NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steven E.
1991-01-01
Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.
Genetic Algorithms and Local Search
NASA Technical Reports Server (NTRS)
Whitley, Darrell
1996-01-01
The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.
Messy genetic algorithms: Recent developments
Kargupta, H.
1996-09-01
Messy genetic algorithms define a rare class of algorithms that realize the need for detecting appropriate relations among members of the search domain in optimization. This paper reviews earlier works in messy genetic algorithms and describes some recent developments. It also describes the gene expression messy GA (GEMGA)--an {Omicron}({Lambda}{sup {kappa}}({ell}{sup 2} + {kappa})) sample complexity algorithm for the class of order-{kappa} delineable problems (problems that can be solved by considering no higher than order-{kappa} relations) of size {ell} and alphabet size {Lambda}. Experimental results are presented to demonstrate the scalability of the GEMGA.
Scheduling with genetic algorithms
NASA Technical Reports Server (NTRS)
Fennel, Theron R.; Underbrink, A. J., Jr.; Williams, George P. W., Jr.
1994-01-01
In many domains, scheduling a sequence of jobs is an important function contributing to the overall efficiency of the operation. At Boeing, we develop schedules for many different domains, including assembly of military and commercial aircraft, weapons systems, and space vehicles. Boeing is under contract to develop scheduling systems for the Space Station Payload Planning System (PPS) and Payload Operations and Integration Center (POIC). These applications require that we respect certain sequencing restrictions among the jobs to be scheduled while at the same time assigning resources to the jobs. We call this general problem scheduling and resource allocation. Genetic algorithms (GA's) offer a search method that uses a population of solutions and benefits from intrinsic parallelism to search the problem space rapidly, producing near-optimal solutions. Good intermediate solutions are probabalistically recombined to produce better offspring (based upon some application specific measure of solution fitness, e.g., minimum flowtime, or schedule completeness). Also, at any point in the search, any intermediate solution can be accepted as a final solution; allowing the search to proceed longer usually produces a better solution while terminating the search at virtually any time may yield an acceptable solution. Many processes are constrained by restrictions of sequence among the individual jobs. For a specific job, other jobs must be completed beforehand. While there are obviously many other constraints on processes, it is these on which we focussed for this research: how to allocate crews to jobs while satisfying job precedence requirements and personnel, and tooling and fixture (or, more generally, resource) requirements.
NASA Technical Reports Server (NTRS)
1975-01-01
The implementation of the algorithms used in the flight program to approximate elementary functions and mathematical procedures was checked. This was done by verifying that at least one, and in most cases, more than one function computed through the use of the algorithms was calculated properly. The following algorithms were checked: sine-cosine, arctangent, natural logarithm, square root, inverse square root, as well as the vector dot and cross products.
Deceptiveness and genetic algorithm dynamics
Liepins, G.E. ); Vose, M.D. )
1990-01-01
We address deceptiveness, one of at least four reasons genetic algorithms can fail to converge to function optima. We construct fully deceptive functions and other functions of intermediate deceptiveness. For the fully deceptive functions of our construction, we generate linear transformations that induce changes of representation to render the functions fully easy. We further model genetic algorithm selection recombination as the interleaving of linear and quadratic operators. Spectral analysis of the underlying matrices allows us to draw preliminary conclusions about fixed points and their stability. We also obtain an explicit formula relating the nonuniform Walsh transform to the dynamics of genetic search. 21 refs.
Genetic Algorithm for Optimization: Preprocessor and Algorithm
NASA Technical Reports Server (NTRS)
Sen, S. K.; Shaykhian, Gholam A.
2006-01-01
Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.
Simultaneous stabilization using genetic algorithms
Benson, R.W.; Schmitendorf, W.E. . Dept. of Mechanical Engineering)
1991-01-01
This paper considers the problem of simultaneously stabilizing a set of plants using full state feedback. The problem is converted to a simple optimization problem which is solved by a genetic algorithm. Several examples demonstrate the utility of this method. 14 refs., 8 figs.
Problem solving with genetic algorithms and Splicer
NASA Technical Reports Server (NTRS)
Bayer, Steven E.; Wang, Lui
1991-01-01
Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.
Learning Intelligent Genetic Algorithms Using Japanese Nonograms
ERIC Educational Resources Information Center
Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen
2012-01-01
An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…
New Results in Astrodynamics Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Coverstone-Carroll, V.; Hartmann, J. W.; Williams, S. N.; Mason, W. J.
1998-01-01
Generic algorithms have gained popularity as an effective procedure for obtaining solutions to traditionally difficult space mission optimization problems. In this paper, a brief survey of the use of genetic algorithms to solve astrodynamics problems is presented and is followed by new results obtained from applying a Pareto genetic algorithm to the optimization of low-thrust interplanetary spacecraft missions.
Cognitive Radio — Genetic Algorithm Approach
NASA Astrophysics Data System (ADS)
Reddy, Y. B.
2005-03-01
Cognitive Radio (CR) is relatively a new technology, which intelligently detects a particular segment of the radio spectrum currently in use and selects unused spectrum quickly without interfering the transmission of authorized users. Cognitive Radios can learn about current use of spectrum in their operating area, make intelligent decisions, and react to immediate changes in the use of spectrum by other authorized users. The goal of CR technology is to relieve radio spectrum overcrowding, which actually translates to a lack of access to full radio spectrum utilization. Due to this adaptive behavior, the CR can easily avoid the interference of signals in a crowded radio frequency spectrum. In this research, we discuss the possible application of genetic algorithms (GA) to create a CR that can respond intelligently in changing and unanticipated circumstances and in the presence of hostile jammers and interferers. Genetic algorithms are problem solving techniques based on evolution and natural selection. GA models adapt Charles Darwin's evolutionary theory for analysis of data and interchanging design elements in hundreds of thousands of different combinations. Only the best-performing combinations are permitted to survive, and those combinations "reproduce" further, progressively yielding better and better results.
Excursion-Set-Mediated Genetic Algorithm
NASA Technical Reports Server (NTRS)
Noever, David; Baskaran, Subbiah
1995-01-01
Excursion-set-mediated genetic algorithm (ESMGA) is embodiment of method of searching for and optimizing computerized mathematical models. Incorporates powerful search and optimization techniques based on concepts analogous to natural selection and laws of genetics. In comparison with other genetic algorithms, this one achieves stronger condition for implicit parallelism. Includes three stages of operations in each cycle, analogous to biological generation.
Genetic algorithms for route discovery.
Gelenbe, Erol; Liu, Peixiang; Lainé, Jeremy
2006-12-01
Packet routing in networks requires knowledge about available paths, which can be either acquired dynamically while the traffic is being forwarded, or statically (in advance) based on prior information of a network's topology. This paper describes an experimental investigation of path discovery using genetic algorithms (GAs). We start with the quality-of-service (QoS)-driven routing protocol called "cognitive packet network" (CPN), which uses smart packets (SPs) to dynamically select routes in a distributed autonomic manner based on a user's QoS requirements. We extend it by introducing a GA at the source routers, which modifies and filters the paths discovered by the CPN. The GA can combine the paths that were previously discovered to create new untested but valid source-to-destination paths, which are then selected on the basis of their "fitness." We present an implementation of this approach, where the GA runs in background mode so as not to overload the ingress routers. Measurements conducted on a network test bed indicate that when the background-traffic load of the network is light to medium, the GA can result in improved QoS. When the background-traffic load is high, it appears that the use of the GA may be detrimental to the QoS experienced by users as compared to CPN routing because the GA uses less timely state information in its decision making. PMID:17186801
Genetic algorithms and the immune system
Forrest, S. . Dept. of Computer Science); Perelson, A.S. )
1990-01-01
Using genetic algorithm techniques we introduce a model to examine the hypothesis that antibody and T cell receptor genes evolved so as to encode the information needed to recognize schemas that characterize common pathogens. We have implemented the algorithm on the Connection Machine for 16,384 64-bit antigens and 512 64-bit antibodies. 8 refs.
Genetic algorithms at UC Davis/LLNL
Vemuri, V.R.
1993-12-31
A tutorial introduction to genetic algorithms is given. This brief tutorial should serve the purpose of introducing the subject to the novice. The tutorial is followed by a brief commentary on the term project reports that follow.
Adaptive sensor fusion using genetic algorithms
Fitzgerald, D.S.; Adams, D.G.
1994-08-01
Past attempts at sensor fusion have used some form of Boolean logic to combine the sensor information. As an alteniative, an adaptive ``fuzzy`` sensor fusion technique is described in this paper. This technique exploits the robust capabilities of fuzzy logic in the decision process as well as the optimization features of the genetic algorithm. This paper presents a brief background on fuzzy logic and genetic algorithms and how they are used in an online implementation of adaptive sensor fusion.
Genetic algorithm for disassembly strategy definition
NASA Astrophysics Data System (ADS)
Caccia, Claudio; Pozzetti, Alessandro
2001-02-01
The paper presents the application of a genetic algorithm to determine strategies for disassembly of products that have reached the end of their life. First, a general outline of the proposed methodology is provided and the features and specific properties of the genetic algorithm are described. Then an analysis of the algorithm's behaviour is carried out based on different problems. Once product structure is acquired, feasible disassembly alternatives may be determined; the domain of solutions may then be analysed through the genetic algorithm. First of all, a 'population' of acceptable solutions is randomly generated; then these solutions are estimated based on the criteria of the highest recovery value and the minimisation of discharged parts: genetic mutation and crossover operators are applied to the current population in order to generate a new population as a substitute to the previous one. Some cycles are made estimating, each time, the goodness of each individual solution and its probability to 'reproduce' itself. At the end, the best-rated alternative becomes the solution of the algorithm. The solution of the algorithm is compared to the one provided by a 'best-first' algorithm (providing the optimal solution), for different types of products. In the paper, the efficacy of the proposed methodology is analysed, in terms of type of solution and computation time.
Genetic algorithms as global random search methods
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that that schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solution and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
Genetic algorithms as global random search methods
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
Genetic algorithm solution for double digest problem.
Ganjtabesh, Mohammad; Ahrabian, H; Nowzari-Dalini, A; Kashani Moghadam, Z Razaghi
2012-01-01
The strongly NP-Hard Double Digest Problem, for reconstructing the physical map of DNA sequence, in now using for efficient genotyping. Most of the existing methods are inefficient in tackling large instances due to the large search space for the problem which grows as a factorial function (a!)(b!) of the numbers a and b of the DNA fragments generated by the two restriction enzymes. Also, none of the existing methods are able to handle the erroneous data. In this paper, we develop a novel method based on genetic algorithm for solving this problem and it is adapted to handle the erroneous data. Our genetic algorithm is implemented and compared with the other well-known existing algorithms. The obtained results show the efficiency (speedup) of our algorithm with respect to the other methods, specially for erroneous data. PMID:22715298
Forecasting chaotic time series with genetic algorithms
NASA Astrophysics Data System (ADS)
Szpiro, George G.
1997-03-01
This paper proposes the use of genetic algorithms-search procedures, modeled on the Darwinian theories of natural selection and survival of the fittest-to find equations that describe the behavior of a time series. The method permits global forecasts of such series. Very little data are sufficient to utilize the method and, as a byproduct, these algorithms sometimes indicate the functional form of the dynamic that underlies the data. The algorithms are tested with clean as well as with noisy chaotic data, and with the sunspot series.
Combinatorial Multiobjective Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Crossley, William A.; Martin. Eric T.
2002-01-01
The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.
The Applications of Genetic Algorithms in Medicine
Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin
2015-01-01
A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.] PMID:26676060
Genetic Algorithm Approaches for Actuator Placement
NASA Technical Reports Server (NTRS)
Crossley, William A.
2000-01-01
This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.
An investigation of messy genetic algorithms
NASA Technical Reports Server (NTRS)
Goldberg, David E.; Deb, Kalyanmoy; Korb, Bradley
1990-01-01
Genetic algorithms (GAs) are search procedures based on the mechanics of natural selection and natural genetics. They combine the use of string codings or artificial chromosomes and populations with the selective and juxtapositional power of reproduction and recombination to motivate a surprisingly powerful search heuristic in many problems. Despite their empirical success, there has been a long standing objection to the use of GAs in arbitrarily difficult problems. A new approach was launched. Results to a 30-bit, order-three-deception problem were obtained using a new type of genetic algorithm called a messy genetic algorithm (mGAs). Messy genetic algorithms combine the use of variable-length strings, a two-phase selection scheme, and messy genetic operators to effect a solution to the fixed-coding problem of standard simple GAs. The results of the study of mGAs in problems with nonuniform subfunction scale and size are presented. The mGA approach is summarized, both its operation and the theory of its use. Experiments on problems of varying scale, varying building-block size, and combined varying scale and size are presented.
Applying a Genetic Algorithm to Reconfigurable Hardware
NASA Technical Reports Server (NTRS)
Wells, B. Earl; Weir, John; Trevino, Luis; Patrick, Clint; Steincamp, Jim
2004-01-01
This paper investigates the feasibility of applying genetic algorithms to solve optimization problems that are implemented entirely in reconfgurable hardware. The paper highlights the pe$ormance/design space trade-offs that must be understood to effectively implement a standard genetic algorithm within a modem Field Programmable Gate Array, FPGA, reconfgurable hardware environment and presents a case-study where this stochastic search technique is applied to standard test-case problems taken from the technical literature. In this research, the targeted FPGA-based platform and high-level design environment was the Starbridge Hypercomputing platform, which incorporates multiple Xilinx Virtex II FPGAs, and the Viva TM graphical hardware description language.
Equilibrium stellar systems with genetic algorithms
NASA Astrophysics Data System (ADS)
Gularte, E.; Carpintero, D. D.
In 1979, M Schwarzschild showed that it is possible to build an equilibrium triaxial stellar system. However, the linear programmation used to that goal was not able to determine the uniqueness of the solution, nor even if that solution was the optimum one. Genetic algorithms are ideal tools to find a solution to this problem. In this work, we use a genetic algorithm to reproduce an equilibrium spherical stellar system from a suitable set of predefined orbits, obtaining the best solution attainable with the provided set. FULL TEXT IN SPANISH
Predicting complex mineral structures using genetic algorithms
NASA Astrophysics Data System (ADS)
Mohn, Chris E.; Kob, Walter
2015-10-01
We show that symmetry-adapted genetic algorithms are capable of finding the ground state of a range of complex crystalline phases including layered- and incommensurate super-structures. This opens the way for the atomistic prediction of complex crystal structures of functional materials and mineral phases.
MULTIOBJECTIVE PARALLEL GENETIC ALGORITHM FOR WASTE MINIMIZATION
In this research we have developed an efficient multiobjective parallel genetic algorithm (MOPGA) for waste minimization problems. This MOPGA integrates PGAPack (Levine, 1996) and NSGA-II (Deb, 2000) with novel modifications. PGAPack is a master-slave parallel implementation of a...
Dynamic causal modeling with genetic algorithms.
Pyka, M; Heider, D; Hauke, S; Kircher, T; Jansen, A
2011-01-15
In the last years, dynamic causal modeling has gained increased popularity in the neuroimaging community as an approach for the estimation of effective connectivity from functional magnetic resonance imaging (fMRI) data. The algorithm calls for an a priori defined model, whose parameter estimates are subsequently computed upon the given data. As the number of possible models increases exponentially with additional areas, it rapidly becomes inefficient to compute parameter estimates for all models in order to reveal the family of models with the highest posterior probability. In the present study, we developed a genetic algorithm for dynamic causal models and investigated whether this evolutionary approach can accelerate the model search. In this context, the configuration of the intrinsic, extrinsic and bilinear connection matrices represents the genetic code and Bayesian model selection serves as a fitness function. Using crossover and mutation, populations of models are created and compared with each other. The most probable ones survive the current generation and serve as a source for the next generation of models. Tests with artificially created data sets show that the genetic algorithm approximates the most plausible models faster than a random-driven brute-force search. The fitness landscape revealed by the genetic algorithm indicates that dynamic causal modeling has excellent properties for evolution-driven optimization techniques. PMID:21094663
Genetic Algorithms for Multiple-Choice Problems
NASA Astrophysics Data System (ADS)
Aickelin, Uwe
2010-04-01
This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems.It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.Two multiple-choice problems are considered.The first is constructing a feasible nurse roster that considers as many requests as possible.In the second problem, shops are allocated to locations in a mall subject to constraints and maximising the overall income.Genetic algorithms are chosen for their well-known robustness and ability to solve large and complex discrete optimisation problems.However, a survey of the literature reveals room for further research into generic ways to include constraints into a genetic algorithm framework.Hence, the main theme of this work is to balance feasibility and cost of solutions.In particular, co-operative co-evolution with hierarchical sub-populations, problem structure exploiting repair schemes and indirect genetic algorithms with self-adjusting decoder functions are identified as promising approaches.The research starts by applying standard genetic algorithms to the problems and explaining the failure of such approaches due to epistasis.To overcome this, problem-specific information is added in a variety of ways, some of which are designed to increase the number of feasible solutions found whilst others are intended to improve the quality of such solutions.As well as a theoretical discussion as to the underlying reasons for using each operator,extensive computational experiments are carried out on a variety of data.These show that the indirect approach relies less on problem structure and hence is easier to implement and superior in solution quality.
Production scheduling and rescheduling with genetic algorithms.
Bierwirth, C; Mattfeld, D C
1999-01-01
A general model for job shop scheduling is described which applies to static, dynamic and non-deterministic production environments. Next, a Genetic Algorithm is presented which solves the job shop scheduling problem. This algorithm is tested in a dynamic environment under different workload situations. Thereby, a highly efficient decoding procedure is proposed which strongly improves the quality of schedules. Finally, this technique is tested for scheduling and rescheduling in a non-deterministic environment. It is shown by experiment that conventional methods of production control are clearly outperformed at reasonable run-time costs. PMID:10199993
Genetic algorithm optimization of atomic clusters
Morris, J.R.; Deaven, D.M.; Ho, K.M.; Wang, C.Z.; Pan, B.C.; Wacker, J.G.; Turner, D.E. |
1996-12-31
The authors have been using genetic algorithms to study the structures of atomic clusters and related problems. This is a problem where local minima are easy to locate, but barriers between the many minima are large, and the number of minima prohibit a systematic search. They use a novel mating algorithm that preserves some of the geometrical relationship between atoms, in order to ensure that the resultant structures are likely to inherit the best features of the parent clusters. Using this approach, they have been able to find lower energy structures than had been previously obtained. Most recently, they have been able to turn around the building block idea, using optimized structures from the GA to learn about systematic structural trends. They believe that an effective GA can help provide such heuristic information, and (conversely) that such information can be introduced back into the algorithm to assist in the search process.
Quantum-Inspired Genetic Algorithm or Quantum Genetic Algorithm: Which Is It?
NASA Astrophysics Data System (ADS)
Jones, Erika
2015-04-01
Our everyday work focuses on genetic algorithms (GAs) related to quantum computing where we call ``related'' algorithms those falling into one of two classes: (1) GAs run on classical computers but making use of quantum mechanical (QM) constructs and (2) GAs run on quantum hardware. Though convention has yet to be set with respect to usage of the accepted terms quantum-inspired genetic algorithm (QIGA) and quantum genetic algorithm (QGA), we find the two terms highly suitable respectively as labels for the aforementioned classes. With these specific definitions in mind, the difference between the QIGA and QGA is greater than might first be appreciated, particularly by those coming from a perspective emphasizing GA use as a general computational tool irrespective of QM aspects (1) suggested by QIGAs and (2) inherent in QGAs. We offer a theoretical standpoint highlighting key differences-both obvious, and more significantly, subtle-to be considered in general design of a QIGA versus that of a QGA.
Genetic algorithms for minimal source reconstructions
Lewis, P.S.; Mosher, J.C.
1993-12-01
Under-determined linear inverse problems arise in applications in which signals must be estimated from insufficient data. In these problems the number of potentially active sources is greater than the number of observations. In many situations, it is desirable to find a minimal source solution. This can be accomplished by minimizing a cost function that accounts from both the compatibility of the solution with the observations and for its ``sparseness``. Minimizing functions of this form can be a difficult optimization problem. Genetic algorithms are a relatively new and robust approach to the solution of difficult optimization problems, providing a global framework that is not dependent on local continuity or on explicit starting values. In this paper, the authors describe the use of genetic algorithms to find minimal source solutions, using as an example a simulation inspired by the reconstruction of neural currents in the human brain from magnetoencephalographic (MEG) measurements.
Application of Genetic Algorithms in Seismic Tomography
NASA Astrophysics Data System (ADS)
Soupios, Pantelis; Akca, Irfan; Mpogiatzis, Petros; Basokur, Ahmet; Papazachos, Constantinos
2010-05-01
In the earth sciences several inverse problems that require data fitting and parameter estimation are nonlinear and can involve a large number of unknown parameters. Consequently, the application of analytical inversion or optimization techniques may be quite restrictive. In practice, most analytical methods are local in nature and rely on a linearized form of the problem in question, adopting an iterative procedure using partial derivatives to improve an initial model. This approach can lead to a dependence of the final model solution on the starting model and is prone to entrapment in local misfit minima. Moreover, the calculation of derivatives can be computationally inefficient and create instabilities when numerical approximations are used. In contrast to these local minimization methods, global techniques that do not rely on partial derivatives, are independent of the form of the data misfit criterion, and are computationally robust. Such methods often use random processes to sample a selected wider span of the model space. In this situation, randomly generated models are assessed in terms of their data-fitting quality and the process may be stopped after a certain number of acceptable models is identified or continued until a satisfactory data fit is achieved. A new class of methods known as genetic algorithms achieves the aforementioned approximation through novel model representation and manipulations. Genetic algorithms (GAs) were originally developed in the field of artificial intelligence by John Holland more than 20 years ago, but even in this field it is less than a decade that the methodology has been more generally applied and only recently did the methodology attract the attention of the earth sciences community. Applications have been generally concentrated in geophysics and in particular seismology. As awareness of genetic algorithms grows there surely will be many more and varied applications to earth science problems. In the present work, the application of hybrid genetic algorithms in seismic tomography is examined and the efficiency of least squares and genetic methods as representative of the local and global optimization, respectively, is presented and evaluated. The robustness of both optimization methods has been tested and compared for the same source-receiver geometry and characteristics of the model structure (anomalies, etc.). A set of seismic refraction synthetic (noise free) data was used for modeling. Specifically, cross-well, down-hole and typical refraction studies using 24 geophones and 5 shoots were used to confirm the applicability of the genetic algorithms in seismic tomography. To solve the forward modeling and estimate the traveltimes, the revisited ray bending method was used supplemented by an approximate computation of the first Fresnel volume. The root mean square (rms) error as the misfit function was used and calculated for the entire random velocity model for each generation. After the end of each generation and based on the misfit of the individuals (velocity models), the selection, crossover and mutation (typical process steps of genetic algorithms) were selected continuing the evolution theory and coding the new generation. To optimize the computation time, since the whole procedure is quite time consuming, the Matlab Distributed Computing Environment (MDCE) was used in a multicore engine. During the tests, we noticed that the fast convergence that the algorithm initially exhibits (first 5 generations) is followed by progressively slower improvements of the reconstructed velocity models. Thus, to improve the final tomographic models, a hybrid genetic algorithm (GA) approach was adopted by combining the GAs with a local optimization method after several generations, on the basis of the convergence of the resulting models. This approach is shown to be efficient, as it directs the solution search towards a model region close to the global minimum solution.
Genetic algorithms in adaptive fuzzy control
NASA Technical Reports Server (NTRS)
Karr, C. Lucas; Harper, Tony R.
1992-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.
Predicting mining activity with parallel genetic algorithms
Talaie, S.; Leigh, R.; Louis, S.J.; Raines, G.L.
2005-01-01
We explore several different techniques in our quest to improve the overall model performance of a genetic algorithm calibrated probabilistic cellular automata. We use the Kappa statistic to measure correlation between ground truth data and data predicted by the model. Within the genetic algorithm, we introduce a new evaluation function sensitive to spatial correctness and we explore the idea of evolving different rule parameters for different subregions of the land. We reduce the time required to run a simulation from 6 hours to 10 minutes by parallelizing the code and employing a 10-node cluster. Our empirical results suggest that using the spatially sensitive evaluation function does indeed improve the performance of the model and our preliminary results also show that evolving different rule parameters for different regions tends to improve overall model performance. Copyright 2005 ACM.
Fashion sketch design by interactive genetic algorithms
NASA Astrophysics Data System (ADS)
Mok, P. Y.; Wang, X. X.; Xu, J.; Kwok, Y. L.
2012-11-01
Computer aided design is vitally important for the modern industry, particularly for the creative industry. Fashion industry faced intensive challenges to shorten the product development process. In this paper, a methodology is proposed for sketch design based on interactive genetic algorithms. The sketch design system consists of a sketch design model, a database and a multi-stage sketch design engine. First, a sketch design model is developed based on the knowledge of fashion design to describe fashion product characteristics by using parameters. Second, a database is built based on the proposed sketch design model to define general style elements. Third, a multi-stage sketch design engine is used to construct the design. Moreover, an interactive genetic algorithm (IGA) is used to accelerate the sketch design process. The experimental results have demonstrated that the proposed method is effective in helping laypersons achieve satisfied fashion design sketches.
A hybrid genetic algorithm for resolving closely spaced objects
NASA Technical Reports Server (NTRS)
Abbott, R. J.; Lillo, W. E.; Schulenburg, N.
1995-01-01
A hybrid genetic algorithm is described for performing the difficult optimization task of resolving closely spaced objects appearing in space based and ground based surveillance data. This application of genetic algorithms is unusual in that it uses a powerful domain-specific operation as a genetic operator. Results of applying the algorithm to real data from telescopic observations of a star field are presented.
Optical Constants Determined by Genetic Algorithms
NASA Astrophysics Data System (ADS)
Smith, David Y.; Karstens, William; Malghani, Shaheen M.
2005-03-01
A recent determination^a of the complex refractive index, n(?) + i ?(?), of porous silicon employed a genetic^b algorithm to fit the Fresnel equations to reflectance spectra. The procedure appeared to involve more unknowns than explicit equations available for fitting, an indeterminate problem. However, the index values obtained were reasonable, and predicted the properties of porous-silicon multilayes. We have traced this success to the interpolation formulas used for n and ? in the fitting algorithm. They amount to an implicit optical-constant model with the de facto assumption of an analytic complex index that can be approximated by a cubic polynomial. Our analysis suggests the procedure can be improved by explicitly using a more appropriate model, e.g., one that uses wave number as the expansion variable and requires that n and ? be even and odd functions of ?, respectively. ^a V. Torres-Costa, R. J. Mart'in-Palma, and J. M. Mart'inez-Duart, J. Appl. Phys. 96, 4197 (2004). ^b D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Reading, 1989).
Estimating Photometric Redshifts Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Miles, Nicholas; Freitas, Alex; Serjeant, Stephen
Photometry is used as a cheap and easy way to estimate redshifts of galaxies, which would otherwise require considerable amounts of expensive telescope time. However, the analysis of photometric redshift datasets is a task where it is sometimes difficultto achievea high classification accuracy. This work presents a custom Genetic Algorithm (GA) for mining the Hubble Deep Field North (HDF-N) datasets to achieve accurate IF-THEN classification rules. This kind of knowledge representation has the advantage of being intuitively comprehensible to the user, facilitating astronomers' interpretation of discovered knowledge. The GA is tested againstthe state of the art decision tree algorithm C5.0 [Rulequest, 2005] in two datasets, achieving better classification accuracy and simplerrule sets in both datasets.
Improved Genetic Algorithms to Fuzzy Bimatrix Game
NASA Astrophysics Data System (ADS)
Wang, Ruijiang; Jiang, Jia; Zhu, Xiaoxia
According to the features of fuzzy information, we put forward the concept of level effect function L(?), established a very practical and workable measurement method I L - which can quantify the location of fuzzy number intensively and globally, and set up the level of uncertainty for measurement I L - under the level effect function L(?). Thus we can improve the fuzzy bimatrix game. For this problem, after establishing the model involving fuzzy variable and fuzzy coefficient for each player, we introduced the theory of modern biological gene into equilibrium solution calculation of game, then designed the genetic algorithm model for solving Nash equilibrium solution of fuzzy bimatrix game and proved the validity of the algorithm by the examples of bimatrix game. It will lay a theoretical foundation for uncertain game under some consciousness and have strong maneuverability.
Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories
NASA Technical Reports Server (NTRS)
Burchett, Bradley T.
2003-01-01
The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.
Saving Resources with Plagues in Genetic Algorithms
de Vega, F F; Cantu-Paz, E; Lopez, J I; Manzano, T
2004-06-15
The population size of genetic algorithms (GAs) affects the quality of the solutions and the time required to find them. While progress has been made in estimating the population sizes required to reach a desired solution quality for certain problems, in practice the sizing of populations is still usually performed by trial and error. These trials might lead to find a population that is large enough to reach a satisfactory solution, but there may still be opportunities to optimize the computational cost by reducing the size of the population. This paper presents a technique called plague that periodically removes a number of individuals from the population as the GA executes. Recently, the usefulness of the plague has been demonstrated for genetic programming. The objective of this paper is to extend the study of plagues to genetic algorithms. We experiment with deceptive trap functions, a tunable difficult problem for GAs, and the experiments show that plagues can save computational time while maintaining solution quality and reliability.
Parallel Genetic Algorithm for Alpha Spectra Fitting
NASA Astrophysics Data System (ADS)
García-Orellana, Carlos J.; Rubio-Montero, Pilar; González-Velasco, Horacio
2005-01-01
We present a performance study of alpha-particle spectra fitting using parallel Genetic Algorithm (GA). The method uses a two-step approach. In the first step we run parallel GA to find an initial solution for the second step, in which we use Levenberg-Marquardt (LM) method for a precise final fit. GA is a high resources-demanding method, so we use a Beowulf cluster for parallel simulation. The relationship between simulation time (and parallel efficiency) and processors number is studied using several alpha spectra, with the aim of obtaining a method to estimate the optimal processors number that must be used in a simulation.
Dominant takeover regimes for genetic algorithms
NASA Technical Reports Server (NTRS)
Noever, David; Baskaran, Subbiah
1995-01-01
The genetic algorithm (GA) is a machine-based optimization routine which connects evolutionary learning to natural genetic laws. The present work addresses the problem of obtaining the dominant takeover regimes in the GA dynamics. Estimated GA run times are computed for slow and fast convergence in the limits of high and low fitness ratios. Using Euler's device for obtaining partial sums in closed forms, the result relaxes the previously held requirements for long time limits. Analytical solution reveal that appropriately accelerated regimes can mark the ascendancy of the most fit solution. In virtually all cases, the weak (logarithmic) dependence of convergence time on problem size demonstrates the potential for the GA to solve large N-P complete problems.
Application of genetic algorithm to steganalysis
NASA Astrophysics Data System (ADS)
Knapik, Timothy; Lo, Ephraim; Marsh, John A.
2006-05-01
We present a novel application of genetic algorithm (GA) to optimal feature set selection in supervised learning using support vector machine (SVM) for steganalysis. Steganalysis attempts to determine whether a cover object (in our case an image file) contains hidden information. This is a bivariate classification problem: the image either does or does not contain hidden data. Our SVM classifier uses a training set of images with known classification to "learn" how to classify images with unknown classification. The SVM uses a feature set, essentially a set of statistical quantities extracted from the image. The performance of the SVM classifier is heavily dependent on the feature set used. Too many features not only increase computation time but decrease performance, and too few features do not provide enough information for accurate classification. Our steganalysis technique uses entropic features that yield up to 240 features per image. The selection of an optimum feature set is a problem that lends itself well to genetic algorithm optimization. We describe this technique in detail and present a "GA optimized" feature set of 48 features that, for our application, optimizes the tradeoff between computation time and classification accuracy.
Instrument design and optimization using genetic algorithms
Hoelzel, Robert; Bentley, Phillip M.; Fouquet, Peter
2006-10-15
This article describes the design of highly complex physical instruments by using a canonical genetic algorithm (GA). The procedure can be applied to all instrument designs where performance goals can be quantified. It is particularly suited to the optimization of instrument design where local optima in the performance figure of merit are prevalent. Here, a GA is used to evolve the design of the neutron spin-echo spectrometer WASP which is presently being constructed at the Institut Laue-Langevin, Grenoble, France. A comparison is made between this artificial intelligence approach and the traditional manual design methods. We demonstrate that the search of parameter space is more efficient when applying the genetic algorithm, and the GA produces a significantly better instrument design. Furthermore, it is found that the GA increases flexibility, by facilitating the reoptimization of the design after changes in boundary conditions during the design phase. The GA also allows the exploration of 'nonstandard' magnet coil geometries. We conclude that this technique constitutes a powerful complementary tool for the design and optimization of complex scientific apparatus, without replacing the careful thought processes employed in traditional design methods.
GAMPMS: Genetic algorithm managed peptide mutant screening.
Long, Thomas; McDougal, Owen M; Andersen, Tim
2015-06-30
The prominence of endogenous peptide ligands targeted to receptors makes peptides with the desired binding activity good molecular scaffolds for drug development. Minor modifications to a peptide's primary sequence can significantly alter its binding properties with a receptor, and screening collections of peptide mutants is a useful technique for probing the receptor-ligand binding domain. Unfortunately, the combinatorial growth of such collections can limit the number of mutations which can be explored using structure-based molecular docking techniques. Genetic algorithm managed peptide mutant screening (GAMPMS) uses a genetic algorithm to conduct a heuristic search of the peptide's mutation space for peptides with optimal binding activity, significantly reducing the computational requirements of the virtual screening. The GAMPMS procedure was implemented and used to explore the binding domain of the nicotinic acetylcholine receptor (nAChR) ?3?2-isoform with a library of 64,000 ?-conotoxin (?-CTx) MII peptide mutants. To assess GAMPMS's performance, it was compared with a virtual screening procedure that used AutoDock to predict the binding affinity of each of the ?-CTx MII peptide mutants with the ?3?2-nAChR. The GAMPMS implementation performed AutoDock simulations for as few as 1140 of the 64,000 ?-CTx MII peptide mutants and could consistently identify a set of 10 peptides with an aggregated binding energy that was at least 98% of the aggregated binding energy of the 10 top peptides from the exhaustive AutoDock screening. PMID:25975567
Comparison of genetic algorithms with conjugate gradient methods
NASA Technical Reports Server (NTRS)
Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.
1972-01-01
Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.
Genetic algorithm and particle swarm optimization combined with Powell method
NASA Astrophysics Data System (ADS)
Bento, David; Pinho, Diana; Pereira, Ana I.; Lima, Rui
2013-10-01
In recent years, the population algorithms are becoming increasingly robust and easy to use, based on Darwin's Theory of Evolution, perform a search for the best solution around a population that will progress according to several generations. This paper present variants of hybrid genetic algorithm - Genetic Algorithm and a bio-inspired hybrid algorithm - Particle Swarm Optimization, both combined with the local method - Powell Method. The developed methods were tested with twelve test functions from unconstrained optimization context.
A novel BTC decoding algorithm based on the genetic algorithm in optical communication systems
NASA Astrophysics Data System (ADS)
Yuan, Jian-guo; Tian, Yang; Hu, Xia; Huang, Sheng; Lin, Jin-zhao; Pang, Yu
2014-03-01
Combining the advantages of both the genetic algorithm (GA) and the chase decoding algorithm, a novel improved decoding algorithm of the block turbo code (BTC) with lower computation complexity and more rapid decoding speed is proposed in order to meet the developing demands of optical communication systems. Compared with the traditional chase decoding algorithm, the computation complexity can be reduced and the decoding speed can be accelerated by applying the novel algorithm. The simulation results show that the net coding gain (NCG) of the novel BTC decoding algorithm is 1.1 dB more than that of the traditional chase decoding algorithm at the bit error rate (BER) of 10-6. Therefore, the novel decoding algorithm has better decoding correction-error performance and is suitable for the BTC in optical communication systems.
A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem
Liu, Dong-sheng; Fan, Shu-jiang
2014-01-01
In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389
Multidisciplinary design optimization using genetic algorithms
NASA Technical Reports Server (NTRS)
Unal, Resit
1994-01-01
Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared with efficient gradient methods. Applicaiton of GA is underway for a cost optimization study for a launch-vehicle fuel-tank and structural design of a wing. The strengths and limitations of GA for launch vehicle design optimization is studied.
Multidisciplinary design optimization using genetic algorithms
NASA Astrophysics Data System (ADS)
Unal, Resit
1994-12-01
Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared with efficient gradient methods. Applicaiton of GA is underway for a cost optimization study for a launch-vehicle fuel-tank and structural design of a wing.
Spacecraft Attitude Maneuver Planning Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Kornfeld, Richard P.
2004-01-01
A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This approach for attitude path planning makes full use of a priori constraint knowledge and is computationally tractable enough to be executed onboard a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used as is or as an initial solution to initialize additional deterministic optimization algorithms. A number of representative case examples for time-fixed and time-varying conditions yielded search times that are typically on the order of minutes, thus demonstrating the viability of this method. This approach is applicable to all deep space and planet Earth missions requiring greater spacecraft autonomy, and greatly facilitates navigation and science observation planning.
SAGA: sequence alignment by genetic algorithm.
Notredame, C; Higgins, D G
1996-01-01
We describe a new approach to multiple sequence alignment using genetic algorithms and an associated software package called SAGA. The method involves evolving a population of alignments in a quasi evolutionary manner and gradually improving the fitness of the population as measured by an objective function which measures multiple alignment quality. SAGA uses an automatic scheduling scheme to control the usage of 22 different operators for combining alignments or mutating them between generations. When used to optimise the well known sums of pairs objective function, SAGA performs better than some of the widely used alternative packages. This is seen with respect to the ability to achieve an optimal solution and with regard to the accuracy of alignment by comparison with reference alignments based on sequences of known tertiary structure. The general attraction of the approach is the ability to optimise any objective function that one can invent. PMID:8628686
Genetic Algorithm Approaches to Prebiobiotic Chemistry Modeling
NASA Technical Reports Server (NTRS)
Lohn, Jason; Colombano, Silvano
1997-01-01
We model an artificial chemistry comprised of interacting polymers by specifying two initial conditions: a distribution of polymers and a fixed set of reversible catalytic reactions. A genetic algorithm is used to find a set of reactions that exhibit a desired dynamical behavior. Such a technique is useful because it allows an investigator to determine whether a specific pattern of dynamics can be produced, and if it can, the reaction network found can be then analyzed. We present our results in the context of studying simplified chemical dynamics in theorized protocells - hypothesized precursors of the first living organisms. Our results show that given a small sample of plausible protocell reaction dynamics, catalytic reaction sets can be found. We present cases where this is not possible and also analyze the evolved reaction sets.
PDE Nozzle Optimization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Billings, Dana; Turner, James E. (Technical Monitor)
2000-01-01
Genetic algorithms, which simulate evolution in natural systems, have been used to find solutions to optimization problems that seem intractable to standard approaches. In this study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse detonation engine (PDE) is demonstrated. The objective was to maximize impulse during the detonation wave passage and blow-down phases of operation. Impulse of each profile variant was obtained by using the CFD code Mozart/2.0 to simulate the transient flow. After 7 generations, the method has identified a nozzle profile that certainly is a candidate for optimum solution. The constraints on the generality of this possible solution remain to be clarified.
Genetic Algorithm Based Neural Networks for Nonlinear Optimization
1994-09-28
This software develops a novel approach to nonlinear optimization using genetic algorithm based neural networks. To our best knowledge, this approach represents the first attempt at applying both neural network and genetic algorithm techniques to solve a nonlinear optimization problem. The approach constructs a neural network structure and an appropriately shaped energy surface whose minima correspond to optimal solutions of the problem. A genetic algorithm is employed to perform a parallel and powerful search of the energy surface.
Optimal support arrangement of piping systems using genetic algorithm
Chiba, T.; Okado, S.; Fujii, I.; Itami, K.; Hara, F.
1996-11-01
The support arrangement is one of the important factors in the design of piping systems. Much time is required to decide the arrangement of the supports. The authors applied a genetic algorithm to find the optimum support arrangement for piping systems. Examples are provided to illustrate the effectiveness of the genetic algorithm. Good results are obtained when applying the genetic algorithm to the actual designing of the piping system.
Training product unit neural networks with genetic algorithms
NASA Technical Reports Server (NTRS)
Janson, D. J.; Frenzel, J. F.; Thelen, D. C.
1991-01-01
The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.
Boiler-turbine control system design using a genetic algorithm
Dimeo, R.; Lee, K.Y.
1995-12-01
This paper discusses the application of a genetic algorithm to control system design for a boiler-turbine plant. In particular the authors study the ability of the genetic algorithm to develop a proportional-integral (PI) controller and a state feedback controller for a non-linear multi-input/multi-output (MIMO) plant model. The plant model is presented along with a discussion of the inherent difficulties in such controller development. A sketch of the genetic algorithm (GA) is presented and its strategy as a method of control system design is discussed. Results are presented for two different control systems that have been designed with the genetic algorithm.
A New Challenge for Compression Algorithms: Genetic Sequences.
ERIC Educational Resources Information Center
Grumbach, Stephane; Tahi, Fariza
1994-01-01
Analyzes the properties of genetic sequences that cause the failure of classical algorithms used for data compression. A lossless algorithm, which compresses the information contained in DNA and RNA sequences by detecting regularities such as palindromes, is presented. This algorithm combines substitutional and statistical methods and appears to…
A genetic algorithm for solving supply chain network design model
NASA Astrophysics Data System (ADS)
Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.
2013-09-01
Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.
Transonic Wing Shape Optimization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)
2002-01-01
A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.
A Test of Genetic Algorithms in Relevance Feedback.
