier-Stokes equations are presented, divided into two parts. One is devoted to the incompressible Navier-Stokes equations, and the other to the compressible form.

  18. Prioritizing the Components of Vulnerability: A Genetic Algorithm Minimization of Flood Risk

    NASA Astrophysics Data System (ADS)

    Bongolan, Vena Pearl; Ballesteros, Florencio; Baritua, Karessa Alexandra; Junne Santos, Marie

    2013-04-01

    We define a flood resistant city as an optimal arrangement of communities according to their traits, with the goal of minimizing the flooding vulnerability via a genetic algorithm. We prioritize the different components of flooding vulnerability, giving each component a weight, thus expressing vulnerability as a weighted sum. This serves as the fitness function for the genetic algorithm. We also allowed non-linear interactions among related but independent components, viz, poverty and mortality rate, and literacy and radio/ tv penetration. The designs produced reflect the relative importance of the components, and we observed a synchronicity between the interacting components, giving us a more consistent design.

  19. A Genetic Algorithm and Fuzzy Logic Approach for Video Shot Boundary Detection

    PubMed Central

    Thounaojam, Dalton Meitei; Khelchandra, Thongam; Singh, Kh. Manglem; Roy, Sudipta

    2016-01-01

    This paper proposed a shot boundary detection approach using Genetic Algorithm and Fuzzy Logic. In this, the membership functions of the fuzzy system are calculated using Genetic Algorithm by taking preobserved actual values for shot boundaries. The classification of the types of shot transitions is done by the fuzzy system. Experimental results show that the accuracy of the shot boundary detection increases with the increase in iterations or generations of the GA optimization process. The proposed system is compared to latest techniques and yields better result in terms of F1score parameter. PMID:27127500

  20. Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Terzić, Balša; Hofler, Alicia S.; Reeves, Cody J.; Khan, Sabbir A.; Krafft, Geoffrey A.; Benesch, Jay; Freyberger, Arne; Ranjan, Desh

    2014-10-01

    In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab's Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.

  1. An Efficient Functional Test Generation Method For Processors Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Hudec, Ján; Gramatová, Elena

    2015-07-01

    The paper presents a new functional test generation method for processors testing based on genetic algorithms and evolutionary strategies. The tests are generated over an instruction set architecture and a processor description. Such functional tests belong to the software-oriented testing. Quality of the tests is evaluated by code coverage of the processor description using simulation. The presented test generation method uses VHDL models of processors and the professional simulator ModelSim. The rules, parameters and fitness functions were defined for various genetic algorithms used in automatic test generation. Functionality and effectiveness were evaluated using the RISC type processor DP32.

  2. Optimal placement of tuning masses on truss structures by genetic algorithms

    NASA Technical Reports Server (NTRS)

    Ponslet, Eric; Haftka, Raphael T.; Cudney, Harley H.

    1993-01-01

    Optimal placement of tuning masses, actuators and other peripherals on large space structures is a combinatorial optimization problem. This paper surveys several techniques for solving this problem. The genetic algorithm approach to the solution of the placement problem is described in detail. An example of minimizing the difference between the two lowest frequencies of a laboratory truss by adding tuning masses is used for demonstrating some of the advantages of genetic algorithms. The relative efficiencies of different codings are compared using the results of a large number of optimization runs.

  3. Digital Pattern Search and Its Hybridization with Genetic Algorithms for Bound Constrained Global Optimization

    NASA Astrophysics Data System (ADS)

    Kim, Nam-Geun; Park, Youngsu; Kim, Jong-Wook; Kim, Eunsu; Kim, Sang Woo

    In this paper, we present a recently developed pattern search method called Genetic Pattern Search algorithm (GPSA) for the global optimization of cost function subject to simple bounds. GPSA is a combined global optimization method using genetic algorithm (GA) and Digital Pattern Search (DPS) method, which has the digital structure represented by binary strings and guarantees convergence to stationary points from arbitrary starting points. The performance of GPSA is validated through extensive numerical experiments on a number of well known functions and on robot walking application. The optimization results confirm that GPSA is a robust and efficient global optimization method.

  4. Chaotic queue-based genetic algorithm for design of a self-tuning fuzzy logic controller

    NASA Astrophysics Data System (ADS)

    Saini, Sanju; Saini, J. S.

    2012-11-01

    This paper employs a chaotic queue-based method using logistic equation in a non-canonical genetic algorithm for optimizing the performance of a self-tuning Fuzzy Logic Controller, used for controlling a nonlinear double-coupled system. A comparison has been made with a standard canonical genetic algorithm implemented on the same plant. It has been shown that chaotic queue-method brings an improvement in the performance of the FLC for wide range of set point changes by a more profound initial population spread in the search space.

  5. Genetic-program-based data mining for hybrid decision-theoretic algorithms and theories

    NASA Astrophysics Data System (ADS)

    Smith, James F., III

    2005-03-01

    A genetic program (GP) based data mining (DM) procedure has been developed that automatically creates decision theoretic algorithms. A GP is an algorithm that uses the theory of evolution to automatically evolve other computer programs or mathematical expressions. The output of the GP is a computer program or mathematical expression that is optimal in the sense that it maximizes a fitness function. The decision theoretic algorithms created by the DM algorithm are typically designed for making real-time decisions about the behavior of systems. The database that is mined by the DM typically consists of many scenarios characterized by sensor output and labeled by experts as to the status of the scenario. The DM procedure will call a GP as a data mining function. The GP incorporates the database and expert"s rules into its fitness function to evolve an optimal decision theoretic algorithm. A decision theoretic algorithm created through this process will be discussed as well as validation efforts showing the utility of the decision theoretic algorithm created by the DM process. GP based data mining to determine equations related to scientific theories and automatic simplification methods based on computer algebra will also be discussed.

  6. Hybrid ant colony-genetic algorithm (GAAPI) for global continuous optimization.

    PubMed

    Ciornei, Irina; Kyriakides, Elias

    2012-02-01

    Many real-life optimization problems often face an increased rank of nonsmoothness (many local minima) which could prevent a search algorithm from moving toward the global solution. Evolution-based algorithms try to deal with this issue. The algorithm proposed in this paper is called GAAPI and is a hybridization between two optimization techniques: a special class of ant colony optimization for continuous domains entitled API and a genetic algorithm (GA). The algorithm adopts the downhill behavior of API (a key characteristic of optimization algorithms) and the good spreading in the solution space of the GA. A probabilistic approach and an empirical comparison study are presented to prove the convergence of the proposed method in solving different classes of complex global continuous optimization problems. Numerical results are reported and compared to the existing results in the literature to validate the feasibility and the effectiveness of the proposed method. The proposed algorithm is shown to be effective and efficient for most of the test functions. PMID:21896393

  7. Biased Random-Key Genetic Algorithms for the Winner Determination Problem in Combinatorial Auctions.

    PubMed

    de Andrade, Carlos Eduardo; Toso, Rodrigo Franco; Resende, Mauricio G C; Miyazawa, Flávio Keidi

    2015-01-01

    In this paper we address the problem of picking a subset of bids in a general combinatorial auction so as to maximize the overall profit using the first-price model. This winner determination problem assumes that a single bidding round is held to determine both the winners and prices to be paid. We introduce six variants of biased random-key genetic algorithms for this problem. Three of them use a novel initialization technique that makes use of solutions of intermediate linear programming relaxations of an exact mixed integer linear programming model as initial chromosomes of the population. An experimental evaluation compares the effectiveness of the proposed algorithms with the standard mixed linear integer programming formulation, a specialized exact algorithm, and the best-performing heuristics proposed for this problem. The proposed algorithms are competitive and offer strong results, mainly for large-scale auctions. PMID:25299242

  8. Imaging through a highly scattering medium with structural similarity and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Tengfei; Shao, Xiaopeng; Gong, Changmei; Dai, Weijia

    2014-10-01

    A method to recover the image of an object behind a highly scattering medium with higher accuracy is presented. Instead of the Pearson correlation coefficient (PCC) used in the existing methods, structural similarity (SSIM), which is known as an excellent evaluation indicator of image quality, is employed as the cost function for the wavefront optimization. Compared to PCC, better imaging quality can be acquired with SSIM, because the latter comprehensively analyzes the luminance, the contrast, and the structure of imaging results. By comparing the performances of the three commonly used global optimization algorithms, including a genetic algorithm (GA), particle swarm optimization and differential evolution algorithm, we verify that GA has the best reliability and stability to solve this multidimensional wavefront modulation problem among these global optimization algorithms, including in strong noise environments. This work can improve the quality of imaging through a highly scattering medium with a wavefront optimization technique and can be applied to the fields of optical detection or biomedical imaging.

  9. Super-resolution reconstruction of images based on uncontrollable microscanning and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Dai, Shao-sheng; Liu, Jin-song; Xiang, Hai-yan; Du, Zhi-hui; Liu, Qin

    2014-07-01

    Aiming at these disadvantages like lack of details, poor contrast and blurry edges of infrared images reconstructed by traditional controllable microscanning super-resolution reconstruction (SRR), this paper proposes a novel algorithm, which samples multiple low-resolution images (LRIs) by uncontrollable microscanning, and then uses LRIs as chromosomes of genetic algorithm (GA). After several generations of evolution, optimal LRIs are got to reconstruct the high-resolution image (HRI). The experimental results show that the average gradient of the image reconstructed by the proposed algorithm is increased to 1.5 times of that of the traditional SRR algorithm, and the amounts of information, the contrast and the visual effect of the reconstructed image are improved.

  10. Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.

  11. Parallel implementation of the genetic algorithm on NVIDIA GPU architecture for synthesis and inversion

    NASA Astrophysics Data System (ADS)

    Karthik, Victor U.; Sivasuthan, Sivamayam; Hoole, Samuel Ratnajeevan H.

    2014-02-01

    The computational algorithms for device synthesis and nondestructive evaluation (NDE) are often the same. In both we have a goal - a particular field configuration yielding the design performance in synthesis or to match exterior measurements in NDE. The geometry of the design or the postulated interior defect is then computed. Several optimization methods are available for this. The most efficient like conjugate gradients are very complex to program for the required derivative information. The least efficient zeroth order algorithms like the genetic algorithm take much computational time but little programming effort. This paper reports launching a Genetic Algorithm kernel on thousands of compute unified device architecture (CUDA) threads exploiting the NVIDIA graphics processing unit (GPU) architecture. The efficiency of parallelization, although below that on shared memory supercomputer architectures, is quite effective in cutting down solution time into the realm of the practicable. We carry this further into multi-physics electro-heat problems where the parameters of description are in the electrical problem and the object function in the thermal problem. Indeed, this is where the derivative of the object function in the heat problem with respect to the parameters in the electrical problem is the most difficult to compute for gradient methods, and where the genetic algorithm is most easily implemented.