ERIC Educational Resources Information Center
Lopez-Pujalte, Cristina; Guerrero Bote, Vicente P.; Moya Anegon, Felix de
2002-01-01
Discussion of information retrieval, query optimization techniques, and relevance feedback focuses on genetic algorithms, which are derived from artificial intelligence techniques. Describes an evaluation of different genetic algorithms using a residual collection method and compares results with the Ide dec-hi method (Salton and Buckley, 1990…
A "Hands on" Strategy for Teaching Genetic Algorithms to Undergraduates
ERIC Educational Resources Information Center
Venables, Anne; Tan, Grace
2007-01-01
Genetic algorithms (GAs) are a problem solving strategy that uses stochastic search. Since their introduction (Holland, 1975), GAs have proven to be particularly useful for solving problems that are "intractable" using classical methods. The language of genetic algorithms (GAs) is heavily laced with biological metaphors from evolutionaryâ€¦
A "Hands on" Strategy for Teaching Genetic Algorithms to Undergraduates
ERIC Educational Resources Information Center
Venables, Anne; Tan, Grace
2007-01-01
Genetic algorithms (GAs) are a problem solving strategy that uses stochastic search. Since their introduction (Holland, 1975), GAs have proven to be particularly useful for solving problems that are "intractable" using classical methods. The language of genetic algorithms (GAs) is heavily laced with biological metaphors from evolutionary…
Crack Identification of Plates Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Horibe, Tadashi; Watanabe, Kensuke
In this paper, a method for identifying of a crack in a plate that uses a genetic algorithm (GA) based on changes in natural frequencies is presented. To calculate the natural frequencies of the cracked plates, a FEM (Finite Element Method) program, which is based on the BFM (Bogner, Fox and Schmidt) model, is developed since the accuracy of the forward solver is important. In the analysis, two types of cracks, i.e., internal and edge cracks are considered. To identify the crack location and the depth from frequency measurements, the width and position of the crack in a plate are coded into a fixed-length binary digit string. Using GA, the square sum of residuals between the measured data and the calculated data is minimized in the identification process and thus the crack is identified. To avoid a high calculation cost, the response surface method (RSM) is also adopted in the minimizing process. The combination of GA and RSM makes the identification more effective and robust. The applicability of the proposed method is confirmed by the results of numerical simulation.
Genetic Algorithms: survival of the fittest
NASA Astrophysics Data System (ADS)
Regensburger, Joseph; Xi, Hao-Wen
1997-05-01
"Genetic algorithms(GAs)" inspired by the evolution in natural system in biology have been receiving a great deal of attention and emerged as a practical, optimization method. GAs can handle highly complex optimization problems with surprising speed and efficiency, and yet is easy to implement in a few simple steps. GAs are based on evolution. The potential optimization solutions are coded as fixed length strings(called chromosomes), usually in binary code. Each "individuals" in a pool of solutions is then assigned "a fitness" that measure how good it is. For example, if the problem is to find the maximum of a function, the fitness may be defined as the corresponding value of the height of the function. These "individuals" must then compete for the right to reproduce themselves. They reproduce according to their fitness. In a survival-of-the-fittest situation, exact or near-exact optimum solutions to the given problem are literally "bred" from an initial pool of solutions. The purpose of this research is to provide a introduction how GAs work, and to demonstrate their usefulness in function optimization and in finding the ground state energies of Ising spin model in statistical physics.
Robot path planning using a genetic algorithm
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu
1988-01-01
Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.
Lunar Habitat Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
SanScoucie, M. P.; Hull, P. V.; Tinker, M. L.; Dozier, G. V.
2007-01-01
Long-duration surface missions to the Moon and Mars will require bases to accommodate habitats for the astronauts. Transporting the materials and equipment required to build the necessary habitats is costly and difficult. The materials chosen for the habitat walls play a direct role in protection against each of the mentioned hazards. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Clearly, an optimization method is warranted for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat wall design tool utilizing genetic algorithms (GAs) has been developed. GAs use a "survival of the fittest" philosophy where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multiobjective formulation of up-mass, heat loss, structural analysis, meteoroid impact protection, and radiation protection. This Technical Publication presents the research and development of this tool as well as a technique for finding the optimal GA search parameters.
Closed Loop System Identification with Genetic Algorithms
NASA Technical Reports Server (NTRS)
Whorton, Mark S.
2004-01-01
High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.
NASA Technical Reports Server (NTRS)
Rogers, David
1991-01-01
G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.
An improved localization algorithm based on genetic algorithm in wireless sensor networks.
Peng, Bo; Li, Lei
2015-04-01
Wireless sensor network (WSN) are widely used in many applications. A WSN is a wireless decentralized structure network comprised of nodes, which autonomously set up a network. The node localization that is to be aware of position of the node in the network is an essential part of many sensor network operations and applications. The existing localization algorithms can be classified into two categories: range-based and range-free. The range-based localization algorithm has requirements on hardware, thus is expensive to be implemented in practice. The range-free localization algorithm reduces the hardware cost. Because of the hardware limitations of WSN devices, solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches. However, these techniques usually have higher localization error compared to the range-based algorithms. DV-Hop is a typical range-free localization algorithm utilizing hop-distance estimation. In this paper, we propose an improved DV-Hop algorithm based on genetic algorithm. Simulation results show that our proposed algorithm improves the localization accuracy compared with previous algorithms. PMID:25852782
Algorithms and Algorithmic Languages.
ERIC Educational Resources Information Center
Veselov, V. M.; Koprov, V. M.
This paper is intended as an introduction to a number of problems connected with the description of algorithms and algorithmic languages, particularly the syntaxes and semantics of algorithmic languages. The terms "letter, word, alphabet" are defined and described. The concept of the algorithm is defined and the relation between the algorithm and…
Research on Laser Marking Speed Optimization by Using Genetic Algorithm
Wang, Dongyun; Yu, Qiwei; Zhang, Yu
2015-01-01
Laser Marking Machine is the most common coding equipment on product packaging lines. However, the speed of laser marking has become a bottleneck of production. In order to remove this bottleneck, a new method based on a genetic algorithm is designed. On the basis of this algorithm, a controller was designed and simulations and experiments were performed. The results show that using this algorithm could effectively improve laser marking efficiency by 25%. PMID:25955831
Research on laser marking speed optimization by using genetic algorithm.
Wang, Dongyun; Yu, Qiwei; Zhang, Yu
2015-01-01
Laser Marking Machine is the most common coding equipment on product packaging lines. However, the speed of laser marking has become a bottleneck of production. In order to remove this bottleneck, a new method based on a genetic algorithm is designed. On the basis of this algorithm, a controller was designed and simulations and experiments were performed. The results show that using this algorithm could effectively improve laser marking efficiency by 25%. PMID:25955831
Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun
2014-01-01
A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method. PMID:24772031
Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun
2014-01-01
A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method. PMID:24772031
Restart-Based Genetic Algorithm for the Quadratic Assignment Problem
NASA Astrophysics Data System (ADS)
Misevicius, Alfonsas
The power of genetic algorithms (GAs) has been demonstrated for various domains of the computer science, including combinatorial optimization. In this paper, we propose a new conceptual modification of the genetic algorithm entitled a "restart-based genetic algorithm" (RGA). An effective implementation of RGA for a well-known combinatorial optimization problem, the quadratic assignment problem (QAP), is discussed. The results obtained from the computational experiments on the QAP instances from the publicly available library QAPLIB show excellent performance of RGA. This is especially true for the real-life like QAPs.
Genetic Algorithm Based Neural Networks for Nonlinear Optimization
Energy Science and Technology Software Center (ESTSC)
1994-09-28
This software develops a novel approach to nonlinear optimization using genetic algorithm based neural networks. To our best knowledge, this approach represents the first attempt at applying both neural network and genetic algorithm techniques to solve a nonlinear optimization problem. The approach constructs a neural network structure and an appropriately shaped energy surface whose minima correspond to optimal solutions of the problem. A genetic algorithm is employed to perform a parallel and powerful search ofmoreÂ Â»the energy surface.Â«Â less
Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous
NASA Technical Reports Server (NTRS)
Karr, C. L.; Freeman, L. M.; Meredith, D. L.
1990-01-01
The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2004-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2005-01-01
A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Calculation of substructural analysis weights using a genetic algorithm.
Holliday, John D; Sani, Nor; Willett, Peter
2015-02-23
This work describes a genetic algorithm for the calculation of substructural analysis for use in ligand-based virtual screening. The algorithm is simple in concept and effective in operation, with simulated virtual screening experiments using the MDDR and WOMBAT data sets showing it to be superior to substructural analysis weights based on a naive Bayesian classifier. PMID:25615712
A simple algorithm for optimization and model fitting: AGA (asexual genetic algorithm)
NASA Astrophysics Data System (ADS)
CantÃ³, J.; Curiel, S.; MartÃnez-GÃ³mez, E.
2009-07-01
Context: Mathematical optimization can be used as a computational tool to obtain the optimal solution to a given problem in a systematic and efficient way. For example, in twice-differentiable functions and problems with no constraints, the optimization consists of finding the points where the gradient of the objective function is zero and using the Hessian matrix to classify the type of each point. Sometimes, however it is impossible to compute these derivatives and other type of techniques must be employed such as the steepest descent/ascent method and more sophisticated methods such as those based on the evolutionary algorithms. Aims: We present a simple algorithm based on the idea of genetic algorithms (GA) for optimization. We refer to this algorithm as AGA (asexual genetic algorithm) and apply it to two kinds of problems: the maximization of a function where classical methods fail and model fitting in astronomy. For the latter case, we minimize the chi-square function to estimate the parameters in two examples: the orbits of exoplanets by taking a set of radial velocity data, and the spectral energy distribution (SED) observed towards a YSO (Young Stellar Object). Methods: The algorithm AGA may also be called genetic, although it differs from standard genetic algorithms in two main aspects: a) the initial population is not encoded; and b) the new generations are constructed by asexual reproduction. Results: Applying our algorithm in optimizing some complicated functions, we find the global maxima within a few iterations. For model fitting to the orbits of exoplanets and the SED of a YSO, we estimate the parameters and their associated errors.
Segmentation of color images using genetic algorithm with image histogram
NASA Astrophysics Data System (ADS)
Sneha Latha, P.; Kumar, Pawan; Kahu, Samruddhi; Bhurchandi, Kishor M.
2015-02-01
This paper proposes a family of color image segmentation algorithms using genetic approach and color similarity threshold in terns of Just noticeable difference. Instead of segmenting and then optimizing, the proposed technique directly uses GA for optimized segmentation of color images. Application of GA on larger size color images is computationally heavy so they are applied on 4D-color image histogram table. The performance of the proposed algorithms is benchmarked on BSD dataset with color histogram based segmentation and Fuzzy C-means Algorithm using Probabilistic Rand Index (PRI). The proposed algorithms yield better analytical and visual results.
Mobile transporter path planning using a genetic algorithm approach
NASA Technical Reports Server (NTRS)
Baffes, Paul; Wang, Lui
1988-01-01
The use of an optimization technique known as a genetic algorithm for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the Space Station which must be able to reach any point of the structure autonomously. Specific elements of the genetic algorithm are explored in both a theoretical and experimental sense. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research. However, trajectory planning problems are common in space systems and the genetic algorithm provides an attractive alternative to the classical techniques used to solve these problems.
Optimization of computer-generated binary holograms using genetic algorithms
NASA Astrophysics Data System (ADS)
Cojoc, Dan; Alexandrescu, Adrian
1999-11-01
The aim of this paper is to compare genetic algorithms against direct point oriented coding in the design of binary phase Fourier holograms, computer generated. These are used as fan-out elements for free space optical interconnection. Genetic algorithms are optimization methods which model the natural process of genetic evolution. The configuration of the hologram is encoded to form a chromosome. To start the optimization, a population of different chromosomes randomly generated is considered. The chromosomes compete, mate and mutate until the best chromosome is obtained according to a cost function. After explaining the operators that are used by genetic algorithms, this paper presents two examples with 32 X 32 genes in a chromosome. The crossover type and the number of mutations are shown to be important factors which influence the convergence of the algorithm. GA is demonstrated to be a useful tool to design namely binary phase holograms of complicate structures.
Study on living object identification based on genetic algorithms
NASA Astrophysics Data System (ADS)
Wang, Yao; Xiong, Mu-di; Jia, Si-nan
2007-12-01
Fast and effectual salvage can reduce accident loss, ensure people's lives and belongings safely when shipwreck occurs. It is very important that discovering objects should be timely and exactly to insure the salvage going on wheels. This text puts forward an object identification arithmetic based on Genetic Algorithms, which makes use of Genetic Algorithms to search living objects in the sea based on different infrared radiation characteristics between living objects and background, uses single point crossover method and simple mutation method with adaptive probability, ensures the global and local searching ability of Genetic Algorithms. Thus GA can accomplish searching course of optimization quickly and exactly with favorable searching ability. From identification test aiming at standard infrared image, it is seen that the image is strengthened by Genetic Algorithms, and the living objects can be identified exactly.
Improved genetic algorithm for fast path planning of USV
NASA Astrophysics Data System (ADS)
Cao, Lu
2015-12-01
Due to the complex constraints, more uncertain factors and critical real-time demand of path planning for USV(Unmanned Surface Vehicle), an approach of fast path planning based on voronoi diagram and improved Genetic Algorithm is proposed, which makes use of the principle of hierarchical path planning. First the voronoi diagram is utilized to generate the initial paths and then the optimal path is searched by using the improved Genetic Algorithm, which use multiprocessors parallel computing techniques to improve the traditional genetic algorithm. Simulation results verify that the optimal time is greatly reduced and path planning based on voronoi diagram and the improved Genetic Algorithm is more favorable in the real-time operation.
Superscattering of light optimized by a genetic algorithm
NASA Astrophysics Data System (ADS)
Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.
2014-07-01
We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.
Internal quantum efficiency analysis of solar cell by genetic algorithm
Xiong, Kanglin; Yang, Hui; Lu, Shulong; Zhou, Taofei; Wang, Rongxin; Qiu, Kai; Dong, Jianrong; Jiang, Desheng
2010-11-15
To investigate factors limiting the performance of a GaAs solar cell, genetic algorithm is employed to fit the experimentally measured internal quantum efficiency (IQE) in the full spectra range. The device parameters such as diffusion lengths and surface recombination velocities are extracted. Electron beam induced current (EBIC) is performed in the base region of the cell with obtained diffusion length agreeing with the fit result. The advantage of genetic algorithm is illustrated. (author)
Genetic-Algorithm Tool For Search And Optimization
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steven
1995-01-01
SPLICER computer program used to solve search and optimization problems. Genetic algorithms adaptive search procedures (i.e., problem-solving methods) based loosely on processes of natural selection and Darwinian "survival of fittest." Algorithms apply genetically inspired operators to populations of potential solutions in iterative fashion, creating new populations while searching for optimal or nearly optimal solution to problem at hand. Written in Think C.
Superscattering of light optimized by a genetic algorithm
Mirzaei, Ali Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.
2014-07-07
We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.
Finding associations in dense genetic maps: a genetic algorithm approach.
Clark, Taane G; De Iorio, Maria; Griffiths, Robert C; Farrall, Martin
2005-01-01
Large-scale association studies hold promise for discovering the genetic basis of common human disease. These studies will consist of a large number of individuals, as well as large number of genetic markers, such as single nucleotide polymorphisms (SNPs). The potential size of the data and the resulting model space require the development of efficient methodology to unravel associations between phenotypes and SNPs in dense genetic maps. Our approach uses a genetic algorithm (GA) to construct logic trees consisting of Boolean expressions involving strings or blocks of SNPs. These blocks or nodes of the logic trees consist of SNPs in high linkage disequilibrium (LD), that is, SNPs that are highly correlated with each other due to evolutionary processes. At each generation of our GA, a population of logic tree models is modified using selection, cross-over and mutation moves. Logic trees are selected for the next generation using a fitness function based on the marginal likelihood in a Bayesian regression frame-work. Mutation and cross-over moves use LD measures to pro pose changes to the trees, and facilitate the movement through the model space. We demonstrate our method and the flexibility of logic tree structure with variable nodal lengths on simulated data from a coalescent model, as well as data from a candidate gene study of quantitative genetic variation. PMID:16220001
An Agent Inspired Reconfigurable Computing Implementation of a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Weir, John M.; Wells, B. Earl
2003-01-01
Many software systems have been successfully implemented using an agent paradigm which employs a number of independent entities that communicate with one another to achieve a common goal. The distributed nature of such a paradigm makes it an excellent candidate for use in high speed reconfigurable computing hardware environments such as those present in modem FPGA's. In this paper, a distributed genetic algorithm that can be applied to the agent based reconfigurable hardware model is introduced. The effectiveness of this new algorithm is evaluated by comparing the quality of the solutions found by the new algorithm with those found by traditional genetic algorithms. The performance of a reconfigurable hardware implementation of the new algorithm on an FPGA is compared to traditional single processor implementations.
Immune allied genetic algorithm for Bayesian network structure learning
NASA Astrophysics Data System (ADS)
Song, Qin; Lin, Feng; Sun, Wei; Chang, KC
2012-06-01
Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.
Integrated genetic algorithm for optimization of space structures
NASA Astrophysics Data System (ADS)
Adeli, Hojjat; Cheng, Nai-Tsang
1993-10-01
Gradient-based mathematical-optimization algorithms usually seek a solution in the neighborhood of the starting point. If more than one local optimum exists, the solution will depend on the choice of the starting point, and the global optimum cannot be found. This paper presents the optimization of space structures by integrating a genetic algorithm with the penalty-function method. Genetic algorithms are inspired by the basic mechanism of natural evolution, and are efficient for global-searches. The technique employs the Darwinian survival-of-the-fittest theory to yield the best or better characters among the old population, and performs a random information exchange to create superior offspring. Different types of crossover operations are used in this paper, and their relative merit is investigated. The integrated genetic algorithm has been implemented in C language and is applied to the optimization of three space truss structures. In each case, an optimum solution was obtained after a limited number of iterations.
Genetic algorithm for clustering mixed-type data
NASA Astrophysics Data System (ADS)
Yang, Shiueng-Bien; Wu, Yung-Gi
2011-01-01
The k-modes algorithm was recently proposed to cluster mixed-type data. However, in solving clustering problems, the k-modes algorithm and its variants usually ask the user to provide the number of clusters in the data sets. Unfortunately, the number of clusters is generally unknown to the user. Therefore, clustering becomes a tedious task of trial-and-error and the clustering result is often poor, especially when the number of clusters is large and not easy to guess. Also, it is hard for a user to select the weight between categorical and numeric attributes in the k-modes algorithm. In this paper, a genetic algorithm for clustering large data sets with mixed-type data is proposed, and this algorithm can automatically search the number of clusters in the data set. Also, a weight can be automatically selected by the genetic algorithm to prevent favoring either type of attribute. Experimental results illustrate the effectiveness of the genetic algorithm.
A pipelined FPGA implementation of an encryption algorithm based on genetic algorithm
NASA Astrophysics Data System (ADS)
Thirer, Nonel
2013-05-01
With the evolution of digital data storage and exchange, it is essential to protect the confidential information from every unauthorized access. High performance encryption algorithms were developed and implemented by software and hardware. Also many methods to attack the cipher text were developed. In the last years, the genetic algorithm has gained much interest in cryptanalysis of cipher texts and also in encryption ciphers. This paper analyses the possibility to use the genetic algorithm as a multiple key sequence generator for an AES (Advanced Encryption Standard) cryptographic system, and also to use a three stages pipeline (with four main blocks: Input data, AES Core, Key generator, Output data) to provide a fast encryption and storage/transmission of a large amount of data.
Genetic-Annealing Algorithm in Grid Environment for Scheduling Problems
NASA Astrophysics Data System (ADS)
Cruz-Chávez, Marco Antonio; Rodríguez-León, Abelardo; Ávila-Melgar, Erika Yesenia; Juárez-Pérez, Fredy; Cruz-Rosales, Martín H.; Rivera-López, Rafael
This paper presents a parallel hybrid evolutionary algorithm executed in a grid environment. The algorithm executes local searches using simulated annealing within a Genetic Algorithm to solve the job shop scheduling problem. Experimental results of the algorithm obtained in the "Tarantula MiniGrid" are shown. Tarantula was implemented by linking two clusters from different geographic locations in Mexico (Morelos-Veracruz). The technique used to link the two clusters and configure the Tarantula MiniGrid is described. The effects of latency in communication between the two clusters are discussed. It is shown that the evolutionary algorithm presented is more efficient working in Grid environments because it can carry out major exploration and exploitation of the solution space.
Face detection in color images using efficient genetic algorithms
NASA Astrophysics Data System (ADS)
Lin, Cheng-Jian; Chuang, Ho-Chin; Xu, Yong-Ji
2006-04-01
Face detection from images is a key problem in human computer interaction studies and pattern recognition research. In this work, we propose an efficient genetic algorithm (EGA) that solves the face detection problem in color images. The proposed EGA is based on the Takagi-Sugeno-Kang(TSK)-type fuzzy model employed to perform parameter learning. Compared with traditional genetic algorithms, the EGA uses the sequential-search based-efficient generation (SSEG) method to generate an initial population to determine the most efficient mutation points. Experimental results show that the performance of the EGA is superior to the existing traditional genetic methods.
Optimization of genomic selection training populations with a genetic algorithm
Technology Transfer Automated Retrieval System (TEKTRAN)
In this article, we derive a computationally efficient statistic to measure the reliability of estimates of genetic breeding values for a fixed set of genotypes based on a given training set of genotypes and phenotypes. We adopt a genetic algorithm scheme to find a training set of certain size from ...
Fuzzy Information Retrieval Using Genetic Algorithms and Relevance Feedback.
ERIC Educational Resources Information Center
Petry, Frederick E.; And Others
1993-01-01
Describes an approach that combines concepts from information retrieval, fuzzy set theory, and genetic programing to improve weighted Boolean query formulation via relevance feedback. Highlights include background on information retrieval systems; genetic algorithms; subproblem formulation; and preliminary results based on a testbed. (Contains 12…
Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.
ERIC Educational Resources Information Center
Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand
2003-01-01
Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…
Parameter Estimation of Stellar Population Synthesis Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Han, J. Z.
2015-03-01
For the galaxies composed of all kinds of stars, it is important to estimate the parameters of stellar population synthesis quickly and accurately from the massive data of galactic spectra. It is presented in this paper that the genetic-simulated annealing (GA-SA) combined algorithm with a complementary advantage of the good global searching-ability and the fast convergence-ability of GA, as well as the strong local searching-ability of SA. In the aspect of the speed and the accuracy of the parameter estimation of stellar population synthesis, the experimental results show that the presented GA-SA combined algorithm is better than the single SA algorithm.
Genetic algorithm for multi-objective experimental optimization.
Link, Hannes; Weuster-Botz, Dirk
2006-12-01
A new software tool making use of a genetic algorithm for multi-objective experimental optimization (GAME.opt) was developed based on a strength Pareto evolutionary algorithm. The software deals with high dimensional variable spaces and unknown interactions of design variables. This approach was evaluated by means of multi-objective test problems replacing the experimental results. A default parameter setting is proposed enabling users without expert knowledge to minimize the experimental effort (small population sizes and few generations). PMID:17048033
Constrained minimization of smooth functions using a genetic algorithm
NASA Technical Reports Server (NTRS)
Moerder, Daniel D.; Pamadi, Bandu N.
1994-01-01
The use of genetic algorithms for minimization of differentiable functions that are subject to differentiable constraints is considered. A technique is demonstrated for converting the solution of the necessary conditions for a constrained minimum into an unconstrained function minimization. This technique is extended as a global constrained optimization algorithm. The theory is applied to calculating minimum-fuel ascent control settings for an energy state model of an aerospace plane.
Genetic algorithm for multi-objective experimental optimization
Link, Hannes
2006-01-01
A new software tool making use of a genetic algorithm for multi-objective experimental optimization (GAME.opt) was developed based on a strength Pareto evolutionary algorithm. The software deals with high dimensional variable spaces and unknown interactions of design variables. This approach was evaluated by means of multi-objective test problems replacing the experimental results. A default parameter setting is proposed enabling users without expert knowledge to minimize the experimental effort (small population sizes and few generations). PMID:17048033
Use of a genetic algorithm to analyze robust stability problems
Murdock, T.M.; Schmitendorf, W.E.; Forrest, S.
1990-01-01
This note resents a genetic algorithm technique for testing the stability of a characteristic polynomial whose coefficients are functions of unknown but bounded parameters. This technique is fast and can handle a large number of parametric uncertainties. We also use this method to determine robust stability margins for uncertain polynomials. Several benchmark examples are included to illustrate the two uses of the algorithm. 27 refs., 4 figs.
A parallel genetic algorithm for the set partitioning problem
Levine, D.
1994-05-01
In this dissertation the author reports on his efforts to develop a parallel genetic algorithm and apply it to the solution of set partitioning problem -- a difficult combinatorial optimization problem used by many airlines as a mathematical model for flight crew scheduling. He developed a distributed steady-state genetic algorithm in conjunction with a specialized local search heuristic for solving the set partitioning problem. The genetic algorithm is based on an island model where multiple independent subpopulations each run a steady-state genetic algorithm on their subpopulation and occasionally fit strings migrate between the subpopulations. Tests on forty real-world set partitioning problems were carried out on up to 128 nodes of an IBM SP1 parallel computer. The authors found that performance, as measured by the quality of the solution found and the iteration on which it was found, improved as additional subpopulation found and the iteration on which it was found, improved as additional subpopulations were added to the computation. With larger numbers of subpopulations the genetic algorithm was regularly able to find the optimal solution to problems having up to a few thousand integer variables. In two cases, high-quality integer feasible solutions were found for problems with 36,699 and 43,749 integer variables, respectively. A notable limitation they found was the difficulty solving problems with many constraints.
Structural pattern recognition using genetic algorithms with specialized operators.
Khoo, K G; Suganthan, P N
2003-01-01
This paper presents a genetic algorithm (GA)-based optimization procedure for structural pattern recognition in a model-based recognition system using attributed relational graph (ARG) matching technique. The objective of our work is to improve the GA-based ARG matching procedures leading to a faster convergence rate and better quality mapping between a scene ARG and a set of given model ARGs. In this study, potential solutions are represented by integer strings indicating the mapping between scene and model vertices. The fitness of each solution string is computed by accumulating the similarity between the unary and binary attributes of the matched vertex pairs. We propose novel crossover and mutation operators, specifically for this problem. With these specialized genetic operators, the proposed algorithm converges to better quality solutions at a faster rate than the standard genetic algorithm (SGA). In addition, the proposed algorithm is also capable of recognizing multiple instances of any model object. An efficient pose-clustering algorithm is used to eliminate occasional wrong mappings and to determine the presence/pose of the model in the scene. We demonstrate the superior performance of our proposed algorithm using extensive experimental results. PMID:18238167
The multi-niche crowding genetic algorithm: Analysis and applications
Cedeno, W.
1995-09-01
The ability of organisms to evolve and adapt to the environment has provided mother nature with a rich and diverse set of species. Only organisms well adapted to their environment can survive from one generation to the next, transferring on the traits, that made them successful, to their offspring. Competition for resources and the ever changing environment drives some species to extinction and at the same time others evolve to maintain the delicate balance in nature. In this disertation we present the multi-niche crowding genetic algorithm, a computational metaphor to the survival of species in ecological niches in the face of competition. The multi-niche crowding genetic algorithm maintains stable subpopulations of solutions in multiple niches in multimodal landscapes. The algorithm introduces the concept of crowding selection to promote mating among members with qirnilar traits while allowing many members of the population to participate in mating. The algorithm uses worst among most similar replacement policy to promote competition among members with similar traits while allowing competition among members of different niches as well. We present empirical and theoretical results for the success of the multiniche crowding genetic algorithm for multimodal function optimization. The properties of the algorithm using different parameters are examined. We test the performance of the algorithm on problems of DNA Mapping, Aquifer Management, and the File Design Problem. Applications that combine the use of heuristics and special operators to solve problems in the areas of combinatorial optimization, grouping, and multi-objective optimization. We conclude by presenting the advantages and disadvantages of the algorithm and describing avenues for future investigation to answer other questions raised by this study.
Neural-network-assisted genetic algorithm applied to silicon clusters
Marim, L.R.; Lemes, M.R.; Pino, A. Jr. dal
2003-03-01
Recently, a new optimization procedure that combines the power of artificial neural-networks with the versatility of the genetic algorithm (GA) was introduced. This method, called neural-network-assisted genetic algorithm (NAGA), uses a neural network to restrict the search space and it is expected to speed up the solution of global optimization problems if some previous information is available. In this paper, we have tested NAGA to determine the ground-state geometry of Si{sub n} (10{<=}n{<=}15) according to a tight-binding total-energy method. Our results indicate that NAGA was able to find the desired global minimum of the potential energy for all the test cases and it was at least ten times faster than pure genetic algorithm.
Distributed genetic algorithms for the floorplan design problem
NASA Technical Reports Server (NTRS)
Cohoon, James P.; Hegde, Shailesh U.; Martin, Worthy N.; Richards, Dana S.
1991-01-01
Designing a VLSI floorplan calls for arranging a given set of modules in the plane to minimize the weighted sum of area and wire-length measures. A method of solving the floorplan design problem using distributed genetic algorithms is presented. Distributed genetic algorithms, based on the paleontological theory of punctuated equilibria, offer a conceptual modification to the traditional genetic algorithms. Experimental results on several problem instances demonstrate the efficacy of this method and indicate the advantages of this method over other methods, such as simulated annealing. The method has performed better than the simulated annealing approach, both in terms of the average cost of the solutions found and the best-found solution, in almost all the problem instances tried.
Rules extraction in short memory time series using genetic algorithms
NASA Astrophysics Data System (ADS)
Fong, L. Y.; Szeto, K. Y.
2001-04-01
Data mining is performed using genetic algorithm on artificially generated time series data with short memory. The extraction of rules from a training set and the subsequent testing of these rules provide a basis for the predictions on the test set. The artificial time series are generated using the inverse whitening transformation, and the correlation function has an exponential form with given time constant indicative of short memory. A vector quantization technique is employed to classify the daily rate of return of this artificial time series into four categories. A simple genetic algorithm based on a fixed format of rules is introduced to do the forecasting. Comparing to the benchmark tests with random walk and random guess, genetic algorithms yield substantially better prediction rates, between 50% to 60%. This is an improvement compared with the 47% for random walk prediction and 25% for random guessing method.
A genetic algorithm approach in interface and surface structure optimization
Zhang, Jian
2010-05-16
The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the material structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.
Optimum design of composite laminates using genetic algorithms
NASA Astrophysics Data System (ADS)
Callahan, Kelvin J.; Weeks, George E.
1992-04-01
The use of genetic algorithms (GAs) for the design of composite laminates is presented. Unlike the traditional hill-climbing techniques, GAs are global search procedures based on the mechanics of natural selection with the result that they are robust over a wide range of environments, particularly the multimodal search spaces encountered in composite design. The GA requires coding of the design variables as a finite-length string over a finite alphabet. Here, the design variables are the lamina orientations and stacking sequence required for maximum laminate strength and/or stiffness with minimum weight. Numerical results are presented to demonstrate that the genetic algorithm can be a viable alternative to traditional search procedures in the design of composite laminates. Finally, based on the results of this study several suggestions are mentioned for improvement in the performance of the genetic algorithm.
Acoustic design of rotor blades using a genetic algorithm
NASA Technical Reports Server (NTRS)
Wells, V. L.; Han, A. Y.; Crossley, W. A.
1995-01-01
A genetic algorithm coupled with a simplified acoustic analysis was used to generate low-noise rotor blade designs. The model includes thickness, steady loading and blade-vortex interaction noise estimates. The paper presents solutions for several variations in the fitness function, including thickness noise only, loading noise only, and combinations of the noise types. Preliminary results indicate that the analysis provides reasonable assessments of the noise produced, and that genetic algorithm successfully searches for 'good' designs. The results show that, for a given required thrust coefficient, proper blade design can noticeably reduce the noise produced at some expense to the power requirements.
Algorithmic Trading with Developmental and Linear Genetic Programming
NASA Astrophysics Data System (ADS)
Wilson, Garnett; Banzhaf, Wolfgang
A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.
Genetic algorithm dose minimization for an operational layout.
McLawhorn, S. L.; Kornreich, D. E.; Dudziak, Donald J.
2002-01-01
In an effort to reduce the dose to operating technicians performing fixed-time procedures on encapsulated source material, a program has been developed to optimize the layout of workstations within a facility by use of a genetic algorithm. Taking into account the sources present at each station and the time required to complete each procedure, the program utilizes a point kernel dose calculation tool for dose estimates. The genetic algorithm driver employs the dose calculation code as a cost function to determine the optimal spatial arrangement of workstations to minimize the total worker dose.
Genetic algorithms and the search for viable string vacua
NASA Astrophysics Data System (ADS)
Abel, Steven; Rizos, John
2014-08-01
Genetic Algorithms are introduced as a search method for finding string vacua with viable phenomenological properties. It is shown, by testing them against a class of Free Fermionic models, that they are orders of magnitude more efficient than a randomised search. As an example, three generation, exophobic, Pati-Salam models with a top Yukawa occur once in every 1010 models, and yet a Genetic Algorithm can find them after constructing only 105 examples. Such non-deterministic search methods may be the only means to search for Standard Model string vacua with detailed phenomenological requirements.
Application of Genetic Algorithm to Hexagon-Based Motion Estimation
Cheng, Wan-Shu
2014-01-01
With the improvement of science and technology, the development of the network, and the exploitation of the HDTV, the demands of audio and video become more and more important. Depending on the video coding technology would be the solution for achieving these requirements. Motion estimation, which removes the redundancy in video frames, plays an important role in the video coding. Therefore, many experts devote themselves to the issues. The existing fast algorithms rely on the assumption that the matching error decreases monotonically as the searched point moves closer to the global optimum. However, genetic algorithm is not fundamentally limited to this restriction. The character would help the proposed scheme to search the mean square error closer to the algorithm of full search than those fast algorithms. The aim of this paper is to propose a new technique which focuses on combing the hexagon-based search algorithm, which is faster than diamond search, and genetic algorithm. Experiments are performed to demonstrate the encoding speed and accuracy of hexagon-based search pattern method and proposed method. PMID:24592178
The Ordered Clustered Travelling Salesman Problem: A Hybrid Genetic Algorithm
Ahmed, Zakir Hussain
2014-01-01
The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances. PMID:24701148
Selection Intensity in Genetic Algorithms with Generation Gaps
Cantu-Paz, E.
2000-01-19
This paper presents calculations of the selection intensity of common selection and replacement methods used in genetic algorithms (GAs) with generation gaps. The selection intensity measures the increase of the average fitness of the population after selection, and it can be used to predict the average fitness of the population at each iteration as well as the number of steps until the population converges to a unique solution. In addition, the theory explains the fast convergence of some algorithms with small generation gaps. The accuracy of the calculations was verified experimentally with a simple test function. The results of this study facilitate comparisons between different algorithms, and provide a tool to adjust the selection pressure, which is indispensable to obtain robust algorithms.
Economic Dispatch Using Genetic Algorithm Based Hybrid Approach
Tahir Nadeem Malik; Aftab Ahmad; Shahab Khushnood
2006-07-01
Power Economic Dispatch (ED) is vital and essential daily optimization procedure in the system operation. Present day large power generating units with multi-valves steam turbines exhibit a large variation in the input-output characteristic functions, thus non-convexity appears in the characteristic curves. Various mathematical and optimization techniques have been developed, applied to solve economic dispatch (ED) problem. Most of these are calculus-based optimization algorithms that are based on successive linearization and use the first and second order differentiations of objective function and its constraint equations as the search direction. They usually require heat input, power output characteristics of generators to be of monotonically increasing nature or of piecewise linearity. These simplifying assumptions result in an inaccurate dispatch. Genetic algorithms have used to solve the economic dispatch problem independently and in conjunction with other AI tools and mathematical programming approaches. Genetic algorithms have inherent ability to reach the global minimum region of search space in a short time, but then take longer time to converge the solution. GA based hybrid approaches get around this problem and produce encouraging results. This paper presents brief survey on hybrid approaches for economic dispatch, an architecture of extensible computational framework as common environment for conventional, genetic algorithm and hybrid approaches based solution for power economic dispatch, the implementation of three algorithms in the developed framework. The framework tested on standard test systems for its performance evaluation. (authors)
Study of genetic direct search algorithms for function optimization
NASA Technical Reports Server (NTRS)
Zeigler, B. P.
1974-01-01
The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.
An Adaptive Immune Genetic Algorithm for Edge Detection
NASA Astrophysics Data System (ADS)
Li, Ying; Bai, Bendu; Zhang, Yanning
An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.
A systematic study of genetic algorithms with genotype editing
Huang, C. F.; Rocha, L. M.
2004-01-01
This paper presents our systematic study on an RNA-editing computational model of Genetic Algorithms (GA). This model is constructed based on several genetic editing characteristics that are gleaned from the RNA editing system as observed in several organisms. We have expanded the traditional Genetic Algorithm with artificial editing mechanisms as proposed by [15]. The incorporation of editing mechanisms provides a means for artificial agents with genetic descriptions to gain greater phenotypic plasticity, which may be environmentally regulated. The systematic study of this RNA-editing model has shed some light into the evolutionary implications of RNA editing and how to select proper RNA editors for design of more robust GAS. The results will also show promising applications to complex real-world problems. We expect that the framework proposed will both facilitate determining the evolutionary role of RNA editing in biology, and advance the current state of research in Evolutionary Computation.
Experiences with the PGAPack Parallel Genetic Algorithm library
Levine, D.; Hallstrom, P.; Noelle, D.; Walenz, B.
1997-07-01
PGAPack is the first widely distributed parallel genetic algorithm library. Since its release, several thousand copies have been distributed worldwide to interested users. In this paper we discuss the key components of the PGAPack design philosophy and present a number of application examples that use PGAPack.
Crossover Improvement for the Genetic Algorithm in Information Retrieval.
ERIC Educational Resources Information Center
Vrajitoru, Dana
1998-01-01
In information retrieval (IR), the aim of genetic algorithms (GA) is to help a system to find, in a huge documents collection, a good reply to a query expressed by the user. Analysis of phenomena seen during the implementation of a GA for IR has led to a new crossover operation, which is introduced and compared to other learning methods.…
A parallel genetic algorithm for the set partitioning problem
Levine, D.
1996-12-31
This paper describes a parallel genetic algorithm developed for the solution of the set partitioning problem- a difficult combinatorial optimization problem used by many airlines as a mathematical model for flight crew scheduling. The genetic algorithm is based on an island model where multiple independent subpopulations each run a steady-state genetic algorithm on their own subpopulation and occasionally fit strings migrate between the subpopulations. Tests on forty real-world set partitioning problems were carried out on up to 128 nodes of an IBM SP1 parallel computer. We found that performance, as measured by the quality of the solution found and the iteration on which it was found, improved as additional subpopulations were added to the computation. With larger numbers of subpopulations the genetic algorithm was regularly able to find the optimal solution to problems having up to a few thousand integer variables. In two cases, high- quality integer feasible solutions were found for problems with 36, 699 and 43,749 integer variables, respectively. A notable limitation we found was the difficulty solving problems with many constraints.
Applying Genetic Algorithms To Query Optimization in Document Retrieval.
ERIC Educational Resources Information Center
Horng, Jorng-Tzong; Yeh, Ching-Chang
2000-01-01
Proposes a novel approach to automatically retrieve keywords and then uses genetic algorithms to adapt the keyword weights. Discusses Chinese text retrieval, term frequency rating formulas, vector space models, bigrams, the PAT-tree structure for information retrieval, query vectors, and relevance feedback. (Author/LRW)
Hybrid methods using genetic algorithms for global optimization.
Renders, J M; Flasse, S P
1996-01-01
This paper discusses the trade-off between accuracy, reliability and computing time in global optimization. Particular compromises provided by traditional methods (Quasi-Newton and Nelder-Mead's simplex methods) and genetic algorithms are addressed and illustrated by a particular application in the field of nonlinear system identification. Subsequently, new hybrid methods are designed, combining principles from genetic algorithms and "hill-climbing" methods in order to find a better compromise to the trade-off. Inspired by biology and especially by the manner in which living beings adapt themselves to their environment, these hybrid methods involve two interwoven levels of optimization, namely evolution (genetic algorithms) and individual learning (Quasi-Newton), which cooperate in a global process of optimization. One of these hybrid methods appears to join the group of state-of-the-art global optimization methods: it combines the reliability properties of the genetic algorithms with the accuracy of Quasi-Newton method, while requiring a computation time only slightly higher than the latter. PMID:18263027
Optimizing core-shell nanoparticle catalysts with a genetic algorithm
NASA Astrophysics Data System (ADS)
Froemming, Nathan S.; Henkelman, Graeme
2009-12-01
A genetic algorithm is used with density functional theory to investigate the catalytic properties of 38- and 79-atom bimetallic core-shell nanoparticles for the oxygen reduction reaction. Each particle is represented by a two-gene chromosome that identifies its core and shell metals. The fitness of each particle is specified by how close the d-band level of the shell is to that of the Pt(111) surface, a catalyst known to be effective for oxygen reduction. The genetic algorithm starts by creating an initial population of random core-shell particles. The fittest particles are then bred and mutated to replace the least-fit particles in the population and form successive generations. The genetic algorithm iteratively refines the population of candidate catalysts more efficiently than Monte Carlo or random sampling, and we demonstrate how the average energy of the surface d-band can be tuned to that of Pt(111) by varying the core and shell metals. The binding of oxygen is a more direct measure of catalytic activity and is used to further investigate the fittest particles found by the genetic algorithm. The oxygen binding energy is found to vary linearly with the d-band level for particles with the same shell metal, but there is considerable variation in the trend across different shells. Several particles with oxygen binding energies similar to Pt(111) have already been investigated experimentally and found to be active for oxygen reduction. In this work, many other candidates are identified.
USING GENETIC ALGORITHMS TO DESIGN ENVIRONMENTALLY FRIENDLY PROCESSES
Genetic algorithm calculations are applied to the design of chemical processes to achieve improvements in environmental and economic performance. By finding the set of Pareto (i.e., non-dominated) solutions one can see how different objectives, such as environmental and economic ...
A Parallel Genetic Algorithm for Automated Electronic Circuit Design
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris; Norvig, Peter (Technical Monitor)
2000-01-01
We describe a parallel genetic algorithm (GA) that automatically generates circuit designs using evolutionary search. A circuit-construction programming language is introduced and we show how evolution can generate practical analog circuit designs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. We present experimental results as applied to analog filter and amplifier design tasks.
NASA Astrophysics Data System (ADS)
Zu, Yun-Xiao; Zhou, Jie
2012-01-01
Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate.
Genetic algorithm for extracting rules in discrete domain
Neruda, R.
1995-09-20
We propose a genetic algorithm that evolves families of rules from a set of examples. Inputs and outputs of the problem are discrete and nominal values which makes it difficult to use alternative learning methods that implicitly regard a metric space. A way how to encode sets of rules is presented together with special variants of genetic operators suitable for this encoding. The solution found by means of this process can be used as a core of a rule-based expert system.
A Genetic Algorithm Approach to Multiple-Response Optimization
Ortiz, Francisco; Simpson, James R.; Pignatiello, Joseph J.; Heredia-Langner, Alejandro
2004-10-01
Many designed experiments require the simultaneous optimization of multiple responses. A common approach is to use a desirability function combined with an optimization algorithm to find the most desirable settings of the controllable factors. However, as the problem grows even moderately in either the number of factors or the number of responses, conventional optimization algorithms can fail to find the global optimum. An alternative approach is to use a heuristic search procedure such as a genetic algorithm (GA). This paper proposes and develops a multiple-response solution technique using a GA in conjunction with an unconstrained desirability function. The GA requires that several parameters be determined in order for the algorithm to operate effectively. We perform a robust designed experiment in order to tune the genetic algorithm to perform well regardless of the complexity of the multiple-response optimization problem. The performance of the proposed GA method is evaluated and compared with the performance of the method that combines the desirability with the generalized reduced gradient (GRG) optimization. The evaluation shows that only the proposed GA approach consistently and effectively solves multiple-response problems of varying complexity.
Global structual optimizations of surface systems with a genetic algorithm
Chuang, Feng-Chuan
2005-05-01
Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Al{sub n} (n up to 23) were performed using a genetic algorithm coupled with a tight-binding potential. Second, a genetic algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of {radical}3 x {radical}3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems.
JavaGenes and Condor: Cycle-Scavenging Genetic Algorithms
NASA Technical Reports Server (NTRS)
Globus, Al; Langhirt, Eric; Livny, Miron; Ramamurthy, Ravishankar; Soloman, Marvin; Traugott, Steve
2000-01-01
A genetic algorithm code, JavaGenes, was written in Java and used to evolve pharmaceutical drug molecules and digital circuits. JavaGenes was run under the Condor cycle-scavenging batch system managing 100-170 desktop SGI workstations. Genetic algorithms mimic biological evolution by evolving solutions to problems using crossover and mutation. While most genetic algorithms evolve strings or trees, JavaGenes evolves graphs representing (currently) molecules and circuits. Java was chosen as the implementation language because the genetic algorithm requires random splitting and recombining of graphs, a complex data structure manipulation with ample opportunities for memory leaks, loose pointers, out-of-bound indices, and other hard to find bugs. Java garbage-collection memory management, lack of pointer arithmetic, and array-bounds index checking prevents these bugs from occurring, substantially reducing development time. While a run-time performance penalty must be paid, the only unacceptable performance we encountered was using standard Java serialization to checkpoint and restart the code. This was fixed by a two-day implementation of custom checkpointing. JavaGenes is minimally integrated with Condor; in other words, JavaGenes must do its own checkpointing and I/O redirection. A prototype Java-aware version of Condor was developed using standard Java serialization for checkpointing. For the prototype to be useful, standard Java serialization must be significantly optimized. JavaGenes is approximately 8700 lines of code and a few thousand JavaGenes jobs have been run. Most jobs ran for a few days. Results include proof that genetic algorithms can evolve directed and undirected graphs, development of a novel crossover operator for graphs, a paper in the journal Nanotechnology, and another paper in preparation.
Sobel, E.; Lange, K.; O`Connell, J.R.
1996-12-31
Haplotyping is the logical process of inferring gene flow in a pedigree based on phenotyping results at a small number of genetic loci. This paper formalizes the haplotyping problem and suggests four algorithms for haplotype reconstruction. These algorithms range from exhaustive enumeration of all haplotype vectors to combinatorial optimization by simulated annealing. Application of the algorithms to published genetic analyses shows that manual haplotyping is often erroneous. Haplotyping is employed in screening pedigrees for phenotyping errors and in positional cloning of disease genes from conserved haplotypes in population isolates. 26 refs., 6 figs., 3 tabs.
Optimal Design of Geodetic Network Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Vajedian, Sanaz; Bagheri, Hosein
2010-05-01
A geodetic network is a network which is measured exactly by techniques of terrestrial surveying based on measurement of angles and distances and can control stability of dams, towers and their around lands and can monitor deformation of surfaces. The main goals of an optimal geodetic network design process include finding proper location of control station (First order Design) as well as proper weight of observations (second order observation) in a way that satisfy all the criteria considered for quality of the network with itself is evaluated by the network's accuracy, reliability (internal and external), sensitivity and cost. The first-order design problem, can be dealt with as a numeric optimization problem. In this designing finding unknown coordinates of network stations is an important issue. For finding these unknown values, network geodetic observations that are angle and distance measurements must be entered in an adjustment method. In this regard, using inverse problem algorithms is needed. Inverse problem algorithms are methods to find optimal solutions for given problems and include classical and evolutionary computations. The classical approaches are analytical methods and are useful in finding the optimum solution of a continuous and differentiable function. Least squares (LS) method is one of the classical techniques that derive estimates for stochastic variables and their distribution parameters from observed samples. The evolutionary algorithms are adaptive procedures of optimization and search that find solutions to problems inspired by the mechanisms of natural evolution. These methods generate new points in the search space by applying operators to current points and statistically moving toward more optimal places in the search space. Genetic algorithm (GA) is an evolutionary algorithm considered in this paper. This algorithm starts with definition of initial population, and then the operators of selection, replication and variation are applied to obtain the solution of problem. In this research, the first step is to design a geodetic network and do the observations of the distances and angles between network's stations. The second step is to use the optimization algorithms to estimate unknown values of stations' coordinates, with regards to calculation equations of length and angle. The result indicates that The Genetic algorithms have been successfully employed for solving inverse problems in engineering disciplines. And it seems that many complex problems can be better solved using genetic algorithms than those of using conventional methods.
A Dedicated Genetic Algorithm for Localization of Moving Magnetic Objects
Alimi, Roger; Weiss, Eyal; Ram-Cohen, Tsuriel; Geron, Nir; Yogev, Idan
2015-01-01
A dedicated Genetic Algorithm (GA) has been developed to localize the trajectory of ferromagnetic moving objects within a bounded perimeter. Localization of moving ferromagnetic objects is an important tool because it can be employed in situations when the object is obscured. This work is innovative for two main reasons: first, the GA has been tuned to provide an accurate and fast solution to the inverse magnetic field equations problem. Second, the algorithm has been successfully tested using real-life experimental data. Very accurate trajectory localization estimations were obtained over a wide range of scenarios. PMID:26393598
a Genetic Algorithm for Urban Transit Routing Problem
NASA Astrophysics Data System (ADS)
Chew, Joanne Suk Chun; Lee, Lai Soon
The Urban Transit Routing Problem (UTRP) involves solving a set of transit route networks, which proved to be a highly complex multi-constrained problem. In this study, a bus route network to find an efficient network to meet customer demands given information on link travel times is considered. An evolutionary optimization technique, called Genetic Algorithm is proposed to solve the UTRP. The main objective is to minimize the passenger costs where the quality of the route sets is evaluated by a set of parameters. Initial computational experiments show that the proposed algorithm performs better than the benchmark results for Mandl's problems.
Mass spectrometry cancer data classification using wavelets and genetic algorithm.
Nguyen, Thanh; Nahavandi, Saeid; Creighton, Douglas; Khosravi, Abbas
2015-12-21
This paper introduces a hybrid feature extraction method applied to mass spectrometry (MS) data for cancer classification. Haar wavelets are employed to transform MS data into orthogonal wavelet coefficients. The most prominent discriminant wavelets are then selected by genetic algorithm (GA) to form feature sets. The combination of wavelets and GA yields highly distinct feature sets that serve as inputs to classification algorithms. Experimental results show the robustness and significant dominance of the wavelet-GA against competitive methods. The proposed method therefore can be applied to cancer classification models that are useful as real clinical decision support systems for medical practitioners. PMID:26611346
A novel pipeline based FPGA implementation of a genetic algorithm
NASA Astrophysics Data System (ADS)
Thirer, Nonel
2014-05-01
To solve problems when an analytical solution is not available, more and more bio-inspired computation techniques have been applied in the last years. Thus, an efficient algorithm is the Genetic Algorithm (GA), which imitates the biological evolution process, finding the solution by the mechanism of "natural selection", where the strong has higher chances to survive. A genetic algorithm is an iterative procedure which operates on a population of individuals called "chromosomes" or "possible solutions" (usually represented by a binary code). GA performs several processes with the population individuals to produce a new population, like in the biological evolution. To provide a high speed solution, pipelined based FPGA hardware implementations are used, with a nstages pipeline for a n-phases genetic algorithm. The FPGA pipeline implementations are constraints by the different execution time of each stage and by the FPGA chip resources. To minimize these difficulties, we propose a bio-inspired technique to modify the crossover step by using non identical twins. Thus two of the chosen chromosomes (parents) will build up two new chromosomes (children) not only one as in classical GA. We analyze the contribution of this method to reduce the execution time in the asynchronous and synchronous pipelines and also the possibility to a cheaper FPGA implementation, by using smaller populations. The full hardware architecture for a FPGA implementation to our target ALTERA development card is presented and analyzed.
Using genetic algorithms to construct a network for financial prediction
NASA Astrophysics Data System (ADS)
Patel, Devesh
1996-03-01
Traditional forecasting models such as the Box-Jenkins ARIMA model are almost all based on models that assume a linear relationship amongst variables and cannot approximate the non- linear relationship that exists amongst variables in real-world data such as stock-price data. Artificial neural networks, on the other hand, consist of two or more levels of nonlinearity that have been successfully used to approximate the underlying relationships of time series data. Neural networks however, pose a design problem: their optimum topology and training rule parameters including learning rate and momentum, for the problem at hand need to be determined. In this paper, we use genetic algorithms to determine these design parameters. In general genetic algorithms are an optimization method that find solutions to a problem by an evolutionary process based on natural selection. The genetic algorithm searches through the network parameter space and the neural network learning algorithm evaluates the selected parameters. We then use the optimally configured network to predict the stock market price of a blue-chip company on the UK market.
Strain gage selection in loads equations using a genetic algorithm
NASA Technical Reports Server (NTRS)
1994-01-01
Traditionally, structural loads are measured using strain gages. A loads calibration test must be done before loads can be accurately measured. In one measurement method, a series of point loads is applied to the structure, and loads equations are derived via the least squares curve fitting algorithm using the strain gage responses to the applied point loads. However, many research structures are highly instrumented with strain gages, and the number and selection of gages used in a loads equation can be problematic. This paper presents an improved technique using a genetic algorithm to choose the strain gages used in the loads equations. Also presented are a comparison of the genetic algorithm performance with the current T-value technique and a variant known as the Best Step-down technique. Examples are shown using aerospace vehicle wings of high and low aspect ratio. In addition, a significant limitation in the current methods is revealed. The genetic algorithm arrived at a comparable or superior set of gages with significantly less human effort, and could be applied in instances when the current methods could not.
Genetic algorithms and their use in Geophysical Problems
Parker, Paul B.
1999-04-01
Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.
An Airborne Conflict Resolution Approach Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Mondoloni, Stephane; Conway, Sheila
2001-01-01
An airborne conflict resolution approach is presented that is capable of providing flight plans forecast to be conflict-free with both area and traffic hazards. This approach is capable of meeting constraints on the flight plan such as required times of arrival (RTA) at a fix. The conflict resolution algorithm is based upon a genetic algorithm, and can thus seek conflict-free flight plans meeting broader flight planning objectives such as minimum time, fuel or total cost. The method has been applied to conflicts occurring 6 to 25 minutes in the future in climb, cruise and descent phases of flight. The conflict resolution approach separates the detection, trajectory generation and flight rules function from the resolution algorithm. The method is capable of supporting pilot-constructed resolutions, cooperative and non-cooperative maneuvers, and also providing conflict resolution on trajectories forecast by an onboard FMC.
RCQ-GA: RDF Chain Query Optimization Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Hogenboom, Alexander; Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay
The application of Semantic Web technologies in an Electronic Commerce environment implies a need for good support tools. Fast query engines are needed for efficient querying of large amounts of data, usually represented using RDF. We focus on optimizing a special class of SPARQL queries, the so-called RDF chain queries. For this purpose, we devise a genetic algorithm called RCQ-GA that determines the order in which joins need to be performed for an efficient evaluation of RDF chain queries. The approach is benchmarked against a two-phase optimization algorithm, previously proposed in literature. The more complex a query is, the more RCQ-GA outperforms the benchmark in solution quality, execution time needed, and consistency of solution quality. When the algorithms are constrained by a time limit, the overall performance of RCQ-GA compared to the benchmark further improves.
Design of an acoustic metamaterial lens using genetic algorithms.
Li, Dennis; Zigoneanu, Lucian; Popa, Bogdan-Ioan; Cummer, Steven A
2012-10-01
The present work demonstrates a genetic algorithm approach to optimizing the effective material parameters of an acoustic metamaterial. The target device is an acoustic gradient index (GRIN) lens in air, which ideally possesses a maximized index of refraction, minimized frequency dependence of the material properties, and minimized acoustic impedance mismatch. Applying this algorithm results in complex designs with certain common features, and effective material properties that are better than those present in previous designs. After modifying the optimized unit cell designs to make them suitable for fabrication, a two-dimensional lens was built and experimentally tested. Its performance was in good agreement with simulations. Overall, the optimization approach was able to improve the refractive index but at the cost of increased frequency dependence. The optimal solutions found by the algorithm provide a numerical description of how the material parameters compete with one another and thus describes the level of performance achievable in the GRIN lens. PMID:23039548
Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Haith, Gary L.; Clancy, Daniel (Technical Monitor)
2002-01-01
We present results from a study comparing a recently developed coevolutionary genetic algorithm (CGA) against a set of evolutionary algorithms using a suite of multiobjective optimization benchmarks. The CGA embodies competitive coevolution and employs a simple, straightforward target population representation and fitness calculation based on developmental theory of learning. Because of these properties, setting up the additional population is trivial making implementation no more difficult than using a standard GA. Empirical results using a suite of two-objective test functions indicate that this CGA performs well at finding solutions on convex, nonconvex, discrete, and deceptive Pareto-optimal fronts, while giving respectable results on a nonuniform optimization. On a multimodal Pareto front, the CGA finds a solution that dominates solutions produced by eight other algorithms, yet the CGA has poor coverage across the Pareto front.
A Multi-Objective Genetic Algorithm for Outlier Removal.
Nahum, Oren E; Yosipof, Abraham; Senderowitz, Hanoch
2015-12-28
Quantitative structure activity relationship (QSAR) or quantitative structure property relationship (QSPR) models are developed to correlate activities for sets of compounds with their structure-derived descriptors by means of mathematical models. The presence of outliers, namely, compounds that differ in some respect from the rest of the data set, compromise the ability of statistical methods to derive QSAR models with good prediction statistics. Hence, outliers should be removed from data sets prior to model derivation. Here we present a new multi-objective genetic algorithm for the identification and removal of outliers based on the k nearest neighbors (kNN) method. The algorithm was used to remove outliers from three different data sets of pharmaceutical interest (logBBB, factor 7 inhibitors, and dihydrofolate reductase inhibitors), and its performances were compared with those of five other methods for outlier removal. The results suggest that the new algorithm provides filtered data sets that (1) better maintain the internal diversity of the parent data sets and (2) give rise to QSAR models with much better prediction statistics. Equally good filtered data sets in terms of these metrics were obtained when another objective function was added to the algorithm (termed "preservation"), forcing it to remove certain compounds with low probability only. This option is highly useful when specific compounds should be preferably kept in the final data set either because they have favorable activities or because they represent interesting molecular scaffolds. We expect this new algorithm to be useful in future QSAR applications. PMID:26553402
Applications of Genetic Algorithms to Solar Coronal Modeling
NASA Astrophysics Data System (ADS)
Gibson, S.; Charbonneau, P.
1996-05-01
Genetic algorithms are efficient and flexible means of attacking optimization problems that would otherwise be computationally prohibitive. Consider a model that represents an observable quantity in terms of a few parameters, with an associated chi (2) measuring goodness of fit with respect to data. If the modeled observable is non-linear in the parameters, there can exist a degeneracy of minimum chi (2) in parameter space. It is then essential to understand the location and extent of this degeneracy in order to find the global optimum and quantify the degeneracy error around it. Traditional methods of spanning parameter space such as a grid search or a Monte Carlo approach scale exponentially with the number of parameters, and waste a great deal of computational time looking at ``un-fit'' solutions. Genetic algorithms, on the other hand, converge rapidly onto regions of minimum chi (2) while continuously generate ``mutant solutions'', allowing an efficient and comprehensive exploration of parameter space. Our aim has been to develop an approach that simultaneously yields a best fit solution and global error estimates, by modifying and extending standard genetic algorithm-based techniques. We fit two magnetostatic models of the solar minimum corona to observations in white light. The first model allows horizontal bulk currents and the second also allows sheet currents enclosing and extending out from the equatorial helmet streamer. Using our genetic algorithm approach, we map out the degeneracy of model parameters that reproduce observations well. The flexibility of genetic algorithms facilitates incorporating the additional observational constraint of photospheric magnetic flux, reducing the degeneracy of solutions to a range represented by reasonable error bars on the model predictions. By using genetic algorithms we are able to identify and constrain the degeneracy inherent to the models, a task, which, particularly for the more complex second model, would be impractical using a traditional technique. The ultimate result is a greater understanding of the large scale structure of the solar corona, providing clues to the mechanisms heating the corona and accelerating the solar wind.
NASA Astrophysics Data System (ADS)
Windarto, Indratno, S. W.; Nuraini, N.; Soewono, E.
2014-02-01
Genetic algorithm is an optimization method based on the principles of genetics and natural selection in life organisms. The algorithm begins by defining the optimization variables, defining the cost function (in a minimization problem) or the fitness function (in a maximization problem) and selecting genetic algorithm parameters. The main procedures in genetic algorithm are generating initial population, selecting some chromosomes (individual) as parent's individual, mating, and mutation. In this paper, binary and continuous genetic algorithms were implemented to estimate growth rate and carrying capacity parameter from poultry data cited from literature. For simplicity, all genetic algorithm parameters (selection rate and mutation rate) are set to be constant along implementation of the algorithm. It was found that by selecting suitable mutation rate, both algorithms can estimate these parameters well. Suitable range for mutation rate in continuous genetic algorithm is wider than the binary one.
The Genetic Algorithm: Searching for Planets around Pulsars
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph W.; Cordes, James M.; Novak, Jurica
1993-12-01
We discuss the general problem of finding multiple planets around pulsars through analysis of pulsar timing data. Fitting a full Keplerian orbit requires a search through four non-linear parameters for each planet. This problem is especially difficult when there is a large range of planetary masses and orbital periods. As one means for attacking the search problem, we have considered genetic algorithms, which are a general method for optimization that make use of biological-like genetic concepts like ``survival of the fittest,'' mutation, and chromosome exchange. Through these means, the algorithm searches parameter space in the same way that life finds optimal niches in the biological environment: through incremental rewarding of successful genetic variations. We show examples of the genetic algorithm as applied to simulated pulsar data and we compare its performance with alternative methods such as grid searches, nonlinear least squares fitting, the simplex method, hill-climbing, and simulated annealing. We also show preliminary application to real pulsar data.
Scope of Gradient and Genetic Algorithms in Multivariable Function Optimization
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali; Sen, S. K.
2007-01-01
Global optimization of a multivariable function - constrained by bounds specified on each variable and also unconstrained - is an important problem with several real world applications. Deterministic methods such as the gradient algorithms as well as the randomized methods such as the genetic algorithms may be employed to solve these problems. In fact, there are optimization problems where a genetic algorithm/an evolutionary approach is preferable at least from the quality (accuracy) of the results point of view. From cost (complexity) point of view, both gradient and genetic approaches are usually polynomial-time; there are no serious differences in this regard, i.e., the computational complexity point of view. However, for certain types of problems, such as those with unacceptably erroneous numerical partial derivatives and those with physically amplified analytical partial derivatives whose numerical evaluation involves undesirable errors and/or is messy, a genetic (stochastic) approach should be a better choice. We have presented here the pros and cons of both the approaches so that the concerned reader/user can decide which approach is most suited for the problem at hand. Also for the function which is known in a tabular form, instead of an analytical form, as is often the case in an experimental environment, we attempt to provide an insight into the approaches focusing our attention toward accuracy. Such an insight will help one to decide which method, out of several available methods, should be employed to obtain the best (least error) output. *
Threshold matrix for digital halftoning by genetic algorithm optimization
NASA Astrophysics Data System (ADS)
Alander, Jarmo T.; Mantere, Timo J.; Pyylampi, Tero
1998-10-01
Digital halftoning is used both in low and high resolution high quality printing technologies. Our method is designed to be mainly used for low resolution ink jet marking machines to produce both gray tone and color images. The main problem with digital halftoning is pink noise caused by the human eye's visual transfer function. To compensate for this the random dot patterns used are optimized to contain more blue than pink noise. Several such dot pattern generator threshold matrices have been created automatically by using genetic algorithm optimization, a non-deterministic global optimization method imitating natural evolution and genetics. A hybrid of genetic algorithm with a search method based on local backtracking was developed together with several fitness functions evaluating dot patterns for rectangular grids. By modifying the fitness function, a family of dot generators results, each with its particular statistical features. Several versions of genetic algorithms, backtracking and fitness functions were tested to find a reasonable combination. The generated threshold matrices have been tested by simulating a set of test images using the Khoros image processing system. Even though the work was focused on developing low resolution marking technology, the resulting family of dot generators can be applied also in other halftoning application areas including high resolution printing technology.
Application of coevolutionary genetic algorithms for multiobjective optimization
NASA Astrophysics Data System (ADS)
Liu, Jian-guo; Li, Zu-shu; Wu, Wei-ping
2007-12-01
Multiobjective optimization is clearly one of the most important classes of problems in science and engineering. The solution of real problem involved in multiobjective optimization must satisfy all optimization objectives simultaneously, and in general the solution is a set of indeterminacy points. The task of multiobjective optimization is to estimate the distribution of this solution set, then to find the satisfying solution in it. Many methods solving multiobjective optimization using genetic algorithm have been proposed in recent twenty years. But these approaches tend to work negatively, causing that the population converges to small number of solutions due to the random genetic drift. To avoid this phenomenon, a multiobjective coevolutionary genetic algorithm (MoCGA) for multiobjective optimization is proposed. The primary design goal of the proposed approach is to produce a reasonably good approximation of the true Pareto front of a problem. In the algorithms, each objective corresponds to a population. At each generation, these populations compete among themselves. An ecological population density competition equation is used for reference to describe the relation between multiple objectives and to direct the adjustment over the relation at individual and population levels. The proposed approach store the Pareto optimal point obtained along the evolutionary process into external set. The proposed approach is validated using Schaffer's test function f II and it is compared with the Niched Pareto GA (nPGA). Simulation experiments prove that the algorithm has a better performance in finding the Pareto solutions, and the MoCGA can have advantages over the other algorithms under consideration in convergence to the Pareto-optimal front.
Locomotive assignment problem with train precedence using genetic algorithm
NASA Astrophysics Data System (ADS)
Noori, Siamak; Ghannadpour, Seyed Farid
2012-07-01
This paper aims to study the locomotive assignment problem which is very important for railway companies, in view of high cost of operating locomotives. This problem is to determine the minimum cost assignment of homogeneous locomotives located in some central depots to a set of pre-scheduled trains in order to provide sufficient power to pull the trains from their origins to their destinations. These trains have different degrees of priority for servicing, and the high class of trains should be serviced earlier than others. This problem is modeled using vehicle routing and scheduling problem where trains representing the customers are supposed to be serviced in pre-specified hard/soft fuzzy time windows. A two-phase approach is used which, in the first phase, the multi-depot locomotive assignment is converted to a set of single depot problems, and after that, each single depot problem is solved heuristically by a hybrid genetic algorithm. In the genetic algorithm, various heuristics and efficient operators are used in the evolutionary search. The suggested algorithm is applied to solve the medium sized numerical example to check capabilities of the model and algorithm. Moreover, some of the results are compared with those solutions produced by branch-and-bound technique to determine validity and quality of the model. Results show that suggested approach is rather effective in respect of quality and time.
Users guide to the PGAPack parallel genetic algorithm library
Levine, D.
1996-01-01
PGAPack is a parallel genetic algorithm library that is intended to provide most capabilities desired in a genetic algorithm package, in an integrated, seamless, and portable manner. Key features of PGAPack are as follows: Ability to be called from Fortran or C. Executable on uniprocessors, multiprocessors, multicomputers, and workstation networks. Binary-, integer-, real-, and character-valued native data types. Object-oriented data structure neutral design. Parameterized population replacement. Multiple choices for selection, crossover, and mutation operators. Easy integration of hill-climbing heuristics. Easy-to-use interface for novice and application users. Multiple levels of access for expert users. Full extensibility to support custom operators and new data types. Extensive debugging facilities. Large set of example problems.
Strain gage selection in loads using a genetic algorithm
Nelson, S. II
1994-12-31
Traditionally, structural loads are measured using strain gages. Many research structures such as airplane wings are highly instrumented with strain gages, and the number and selection of gages used in a loads equation can be problematic. A technique using a genetic algorithm to choose the strain gages for in-flight loads is presented. This technique is compared with the current T-value technique and a variant known as the Best Step-down technique. Additionally, a significant limitation in the current methods is revealed. The genetic algorithm arrived at a comparable or superior set of gages with significantly less human effort, and could be applied in instances when current methods could not.
A sustainable genetic algorithm for satellite resource allocation
NASA Technical Reports Server (NTRS)
Abbott, R. J.; Campbell, M. L.; Krenz, W. C.
1995-01-01
A hybrid genetic algorithm is used to schedule tasks for 8 satellites, which can be modelled as a robot whose task is to retrieve objects from a two dimensional field. The objective is to find a schedule that maximizes the value of objects retrieved. Typical of the real-world tasks to which this corresponds is the scheduling of ground contacts for a communications satellite. An important feature of our application is that the amount of time available for running the scheduler is not necessarily known in advance. This requires that the scheduler produce reasonably good results after a short period but that it also continue to improve its results if allowed to run for a longer period. We satisfy this requirement by developing what we call a sustainable genetic algorithm.
Designing a competent simple genetic algorithm for search and optimization
NASA Astrophysics Data System (ADS)
Reed, Patrick; Minsker, Barbara; Goldberg, David E.
2000-12-01
Simple genetic algorithms have been used to solve many water resources problems, but specifying the parameters that control how adaptive search is performed can be a difficult and time-consuming trial-and-error process. However, theoretical relationships for population sizing and timescale analysis have been developed that can provide pragmatic tools for vastly limiting the number of parameter combinations that must be considered. The purpose of this technical note is to summarize these relationships for the water resources community and to illustrate their practical utility in a long-term groundwater monitoring design application. These relationships, which model the effects of the primary operators of a simple genetic algorithm (selection, recombination, and mutation), provide a highly efficient method for ensuring convergence to near-optimal or optimal solutions. Application of the method to a monitoring design test case identified robust parameter values using only three trial runs.
A genetic algorithm solution to the unit commitment problem
Kazarlis, S.A.; Bakirtzis, A.G.; Petridis, V.
1996-02-01
This paper presents a Genetic Algorithm (GA) solution to the Unit Commitment problem. GAs are general purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms such as natural selection, genetic recombination and survival of the fittest. A simple Ga algorithm implementation using the standard crossover and mutation operators could locate near optimal solutions but in most cases failed to converge to the optimal solution. However, using the Varying Quality Function technique and adding problem specific operators, satisfactory solutions to the Unit Commitment problem were obtained. Test results for systems of up to 100 units and comparisons with results obtained using Lagrangian Relaxation and Dynamic Programming are also reported.
Adaptive Process Control with Fuzzy Logic and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive process control using fuzzy logic and genetic algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Optimum Actuator Selection with a Genetic Algorithm for Aircraft Control
NASA Technical Reports Server (NTRS)
Rogers, James L.
2004-01-01
The placement of actuators on a wing determines the control effectiveness of the airplane. One approach to placement maximizes the moments about the pitch, roll, and yaw axes, while minimizing the coupling. For example, the desired actuators produce a pure roll moment without at the same time causing much pitch or yaw. For a typical wing, there is a large set of candidate locations for placing actuators, resulting in a substantially larger number of combinations to examine in order to find an optimum placement satisfying the mission requirements and mission constraints. A genetic algorithm has been developed for finding the best placement for four actuators to produce an uncoupled pitch moment. The genetic algorithm has been extended to find the minimum number of actuators required to provide uncoupled pitch, roll, and yaw control. A simplified, untapered, unswept wing is the model for each application.
Quantum control using genetic algorithms in quantum communication: superdense coding
NASA Astrophysics Data System (ADS)
DomÃnguez-Serna, Francisco; Rojas, Fernando
2015-06-01
We present a physical example model of how Quantum Control with genetic algorithms is applied to implement the quantum superdense code protocol. We studied a model consisting of two quantum dots with an electron with spin, including spin-orbit interaction. The electron and the spin get hybridized with the site acquiring two degrees of freedom, spin and charge. The system has tunneling and site energies as time dependent control parameters that are optimized by means of genetic algorithms to prepare a hybrid Bell-like state used as a transmission channel. This state is transformed to obtain any state of the four Bell basis as required by superdense protocol to transmit two bits of classical information. The control process protocol is equivalent to implement one of the quantum gates in the charge subsystem. Fidelities larger than 99.5% are achieved for the hybrid entangled state preparation and the superdense operations.
Genetic Algorithm Application in Optimization of Wireless Sensor Networks
Norouzi, Ali; Zaim, A. Halim
2014-01-01
There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs. PMID:24693235
OPTIMIZATION OF LONG RURAL FEEDERS USING A GENETIC ALGORITHM
Wishart, Michael; Ledwich, Gerard; Ghosh, Arindam; Ivanovich, Grujica
2010-06-15
This paper describes the optimization of conductor size and the voltage regulator location and magnitude of long rural distribution lines. The optimization minimizes the lifetime cost of the lines, including capital costs and losses while observing voltage drop and operational constraints using a Genetic Algorithm (GA). The GA optimization is applied to a real Single Wire Earth Return (SWER) network in regional Queensland and results are presented.
First flights of genetic-algorithm Kitty Hawk
Goldberg, D.E.
1994-12-31
The design of complex systems requires an effective methodology of invention. This paper considers the methodology of the Wright brothers in inventing the powered airplane and suggests how successes in the design of genetic algorithms have come at the hands of a Wright-brothers-like approach. Recent reliable subquadratic results in solving hard problems with nontraditional GAs and predictions of the limits of simple GAs are presented as two accomplishments achieved in this manner.
Investigation of range extension with a genetic algorithm
Austin, A. S., LLNL
1998-03-04
Range optimization is one of the tasks associated with the development of cost- effective, stand-off, air-to-surface munitions systems. The search for the optimal input parameters that will result in the maximum achievable range often employ conventional Monte Carlo techniques. Monte Carlo approaches can be time-consuming, costly, and insensitive to mutually dependent parameters and epistatic parameter effects. An alternative search and optimization technique is available in genetic algorithms. In the experiments discussed in this report, a simplified platform motion simulator was the fitness function for a genetic algorithm. The parameters to be optimized were the inputs to this motion generator and the simulator`s output (terminal range) was the fitness measure. The parameters of interest were initial launch altitude, initial launch speed, wing angle-of-attack, and engine ignition time. The parameter values the GA produced were validated by Monte Carlo investigations employing a full-scale six-degree-of-freedom (6 DOF) simulation. The best results produced by Monte Carlo processes using values based on the GA derived parameters were within - 1% of the ranges generated by the simplified model using the evolved parameter values. This report has five sections. Section 2 discusses the motivation for the range extension investigation and reviews the surrogate flight model developed as a fitness function for the genetic algorithm tool. Section 3 details the representation and implementation of the task within the genetic algorithm framework. Section 4 discusses the results. Section 5 concludes the report with a summary and suggestions for further research.
A quantum genetic algorithm with quantum crossover and mutation operations
NASA Astrophysics Data System (ADS)
SaiToh, Akira; Rahimi, Robabeh; Nakahara, Mikio
2013-11-01
In the context of evolutionary quantum computing in the literal meaning, a quantum crossover operation has not been introduced so far. Here, we introduce a novel quantum genetic algorithm that has a quantum crossover procedure performing crossovers among all chromosomes in parallel for each generation. A complexity analysis shows that a quadratic speedup is achieved over its classical counterpart in the dominant factor of the run time to handle each generation.
A meta-learning system based on genetic algorithms
NASA Astrophysics Data System (ADS)
Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain
2004-04-01
The design of an efficient machine learning process through self-adaptation is a great challenge. The goal of meta-learning is to build a self-adaptive learning system that is constantly adapting to its specific (and dynamic) environment. To that end, the meta-learning mechanism must improve its bias dynamically by updating the current learning strategy in accordance with its available experiences or meta-knowledge. We suggest using genetic algorithms as the basis of an adaptive system. In this work, we propose a meta-learning system based on a combination of the a priori and a posteriori concepts. A priori refers to input information and knowledge available at the beginning in order to built and evolve one or more sets of parameters by exploiting the context of the system"s information. The self-learning component is based on genetic algorithms and neural Darwinism. A posteriori refers to the implicit knowledge discovered by estimation of the future states of parameters and is also applied to the finding of optimal parameters values. The in-progress research presented here suggests a framework for the discovery of knowledge that can support human experts in their intelligence information assessment tasks. The conclusion presents avenues for further research in genetic algorithms and their capability to learn to learn.
A genetic algorithm to reduce stream channel cross section data
Berenbrock, C.
2006-01-01
A genetic algorithm (GA) was used to reduce cross section data for a hypothetical example consisting of 41 data points and for 10 cross sections on the Kootenai River. The number of data points for the Kootenai River cross sections ranged from about 500 to more than 2,500. The GA was applied to reduce the number of data points to a manageable dataset because most models and other software require fewer than 100 data points for management, manipulation, and analysis. Results indicated that the program successfully reduced the data. Fitness values from the genetic algorithm were lower (better) than those in a previous study that used standard procedures of reducing the cross section data. On average, fitnesses were 29 percent lower, and several were about 50 percent lower. Results also showed that cross sections produced by the genetic algorithm were representative of the original section and that near-optimal results could be obtained in a single run, even for large problems. Other data also can be reduced in a method similar to that for cross section data.
Wireless LAN Load-Balancing with Genetic Algorithms
NASA Astrophysics Data System (ADS)
Scully, Ted; Brown, Kenneth N.
In recent years IEEE 802.11 wireless local area networks (WLANs) have become increasingly popular. Consequently, there has also been a surge in the number of end-users. The IEEE 802.11 standards do not provide any mechanism for load distribution and as a result user quality of service (QoS) degrades significantly in congested networks where large numbers of users tend to congregate in the same area. The objective of this paper is to provide load balancing techniques that optimise network throughput in areas of user congestion, thereby improving user QoS. Specifically, we develop micro-genetic and standard genetic algorithm approaches for the WLAN load balancing problem, and we analyse their strengths and weaknesses. We also compare the performance of these algorithms with schemes currently in use in IEEE 802.11 WLANs. The results demonstrate that the proposed genetic algorithms give a significant improvement in performance over current techniques. We also show that this improvement is achieved without penalising any class of user.
MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm
Elizarraras, Omar; Panduro, Marco; Méndez, Aldo L.
2014-01-01
The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339
MAC protocol for ad hoc networks using a genetic algorithm.
Elizarraras, Omar; Panduro, Marco; Méndez, Aldo L; Reyna, Alberto
2014-01-01
The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339
Genetic Algorithm Optimizes Q-LAW Control Parameters
NASA Technical Reports Server (NTRS)
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
Automatic Data Filter Customization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Mandrake, Lukas
2013-01-01
This work predicts whether a retrieval algorithm will usefully determine CO2 concentration from an input spectrum of GOSAT (Greenhouse Gases Observing Satellite). This was done to eliminate needless runtime on atmospheric soundings that would never yield useful results. A space of 50 dimensions was examined for predictive power on the final CO2 results. Retrieval algorithms are frequently expensive to run, and wasted effort defeats requirements and expends needless resources. This algorithm could be used to help predict and filter unneeded runs in any computationally expensive regime. Traditional methods such as the Fischer discriminant analysis and decision trees can attempt to predict whether a sounding will be properly processed. However, this work sought to detect a subsection of the dimensional space that can be simply filtered out to eliminate unwanted runs. LDAs (linear discriminant analyses) and other systems examine the entire data and judge a "best fit," giving equal weight to complex and problematic regions as well as simple, clear-cut regions. In this implementation, a genetic space of "left" and "right" thresholds outside of which all data are rejected was defined. These left/right pairs are created for each of the 50 input dimensions. A genetic algorithm then runs through countless potential filter settings using a JPL computer cluster, optimizing the tossed-out data s yield (proper vs. improper run removal) and number of points tossed. This solution is robust to an arbitrary decision boundary within the data and avoids the global optimization problem of whole-dataset fitting using LDA or decision trees. It filters out runs that would not have produced useful CO2 values to save needless computation. This would be an algorithmic preprocessing improvement to any computationally expensive system.
Optimal design of link systems using successive zooming genetic algorithm
NASA Astrophysics Data System (ADS)
Kwon, Young-Doo; Sohn, Chang-hyun; Kwon, Soon-Bum; Lim, Jae-gyoo
2009-07-01
Link-systems have been around for a long time and are still used to control motion in diverse applications such as automobiles, robots and industrial machinery. This study presents a procedure involving the use of a genetic algorithm for the optimal design of single four-bar link systems and a double four-bar link system used in diesel engine. We adopted the Successive Zooming Genetic Algorithm (SZGA), which has one of the most rapid convergence rates among global search algorithms. The results are verified by experiment and the Recurdyn dynamic motion analysis package. During the optimal design of single four-bar link systems, we found in the case of identical input/output (IO) angles that the initial and final configurations show certain symmetry. For the double link system, we introduced weighting factors for the multi-objective functions, which minimize the difference between output angles, providing balanced engine performance, as well as the difference between final output angle and the desired magnitudes of final output angle. We adopted a graphical method to select a proper ratio between the weighting factors.
Library design using genetic algorithms for catalyst discovery and optimization
NASA Astrophysics Data System (ADS)
Clerc, Frederic; Lengliz, Mourad; Farrusseng, David; Mirodatos, Claude; Pereira, Sílvia R. M.; Rakotomalala, Ricco
2005-06-01
This study reports a detailed investigation of catalyst library design by genetic algorithm (GA). A methodology for assessing GA configurations is described. Operators, which promote the optimization speed while being robust to noise and outliers, are revealed through statistical studies. The genetic algorithms were implemented in GA platform software called OptiCat, which enables the construction of custom-made workflows using a tool box of operators. Two separate studies were carried out (i) on a virtual benchmark and (ii) on real surface response which is derived from HT screening. Additionally, we report a methodology to model a complex surface response by binning the search space in small zones that are then independently modeled by linear regression. In contrast to artificial neural networks, this approach allows one to obtain an explicit model in an analogical form that can be further used in Excel or entered in OptiCat to perform simulations. While speeding the implementation of a hybrid algorithm combining a GA with a knowledge-based extraction engine is described, while speeding up the optimization process by means of virtual prescreening the hybrid GA enables one to open the "black-box" by providing knowledge as a set of association rules.
Turbine blade fixture design using kinematic methods and genetic algorithms
NASA Astrophysics Data System (ADS)
Bausch, John J., III
2000-10-01
The design of fixtures for turbine blades is a difficult problem even for experience toolmakers. Turbine blades are characterized by complex 3D surfaces, high performance materials that are difficult to manufacture, close tolerance finish requirements, and high precision machining accuracy. Tool designers typically rely on modified designs based on experience, but have no analytical tools to guide or even evaluate their designs. This paper examines the application of kinematic algorithms to the design of six-point-nest, seventh-point-clamp datum transfer fixtures for turbine blade production. The kinematic algorithms, based on screw coordinate theory, are computationally intensive. When used in a blind search mode the time required to generate an actual design is unreasonable. In order to reduce the computation time, the kinematic methods are combined with genetic algorithms and a set of heuristic design rules to guide the search. The kinematic, genetic, and heuristic methods were integrated within a fixture design module as part of the Unigraphics CAD system used by Pratt and Whitney. The kinematic design module was used to generate a datum transfer fixture design for a standard production turbine blade. This design was then used to construct an actual fixture, and compared to the existing production fixture for the same part. The positional accuracy of both designs was compared using a coordinate measurement machine (CMM). Based on the CMM data, the observed variation of kinematic design was over two orders-of-magnitude less than for the production design resulting in greatly improved accuracy.