  12. Optimal tracking controller for an autonomous wheeled mobile robot using fuzzy genetic algorithm

    NASA Astrophysics Data System (ADS)

    Kim, Sangwon; Park, Chongkug

    2005-12-01

    This paper deals with development of a kinematics model, a trajectory tracking, and a controller of fuzzy-genetics algorithm for 2-DOF Wheeled Mobile Robot (WMR). The global inputs to the WMR are a reference position, P r= (x r,y r,θ r) t and a reference velocity q r=(v r,ω r) t, which are time variables. The global output of WMR is a current posture P c= (x c,y c,θ c) t. The position of WMR is estimated by dead-reckoning algorithm. Dead-reckoning algorithm can determine present position of WMR in real time by adding up the increased position data to the previous one in sampling period. The tracking controller makes position error to be converged 0. In order to reduce position error, a compensation velocities q=(v,ω) t on the track of trajectory is necessary. Therefore, a controller using fuzzy-genetic algorithm is proposed to give velocity compensation in this system. Input variables of two fuzzy logic controllers (FLCs) are position errors in every sampling time. The output values of FLCs are compensation velocities. Genetic algorithms (GAs) are implemented to adjust the output gain of fuzzy logic. The computer simulation is performed to get the result of trajectory tracking and to prove efficiency of proposed controller.

  13. Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building.

    PubMed

    Sherer, Eric A; Sale, Mark E; Pollock, Bruce G; Belani, Chandra P; Egorin, Merrill J; Ivy, Percy S; Lieberman, Jeffrey A; Manuck, Stephen B; Marder, Stephen R; Muldoon, Matthew F; Scher, Howard I; Solit, David B; Bies, Robert R

    2012-08-01

    A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data. PMID:22767341

  14. Application of genetic algorithms to processing of reflectance spectra of semiconductor compounds

    NASA Astrophysics Data System (ADS)

    Zaharov, Ivan S.; Kochura, Alexey V.; Kurkin, Alexandr Y.; Belogorohov, Alexandr I.

    2004-11-01

    The basic task of mathematical processing of reflectance spectra - restoration from them of a view of dependence of inductivity, which is responsible for the response of a crystal to an external electromagnetic field from frequency of incident radia-tion. The most modern and perspective way of the solution of this task is the dis-persion analysis (DA). However DA requires large volume of computing works on selection of optimum parameters of phonons. The rapid development of computer facilities recently promotes overcoming of this difficulty. However without appli-cation of effective methods of optimization practically it is impossible to execute DA for composite reflectance spectra. In this paper the questions of application of Genetic algorithms (GA) to processing reflectance spectra of crystal materials are considered. GA is a rather new class of methods of optimization belonging to family of evolutionary algorithms. The basic features distinguishing GA from algorithms of other classes: - GA is an iterative algorithm of generations, in which the search of an extreme is made not in initial space of search, but in the conjugate set of chromosomes. The set of chromosomes on each step of iterations of algorithm is termed as a popula-tion; - The generation of the new trial solutions in this set is carried out by a set of the special genetic operators. The genetic operators are probabilistic, i.e. the result of their application to the concrete chromosome is not unequivocal; - The creation of a new population from the solutions of the current population and solutions generated by the genetic operators is carried out by special algorithms of selection. The efficiency GA strongly depends on such details, as a method of coding of the solutions, embodying of the genetic operators, mechanisms of selection, adjust-ment of other parameters of algorithm, criterion of success. The theoretical work reflected in the literature devoted to these algorithms does not give the bases to speak about existence of any strict mechanisms for precise predictions of function-ing GA. For the effective solution of a concrete task it is necessary in appropriate way to modify or to develop all components GA. In this paper we offer modification GA for the solution of the reflectance spectra processing problem and results of the obtained algorithm work.

  15. Edge detection based on genetic algorithm and sobel operator in image

    NASA Astrophysics Data System (ADS)

    Tong, Xin; Ren, Aifeng; Zhang, Haifeng; Ruan, Hang; Luo, Ming

    2011-10-01

    Genetic algorithm (GA) is widely used as the optimization problems using techniques inspired by natural evolution. In this paper we present a new edge detection technique based on GA and sobel operator. The sobel edge detection built in DSP Builder is first used to determine the boundaries of objects within an image. Then the genetic algorithm using SOPC Builder proposes a new threshold algorithm for the image processing. Finally, the performance of the new edge detection technique-based the best threshold approaches in DSP Builder and Quartus II software is compared both qualitatively and quantitatively with the single sobel operator. The new edge detection technique is shown to perform very well in terms of robustness to noise, edge search capability and quality of the final edge image.

  16. A Newton Cooperative Genetic Algorithm Method for In Silico Optimization of Metabolic Pathway Production

    PubMed Central

    Mohamad, Mohd Saberi; Abdullah, Afnizanfaizal

    2015-01-01

    This paper presents an in silico optimization method of metabolic pathway production. The metabolic pathway can be represented by a mathematical model known as the generalized mass action model, which leads to a complex nonlinear equations system. The optimization process becomes difficult when steady state and the constraints of the components in the metabolic pathway are involved. To deal with this situation, this paper presents an in silico optimization method, namely the Newton Cooperative Genetic Algorithm (NCGA). The NCGA used Newton method in dealing with the metabolic pathway, and then integrated genetic algorithm and cooperative co-evolutionary algorithm. The proposed method was experimentally applied on the benchmark metabolic pathways, and the results showed that the NCGA achieved better results compared to the existing methods. PMID:25961295

  17. Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Baskaran, Subbiah; Noever, D.

    1999-01-01

    Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.

  18. Inverting the parameters of an earthquake-ruptured fault with a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Ting-To; Fernàndez, Josè; Rundle, John B.

    1998-03-01

    Natural selection is the spirit of the genetic algorithm (GA): by keeping the good genes in the current generation, thereby producing better offspring during evolution. The crossover function ensures the heritage of good genes from parent to offspring. Meanwhile, the process of mutation creates a special gene, the character of which does not exist in the parent generation. A program based on genetic algorithms using C language is constructed to invert the parameters of an earthquake-ruptured fault. The verification and application of this code is shown to demonstrate its capabilities. It is determined that this code is able to find the global extreme and can be used to solve more practical problems with constraints gathered from other sources. It is shown that GA is superior to other inverting schema in many aspects. This easy handling and yet powerful algorithm should have many suitable applications in the field of geosciences.

  19. A Study of Penalty Function Methods for Constraint Handling with Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Ortiz, Francisco

    2004-01-01

    COMETBOARDS (Comparative Evaluation Testbed of Optimization and Analysis Routines for Design of Structures) is a design optimization test bed that can evaluate the performance of several different optimization algorithms. A few of these optimization algorithms are the sequence of unconstrained minimization techniques (SUMT), sequential linear programming (SLP) and the sequential quadratic programming techniques (SQP). A genetic algorithm (GA) is a search technique that is based on the principles of natural selection or "survival of the fittest". Instead of using gradient information, the GA uses the objective function directly in the search. The GA searches the solution space by maintaining a population of potential solutions. Then, using evolving operations such as recombination, mutation and selection, the GA creates successive generations of solutions that will evolve and take on the positive characteristics of their parents and thus gradually approach optimal or near-optimal solutions. By using the objective function directly in the search, genetic algorithms can be effectively applied in non-convex, highly nonlinear, complex problems. The genetic algorithm is not guaranteed to find the global optimum, but it is less likely to get trapped at a local optimum than traditional gradient-based search methods when the objective function is not smooth and generally well behaved. The purpose of this research is to assist in the integration of genetic algorithm (GA) into COMETBOARDS. COMETBOARDS cast the design of structures as a constrained nonlinear optimization problem. One method used to solve constrained optimization problem with a GA to convert the constrained optimization problem into an unconstrained optimization problem by developing a penalty function that penalizes infeasible solutions. There have been several suggested penalty function in the literature each with there own strengths and weaknesses. A statistical analysis of some suggested penalty functions is performed in this study. Also, a response surface approach to robust design is used to develop a new penalty function approach. This new penalty function approach is then compared with the other existing penalty functions.

  20. Optimal sensor placement for spatial lattice structure based on genetic algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Gao, Wei-cheng; Sun, Yi; Xu, Min-jian

    2008-10-01

    Optimal sensor placement technique plays a key role in structural health monitoring of spatial lattice structures. This paper considers the problem of locating sensors on a spatial lattice structure with the aim of maximizing the data information so that structural dynamic behavior can be fully characterized. Based on the criterion of optimal sensor placement for modal test, an improved genetic algorithm is introduced to find the optimal placement of sensors. The modal strain energy (MSE) and the modal assurance criterion (MAC) have been taken as the fitness function, respectively, so that three placement designs were produced. The decimal two-dimension array coding method instead of binary coding method is proposed to code the solution. Forced mutation operator is introduced when the identical genes appear via the crossover procedure. A computational simulation of a 12-bay plain truss model has been implemented to demonstrate the feasibility of the three optimal algorithms above. The obtained optimal sensor placements using the improved genetic algorithm are compared with those gained by exiting genetic algorithm using the binary coding method. Further the comparison criterion based on the mean square error between the finite element method (FEM) mode shapes and the Guyan expansion mode shapes identified by data-driven stochastic subspace identification (SSI-DATA) method are employed to demonstrate the advantage of the different fitness function. The results showed that some innovations in genetic algorithm proposed in this paper can enlarge the genes storage and improve the convergence of the algorithm. More importantly, the three optimal sensor placement methods can all provide the reliable results and identify the vibration characteristics of the 12-bay plain truss model accurately.

  1. Genetic algorithms and their applications in accelerator physics

    SciTech Connect

    Hofler, Alicia S.

    2013-12-01

    Multi-objective optimization techniques are widely used in an extremely broad range of fields. Genetic optimization for multi-objective optimization was introduced in the accelerator community in relatively recent times and quickly spread becoming a fundamental tool in multi-dimensional optimization problems. This discussion introduces the basics of the technique and reviews applications in accelerator problems.

  2. A Distributed Parallel Genetic Algorithm of Placement Strategy for Virtual Machines Deployment on Cloud Platform

    PubMed Central

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform. PMID:25097872

  3. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Steincamp, James; Taylor, Jaime

    2003-01-01

    A reduced surrogate, one point crossover genetic algorithm with random rank-based selection was used successfully to estimate the multiple phases of a segmented optical system modeled on the seven-mirror Systematic Image-Based Optical Alignment testbed located at NASA's Marshall Space Flight Center.

  4. Optimization of meander line antennas for RFID applications by using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bucuci, Stefania C.; Anchidin, Liliana; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban; Tamas, Razvan D.