EVOLVING RETRIEVAL ALGORITHMS WITH A GENETIC PROGRAMMING SCHEME
J. THEILER; ET AL
1999-06-01
The retrieval of scene properties (surface temperature, material type, vegetation health, etc.) from remotely sensed data is the ultimate goal of many earth observing satellites. The algorithms that have been developed for these retrievals are informed by physical models of how the raw data were generated. This includes models of radiation as emitted and/or rejected by the scene, propagated through the atmosphere, collected by the optics, detected by the sensor, and digitized by the electronics. To some extent, the retrieval is the inverse of this ''forward'' modeling problem. But in contrast to this forward modeling, the practical task of making inferences about the original scene usually requires some ad hoc assumptions, good physical intuition, and a healthy dose of trial and error. The standard MTI data processing pipeline will employ algorithms developed with this traditional approach. But we will discuss some preliminary research on the use of a genetic programming scheme to ''evolve'' retrieval algorithms. Such a scheme cannot compete with the physical intuition of a remote sensing scientist, but it may be able to automate some of the trial and error. In this scenario, a training set is used, which consists of multispectral image data and the associated ''ground truth;'' that is, a registered map of the desired retrieval quantity. The genetic programming scheme attempts to combine a core set of image processing primitives to produce an IDL (Interactive Data Language) program which estimates this retrieval quantity from the raw data.
Genetic Algorithms: A New Method for Neutron Beam Spectral Characterization
David W. Freeman
2000-06-04
A revolutionary new concept for solving the neutron spectrum unfolding problem using genetic algorithms (GAs) has recently been introduced. GAs are part of a new field of evolutionary solution techniques that mimic living systems with computer-simulated chromosome solutions that mate, mutate, and evolve to create improved solutions. The original motivation for the research was to improve spectral characterization of neutron beams associated with boron neutron capture therapy (BNCT). The GA unfolding technique has been successfully applied to problems with moderate energy resolution (up to 47 energy groups). Initial research indicates that the GA unfolding technique may well be superior to popular unfolding methods in common use. Research now under way at Kansas State University is focused on optimizing the unfolding algorithm and expanding its energy resolution to unfold detailed beam spectra based on multiple foil measurements. Indications are that the final code will significantly outperform current, state-of-the-art codes in use by the scientific community.
Application of genetic algorithms to tuning fuzzy control systems
NASA Technical Reports Server (NTRS)
Espy, Todd; Vombrack, Endre; Aldridge, Jack
1993-01-01
Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.
Genetic Algorithm for Multiple Bus Line Coordination on Urban Arterial
Yang, Zhen; Wang, Wei; Chen, Shuyan; Ding, Haoyang; Li, Xiaowei
2015-01-01
Bus travel time on road section is defined and analyzed with the effect of multiple bus lines. An analytical model is formulated to calculate the total red time a bus encounters when travelling along the arterial. Genetic algorithm is used to optimize the offset scheme of traffic signals to minimize the total red time that all bus lines encounter in two directions of the arterial. The model and algorithm are applied to the major part of Zhongshan North Street in the city of Nanjing. The results show that the methods in this paper can reduce total red time of all the bus lines by 31.9% on the object arterial and thus improve the traffic efficiency of the whole arterial and promote public transport priority. PMID:25663837
Genetic algorithm for multiple bus line coordination on urban arterial.
Yang, Zhen; Wang, Wei; Chen, Shuyan; Ding, Haoyang; Li, Xiaowei
2015-01-01
Bus travel time on road section is defined and analyzed with the effect of multiple bus lines. An analytical model is formulated to calculate the total red time a bus encounters when travelling along the arterial. Genetic algorithm is used to optimize the offset scheme of traffic signals to minimize the total red time that all bus lines encounter in two directions of the arterial. The model and algorithm are applied to the major part of Zhongshan North Street in the city of Nanjing. The results show that the methods in this paper can reduce total red time of all the bus lines by 31.9% on the object arterial and thus improve the traffic efficiency of the whole arterial and promote public transport priority. PMID:25663837
The study on genetic algorithm on mining quantitative association rules
NASA Astrophysics Data System (ADS)
Wang, Yue; Li, Liang
2005-12-01
With the development of the internet and the application of databases, seas of storage of data have become available. How to use the data for humans is the task of data mining. But in the process of data mining, a problem often encountered is that mining association rules on the quantitative attributes in RDBMS (Relational Database Management System) or Web logs. A genetic algorithm is proposed in the present paper to solve the clustering problem which can be solved by FCM (Fuzzy Clustering Method), so as to avoid the local optimization that often occurs in FCM. The quantitative attributes can be converted into categorical attributes, and then the categorical attributes are mapped into Boolean attributes, so that many association algorithms can be used to mine significant association rules.
Genetic algorithm based methodology for breaking the steganalytic systems.
Wu, Yi-Ta; Shih, Frank Y
2006-02-01
Steganalytic techniques are used to detect whether an image contains a hidden message. By analyzing various image features between stego-images (the images containing hidden messages) and cover-images (the images containing no hidden messages), a steganalytic system is able to detect stego-images. In this paper, we present a new concept of developing a robust steganographic system by artificially counterfeiting statistic features instead of the traditional strategy by avoiding the change of statistic features. We apply genetic algorithm based methodology by adjusting gray values of a cover-image while creating the desired statistic features to generate the stego-images that can break the inspection of steganalytic systems. Experimental results show that our algorithm can not only pass the detection of current steganalytic systems, but also increase the capacity of the embedded message and enhance the peak signal-to-noise ratio of stego-images. PMID:16468564
A genetic algorithm based method for docking flexible molecules
Judson, R.S.; Jaeger, E.P.; Treasurywala, A.M.
1993-11-01
The authors describe a computational method for docking flexible molecules into protein binding sites. The method uses a genetic algorithm (GA) to search the combined conformation/orientation space of the molecule to find low energy conformation. Several techniques are described that increase the efficiency of the basic search method. These include the use of several interacting GA subpopulations or niches; the use of a growing algorithm that initially docks only a small part of the molecule; and the use of gradient minimization during the search. To illustrate the method, they dock Cbz-GlyP-Leu-Leu (ZGLL) into thermolysin. This system was chosen because a well refined crystal structure is available and because another docking method had previously been tested on this system. Their method is able to find conformations that lie physically close to and in some cases lower in energy than the crystal conformation in reasonable periods of time on readily available hardware.
NASA Astrophysics Data System (ADS)
Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie
2015-12-01
The serious information redundancy in hyperspectral images (HIs) cannot contribute to the data analysis accuracy, instead it require expensive computational resources. Consequently, to identify the most useful and valuable information from the HIs, thereby improve the accuracy of data analysis, this paper proposed a novel hyperspectral band selection method using the hybrid genetic algorithm and gravitational search algorithm (GA-GSA). In the proposed method, the GA-GSA is mapped to the binary space at first. Then, the accuracy of the support vector machine (SVM) classifier and the number of selected spectral bands are utilized to measure the discriminative capability of the band subset. Finally, the band subset with the smallest number of spectral bands as well as covers the most useful and valuable information is obtained. To verify the effectiveness of the proposed method, studies conducted on an AVIRIS image against two recently proposed state-of-the-art GSA variants are presented. The experimental results revealed the superiority of the proposed method and indicated that the method can indeed considerably reduce data storage costs and efficiently identify the band subset with stable and high classification precision.
A Hybrid Metaheuristic for Biclustering Based on Scatter Search and Genetic Algorithms
NASA Astrophysics Data System (ADS)
Nepomuceno, Juan A.; Troncoso, Alicia; Aguilarâ€“Ruiz, JesÃºs S.
In this paper a hybrid metaheuristic for biclustering based on Scatter Search and Genetic Algorithms is presented. A general scheme of Scatter Search has been used to obtain high-quality biclusters, but a way of generating the initial population and a method of combination based on Genetic Algorithms have been chosen. Experimental results from yeast cell cycle and human B-cell lymphoma are reported. Finally, the performance of the proposed hybrid algorithm is compared with a genetic algorithm recently published.
A Parallel Genetic Algorithm for Automated Electronic Circuit Design
NASA Technical Reports Server (NTRS)
Long, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris
2000-01-01
Parallelized versions of genetic algorithms (GAs) are popular primarily for three reasons: the GA is an inherently parallel algorithm, typical GA applications are very compute intensive, and powerful computing platforms, especially Beowulf-style computing clusters, are becoming more affordable and easier to implement. In addition, the low communication bandwidth required allows the use of inexpensive networking hardware such as standard office ethernet. In this paper we describe a parallel GA and its use in automated high-level circuit design. Genetic algorithms are a type of trial-and-error search technique that are guided by principles of Darwinian evolution. Just as the genetic material of two living organisms can intermix to produce offspring that are better adapted to their environment, GAs expose genetic material, frequently strings of 1s and Os, to the forces of artificial evolution: selection, mutation, recombination, etc. GAs start with a pool of randomly-generated candidate solutions which are then tested and scored with respect to their utility. Solutions are then bred by probabilistically selecting high quality parents and recombining their genetic representations to produce offspring solutions. Offspring are typically subjected to a small amount of random mutation. After a pool of offspring is produced, this process iterates until a satisfactory solution is found or an iteration limit is reached. Genetic algorithms have been applied to a wide variety of problems in many fields, including chemistry, biology, and many engineering disciplines. There are many styles of parallelism used in implementing parallel GAs. One such method is called the master-slave or processor farm approach. In this technique, slave nodes are used solely to compute fitness evaluations (the most time consuming part). The master processor collects fitness scores from the nodes and performs the genetic operators (selection, reproduction, variation, etc.). Because of dependency issues in the GA, it is possible to have idle processors. However, as long as the load at each processing node is similar, the processors are kept busy nearly all of the time. In applying GAs to circuit design, a suitable genetic representation 'is that of a circuit-construction program. We discuss one such circuit-construction programming language and show how evolution can generate useful analog circuit designs. This language has the desirable property that virtually all sets of combinations of primitives result in valid circuit graphs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. Using a parallel genetic algorithm and circuit simulation software, we present experimental results as applied to three analog filter and two amplifier design tasks. For example, a figure shows an 85 dB amplifier design evolved by our system, and another figure shows the performance of that circuit (gain and frequency response). In all tasks, our system is able to generate circuits that achieve the target specifications.
The Genetic Algorithm and Its Application to Calibrating Conceptual Rainfall-Runoff Models
NASA Astrophysics Data System (ADS)
Wang, Q. J.
1991-09-01
The genetic algorithm is a search procedure based on the mechanics of natural selection and natural genetics, which combines an artificial survival of the fittest with genetic operators abstracted from nature. In this paper, a genetic algorithm for function optimization is introduced and applied to calibration of a conceptual rainfall-runoff model for data from a particular catchment. All seven parameters of the model are optimized. The results show that the genetic algorithm can be efficient and robust.
Fringe Pattern Demodulation by Independent Windows Fitting Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Toledo, L. E.; Cuevas, F. J.
2008-04-01
It is presented a new method to retrieve the phase map from a fringe pattern with closed and sub-sampled fringes. The Fringe Processing on Independent Windows method (FPIW) find a parametric function that estimate the phase of a given segmented region that comes from the fringe pattern. FPIW method is a modification of the Window Fringe Pattern Demodulation technique (WFPD), that uses a genetic algorithm to find the parametric function. A population of randomly generated chromosomes, that codifies different parametric functions, is used by the genetic algorithm to simulate natural selection. A fitness value is associated to all chromosomes by a function that uses two criterion in FPIW method: fringe similarity between the segmented interferogram and the fringe pattern generated by the cosine of the phase given by the parametric function, and the smoothness of these function. The best chromosome produced by the evolution is decoded to obtain the parametric function that estimates the phase in a given region. The genetic algorithm is applied on a set of partially overlapped windows extracted from the original fringe pattern. The independent phases obtained by the GA's, are used to reconstruct the whole phase field. A given window is chosen to be the reference. Phase in adjacent windows is spliced with the phase in the reference window to form a phase map of the joined regions. The RMS value between reference phase and adjacent phase is minimized in the overlapped area to find the DC bias and the correct concavity of the adjacent phase, so continuity between reference and adjacent spliced phase is assured. The new phase map is used as the new reference. This process is repeated until the whole phase map is reconstructed.
Random search optimization based on genetic algorithm and discriminant function
NASA Technical Reports Server (NTRS)
Kiciman, M. O.; Akgul, M.; Erarslanoglu, G.
1990-01-01
The general problem of optimization with arbitrary merit and constraint functions, which could be convex, concave, monotonic, or non-monotonic, is treated using stochastic methods. To improve the efficiency of the random search methods, a genetic algorithm for the search phase and a discriminant function for the constraint-control phase were utilized. The validity of the technique is demonstrated by comparing the results to published test problem results. Numerical experimentation indicated that for cases where a quick near optimum solution is desired, a general, user-friendly optimization code can be developed without serious penalties in both total computer time and accuracy.
Full design of fuzzy controllers using genetic algorithms
NASA Technical Reports Server (NTRS)
Homaifar, Abdollah; Mccormick, ED
1992-01-01
This paper examines the applicability of genetic algorithms in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.
Optimal brushless DC motor design using genetic algorithms
NASA Astrophysics Data System (ADS)
Rahideh, A.; Korakianitis, T.; Ruiz, P.; Keeble, T.; Rothman, M. T.
2010-11-01
This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using a genetic algorithm. Characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. Electrical and mechanical requirements (i.e. voltage, torque and speed) and other limitations (e.g. upper and lower limits of the motor geometries) are cast into constraints of the optimization problem. One sample case is used to illustrate the design and optimization technique.
Simulating and Synthesizing Substructures Using Neural Network and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Liu, Youhua; Kapania, Rakesh K.; VanLandingham, Hugh F.
1997-01-01
The feasibility of simulating and synthesizing substructures by computational neural network models is illustrated by investigating a statically indeterminate beam, using both a 1-D and a 2-D plane stress modelling. The beam can be decomposed into two cantilevers with free-end loads. By training neural networks to simulate the cantilever responses to different loads, the original beam problem can be solved as a match-up between two subsystems under compatible interface conditions. The genetic algorithms are successfully used to solve the match-up problem. Simulated results are found in good agreement with the analytical or FEM solutions.
Full design of fuzzy controllers using genetic algorithms
NASA Technical Reports Server (NTRS)
Homaifar, Abdollah; Mccormick, ED
1992-01-01
This paper examines the applicability of genetic algorithms (GA) in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.
Parameterization of interatomic potential by genetic algorithms: A case study
NASA Astrophysics Data System (ADS)
Ghosh, Partha S.; Ranawat, Y. S.; Arya, A.; Dey, G. K.
2015-06-01
A framework for Genetic Algorithm based methodology is developed to systematically obtain and optimize parameters for interatomic force field functions for MD simulations by fitting to a reference data base. This methodology is applied to the fitting of ThO2 (CaF2 prototype) - a representative of ceramic based potential fuel for nuclear applications. The resulting GA optimized parameterization of ThO2 is able to capture basic structural, mechanical, thermo-physical properties and also describes defect structures within the permissible range.
Evaluation of Mechanical Losses in Piezoelectric Plates using Genetic algorithm
NASA Astrophysics Data System (ADS)
Arnold, F. J.; Gonçalves, M. S.; Massaro, F. R.; Martins, P. S.
Numerical methods are used for the characterization of piezoelectric ceramics. A procedure based on genetic algorithm is applied to find the physical coefficients and mechanical losses. The coefficients are estimated from a minimum scoring of cost function. Electric impedances are calculated from Mason's model including mechanical losses constant and dependent on frequency as a linear function. The results show that the electric impedance percentage error in the investigated interval of frequencies decreases when mechanical losses depending on frequency are inserted in the model. A more accurate characterization of the piezoelectric ceramics mechanical losses should be considered as frequency dependent.
Hydrogenerator system identification using a simple genetic algorithm
Wrate, C.A.; Wozniak, L.
1997-03-01
This paper investigates an identification procedure for a hydrogenerator plant using an adaptive technique. The procedure operates on field data consisting of sampled gate position and electrical frequency. The field data was recorded while the plant was operating under various load conditions. The procedure adapted to ongoing plant changes by continuously updating the identification results. It is shown that the adaptive technique, in this case genetic algorithm based, was capable of identifying the hydrogenerator system and following plant parameter changes while the plant operated under conditions of sufficient frequency excursions. These conditions include off-line and isolated network operation where effective control is critical.
Overdetermined broadband spectroscopic Mueller matrix polarimeter designed by genetic algorithms.
Aas, Lars Martin Sandvik; Ellingsen, PÃ¥l Gunnar; Fladmark, Bent Even; Letnes, Paul Anton; Kildemo, Morten
2013-04-01
This paper reports on the design and implementation of a liquid crystal variable retarder based overdetermined spectroscopic Mueller matrix polarimeter, with parallel processing of all wavelengths. The system was designed using a modified version of a recently developed genetic algorithm [Letnes et al. Opt. Express 18, 22, 23095 (2010)]. A generalization of the eigenvalue calibration method is reported that allows the calibration of such overdetermined polarimetric systems. Out of several possible designs, one of the designs was experimentally implemented and calibrated. It is reported that the instrument demonstrated good performance, with a measurement accuracy in the range of 0.1% for the measurement of air. PMID:23571964
Optimization of an antenna array using genetic algorithms
Kiehbadroudinezhad, Shahideh; Noordin, Nor Kamariah; Sali, A.; Abidin, Zamri Zainal
2014-06-01
An array of antennas is usually used in long distance communication. The observation of celestial objects necessitates a large array of antennas, such as the Giant Metrewave Radio Telescope (GMRT). Optimizing this kind of array is very important when observing a high performance system. The genetic algorithm (GA) is an optimization solution for these kinds of problems that reconfigures the position of antennas to increase the u-v coverage plane or decrease the sidelobe levels (SLLs). This paper presents how to optimize a correlator antenna array using the GA. A brief explanation about the GA and operators used in this paper (mutation and crossover) is provided. Then, the results of optimization are discussed. The results show that the GA provides efficient and optimum solutions among a pool of candidate solutions in order to achieve the desired array performance for the purposes of radio astronomy. The proposed algorithm is able to distribute the u-v plane more efficiently than GMRT with a more than 95% distribution ratio at snapshot, and to fill the u-v plane from a 20% to more than 68% filling ratio as the number of generations increases in the hour tracking observations. Finally, the algorithm is able to reduce the SLL to â€“21.75 dB.
Prostate segmentation on pelvic CT images using a genetic algorithm
NASA Astrophysics Data System (ADS)
Ghosh, Payel; Mitchell, Melanie
2008-03-01
A genetic algorithm (GA) for automating the segmentation of the prostate on pelvic computed tomography (CT) images is presented here. The images consist of slices from three-dimensional CT scans. Segmentation is typically performed manually on these images for treatment planning by an expert physician, who uses the "learned" knowledge of organ shapes, textures and locations to draw a contour around the prostate. Using a GA brings the flexibility to incorporate new "learned" information into the segmentation process without modifying the fitness function that is used to train the GA. Currently the GA uses prior knowledge in the form of texture and shape of the prostate for segmentation. We compare and contrast our algorithm with a level-set based segmentation algorithm, thereby providing justification for using a GA. Each individual of the GA population represents a segmenting contour. Shape variability of the prostate derived from manually segmented images is used to form a shape representation from which an individual of the GA population is randomly generated. The fitness of each individual is evaluated based on the texture of the region it encloses. The segmenting contour that encloses the prostate region is considered more fit than others and is more likely to be selected to produce an offspring over successive generations of the GA run. This process of selection, crossover and mutation is iterated until the desired region is segmented. Results of 2D and 3D segmentation are presented and future work is also discussed here.
Integrating GIS and genetic algorithms for automating land partitioning
NASA Astrophysics Data System (ADS)
Demetriou, Demetris; See, Linda; Stillwell, John
2014-08-01
Land consolidation is considered to be the most effective land management planning approach for controlling land fragmentation and hence improving agricultural efficiency. Land partitioning is a basic process of land consolidation that involves the subdivision of land into smaller sub-spaces subject to a number of constraints. This paper explains the development of a module called LandParcelS (Land Parcelling System) that integrates geographical information systems and a genetic algorithm to automate the land partitioning process by designing and optimising land parcels in terms of their shape, size and value. This new module has been applied to two land blocks that are part of a larger case study area in Cyprus. Partitioning is carried out by guiding a Thiessen polygon process within ArcGIS and it is treated as a multiobjective problem. The results suggest that a step forward has been made in solving this complex spatial problem, although further research is needed to improve the algorithm. The contribution of this research extends land partitioning and space partitioning in general, since these approaches may have relevance to other spatial processes that involve single or multi-objective problems that could be solved in the future by spatial evolutionary algorithms.
Experience with a Genetic Algorithm Implemented on a Multiprocessor Computer
NASA Technical Reports Server (NTRS)
Plassman, Gerald E.; Sobieszczanski-Sobieski, Jaroslaw
2000-01-01
Numerical experiments were conducted to find out the extent to which a Genetic Algorithm (GA) may benefit from a multiprocessor implementation, considering, on one hand, that analyses of individual designs in a population are independent of each other so that they may be executed concurrently on separate processors, and, on the other hand, that there are some operations in a GA that cannot be so distributed. The algorithm experimented with was based on a gaussian distribution rather than bit exchange in the GA reproductive mechanism, and the test case was a hub frame structure of up to 1080 design variables. The experimentation engaging up to 128 processors confirmed expectations of radical elapsed time reductions comparing to a conventional single processor implementation. It also demonstrated that the time spent in the non-distributable parts of the algorithm and the attendant cross-processor communication may have a very detrimental effect on the efficient utilization of the multiprocessor machine and on the number of processors that can be used effectively in a concurrent manner. Three techniques were devised and tested to mitigate that effect, resulting in efficiency increasing to exceed 99 percent.
An Evolved Wavelet Library Based on Genetic Algorithm
Vaithiyanathan, D.; Seshasayanan, R.; Kunaraj, K.; Keerthiga, J.
2014-01-01
As the size of the images being captured increases, there is a need for a robust algorithm for image compression which satiates the bandwidth limitation of the transmitted channels and preserves the image resolution without considerable loss in the image quality. Many conventional image compression algorithms use wavelet transform which can significantly reduce the number of bits needed to represent a pixel and the process of quantization and thresholding further increases the compression. In this paper the authors evolve two sets of wavelet filter coefficients using genetic algorithm (GA), one for the whole image portion except the edge areas and the other for the portions near the edges in the image (i.e., global and local filters). Images are initially separated into several groups based on their frequency content, edges, and textures and the wavelet filter coefficients are evolved separately for each group. As there is a possibility of the GA settling in local maximum, we introduce a new shuffling operator to prevent the GA from this effect. The GA used to evolve filter coefficients primarily focuses on maximizing the peak signal to noise ratio (PSNR). The evolved filter coefficients by the proposed method outperform the existing methods by a 0.31?dB improvement in the average PSNR and a 0.39?dB improvement in the maximum PSNR. PMID:25405225
An Introduction to Genetic Algorithms and to Their Use in Information Retrieval.
ERIC Educational Resources Information Center
Jones, Gareth; And Others
1994-01-01
Genetic algorithms, a class of nondeterministic algorithms in which the role of chance makes the precise nature of a solution impossible to guarantee, seem to be well suited to combinatorial-optimization problems in information retrieval. Provides an introduction to techniques and characteristics of genetic algorithms and illustrates their…
Analysis of the numerical effects of parallelism on a parallel genetic algorithm
Hart, W.E.; Belew, R.K.; Kohn, S.; Baden, S.
1995-09-18
This paper examines the effects of relaxed synchronization on both the numerical and parallel efficiency of parallel genetic algorithms (GAs). We describe a coarse-grain geographically structured parallel genetic algorithm. Our experiments show that asynchronous versions of these algorithms have a lower run time than-synchronous GAs. Furthermore, we demonstrate that this improvement in performance is partly due to the fact that the numerical efficiency of the asynchronous genetic algorithm is better than the synchronous genetic algorithm. Our analysis includes a critique of the utility of traditional parallel performance measures for parallel GAs, and we evaluate the claims made by several researchers that parallel GAs can have superlinear speedup.
Empirical study of self-configuring genetic programming algorithm performance and behaviour
NASA Astrophysics Data System (ADS)
Semenkin, E.; Semenkina, M.
2015-01-01
The behaviour of the self-configuring genetic programming algorithm with a modified uniform crossover operator that implements a selective pressure on the recombination stage, is studied over symbolic programming problems. The operator's probabilistic rates interplay is studied and the role of operator variants on algorithm performance is investigated. Algorithm modifications based on the results of investigations are suggested. The performance improvement of the algorithm is demonstrated by the comparative analysis of suggested algorithms on the benchmark and real world problems.
Bornholdt, S.; Graudenz, D.
1993-07-01
A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.
Fuel management optimization using genetic algorithms and code independence
DeChaine, M.D.; Feltus, M.A.
1994-12-31
Fuel management optimization is a hard problem for traditional optimization techniques. Loading pattern optimization is a large combinatorial problem without analytical derivative information. Therefore, methods designed for continuous functions, such as linear programming, do not always work well. Genetic algorithms (GAs) address these problems and, therefore, appear ideal for fuel management optimization. They do not require derivative information and work well with combinatorial. functions. The GAs are a stochastic method based on concepts from biological genetics. They take a group of candidate solutions, called the population, and use selection, crossover, and mutation operators to create the next generation of better solutions. The selection operator is a {open_quotes}survival-of-the-fittest{close_quotes} operation and chooses the solutions for the next generation. The crossover operator is analogous to biological mating, where children inherit a mixture of traits from their parents, and the mutation operator makes small random changes to the solutions.
Learning lung nodule similarity using a genetic algorithm
NASA Astrophysics Data System (ADS)
Seitz, Kerry A., Jr.; Giuca, Anne-Marie; Furst, Jacob; Raicu, Daniela
2012-03-01
The effectiveness and efficiency of content-based image retrieval (CBIR) can be improved by determining an optimal combination of image features to use in determining similarity between images. This combination of features can be optimized using a genetic algorithm (GA). Although several studies have used genetic algorithms to refine image features and similarity measures in CBIR, the present study is the first to apply these techniques to medical image retrieval. By implementing a GA to test different combinations of image features for pulmonary nodules in CT scans, the set of image features was reduced to 29 features from a total of 63 extracted features. The performance of the CBIR system was assessed by calculating the average precision across all query nodules. The precision values obtained using the GA-reduced set of features were significantly higher than those found using all 63 image features. Using radiologist-annotated malignancy ratings as ground truth resulted in an average precision of 85.95% after 3 images retrieved per query nodule when using the feature set identified by the GA. Using computer-predicted malignancy ratings as ground truth resulted in an average precision of 86.91% after 3 images retrieved. The results suggest that in the absence of radiologist semantic ratings, using computer-predicted malignancy as ground truth is a valid substitute given the closeness of the two precision values.
Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm
Sve?ko, Rajko
2014-01-01
This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749
Feature Subset Selection, Class Separability, and Genetic Algorithms
Cantu-Paz, E
2004-01-21
The performance of classification algorithms in machine learning is affected by the features used to describe the labeled examples presented to the inducers. Therefore, the problem of feature subset selection has received considerable attention. Genetic approaches to this problem usually follow the wrapper approach: treat the inducer as a black box that is used to evaluate candidate feature subsets. The evaluations might take a considerable time and the traditional approach might be unpractical for large data sets. This paper describes a hybrid of a simple genetic algorithm and a method based on class separability applied to the selection of feature subsets for classification problems. The proposed hybrid was compared against each of its components and two other feature selection wrappers that are used widely. The objective of this paper is to determine if the proposed hybrid presents advantages over the other methods in terms of accuracy or speed in this problem. The experiments used a Naive Bayes classifier and public-domain and artificial data sets. The experiments suggest that the hybrid usually finds compact feature subsets that give the most accurate results, while beating the execution time of the other wrappers.
Using the Genetic Algorithm to Find Coils for Compact Stellarators
NASA Astrophysics Data System (ADS)
Miner, , Jr.; Valanju, P. M.; Hirshman, S. P.; Brooks, A.; Pomphrey, N.
1999-11-01
Stellarators are now optimized by finding the shape of the plasma surface that produces a desired mix of physics properties. The challenge is to find a practical coil set that creates that optimized surface with sufficient accuracy to retain the desired physics properties and still meet engineering and experimental constraints. Given the wide range of possible coil geometries, this is a daunting task requiring iterations between a practical coil geometry and the physics properties produced by it. A novel technique, the Genetic Algorithm (GA) (D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Leaning), (Addison Wesley, New York) 1989., has recently been applied to this problem. The GA is a computational search procedure for finding the global minimum of a target function using natural selection. This technique has been applied to the design of coils for the NCSX. Typically > 30 coil contours are needed to reproduce the necessary accuracy. Using GA, the result can be improved by choosing a small subset (e.g. 10) contours, each carrying different currents from among a much larger number (e.g. 50).
Actuator Placement Via Genetic Algorithm for Aircraft Morphing
NASA Technical Reports Server (NTRS)
Crossley, William A.; Cook, Andrea M.
2001-01-01
This research continued work that began under the support of NASA Grant NAG1-2119. The focus of this effort was to continue investigations of Genetic Algorithm (GA) approaches that could be used to solve an actuator placement problem by treating this as a discrete optimization problem. In these efforts, the actuators are assumed to be "smart" devices that change the aerodynamic shape of an aircraft wing to alter the flow past the wing, and, as a result, provide aerodynamic moments that could provide flight control. The earlier work investigated issued for the problem statement, developed the appropriate actuator modeling, recognized the importance of symmetry for this problem, modified the aerodynamic analysis routine for more efficient use with the genetic algorithm, and began a problem size study to measure the impact of increasing problem complexity. The research discussed in this final summary further investigated the problem statement to provide a "combined moment" problem statement to simultaneously address roll, pitch and yaw. Investigations of problem size using this new problem statement provided insight into performance of the GA as the number of possible actuator locations increased. Where previous investigations utilized a simple wing model to develop the GA approach for actuator placement, this research culminated with application of the GA approach to a high-altitude unmanned aerial vehicle concept to demonstrate that the approach is valid for an aircraft configuration.
An Evolvement-based Genetic Algorithm for Computer-aided Molecular Docking
NASA Astrophysics Data System (ADS)
Ling, Kang; Xiaoyu, Zhao; Xi, Chen; Xicheng, Wang
2010-05-01
Species dynamics model is introduced into the genetic algorithm to reflect the true state of evolution. An adaptive evolution algorithm is developed. In the algorithm, an adaptive strategy is used to overcome the difficulty of confirming the crossover and mutation probabilities. Small population strategy and optimal strategy ensure the diversity of the populations. Numerical results show that introducing species dynamics model can improve the efficiency of the algorithm. Based on the genetic algorithm, a new molecular docking program is developed. Docking result indicates that the algorithm can effectively solve the molecular docking problem.
Genetic Algorithms, Pulsar Planets, and Ionized Interstellar Microturbulence
NASA Astrophysics Data System (ADS)
Lazio, T. J.
1997-09-01
We probe the intense microturbulence in the Galactic center and the radio-wave scattering it generates by analyzing observations of extragalactic sources, OH and H$_2$O masers, and free-free emission. The region responsible for the enhanced, anisotropic angular broadening of Sgr~A$^*$ and nearby OH masers is within 150~pc of the Galactic center and has an angular radius $\\approx 1\\arcdeg$. The enhanced scattering probably occurs in the interface regions between $10^7$~K gas and molecular clouds and is a manifestation of the energetic processes occurring in the Galactic center. Radio scattering measurements are also used to probe turbulent gas toward the Galactic anticenter. Ionized gas at Galactocentric distances $\\sim 50$~kpc is suggested by absorption lines in quasar spectra, the appearance of the H 1 disks of nearby galaxies, and models for low-redshift quasar absorption systems and Galactic ``fountains.'' We conducted multifrequency, Very Long Baseline Array (VLBA) observations on twelve extragalactic sources in order to measure their scattering diameters. Seven sources are at $|b| < 1\\arcdeg$ and their lines of sight potentially probe path lengths $\\gtrsim 50$~kpc through the disk. We find that the ionized disk is unwarped, has an extent of $\\approx 20$~kpc, and traces the extent of massive star formation in the outer Galaxy. Planetary companions to neutron stars are challenging to recognize amid the several processes that contribute to pulsar arrival time data. We use a genetic algorithm to search for planetary companions to pulsars. Genetic algorithms are an optimization method that uses biological-like concepts such as survival of the fittest, mutation, and chromosome exchange. The algorithm searches parameter space in the same way that life finds optimal niches in the biological environment---incremental rewarding of successful variations. Fitting for Keplerian orbits requires a search through four non-linear parameters per planet and is especially difficult if there is a large range of planetary masses and orbital periods. We find that the GA is more efficient and more accurate than the downhill simplex and simulated annealing algorithms. We confirm the presence of a second planetary companion to PSR~B0329$+$54 and identify possible companions to B1911$-$04 and B1929$+$10. (SECTION: Dissertation Summaries)
Genetic Algorithm Optimization of Artificial Neural Networks for Hydrological Modelling
NASA Astrophysics Data System (ADS)
Abrahart, R. J.
2004-05-01
This paper will consider the case for genetic algorithm optimization in the development of an artificial neural network model. It will provide a methodological evaluation of reported investigations with respect to hydrological forecasting and prediction. The intention in such operations is to develop a superior modelling solution that will be: \\begin{itemize} more accurate in terms of output precision and model estimation skill; more tractable in terms of personal requirements and end-user control; and/or more robust in terms of conceptual and mechanical power with respect to adverse conditions. The genetic algorithm optimization toolbox could be used to perform a number of specific roles or purposes and it is the harmonious and supportive relationship between neural networks and genetic algorithms that will be highlighted and assessed. There are several neural network mechanisms and procedures that could be enhanced and potential benefits are possible at different stages in the design and construction of an operational hydrological model e.g. division of inputs; identification of structure; initialization of connection weights; calibration of connection weights; breeding operations between successful models; and output fusion associated with the development of ensemble solutions. Each set of opportunities will be discussed and evaluated. Two strategic questions will also be considered: [i] should optimization be conducted as a set of small individual procedures or as one large holistic operation; [ii] what specific function or set of weighted vectors should be optimized in a complex software product e.g. timings, volumes, or quintessential hydrological attributes related to the 'problem situation' - that might require the development flood forecasting, drought estimation, or record infilling applications. The paper will conclude with a consideration of hydrological forecasting solutions developed on the combined methodologies of co-operative co-evolution and operational specialization. The standard approach to neural-evolution is at the network level such that a population of working solutions is manipulated until the fittest member is found. SANE [Symbiotic Adaptive Neuro-Evolution]1 source code offers an alternative method based on co-operative co-evolution in which a population of hidden neurons is evolved. The task of each hidden neuron is to establish appropriate connections that will provide: [i] a functional solution and [ii] performance improvements. Each member of the population attempts to optimize one particular aspect of the overall modelling process and evolution can lead to several different forms of specialization. This method of adaptive evolution also facilitates the creation of symbiotic relationships in which individual members must co-operate with others - who must be present - to permit survival. 1http://www.cs.utexas.edu/users/nn/pages/software/abstracts.html#sane-c
First-Principles Molecular Structure Search with a Genetic Algorithm.
Supady, Adriana; Blum, Volker; Baldauf, Carsten
2015-11-23
The identification of low-energy conformers for a given molecule is a fundamental problem in computational chemistry and cheminformatics. We assess here a conformer search that employs a genetic algorithm for sampling the low-energy segment of the conformation space of molecules. The algorithm is designed to work with first-principles methods, facilitated by the incorporation of local optimization and blacklisting conformers to prevent repeated evaluations of very similar solutions. The aim of the search is not only to find the global minimum but to predict all conformers within an energy window above the global minimum. The performance of the search strategy is (i) evaluated for a reference data set extracted from a database with amino acid dipeptide conformers obtained by an extensive combined force field and first-principles search and (ii) compared to the performance of a systematic search and a random conformer generator for the example of a drug-like ligand with 43 atoms, 8 rotatable bonds, and 1 cis/trans bond. PMID:26484612
Human emotion detector based on genetic algorithm using lip features
NASA Astrophysics Data System (ADS)
Brown, Terrence; Fetanat, Gholamreza; Homaifar, Abdollah; Tsou, Brian; Mendoza-Schrock, Olga
2010-04-01
We predicted human emotion using a Genetic Algorithm (GA) based lip feature extractor from facial images to classify all seven universal emotions of fear, happiness, dislike, surprise, anger, sadness and neutrality. First, we isolated the mouth from the input images using special methods, such as Region of Interest (ROI) acquisition, grayscaling, histogram equalization, filtering, and edge detection. Next, the GA determined the optimal or near optimal ellipse parameters that circumvent and separate the mouth into upper and lower lips. The two ellipses then went through fitness calculation and were followed by training using a database of Japanese women's faces expressing all seven emotions. Finally, our proposed algorithm was tested using a published database consisting of emotions from several persons. The final results were then presented in confusion matrices. Our results showed an accuracy that varies from 20% to 60% for each of the seven emotions. The errors were mainly due to inaccuracies in the classification, and also due to the different expressions in the given emotion database. Detailed analysis of these errors pointed to the limitation of detecting emotion based on the lip features alone. Similar work [1] has been done in the literature for emotion detection in only one person, we have successfully extended our GA based solution to include several subjects.
An enhanced nonparametric streamflow disaggregation model with genetic algorithm
NASA Astrophysics Data System (ADS)
Lee, T.; Salas, J. D.; Prairie, J.
2010-08-01
Stochastic streamflow generation is generally utilized for planning and management of water resources systems. For this purpose, a number of parametric and nonparametric models have been suggested in literature. Among them, temporal and spatial disaggregation approaches play an important role particularly to make sure that historical variance-covariance properties are preserved at various temporal and spatial scales. In this paper, we review the underlying features of existing nonparametric disaggregation methods, identify some of their pros and cons, and propose a disaggregation algorithm that is capable of surmounting some of the shortcomings of the current models. The proposed models hinge on k-nearest neighbor resampling, the accurate adjusting procedure, and a genetic algorithm. The models have been tested and compared to an existing nonparametric disaggregation approach using data of the Colorado River system. It has been shown that the model is capable of (1) reproducing the season-to-season correlations including the correlation between the last season of the previous year and the first season of the current year, (2) minimizing or avoiding the generation of flow patterns across the year that are literally the same as those of the historical records, and (3) minimizing or avoiding the generation of negative flows. In addition, it is applicable to intermittent river regimes.
Use of genetic algorithm for the selection of EEG features
NASA Astrophysics Data System (ADS)
Asvestas, P.; Korda, A.; Kostopoulos, S.; Karanasiou, I.; Ouzounoglou, A.; Sidiropoulos, K.; Ventouras, E.; Matsopoulos, G.
2015-09-01
Genetic Algorithm (GA) is a popular optimization technique that can detect the global optimum of a multivariable function containing several local optima. GA has been widely used in the field of biomedical informatics, especially in the context of designing decision support systems that classify biomedical signals or images into classes of interest. The aim of this paper is to present a methodology, based on GA, for the selection of the optimal subset of features that can be used for the efficient classification of Event Related Potentials (ERPs), which are recorded during the observation of correct or incorrect actions. In our experiment, ERP recordings were acquired from sixteen (16) healthy volunteers who observed correct or incorrect actions of other subjects. The brain electrical activity was recorded at 47 locations on the scalp. The GA was formulated as a combinatorial optimizer for the selection of the combination of electrodes that maximizes the performance of the Fuzzy C Means (FCM) classification algorithm. In particular, during the evolution of the GA, for each candidate combination of electrodes, the well-known (Î£, Î¦, Î©) features were calculated and were evaluated by means of the FCM method. The proposed methodology provided a combination of 8 electrodes, with classification accuracy 93.8%. Thus, GA can be the basis for the selection of features that discriminate ERP recordings of observations of correct or incorrect actions.
Primary chromatic aberration elimination via optimization work with genetic algorithm
NASA Astrophysics Data System (ADS)
Wu, Bo-Wen; Liu, Tung-Kuan; Fang, Yi-Chin; Chou, Jyh-Horng; Tsai, Hsien-Lin; Chang, En-Hao
2008-09-01
Chromatic Aberration plays a part in modern optical systems, especially in digitalized and smart optical systems. Much effort has been devoted to eliminating specific chromatic aberration in order to match the demand for advanced digitalized optical products. Basically, the elimination of axial chromatic and lateral color aberration of an optical lens and system depends on the selection of optical glass. According to reports from glass companies all over the world, the number of various newly developed optical glasses in the market exceeds three hundred. However, due to the complexity of a practical optical system, optical designers have so far had difficulty in finding the right solution to eliminate small axial and lateral chromatic aberration except by the Damped Least Squares (DLS) method, which is limited in so far as the DLS method has not yet managed to find a better optical system configuration. In the present research, genetic algorithms are used to replace traditional DLS so as to eliminate axial and lateral chromatic, by combining the theories of geometric optics in Tessar type lenses and a technique involving Binary/Real Encoding, Multiple Dynamic Crossover and Random Gene Mutation to find a much better configuration for optical glasses. By implementing the algorithms outlined in this paper, satisfactory results can be achieved in eliminating axial and lateral color aberration.
Improving the performance of genetic algorithms for terrain categorization of multispectral images
NASA Astrophysics Data System (ADS)
Larch, David E.
1996-03-01
A method that uses a genetic algorithm (GA) to optimize rules for categorizing terrain as depicted in multispectral data has been developed by us. A variety of multispectral data have been used in the work. Linear techniques have not separated terrain categories with sufficient accuracy so that genetic algorithms have been applied to the problem. Genetic algorithms, in general, are a nonlinear optimization technique based on the biological ideas of natural selection and survival of the fittest. For the work presented here, the genetic algorithm optimizes rules for the categorization of terrain. The genetic algorithm produced promising results for terrain categorization; however, work continues with efforts to improve classification accuracy. As part of this effort, new rule types have been added to the genetic algorithm's repertoire. These new rule types include the clustering of data, the ratio of bands, the linear combination of bands, and the second order combination of two and three bands. Improved performance of the rules is demonstrated.
Improving the performance of genetic algorithms for terrain categorization of multispectral images
NASA Astrophysics Data System (ADS)
Larch, David E.
1996-06-01
A method that uses a genetic algorithm (GA) to optimize rules for categorizing terrain as depicted in multispectral data has been developed by us. A variety of multispectral data have been used in the work. Linear techniques have not separated terrain categories with sufficient accuracy so that genetic algorithms have been applied to the problem. Genetic algorithms, in general, are a nonlinear optimization technique based on the biological ideas of natural selection and survival of the fittest. For the work presented here, the genetic algorithm optimizes rules for the categorization of terrain. The genetic algorithm produced promising results for terrain categorization; however, work continues with efforts to improve classification accuracy. As part of this effort, new rule types have been added to the genetic algorithm's repertoire. These new rule types include the clustering of data, the ratio of bands, the linear combination of bands, boxes in spectral space, and the second order combination of three bands. Improved performance of the rules is demonstrated.
NASA Astrophysics Data System (ADS)
Voicu, Liviu; Rabadi, Wissam A.; Myler, Harley R.
1997-10-01
The problem of reconstructing the support of an imaged object from the support of its autocorrelation is addressed within the framework of genetic algorithms. First, we propose a method of coding binary sets into chromosomes that is both efficient and general, producing reasonably short chromosomes and being able to represent convex objects, as well as some non-convex and even clustered ones. Furthermore, in order to compensate for the computational costs normally incurred when genetic algorithms are applied, a novel multiresolution version of the algorithm was introduced and tested. The multiresolution genetic algorithm consists of a superposition of multiple algorithms evolving at different resolutions, sequentially. Upon occurrence of some convergence criteria at the current scale, the genetic population was mapped at a superior scale by a coarse-to- fine mapping that preserved the progress registered previously. This mapping is implemented in a genetic algorithm framework by a new genetic operator called cloning. A number of experiments of object support reconstruction were performed and the best results from different genetic generations were depicted in chronological sequence. While both versions of genetic algorithms achieved good results, the multiresolution approach wa also able to substantially improve the convergence speed of the process. The effectiveness of the method can be extended even further if a parallel implementation of the genetic algorithm is employed. Finally, alternate coding methods could be readily used in both the standard and the multiresolution approaches, with no need for further adaptations of the basic structure of the genetic algorithm.
Optimizing the controllability of arbitrary networks with genetic algorithm
NASA Astrophysics Data System (ADS)
Li, Xin-Feng; Lu, Zhe-Ming
2016-04-01
Recently, as the controllability of complex networks attracts much attention, how to optimize networks' controllability has become a common and urgent problem. In this paper, we develop an efficient genetic algorithm oriented optimization tool to optimize the controllability of arbitrary networks consisting of both state nodes and control nodes under Popov-Belevitch-Hautus rank condition. The experimental results on a number of benchmark networks show the effectiveness of this method and the evolution of network topology is captured. Furthermore, we explore how network structure affects its controllability and find that the sparser a network is, the more control nodes are needed to control it and the larger the differences between node degrees, the more control nodes are needed to achieve the full control. Our framework provides an alternative to controllability optimization and can be applied to arbitrary networks without any limitations.
Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm
NASA Astrophysics Data System (ADS)
Akturk, Cemal; Karaaslan, Muharrem; Ozdemir, Ersin; Ozkaner, Vedat; Dincer, Furkan; Bakir, Mehmet; Ozer, Zafer
2015-03-01
Chiral metamaterials have been a research area for many researchers due to their polarization rotation properties on electromagnetic waves. However, most of the proposed chiral metamaterials are designed depending on experience or time-consuming inefficient simulations. A method is investigated for designing a chiral metamaterial with a strong and natural chirality admittance by optimizing a grid of metallic pixels through both sides of a dielectric sheet placed perpendicular to the incident wave by using a genetic algorithm (GA) technique based on finite element method solver. The effective medium parameters are obtained by using constitutive equations and S parameters. The proposed methodology is very efficient for designing a chiral metamaterial with the desired effective medium parameters. By using GA-based topology, it is proven that a chiral metamaterial can be designed and manufactured more easily and with a low cost.
Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster
NASA Technical Reports Server (NTRS)
Story, George
2014-01-01
Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and later on solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. A remaining issue is the cost of hybrids vs the existing launch propulsion systems. This paper will review the known state of the art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.
Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster
NASA Technical Reports Server (NTRS)
Story, George
2015-01-01
Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. One remaining issue is the cost of hybrids versus the existing launch propulsion systems. This paper will review the known state-of-the-art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.
An adaptive genetic algorithm for crystal structure prediction.
Wu, S Q; Ji, M; Wang, C Z; Nguyen, M C; Zhao, X; Umemoto, K; Wentzcovitch, R M; Ho, K M
2014-01-22
We present a genetic algorithm (GA) for structural search that combines the speed of structure exploration by classical potentials with the accuracy of density functional theory (DFT) calculations in an adaptive and iterative way. This strategy increases the efficiency of the DFT-based GA by several orders of magnitude. This gain allows a considerable increase in the size and complexity of systems that can be studied by first principles. The performance of the method is illustrated by successful structure identifications of complex binary and ternary intermetallic compounds with 36 and 54 atoms per cell, respectively. The discovery of a multi-TPa Mg-silicate phase with unit cell containing up to 56 atoms is also reported. Such a phase is likely to be an essential component of terrestrial exoplanetary mantles. PMID:24351274
Using Genetic Algorithms to Converge on Molecules with Specific Properties
NASA Astrophysics Data System (ADS)
Foster, Stephen; Lindzey, Nathan; Rogers, Jon; West, Carl; Potter, Walt; Smith, Sean; Alexander, Steven
2007-10-01
Although it can be a straightforward matter to determine the properties of a molecule from its structure, the inverse problem is much more difficult. We have chosen to generate molecules by using a genetic algorithm, a computer simulation that models biological evolution and natural selection. By creating a population of randomly generated molecules, we can apply a process of selection, mutation, and recombination to ensure that the best members of the population (i.e. those molecules that possess many of the qualities we are looking for) survive, while the worst members of the population ``die.'' The best members are then modified by random mutation and by ``mating'' with other molecules to produce ``offspring.'' After many hundreds (or thousands) of iterations, one hopes that the population will get better and better---that is, that the properties of the individuals in the population will more and more closely match the properties we want.
Optimal Design of RF Energy Harvesting Device Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Mori, T.; Sato, Y.; Adriano, R.; Igarashi, H.
2015-11-01
This paper presents optimal design of an RF energy harvesting device using genetic algorithm (GA). In the present RF harvester, a planar spiral antenna (PSA) is loaded with matching and rectifying circuits. On the first stage of the optimal design, the shape parameters of PSA are optimized using . Then, the equivalent circuit of the optimized PSA is derived for optimization of the circuits. Finally, the parameters of RF energy harvesting circuit are optimized to maximize the output power using GA. It is shown that the present optimization increases the output power by a factor of five. The manufactured energy harvester starts working when the input electric field is greater than 0.5 V/m.
An Intelligent Model for Pairs Trading Using Genetic Algorithms.
Huang, Chien-Feng; Hsu, Chi-Jen; Chen, Chi-Chung; Chang, Bao Rong; Li, Chen-An
2015-01-01
Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice. PMID:26339236
Genetic algorithms and solid state NMR pulse sequences.
Bechmann, Matthias; Clark, John; Sebald, Angelika
2013-03-01
The use of genetic algorithms for the optimisation of magic angle spinning NMR pulse sequences is discussed. The discussion uses as an example the optimisation of the C7(2)(1) dipolar recoupling pulse sequence, aiming to achieve improved efficiency for spin systems characterised by large chemical shielding anisotropies and/or small dipolar coupling interactions. The optimised pulse sequence is found to be robust over a wide range of parameters, requires only minimal a priori knowledge of the spin system for experimental implementations with buildup rates being solely determined by the magnitude of the dipolar coupling interaction, but is found to be less broadbanded than the original C7(2)(1) pulse sequence. The optimised pulse sequence breaks the synchronicity between r.f. pulses and sample spinning. PMID:23357428
Population Induced Instabilities in Genetic Algorithms for Constrained Optimization
NASA Astrophysics Data System (ADS)
Vlachos, D. S.; Parousis-Orthodoxou, K. J.
2013-02-01
Evolutionary computation techniques, like genetic algorithms, have received a lot of attention as optimization techniques but, although they exhibit a very promising potential in curing the problem, they have not produced a significant breakthrough in the area of systematic treatment of constraints. There are two mainly ways of handling the constraints: the first is to produce an infeasibility measure and add it to the general cost function (the well known penalty methods) and the other is to modify the mutation and crossover operation in a way that they only produce feasible members. Both methods have their drawbacks and are strongly correlated to the problem that they are applied. In this work, we propose a different treatment of the constraints: we induce instabilities in the evolving population, in a way that infeasible solution cannot survive as they are. Preliminary results are presented in a set of well known from the literature constrained optimization problems.
Genetic algorithms and solid state NMR pulse sequences
NASA Astrophysics Data System (ADS)
Bechmann, Matthias; Clark, John; Sebald, Angelika
2013-03-01
The use of genetic algorithms for the optimisation of magic angle spinning NMR pulse sequences is discussed. The discussion uses as an example the optimisation of the C721 dipolar recoupling pulse sequence, aiming to achieve improved efficiency for spin systems characterised by large chemical shielding anisotropies and/or small dipolar coupling interactions. The optimised pulse sequence is found to be robust over a wide range of parameters, requires only minimal a priori knowledge of the spin system for experimental implementations with buildup rates being solely determined by the magnitude of the dipolar coupling interaction, but is found to be less broadbanded than the original C721 pulse sequence. The optimised pulse sequence breaks the synchronicity between r.f. pulses and sample spinning.
Calculation of the partition function using quantum genetic algorithms
NASA Astrophysics Data System (ADS)
Grigorenko, I.; Garcia, M. E.
2002-10-01
We present a new method based on genetic algorithms which permits to determine efficiently the partition function and the excitation spectrum of few-body quantum systems. In our approach, we use a variational formulation for the partition function Z of the system as a functional of its eigenfunctions. Z is obtained by applying the procedure of survival of the fittest, starting from initial random population. During the evolution the best representative converges to a set of eigenfunctions for a given Hamiltonian, while the partition function attains its global extremum (maximum) for a given temperature. We calculate the spectrum and the partition function in the case of few interacting particles in one-dimensional infinite potential well. We investigate formation of the Wigner crystal and study its melting induced by termal and quantum fluctuations.
Alien Genetic Algorithm for Exploration of Search Space
NASA Astrophysics Data System (ADS)
Patel, Narendra; Padhiyar, Nitin
2010-10-01
Genetic Algorithm (GA) is a widely accepted population based stochastic optimization technique used for single and multi objective optimization problems. Various versions of modifications in GA have been proposed in last three decades mainly addressing two issues, namely increasing convergence rate and increasing probability of global minima. While both these. While addressing the first issue, GA tends to converge to a local optima and addressing the second issue corresponds the large computational efforts. Thus, to reduce the contradictory effects of these two aspects, we propose a modification in GA by adding an alien member in the population at every generation. Addition of an Alien member in the current population at every generation increases the probability of obtaining global minima at the same time maintaining higher convergence rate. With two test cases, we have demonstrated the efficacy of the proposed GA by comparing with the conventional GA.
Maximizing microbial perchlorate degradation using a genetic algorithm: consortia optimization.
Kucharzyk, Katarzyna H; Soule, Terence; Hess, Thomas F
2013-09-01
Microorganisms in consortia perform many tasks more effectively than individual organisms and in addition grow more rapidly and in greater abundance. In this work, experimental datasets were assembled consisting of all possible selected combinations of perchlorate reducing strains of microorganisms and their perchlorate degradation rates were evaluated. A genetic algorithm (GA) methodology was successfully applied to define sets of microbial strains to achieve maximum rates of perchlorate degradation. Over the course of twenty generations of optimization using a GA, we saw a statistically significant 2.06 and 4.08-fold increase in average perchlorate degradation rates by consortia constructed using solely the perchlorate reducing bacteria (PRB) and by consortia consisting of PRB and accompanying organisms that did not degrade perchlorate, respectively. The comparison of kinetic rates constant in two types of microbial consortia additionally showed marked increases. PMID:23229741
Strawberry Maturity Neural Network Detectng System Based on Genetic Algorithm
NASA Astrophysics Data System (ADS)
Xu, Liming
The quick and non-detective detection of agriculture product is one of the measures to increase the precision and productivity of harvesting and grading. Having analyzed H frequency of different maturities in different light intensities, the results show that H frequency for the same maturity has little influence in different light intensities; Under the same light intensity, three strawberry maturities are changing in order. After having confirmed the H frequency section to distinguish the different strawberry maturity, the triplelayer feed-forward neural network system to detect strawberry maturity was designed by using genetic algorithm. The test results show that the detecting precision ratio is 91.7%, it takes 160ms to distinguish one strawberry. Therefore, the online non-detective detecting the strawberry maturity could be realized.
An Intelligent Model for Pairs Trading Using Genetic Algorithms
Huang, Chien-Feng; Hsu, Chi-Jen; Chen, Chi-Chung; Chang, Bao Rong; Li, Chen-An
2015-01-01
Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice. PMID:26339236
Tuning of active vibration controllers for ACTEX by genetic algorithm
NASA Astrophysics Data System (ADS)
Kwak, Moon K.; Denoyer, Keith K.
1999-06-01
This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.
Optimization and implementation of piezoelectric radiators using the genetic algorithm
NASA Astrophysics Data System (ADS)
Bai, Mingsian R.; Huang, Chinghong
2003-06-01
Very thin and small (45 mmÃ—35 mmÃ—0.35 mm) piezoelectric radiators have been developed in this research. The system is modeled by using the energy method in conjunction with the assumed-modes method. Electrical system, mechanical system, and acoustic loading have all been accounted for during the modeling stage. On the basis of the simulation model, the genetic algorithm (GA) is employed to optimize the overall configurations for a low resonance frequency and a large gain. The resulting designs are then implemented and evaluated experimentally. Performance indices for the experimental evaluation include the frequency response, the directional response, the sensitivity, and the efficiency. It is found in the experimental results that the piezoelectric radiators are able to produce comparable acoustical output with significantly less electrical input than the voice-coil panel speakers.
Optimization and implementation of piezoelectric radiators using the genetic algorithm.
Bai, Mingsian R; Huang, Chinghong
2003-06-01
Very thin and small (45 mm x 35 mm x 0.35 mm) piezoelectric radiators have been developed in this research. The system is modeled by using the energy method in conjunction with the assumed-modes method. Electrical system, mechanical system, and acoustic loading have all been accounted for during the modeling stage. On the basis of the simulation model, the genetic algorithm (GA) is employed to optimize the overall configurations for a low resonance frequency and a large gain. The resulting designs are then implemented and evaluated experimentally. Performance indices for the experimental evaluation include the frequency response, the directional response, the sensitivity, and the efficiency. It is found in the experimental results that the piezoelectric radiators are able to produce comparable acoustical output with significantly less electrical input than the voice-coil panel speakers. PMID:12822792
An adaptive genetic algorithm for crystal structure prediction
Wu, Shunqing; Ji, Min; Wang, Cai-Zhuang; Nguyen, Manh Cuong; Zhao, Xin; Umemoto, K.; Wentzcovitch, R. M.; Ho, Kai-Ming
2013-10-31
We present a genetic algorithm (GA) for structural search that combines the speed of structure exploration by classical potentials with the accuracy of density functional theory (DFT) calculations in an adaptive and iterative way. This strategy increases the efficiency of the DFT-based GA by several orders of magnitude. This gain allows a considerable increase in the size and complexity of systems that can be studied by first principles. The performance of the method is illustrated by successful structure identifications of complex binary and ternary intermetallic compounds with 36 and 54 atoms per cell, respectively. The discovery of a multi-TPa Mg-silicate phase with unit cell containing up to 56 atoms is also reported. Such a phase is likely to be an essential component of terrestrial exoplanetary mantles.
Novel genetic algorithm search procedure for LEED surface structure determination.
Viana, M L; dos Reis, D D; Soares, E A; Van Hove, M A; Moritz, W; de Carvalho, V E
2014-06-01
Low Energy Electron Diffraction (LEED) is one of the most powerful experimental techniques for surface structure analysis but until now only a trial-and-error approach has been successful. So far, fitting procedures developed to optimize structural and nonstructural parameters-by minimization of the R-factor-have had a fairly small convergence radius, suitable only for local optimization. However, the identification of the global minimum among the several local minima is essential for complex surface structures. Global optimization methods have been applied to LEED structure determination, but they still require starting from structures that are relatively close to the correct one, in order to find the final structure. For complex systems, the number of trial structures and the resulting computation time increase so rapidly that the task of finding the correct model becomes impractical using the present methodologies. In this work we propose a new search method, based on Genetic Algorithms, which is able to determine the correct structural model starting from completely random structures. This method-called here NGA-LEED for Novel Genetic Algorithm for LEED-utilizes bond lengths and symmetry criteria to select reasonable trial structures before performing LEED calculations. This allows a reduction of the parameter space and, consequently of the calculation time, by several orders of magnitude. A refinement of the parameters by least squares fit of simulated annealing is performed only at some intermediate stages and in the final step. The method was successfully tested for two systems, Ag(1?1?1)(4 × 4)-O and Au(1?1?0)-(1 × 2), both in theory versus theory and in theory versus experiment comparisons. Details of the implementation as well as the results for these two systems are presented. PMID:24824047
Cloud identification using genetic algorithms and massively parallel computation
NASA Technical Reports Server (NTRS)
Buckles, Bill P.; Petry, Frederick E.
1996-01-01
As a Guest Computational Investigator under the NASA administered component of the High Performance Computing and Communication Program, we implemented a massively parallel genetic algorithm on the MasPar SIMD computer. Experiments were conducted using Earth Science data in the domains of meteorology and oceanography. Results obtained in these domains are competitive with, and in most cases better than, similar problems solved using other methods. In the meteorological domain, we chose to identify clouds using AVHRR spectral data. Four cloud speciations were used although most researchers settle for three. Results were remarkedly consistent across all tests (91% accuracy). Refinements of this method may lead to more timely and complete information for Global Circulation Models (GCMS) that are prevalent in weather forecasting and global environment studies. In the oceanographic domain, we chose to identify ocean currents from a spectrometer having similar characteristics to AVHRR. Here the results were mixed (60% to 80% accuracy). Given that one is willing to run the experiment several times (say 10), then it is acceptable to claim the higher accuracy rating. This problem has never been successfully automated. Therefore, these results are encouraging even though less impressive than the cloud experiment. Successful conclusion of an automated ocean current detection system would impact coastal fishing, naval tactics, and the study of micro-climates. Finally we contributed to the basic knowledge of GA (genetic algorithm) behavior in parallel environments. We developed better knowledge of the use of subpopulations in the context of shared breeding pools and the migration of individuals. Rigorous experiments were conducted based on quantifiable performance criteria. While much of the work confirmed current wisdom, for the first time we were able to submit conclusive evidence. The software developed under this grant was placed in the public domain. An extensive user's manual was written and distributed nationwide to scientists whose work might benefit from its availability. Several papers, including two journal articles, were produced.
A new perspective on dark energy modeling via genetic algorithms
Nesseris, Savvas; García-Bellido, Juan E-mail: juan.garciabellido@uam.es
2012-11-01
We use Genetic Algorithms to extract information from several cosmological probes, such as the type Ia supernovae (SnIa), the Baryon Acoustic Oscillations (BAO) and the growth rate of matter perturbations. This is done by implementing a model independent and bias-free reconstruction of the various scales and distances that characterize the data, like the luminosity d{sub L}(z) and the angular diameter distance d{sub A}(z) in the SnIa and BAO data, respectively, or the dependence with redshift of the matter density ?{sub m}(a) in the growth rate data, f?{sub 8}(z). These quantities can then be used to reconstruct the expansion history of the Universe, and the resulting Dark Energy (DE) equation of state w(z) in the context of FRW models, or the mass radial function ?{sub M}(r) in LTB models. In this way, the reconstruction is completely independent of our prior bias. Furthermore, we use this method to test the Etherington relation, ie the well-known relation between the luminosity and the angular diameter distance, ??d{sub L}(z)/(1+z){sup 2}d{sub A}(z), which is equal to 1 in metric theories of gravity. We find that the present data seem to suggest a 3-? deviation from one at redshifts z ? 0.5. Finally, we present a novel way, within the Genetic Algorithm paradigm, to analytically estimate the errors on the reconstructed quantities by calculating a Path Integral over all possible functions that may contribute to the likelihood. We show that this can be done regardless of the data being correlated or uncorrelated with each other and we also explicitly demonstrate that our approach is in good agreement with other error estimation techniques like the Fisher Matrix approach and the Bootstrap Monte Carlo.
Genetic Algorithms, Pulsar Planets, and Ionized Interstellar Microturbulence
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph W.
1997-10-01
We probe the intense microturbulence in the Galactic center and the radio-wave scattering it generates by analyzing observations of extragalactic sources, OH and H2O masers, and free-free emission. The region responsible for the enhanced, anisotropic angular broadening of Sgr A* and nearby OH masers is within 150 pc of the Galactic center and has an angular radius ? 1o. The enhanced scattering probably occurs in the interface regions between 107 K gas and molecular clouds and is a manifestation of the energetic processes occurring in the Galactic center. Radio scattering measurements are also used to probe turbulent gas toward the Galactic anticenter. Ionized gas at Galactocentric distances ~50 kpc is suggested by absorption lines in quasar spectra, the appearance of the H I disks of nearby galaxies, and models for low-redshift quasar absorption systems and Galactic 'fountains.' We conducted multifrequency, Very Long Baseline Array (VLBA) observations on twelve extragalactic sources in order to measure their scattering sizes. Seven sources are at | b| < 1o and their lines of sight potentially probe path lengths ~>50 kpc through the disk. We find that the ionized disk is unwarped, has an extent of ?20 kpc, and traces the extent of massive star formation in the outer Galaxy. Planetary companions to neutron stars are challenging to recognize amid the several processes that contribute to pulsar arrival time data. We use a genetic algorithm to search for planetary companions to pulsars. Genetic algorithms are an optimization method that uses biological-like concepts such as survival of the fittest, mutation, and chromosome exchange. The algorithm searches parameter space in the same way that life finds optimal niches in the biological environment-incremental rewarding of successful variations. Fitting for Keplerian orbits requires a search through four non-linear parameters per planet and is especially difficult if there is a large range of planetary masses and orbital periods. We find that the GA is more efficient and more accurate than the downhill simplex and simulated annealing. We confirm the presence of a second planetary companion to PSR B0329+54 and identify possible companions to B1911-04 and B1929+10.
Genetic algorithms applied to nonlinear and complex domains
Barash, D; Woodin, A E
1999-06-01
The dissertation, titled ''Genetic Algorithms Applied to Nonlinear and Complex Domains'', describes and then applies a new class of powerful search algorithms (GAS) to certain domains. GAS are capable of solving complex and nonlinear problems where many parameters interact to produce a final result such as the optimization of the laser pulse in the interaction of an atom with an intense laser field. GAS can very efficiently locate the global maximum by searching parameter space in problems which are unsuitable for a search using traditional methods. In particular, the dissertation contains new scientific findings in two areas. First, the dissertation examines the interaction of an ultra-intense short laser pulse with atoms. GAS are used to find the optimal frequency for stabilizing atoms in the ionization process. This leads to a new theoretical formulation, to explain what is happening during the ionization process and how the electron is responding to finite (real-life) laser pulse shapes. It is shown that the dynamics of the process can be very sensitive to the ramp of the pulse at high frequencies. The new theory which is formulated, also uses a novel concept (known as the (t,t') method) to numerically solve the time-dependent Schrodinger equation Second, the dissertation also examines the use of GAS in modeling decision making problems. It compares GAS with traditional techniques to solve a class of problems known as Markov Decision Processes. The conclusion of the dissertation should give a clear idea of where GAS are applicable, especially in the physical sciences, in problems which are nonlinear and complex, i.e. difficult to analyze by other means.
Genetic algorithms applied to nonlinear and complex domains
Barash, D; Woodin, A E
1999-06-01
The dissertation, titled ''Genetic Algorithms Applied to Nonlinear and Complex Domains'', describes and then applies a new class of powerful search algorithms (GAS) to certain domains. GAS are capable of solving complex and nonlinear problems where many parameters interact to produce a ''final'' result such as the optimization of the laser pulse in the interaction of an atom with an intense laser field. GAS can very efficiently locate the global maximum by searching parameter space in problems which are unsuitable for a search using traditional methods. In particular, the dissertation contains new scientific findings in two areas. First, the dissertation examines the interaction of an ultra-intense short laser pulse with atoms. GAS are used to find the optimal frequency for stabilizing atoms in the ionization process. This leads to a new theoretical formulation, to explain what is happening during the ionization process and how the electron is responding to finite (real-life) laser pulse shapes. It is shown that the dynamics of the process can be very sensitive to the ramp of the pulse at high frequencies. The new theory which is formulated, also uses a novel concept (known as the (t,t') method) to numerically solve the time-dependent Schrodinger equation Second, the dissertation also examines the use of GAS in modeling decision making problems. It compares GAS with traditional techniques to solve a class of problems known as Markov Decision Processes. The conclusion of the dissertation should give a clear idea of where GAS are applicable, especially in the physical sciences, in problems which are nonlinear and complex, i.e. difficult to analyze by other means.
NASA Technical Reports Server (NTRS)
Abrams, D.; Williams, C.
1999-01-01
This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases for which all know classical algorithms require exponential time.
Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2001-01-01
A new method for aerodynamic shape optimization using a genetic algorithm with real number encoding is presented. The algorithm is used to optimize three different problems, a simple hill climbing problem, a quasi-one-dimensional nozzle problem using an Euler equation solver and a three-dimensional transonic wing problem using a nonlinear potential solver. Results indicate that the genetic algorithm is easy to implement and extremely reliable, being relatively insensitive to design space noise.
GenMin: An enhanced genetic algorithm for global optimization
NASA Astrophysics Data System (ADS)
Tsoulos, Ioannis G.; Lagaris, I. E.
2008-06-01
A new method that employs grammatical evolution and a stopping rule for finding the global minimum of a continuous multidimensional, multimodal function is considered. The genetic algorithm used is a hybrid genetic algorithm in conjunction with a local search procedure. We list results from numerical experiments with a series of test functions and we compare with other established global optimization methods. The accompanying software accepts objective functions coded either in Fortran 77 or in C++. Program summaryProgram title: GenMin Catalogue identifier: AEAR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 810 No. of bytes in distributed program, including test data, etc.: 436 613 Distribution format: tar.gz Programming language: GNU-C++, GNU-C, GNU Fortran 77 Computer: The tool is designed to be portable in all systems running the GNU C++ compiler Operating system: The tool is designed to be portable in all systems running the GNU C++ compiler RAM: 200 KB Word size: 32 bits Classification: 4.9 Nature of problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a nonlinear system of equations via optimization, employing a least squares type of objective, one may encounter many local minima that do not correspond to solutions (i.e. they are far from zero). Solution method: Grammatical evolution and a stopping rule. Running time: Depending on the objective function. The test example given takes only a few seconds to run.
Efficient Improvement of Silage Additives by Using Genetic Algorithms
Davies, Zoe S.; Gilbert, Richard J.; Merry, Roger J.; Kell, Douglas B.; Theodorou, Michael K.; Griffith, Gareth W.
2000-01-01
The enormous variety of substances which may be added to forage in order to manipulate and improve the ensilage process presents an empirical, combinatorial optimization problem of great complexity. To investigate the utility of genetic algorithms for designing effective silage additive combinations, a series of small-scale proof of principle silage experiments were performed with fresh ryegrass. Having established that significant biochemical changes occur over an ensilage period as short as 2 days, we performed a series of experiments in which we used 50 silage additive combinations (prepared by using eight bacterial and other additives, each of which was added at six different levels, including zero [i.e., no additive]). The decrease in pH, the increase in lactate concentration, and the free amino acid concentration were measured after 2 days and used to calculate a â€œfitnessâ€ value that indicated the quality of the silage (compared to a control silage made without additives). This analysis also included a â€œcostâ€ element to account for different total additive levels. In the initial experiment additive levels were selected randomly, but subsequently a genetic algorithm program was used to suggest new additive combinations based on the fitness values determined in the preceding experiments. The result was very efficient selection for silages in which large decreases in pH and high levels of lactate occurred along with low levels of free amino acids. During the series of five experiments, each of which comprised 50 treatments, there was a steady increase in the amount of lactate that accumulated; the best treatment combination was that used in the last experiment, which produced 4.6 times more lactate than the untreated silage. The additive combinations that were found to yield the highest fitness values in the final (fifth) experiment were assessed to determine a range of biochemical and microbiological quality parameters during full-term silage fermentation. We found that these combinations compared favorably both with uninoculated silage and with a commercial silage additive. The evolutionary computing methods described here are a convenient and efficient approach for designing silage additives. PMID:10742224
User-Based Document Clustering by Redescribing Subject Descriptions with a Genetic Algorithm.
ERIC Educational Resources Information Center
Gordon, Michael D.
1991-01-01
Discussion of clustering of documents and queries in information retrieval systems focuses on the use of a genetic algorithm to adapt subject descriptions so that documents become more effective in matching relevant queries. Various types of clustering are explained, and simulation experiments used to test the genetic algorithm are described. (27…
Order-Based Fitness Functions for Genetic Algorithms Applied to Relevance Feedback.
ERIC Educational Resources Information Center
Lopez-Pujalte, Cristina; Guerrero-Bote, Vicente P.; de Moya-Anegon, Felix
2003-01-01
Discusses genetic algorithms in information retrieval, especially for relevance feedback, and evaluates the efficacy of a genetic algorithm with various order-based fitness functions for relevance feedback in a test database. Compares results with the Ide dec-hi method, one of the best traditional methods. (Contains 56 references.) (Author/LRW)
Genetic algorithms for adaptive real-time control in space systems
NASA Technical Reports Server (NTRS)
Vanderzijp, J.; Choudry, A.
1988-01-01
Genetic Algorithms that are used for learning as one way to control the combinational explosion associated with the generation of new rules are discussed. The Genetic Algorithm approach tends to work best when it can be applied to a domain independent knowledge representation. Applications to real time control in space systems are discussed.
Using genetic algorithms to select and create features for pattern classification. Technical report
Chang, E.I.; Lippmann, R.P.
1991-03-11
Genetic algorithms were used to select and create features and to select reference exemplar patterns for machine vision and speech pattern classification tasks. On a 15-feature machine-vision inspection task, it was found that genetic algorithms performed no better than conventional approaches to feature selection but required much more computation. For a speech recognition task, genetic algorithms required no more computation time than traditional approaches but reduced the number of features required by a factor of five (from 153 to 33 features). On a difficult artificial machine-vision task, genetic algorithms were able to create new features (polynomial functions of the original features) that reduced classification error rates from 10 to almost 0 percent. Neural net and nearest-neighbor classifiers were unable to provide such low error rates using only the original features. Genetic algorithms were also used to reduce the number of reference exemplar patterns and to select the value of k for a k-nearest-neighbor classifier. On a .338 training pattern vowel recognition problem with 10 classes, genetic algorithms simultaneously reduced the number of stored exemplars from 338 to 63 and selected k without significantly decreasing classification accuracy. In all applications, genetic algorithms were easy to apply and found good solutions in many fewer trials than would be required by an exhaustive search. Run times were long but not unreasonable. These results suggest that genetic algorithms may soon be practical for pattern classification problems as faster serial and parallel computers are developed.
New knowledge-based genetic algorithm for excavator boom structural optimization
NASA Astrophysics Data System (ADS)
Hua, Haiyan; Lin, Shuwen
2014-03-01
Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.
Optimization on robot arm machining by using genetic algorithms
NASA Astrophysics Data System (ADS)
Liu, Tung-Kuan; Chen, Chiu-Hung; Tsai, Shang-En
2007-12-01
In this study, an optimization problem on the robot arm machining is formulated and solved by using genetic algorithms (GAs). The proposed approach adopts direct kinematics model and utilizes GA's global search ability to find the optimum solution. The direct kinematics equations of the robot arm are formulated and can be used to compute the end-effector coordinates. Based on these, the objective of optimum machining along a set of points can be evolutionarily evaluated with the distance between machining points and end-effector positions. Besides, a 3D CAD application, CATIA, is used to build up the 3D models of the robot arm, work-pieces and their components. A simulated experiment in CATIA is used to verify the computation results first and a practical control on the robot arm through the RS232 port is also performed. From the results, this approach is proved to be robust and can be suitable for most machining needs when robot arms are adopted as the machining tools.
Improved interpretation of satellite altimeter data using genetic algorithms
NASA Technical Reports Server (NTRS)
Messa, Kenneth; Lybanon, Matthew
1992-01-01
Genetic algorithms (GA) are optimization techniques that are based on the mechanics of evolution and natural selection. They take advantage of the power of cumulative selection, in which successive incremental improvements in a solution structure become the basis for continued development. A GA is an iterative procedure that maintains a 'population' of 'organisms' (candidate solutions). Through successive 'generations' (iterations) the population as a whole improves in simulation of Darwin's 'survival of the fittest'. GA's have been shown to be successful where noise significantly reduces the ability of other search techniques to work effectively. Satellite altimetry provides useful information about oceanographic phenomena. It provides rapid global coverage of the oceans and is not as severely hampered by cloud cover as infrared imagery. Despite these and other benefits, several factors lead to significant difficulty in interpretation. The GA approach to the improved interpretation of satellite data involves the representation of the ocean surface model as a string of parameters or coefficients from the model. The GA searches in parallel, a population of such representations (organisms) to obtain the individual that is best suited to 'survive', that is, the fittest as measured with respect to some 'fitness' function. The fittest organism is the one that best represents the ocean surface model with respect to the altimeter data.
Genetic Algorithm (GA)-Based Inclinometer Layout Optimization
Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo
2015-01-01
This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors. PMID:25897500
Programmable genetic algorithm IP core for sensing and surveillance applications
NASA Astrophysics Data System (ADS)
Katkoori, Srinivas; Fernando, Pradeep; Sankaran, Hariharan; Stoica, Adrian; Keymeulen, Didier; Zebulum, Ricardo
2009-05-01
Real-time evolvable systems are possible with a hardware implementation of Genetic Algorithms (GA). We report the design of an IP core that implements a general purpose GA engine which has been successfully synthesized and verified on a Xilinx Virtex II Pro FPGA Device (XC2VP30). The placed and routed IP core has an area utilization of only 13% and clock speed of 50MHz. The GA core can be customized in terms of the population size, number of generations, cross-over and mutation rates, and the random number generator seed. The GA engine can be tailored to a given application by interfacing with the application specific fitness evaluation module as well as the required storage memory (to store the current and new populations). The core is soft in nature i.e., a gate-level netlist is provided which can be readily integrated with the user's system. The GA IP core can be readily used in FPGA based platforms for space and military applications (for e.g., surveillance, target tracking). The main advantages of the IP core are its programmability, small footprint, and low power consumption. Examples of concept systems in sensing and surveillance domains will be presented.
Inner Random Restart Genetic Algorithm for Practical Delivery Schedule Optimization
NASA Astrophysics Data System (ADS)
Sakurai, Yoshitaka; Takada, Kouhei; Onoyama, Takashi; Tsukamoto, Natsuki; Tsuruta, Setsuo
A delivery route optimization that improves the efficiency of real time delivery or a distribution network requires solving several tens to hundreds but less than 2 thousands cities Traveling Salesman Problems (TSP) within interactive response time (less than about 3 second), with expert-level accuracy (less than about 3% of error rate). Further, to make things more difficult, the optimization is subjects to special requirements or preferences of each various delivery sites, persons, or societies. To meet these requirements, an Inner Random Restart Genetic Algorithm (Irr-GA) is proposed and developed. This method combines meta-heuristics such as random restart and GA having different types of simple heuristics. Such simple heuristics are 2-opt and NI (Nearest Insertion) methods, each applied for gene operations. The proposed method is hierarchical structured, integrating meta-heuristics and heuristics both of which are multiple but simple. This method is elaborated so that field experts as well as field engineers can easily understand to make the solution or method easily customized and extended according to customers' needs or taste. Comparison based on the experimental results and consideration proved that the method meets the above requirements more than other methods judging from not only optimality but also simplicity, flexibility, and expandability in order for this method to be practically used.
Constrained genetic algorithms for optimizing multi-use reservoir operation
NASA Astrophysics Data System (ADS)
Chang, Li-Chiu; Chang, Fi-John; Wang, Kuo-Wei; Dai, Shin-Yi
2010-08-01
To derive an optimal strategy for reservoir operations to assist the decision-making process, we propose a methodology that incorporates the constrained genetic algorithm (CGA) where the ecological base flow requirements are considered as constraints to water release of reservoir operation when optimizing the 10-day reservoir storage. Furthermore, a number of penalty functions designed for different types of constraints are integrated into reservoir operational objectives to form the fitness function. To validate the applicability of this proposed methodology for reservoir operations, the Shih-Men Reservoir and its downstream water demands are used as a case study. By implementing the proposed CGA in optimizing the operational performance of the Shih-Men Reservoir for the last 20 years, we find this method provides much better performance in terms of a small generalized shortage index (GSI) for human water demands and greater ecological base flows for most of the years than historical operations do. We demonstrate the CGA approach can significantly improve the efficiency and effectiveness of water supply capability to both human and ecological base flow requirements and thus optimize reservoir operations for multiple water users. The CGA can be a powerful tool in searching for the optimal strategy for multi-use reservoir operations in water resources management.
Experimental optimization of protein refolding with a genetic algorithm
Anselment, Bernd; Baerend, Danae; Mey, Elisabeth; Buchner, Johannes; Weuster-Botz, Dirk; Haslbeck, Martin
2010-01-01
Refolding of proteins from solubilized inclusion bodies still represents a major challenge for many recombinantly expressed proteins and often constitutes a major bottleneck. As in vitro refolding is a complex reaction with a variety of critical parameters, suitable refolding conditions are typically derived empirically in extensive screening experiments. Here, we introduce a new strategy that combines screening and optimization of refolding yields with a genetic algorithm (GA). The experimental setup was designed to achieve a robust and universal method that should allow optimizing the folding of a variety of proteins with the same routine procedure guided by the GA. In the screen, we incorporated a large number of common refolding additives and conditions. Using this design, the refolding of four structurally and functionally different model proteins was optimized experimentally, achieving 74–100% refolding yield for all of them. Interestingly, our results show that this new strategy provides optimum conditions not only for refolding but also for the activity of the native enzyme. It is designed to be generally applicable and seems to be eligible for all enzymes. PMID:20799347
Toward Developing Genetic Algorithms to Aid in Critical Infrastructure Modeling
Not Available
2007-05-01
Todayâ€™s society relies upon an array of complex national and international infrastructure networks such as transportation, telecommunication, financial and energy. Understanding these interdependencies is necessary in order to protect our critical infrastructure. The Critical Infrastructure Modeling System, CIMSÂ©, examines the interrelationships between infrastructure networks. CIMSÂ© development is sponsored by the National Security Division at the Idaho National Laboratory (INL) in its ongoing mission for providing critical infrastructure protection and preparedness. A genetic algorithm (GA) is an optimization technique based on Darwinâ€™s theory of evolution. A GA can be coupled with CIMSÂ© to search for optimum ways to protect infrastructure assets. This includes identifying optimum assets to enforce or protect, testing the addition of or change to infrastructure before implementation, or finding the optimum response to an emergency for response planning. This paper describes the addition of a GA to infrastructure modeling for infrastructure planning. It first introduces the CIMSÂ© infrastructure modeling software used as the modeling engine to support the GA. Next, the GA techniques and parameters are defined. Then a test scenario illustrates the integration with CIMSÂ© and the preliminary results.
Robust Sparse Matching and Motion Estimation Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Shahbazi, M.; Sohn, G.; Théau, J.; Ménard, P.
2015-03-01
In this paper, we propose a robust technique using genetic algorithm for detecting inliers and estimating accurate motion parameters from putative correspondences containing any percentage of outliers. The proposed technique aims to increase computational efficiency and modelling accuracy in comparison with the state-of-the-art via the following contributions: i) guided generation of initial populations for both avoiding degenerate solutions and increasing the rate of useful hypotheses, ii) replacing random search with evolutionary search, iii) possibility of evaluating the individuals of every population by parallel computation, iv) being performable on images with unknown internal orientation parameters, iv) estimating the motion model via detecting a minimum, however more than enough, set of inliers, v) ensuring the robustness of the motion model against outliers, degeneracy and poorperspective camera models, vi) making no assumptions about the probability distribution of inliers and/or outliers residuals from the estimated motion model, vii) detecting all the inliers by setting the threshold on their residuals adaptively with regard to the uncertainty of the estimated motion model and the position of the matches. The proposed method was evaluated both on synthetic data and real images. The results were compared with the most popular techniques from the state-of-the-art, including RANSAC, MSAC, MLESAC, Least Trimmed Squares and Least Median of Squares. Experimental results proved that the proposed approach perform better than others in terms of accuracy of motion estimation, accuracy of inlier detection and the computational efficiency.
Genetic algorithm optimized triply compensated pulses in NMR spectroscopy
NASA Astrophysics Data System (ADS)
Manu, V. S.; Veglia, Gianluigi
2015-11-01
Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed ? and ? / 2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-13C, 15N NAVL peptide as well as U-13C, 15N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.