    2015-02-01

    In this paper, we propose an approach of optimization of meander line antennas by using genetic algorithm. Such antennas are used in RFID applications. As opposed to other approaches for meander antennas, we propose the use of only two optimization objectives, i.e. gain and size. As an example, we have optimized a single meander dipole antenna, resonating at 869 MHz.

  5. Credit card fraud detection: An application of the gene expression messy genetic algorithm

    SciTech Connect

    Kargupta, H.; Gattiker, J.R.; Buescher, K.

    1996-05-01

    This paper describes an application of the recently introduced gene expression messy genetic algorithm (GEMGA) (Kargupta, 1996) for detecting fraudulent transactions of credit cards. It also explains the fundamental concepts underlying the GEMGA in the light of the SEARCH (Search Envisioned As Relation and Class Hierarchizing) (Kargupta, 1995) framework.

  6. A distributed parallel genetic algorithm of placement strategy for virtual machines deployment on cloud platform.

    PubMed

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform. PMID:25097872

  7. Creating IRT-Based Parallel Test Forms Using the Genetic Algorithm Method

    ERIC Educational Resources Information Center

    Sun, Koun-Tem; Chen, Yu-Jen; Tsai, Shu-Yen; Cheng, Chien-Fen

    2008-01-01

    In educational measurement, the construction of parallel test forms is often a combinatorial optimization problem that involves the time-consuming selection of items to construct tests having approximately the same test information functions (TIFs) and constraints. This article proposes a novel method, genetic algorithm (GA), to construct parallel…

  8. Using Genetic Algorithm and MODFLOW to Characterize Aquifer System of Northwest Florida

    EPA Science Inventory

    By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...

  9. Using Genetic Algorithm and MODFLOW to Characterize Aquifer System of Northwest Florida (Published Proceedings)

    EPA Science Inventory

    By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...

  10. Voltage and Reactive Power Control by Integration of Genetic Algorithm and Tabu Search

    NASA Astrophysics Data System (ADS)

    Aoki, Hidenori; Yamamoto, Kensei; Mizutani, Yoshibumi

    This paper presents on the result of voltage and reactive power control by use of the proposed method. The feature of proposed method is integration of genetic algorithm (GA) and tabu search (TS). This method obtains an excellent fitness at shorter calculation time than GA considering conventional control process. The effectiveness of this method is shown by a practicable 15-bus system.

  11. A Genetic Algorithm Approach for Group Formation in Collaborative Learning Considering Multiple Student Characteristics

    ERIC Educational Resources Information Center

    Moreno, Julian; Ovalle, Demetrio A.; Vicari, Rosa M.

    2012-01-01

    Considering that group formation is one of the key processes in collaborative learning, the aim of this paper is to propose a method based on a genetic algorithm approach for achieving inter-homogeneous and intra-heterogeneous groups. The main feature of such a method is that it allows for the consideration of as many student characteristics as

  12. Creating IRT-Based Parallel Test Forms Using the Genetic Algorithm Method

    ERIC Educational Resources Information Center

    Sun, Koun-Tem; Chen, Yu-Jen; Tsai, Shu-Yen; Cheng, Chien-Fen

    2008-01-01

    In educational measurement, the construction of parallel test forms is often a combinatorial optimization problem that involves the time-consuming selection of items to construct tests having approximately the same test information functions (TIFs) and constraints. This article proposes a novel method, genetic algorithm (GA), to construct parallel

  13. A Genetic Algorithm Approach for Group Formation in Collaborative Learning Considering Multiple Student Characteristics

    ERIC Educational Resources Information Center

    Moreno, Julian; Ovalle, Demetrio A.; Vicari, Rosa M.

    2012-01-01

    Considering that group formation is one of the key processes in collaborative learning, the aim of this paper is to propose a method based on a genetic algorithm approach for achieving inter-homogeneous and intra-heterogeneous groups. The main feature of such a method is that it allows for the consideration of as many student characteristics as…

  14. Genetic Algorithm-Based Relevance Feedback for Image Retrieval Using Local Similarity Patterns.

    ERIC Educational Resources Information Center

    Stejic, Zoran; Takama, Yasufumi; Hirota, Kaoru

    2003-01-01

    Proposes local similarity pattern (LSP) as a new method for computing digital image similarity. Topics include optimizing similarity computation based on genetic algorithm; relevance feedback; and an evaluation of LSP on five databases that showed an increase in retrieval precision over other methods for computing image similarity. (Author/LRW)

  15. Calibration of Uncertainty Analysis of the SWAT Model Using Genetic Algorithms and Bayesian Model Averaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, the Genetic Algorithms (GA) and Bayesian model averaging (BMA) were combined to simultaneously conduct calibration and uncertainty analysis for the Soil and Water Assessment Tool (SWAT). In this hybrid method, several SWAT models with different structures are first selected; next GA i...

  16. First Attempt of Orbit Determination of SLR Satellites and Space Debris Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Deleflie, F.; Coulot, D.; Descosta, R.; Fernier, A.; Richard, P.

    2013-08-01

    We present an orbit determination method based on genetic algorithms. Contrary to usual estimation methods mainly based on least-squares methods, these algorithms do not require any a priori knowledge of the initial state vector to be estimated. These algorithms can be applied when a new satellite is launched or for uncatalogued objects that appear in images obtained from robotic telescopes such as the TAROT ones. We show in this paper preliminary results obtained from an SLR satellite, for which tracking data acquired by the ILRS network enable to build accurate orbital arcs at a few centimeter level, which can be used as a reference orbit ; in this case, the basic observations are made up of time series of ranges, obtained from various tracking stations. We show as well the results obtained from the observations acquired by the two TAROT telescopes on the Telecom-2D satellite operated by CNES ; in that case, the observations are made up of time series of azimuths and elevations, seen from the two TAROT telescopes. The method is carried out in several steps: (i) an analytical propagation of the equations of motion, (ii) an estimation kernel based on genetic algorithms, which follows the usual steps of such approaches: initialization and evolution of a selected population, so as to determine the best parameters. Each parameter to be estimated, namely each initial keplerian element, has to be searched among an interval that is preliminary chosen. The algorithm is supposed to converge towards an optimum over a reasonable computational time.

  17. Genetic algorithms in conceptual design of a light-weight, low-noise, tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Wells, Valana L.

    1996-01-01

    This report outlines research accomplishments in the area of using genetic algorithms (GA) for the design and optimization of rotorcraft. It discusses the genetic algorithm as a search and optimization tool, outlines a procedure for using the GA in the conceptual design of helicopters, and applies the GA method to the acoustic design of rotors.

  18. Genetic Algorithm for Solving Fuzzy Shortest Path Problem in a Network with mixed fuzzy arc lengths

    NASA Astrophysics Data System (ADS)

    Mahdavi, Iraj; Tajdin, Ali; Hassanzadeh, Reza; Mahdavi-Amiri, Nezam; Shafieian, Hosna

    2011-06-01

    We are concerned with the design of a model and an algorithm for computing a shortest path in a network having various types of fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using α -cuts by proposing a linear least squares model to obtain membership functions for the considered additions. Then, using a recently proposed distance function for comparison of fuzzy numbers. we propose a new approach to solve the fuzzy APSPP using of genetic algorithm. Examples are worked out to illustrate the applicability of the proposed model.

  19. Multi-objective Emergency Facility Location Problem Based on Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Zhao, Yunsheng; Li, Zhenhua; Chen, Jin

    Recent years, emergent disasters have occurred frequently. This has attracted more attention on emergency management, especially the multi-objective emergency facility location problem (EFLP), a NP problem. However, few algorithms are efficient to solve the probleme and so the application of genetic algorithm (GA) can be a good choice. This paper first introduces the mathematical models for this problem and transforms it from complex constraints into simple constraints by punishment function. The solutions to the experiments are obtained by applying GA. The experiment results show that GA could solve the problems effectively.

  20. A Genetic Algorithm with Fuzzy Logic Controller for Design of Communication Networks

    NASA Astrophysics Data System (ADS)

    Altiparmak, Fulya; Gen, Mitsuo; Dengiz, Berna; Smith, Alice E.

    In this paper, we develop a network-based genetic algorithm with fuzzy logic controller (flc-NBGA) to the design of computer communication networks under reliability constraint, which is a well-known NP-hard problem. A new encoding based on Prüfer numbers, two-point crossover and local search operator as a mutation have been used in flc-NBGA. The algorithm results are compared to optimum results found by branch and bound (B&B), GA based on binary representation (SGA) and NBGA without fuzzy logic controller (NBGA) on a suite of test problems.

  1. Genetic Algorithm and Tabu Search for Vehicle Routing Problems with Stochastic Demand

    NASA Astrophysics Data System (ADS)

    Ismail, Zuhaimy; Irhamah

    2010-11-01

    This paper presents a problem of designing solid waste collection routes, involving scheduling of vehicles where each vehicle begins at the depot, visits customers and ends at the depot. It is modeled as a Vehicle Routing Problem with Stochastic Demands (VRPSD). A data set from a real world problem (a case) is used in this research. We developed Genetic Algorithm (GA) and Tabu Search (TS) procedure and these has produced the best possible result. The problem data are inspired by real case of VRPSD in waste collection. Results from the experiment show the advantages of the proposed algorithm that are its robustness and better solution qualities.

  2. Extended models of gravity in SNIa cosmological data using genetic algorithms

    NASA Astrophysics Data System (ADS)

    López-Corona, O.

    2015-04-01

    In this talk I explained briefly the advantages of using genetic algorithms on any measured data but specially astronomical ones. This kind of algorithms are not only a better computational paradigm, but they also allow for a more profound data treatment enhancing theoretical developments. As an example, I will use the SNIa cosmological data to fit the extended metric theories of gravity of Carranza et al. (2013, 2014) showing that the best parameters combination deviate from theoretical predicted ones by a minimal amount. This means that these kind of gravitational extensions are statistically robust and show that no dark matter and/or energy is required to explain the observations.

  3. The mGA1.0: A common LISP implementation of a messy genetic algorithm

    NASA Technical Reports Server (NTRS)

    Goldberg, David E.; Kerzic, Travis

    1990-01-01

    Genetic algorithms (GAs) are finding increased application in difficult search, optimization, and machine learning problems in science and engineering. Increasing demands are being placed on algorithm performance, and the remaining challenges of genetic algorithm theory and practice are becoming increasingly unavoidable. Perhaps the most difficult of these challenges is the so-called linkage problem. Messy GAs were created to overcome the linkage problem of simple genetic algorithms by combining variable-length strings, gene expression, messy operators, and a nonhomogeneous phasing of evolutionary processing. Results on a number of difficult deceptive test functions are encouraging with the mGA always finding global optima in a polynomial number of function evaluations. Theoretical and empirical studies are continuing, and a first version of a messy GA is ready for testing by others. A Common LISP implementation called mGA1.0 is documented and related to the basic principles and operators developed by Goldberg et. al. (1989, 1990). Although the code was prepared with care, it is not a general-purpose code, only a research version. Important data structures and global variations are described. Thereafter brief function descriptions are given, and sample input data are presented together with sample program output. A source listing with comments is also included.

  4. Colony image acquisition and genetic segmentation algorithm and colony analyses

    NASA Astrophysics Data System (ADS)

    Wang, W. X.

    2012-01-01

    Colony anaysis is used in a large number of engineerings such as food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing. In order to reduce laboring and increase analysis acuracy, many researchers and developers have made efforts for image analysis systems. The main problems in the systems are image acquisition, image segmentation and image analysis. In this paper, to acquire colony images with good quality, an illumination box was constructed. In the box, the distances between lights and dishe, camra lens and lights, and camera lens and dishe are adjusted optimally. In image segmentation, It is based on a genetic approach that allow one to consider the segmentation problem as a global optimization,. After image pre-processing and image segmentation, the colony analyses are perfomed. The colony image analysis consists of (1) basic colony parameter measurements; (2) colony size analysis; (3) colony shape analysis; and (4) colony surface measurements. All the above visual colony parameters can be selected and combined together, used to make a new engineeing parameters. The colony analysis can be applied into different applications.

  5. A Self-Adaptive Hybrid Genetic Algorithm for Optimal Groundwater Remediation Design

    NASA Astrophysics Data System (ADS)

    Espinoza, F. P.; Minsker, B. S.

    2003-12-01

    Identifying optimal designs for a groundwater remediation system is computationally intensive, especially for complex, nonlinear problems such as enhanced in situ bioremediation technology. To improve performance, we apply a hybrid genetic algorithm (HGA), which is a two-step solution method: a genetic algorithm (GA) for global search using the entire population and then a local search (LS) to improve search speed for only a few individuals in the population. The inclusion of local search helps to speed up the solution process and to make the solution technique more robust. The result of this research is a highly reliable numerical tool, the enhanced self-adaptive hybrid genetic algorithm (e-SAHGA) to more efficiently and effectively solve problems using simple genetic algorithms (SGAs). With this tool, the designer can evaluate different solution alternatives in a more timely fashion. The application of the e-SAHGA algorithm to a hypothetical groundwater remediation design problem showed 90% reliability in identifying the solution faster than the SGA, with average savings of 64% across 100 runs with different random initial populations. Finally, e-SAHGA was tested on a field-scale remediation design problem, re-evaluation of the remediation system for Umatilla Army Depot, by means of a domain decomposition approach. In this approach, well locations are identified first and then pumping rates are identified subsequently in separate GA runs. The domain decomposition approach was shown to be much faster than the full solution approach with no loss in accuracy of the final solution for this problem, with computational savings between 30% and 60%.

  6. Fuzzy-Kohonen-clustering neural network trained by genetic algorithm and fuzzy competition learning

    NASA Astrophysics Data System (ADS)

    Xie, Weixing; Li, Wenhua; Gao, Xinbo

    1995-08-01

    Kohonen networks are well known for clustering analysis. Classical Kohonen networks for hard c-means clustering (trained by winner-take-all learning) have some severe drawbacks. Fuzzy Kohonen networks (FKCNN) for fuzzy c-means clustering are trained by fuzzy competition learning, and can get better clustering results than the classical Kohonen networks. However, both winner-take-all and fuzzy competition learning algorithms are in essence local search techniques that search for the optimum by using a hill-climbing technique. Thus, they often fail in the search for the global optimum. In this paper we combine genetic algorithms (GAs) with fuzzy competition learning to train the FKCNN. Our experimental results show that the proposed GA/FC learning algorithm has much higher probabilities of finding the global optimal solutions than either the winner-take-all or the fuzzy competition learning.

  7. Genetic algorithms and MCML program for recovery of optical properties of homogeneous turbid media

    PubMed Central

    Morales Cruzado, Beatriz; y Montiel, Sergio Vázquez; Atencio, José Alberto Delgado

    2013-01-01

    In this paper, we present and validate a new method for optical properties recovery of turbid media with slab geometry. This method is an iterative method that compares diffuse reflectance and transmittance, measured using integrating spheres, with those obtained using the known algorithm MCML. The search procedure is based in the evolution of a population due to selection of the best individual, i.e., using a genetic algorithm. This new method includes several corrections such as non-linear effects in integrating spheres measurements and loss of light due to the finite size of the sample. As a potential application and proof-of-principle experiment of this new method, we use this new algorithm in the recovery of optical properties of blood samples at different degrees of coagulation. PMID:23504404

  8. Retrieval of Dry Snow Parameters from Radiometric Data Using a Dense Medium Model and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Kim, Edward J.

    2005-01-01

    In this paper, GA-based techniques are used to invert the equations of an electromagnetic model based on Dense Medium Radiative Transfer Theory (DMRT) under the Quasi Crystalline Approximation with Coherent Potential to retrieve snow depth, mean grain size and fractional volume from microwave brightness temperatures. The technique is initially tested on both noisy and not-noisy simulated data. During this phase, different configurations of genetic algorithm parameters are considered to quantify how their change can affect the algorithm performance. A configuration of GA parameters is then selected and the algorithm is applied to experimental data acquired during the NASA Cold Land Process Experiment. Snow parameters retrieved with the GA-DMRT technique are then compared with snow parameters measured on field.

  9. Simplifying multiobjective optimization: An automated design methodology for the nondominated sorted genetic algorithm-II

    NASA Astrophysics Data System (ADS)

    Reed, Patrick; Minsker, Barbara S.; Goldberg, David E.

    2003-07-01

    Many water resources problems require careful balancing of fiscal, technical, and social objectives. Informed negotiation and balancing of objectives can be greatly aided through the use of evolutionary multiobjective optimization (EMO) algorithms, which can evolve entire tradeoff (or Pareto) surfaces within a single run. The primary difficulty in using these methods lies in the large number of parameters that must be specified to ensure that these algorithms effectively quantify design tradeoffs. This technical note addresses this difficulty by introducing a multipopulation design methodology that automates parameter specification for the nondominated sorted genetic algorithm-II (NSGA-II). The NSGA-II design methodology is successfully demonstrated on a multiobjective long-term groundwater monitoring application. Using this methodology, multiobjective optimization problems can now be solved automatically with only a few simple user inputs.

  10. Quasi-conformal mapping with genetic algorithms applied to coordinate transformations

    NASA Astrophysics Data System (ADS)

    González-Matesanz, F. J.; Malpica, J. A.

    2006-11-01

    In this paper, piecewise conformal mapping for the transformation of geodetic coordinates is studied. An algorithm, which is an improved version of a previous algorithm published by Lippus [2004a. On some properties of piecewise conformal mappings. Eesti NSV Teaduste Akademmia Toimetised Füüsika-Matemaakika 53, 92-98; 2004b. Transformation of coordinates using piecewise conformal mapping. Journal of Geodesy 78 (1-2), 40] is presented; the improvement comes from using a genetic algorithm to partition the complex plane into convex polygons, whereas the original one did so manually. As a case study, the method is applied to the transformation of the Spanish datum ED50 and ETRS89, and both its advantages and disadvantages are discussed herein.

  11. Computational processes of evolution and the gene expression messy genetic algorithm

    SciTech Connect

    Kargupta, H.

    1996-05-01

    This paper makes an effort to project the theoretical lessons of the SEARCH (Search Envisioned As Relation and Class Hierarchizing) framework introduced elsewhere (Kargupta, 1995b) in the context of natural evolution and introduce the gene expression messy genetic algorithm (GEMGA) -- a new generation of messy GAs that directly search for relations among the members of the search space. The GEMGA is an O({vert_bar}{Lambda}{vert_bar}{sup k}({ell} + k)) sample complexity algorithm for the class of order-k delineable problems (Kargupta, 1995a) (problems that can be solved by considering no higher than order-k relations) in sequence representation of length {ell} and alphabet set {Lambda}. Unlike the traditional evolutionary search algorithms, the GEMGA emphasizes the computational role of gene expression and uses a transcription operator to detect appropriate relations. Theoretical conclusions are also substantiated by experimental results for large multimodal problems with bounded inappropriateness of representation.

  12. A Genetic Algorithm Optimization Method for Mapping Non-Conducting Atrial Regions: A Theoretical Feasibility Study.

    PubMed

    Shiff, Shai; Swissa, Moshe; Zlochiver, Sharon

    2016-03-01

    Atrial ablation has been recently utilized for curing atrial fibrillation. The success rate of empirical ablation is relatively low as often the exact locations of the arrhythmogenic sources remain elusive. Guided ablation has been proposed to improve ablation technique by providing guidance regarding the potential localization of the sources; yet to date no main technological solution has been widely adopted as an integral part of the ablation process. Here we propose a genetic algorithm optimization technique to map a major arrhythmogenic substance-non-conducting regions (NCRs). Excitation delays in a set of electrodes of known locations are measured following external tissue stimulation, and the spatial distribution of obstacles that is most likely to yield the measured delays is reconstructed. A forward problem module was solved to provide synthetic time delay measurements using a 2D human atrial model with known NCR distribution. An inverse genetic algorithm module was implemented to optimally reconstruct the locations of the now unknown obstacle distribution using the synthetic measurements. The performance of the algorithm was demonstrated for several distributions varying in NCR number and shape. The proposed algorithm was found robust to measurements with a signal-to-noise ratio of at least -20 dB, and for measuring electrodes separated by up to 3.2 mm. Our results support the feasibility of the proposed algorithm in mapping NCRs; nevertheless, further research is required prior to clinical implementation for incorporating more complex atrial tissue geometrical configurations as well as for testing the algorithm with experimental data. PMID:26691762

  13. A Hybrid Cellular Genetic Algorithm for Multi-objective Crew Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Jolai, Fariborz; Assadipour, Ghazal

    Crew scheduling is one of the important problems of the airline industry. This problem aims to cover a number of flights by crew members, such that all the flights are covered. In a robust scheduling the assignment should be so that the total cost, delays, and unbalanced utilization are minimized. As the problem is NP-hard and the objectives are in conflict with each other, a multi-objective meta-heuristic called CellDE, which is a hybrid cellular genetic algorithm, is implemented as the optimization method. The proposed algorithm provides the decision maker with a set of non-dominated or Pareto-optimal solutions, and enables them to choose the best one according to their preferences. A set of problems of different sizes is generated and solved using the proposed algorithm. Evaluating the performance of the proposed algorithm, three metrics are suggested, and the diversity and the convergence of the achieved Pareto front are appraised. Finally a comparison is made between CellDE and PAES, another meta-heuristic algorithm. The results show the superiority of CellDE.