Optimization of process parameters in stereolithography using genetic algorithm
NASA Astrophysics Data System (ADS)
Chockalingam, K.; Jawahar, N.; Vijaybabu, E. R.
2003-10-01
Stereolithography is the most popular RP process in which intricate models are directly constructed from a CAD package by polymerizing a plastic monomer. The application range is still limited, because dimensional accuracy is still inferior to that of conventional machining process. The ultimate dimensional accuracy of a part built on a layer-by-layer basis depends on shrinkage which depend on many factors such as layer thickness, hatch spacing, hatch style, hatch over cure and fill cure depth. The influence of the above factors on shrinkage in X and Y directions fit to the nonlinear pattern. A particular combination of process variables that would result same shrinkage rate in both directions would enable to predict shrinkage allowance to be provided on a part and hence the CAD model could be constructed including shrinkage allowance. In this concern, the objective of the present work is set as determination of process parameters to have same shrinkage rate in both X and Y directions. A genetic algorithm (GA) is proposed to find optimal process parameters for the above objective. This approach is an analytical approach with experimental sample data and has great potential to predict process parameters for better dimensional accuracy in stereolithography process.
The adaptive analysis of visual cognition using genetic algorithms.
Cook, Robert G; Qadri, Muhammad A J
2013-10-01
Two experiments used a novel, open-ended, and adaptive test procedure to examine visual cognition in animals. Using a genetic algorithm, a pigeon was tested repeatedly from a variety of different initial conditions for its solution to an intermediate brightness search task. On each trial, the animal had to accurately locate and peck a target element of intermediate brightness from among a variable number of surrounding darker and lighter distractor elements. Displays were generated from 6 parametric variables, or genes (distractor number, element size, shape, spacing, target brightness, and distractor brightness). Display composition changed over time, or evolved, as a function of the bird's differential accuracy within the population of values for each gene. Testing 3 randomized initial conditions and 1 set of controlled initial conditions, element size and number of distractors were identified as the most important factors controlling search accuracy, with distractor brightness, element shape, and spacing making secondary contributions. The resulting changes in this multidimensional stimulus space suggested the existence of a set of conditions that the bird repeatedly converged upon regardless of initial conditions. This psychological "attractor" represents the cumulative action of the cognitive operations used by the pigeon in solving and performing this search task. The results are discussed regarding their implications for visual cognition in pigeons and the usefulness of adaptive, subject-driven experimentation for investigating human and animal cognition more generally. PMID:24000905
An Improved Genetic Algorithm for Pipe Network Optimization
NASA Astrophysics Data System (ADS)
Dandy, Graeme C.; Simpson, Angus R.; Murphy, Laurence J.
1996-02-01
An improved genetic algorithm (GA) formulation for pipe network optimization has been developed. The new GA uses variable power scaling of the fitness function. The exponent introduced into the fitness function is increased in magnitude as the GA computer run proceeds. In addition to the more commonly used bitwise mutation operator, an adjacency or creeping mutation operator is introduced. Finally, Gray codes rather than binary codes are used to represent the set of decision variables which make up the pipe network design. Results are presented comparing the performance of the traditional or simple GA formulation and the improved GA formulation for the New York City tunnels problem. The case study results indicate the improved GA performs significantly better than the simple GA. In addition, the improved GA performs better than previously used traditional optimization methods such as linear, dynamic, and nonlinear programming methods and an enumerative search method. The improved GA found a solution for the New York tunnels problem which is the lowest-cost feasible discrete size solution yet presented in the literature.
Offspring Generation Method for interactive Genetic Algorithm considering Multimodal Preference
NASA Astrophysics Data System (ADS)
Ito, Fuyuko; Hiroyasu, Tomoyuki; Miki, Mitsunori; Yokouchi, Hisatake
In interactive genetic algorithms (iGAs), computer simulations prepare design candidates that are then evaluated by the user. Therefore, iGA can predict a user's preferences. Conventional iGA problems involve a search for a single optimum solution, and iGA were developed to find this single optimum. On the other hand, our target problems have several peaks in a function and there are small differences among these peaks. For such problems, it is better to show all the peaks to the user. Product recommendation in shopping sites on the web is one example of such problems. Several types of preference trend should be prepared for users in shopping sites. Exploitation and exploration are important mechanisms in GA search. To perform effective exploitation, the offspring generation method (crossover) is very important. Here, we introduced a new offspring generation method for iGA in multimodal problems. In the proposed method, individuals are clustered into subgroups and offspring are generated in each group. The proposed method was applied to an experimental iGA system to examine its effectiveness. In the experimental iGA system, users can decide on preferable t-shirts to buy. The results of the subjective experiment confirmed that the proposed method enables offspring generation with consideration of multimodal preferences, and the proposed mechanism was also shown not to adversely affect the performance of preference prediction.
Innovative applications of genetic algorithms to problems in accelerator physics
NASA Astrophysics Data System (ADS)
Hofler, Alicia; TerziÄ‡, BalÅ¡a; Kramer, Matthew; Zvezdin, Anton; Morozov, Vasiliy; Roblin, Yves; Lin, Fanglei; Jarvis, Colin
2013-01-01
The genetic algorithm (GA) is a powerful technique that implements the principles nature uses in biological evolution to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others) fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing Continuous Electron Beam Accelerator Facility nuclear physics machine, the proposed Medium-energy Electron-Ion Collider at Jefferson Lab, and a radio frequency gun-based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, include a newly devised enhancement which leads to improved convergence to the optimum, and make recommendations for future GA developments and accelerator applications.
Genetic Algorithm (GA)-Based Inclinometer Layout Optimization.
Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo
2015-01-01
This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors. PMID:25897500
A Moving Target Environment for Computer Configurations Using Genetic Algorithms
Crouse, Michael; Fulp, Errin W.
2011-10-31
Moving Target (MT) environments for computer systems provide security through diversity by changing various system properties that are explicitly defined in the computer configuration. Temporal diversity can be achieved by making periodic configuration changes; however in an infrastructure of multiple similarly purposed computers diversity must also be spatial, ensuring multiple computers do not simultaneously share the same configuration and potential vulnerabilities. Given the number of possible changes and their potential interdependencies discovering computer configurations that are secure, functional, and diverse is challenging. This paper describes how a Genetic Algorithm (GA) can be employed to find temporally and spatially diverse secure computer configurations. In the proposed approach a computer configuration is modeled as a chromosome, where an individual configuration setting is a trait or allele. The GA operates by combining multiple chromosomes (configurations) which are tested for feasibility and ranked based on performance which will be measured as resistance to attack. The result of successive iterations of the GA are secure configurations that are diverse due to the crossover and mutation processes. Simulations results will demonstrate this approach can provide at MT environment for a large infrastructure of similarly purposed computers by discovering temporally and spatially diverse secure configurations.
Feature selection using genetic algorithms for fetal heart rate analysis.
Xu, Liang; Redman, Christopher W G; Payne, Stephen J; Georgieva, Antoniya
2014-07-01
The fetal heart rate (FHR) is monitored on a paper strip (cardiotocogram) during labour to assess fetal health. If necessary, clinicians can intervene and assist with a prompt delivery of the baby. Data-driven computerized FHR analysis could help clinicians in the decision-making process. However, selecting the best computerized FHR features that relate to labour outcome is a pressing research problem. The objective of this study is to apply genetic algorithms (GA) as a feature selection method to select the best feature subset from 64 FHR features and to integrate these best features to recognize unfavourable FHR patterns. The GA was trained on 404 cases and tested on 106 cases (both balanced datasets) using three classifiers, respectively. Regularization methods and backward selection were used to optimize the GA. Reasonable classification performance is shown on the testing set for the best feature subset (Cohen's kappa values of 0.45 to 0.49 using different classifiers). This is, to our knowledge, the first time that a feature selection method for FHR analysis has been developed on a database of this size. This study indicates that different FHR features, when integrated, can show good performance in predicting labour outcome. It also gives the importance of each feature, which will be a valuable reference point for further studies. PMID:24854596
Bearing Fault Detection Using Artificial Neural Networks and Genetic Algorithm
NASA Astrophysics Data System (ADS)
Samanta, B.; Al-Balushi, Khamis R.; Al-Araimi, Saeed A.
2004-12-01
A study is presented to compare the performance of bearing fault detection using three types of artificial neural networks (ANNs), namely, multilayer perceptron (MLP), radial basis function (RBF) network, and probabilistic neural network (PNN). The time domain vibration signals of a rotating machine with normal and defective bearings are processed for feature extraction. The extracted features from original and preprocessed signals are used as inputs to all three ANN classifiers: MLP, RBF, and PNN for two-class (normal or fault) recognition. The characteristic parameters like number of nodes in the hidden layer of MLP and the width of RBF, in case of RBF and PNN along with the selection of input features, are optimized using genetic algorithms (GA). For each trial, the ANNs are trained with a subset of the experimental data for known machine conditions. The ANNs are tested using the remaining set of data. The procedure is illustrated using the experimental vibration data of a rotating machine with and without bearing faults. The results show the relative effectiveness of three classifiers in detection of the bearing condition.
Innovative Applications of Genetic Algorithms to Problems in Accelerator Physics
Hofler, Alicia; Terzic, Balsa; Kramer, Matthew; Zvezdin, Anton; Morozov, Vasiliy; Roblin, Yves; Lin, Fanglei; Jarvis, Colin
2013-01-01
The genetic algorithm (GA) is a relatively new technique that implements the principles nature uses in biological evolution in order to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others) fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing CEBAF facility, the proposed MEIC at Jefferson Lab, and a radio frequency (RF) gun based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, including a newly devised enhancement, which leads to improved convergence to the optimum and make recommendations for future GA developments and accelerator applications.
Optimizing SRF Gun Cavity Profiles in a Genetic Algorithm Framework
Alicia Hofler, Pavel Evtushenko, Frank Marhauser
2009-09-01
Automation of DC photoinjector designs using a genetic algorithm (GA) based optimization is an accepted practice in accelerator physics. Allowing the gun cavity field profile shape to be varied can extend the utility of this optimization methodology to superconducting and normal conducting radio frequency (SRF/RF) gun based injectors. Finding optimal field and cavity geometry configurations can provide guidance for cavity design choices and verify existing designs. We have considered two approaches for varying the electric field profile. The first is to determine the optimal field profile shape that should be used independent of the cavity geometry, and the other is to vary the geometry of the gun cavity structure to produce an optimal field profile. The first method can provide a theoretical optimal and can illuminate where possible gains can be made in field shaping. The second method can produce more realistically achievable designs that can be compared to existing designs. In this paper, we discuss the design and implementation for these two methods for generating field profiles for SRF/RF guns in a GA based injector optimization scheme and provide preliminary results.
Parameter Estimation of Stellar Population Synthesis Using A Combined Genetic Algorithm
NASA Astrophysics Data System (ADS)
Jin-shu, HAN
2015-10-01
For the galaxies composed of different kinds of stars, it is important to estimate the parameters of stellar population synthesis quickly and accurately from the massive data of galactic spectra. It is presented in this paper that the combination of the genetic algorithm (GA) with the simulated annealing (SA) algorithm has the complementary advantages of the good global search ability and fast convergence of GA, as well as the strong local search ability of the SA algorithm. In both the speed and accuracy of the parameter estimation of stellar population synthesis, the GA-SA combined algorithm is superior to the single SA algorithm.
In-Space Radiator Shape Optimization using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Hull, Patrick V.; Kittredge, Ken; Tinker, Michael; SanSoucie, Michael
2006-01-01
Future space exploration missions will require the development of more advanced in-space radiators. These radiators should be highly efficient and lightweight, deployable heat rejection systems. Typical radiators for in-space heat mitigation commonly comprise a substantial portion of the total vehicle mass. A small mass savings of even 5-10% can greatly improve vehicle performance. The objective of this paper is to present the development of detailed tools for the analysis and design of in-space radiators using evolutionary computation techniques. The optimality criterion is defined as a two-dimensional radiator with a shape demonstrating the smallest mass for the greatest overall heat transfer, thus the end result is a set of highly functional radiator designs. This cross-disciplinary work combines topology optimization and thermal analysis design by means of a genetic algorithm The proposed design tool consists of the following steps; design parameterization based on the exterior boundary of the radiator, objective function definition (mass minimization and heat loss maximization), objective function evaluation via finite element analysis (thermal radiation analysis) and optimization based on evolutionary algorithms. The radiator design problem is defined as follows: the input force is a driving temperature and the output reaction is heat loss. Appropriate modeling of the space environment is added to capture its effect on the radiator. The design parameters chosen for this radiator shape optimization problem fall into two classes, variable height along the width of the radiator and a spline curve defining the -material boundary of the radiator. The implementation of multiple design parameter schemes allows the user to have more confidence in the radiator optimization tool upon demonstration of convergence between the two design parameter schemes. This tool easily allows the user to manipulate the driving temperature regions thus permitting detailed design of in-space radiators for unique situations. Preliminary results indicate an optimized shape following that of the temperature distribution regions in the "cooler" portions of the radiator. The results closely follow the expected radiator shape.
Double Motor Coordinated Control Based on Hybrid Genetic Algorithm and CMAC
NASA Astrophysics Data System (ADS)
Cao, Shaozhong; Tu, Ji
A novel hybrid cerebellar model articulation controller (CMAC) and online adaptive genetic algorithm (GA) controller is introduced to control two Brushless DC motor (BLDCM) which applied in a biped robot. Genetic Algorithm simulates the random learning among the individuals of a group, and CMAC simulates the self-learning of an individual. To validate the ability and superiority of the novel algorithm, experiments have been done in MATLAB/SIMULINK. Analysis among GA, hybrid GA-CMAC and CMAC feed-forward control is also given. The results prove that the torque ripple of the coordinated control system is eliminated by using the hybrid GA-CMAC algorithm.
Guo, Wensheng; Yang, Guowu; Wu, Wei; He, Lei; Sun, Mingyu
2014-01-01
In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures. PMID:24718686
NASA Astrophysics Data System (ADS)
Moon, Byung-Young
2005-12-01
The hybrid neural-genetic multi-model parameter estimation algorithm was demonstrated. This method can be applied to structured system identification of electro-hydraulic servo system. This algorithms consist of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. To evaluate the proposed method, electro-hydraulic servo system was designed and manufactured. The experiment was carried out to figure out the hybrid neural-genetic multi-model parameter estimation algorithm. As a result, the dynamic characteristics were obtained such as the parameters(mass, damping coefficient, bulk modulus, spring coefficient), which minimize total square error. The result of this study can be applied to hydraulic systems in industrial fields.
Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A
2015-06-01
Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. PMID:25880524
A Genetic Algorithm Approach to Nonlinear Least Squares Estimation
ERIC Educational Resources Information Center
Olinsky, Alan D.; Quinn, John T.; Mangiameli, Paul M.; Chen, Shaw K.
2004-01-01
A common type of problem encountered in mathematics is optimizing nonlinear functions. Many popular algorithms that are currently available for finding nonlinear least squares estimators, a special class of nonlinear problems, are sometimes inadequate. They might not converge to an optimal value, or if they do, it could be to a local rather than…
The Frontiers of Real-coded Genetic Algorithms
NASA Astrophysics Data System (ADS)
Kobayashi, Shigenobu
Real-coded genetic algorithms (RCGA) are expected to solve efficiently real parameter optimization problems of multimodality, parameter dependency, and ill-scale. Multi-parental crossovers such as the simplex crossover (SPX) and the UNDX-m as extensions of the unimodal normal distribution crossove (UNDX) show relatively good performance for RCGA. The minimal generation gap (MGG) is used widely as a generation alternation model for RCGA. However, the MGG is not suited for multi-parental crossovers. Both the SPX and the UNDX-m have their own drawbacks respectively. Therefore, RCGA composed of them cannot be applied to highly dimensional problems, because their hidden faults appear. This paper presents a new and robust faramework for RCGA. First, we propose a generation alternation model called JGG (just generation gap) suited for multi-parental crossovers. The JGG replaces parents with children completely every generation. To solve the asymmetry and bias of children distribution generated by the SPX and the UNDX-m, an enhanced SPX (e-SPX) and an enhanced UNDX (e-UNDX) are proposed. Moreover, we propose a crossover called REX(Ï†,n+k) as a generlization of the e-UNDX, where Ï† and n+k denote some probability distribution and the number of parents respectively. A concept of the globally descent direction (GDD) is introduced to handle the situations where the population does not cover any optimum. The GDD can be used under the big valley structure. Then, we propose REXstar as an extention of the REX(Ï†,n+k) that can generate children to the GDD efficiently. Several experiments show excellent performance and robustness of the REXstar. Finally, the future work is discussed.
A weight based genetic algorithm for selecting views
NASA Astrophysics Data System (ADS)
Talebian, Seyed H.; Kareem, Sameem A.
2013-03-01
Data warehouse is a technology designed for supporting decision making. Data warehouse is made by extracting large amount of data from different operational systems; transforming it to a consistent form and loading it to the central repository. The type of queries in data warehouse environment differs from those in operational systems. In contrast to operational systems, the analytical queries that are issued in data warehouses involve summarization of large volume of data and therefore in normal circumstance take a long time to be answered. On the other hand, the result of these queries must be answered in a short time to enable managers to make decisions as short time as possible. As a result, an essential need in this environment is in improving the performances of queries. One of the most popular methods to do this task is utilizing pre-computed result of queries. In this method, whenever a new query is submitted by the user instead of calculating the query on the fly through a large underlying database, the pre-computed result or views are used to answer the queries. Although, the ideal option would be pre-computing and saving all possible views, but, in practice due to disk space constraint and overhead due to view updates it is not considered as a feasible choice. Therefore, we need to select a subset of possible views to save on disk. The problem of selecting the right subset of views is considered as an important challenge in data warehousing. In this paper we suggest a Weighted Based Genetic Algorithm (WBGA) for solving the view selection problem with two objectives.
The use of genetic algorithms to model protoplanetary discs
NASA Astrophysics Data System (ADS)
Hetem, Annibal; Gregorio-Hetem, Jane
2007-12-01
The protoplanetary discs of T Tauri and Herbig Ae/Be stars have previously been studied using geometric disc models to fit their spectral energy distribution (SED). The simulations provide a means to reproduce the signatures of various circumstellar structures, which are related to different levels of infrared excess. With the aim of improving our previous model, which assumed a simple flat-disc configuration, we adopt here a reprocessing flared-disc model that assumes hydrostatic, radiative equilibrium. We have developed a method to optimize the parameter estimation based on genetic algorithms (GAs). This paper describes the implementation of the new code, which has been applied to Herbig stars from the Pico dos Dias Survey catalogue, in order to illustrate the quality of the fitting for a variety of SED shapes. The star AB Aur was used as a test of the GA parameter estimation, and demonstrates that the new code reproduces successfully a canonical example of the flared-disc model. The GA method gives a good quality of fit, but the range of input parameters must be chosen with caution, as unrealistic disc parameters can be derived. It is confirmed that the flared-disc model fits the flattened SEDs typical of Herbig stars; however, embedded objects (increasing SED slope) and debris discs (steeply decreasing SED slope) are not well fitted with this configuration. Even considering the limitation of the derived parameters, the automatic process of SED fitting provides an interesting tool for the statistical analysis of the circumstellar luminosity of large samples of young stars.
GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS
Rogers, Adam; Fiege, Jason D.
2011-02-01
Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point-spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least-squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automatically, which represents the trade-off between the image {chi}{sup 2} and regularization effects, and allows an estimate of the optimally regularized solution for each lens parameter set. In the final step of the optimization procedure, the lens model with the lowest {chi}{sup 2} is used while the global optimizer solves for the source intensity distribution directly. This allows us to accurately determine the number of degrees of freedom in the problem to facilitate comparison between lens models and enforce positivity on the source profile. In practice, we find that the GA conducts a more thorough search of the parameter space than the PSO.
A Genetic-Based Scheduling Algorithm to Minimize the Makespan of the Grid Applications
NASA Astrophysics Data System (ADS)
Entezari-Maleki, Reza; Movaghar, Ali
Task scheduling algorithms in grid environments strive to maximize the overall throughput of the grid. In order to maximize the throughput of the grid environments, the makespan of the grid tasks should be minimized. In this paper, a new task scheduling algorithm is proposed to assign tasks to the grid resources with goal of minimizing the total makespan of the tasks. The algorithm uses the genetic approach to find the suitable assignment within grid resources. The experimental results obtained from applying the proposed algorithm to schedule independent tasks within grid environments demonstrate the applicability of the algorithm in achieving schedules with comparatively lower makespan in comparison with other well-known scheduling algorithms such as, Min-min, Max-min, RASA and Sufferage algorithms.
Synthesis of optimal digital shapers with arbitrary noise using a genetic algorithm
NASA Astrophysics Data System (ADS)
RegadÃo, Alberto; SÃ¡nchez-Prieto, SebastiÃ¡n; Tabero, JesÃºs; GonzÃ¡lez-CastaÃ±o, Diego M.
2015-09-01
This paper presents structure, design and implementation of a novel technique for determining the optimal shaping, in time-domain, for spectrometers by means of a Genetic Algorithm (GA) specifically designed for this purpose. The proposed algorithm is able to adjust automatically the coefficients for shaping an input signal. Results of this experiment have been compared to a previous simulated annealing algorithm. Finally, its performance and capabilities were tested using simulation data and a real particle detector, as a scintillator.
The potential of genetic algorithms for conceptual design of rotor systems
NASA Technical Reports Server (NTRS)
Crossley, William A.; Wells, Valana L.; Laananen, David H.
1993-01-01
The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors.
Self-calibration of a noisy multiple-sensor system with genetic algorithms
NASA Astrophysics Data System (ADS)
Brooks, Richard R.; Iyengar, S. Sitharama; Chen, Jianhua
1996-01-01
This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray-scale images corrupted with noise. Both taboo search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results. The presentation includes a graphic presentation of the paths taken by tabu search and genetic algorithms when trying to find the best possible match between two corrupted images.
NASA Astrophysics Data System (ADS)
Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; CÃ¡rdenas-RodrÃguez, Julio
2016-02-01
Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners.
Yoshimaru, Eriko S; Randtke, Edward A; Pagel, Mark D; Cárdenas-Rodríguez, Julio
2016-02-01
Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners. PMID:26778301
NASA Astrophysics Data System (ADS)
Gaiser, Kyle; Liou, Meng-Sing
2007-10-01
A genetic algorithm coupled with computational fluid dynamic software is used to optimize the configuration of an engine inlet at a supersonic speed. The optimization program is written to calculate the pressure recovery of many varying bleed schedules throughout the inlet walls. The goal is to find the best combination of the bleed holes' locations, diameters, and flow rates such that a high pressure recovery is maintained. Parallel computing, by means of a NASA supercomputer, is used to run the algorithm efficiently. This is the first time a genetic algorithm has been applied to inlet bleed design. A test function is used to evaluate and debug the optimization algorithm. The genetic algorithm and its associated programs show potential for use in developing more efficient bleed schedules in a hypersonic engine.
ERIC Educational Resources Information Center
Chen, Hsinchun
1995-01-01
Presents an overview of artificial-intelligence-based inductive learning techniques and their use in information science research. Three methods are discussed: the connectionist Hopfield network; the symbolic ID3/ID5R; evolution-based genetic algorithms. The knowledge representations and algorithms of these methods are examined in the context of…
Automated Test Assembly for Cognitive Diagnosis Models Using a Genetic Algorithm
ERIC Educational Resources Information Center
Finkelman, Matthew; Kim, Wonsuk; Roussos, Louis A.
2009-01-01
Much recent psychometric literature has focused on cognitive diagnosis models (CDMs), a promising class of instruments used to measure the strengths and weaknesses of examinees. This article introduces a genetic algorithm to perform automated test assembly alongside CDMs. The algorithm is flexible in that it can be applied whether the goal is to…
Ensemble of hybrid genetic algorithm for two-dimensional phase unwrapping
NASA Astrophysics Data System (ADS)
Balakrishnan, D.; Quan, C.; Tay, C. J.
2013-06-01
The phase unwrapping is the final and trickiest step in any phase retrieval technique. Phase unwrapping by artificial intelligence methods (optimization algorithms) such as hybrid genetic algorithm, reverse simulated annealing, particle swarm optimization, minimum cost matching showed better results than conventional phase unwrapping methods. In this paper, Ensemble of hybrid genetic algorithm with parallel populations is proposed to solve the branch-cut phase unwrapping problem. In a single populated hybrid genetic algorithm, the selection, cross-over and mutation operators are applied to obtain new population in every generation. The parameters and choice of operators will affect the performance of the hybrid genetic algorithm. The ensemble of hybrid genetic algorithm will facilitate to have different parameters set and different choice of operators simultaneously. Each population will use different set of parameters and the offspring of each population will compete against the offspring of all other populations, which use different set of parameters. The effectiveness of proposed algorithm is demonstrated by phase unwrapping examples and advantages of the proposed method are discussed.
NASA Technical Reports Server (NTRS)
Wang, Lui; Valenzuela-Rendon, Manuel
1993-01-01
The Space Station Freedom will require the supply of items in a regular fashion. A schedule for the delivery of these items is not easy to design due to the large span of time involved and the possibility of cancellations and changes in shuttle flights. This paper presents the basic concepts of a genetic algorithm model, and also presents the results of an effort to apply genetic algorithms to the design of propellant resupply schedules. As part of this effort, a simple simulator and an encoding by which a genetic algorithm can find near optimal schedules have been developed. Additionally, this paper proposes ways in which robust schedules, i.e., schedules that can tolerate small changes, can be found using genetic algorithms.
Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity
Louis, S.J.; Raines, G.L.
2003-01-01
We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.
A High-Performance Genetic Algorithm: Using Traveling Salesman Problem as a Case
Tsai, Chun-Wei; Tseng, Shih-Pang; Yang, Chu-Sing
2014-01-01
This paper presents a simple but efficient algorithm for reducing the computation time of genetic algorithm (GA) and its variants. The proposed algorithm is motivated by the observation that genes common to all the individuals of a GA have a high probability of surviving the evolution and ending up being part of the final solution; as such, they can be saved away to eliminate the redundant computations at the later generations of a GA. To evaluate the performance of the proposed algorithm, we use it not only to solve the traveling salesman problem but also to provide an extensive analysis on the impact it may have on the quality of the end result. Our experimental results indicate that the proposed algorithm can significantly reduce the computation time of GA and GA-based algorithms while limiting the degradation of the quality of the end result to a very small percentage compared to traditional GA. PMID:24892038
Genetic Algorithm Based Approach For The Optimal Allocation of Facts Devices
NASA Astrophysics Data System (ADS)
Bhattacharyya, B.; Goswami, S. K.
2010-06-01
This paper presents Genetic Algorithm (GA) based approach for the allocation of FACTS devices for the improvement of Power transfer capacity in an interconnected Power System. Simulations are done on IEEE 30 BUS System. The result obtained by the GA (Genetic Algorithm) approach is compared with that of obtained by PSO (Particle Swarm Optimization) method. The comparison shows how the system performance can be greatly improved with the GA based proposed approach.
Truss Optimization for a Manned Nuclear Electric Space Vehicle using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Benford, Andrew; Tinker, Michael L.
2004-01-01
The purpose of this paper is to utilize the genetic algorithm (GA) optimization method for structural design of a nuclear propulsion vehicle. Genetic algorithms provide a guided, random search technique that mirrors biological adaptation. To verify the GA capabilities, other traditional optimization methods were used to generate results for comparison to the GA results, first for simple two-dimensional structures, and then for full-scale three-dimensional truss designs.
Fernandez-Lozano, C; Canto, C; Gestal, M; Andrade-Garda, J M; Rabuñal, J R; Dorado, J; Pazos, A
2013-01-01
Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933
Genetic algorithm identification of a H-moving vector hysteresis model
NASA Astrophysics Data System (ADS)
Cardelli, E.; Faba, A.
2014-02-01
In this work we present an identification procedure for a vector hysteresis model defined by a H-moving approach. The model parameters are identified by means of a suitable implementation of a genetic algorithm with a set of experimental data. The analytical formulation of the model and the characteristics of the genetic algorithm used are described. A comparison between computed data and experimental measurements for a not oriented grain Si-Fe magnetic steel with a weak lamination anisotropy are reported.
Fernandez-Lozano, C.; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; RabuÃ±al, J. R.; Dorado, J.; Pazos, A.
2013-01-01
Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933
Gouws, F.S.; Aldrich, C.
1996-11-01
By making use of machine learning techniques, the features of flotation froths and other plant variables can be used as a basis for the development of knowledge-based systems for plant monitoring and control. probabilistic induction and genetic algorithms were used to classify different froth structures from industrial copper and platinum flotation plants, as well as recoveries from a phosphate flotation plant. Both algorithms were equally capable of classifying the different froths at least as well as a human expert. The genetic algorithm performed significantly better than the inductive algorithm but required more tuning before optimum results could be obtained. The classification rules produced by both algorithms can easily be incorporated into a supervisory expert system shell or decision support system for plant operators and could consequently make a significant impact on the way flotation plants are currently being controlled.
Dynamic Frequencies Correction in Piezoelectric Transducers using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Arnold, F. J.; Battilana, R. B.; Aranda, M. C.
The performance of piezoelectric transducers is affected by variation of the acoustic loads. Correction of the excitation frequency are needed to maintain the performance. This paper presents an algorithm for dynamic correction of the operating frequency based on adaptive systems able to correct the frequency applying artificial intelligence techniques to a survey of impedance profiles. When the impedance is changed, a searching of similar values is performed in previously stored files and an iterative process finds the final frequency closer to the original impedance for the required performance. Simulations has been carried out using electric models. The results show the system is robust and the average response time is 6 ms.
Research on Formation of Microsatellite Communication with Genetic Algorithm
Wu, Guoqiang; Bai, Yuguang; Sun, Zhaowei
2013-01-01
For the formation of three microsatellites which fly in the same orbit and perform three-dimensional solid mapping for terra, this paper proposes an optimizing design method of space circular formation order based on improved generic algorithm and provides an intersatellite direct spread spectrum communication system. The calculating equation of LEO formation flying satellite intersatellite links is guided by the special requirements of formation-flying microsatellite intersatellite links, and the transmitter power is also confirmed throughout the simulation. The method of space circular formation order optimizing design based on improved generic algorithm is given, and it can keep formation order steady for a long time under various absorb impetus. The intersatellite direct spread spectrum communication system is also provided. It can be found that, when the distance is 1â€‰km and the data rate is 1â€‰Mbps, the input wave matches preferably with the output wave. And LDPC code can improve the communication performance. The correct capability of (512, 256) LDPC code is better than (2, 1, 7) convolution code, distinctively. The design system can satisfy the communication requirements of microsatellites. So, the presented method provides a significant theory foundation for formation-flying and intersatellite communication. PMID:24078796
Modelling and genetic algorithm based optimisation of inverse supply chain
NASA Astrophysics Data System (ADS)
BÃ¡nyai, T.
2009-04-01
The design and control of recycling systems of products with environmental risk have been discussed in the world already for a long time. The main reasons to address this subject are the followings: reduction of waste volume, intensification of recycling of materials, closing the loop, use of less resource, reducing environmental risk [1, 2]. The development of recycling systems is based on the integrated solution of technological and logistic resources and know-how [3]. However the financial conditions of recycling systems is partly based on the recovery, disassembly and remanufacturing options of the used products [4, 5, 6], but the investment and operation costs of recycling systems can be characterised with high logistic costs caused by the geographically wide collection system with more collection level and a high number of operation points of the inverse supply chain. The reduction of these costs is a popular area of the logistics researches. These researches include the design and implementation of comprehensive environmental waste and recycling program to suit business strategies (global system), design and supply all equipment for production line collection (external system), design logistics process to suit the economical and ecological requirements (external system) [7]. To the knowledge of the author, there has been no research work on supply chain design problems that purpose is the logistics oriented optimisation of inverse supply chain in the case of non-linear total cost function consisting not only operation costs but also environmental risk cost. The antecedent of this research is, that the author has taken part in some research projects in the field of closed loop economy ("Closing the loop of electr(on)ic products and domestic appliances from product planning to end-of-life technologies), environmental friendly disassembly (Concept for logistical and environmental disassembly technologies) and design of recycling systems of household appliances (Recycling of household appliances with emphasis on reuse options). The purpose of this paper is the presentation of a possible method for avoiding the unnecessary environmental risk and landscape use through unprovoked large supply chain of collection systems of recycling processes. In the first part of the paper the author presents the mathematical model of recycling related collection systems (applied especially for wastes of electric and electronic products) and in the second part of the work a genetic algorithm based optimisation method will be demonstrated, by the aid of which it is possible to determine the optimal structure of the inverse supply chain from the point of view economical, ecological and logistic objective functions. The model of the inverse supply chain is based on a multi-level, hierarchical collection system. In case of this static model it is assumed that technical conditions are permanent. The total costs consist of three parts: total infrastructure costs, total material handling costs and environmental risk costs. The infrastructure-related costs are dependent only on the specific fixed costs and the specific unit costs of the operation points (collection, pre-treatment, treatment, recycling and reuse plants). The costs of warehousing and transportation are represented by the material handling related costs. The most important factors determining the level of environmental risk cost are the number of out of time recycled (treated or reused) products, the number of supply chain objects and the length of transportation routes. The objective function is the minimization of the total cost taking into consideration the constraints. However a lot of research work discussed the design of supply chain [8], but most of them concentrate on linear cost functions. In the case of this model non-linear cost functions were used. The non-linear cost functions and the possible high number of objects of the inverse supply chain leaded to the problem of choosing a possible solution method. By the aid of analytical methods, the problem can not be solved, so a genetic algorithm based heuristic optimisation method was chosen to find the optimal solution. The input parameters of the optimisation are the followings: specific fixed, unit and environmental risk costs of the collection points of the inverse supply chain, specific warehousing and transportation costs and environmental risk costs of transportation. The output parameters are the followings: the number of objects in the different hierarchical levels of the collection system, infrastructure costs, logistics costs and environmental risk costs from used infrastructures, transportation and number of products recycled out of time. The next step of the research work was the application of the above mentioned method. The developed application makes it possible to define the input parameters of the real system, the graphical view of the chosen optimal solution in the case of the given input parameters, graphical view of the cost structure of the optimal solution, determination of the parameters of the algorithm (e.g. number of individuals, operators and termination conditions). The sensibility analysis of the objective function and the test results showed that the structure of the inverse supply chain depends on the proportion of the specific costs. Especially the proportion of the specific environmental risk costs influences the structure of the system and the number of objects at each hierarchical level of the collection system. The sensitivity analysis of the total cost function was performed in three cases. In the first case the effect of the proportion of specific infrastructure and logistics costs were analysed. If the infrastructure costs are significantly lower than the total costs of warehousing and transportation, then almost all objects of the first hierarchical level of the collection (collection directly from the users) were set up. In the other case of the proportion of costs the first level of the collection is not necessary, because it is replaceable by the more expensive transportation directly to the objects of the second or lower hierarchical level. In the second case the effect of the proportion of the logistics and environmental risk costs were analysed. In this case the analysis resulted to the followings: if the logistics costs are significantly higher than the total environmental risk costs, then because of the constant infrastructure costs the preference of logistics operations depends on the proportion of the environmental risk costs caused by of out of time recycled products and transportation. In the third case of the analysis the effect of the proportion of infrastructure and environmental risk costs were examined. If the infrastructure costs are significantly lower than the environmental risk costs, then almost all objects of the first hierarchical level of the collection (collection directly from the users) were set up. In the other case of the proportion of costs the first collection phase will be shifted near to the last hierarchical level of the supply chain to avoid a very high infrastructure set up and operation cost. The advantages of the presented model and solution method can be summarised in the followings: the model makes it possible to decide the structure of the inverse supply chain (which object to open or close); reduces infrastructure cost, especially for supply chain with high specific fixed costs; reduces the environmental risk cost through finding an optimal balance between number of objects of the system and out of time recycled products, reduces the logistics costs through determining the optimal quantitative parameters of material flow operations. The future of this research work is the use of differentiated lead-time, which makes it possible to take into consideration the above mentioned non-linear infrastructure, transportation, warehousing and environmental risk costs in the case of a given product portfolio segmented by lead-time. This publication was supported by the National Office for Research and Technology within the frame of PÃ¡zmÃ¡ny PÃ©ter programme. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Office for Research and Technology. Literature: [1] H. F. Lund: McGraw-Hill Recycling Handbook. McGraw-Hill. 2000. [2] P. T. Williams: Waste Treatment and Disposal. John Wiley and Sons Ltd. 2005. [3] M. Christopher: Logistics & Supply Chain Management: creating value-adding networks. Pearson Education [4] A. Gungor, S. M. Gupta: Issues in environmentally conscious manufacturing and product recovery: a survey. Computers & Industrial Engineering. Volume 36. Issue 4. 1999. pp. 811-853. [5] H. C. Zhang, T. C. Kuo, H. Lu, S. H. Huang: Environmentally conscious design and manufacturing: A state-of-the-art survey. Journal of Manufacturing Systems. Volume 16. Issue 5. 1997. pp. 352-371. [6] P. Veerakamolmal, S. Gupta: Design for Disassembly, Reuse, and Recycling. Green Electronics/Green Bottom Line. 2000. pp. 69-82. [7] A. Rushton, P. Croucher, P. Baker: The Handbook of Logistics and Distribution Management. Kogan P.page Limited. 2006. [8] H. Stadtler, C. Kilger: Supply Chain Management and Advanced Planning: Concepts, Models, Software, and Case Studies. Springer. 2005.
An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints
Rao, Yunqing; Qi, Dezhong; Li, Jinling
2013-01-01
For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem. PMID:24489491
Research on Prediction Model of Time Series Based on Fuzzy Theory and Genetic Algorithm
NASA Astrophysics Data System (ADS)
Xiao-qin, Wu
Fuzzy theory is one of the newly adduced self-adaptive strategies,which is applied to dynamically adjust the parameters o genetic algorithms for the purpose of enhancing the performance.In this paper, the financial time series analysis and forecasting as the main case study to the theory of soft computing technology framework that focuses on the fuzzy theory and genetic algorithms(FGA) as a method of integration. the financial time series forecasting model based on fuzzy theory and genetic algorithms was built. the ShangZheng index cards as an example. The experimental results show that FGA perform s much better than BP neural network, not only in the precision, but also in the searching speed.The hybrid algorithm has a strong feasibility and superiority.
Phase Reconstruction from FROG Using Genetic Algorithms[Frequency-Resolved Optical Gating
Omenetto, F.G.; Nicholson, J.W.; Funk, D.J.; Taylor, A.J.
1999-04-12
The authors describe a new technique for obtaining the phase and electric field from FROG measurements using genetic algorithms. Frequency-Resolved Optical Gating (FROG) has gained prominence as a technique for characterizing ultrashort pulses. FROG consists of a spectrally resolved autocorrelation of the pulse to be measured. Typically a combination of iterative algorithms is used, applying constraints from experimental data, and alternating between the time and frequency domain, in order to retrieve an optical pulse. The authors have developed a new approach to retrieving the intensity and phase from FROG data using a genetic algorithm (GA). A GA is a general parallel search technique that operates on a population of potential solutions simultaneously. Operators in a genetic algorithm, such as crossover, selection, and mutation are based on ideas taken from evolution.
Using genetic algorithms to search for an optimal portfolio strategy and test market efficiency
NASA Astrophysics Data System (ADS)
Xi, Haowen; Mandere, Edward
2008-03-01
In this numerical experiment we used genetic algorithms to search for an optimal portfolio investment strategy. The algorithm involves having a ``manager'' who divides his capital among various ``experts'' each of whom has a simple fixed investment strategy. The expert strategies act like population of genes which experiencing selection, mutation and crossover during evolution process. The genetic algorithm was run on actual portfolio with stock data (DowJones 30 stocks). We found that the genetic algorithm overwhelmingly selected optimal strategy that closely resembles a simple buy and hold portfolio, that is, evenly distribute the capital among all stocks. This study shows that market is very efficient, and one possible practical way to gauge market efficiency is to measure the difference between an optimal portfolio return and a simple buy and hold portfolio return.
NASA Astrophysics Data System (ADS)
Sharifi, Mani; Rezaei Moayed, Reza; Haratizadeh, Sara
2011-09-01
This paper presents two models for redundancy allocation problem (RAP) with cold standby redundancy policy subject to weight and cost constraints. Also, each element of the system can be damaged exponentially. And, damaged elements can be repaired exponentially by hiring some repairmen. The problem is to determine: (1) element type used in the system, (2) number of elements, and (3) number of repairmen. As the models are not solvable by exact solution methods in reasonable CPU time, an efficient genetic algorithm is developed for it. The genetic algorithm (GA) is hybridized with a local search procedure. Also, the algorithm accepts infeasible solutions after penalizing them based on their amounts of infeasibilities. Thereby, by using these two features, an efficient genetic algorithm is obtained.
The convergence analysis of parallel genetic algorithm based on allied strategy
NASA Astrophysics Data System (ADS)
Lin, Feng; Sun, Wei; Chang, K. C.
2010-04-01
Genetic algorithms (GAs) have been applied to many difficult optimization problems such as track assignment and hypothesis managements for multisensor integration and data fusion. However, premature convergence has been a main problem for GAs. In order to prevent premature convergence, we introduce an allied strategy based on biological evolution and present a parallel Genetic Algorithm with the allied strategy (PGAAS). The PGAAS can prevent premature convergence, increase the optimization speed, and has been successfully applied in a few applications. In this paper, we first present a Markov chain model in the PGAAS. Based on this model, we analyze the convergence property of PGAAS. We then present the proof of global convergence for the PGAAS algorithm. The experiments results show that PGAAS is an efficient and effective parallel Genetic algorithm. Finally, we discuss several potential applications of the proposed methodology.