  14. Genetic Algorithm Used for Load Shedding Based on Sensitivity to Enhance Voltage Stability

    NASA Astrophysics Data System (ADS)

    Titare, L. S.; Singh, P.; Arya, L. D.

    2014-12-01

    This paper presents an algorithm to calculate optimum load shedding with voltage stability consideration based on sensitivity of proximity indicator using genetic algorithm (GA). Schur's inequality based proximity indicator of load flow Jacobian has been selected, which indicates system state. Load flow Jacobian of the system is obtained using Continuation power flow method. If reactive power and active rescheduling are exhausted, load shedding is the last line of defense to maintain the operational security of the system. Load buses for load shedding have been selected on the basis of sensitivity of proximity indicator. The load bus having large sensitivity is selected for load shedding. Proposed algorithm predicts load bus rank and optimum load to be shed on load buses. The algorithm accounts inequality constraints not only in present operating conditions, but also for predicted next interval load (with load shedding). Developed algorithm has been implemented on IEEE 6-bus system. Results have been compared with those obtained using Teaching-Learning-Based Optimization (TLBO), particle swarm optimization (PSO) and its variant.

  15. Different genetic algorithms and the evolution of specialization: a study with groups of simulated neural robots.

    PubMed

    Ferrauto, Tomassino; Parisi, Domenico; Di Stefano, Gabriele; Baldassarre, Gianluca

    2013-01-01

    Organisms that live in groups, from microbial symbionts to social insects and schooling fish, exhibit a number of highly efficient cooperative behaviors, often based on role taking and specialization. These behaviors are relevant not only for the biologist but also for the engineer interested in decentralized collective robotics. We address these phenomena by carrying out experiments with groups of two simulated robots controlled by neural networks whose connection weights are evolved by using genetic algorithms. These algorithms and controllers are well suited to autonomously find solutions for decentralized collective robotic tasks based on principles of self-organization. The article first presents a taxonomy of role-taking and specialization mechanisms related to evolved neural network controllers. Then it introduces two cooperation tasks, which can be accomplished by either role taking or specialization, and uses these tasks to compare four different genetic algorithms to evaluate their capacity to evolve a suitable behavioral strategy, which depends on the task demands. Interestingly, only one of the four algorithms, which appears to have more biological plausibility, is capable of evolving role taking or specialization when they are needed. The results are relevant for both collective robotics and biology, as they can provide useful hints on the different processes that can lead to the emergence of specialization in robots and organisms. PMID:23514239

  16. A Genetic Algorithm That Exchanges Neighboring Centers for Fuzzy c-Means Clustering

    ERIC Educational Resources Information Center

    Chahine, Firas Safwan

    2012-01-01

    Clustering algorithms are widely used in pattern recognition and data mining applications. Due to their computational efficiency, partitional clustering algorithms are better suited for applications with large datasets than hierarchical clustering algorithms. K-means is among the most popular partitional clustering algorithm, but has a major…

  17. Effect of Selection of Design Parameters on the Optimization of a Horizontal Axis Wind Turbine via Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Alpman, Emre

    2014-06-01

    The effect of selecting the twist angle and chord length distributions on the wind turbine blade design was investigated by performing aerodynamic optimization of a two-bladed stall regulated horizontal axis wind turbine. Twist angle and chord length distributions were defined using Bezier curve using 3, 5, 7 and 9 control points uniformly distributed along the span. Optimizations performed using a micro-genetic algorithm with populations composed of 5, 10, 15, 20 individuals showed that, the number of control points clearly affected the outcome of the process; however the effects were different for different population sizes. The results also showed the superiority of micro-genetic algorithm over a standard genetic algorithm, for the selected population sizes. Optimizations were also performed using a macroevolutionary algorithm and the resulting best blade design was compared with that yielded by micro-genetic algorithm.

  18. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  19. Material Symmetries from Ultrasonic Velocity Measurements: A Genetic Algorithm Based Blind Inversion Method

    SciTech Connect

    Vardhan, J. Vishnu; Balasubramaniam, Krishnan; Krishnamurthy, C. V.

    2007-03-21

    The determination of material symmetries and principle plane orientations of anisotropic plates, whose planes of symmetries are not known apriori, were calculated using a Genetic Algorithm (GA) based blind inversion method. The ultrasonic phase velocity profiles were used as input data to the inversion. The assumption of a general anisotropy was imposed during the start of each blind inversion. The multi-parameter solution space of the Genetic Algorithm was exploited to identify the 'statistically significant' solution sets of elastic moduli in the geometric coordinate system of the plate, by thresholding the coefficients-of-variation (Cv). Using these ''statistically significant'' elastic moduli, the unknown material symmetry and the principle planes (angles between the geometrical coordinates and the material symmetry coordinates) were evaluated using the method proposed by Cowin and Mehrabadi. This procedure was verified using simulated ultrasonic velocity data sets on material with orthotropic symmetry. Experimental validation was also performed on unidirectional Graphite Epoxy [0]7s fiber reinforced composite plate.

  20. A novel method for finding the initial structure parameters of optical systems via a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jun, LIU; Huang, Wei; Hongjie, Fan

    2016-02-01

    A novel method for finding the initial structure parameters of an optical system via the genetic algorithm (GA) is proposed in this research. Usually, optical designers start their designs from the commonly used structures from a patent database; however, it is time consuming to modify the patented structures to meet the specification. A high-performance design result largely depends on the choice of the starting point. Accordingly, it would be highly desirable to be able to calculate the initial structure parameters automatically. In this paper, a method that combines a genetic algorithm and aberration analysis is used to determine an appropriate initial structure of an optical system. We use a three-mirror system as an example to demonstrate the validity and reliability of this method. On-axis and off-axis telecentric three-mirror systems are obtained based on this method.

  1. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    SciTech Connect

    Guerrero, Rubén D.; Arango, Carlos A.; Reyes, Andrés

    2015-09-28

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.

  2. An optimization method of relativistic backward wave oscillator using particle simulation and genetic algorithms

    SciTech Connect

    Chen, Zaigao; Wang, Jianguo; Northwest Institute of Nuclear Technology, P.O. Box 69-12, Xi'an, Shaanxi 710024 ; Wang, Yue; Qiao, Hailiang; Zhang, Dianhui; Guo, Weijie

    2013-11-15

    Optimal design method of high-power microwave source using particle simulation and parallel genetic algorithms is presented in this paper. The output power, simulated by the fully electromagnetic particle simulation code UNIPIC, of the high-power microwave device is given as the fitness function, and the float-encoding genetic algorithms are used to optimize the high-power microwave devices. Using this method, we encode the heights of non-uniform slow wave structure in the relativistic backward wave oscillators (RBWO), and optimize the parameters on massively parallel processors. Simulation results demonstrate that we can obtain the optimal parameters of non-uniform slow wave structure in the RBWO, and the output microwave power enhances 52.6% after the device is optimized.

  3. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    NASA Astrophysics Data System (ADS)

    Guerrero, Rubén D.; Arango, Carlos A.; Reyes, Andrés

    2015-09-01

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.

  4. Genetic Algorithm for Analysis of Abdominal Aortic Aneurysms in Radiology Reports

    SciTech Connect

    Patton, Robert M; Beckerman, Barbara G; Potok, Thomas E; Treadwell, Jim N

    2010-01-01

    An abdominal aortic aneurysm is a problem in which the wall of the artery that supplies blood to the abdomen and lower extremities expands under pressure or balloons outward. Patients must undergo surgery to repair such aneurysm, and there is currently no known indicator of success or failure from this surgery. Our work uses a genetic algorithm to analyze radiology reports from these patients to look for common patterns in the language used as well as common features of both successful and unsuccessful surgieries. The results of the genetic algorithm show that patients with complications or unusual characteristics can be identified from a set of radiology reports without the use of search keywords, clustering, categorization, or ontology. This allows medical researchers to search and identify interesting patient records without the need for explicitly defining what interesting patient records are.

  5. Extraction of battery parameters of the equivalent circuit model using a multi-objective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Brand, Jonathan; Zhang, Zheming; Agarwal, Ramesh K.

    2014-02-01

    A simple but reasonably accurate battery model is required for simulating the performance of electrical systems that employ a battery for example an electric vehicle, as well as for investigating their potential as an energy storage device. In this paper, a relatively simple equivalent circuit based model is employed for modeling the performance of a battery. A computer code utilizing a multi-objective genetic algorithm is developed for the purpose of extracting the battery performance parameters. The code is applied to several existing industrial batteries as well as to two recently proposed high performance batteries which are currently in early research and development stage. The results demonstrate that with the optimally extracted performance parameters, the equivalent circuit based battery model can accurately predict the performance of various batteries of different sizes, capacities, and materials. Several test cases demonstrate that the multi-objective genetic algorithm can serve as a robust and reliable tool for extracting the battery performance parameters.

  6. Prediction of Aerodynamic Coefficients for Wind Tunnel Data using a Genetic Algorithm Optimized Neural Network

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy

    2002-01-01

    A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.

  7. Core loading pattern optimization of thorium fueled heavy water breeder reactor using genetic algorithm

    SciTech Connect

    Soewono, C. N.; Takaki, N.

    2012-07-01

    In this work genetic algorithm was proposed to solve fuel loading pattern optimization problem in thorium fueled heavy water reactor. The objective function of optimization was to maximize the conversion ratio and minimize power peaking factor. Those objectives were simultaneously optimized using non-dominated Pareto-based population ranking optimal method. Members of non-dominated population were assigned selection probabilities based on their rankings in a manner similar to Baker's single criterion ranking selection procedure. A selected non-dominated member was bred through simple mutation or one-point crossover process to produce a new member. The genetic algorithm program was developed in FORTRAN 90 while neutronic calculation and analysis was done by COREBN code, a module of core burn-up calculation for SRAC. (authors)

  8. Evaluation of Genetic Algorithm Concepts using Model Problems. Part 1; Single-Objective Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A genetic-algorithm-based optimization approach is described and evaluated using a simple hill-climbing model problem. The model problem utilized herein allows for the broad specification of a large number of search spaces including spaces with an arbitrary number of genes or decision variables and an arbitrary number hills or modes. In the present study, only single objective problems are considered. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all problems attempted. The most difficult problems - those with large hyper-volumes and multi-mode search spaces containing a large number of genes - require a large number of function evaluations for GA convergence, but they always converge.

  9. Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Irwin, Ryan W.; Tinker, Michael L.