The study of genetic information flux network properties in genetic algorithms
NASA Astrophysics Data System (ADS)
Wu, Zhengping; Xu, Qiong; Ni, Gaosheng; Yu, Gaoming
2015-04-01
In this paper, an empirical analysis is done on the information flux network (IFN) statistical properties of genetic algorithms (GA) and the results suggest that the node degree distribution of IFN is scale-free when there is at least some selection pressure, and it has two branches as node degree is small. Increasing crossover, decreasing the mutation rate or decreasing the selective pressure will increase the average node degree, thus leading to the decrease of scaling exponent. These studies will be helpful in understanding the combination and distribution of excellent gene segments of the population in GA evolving, and will be useful in devising an efficient GA.
NASA Astrophysics Data System (ADS)
Patel, Sanjaykumar J.; Kheraj, Vipul
2015-07-01
This paper describes a systematic investigation on the use of the genetic algorithm (GA) to accomplish ultra-low reflective multilayer coating designs for optoelectronic device applications. The algorithm is implemented using LabVIEW as a programming tool. The effects of the genetic operators, such as the type of crossover and mutation, as well as algorithm parameters, such as population size and range of search space, on the convergence of design-solution were studied. Finally, the optimal design is obtained in terms of the thickness of each layer for the multilayer AR coating using optimized genetic operators and algorithm parameters. The program is successfully tested to design AR coating in NIR wavelength range to achieve average reflectivity (R) below 10-3 over the spectral bandwidth of 200 nm with different combinations of coating materials in the stack. The random-point crossover operator is found to exhibit a better convergence rate of the solution than single-point and double-point crossover. Periodically re-initializing the thickness value of a randomly selected layer from the stack effectively prevents the solution from becoming trapped in local minima and improves the convergence probability.
Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm
Chen, C.; Xia, J.; Liu, J.; Feng, G.
2006-01-01
Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.
A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...
Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict Resolution
NASA Technical Reports Server (NTRS)
Karr, David A.; Vivona, Robert A.; Roscoe, David A.; DePascale, Stephen M.; Consiglio, Maria
2009-01-01
The Autonomous Operations Planner, a research prototype flight-deck decision support tool to enable airborne self-separation, uses a pattern-based genetic algorithm to resolve predicted conflicts between the ownship and traffic aircraft. Conflicts are resolved by modifying the active route within the ownship's flight management system according to a predefined set of maneuver pattern templates. The performance of this pattern-based genetic algorithm was evaluated in the context of batch-mode Monte Carlo simulations running over 3600 flight hours of autonomous aircraft in en-route airspace under conditions ranging from typical current traffic densities to several times that level. Encountering over 8900 conflicts during two simulation experiments, the genetic algorithm was able to resolve all but three conflicts, while maintaining a required time of arrival constraint for most aircraft. Actual elapsed running time for the algorithm was consistent with conflict resolution in real time. The paper presents details of the genetic algorithm's design, along with mathematical models of the algorithm's performance and observations regarding the effectiveness of using complimentary maneuver patterns when multiple resolutions by the same aircraft were required.
Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict Resolution
NASA Technical Reports Server (NTRS)
Karr, David A.; Vivona, Robert A.; Roscoe, David A.; DePascale, Stephen M.; Consiglio, Maria
2009-01-01
The Autonomous Operations Planner, a research prototype flight-deck decision support tool to enable airborne self-separation, uses a pattern-based genetic algorithm to resolve predicted conflicts between the ownship and traffic aircraft. Conflicts are resolved by modifying the active route within the ownship s flight management system according to a predefined set of maneuver pattern templates. The performance of this pattern-based genetic algorithm was evaluated in the context of batch-mode Monte Carlo simulations running over 3600 flight hours of autonomous aircraft in en-route airspace under conditions ranging from typical current traffic densities to several times that level. Encountering over 8900 conflicts during two simulation experiments, the genetic algorithm was able to resolve all but three conflicts, while maintaining a required time of arrival constraint for most aircraft. Actual elapsed running time for the algorithm was consistent with conflict resolution in real time. The paper presents details of the genetic algorithm s design, along with mathematical models of the algorithm s performance and observations regarding the effectiveness of using complimentary maneuver patterns when multiple resolutions by the same aircraft were required.
On a high-dimensional objective genetic algorithm and its nonlinear dynamic properties
NASA Astrophysics Data System (ADS)
Huang, Jun; Huang, Xiaohong; Ma, Yan; Liu, Yanbing
2011-09-01
The revival of multi-objective optimization is mainly resulted from the recent development of multi-objective evolutionary optimization that allows the generation of the overall Pareto front. This paper presents an algorithm called HOGA (High-dimensional Objective Genetic Algorithm) for high-dimensional objective optimization on the basis of evolutionary computing. It adopts the principle of Shannon entropy to calculate the weight for each object since the well-known multi-objective evolutionary algorithms work poorly on the high-dimensional optimization problem. To further discuss the nonlinear dynamic property of HOGA, a martingale analysis approach is then employed; some mathematical derivations of the convergent theorems are obtained. The obtained results indicate that this new algorithm is indeed capable of achieving convergence and the suggested martingale analysis approach provides a new methodology for nonlinear dynamic analysis of evolutionary algorithms.
Xu, Sheng-Hua; Liu, Ji-Ping; Zhang, Fu-Hao; Wang, Liang; Sun, Li-Jian
2015-01-01
A combination of genetic algorithm and particle swarm optimization (PSO) for vehicle routing problems with time windows (VRPTW) is proposed in this paper. The improvements of the proposed algorithm include: using the particle real number encoding method to decode the route to alleviate the computation burden, applying a linear decreasing function based on the number of the iterations to provide balance between global and local exploration abilities, and integrating with the crossover operator of genetic algorithm to avoid the premature convergence and the local minimum. The experimental results show that the proposed algorithm is not only more efficient and competitive with other published results but can also obtain more optimal solutions for solving the VRPTW issue. One new well-known solution for this benchmark problem is also outlined in the following. PMID:26343655
Zhang Changjiang; Wang Xiaodong
2008-11-06
An efficient typhoon cloud image restoration algorithm is proposed. Having implemented contourlet transform to a typhoon cloud image, noise is reduced in the high sub-bands. Weight median value filter is used to reduce the noise in the contourlet domain. Inverse contourlet transform is done to obtain the de-noising image. In order to enhance the global contrast of the typhoon cloud image, in-complete Beta transform (IBT) is used to determine non-linear gray transform curve so as to enhance global contrast for the de-noising typhoon cloud image. Genetic algorithm is used to obtain the optimal gray transform curve. Information entropy is used as the fitness function of the genetic algorithm. Experimental results show that the new algorithm is able to well enhance the global for the typhoon cloud image while well reducing the noises in the typhoon cloud image.
Use of genetic algorithms for learning and design of optimal fuzzy trackers
NASA Astrophysics Data System (ADS)
Hwang, Wen-Ruey; Thompson, Wiley E.
1995-07-01
A methodology for combining genetic algorithms (GA) and fuzzy algorithms for learning and design of optimal fuzzy trackers is presented. With the aid of genetic algorithms, optimal rules of fuzzy logic controllers and membership functions can be designed without human operator's experience and/or control engineer's knowledge. The approach presented here involves searching the decoded parameters of the membership functions and finding the optimal control rules based upon a fitness value which is defined in terms of a performance criterion. Two applications are presented: the first application deals with a GA that adjusts the fuzzy tracker at run-time on the basis of performance indices, and the second application deals with a Model Reference Adaptive Algorithm which is based on a crisp model of the closed loop system. The GA changes the parameters of the fuzzy tracker and the fuzzy membership functions in such a way that the closed loop system behaves like the reference model.
A Fuzzy Genetic Algorithm Approach to an Adaptive Information Retrieval Agent.
ERIC Educational Resources Information Center
Martin-Bautista, Maria J.; Vila, Maria-Amparo; Larsen, Henrik Legind
1999-01-01
Presents an approach to a Genetic Information Retrieval Agent Filter (GIRAF) that filters and ranks documents retrieved from the Internet according to users' preferences by using a Genetic Algorithm and fuzzy set theory to handle the imprecision of users' preferences and users' evaluation of the retrieved documents. (Author/LRW)
Simonett, Joseph M.; Sohrab, Mahsa A.; Pacheco, Jennifer; Armstrong, Loren L.; Rzhetskaya, Margarita; Smith, Maureen; Geoffrey Hayes, M.; Fawzi, Amani A.
2015-01-01
Age-related macular degeneration (AMD), a multifactorial, neurodegenerative disease, is a leading cause of vision loss. With the rapid advancement of DNA sequencing technologies, many AMD-associated genetic polymorphisms have been identified. Currently, the most time consuming steps of these studies are patient recruitment and phenotyping. In this study, we describe the development of an automated algorithm to identify neovascular (wet) AMD, non-neovascular (dry) AMD and control subjects using electronic medical record (EMR)-based criteria. Positive predictive value (91.7%) and negative predictive value (97.5%) were calculated using expert chart review as the gold standard to assess algorithm performance. We applied the algorithm to an EMR-linked DNA bio-repository to study previously identified AMD-associated single nucleotide polymorphisms (SNPs), using case/control status determined by the algorithm. Risk alleles of three SNPs, rs1061170 (CFH), rs1410996 (CFH), and rs10490924 (ARMS2) were found to be significantly associated with the AMD case/control status as defined by the algorithm. With the rapid growth of EMR-linked DNA biorepositories, patient selection algorithms can greatly increase the efficiency of genetic association study. We have found that stepwise validation of such an algorithm can result in reliable cohort selection and, when coupled within an EMR-linked DNA biorepository, replicates previously published AMD-associated SNPs. PMID:26255974
Analysis of charge-exchange spectroscopy data by combining genetic and Gauss-Newton algorithms
NASA Astrophysics Data System (ADS)
Qian, Ma; Haoyi, Zuo; Yanling, Wei; Liang, Liu; Wenjin, Chen; Xiaoxue, He; Shirong, Luo
2015-11-01
The temperature and rotation velocity profile of ions in a tokamak are two characteristic parameters that reflect the plasma's behavior. Measurement of the two parameters relies on analyzing an active charge exchange spectroscopy diagnostic. However, a very challenging problem in such a diagnostic is the existence of interfering spectral lines, which can mislead the spectrum analysis process. This work proposes combining a genetic algorithm with the Gauss-Newton method (GAGN) to address this problem. Using this GAGN algorithm, we can effectively distinguish between the useful spectrum line and the interfering spectral lines within the spectroscopic output. The accuracy and stability of this algorithm are verified using both numerical simulation and actual measurements.
Application of BP Neural Network Based on Genetic Algorithm in Quantitative Analysis of Mixed GAS
NASA Astrophysics Data System (ADS)
Chen, Hongyan; Liu, Wenzhen; Qu, Jian; Zhang, Bing; Li, Zhibin
Aiming at the problem of mixed gas detection in neural network and analysis on the principle of gas detection. Combining BP algorithm of genetic algorithm with hybrid gas sensors, a kind of quantitative analysis system of mixed gas is designed. The local minimum of network learning is the main reason which affects the precision of gas analysis. On the basis of the network study to improve the learning algorithms, the analyses and tests for CO, CO2 and HC compounds were tested. The results showed that the above measures effectively improve and enhance the accuracy of the neural network for gas analysis.
Learning Cue Phrase Patterns from Radiology Reports Using a Genetic Algorithm
Patton, Robert M; Beckerman, Barbara G; Potok, Thomas E
2009-01-01
Various computer-assisted technologies have been developed to assist radiologists in detecting cancer; however, the algorithms still lack high degrees of sensitivity and specificity, and must undergo machine learning against a training set with known pathologies in order to further refine the algorithms with higher validity of truth. This work describes an approach to learning cue phrase patterns in radiology reports that utilizes a genetic algorithm (GA) as the learning method. The approach described here successfully learned cue phrase patterns for two distinct classes of radiology reports. These patterns can then be used as a basis for automatically categorizing, clustering, or retrieving relevant data for the user.
Inverse RNA folding solution based on multi-objective genetic algorithm and Gibbs sampling method
Ganjtabesh, M; Zare-Mirakabad, F; Nowzari-Dalini, A
2013-01-01
In living systems, RNAs play important biological functions. The functional form of an RNA frequently requires a specific tertiary structure. The scaffold for this structure is provided by secondary structural elements that are hydrogen bonds within the molecule. Here, we concentrate on the inverse RNA folding problem. In this problem, an RNA secondary structure is given as a target structure and the goal is to design an RNA sequence that its structure is the same (or very similar) to the given target structure. Different heuristic search methods have been proposed for this problem. One common feature among these methods is to use a folding algorithm to evaluate the accuracy of the designed RNA sequence during the generation process. The well known folding algorithms take O(n3) times where n is the length of the RNA sequence. In this paper, we introduce a new algorithm called GGI-Fold based on multi-objective genetic algorithm and Gibbs sampling method for the inverse RNA folding problem. Our algorithm generates a sequence where its structure is the same or very similar to the given target structure. The key feature of our method is that it never uses any folding algorithm to improve the quality of the generated sequences. We compare our algorithm with RNA-SSD for some biological test samples. In all test samples, our algorithm outperforms the RNA-SSD method for generating a sequence where its structure is more stable.
Inverse RNA folding solution based on multi-objective genetic algorithm and Gibbs sampling method.
Ganjtabesh, M; Zare-Mirakabad, F; Nowzari-Dalini, A
2013-01-01
In living systems, RNAs play important biological functions. The functional form of an RNA frequently requires a specific tertiary structure. The scaffold for this structure is provided by secondary structural elements that are hydrogen bonds within the molecule. Here, we concentrate on the inverse RNA folding problem. In this problem, an RNA secondary structure is given as a target structure and the goal is to design an RNA sequence that its structure is the same (or very similar) to the given target structure. Different heuristic search methods have been proposed for this problem. One common feature among these methods is to use a folding algorithm to evaluate the accuracy of the designed RNA sequence during the generation process. The well known folding algorithms take O(n(3)) times where n is the length of the RNA sequence. In this paper, we introduce a new algorithm called GGI-Fold based on multi-objective genetic algorithm and Gibbs sampling method for the inverse RNA folding problem. Our algorithm generates a sequence where its structure is the same or very similar to the given target structure. The key feature of our method is that it never uses any folding algorithm to improve the quality of the generated sequences. We compare our algorithm with RNA-SSD for some biological test samples. In all test samples, our algorithm outperforms the RNA-SSD method for generating a sequence where its structure is more stable. PMID:26933401
Orozco-Monteagudo, Maykel; Taboada-Crispi, Alberto; Gutierrez-Hernandez, Liliana
2008-11-06
This paper deals with the controversial topic of the selection of the parameters of a genetic algorithm, in this case hierarchical, used for training of multilayer perceptron neural networks for the binary classification. The parameters to select are the crossover and mutation probabilities of the control and parametric genes and the permanency percent. The results can be considered as a guide for using this kind of algorithm.
Stochastic optimization of a cold atom experiment using a genetic algorithm
Rohringer, W.; Buecker, R.; Manz, S.; Betz, T.; Koller, Ch.; Goebel, M.; Perrin, A.; Schmiedmayer, J.; Schumm, T.
2008-12-29
We employ an evolutionary algorithm to automatically optimize different stages of a cold atom experiment without human intervention. This approach closes the loop between computer based experimental control systems and automatic real time analysis and can be applied to a wide range of experimental situations. The genetic algorithm quickly and reliably converges to the most performing parameter set independent of the starting population. Especially in many-dimensional or connected parameter spaces, the automatic optimization outperforms a manual search.
Optimal placement of active material actuators using genetic algorithm
NASA Astrophysics Data System (ADS)
Johnson, Terrence; Frecker, Mary I.
2004-07-01
Actuators based on smart materials generally exhibit a tradeoff between force and stroke. Researchers have surrounded piezoelectric materials (PZT"s) with complaint structures to magnify either their geometric or mechanical advantage. Most of these designs are literally built around a particular piezoelectric device, so the design space consists of only the compliant mechanism. Materials scientists researchers have demonstrated the ability to pole a PZT in an arbitrary direction, and some engineers have taken advantage of this to build "shear mode" actuators. The goal of this work is to determine if the performance of compliant mechanisms improves by the inclusion of the piezoelectric polarization as a design variable. The polarization vector is varied via transformation matrixes, and the compliant actuator is modeled using the SIMP (Solid Isotropic Material with Penalization) or "power-law method." The concept of mutual potential energy is used to form an objective function to measure the piezoelectric actuator"s performance. The optimal topology of the compliant mechanism and orientation of the polarization method are determined using a sequential linear programming algorithm. This paper presents a demonstration problem that shows small changes in the polarization vector have a marginal effect on the optimum topology of the mechanism, but improves actuation.
Inherited Platelet Function Disorders: Algorithms for Phenotypic and Genetic Investigation.
Gresele, Paolo; Bury, Loredana; Falcinelli, Emanuela
2016-04-01
Inherited platelet function disorders (IPFDs) manifest with mucocutaneous bleeding and are frequently difficult to diagnose due to their heterogeneity, the complexity of the platelet activation pathways and a lack of standardization of the platelet function laboratory assays and of their use for this purpose. A rational diagnostic approach to IPFDs should follow an algorithm where clinical examination and a stepwise laboratory evaluation play a crucial role. A streamlined panel of laboratory tests, with consecutive steps of increasing level of complexity, allows the phenotypic characterization of most IPFDs. A first-line diagnosis of a significant fraction of the IPFD may be made also at nonspecialized centers by using relatively simple tests, including platelet count, peripheral blood smear, light transmission aggregometry, measurement of platelet granule content and release, and the expression of glycoproteins by flow cytometry. Some of the most complex, second- and third-step tests may be performed only in highly specialized laboratories. Genotyping, including the widespread application of next-generation sequencing, has enabled discovery in the last few years of several novel genes associated with platelet disorders and this method may eventually become a first-line diagnostic approach; however, a preliminary clinical and laboratory phenotypic characterization nowadays still remains crucial for diagnosis of IPFDs. PMID:26962877
NASA Astrophysics Data System (ADS)
Booth, T. E.; Gubernatis, J. E.
2009-04-01
We present a procedure that in many cases enables the Monte Carlo sampling of states of a large system from the sampling of states of a smaller system. We illustrate this procedure, which we call the sewing algorithm, for sampling states from the transfer matrix of the two-dimensional Ising model.
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Lomax, Harvard
1987-01-01
The past decade has seen considerable activity in algorithm development for the Navier-Stokes equations. This has resulted in a wide variety of useful new techniques. Some examples for the numerical solution of the Navier-Stokes equations are presented, divided into two parts. One is devoted to the incompressible Navier-Stokes equations, and the other to the compressible form.
Spranger, K.; Capelli, C.; Bosi, G.M.; Schievano, S.; Ventikos, Y.
2015-01-01
In this paper, we perform a comparative analysis between two computational methods for virtual stent deployment: a novel fast virtual stenting method, which is based on a springâ€“mass model, is compared with detailed finite element analysis in a sequence of in silico experiments. Given the results of the initial comparison, we present a way to optimise the fast method by calibrating a set of parameters with the help of a genetic algorithm, which utilises the outcomes of the finite element analysis as a learning reference. As a result of the calibration phase, we were able to substantially reduce the force measure discrepancy between the two methods and validate the fast stenting method by assessing the differences in the final device configurations. PMID:26664007
Genetic Algorithm-Based Test Data Generation for Multiple Paths via Individual Sharing
Gong, Dunwei
2014-01-01
The application of genetic algorithms in automatically generating test data has aroused broad concerns and obtained delightful achievements in recent years. However, the efficiency of genetic algorithm-based test data generation for path testing needs to be further improved. In this paper, we establish a mathematical model of generating test data for multiple paths coverage. Then, a multipopulation genetic algorithm with individual sharing is presented to solve the established model. We not only analyzed the performance of the proposed method theoretically, but also applied it to various programs under test. The experimental results show that the proposed method can improve the efficiency of generating test data for many paths' coverage significantly. PMID:25691894
NASA Astrophysics Data System (ADS)
NuhanoviÄ‡, Amir; HivziefendiÄ‡, Jasna; HadÅ¾imehmedoviÄ‡, Amir
2013-09-01
This paper discusses the problem of finding the optimal network topological configuration by changing the feeder status. The reconfiguration problem is considered as a multiobjective problem aiming to minimize power losses and total interruptions costs subject to the system constraints: the network radiality voltage limits and feeder capability limits. Due to its complexity, the metaheuristic methods can be applied to solve the problem and often the choice is genetic algorithm. NSGA II is used to solve the multiobjective optimization problem in order to get Pareto optimal set with possible solutions. The proposed method has been tested on real 35 kV distribution network. The numerical results are presented to illustrate the feasibility of the proposed genetic algorithm. radial distribution network, multiobjective optimization, reconfiguration, genetic algorithms, NSGA II
A high fuel consumption efficiency management scheme for PHEVs using an adaptive genetic algorithm.
Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah
2015-01-01
A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974
Optimization and Improvement in Robot-Based Assembly Line System by Hybrid Genetic Algorithm
NASA Astrophysics Data System (ADS)
Lin, Lin; Gen, Mitsuo; Gao, Jie
In the real world, there are a lot of scenes from which the product is made by using the robot, which needs different assembly times to perform a given task, because of its capabilities and specialization. For a robotic assembly line balancing (rALB) problem, a set of tasks have to be assigned to stations, and each station needs to select one robot to process the assigned tasks. In this paper, we propose a hybrid genetic algorithm (hGA) for solving this problem. In the hGA, we use new representation method. Advanced genetic operators adapted to the specific chromosome structure and the characteristics of the rALB problem are used. In order to strengthen the search ability, a local search procedure is integrated under the framework the genetic algorithm. Some practical test instances demonstrate the effectiveness and efficiency of the proposed algorithm.
BONDI-97: A novel neutron energy spectrum unfolding tool using a genetic algorithm
NASA Astrophysics Data System (ADS)
Mukherjee, Bhaskar
1999-08-01
The neutron spectrum unfolding procedure using the count rate data obtained from a set of Bonner sphere neutron detectors requires the solution of the Fredholm integral equation of the first kind by using complex mathematical methods. This paper reports a new approach for the unfolding of neutron spectra using the Genetic Algorithm tool BONDI-97 (BOnner sphere Neutron DIfferentiation). The BONDI-97 was used as the input for Genetic Algorithm engine EVOLVER to search for a globally optimised solution vector from a population of randomly generated solutions. This solution vector corresponds to the unfolded neutron energy spectrum. The Genetic Algorithm engine emulates the Darwinian "Survival of the Fittest" strategy, the key ingredient of the "Theory of Evolution". The spectra of 241Am/ Be (?,n) and 239Pu/ Be (?,n) neutron sources were unfolded using the BONDI-97 tool.
A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm
Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah
2015-01-01
A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974
Genetic algorithm based image binarization approach and its quantitative evaluation via pooling
NASA Astrophysics Data System (ADS)
Hu, Huijun; Liu, Ya; Liu, Maofu
2015-12-01
The binarized image is very critical to image visual feature extraction, especially shape feature, and the image binarization approaches have been attracted more attentions in the past decades. In this paper, the genetic algorithm is applied to optimizing the binarization threshold of the strip steel defect image. In order to evaluate our genetic algorithm based image binarization approach in terms of quantity, we propose the novel pooling based evaluation metric, motivated by information retrieval community, to avoid the lack of ground-truth binary image. Experimental results show that our genetic algorithm based binarization approach is effective and efficiency in the strip steel defect images and our quantitative evaluation metric on image binarization via pooling is also feasible and practical.
Song, Jiancai; Xue, Guixiang; Kang, Yanan
2016-01-01
In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 âˆ¼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones. PMID:26943638
A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2001-01-01
In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.
Song, Jiancai; Xue, Guixiang; Kang, Yanan
2016-01-01
In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ? n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones. PMID:26943638
Thomas, Clayton L.; Lee, Shaun W.
2015-01-01
Mucopolysaccharidosis type IIIA (MPS-IIIA, Sanfilippo syndrome) is a Lysosomal Storage Disease caused by cellular deficiency of N-sulfoglucosamine sulfohydrolase (SGSH). Given the large heterogeneity of genetic mutations responsible for the disease, a comprehensive understanding of the mechanisms by which these mutations affect enzyme function is needed to guide effective therapies. We developed a multiparametric computational algorithm to assess how patient genetic mutations in SGSH affect overall enzyme biogenesis, stability, and function. 107 patient mutations for the SGSH gene were obtained from the Human Gene Mutation Database representing all of the clinical mutations documented for Sanfilippo syndrome. We assessed each mutation individually using ten distinct parameters to give a comprehensive predictive score of the stability and misfolding capacity of the SGSH enzyme resulting from each of these mutations. The predictive score generated by our multiparametric algorithm yielded a standardized quantitative assessment of the severity of a given SGSH genetic mutation toward overall enzyme activity. Application of our algorithm has identified SGSH mutations in which enzymatic malfunction of the gene product is specifically due to impairments in protein folding. These scores provide an assessment of the degree to which a particular mutation could be treated using approaches such as chaperone therapies. Our multiparametric protein biogenesis algorithm advances a key understanding in the overall biochemical mechanism underlying Sanfilippo syndrome. Importantly, the design of our multiparametric algorithm can be tailored to many other diseases of genetic heterogeneity for which protein misfolding phenotypes may constitute a major component of disease manifestation. PMID:25807448
Effect of Population Size in Extended Parameter-Free Genetic Algorithm
NASA Astrophysics Data System (ADS)
Adachi, Susumu
We propose an extended parameter-free genetic algorithm. The first step of this study is that each individual includes additional gene whose phenotype indicates a mutation rate. The second step is an extension of the selection rule of the parameter-free genetic algorithm, in which each individual has a characteristic neighborhood radius and the individuals generated near the parents are not selected to avoid trapping a local minimum. The characteristic neighborhood radius of an individual is given by the distance between before mutation and after mutation. As a result of the experiment for function minimization problems, effect of the population size appears and the success rate is improved.
NASA Astrophysics Data System (ADS)
Kim, Nam-Geun; Park, Youngsu; Kim, Jong-Wook; Kim, Eunsu; Kim, Sang Woo
In this paper, we present a recently developed pattern search method called Genetic Pattern Search algorithm (GPSA) for the global optimization of cost function subject to simple bounds. GPSA is a combined global optimization method using genetic algorithm (GA) and Digital Pattern Search (DPS) method, which has the digital structure represented by binary strings and guarantees convergence to stationary points from arbitrary starting points. The performance of GPSA is validated through extensive numerical experiments on a number of well known functions and on robot walking application. The optimization results confirm that GPSA is a robust and efficient global optimization method.
Chaotic queue-based genetic algorithm for design of a self-tuning fuzzy logic controller
NASA Astrophysics Data System (ADS)
Saini, Sanju; Saini, J. S.
2012-11-01
This paper employs a chaotic queue-based method using logistic equation in a non-canonical genetic algorithm for optimizing the performance of a self-tuning Fuzzy Logic Controller, used for controlling a nonlinear double-coupled system. A comparison has been made with a standard canonical genetic algorithm implemented on the same plant. It has been shown that chaotic queue-method brings an improvement in the performance of the FLC for wide range of set point changes by a more profound initial population spread in the search space.
Digit and command interpretation for electronic book using neural network and genetic algorithm.
Lam, H K; Leung, Frank H F
2004-12-01
This paper presents the interpretation of digits and commands using a modified neural network and the genetic algorithm. The modified neural network exhibits a node-to-node relationship which enhances its learning and generalization abilities. A digit-and-command interpreter constructed by the modified neural networks is proposed to recognize handwritten digits and commands. A genetic algorithm is employed to train the parameters of the modified neural networks of the digit-and-command interpreter. The proposed digit-and-command interpreter is successfully realized in an electronic book. Simulation and experimental results will be presented to show the applicability and merits of the proposed approach. PMID:15619928
An Efficient Functional Test Generation Method For Processors Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Hudec, JÃ¡n; GramatovÃ¡, Elena
2015-07-01
The paper presents a new functional test generation method for processors testing based on genetic algorithms and evolutionary strategies. The tests are generated over an instruction set architecture and a processor description. Such functional tests belong to the software-oriented testing. Quality of the tests is evaluated by code coverage of the processor description using simulation. The presented test generation method uses VHDL models of processors and the professional simulator ModelSim. The rules, parameters and fitness functions were defined for various genetic algorithms used in automatic test generation. Functionality and effectiveness were evaluated using the RISC type processor DP32.
Optimal placement of tuning masses on truss structures by genetic algorithms
NASA Technical Reports Server (NTRS)
Ponslet, Eric; Haftka, Raphael T.; Cudney, Harley H.
1993-01-01
Optimal placement of tuning masses, actuators and other peripherals on large space structures is a combinatorial optimization problem. This paper surveys several techniques for solving this problem. The genetic algorithm approach to the solution of the placement problem is described in detail. An example of minimizing the difference between the two lowest frequencies of a laboratory truss by adding tuning masses is used for demonstrating some of the advantages of genetic algorithms. The relative efficiencies of different codings are compared using the results of a large number of optimization runs.
Hybrid ant colony-genetic algorithm (GAAPI) for global continuous optimization.
Ciornei, Irina; Kyriakides, Elias
2012-02-01
Many real-life optimization problems often face an increased rank of nonsmoothness (many local minima) which could prevent a search algorithm from moving toward the global solution. Evolution-based algorithms try to deal with this issue. The algorithm proposed in this paper is called GAAPI and is a hybridization between two optimization techniques: a special class of ant colony optimization for continuous domains entitled API and a genetic algorithm (GA). The algorithm adopts the downhill behavior of API (a key characteristic of optimization algorithms) and the good spreading in the solution space of the GA. A probabilistic approach and an empirical comparison study are presented to prove the convergence of the proposed method in solving different classes of complex global continuous optimization problems. Numerical results are reported and compared to the existing results in the literature to validate the feasibility and the effectiveness of the proposed method. The proposed algorithm is shown to be effective and efficient for most of the test functions. PMID:21896393
Imaging through a highly scattering medium with structural similarity and genetic algorithm
NASA Astrophysics Data System (ADS)
Wu, Tengfei; Shao, Xiaopeng; Gong, Changmei; Dai, Weijia
2014-10-01
A method to recover the image of an object behind a highly scattering medium with higher accuracy is presented. Instead of the Pearson correlation coefficient (PCC) used in the existing methods, structural similarity (SSIM), which is known as an excellent evaluation indicator of image quality, is employed as the cost function for the wavefront optimization. Compared to PCC, better imaging quality can be acquired with SSIM, because the latter comprehensively analyzes the luminance, the contrast, and the structure of imaging results. By comparing the performances of the three commonly used global optimization algorithms, including a genetic algorithm (GA), particle swarm optimization and differential evolution algorithm, we verify that GA has the best reliability and stability to solve this multidimensional wavefront modulation problem among these global optimization algorithms, including in strong noise environments. This work can improve the quality of imaging through a highly scattering medium with a wavefront optimization technique and can be applied to the fields of optical detection or biomedical imaging.
Biased Random-Key Genetic Algorithms for the Winner Determination Problem in Combinatorial Auctions.
de Andrade, Carlos Eduardo; Toso, Rodrigo Franco; Resende, Mauricio G C; Miyazawa, FlÃ¡vio Keidi
2015-01-01
In this paper we address the problem of picking a subset of bids in a general combinatorial auction so as to maximize the overall profit using the first-price model. This winner determination problem assumes that a single bidding round is held to determine both the winners and prices to be paid. We introduce six variants of biased random-key genetic algorithms for this problem. Three of them use a novel initialization technique that makes use of solutions of intermediate linear programming relaxations of an exact mixed integer linear programming model as initial chromosomes of the population. An experimental evaluation compares the effectiveness of the proposed algorithms with the standard mixed linear integer programming formulation, a specialized exact algorithm, and the best-performing heuristics proposed for this problem. The proposed algorithms are competitive and offer strong results, mainly for large-scale auctions. PMID:25299242
NASA Astrophysics Data System (ADS)
Dai, Shao-sheng; Liu, Jin-song; Xiang, Hai-yan; Du, Zhi-hui; Liu, Qin
2014-07-01
Aiming at these disadvantages like lack of details, poor contrast and blurry edges of infrared images reconstructed by traditional controllable microscanning super-resolution reconstruction (SRR), this paper proposes a novel algorithm, which samples multiple low-resolution images (LRIs) by uncontrollable microscanning, and then uses LRIs as chromosomes of genetic algorithm (GA). After several generations of evolution, optimal LRIs are got to reconstruct the high-resolution image (HRI). The experimental results show that the average gradient of the image reconstructed by the proposed algorithm is increased to 1.5 times of that of the traditional SRR algorithm, and the amounts of information, the contrast and the visual effect of the reconstructed image are improved.
Genetic algorithm optimization of a large U.K. coal mine ventilation network
Yang, Z.Y.; Lowndes, I.S.; Denby, B.
1999-07-01
This paper reports on results of an application of a genetic algorithm to the optimization of a large UK Coal Mine Ventilation Network. The genetic algorithm technique has been developed into a computer program for minimizing the total network operating fan power costs. The application of booster fans may become an attractive alternative for ventilation engineers to provide an adequate supply of fresh air around the working areas in some deep and/or extensive mines. The objective of this research is to minimize the total power consumption of a ventilation system by determining the optimum combinations of (1) main fan and booster fans ratings and (2) booster fan position(s). A modular computer program, which combines the application of the genetic algorithm optimization technique together with a ventilation network simulator, has been developed using the C++ language. The ventilation network simulator uses the standard hardy-cross iterative scheme implicit within the VNET mine ventilation software that was developed at the University of Nottingham. This paper presents detail of a study on an extensive UK coal mine ventilation network. The ventilation of this network is investigated using various configurations--a single main surface fan, or a main surface fan with either a single, two or three underground booster fans. The paper highlights the major genetic operators that are used to evolve the optimum solution. It is concluded that the genetic algorithm approach is an efficient and flexible solution method.
Optimal tracking controller for an autonomous wheeled mobile robot using fuzzy genetic algorithm
NASA Astrophysics Data System (ADS)
Kim, Sangwon; Park, Chongkug
2005-12-01
This paper deals with development of a kinematics model, a trajectory tracking, and a controller of fuzzy-genetics algorithm for 2-DOF Wheeled Mobile Robot (WMR). The global inputs to the WMR are a reference position, P r= (x r,y r,Î¸ r) t and a reference velocity q r=(v r,Ï‰ r) t, which are time variables. The global output of WMR is a current posture P c= (x c,y c,Î¸ c) t. The position of WMR is estimated by dead-reckoning algorithm. Dead-reckoning algorithm can determine present position of WMR in real time by adding up the increased position data to the previous one in sampling period. The tracking controller makes position error to be converged 0. In order to reduce position error, a compensation velocities q=(v,Ï‰) t on the track of trajectory is necessary. Therefore, a controller using fuzzy-genetic algorithm is proposed to give velocity compensation in this system. Input variables of two fuzzy logic controllers (FLCs) are position errors in every sampling time. The output values of FLCs are compensation velocities. Genetic algorithms (GAs) are implemented to adjust the output gain of fuzzy logic. The computer simulation is performed to get the result of trajectory tracking and to prove efficiency of proposed controller.
Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.
Sherer, Eric A; Sale, Mark E; Pollock, Bruce G; Belani, Chandra P; Egorin, Merrill J; Ivy, Percy S; Lieberman, Jeffrey A; Manuck, Stephen B; Marder, Stephen R; Muldoon, Matthew F; Scher, Howard I; Solit, David B; Bies, Robert R
2012-08-01
A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q? = 4.9 % and q? = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data. PMID:22767341
Mohamad, Mohd Saberi; Abdullah, Afnizanfaizal
2015-01-01
This paper presents an in silico optimization method of metabolic pathway production. The metabolic pathway can be represented by a mathematical model known as the generalized mass action model, which leads to a complex nonlinear equations system. The optimization process becomes difficult when steady state and the constraints of the components in the metabolic pathway are involved. To deal with this situation, this paper presents an in silico optimization method, namely the Newton Cooperative Genetic Algorithm (NCGA). The NCGA used Newton method in dealing with the metabolic pathway, and then integrated genetic algorithm and cooperative co-evolutionary algorithm. The proposed method was experimentally applied on the benchmark metabolic pathways, and the results showed that the NCGA achieved better results compared to the existing methods. PMID:25961295
Inverting the parameters of an earthquake-ruptured fault with a genetic algorithm
NASA Astrophysics Data System (ADS)
Yu, Ting-To; Fernàndez, Josè; Rundle, John B.
1998-03-01
Natural selection is the spirit of the genetic algorithm (GA): by keeping the good genes in the current generation, thereby producing better offspring during evolution. The crossover function ensures the heritage of good genes from parent to offspring. Meanwhile, the process of mutation creates a special gene, the character of which does not exist in the parent generation. A program based on genetic algorithms using C language is constructed to invert the parameters of an earthquake-ruptured fault. The verification and application of this code is shown to demonstrate its capabilities. It is determined that this code is able to find the global extreme and can be used to solve more practical problems with constraints gathered from other sources. It is shown that GA is superior to other inverting schema in many aspects. This easy handling and yet powerful algorithm should have many suitable applications in the field of geosciences.
Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm
NASA Technical Reports Server (NTRS)
Baskaran, Subbiah; Noever, D.
1999-01-01
Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.
A Study of Penalty Function Methods for Constraint Handling with Genetic Algorithm
NASA Technical Reports Server (NTRS)
Ortiz, Francisco
2004-01-01
COMETBOARDS (Comparative Evaluation Testbed of Optimization and Analysis Routines for Design of Structures) is a design optimization test bed that can evaluate the performance of several different optimization algorithms. A few of these optimization algorithms are the sequence of unconstrained minimization techniques (SUMT), sequential linear programming (SLP) and the sequential quadratic programming techniques (SQP). A genetic algorithm (GA) is a search technique that is based on the principles of natural selection or "survival of the fittest". Instead of using gradient information, the GA uses the objective function directly in the search. The GA searches the solution space by maintaining a population of potential solutions. Then, using evolving operations such as recombination, mutation and selection, the GA creates successive generations of solutions that will evolve and take on the positive characteristics of their parents and thus gradually approach optimal or near-optimal solutions. By using the objective function directly in the search, genetic algorithms can be effectively applied in non-convex, highly nonlinear, complex problems. The genetic algorithm is not guaranteed to find the global optimum, but it is less likely to get trapped at a local optimum than traditional gradient-based search methods when the objective function is not smooth and generally well behaved. The purpose of this research is to assist in the integration of genetic algorithm (GA) into COMETBOARDS. COMETBOARDS cast the design of structures as a constrained nonlinear optimization problem. One method used to solve constrained optimization problem with a GA to convert the constrained optimization problem into an unconstrained optimization problem by developing a penalty function that penalizes infeasible solutions. There have been several suggested penalty function in the literature each with there own strengths and weaknesses. A statistical analysis of some suggested penalty functions is performed in this study. Also, a response surface approach to robust design is used to develop a new penalty function approach. This new penalty function approach is then compared with the other existing penalty functions.
Optimal sensor placement for spatial lattice structure based on genetic algorithms
NASA Astrophysics Data System (ADS)
Liu, Wei; Gao, Wei-cheng; Sun, Yi; Xu, Min-jian
2008-10-01
Optimal sensor placement technique plays a key role in structural health monitoring of spatial lattice structures. This paper considers the problem of locating sensors on a spatial lattice structure with the aim of maximizing the data information so that structural dynamic behavior can be fully characterized. Based on the criterion of optimal sensor placement for modal test, an improved genetic algorithm is introduced to find the optimal placement of sensors. The modal strain energy (MSE) and the modal assurance criterion (MAC) have been taken as the fitness function, respectively, so that three placement designs were produced. The decimal two-dimension array coding method instead of binary coding method is proposed to code the solution. Forced mutation operator is introduced when the identical genes appear via the crossover procedure. A computational simulation of a 12-bay plain truss model has been implemented to demonstrate the feasibility of the three optimal algorithms above. The obtained optimal sensor placements using the improved genetic algorithm are compared with those gained by exiting genetic algorithm using the binary coding method. Further the comparison criterion based on the mean square error between the finite element method (FEM) mode shapes and the Guyan expansion mode shapes identified by data-driven stochastic subspace identification (SSI-DATA) method are employed to demonstrate the advantage of the different fitness function. The results showed that some innovations in genetic algorithm proposed in this paper can enlarge the genes storage and improve the convergence of the algorithm. More importantly, the three optimal sensor placement methods can all provide the reliable results and identify the vibration characteristics of the 12-bay plain truss model accurately.
Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed
NASA Technical Reports Server (NTRS)
Rakoczy, John; Steincamp, James; Taylor, Jaime
2003-01-01
A reduced surrogate, one point crossover genetic algorithm with random rank-based selection was used successfully to estimate the multiple phases of a segmented optical system modeled on the seven-mirror Systematic Image-Based Optical Alignment testbed located at NASA's Marshall Space Flight Center.
Technology Transfer Automated Retrieval System (TEKTRAN)
In this paper, the Genetic Algorithms (GA) and Bayesian model averaging (BMA) were combined to simultaneously conduct calibration and uncertainty analysis for the Soil and Water Assessment Tool (SWAT). In this hybrid method, several SWAT models with different structures are first selected; next GA i...
Optimization of meander line antennas for RFID applications by using genetic algorithm
NASA Astrophysics Data System (ADS)
Bucuci, Stefania C.; Anchidin, Liliana; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban; Tamas, Razvan D.
2015-02-01
In this paper, we propose an approach of optimization of meander line antennas by using genetic algorithm. Such antennas are used in RFID applications. As opposed to other approaches for meander antennas, we propose the use of only two optimization objectives, i.e. gain and size. As an example, we have optimized a single meander dipole antenna, resonating at 869 MHz.