    2005-01-01

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.

  10. An ultra-wideband dielectric material characterization method using grounded coplanar waveguide and genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.

    2015-10-01

    An ultra-wideband complex permittivity extraction method is reported here using numerical fitting of scattering parameters to measured results. A grounded coplanar waveguide transmission line is realized on an unknown dielectric material, whose dielectric constant and loss tangent are extracted by the best fitting of the simulated magnitude, |S21|, and phase, ϕ21, of forward scattering parameter using an electromagnetic full-wave simulator (high frequency structure simulator) to the measured results. The genetic algorithm is employed for optimum rapid extraction, where errors between the numerically simulated and measured S21 (|S21| and ϕ21) are minimized in an iterative manner. As long as the convergence criterion is not satisfied, modifications to dielectric properties are made with this genetic algorithm implemented in Matlab. Feasibility of this extraction technique is validated on benzocyclobutane polymer from 10 MHz to 40 GHz.

  11. Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector.

    PubMed

    Mayer, Alexandre; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier

    2014-10-20

    We present a multi-objective genetic algorithm we developed for the optimization of a flat-plate solar thermal collector. This collector consists of a waffle-shaped Al substrate with NiCrOx cermet and SnO(2) anti-reflection conformal coatings. Optimal geometrical parameters are determined in order to (i) maximize the solar absorptance α and (ii) minimize the thermal emittance ε. The multi-objective genetic algorithm eventually provides a whole set of Pareto-optimal solutions for the optimization of α and ε, which turn out to be competitive with record values found in the literature. In particular, a solution that enables α = 97.8% and ε = 4.8% was found. PMID:25607321

  12. Repetitive control mechanism of disturbance cancellation using a hybrid regression and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Lin, Jeng-Wen; Shen, Pu Fun; Wen, Hao-Ping

    2015-10-01

    The application of a repetitive control mechanism for use in a mechanical control system has been a topic of investigation. The fundamental purpose of repetitive control is to eliminate disturbances in a mechanical control system. This paper presents two different repetitive control laws using individual types of basis function feedback and their combinations. These laws adjust the command given to a feedback control system to eliminate tracking errors, generally resulting from periodic disturbance. Periodic errors can be reduced through linear basis functions using regression and a genetic algorithm. The results illustrate that repetitive control is most effective method for eliminating disturbances. When the data are stabilized, the tracking error of the obtained convergence value, 10-14, is the optimal solution, verifying that the proposed regression and genetic algorithm can satisfactorily reduce periodic errors.

  13. An Order Coding Genetic Algorithm to Optimize Fuel Reloads in a Nuclear Boiling Water Reactor

    SciTech Connect

    Ortiz, Juan Jose; Requena, Ignacio

    2004-01-15

    A genetic algorithm is used to optimize the nuclear fuel reload for a boiling water reactor, and an order coding is proposed for the chromosomes and appropriate crossover and mutation operators. The fitness function was designed so that the genetic algorithm creates fuel reloads that, on one hand, satisfy the constrictions for the radial power peaking factor, the minimum critical power ratio, and the maximum linear heat generation rate while optimizing the effective multiplication factor at the beginning and end of the cycle. To find the values of these variables, a neural network trained with the behavior of a reactor simulator was used to predict them. The computation time is therefore greatly decreased in the search process. We validated this method with data from five cycles of the Laguna Verde Nuclear Power Plant in Mexico.

  14. Modeling the Volcanic Source at Long Valley, CA, Using a Genetic Algorithm Technique

    NASA Technical Reports Server (NTRS)

    Tiampo, Kristy F.

    1999-01-01

    In this project, we attempted to model the deformation pattern due to the magmatic source at Long Valley caldera using a real-value coded genetic algorithm (GA) inversion similar to that found in Michalewicz, 1992. The project has been both successful and rewarding. The genetic algorithm, coded in the C programming language, performs stable inversions over repeated trials, with varying initial and boundary conditions. The original model used a GA in which the geophysical information was coded into the fitness function through the computation of surface displacements for a Mogi point source in an elastic half-space. The program was designed to invert for a spherical magmatic source - its depth, horizontal location and volume - using the known surface deformations. It also included the capability of inverting for multiple sources.

  15. Robust Flight Path Determination for Mars Precision Landing Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kohen, Hamid

    1997-01-01

    This paper documents the application of genetic algorithms (GAs) to the problem of robust flight path determination for Mars precision landing. The robust flight path problem is defined here as the determination of the flight path which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the effect of perturbations due to uncertainty in the atmospheric model and entry conditions. The genetic algorithm was capable of finding solutions which reduced the landing error from 111 km RMS radial (open-loop optimal) to 43 km RMS radial (optimized with respect to perturbations) using 200 hours of computation on an Ultra-SPARC workstation. Further reduction in the landing error is possible by going to closed-loop control which can utilize the GA optimized paths as nominal trajectories for linearization.

  16. Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms

    SciTech Connect

    Irwin, Ryan W.; Tinker, Michael L.

    2005-02-06

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.

  17. Genetic Algorithm Approaches to Solve RWA Problem in WDM Optical Networks

    NASA Astrophysics Data System (ADS)

    Barpanda, Ravi Sankar; Turuk, Ashok Kumar; Sahoo, Bibhudatta; Majhi, Banshidhar

    Routing and Wavelength Assignment (RWA) problem is a classical problem in Wavelength Division Multiplexing (WDM) networks. It is reported that RWA problem is a NP-hard problem as the global optimum is not achievable in polynomial time due to the memory limitation of digital computers. We model the RWA problem as an Integer Linear Programming (ILP) problem under wavelength continuity constraint and solve it using Genetic Algorithm (GA) approach to obtain a near optimal solution.

  18. Paleothermometry via a Genetic Algorithm With an Application to GISP2 Borehole Data

    NASA Astrophysics Data System (ADS)

    Kim, Y.

    2003-12-01

    Borehole temperature-depth profiles of ice sheets contain information about local climate change stretching back more than a hundred thousand years to the Eemian. Surface temperature histories at the Greenland ice sheet drill sites, GRIP and GISP2, have been reconstructed in the literature using a Control Method (Cuffey et al., 1995) and an Inverse Monte Carlo method (Dahl-Jensen, et al., 1998). In contrast to previous inversion efforts, the flexibility of the proposed Genetic Algorithm based method makes it possible to easily incorporate other climate proxies obtained from the ice core itself as constraints into the inversion process either by augmenting the fitness function with appropriate penalty terms or by treating it as a multi-objective optimization problem. The Genetic Algorithm based surface temperature inversion is applied to synthetic borehole temperature profiles and the GISP2 borehole data. Comparisons between the reconstructed and prescribed temperature forcing in the synthetic cases demonstrate the robustness of the new inversion method. Inversion of GISP2 data shows that the retrodicted 40,000 year long surface temperature history obtained by the Genetic Algorithm agrees well with results of previous studies while using only minimal problem specific knowledge. The resulting surface temperature reconstruction is used as an independent calibration of the linear oxygen-isotope paleothermometer (δ 18O = α T + β ) and yields a value for α = 0.360 per mil ° C-1 and β = -23.9 per mil. The Genetic Algorithm based inversion method enables a multi-proxy approach to ice sheet borehole temperature inversions which should improve the accuracy and resolution of surface temperature reconstructions and aid in the interpretation of very long δ 18O records from ice cores as a local temperature proxy.

  19. Improved Cost-Base Design of Water Distribution Networks using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Moradzadeh Azar, Foad; Abghari, Hirad; Taghi Alami, Mohammad; Weijs, Steven

    2010-05-01

    Population growth and progressive extension of urbanization in different places of Iran cause an increasing demand for primary needs. The water, this vital liquid is the most important natural need for human life. Providing this natural need is requires the design and construction of water distribution networks, that incur enormous costs on the country's budget. Any reduction in these costs enable more people from society to access extreme profit least cost. Therefore, investment of Municipal councils need to maximize benefits or minimize expenditures. To achieve this purpose, the engineering design depends on the cost optimization techniques. This paper, presents optimization models based on genetic algorithm(GA) to find out the minimum design cost Mahabad City's (North West, Iran) water distribution network. By designing two models and comparing the resulting costs, the abilities of GA were determined. the GA based model could find optimum pipe diameters to reduce the design costs of network. Results show that the water distribution network design using Genetic Algorithm could lead to reduction of at least 7% in project costs in comparison to the classic model. Keywords: Genetic Algorithm, Optimum Design of Water Distribution Network, Mahabad City, Iran.

  20. Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Suman, Vitisha; Sarkar, P. K.

    2014-02-01

    A spectrum unfolding technique GAMCD (Genetic Algorithm and Monte Carlo based spectrum Deconvolution) has been developed using the genetic algorithm methodology within the framework of Monte Carlo simulations. Each Monte Carlo history starts with initial solution vectors (population) as randomly generated points in the hyper dimensional solution space that are related to the measured data by the response matrix of the detection system. The transition of the solution points in the solution space from one generation to another are governed by the genetic algorithm methodology using the techniques of cross-over (mating) and mutation in a probabilistic manner adding new solution points to the population. The population size is kept constant by discarding solutions having lesser fitness values (larger differences between measured and calculated results). Solutions having the highest fitness value at the end of each Monte Carlo history are averaged over all histories to obtain the final spectral solution. The present method shows promising results in neutron spectrum unfolding for both under-determined and over-determined problems with simulated test data as well as measured data when compared with some existing unfolding codes. An attractive advantage of the present method is the independence of the final spectra from the initial guess spectra.

  1. Optimization of fuels from waste composition with application of genetic algorithm.

    PubMed

    Małgorzata, Wzorek

    2014-05-01

    The objective of this article is to elaborate a method to optimize the composition of the fuels from sewage sludge (PBS fuel - fuel based on sewage sludge and coal slime, PBM fuel - fuel based on sewage sludge and meat and bone meal, PBT fuel - fuel based on sewage sludge and sawdust). As a tool for an optimization procedure, the use of a genetic algorithm is proposed. The optimization task involves the maximization of mass fraction of sewage sludge in a fuel developed on the basis of quality-based criteria for the use as an alternative fuel used by the cement industry. The selection criteria of fuels composition concerned such parameters as: calorific value, content of chlorine, sulphur and heavy metals. Mathematical descriptions of fuel compositions and general forms of the genetic algorithm, as well as the obtained optimization results are presented. The results of this study indicate that the proposed genetic algorithm offers an optimization tool, which could be useful in the determination of the composition of fuels that are produced from waste. PMID:24718361

  2. Optimization of the Thermosetting Pultrusion Process by Using Hybrid and Mixed Integer Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Baran, Ismet; Tutum, Cem C.; Hattel, Jesper H.

    2013-08-01

    In this paper thermo-chemical simulation of the pultrusion process of a composite rod is first used as a validation case to ensure that the utilized numerical scheme is stable and converges to results given in literature. Following this validation case, a cylindrical die block with heaters is added to the pultrusion domain of a composite part and thermal contact resistance (TCR) regions at the die-part interface are defined. Two optimization case studies are performed on this new configuration. In the first one, optimal die radius and TCR values are found by using a hybrid genetic algorithm based on a sequential combination of a genetic algorithm (GA) and a local search technique to fit the centerline temperature of the composite with the one calculated in the validation case. In the second optimization study, the productivity of the process is improved by using a mixed integer genetic algorithm (MIGA) such that the total number of heaters is minimized while satisfying the constraints for the maximum composite temperature, the mean of the cure degree at the die exit and the pulling speed.

  3. A genetic algorithm for optimizing multi-pole Debye models of tissue dielectric properties

    NASA Astrophysics Data System (ADS)

    Clegg, J.; Robinson, M. P.

    2012-10-01

    Models of tissue dielectric properties (permittivity and conductivity) enable the interactions of tissues and electromagnetic fields to be simulated, which has many useful applications in microwave imaging, radio propagation, and non-ionizing radiation dosimetry. Parametric formulae are available, based on a multi-pole model of tissue dispersions, but although they give the dielectric properties over a wide frequency range, they do not convert easily to the time domain. An alternative is the multi-pole Debye model which works well in both time and frequency domains. Genetic algorithms are an evolutionary approach to optimization, and we found that this technique was effective at finding the best values of the multi-Debye parameters. Our genetic algorithm optimized these parameters to fit to either a Cole-Cole model or to measured data, and worked well over wide or narrow frequency ranges. Over 10 Hz-10 GHz the best fits for muscle, fat or bone were each found for ten dispersions or poles in the multi-Debye model. The genetic algorithm is a fast and effective method of developing tissue models that compares favourably with alternatives such as the rational polynomial fit.

  4. Flexible Job-Shop Scheduling with Dual-Resource Constraints to Minimize Tardiness Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Paksi, A. B. N.; Ma'ruf, A.

    2016-02-01

    In general, both machines and human resources are needed for processing a job on production floor. However, most classical scheduling problems have ignored the possible constraint caused by availability of workers and have considered only machines as a limited resource. In addition, along with production technology development, routing flexibility appears as a consequence of high product variety and medium demand for each product. Routing flexibility is caused by capability of machines that offers more than one machining process. This paper presents a method to address scheduling problem constrained by both machines and workers, considering routing flexibility. Scheduling in a Dual-Resource Constrained shop is categorized as NP-hard problem that needs long computational time. Meta-heuristic approach, based on Genetic Algorithm, is used due to its practical implementation in industry. Developed Genetic Algorithm uses indirect chromosome representative and procedure to transform chromosome into Gantt chart. Genetic operators, namely selection, elitism, crossover, and mutation are developed to search the best fitness value until steady state condition is achieved. A case study in a manufacturing SME is used to minimize tardiness as objective function. The algorithm has shown 25.6% reduction of tardiness, equal to 43.5 hours.

  5. A Genetic Algorithm for the Bi-Level Topological Design of Local Area Networks

    PubMed Central

    Camacho-Vallejo, José-Fernando; Mar-Ortiz, Julio; López-Ramos, Francisco; Rodríguez, Ricardo Pedraza

    2015-01-01

    Local access networks (LAN) are commonly used as communication infrastructures which meet the demand of a set of users in the local environment. Usually these networks consist of several LAN segments connected by bridges. The topological LAN design bi-level problem consists on assigning users to clusters and the union of clusters by bridges in order to obtain a minimum response time network with minimum connection cost. Therefore, the decision of optimally assigning users to clusters will be made by the leader and the follower will make the decision of connecting all the clusters while forming a spanning tree. In this paper, we propose a genetic algorithm for solving the bi-level topological design of a Local Access Network. Our solution method considers the Stackelberg equilibrium to solve the bi-level problem. The Stackelberg-Genetic algorithm procedure deals with the fact that the follower’s problem cannot be optimally solved in a straightforward manner. The computational results obtained from two different sets of instances show that the performance of the developed algorithm is efficient and that it is more suitable for solving the bi-level problem than a previous Nash-Genetic approach. PMID:26102502

  6. Computational fluid dynamics based bulbous bow optimization using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mahmood, Shahid; Huang, Debo

    2012-09-01

    Computational fluid dynamics (CFD) plays a major role in predicting the flow behavior of a ship. With the development of fast computers and robust CFD software, CFD has become an important tool for designers and engineers in the ship industry. In this paper, the hull form of a ship was optimized for total resistance using CFD as a calculation tool and a genetic algorithm as an optimization tool. CFD based optimization consists of major steps involving automatic generation of geometry based on design parameters, automatic generation of mesh, automatic analysis of fluid flow to calculate the required objective/cost function, and finally an optimization tool to evaluate the cost for optimization. In this paper, integration of a genetic algorithm program, written in MATLAB, was carried out with the geometry and meshing software GAMBIT and CFD analysis software FLUENT. Different geometries of additive bulbous bow were incorporated in the original hull based on design parameters. These design variables were optimized to achieve a minimum cost function of "total resistance". Integration of a genetic algorithm with CFD tools proves to be effective for hull form optimization.

  7. Optimization of cocoa butter analog synthesis variables using neural networks and genetic algorithm.

    PubMed

    Shekarchizadeh, Hajar; Tikani, Reza; Kadivar, Mahdi

    2014-09-01

    Cocoa butter analog was prepared from camel hump fat and tristearin by enzymatic interesterification in supercritical carbon dioxide (SC-CO2) using immobilized Thermomyces lanuginosus lipase (Lipozyme TL IM) as a biocatalyst. Optimal process conditions were determined using neural networks and genetic algorithm optimization. Response surfaces methodology was used to design the experiments to collect data for the neural network modelling. A general regression neural network model was developed to predict the response of triacylglycerol (TAG) distribution of cocoa butter analog from the process pressure, temperature, tristearin/camel hump fat ratio, water content, and incubation time. A genetic algorithm was used to search for a combination of the process variables for production of most similar cocoa butter analog to the corresponding cocoa butter. The combinations of the process variables during genetic algorithm optimization were evaluated using the neural network model. The pressure of 10 MPa; temperature of 40 °C; SSS/CHF ratio of 0.6:1; water content of 13 % (w/w); and incubation time of 4.5 h were found to be the optimum conditions to achieve the most similar cocoa butter analog to the corresponding cocoa butter. PMID:25190869

  8. Using a genetic algorithm to optimize a water-monitoring network for accuracy and cost effectiveness

    NASA Astrophysics Data System (ADS)

    Julich, R. J.

    2004-05-01

    The purpose of this project is to determine the optimal spatial distribution of water-monitoring wells to maximize important data collection and to minimize the cost of managing the network. We have employed a genetic algorithm (GA) towards this goal. The GA uses a simple fitness measure with two parts: the first part awards a maximal score to those combinations of hydraulic head observations whose net uncertainty is closest to the value representing all observations present, thereby maximizing accuracy; the second part applies a penalty function to minimize the number of observations, thereby minimizing the overall cost of the monitoring network. We used the linear statistical inference equation to calculate standard deviations on predictions from a numerical model generated for the 501-observation Death Valley Regional Flow System as the basis for our uncertainty calculations. We have organized the results to address the following three questions: 1) what is the optimal design strategy for a genetic algorithm to optimize this problem domain; 2) what is the consistency of solutions over several optimization runs; and 3) how do these results compare to what is known about the conceptual hydrogeology? Our results indicate the genetic algorithms are a more efficient and robust method for solving this class of optimization problems than have been traditional optimization approaches.

  9. A Genetic Algorithm for the Bi-Level Topological Design of Local Area Networks.

    PubMed

    Camacho-Vallejo, Jos-Fernando; Mar-Ortiz, Julio; Lpez-Ramos, Francisco; Rodrguez, Ricardo Pedraza

    2015-01-01

    Local access networks (LAN) are commonly used as communication infrastructures which meet the demand of a set of users in the local environment. Usually these networks consist of several LAN segments connected by bridges. The topological LAN design bi-level problem consists on assigning users to clusters and the union of clusters by bridges in order to obtain a minimum response time network with minimum connection cost. Therefore, the decision of optimally assigning users to clusters will be made by the leader and the follower will make the decision of connecting all the clusters while forming a spanning tree. In this paper, we propose a genetic algorithm for solving the bi-level topological design of a Local Access Network. Our solution method considers the Stackelberg equilibrium to solve the bi-level problem. The Stackelberg-Genetic algorithm procedure deals with the fact that the follower's problem cannot be optimally solved in a straightforward manner. The computational results obtained from two different sets of instances show that the performance of the developed algorithm is efficient and that it is more suitable for solving the bi-level problem than a previous Nash-Genetic approach. PMID:26102502

  10. Prediction of road traffic death rate using neural networks optimised by genetic algorithm.

    PubMed

    Jafari, Seyed Ali; Jahandideh, Sepideh; Jahandideh, Mina; Asadabadi, Ebrahim Barzegari

    2015-01-01

    Road traffic injuries (RTIs) are realised as a main cause of public health problems at global, regional and national levels. Therefore, prediction of road traffic death rate will be helpful in its management. Based on this fact, we used an artificial neural network model optimised through Genetic algorithm to predict mortality. In this study, a five-fold cross-validation procedure on a data set containing total of 178 countries was used to verify the performance of models. The best-fit model was selected according to the root mean square errors (RMSE). Genetic algorithm, as a powerful model which has not been introduced in prediction of mortality to this extent in previous studies, showed high performance. The lowest RMSE obtained was 0.0808. Such satisfactory results could be attributed to the use of Genetic algorithm as a powerful optimiser which selects the best input feature set to be fed into the neural networks. Seven factors have been known as the most effective factors on the road traffic mortality rate by high accuracy. The gained results displayed that our model is very promising and may play a useful role in developing a better method for assessing the influence of road traffic mortality risk factors. PMID:24304230

  11. Algorithmic chemistry

    SciTech Connect

    Fontana, W.

    1990-12-13

    In this paper complex adaptive systems are defined by a self- referential loop in which objects encode functions that act back on these objects. A model for this loop is presented. It uses a simple recursive formal language, derived from the lambda-calculus, to provide a semantics that maps character strings into functions that manipulate symbols on strings. The interaction between two functions, or algorithms, is defined naturally within the language through function composition, and results in the production of a new function. An iterated map acting on sets of functions and a corresponding graph representation are defined. Their properties are useful to discuss the behavior of a fixed size ensemble of randomly interacting functions. This function gas'', or Turning gas'', is studied under various conditions, and evolves cooperative interaction patterns of considerable intricacy. These patterns adapt under the influence of perturbations consisting in the addition of new random functions to the system. Different organizations emerge depending on the availability of self-replicators.

  12. Genetic algorithms applied to the scheduling of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Sponsler, Jeffrey L.

    1989-01-01

    A prototype system employing a genetic algorithm (GA) has been developed to support the scheduling of the Hubble Space Telescope. A non-standard knowledge structure is used and appropriate genetic operators have been created. Several different crossover styles (random point selection, evolving points, and smart point selection) are tested and the best GA is compared with a neural network (NN) based optimizer. The smart crossover operator produces the best results and the GA system is able to evolve complete schedules using it. The GA is not as time-efficient as the NN system and the NN solutions tend to be better.

  13. Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime R.

    2003-01-01

    NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.

  14. Detection of early warning signals in paleoclimate data using a genetic time series segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Nikolaou, Athanasia; Gutiérrez, Pedro Antonio; Durán, Antonio; Dicaire, Isabelle; Fernández-Navarro, Francisco; Hervás-Martínez, César

    2015-04-01

    This paper proposes a time series segmentation algorithm combining a clustering technique and a genetic algorithm to automatically find segments sharing common statistical characteristics in paleoclimate time series. The segments are transformed into a six-dimensional space composed of six statistical measures, most of which have been previously considered in the detection of warning signals of critical transitions. Experimental results show that the proposed approach applied to paleoclimate data could effectively analyse Dansgaard-Oeschger (DO) events and uncover commonalities and differences in their statistical and possibly their dynamical characterisation. In particular, warning signals were robustly detected in the GISP2 and NGRIP ice core data for several DO events (e.g. DO 1, 4, 8 and 12) in the form of an order of magnitude increase in variance, autocorrelation and mean square distance from a linear approximation (i.e. the mean square error). The increase in mean square error, suggesting nonlinear behaviour, has been found to correspond with an increase in variance prior to several DO events for 90 % of the algorithm runs for the GISP2 dataset and for 100 % of the algorithm runs for the NGRIP dataset. The proposed approach applied to well-known dynamical systems and paleoclimate datasets provides a novel visualisation tool in the field of climate time series analysis.

  15. In search of preferential flow paths in structured porous media using a simple genetic algorithm

    NASA Astrophysics Data System (ADS)

    Gwo, Jin-Ping

    2001-06-01

    Fracture network and preferential flow path images from exposed outcrops of geological formations, exposed soil pedon faces, and extracted soil columns and rock cores are often used to conceptualize and construct models to predict the fate and transport of subsurface contaminants. Both the scale resolutions inherent in these observations and the upscaling methods used to obtain macroscopic flow and transport parameters may result in uncertainties in the prediction. We present a mechanistic-based approach that utilizes a discrete fracture flow and transport model, a distributed and high performance computational architecture, and a genetic-based search algorithm to invert scale- representative, equivalent fracture networks or the preferential flow paths. Synthetic breakthrough curves (BTCs) and exposed structural information from known fracture networks in hypothetical soil columns are presented to the search algorithm. Using three genetic operators, a simple genetic algorithm (SGA) is able to invert the correct pictures of simple but not complex fracture networks. Solute transport experiments using soil columns often assume that the structure of soil columns is laterally uniform with respect to the macroscopic transport direction and the transport process is longitudinally one- dimensional. This assumption and the one BTC thus collected for each injection of solutes, even with flow interruptions, are not sufficient to guide the search algorithm toward the global optimum. Additional information (e.g., multiple solute BTCs along a cross section of the soil column) is necessary for the SGA to invert the correct fracture network. Three SGA population statistics, fracture network uncertainty, informatic entropy, and matrix-fracture contact area, are proposed to measure the uncertainty of SGA near optima. A positive correlation between the reduction of these statistics and the level of relevant information to better confine the SGA search space was found. The SGA search algorithm is then applied to a laboratory solute transport problem. Multiple scenarios of search constraints, derived from visually traced surface features, are examined. The hypothesis that variation in fracture aperture may reduce the uncertainty of SGA near optima is also tested. The results from these applications suggest that there is a certain degree of uncertainty regarding the flowing nature of the exposed fracture segments that are visually traced. The uncertainty of SGA near optima is not improved by incorporating fracture aperture information into the fracture networks. Breakthrough curves thus calculated have marginal improvement, relative to the uniform aperture SGA near optima, in fitting the observations. The lack of improvement may be caused by the relative uniform structure of the soil and the scale of the problem. It is further suggested that in applying the search algorithm to laboratory and field problems, one explores only the search scenarios that relevant information and search constraints may warrant.

  16. An algorithm for genetic testing of Serbian patients with demyelinating Charcot-Marie-Tooth.

    PubMed

    Keckarevic Markovic, Milica P; Dackovic, Jelena; Mladenovic, Jelena; Milic-Rasic, Vedrana; Kecmanovic, Miljana; Keckarevic, Dusan; Romac, Stanka

    2013-01-01

    Charcot-Marie Tooth (CMT) is a clinically and genetically heterogeneous group of diseases with rough genotype-phenotype correlation, so the final diagnosis requires extensive clinical and electrophysiological examination, family data, and gene mutation analysis. Although there is a common pattern of genetic basis of CMT, there could be some population differences that should be taken into account to facilitate analyses. Here we present the algorithm for genetic testing in Serbian patients with demyelinating CMT, based on their genetic specificities: in cases of no PMP22 duplication, and if -X-linked CMT (CMTX) is not contraindicated by pattern of inheritance (male-to-male transmission), one should test for c.94A>G GJB founder mutation, first. Also, when a patient is of Romani ethnicity, or if there is an autosomal recessive inheritance in a family and unclear ethnicity, c.442C>T mutation in NDRG1 should be tested. PMID:23163601

  17. An Algorithm for Genetic Testing of Serbian Patients with Demyelinating Charcot-Marie-Tooth

    PubMed Central

    Dackovic, Jelena; Mladenovic, Jelena; Milic-Rasic, Vedrana; Kecmanovic, Miljana; Keckarevic, Dusan; Romac, Stanka

    2013-01-01

    Charcot-Marie Tooth (CMT) is a clinically and genetically heterogeneous group of diseases with rough genotype–phenotype correlation, so the final diagnosis requires extensive clinical and electrophysiological examination, family data, and gene mutation analysis. Although there is a common pattern of genetic basis of CMT, there could be some population differences that should be taken into account to facilitate analyses. Here we present the algorithm for genetic testing in Serbian patients with demyelinating CMT, based on their genetic specificities: in cases of no PMP22 duplication, and if -X-linked CMT (CMTX) is not contraindicated by pattern of inheritance (male-to-male transmission), one should test for c.94A>G GJB founder mutation, first. Also, when a patient is of Romani ethnicity, or if there is an autosomal recessive inheritance in a family and unclear ethnicity, c.442C>T mutation in NDRG1 should be tested. PMID:23163601

  18. Multicycle Optimization of Advanced Gas-Cooled Reactor Loading Patterns Using Genetic Algorithms

    SciTech Connect

    Ziver, A. Kemal; Carter, Jonathan N.; Pain, Christopher C.; Oliveira, Cassiano R.E. de; Goddard, Antony J. H.; Overton, Richard S.

    2003-02-15

    A genetic algorithm (GA)-based optimizer (GAOPT) has been developed for in-core fuel management of advanced gas-cooled reactors (AGRs) at HINKLEY B and HARTLEPOOL, which employ on-load and off-load refueling, respectively. The optimizer has been linked to the reactor analysis code PANTHER for the automated evaluation of loading patterns in a two-dimensional geometry, which is collapsed from the three-dimensional reactor model. GAOPT uses a directed stochastic (Monte Carlo) algorithm to generate initial population members, within predetermined constraints, for use in GAs, which apply the standard genetic operators: selection by tournament, crossover, and mutation. The GAOPT is able to generate and optimize loading patterns for successive reactor cycles (multicycle) within acceptable CPU times even on single-processor systems. The algorithm allows radial shuffling of fuel assemblies in a multicycle refueling optimization, which is constructed to aid long-term core management planning decisions. This paper presents the application of the GA-based optimization to two AGR stations, which apply different in-core management operational rules. Results obtained from the testing of GAOPT are discussed.

  19. Performance Enhancement of Embedded System Based Multilevel Inverter Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Perumal, Maruthu Pandi; Nanjudapan, Devarajan

    2011-07-01

    This paper presents an optimal solution for eliminating pre specified order of harmonics from a stepped waveform of a multilevel inverter topology with equal dc sources. The main challenge of solving the associated non linear equation which are transcendental in nature and therefore have multiple solutions is the convergence of the relevant algorithms and therefore an initial point selected considerably close to the exact solution is required. The paper describes an efficient genetic algorithm that reduces significantly the computational burden resulting in fast convergence. An objective function describing a measure of effectiveness of eliminating selected order of harmonics while controlling the fundamental component is derived. The performance of cascaded multilevel inverter is compared based on computation of switching angle using Genetic Algorithm as well as conventional Newton Raphson approach. A significant improvement in harmonic profile is achieved in the GA based approach. A nine level cascaded multi level inverter is simulated in MATLAB Simulink and a proto type model has been fabricated to validate the simulation results.

  20. A Niching Genetic Algorithm For Milne-Eddington Spectral Line Inversions

    NASA Astrophysics Data System (ADS)

    Harker, Brian; Balasubramaniam, K.; Sojka, Jan

    2006-10-01

    Stokes profile inversions form a basis for ``measuring'' solar magnetic fields. The High Altitude Observatory (HAO) Milne-Eddington (M-E) spectral line inversions have traditionally been used as initializations to more sophisticated inversion procedures. One such code uses a genetic-algorithm initialization to search the parameter space on a more global scale, in an effort to obtain a good starting guess for a more traditional hill-climbing (e.g. Levenberg-Marquardt) algorithm. A serious drawback to the type of genetic algorithm used is that it has been shown to perform poorly on high-dimensional spaces with multiple optima. A single-component M-E model atmosphere is typically described by about 7 free parameters, indicating a fairly high parameter space dimensionality. Two-component models increase the ability to fit frequently-observed asymmetric spectral lines, at the price of nearly doubling the dimension of the parameter space. Furthermore, spectral lines for large magnetic field strengths and large inclinations are very similar to profiles for weaker field strengths and small inclinations, indicating the potential presence of multiple optima that correspond to very different physical conditions. This poster presents an initial investigation into alleviating these difficulties by incorporating a more sophisticated evolutionary strategy into the SGA, and parallelizing over multiple processors.