Credit card fraud detection: An application of the gene expression messy genetic algorithm
Kargupta, H.; Gattiker, J.R.; Buescher, K.
1996-05-01
This paper describes an application of the recently introduced gene expression messy genetic algorithm (GEMGA) (Kargupta, 1996) for detecting fraudulent transactions of credit cards. It also explains the fundamental concepts underlying the GEMGA in the light of the SEARCH (Search Envisioned As Relation and Class Hierarchizing) (Kargupta, 1995) framework.
Voltage and Reactive Power Control by Integration of Genetic Algorithm and Tabu Search
NASA Astrophysics Data System (ADS)
Aoki, Hidenori; Yamamoto, Kensei; Mizutani, Yoshibumi
This paper presents on the result of voltage and reactive power control by use of the proposed method. The feature of proposed method is integration of genetic algorithm (GA) and tabu search (TS). This method obtains an excellent fitness at shorter calculation time than GA considering conventional control process. The effectiveness of this method is shown by a practicable 15-bus system.
Genetic algorithms for the design of looped irrigation water distribution networks
NASA Astrophysics Data System (ADS)
Reca, Juan; MartíNez, Juan
2006-05-01
A new computer model called Genetic Algorithm Pipe Network Optimization Model (GENOME) has been developed with the aim of optimizing the design of new looped irrigation water distribution networks. The model is based on a genetic algorithm method, although relevant modifications and improvements have been implemented to adapt the model to this specific problem. It makes use of the robust network solver EPANET. The model has been tested and validated by applying it to the least cost optimization of several benchmark networks reported in the literature. The results obtained with GENOME have been compared with those found in previous works, obtaining the same results as the best published in the literature to date. Once the model was validated, the optimization of a real complex irrigation network has been carried out to evaluate the potential of the genetic algorithm for the optimal design of large-scale networks. Although satisfactory results have been obtained, some adjustments would be desirable to improve the performance of genetic algorithms when the complexity of the network requires it.
Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong
2014-01-01
The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform. PMID:25097872
Using Genetic Algorithm and MODFLOW to Characterize Aquifer System of Northwest Florida
By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...
By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...
Automatic 3D image registration using voxel similarity measurements based on a genetic algorithm
NASA Astrophysics Data System (ADS)
Huang, Wei; Sullivan, John M., Jr.; Kulkarni, Praveen; Murugavel, Murali
2006-03-01
An automatic 3D non-rigid body registration system based upon the genetic algorithm (GA) process is presented. The system has been successfully applied to 2D and 3D situations using both rigid-body and affine transformations. Conventional optimization techniques and gradient search strategies generally require a good initial start location. The GA approach avoids the local minima/maxima traps of conventional optimization techniques. Based on the principles of Darwinian natural selection (survival of the fittest), the genetic algorithm has two basic steps: 1. Randomly generate an initial population. 2. Repeated application of the natural selection operation until a termination measure is satisfied. The natural selection process selects individuals based on their fitness to participate in the genetic operations; and it creates new individuals by inheritance from both parents, genetic recombination (crossover) and mutation. Once the termination criteria are satisfied, the optimum is selected from the population. The algorithm was applied on 2D and 3D magnetic resonance images (MRI). It does not require any preprocessing such as threshold, smoothing, segmentation, or definition of base points or edges. To evaluate the performance of the GA registration, the results were compared with results of the Automatic Image Registration technique (AIR) and manual registration which was used as the gold standard. Results showed that our GA implementation was a robust algorithm and gives very close results to the gold standard. A pre-cropping strategy was also discussed as an efficient preprocessing step to enhance the registration accuracy.
Knowledge-based engineering for mould design based on the use of genetic algorithm
NASA Astrophysics Data System (ADS)
Jiang, Peng; Hu, Jianjun; Xu, Hongbin
2005-12-01
The process of mould design depends on one's engineering knowledge and design experience. Knowledge-based engineering (KBE) adequately utilizes such knowledge and experience to design. KBE is a very important approach for increasing the intelligence and speed-up of the time of engineering design. In recent years, the use of genetic algorithms, as an optimization method, enables a rapid development. It searches the optimum solution for a problem using the principle of "survival of the fittest". In the process of mould design, constraint conditions for important parameters are set up. Then, a genetic algorithm is used to code these parameters and search for the optimum (or approximate optimum) solution of these parameters. Compared with general KBE, the KBE based on a genetic algorithm enhances the efficiency of design and the precision of solution. It not only makes use of the knowledge and experience of experts and designers, but also utilizes the great ability and generality of genetic algorithms in searching for an optimum solution.
A HYBRID GENETIC ALGORITHM FOR MULTIOBJECTIVE PROBLEMS WITH ACTIVITY ANALYSIS-BASED LOCAL SEARCH
Technology Transfer Automated Retrieval System (TEKTRAN)
The objective of this research was the development of a method that integrated a data envelopment analysis economic model of production with a biophysical model, with optimization over multiple objectives. We specified a hybrid genetic algorithm using DEA as a local search method, and NSGA-II for c...
Creating IRT-Based Parallel Test Forms Using the Genetic Algorithm Method
ERIC Educational Resources Information Center
Sun, Koun-Tem; Chen, Yu-Jen; Tsai, Shu-Yen; Cheng, Chien-Fen
2008-01-01
In educational measurement, the construction of parallel test forms is often a combinatorial optimization problem that involves the time-consuming selection of items to construct tests having approximately the same test information functions (TIFs) and constraints. This article proposes a novel method, genetic algorithm (GA), to construct parallel…
ERIC Educational Resources Information Center
Moreno, Julian; Ovalle, Demetrio A.; Vicari, Rosa M.
2012-01-01
Considering that group formation is one of the key processes in collaborative learning, the aim of this paper is to propose a method based on a genetic algorithm approach for achieving inter-homogeneous and intra-heterogeneous groups. The main feature of such a method is that it allows for the consideration of as many student characteristics as…
Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong
2014-01-01
The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform. PMID:25097872
Genetic Algorithm-Based Relevance Feedback for Image Retrieval Using Local Similarity Patterns.
ERIC Educational Resources Information Center
Stejic, Zoran; Takama, Yasufumi; Hirota, Kaoru
2003-01-01
Proposes local similarity pattern (LSP) as a new method for computing digital image similarity. Topics include optimizing similarity computation based on genetic algorithm; relevance feedback; and an evaluation of LSP on five databases that showed an increase in retrieval precision over other methods for computing image similarity. (Author/LRW)
Genetic algorithms and their applications in accelerator physics
Hofler, Alicia S.
2013-12-01
Multi-objective optimization techniques are widely used in an extremely broad range of fields. Genetic optimization for multi-objective optimization was introduced in the accelerator community in relatively recent times and quickly spread becoming a fundamental tool in multi-dimensional optimization problems. This discussion introduces the basics of the technique and reviews applications in accelerator problems.
First Attempt of Orbit Determination of SLR Satellites and Space Debris Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Deleflie, F.; Coulot, D.; Descosta, R.; Fernier, A.; Richard, P.
2013-08-01
We present an orbit determination method based on genetic algorithms. Contrary to usual estimation methods mainly based on least-squares methods, these algorithms do not require any a priori knowledge of the initial state vector to be estimated. These algorithms can be applied when a new satellite is launched or for uncatalogued objects that appear in images obtained from robotic telescopes such as the TAROT ones. We show in this paper preliminary results obtained from an SLR satellite, for which tracking data acquired by the ILRS network enable to build accurate orbital arcs at a few centimeter level, which can be used as a reference orbit ; in this case, the basic observations are made up of time series of ranges, obtained from various tracking stations. We show as well the results obtained from the observations acquired by the two TAROT telescopes on the Telecom-2D satellite operated by CNES ; in that case, the observations are made up of time series of azimuths and elevations, seen from the two TAROT telescopes. The method is carried out in several steps: (i) an analytical propagation of the equations of motion, (ii) an estimation kernel based on genetic algorithms, which follows the usual steps of such approaches: initialization and evolution of a selected population, so as to determine the best parameters. Each parameter to be estimated, namely each initial keplerian element, has to be searched among an interval that is preliminary chosen. The algorithm is supposed to converge towards an optimum over a reasonable computational time.
Genetic algorithms and classifier systems: Foundations and future directions
Holland, J.H.
1987-01-01
Theoretical questions about classifier systems, with rare exceptions, apply equally to other adaptive nonlinear networks (ANNs) such as the connectionist models of cognitive psychology, the immune system, economic systems, ecologies, and genetic systems. This paper discusses pervasive properties of ANNs and the kinds of mathematics relevant to questions about these properties. It discusses relevant functional extensions of the basic classifier system and extensions of the extant mathematical theory. An appendix briefly reviews some of the key theorems about classifier systems. 6 refs.
Genetic algorithms in conceptual design of a light-weight, low-noise, tilt-rotor aircraft
NASA Technical Reports Server (NTRS)
Wells, Valana L.
1996-01-01
This report outlines research accomplishments in the area of using genetic algorithms (GA) for the design and optimization of rotorcraft. It discusses the genetic algorithm as a search and optimization tool, outlines a procedure for using the GA in the conceptual design of helicopters, and applies the GA method to the acoustic design of rotors.
Extended models of gravity in SNIa cosmological data using genetic algorithms
NASA Astrophysics Data System (ADS)
López-Corona, O.
2015-04-01
In this talk I explained briefly the advantages of using genetic algorithms on any measured data but specially astronomical ones. This kind of algorithms are not only a better computational paradigm, but they also allow for a more profound data treatment enhancing theoretical developments. As an example, I will use the SNIa cosmological data to fit the extended metric theories of gravity of Carranza et al. (2013, 2014) showing that the best parameters combination deviate from theoretical predicted ones by a minimal amount. This means that these kind of gravitational extensions are statistically robust and show that no dark matter and/or energy is required to explain the observations.
Genetic Algorithm for Solving Fuzzy Shortest Path Problem in a Network with mixed fuzzy arc lengths
NASA Astrophysics Data System (ADS)
Mahdavi, Iraj; Tajdin, Ali; Hassanzadeh, Reza; Mahdavi-Amiri, Nezam; Shafieian, Hosna
2011-06-01
We are concerned with the design of a model and an algorithm for computing a shortest path in a network having various types of fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using ? -cuts by proposing a linear least squares model to obtain membership functions for the considered additions. Then, using a recently proposed distance function for comparison of fuzzy numbers. we propose a new approach to solve the fuzzy APSPP using of genetic algorithm. Examples are worked out to illustrate the applicability of the proposed model.
Multi-objective Emergency Facility Location Problem Based on Genetic Algorithm
NASA Astrophysics Data System (ADS)
Zhao, Dan; Zhao, Yunsheng; Li, Zhenhua; Chen, Jin
Recent years, emergent disasters have occurred frequently. This has attracted more attention on emergency management, especially the multi-objective emergency facility location problem (EFLP), a NP problem. However, few algorithms are efficient to solve the probleme and so the application of genetic algorithm (GA) can be a good choice. This paper first introduces the mathematical models for this problem and transforms it from complex constraints into simple constraints by punishment function. The solutions to the experiments are obtained by applying GA. The experiment results show that GA could solve the problems effectively.
Genetic Algorithm and Tabu Search for Vehicle Routing Problems with Stochastic Demand
NASA Astrophysics Data System (ADS)
Ismail, Zuhaimy; Irhamah
2010-11-01
This paper presents a problem of designing solid waste collection routes, involving scheduling of vehicles where each vehicle begins at the depot, visits customers and ends at the depot. It is modeled as a Vehicle Routing Problem with Stochastic Demands (VRPSD). A data set from a real world problem (a case) is used in this research. We developed Genetic Algorithm (GA) and Tabu Search (TS) procedure and these has produced the best possible result. The problem data are inspired by real case of VRPSD in waste collection. Results from the experiment show the advantages of the proposed algorithm that are its robustness and better solution qualities.
The mGA1.0: A common LISP implementation of a messy genetic algorithm
NASA Technical Reports Server (NTRS)
Goldberg, David E.; Kerzic, Travis
1990-01-01
Genetic algorithms (GAs) are finding increased application in difficult search, optimization, and machine learning problems in science and engineering. Increasing demands are being placed on algorithm performance, and the remaining challenges of genetic algorithm theory and practice are becoming increasingly unavoidable. Perhaps the most difficult of these challenges is the so-called linkage problem. Messy GAs were created to overcome the linkage problem of simple genetic algorithms by combining variable-length strings, gene expression, messy operators, and a nonhomogeneous phasing of evolutionary processing. Results on a number of difficult deceptive test functions are encouraging with the mGA always finding global optima in a polynomial number of function evaluations. Theoretical and empirical studies are continuing, and a first version of a messy GA is ready for testing by others. A Common LISP implementation called mGA1.0 is documented and related to the basic principles and operators developed by Goldberg et. al. (1989, 1990). Although the code was prepared with care, it is not a general-purpose code, only a research version. Important data structures and global variations are described. Thereafter brief function descriptions are given, and sample input data are presented together with sample program output. A source listing with comments is also included.
Prediction of common secondary structures of RNAs: a genetic algorithm approach
Chen, Jih-H.; Le, Shu-Yun; Maizel, Jacob V.
2000-01-01
In this study we apply a genetic algorithm to a set of RNA sequences to find common RNA secondary structures. Our method is a three-step procedure. At the first stage of the procedure for each sequence, a genetic algorithm is used to optimize the structures in a population to a certain degree of stability. In this step, the free energy of a structure is the fitness criterion for the algorithm. Next, for each structure, we define a measure of structural conservation with respect to those in other sequences. We use this measure in a genetic algorithm to improve the structural similarity among sequences for the structures in the population of a sequence. Finally, we select those structures satisfying certain conditions of structural stability and similarity as predicted common structures for a set of RNA sequences. We have obtained satisfactory results from a set of tRNA, 5S rRNA, rev response elements (RRE) of HIV-1 and RRE of HIV-2/SIV, respectively. PMID:10648793
A Novel Multi-objective Genetic Algorithms-Based Calculation of Hill's Coefficients
NASA Astrophysics Data System (ADS)
Hariharan, Krishnaswamy; Chakraborti, Nirupam; Barlat, Frédéric; Lee, Myoung-Gyu
2014-06-01
The anisotropic coefficients of Hill's yield criterion are determined through a novel genetic algorithms-based multi-objective optimization approach. The classical method of determining anisotropic coefficients is sensitive to the effective plastic strain. In the present procedure, that limitation is overcome using a genetically evolved meta-model of the entire stress strain curve, obtained from uniaxial tension tests conducted in the rolling direction and transverse directions, and biaxial tension. Then, an effective strain that causes the least error in terms of two theoretically derived objective functions is chosen. The anisotropic constants evolved through genetic algorithms correlate very well with the classical results. This approach is expected to be successful for more complex constitutive equations as well.
Colony image acquisition and genetic segmentation algorithm and colony analyses
NASA Astrophysics Data System (ADS)
Wang, W. X.
2012-01-01
Colony anaysis is used in a large number of engineerings such as food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing. In order to reduce laboring and increase analysis acuracy, many researchers and developers have made efforts for image analysis systems. The main problems in the systems are image acquisition, image segmentation and image analysis. In this paper, to acquire colony images with good quality, an illumination box was constructed. In the box, the distances between lights and dishe, camra lens and lights, and camera lens and dishe are adjusted optimally. In image segmentation, It is based on a genetic approach that allow one to consider the segmentation problem as a global optimization,. After image pre-processing and image segmentation, the colony analyses are perfomed. The colony image analysis consists of (1) basic colony parameter measurements; (2) colony size analysis; (3) colony shape analysis; and (4) colony surface measurements. All the above visual colony parameters can be selected and combined together, used to make a new engineeing parameters. The colony analysis can be applied into different applications.
A Self-Adaptive Hybrid Genetic Algorithm for Optimal Groundwater Remediation Design
NASA Astrophysics Data System (ADS)
Espinoza, F. P.; Minsker, B. S.
2003-12-01
Identifying optimal designs for a groundwater remediation system is computationally intensive, especially for complex, nonlinear problems such as enhanced in situ bioremediation technology. To improve performance, we apply a hybrid genetic algorithm (HGA), which is a two-step solution method: a genetic algorithm (GA) for global search using the entire population and then a local search (LS) to improve search speed for only a few individuals in the population. The inclusion of local search helps to speed up the solution process and to make the solution technique more robust. The result of this research is a highly reliable numerical tool, the enhanced self-adaptive hybrid genetic algorithm (e-SAHGA) to more efficiently and effectively solve problems using simple genetic algorithms (SGAs). With this tool, the designer can evaluate different solution alternatives in a more timely fashion. The application of the e-SAHGA algorithm to a hypothetical groundwater remediation design problem showed 90% reliability in identifying the solution faster than the SGA, with average savings of 64% across 100 runs with different random initial populations. Finally, e-SAHGA was tested on a field-scale remediation design problem, re-evaluation of the remediation system for Umatilla Army Depot, by means of a domain decomposition approach. In this approach, well locations are identified first and then pumping rates are identified subsequently in separate GA runs. The domain decomposition approach was shown to be much faster than the full solution approach with no loss in accuracy of the final solution for this problem, with computational savings between 30% and 60%.
Quasi-conformal mapping with genetic algorithms applied to coordinate transformations
NASA Astrophysics Data System (ADS)
González-Matesanz, F. J.; Malpica, J. A.
2006-11-01
In this paper, piecewise conformal mapping for the transformation of geodetic coordinates is studied. An algorithm, which is an improved version of a previous algorithm published by Lippus [2004a. On some properties of piecewise conformal mappings. Eesti NSV Teaduste Akademmia Toimetised Füüsika-Matemaakika 53, 92-98; 2004b. Transformation of coordinates using piecewise conformal mapping. Journal of Geodesy 78 (1-2), 40] is presented; the improvement comes from using a genetic algorithm to partition the complex plane into convex polygons, whereas the original one did so manually. As a case study, the method is applied to the transformation of the Spanish datum ED50 and ETRS89, and both its advantages and disadvantages are discussed herein.
NASA Astrophysics Data System (ADS)
Reed, Patrick; Minsker, Barbara S.; Goldberg, David E.
2003-07-01
Many water resources problems require careful balancing of fiscal, technical, and social objectives. Informed negotiation and balancing of objectives can be greatly aided through the use of evolutionary multiobjective optimization (EMO) algorithms, which can evolve entire tradeoff (or Pareto) surfaces within a single run. The primary difficulty in using these methods lies in the large number of parameters that must be specified to ensure that these algorithms effectively quantify design tradeoffs. This technical note addresses this difficulty by introducing a multipopulation design methodology that automates parameter specification for the nondominated sorted genetic algorithm-II (NSGA-II). The NSGA-II design methodology is successfully demonstrated on a multiobjective long-term groundwater monitoring application. Using this methodology, multiobjective optimization problems can now be solved automatically with only a few simple user inputs.
Computational processes of evolution and the gene expression messy genetic algorithm
Kargupta, H.
1996-05-01
This paper makes an effort to project the theoretical lessons of the SEARCH (Search Envisioned As Relation and Class Hierarchizing) framework introduced elsewhere (Kargupta, 1995b) in the context of natural evolution and introduce the gene expression messy genetic algorithm (GEMGA) -- a new generation of messy GAs that directly search for relations among the members of the search space. The GEMGA is an O({vert_bar}{Lambda}{vert_bar}{sup k}({ell} + k)) sample complexity algorithm for the class of order-k delineable problems (Kargupta, 1995a) (problems that can be solved by considering no higher than order-k relations) in sequence representation of length {ell} and alphabet set {Lambda}. Unlike the traditional evolutionary search algorithms, the GEMGA emphasizes the computational role of gene expression and uses a transcription operator to detect appropriate relations. Theoretical conclusions are also substantiated by experimental results for large multimodal problems with bounded inappropriateness of representation.
NASA Astrophysics Data System (ADS)
Thomson, Martin J.; Waddie, Andrew J.; Taghizadeh, Mohammad R.
2006-04-01
We present a genetic algorithm with small population sizes for the design of diffraction gratings in the rigorous domain. A general crossover and mutation scheme is defined, forming fifteen offspring from 3 parents, which enables the algorithm to be used for designing gratings with diverse optical properties by careful definition of the merit function. The initial parents are randomly selected and the parents of the subsequent generations are selected by survival of the fittest. The performance of the algorithm is demonstrated by designing diffraction gratings with specific application to high power laser beam lines. Gratings are designed that act as beam deflectors, polarisers, polarising beam splitters, harmonic separation gratings and pulse compression gratings. By imposing fabrication constraints within the design process, we determine which of these elements have true potential for application within high power laser beam lines.
Lahanas, M; Baltas, D; Zamboglou, N
1999-09-01
In conventional dose optimization algorithms, in brachytherapy, multiple objectives are expressed in terms of an aggregating function which combines individual objective values into a single utility value, making the problem single objective, prior to optimization. A multiobjective genetic algorithm (MOGA) was developed for dose optimization based on an a posteriori approach, leaving the decision-making process to a planner and offering a representative trade-off surface of the various objectives. The MOGA provides a flexible search engine which provides the maximum of information for a decision maker. Tests performed with various treatment plans in brachytherapy have shown that MOGA gives solutions which are superior to those of traditional dose optimization algorithms. Objectives were proposed in terms of the COIN distribution and differential volume histograms, taking into account patient anatomy in the optimization process. PMID:10505880
NASA Technical Reports Server (NTRS)
Tedesco, Marco; Kim, Edward J.
2005-01-01
In this paper, GA-based techniques are used to invert the equations of an electromagnetic model based on Dense Medium Radiative Transfer Theory (DMRT) under the Quasi Crystalline Approximation with Coherent Potential to retrieve snow depth, mean grain size and fractional volume from microwave brightness temperatures. The technique is initially tested on both noisy and not-noisy simulated data. During this phase, different configurations of genetic algorithm parameters are considered to quantify how their change can affect the algorithm performance. A configuration of GA parameters is then selected and the algorithm is applied to experimental data acquired during the NASA Cold Land Process Experiment. Snow parameters retrieved with the GA-DMRT technique are then compared with snow parameters measured on field.
Genetic algorithms and MCML program for recovery of optical properties of homogeneous turbid media
Morales Cruzado, Beatriz; y Montiel, Sergio Vázquez; Atencio, José Alberto Delgado
2013-01-01
In this paper, we present and validate a new method for optical properties recovery of turbid media with slab geometry. This method is an iterative method that compares diffuse reflectance and transmittance, measured using integrating spheres, with those obtained using the known algorithm MCML. The search procedure is based in the evolution of a population due to selection of the best individual, i.e., using a genetic algorithm. This new method includes several corrections such as non-linear effects in integrating spheres measurements and loss of light due to the finite size of the sample. As a potential application and proof-of-principle experiment of this new method, we use this new algorithm in the recovery of optical properties of blood samples at different degrees of coagulation. PMID:23504404
Automated Lead Optimization of MMP-12 Inhibitors Using a Genetic Algorithm.
Pickett, Stephen D; Green, Darren V S; Hunt, David L; Pardoe, David A; Hughes, Ian
2011-01-13
Traditional lead optimization projects involve long synthesis and testing cycles, favoring extensive structure-activity relationship (SAR) analysis and molecular design steps, in an attempt to limit the number of cycles that a project must run to optimize a development candidate. Microfluidic-based chemistry and biology platforms, with cycle times of minutes rather than weeks, lend themselves to unattended autonomous operation. The bottleneck in the lead optimization process is therefore shifted from synthesis or test to SAR analysis and design. As such, the way is open to an algorithm-directed process, without the need for detailed user data analysis. Here, we present results of two synthesis and screening experiments, undertaken using traditional methodology, to validate a genetic algorithm optimization process for future application to a microfluidic system. The algorithm has several novel features that are important for the intended application. For example, it is robust to missing data and can suggest compounds for retest to ensure reliability of optimization. The algorithm is first validated on a retrospective analysis of an in-house library embedded in a larger virtual array of presumed inactive compounds. In a second, prospective experiment with MMP-12 as the target protein, 140 compounds are submitted for synthesis over 10 cycles of optimization. Comparison is made to the results from the full combinatorial library that was synthesized manually and tested independently. The results show that compounds selected by the algorithm are heavily biased toward the more active regions of the library, while the algorithm is robust to both missing data (compounds where synthesis failed) and inactive compounds. This publication places the full combinatorial library and biological data into the public domain with the intention of advancing research into algorithm-directed lead optimization methods. PMID:24900251
Shiff, Shai; Swissa, Moshe; Zlochiver, Sharon
2016-03-01
Atrial ablation has been recently utilized for curing atrial fibrillation. The success rate of empirical ablation is relatively low as often the exact locations of the arrhythmogenic sources remain elusive. Guided ablation has been proposed to improve ablation technique by providing guidance regarding the potential localization of the sources; yet to date no main technological solution has been widely adopted as an integral part of the ablation process. Here we propose a genetic algorithm optimization technique to map a major arrhythmogenic substance-non-conducting regions (NCRs). Excitation delays in a set of electrodes of known locations are measured following external tissue stimulation, and the spatial distribution of obstacles that is most likely to yield the measured delays is reconstructed. A forward problem module was solved to provide synthetic time delay measurements using a 2D human atrial model with known NCR distribution. An inverse genetic algorithm module was implemented to optimally reconstruct the locations of the now unknown obstacle distribution using the synthetic measurements. The performance of the algorithm was demonstrated for several distributions varying in NCR number and shape. The proposed algorithm was found robust to measurements with a signal-to-noise ratio of at least -20Â dB, and for measuring electrodes separated by up to 3.2Â mm. Our results support the feasibility of the proposed algorithm in mapping NCRs; nevertheless, further research is required prior to clinical implementation for incorporating more complex atrial tissue geometrical configurations as well as for testing the algorithm with experimental data. PMID:26691762
Genetic Algorithm Used for Load Shedding Based on Sensitivity to Enhance Voltage Stability
NASA Astrophysics Data System (ADS)
Titare, L. S.; Singh, P.; Arya, L. D.
2014-12-01
This paper presents an algorithm to calculate optimum load shedding with voltage stability consideration based on sensitivity of proximity indicator using genetic algorithm (GA). Schur's inequality based proximity indicator of load flow Jacobian has been selected, which indicates system state. Load flow Jacobian of the system is obtained using Continuation power flow method. If reactive power and active rescheduling are exhausted, load shedding is the last line of defense to maintain the operational security of the system. Load buses for load shedding have been selected on the basis of sensitivity of proximity indicator. The load bus having large sensitivity is selected for load shedding. Proposed algorithm predicts load bus rank and optimum load to be shed on load buses. The algorithm accounts inequality constraints not only in present operating conditions, but also for predicted next interval load (with load shedding). Developed algorithm has been implemented on IEEE 6-bus system. Results have been compared with those obtained using Teaching-Learning-Based Optimization (TLBO), particle swarm optimization (PSO) and its variant.
Rabow, A. A.; Scheraga, H. A.
1996-01-01
We have devised a Cartesian combination operator and coding scheme for improving the performance of genetic algorithms applied to the protein folding problem. The genetic coding consists of the C alpha Cartesian coordinates of the protein chain. The recombination of the genes of the parents is accomplished by: (1) a rigid superposition of one parent chain on the other, to make the relation of Cartesian coordinates meaningful, then, (2) the chains of the children are formed through a linear combination of the coordinates of their parents. The children produced with this Cartesian combination operator scheme have similar topology and retain the long-range contacts of their parents. The new scheme is significantly more efficient than the standard genetic algorithm methods for locating low-energy conformations of proteins. The considerable superiority of genetic algorithms over Monte Carlo optimization methods is also demonstrated. We have also devised a new dynamic programming lattice fitting procedure for use with the Cartesian combination operator method. The procedure finds excellent fits of real-space chains to the lattice while satisfying bond-length, bond-angle, and overlap constraints. PMID:8880904
A Genetic Algorithms-Based Technique for the Retrieval of Dry Snow Parameters
NASA Astrophysics Data System (ADS)
Tedesco, M.; Kim, E. J.
2005-12-01
Monitoring the quantity, distribution and dry/wet state of snow is important for several applications. Geophysical parameters such as grain size and depth through microwave radiometry can be useful for, water storage estimation, hydrological processes understanding and weather modeling and hazards forecasting. The inversion of relationships between the snow parameters and electromagnetic quantities poses a significant challenge because it is rarely possible to perform this inversion in a strictly analytical way and thus numerical techniques are often used. The inversion problem may be solved by using a linear regression between the snow parameter of interest and a combination of electromagnetic quantities (e.g. Chang's algorithm for the retrieval of SWE) or by using iterative techniques (e.g. the HUT iterative inversion technique). In this paper we propose a technique which uses Genetic algorithms (GAs) to invert the equations of an electromagnetic model based on Dense Media Theory (DMRT) for the retrieval of snow parameters (e.g. snow depth, mean grain size and fractional volume) from microwave brightness temperatures. Genetic algorithms are iterative procedures and are inspired by Darwin's theory of evolution. They have proved to be successful as a search and optimization technique. Different configurations of genetic algorithm parameters are tested by using simulated brightness temperatures, and a sensitivity analysis of their effect on algorithm performance is performed. A configuration of GA parameters is then selected to apply the technique to ground-based and space-borne measured brightness temperatures. In the case of simulated data, the best retrieval accuracy is with respect to the mean particle size while the lowest accuracy is with respect to snow depth. Results obtained with field measurements and satellite data give satisfactory results for all considered parameters.
A Genetic Algorithm That Exchanges Neighboring Centers for Fuzzy c-Means Clustering
ERIC Educational Resources Information Center
Chahine, Firas Safwan
2012-01-01
Clustering algorithms are widely used in pattern recognition and data mining applications. Due to their computational efficiency, partitional clustering algorithms are better suited for applications with large datasets than hierarchical clustering algorithms. K-means is among the most popular partitional clustering algorithm, but has a majorâ€¦
A Genetic Algorithm That Exchanges Neighboring Centers for Fuzzy c-Means Clustering
ERIC Educational Resources Information Center
Chahine, Firas Safwan
2012-01-01
Clustering algorithms are widely used in pattern recognition and data mining applications. Due to their computational efficiency, partitional clustering algorithms are better suited for applications with large datasets than hierarchical clustering algorithms. K-means is among the most popular partitional clustering algorithm, but has a major…
Ferrauto, Tomassino; Parisi, Domenico; Di Stefano, Gabriele; Baldassarre, Gianluca
2013-01-01
Organisms that live in groups, from microbial symbionts to social insects and schooling fish, exhibit a number of highly efficient cooperative behaviors, often based on role taking and specialization. These behaviors are relevant not only for the biologist but also for the engineer interested in decentralized collective robotics. We address these phenomena by carrying out experiments with groups of two simulated robots controlled by neural networks whose connection weights are evolved by using genetic algorithms. These algorithms and controllers are well suited to autonomously find solutions for decentralized collective robotic tasks based on principles of self-organization. The article first presents a taxonomy of role-taking and specialization mechanisms related to evolved neural network controllers. Then it introduces two cooperation tasks, which can be accomplished by either role taking or specialization, and uses these tasks to compare four different genetic algorithms to evaluate their capacity to evolve a suitable behavioral strategy, which depends on the task demands. Interestingly, only one of the four algorithms, which appears to have more biological plausibility, is capable of evolving role taking or specialization when they are needed. The results are relevant for both collective robotics and biology, as they can provide useful hints on the different processes that can lead to the emergence of specialization in robots and organisms. PMID:23514239
A coupled model tree genetic algorithm scheme for flow and water quality predictions in watersheds
NASA Astrophysics Data System (ADS)
Preis, Ami; Ostfeld, Avi
2008-02-01
SummaryThe rapid advance in information processing systems along with the increasing data availability have directed research towards the development of intelligent systems that evolve models of natural phenomena automatically. This is the discipline of data driven modeling which is the study of algorithms that improve automatically through experience. Applications of data driven modeling range from data mining schemes that discover general rules in large data sets, to information filtering systems that automatically learn users' interests. This study presents a data driven modeling algorithm for flow and water quality load predictions in watersheds. The methodology is comprised of a coupled model tree-genetic algorithm scheme. The model tree predicts flow and water quality constituents while the genetic algorithm is employed for calibrating the model tree parameters. The methodology is demonstrated through base runs and sensitivity analysis for daily flow and water quality load predictions on a watershed in northern Israel. The method produced close fits in most cases, but was limited in estimating the peak flows and water quality loads.
A target coverage scheduling scheme based on genetic algorithms in directional sensor networks.
Gil, Joon-Min; Han, Youn-Hee
2011-01-01
As a promising tool for monitoring the physical world, directional sensor networks (DSNs) consisting of a large number of directional sensors are attracting increasing attention. As directional sensors in DSNs have limited battery power and restricted angles of sensing range, maximizing the network lifetime while monitoring all the targets in a given area remains a challenge. A major technique to conserve the energy of directional sensors is to use a node wake-up scheduling protocol by which some sensors remain active to provide sensing services, while the others are inactive to conserve their energy. In this paper, we first address a Maximum Set Covers for DSNs (MSCD) problem, which is known to be NP-complete, and present a greedy algorithm-based target coverage scheduling scheme that can solve this problem by heuristics. This scheme is used as a baseline for comparison. We then propose a target coverage scheduling scheme based on a genetic algorithm that can find the optimal cover sets to extend the network lifetime while monitoring all targets by the evolutionary global search technique. To verify and evaluate these schemes, we conducted simulations and showed that the schemes can contribute to extending the network lifetime. Simulation results indicated that the genetic algorithm-based scheduling scheme had better performance than the greedy algorithm-based scheme in terms of maximizing network lifetime. PMID:22319387
A hybrid genetic—instance based learning algorithm for CE-QUAL-W2 calibration
NASA Astrophysics Data System (ADS)
Ostfeld, Avi; Salomons, Shani
2005-08-01
This paper presents a calibration model for CE-QUAL-W2. CE-QUAL-W2 is a two-dimensional (2D) longitudinal/vertical hydrodynamic and water quality model for surface water bodies, modeling eutrophication processes such as temperature-nutrient-algae-dissolved oxygen-organic matter and sediment relationships. The proposed methodology is a combination of a 'hurdle-race' and a hybrid Genetic- k-Nearest Neighbor algorithm (GA-kNN). The 'hurdle race' is formulated for accepting-rejecting a proposed set of parameters during a CE-QUAL-W2 simulation; the k-Nearest Neighbor algorithm (kNN)—for approximating the objective function response surface; and the Genetic Algorithm (GA)—for linking both. The proposed methodology overcomes the high, non-applicable, computational efforts required if a conventional calibration search technique was used, while retaining the quality of the final calibration results. Base runs and sensitivity analysis are demonstrated on two example applications: a synthetic hypothetical example calibrated for temperature, serving for tuning the GA-kNN parameters; and the Lower Columbia Slough case study in Oregon US calibrated for temperature and dissolved oxygen. The GA-kNN algorithm was found to be robust and reliable, producing similar results to those of a pure GA, while reducing running times and computational efforts significantly, and adding additional insights and flexibilities to the calibration process.
Classification of remote sensing imagery using genetic algorithms and neural networks
NASA Astrophysics Data System (ADS)
Herries, Graham M.; Murray, A.; Danaher, Sean; Selige, Thomas
1995-11-01
This paper presents the application of Neural Networks (ANN) and introduces Genetic Algorithms (GA) to agricultural land use classification. Daedalus ATM data at 1 m resolution, has been used to train and test the algorithms. Layered feed forward ANN's have been found to have good generalization properties. The Backpropagation (BP) algorithm is very susceptible to initial conditions and the problem of local minima. Therefore this technique alone is not the best method for the classification of complex multi-dimensional data sets. This paper applies an evolutionary technique for training feed forward ANN's, which searches the error space for a more likely initialization point. Optimization and learning problems are two techniques where ANN's and GA's have excelled. Evolutionary Artificial Neural Networks, introduced in this paper, can be thought of as being a cross between ANNs and GAs. The weights and biases are updated by applying the mutation genetic operator and can be compared with the principle of natural biological life, where survival of the fittest leads to a near optimum ANN. These weights and biases are then adopted by the BP algorithm to quickly converge on the global minima.
NASA Astrophysics Data System (ADS)
Alpman, Emre
2014-06-01
The effect of selecting the twist angle and chord length distributions on the wind turbine blade design was investigated by performing aerodynamic optimization of a two-bladed stall regulated horizontal axis wind turbine. Twist angle and chord length distributions were defined using Bezier curve using 3, 5, 7 and 9 control points uniformly distributed along the span. Optimizations performed using a micro-genetic algorithm with populations composed of 5, 10, 15, 20 individuals showed that, the number of control points clearly affected the outcome of the process; however the effects were different for different population sizes. The results also showed the superiority of micro-genetic algorithm over a standard genetic algorithm, for the selected population sizes. Optimizations were also performed using a macroevolutionary algorithm and the resulting best blade design was compared with that yielded by micro-genetic algorithm.
Robust Flight Path Determination for Mars Precision Landing Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Bayard, David S.; Kohen, Hamid
1997-01-01
This paper documents the application of genetic algorithms (GAs) to the problem of robust flight path determination for Mars precision landing. The robust flight path problem is defined here as the determination of the flight path which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the effect of perturbations due to uncertainty in the atmospheric model and entry conditions. The genetic algorithm was capable of finding solutions which reduced the landing error from 111 km RMS radial (open-loop optimal) to 43 km RMS radial (optimized with respect to perturbations) using 200 hours of computation on an Ultra-SPARC workstation. Further reduction in the landing error is possible by going to closed-loop control which can utilize the GA optimized paths as nominal trajectories for linearization.
NASA Astrophysics Data System (ADS)
Lin, Jeng-Wen; Shen, Pu Fun; Wen, Hao-Ping
2015-10-01
The application of a repetitive control mechanism for use in a mechanical control system has been a topic of investigation. The fundamental purpose of repetitive control is to eliminate disturbances in a mechanical control system. This paper presents two different repetitive control laws using individual types of basis function feedback and their combinations. These laws adjust the command given to a feedback control system to eliminate tracking errors, generally resulting from periodic disturbance. Periodic errors can be reduced through linear basis functions using regression and a genetic algorithm. The results illustrate that repetitive control is most effective method for eliminating disturbances. When the data are stabilized, the tracking error of the obtained convergence value, 10-14, is the optimal solution, verifying that the proposed regression and genetic algorithm can satisfactorily reduce periodic errors.
NASA Astrophysics Data System (ADS)
Brand, Jonathan; Zhang, Zheming; Agarwal, Ramesh K.
2014-02-01
A simple but reasonably accurate battery model is required for simulating the performance of electrical systems that employ a battery for example an electric vehicle, as well as for investigating their potential as an energy storage device. In this paper, a relatively simple equivalent circuit based model is employed for modeling the performance of a battery. A computer code utilizing a multi-objective genetic algorithm is developed for the purpose of extracting the battery performance parameters. The code is applied to several existing industrial batteries as well as to two recently proposed high performance batteries which are currently in early research and development stage. The results demonstrate that with the optimally extracted performance parameters, the equivalent circuit based battery model can accurately predict the performance of various batteries of different sizes, capacities, and materials. Several test cases demonstrate that the multi-objective genetic algorithm can serve as a robust and reliable tool for extracting the battery performance parameters.
Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector.
Mayer, Alexandre; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier
2014-10-20
We present a multi-objective genetic algorithm we developed for the optimization of a flat-plate solar thermal collector. This collector consists of a waffle-shaped Al substrate with NiCrOx cermet and SnO(2) anti-reflection conformal coatings. Optimal geometrical parameters are determined in order to (i) maximize the solar absorptance ? and (ii) minimize the thermal emittance ?. The multi-objective genetic algorithm eventually provides a whole set of Pareto-optimal solutions for the optimization of ? and ?, which turn out to be competitive with record values found in the literature. In particular, a solution that enables ? = 97.8% and ? = 4.8% was found. PMID:25607321
Vardhan, J. Vishnu; Balasubramaniam, Krishnan; Krishnamurthy, C. V.
2007-03-21
The determination of material symmetries and principle plane orientations of anisotropic plates, whose planes of symmetries are not known apriori, were calculated using a Genetic Algorithm (GA) based blind inversion method. The ultrasonic phase velocity profiles were used as input data to the inversion. The assumption of a general anisotropy was imposed during the start of each blind inversion. The multi-parameter solution space of the Genetic Algorithm was exploited to identify the 'statistically significant' solution sets of elastic moduli in the geometric coordinate system of the plate, by thresholding the coefficients-of-variation (Cv). Using these ''statistically significant'' elastic moduli, the unknown material symmetry and the principle planes (angles between the geometrical coordinates and the material symmetry coordinates) were evaluated using the method proposed by Cowin and Mehrabadi. This procedure was verified using simulated ultrasonic velocity data sets on material with orthotropic symmetry. Experimental validation was also performed on unidirectional Graphite Epoxy [0]7s fiber reinforced composite plate.
NASA Astrophysics Data System (ADS)
Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.
2015-10-01
An ultra-wideband complex permittivity extraction method is reported here using numerical fitting of scattering parameters to measured results. A grounded coplanar waveguide transmission line is realized on an unknown dielectric material, whose dielectric constant and loss tangent are extracted by the best fitting of the simulated magnitude, |S21|, and phase, Ï•21, of forward scattering parameter using an electromagnetic full-wave simulator (high frequency structure simulator) to the measured results. The genetic algorithm is employed for optimum rapid extraction, where errors between the numerically simulated and measured S21 (|S21| and Ï•21) are minimized in an iterative manner. As long as the convergence criterion is not satisfied, modifications to dielectric properties are made with this genetic algorithm implemented in Matlab. Feasibility of this extraction technique is validated on benzocyclobutane polymer from 10 MHz to 40 GHz.
Luque-Baena, R M; Urda, D; Gonzalo Claros, M; Franco, L; Jerez, J M
2014-06-01
Genetic algorithms are widely used in the estimation of expression profiles from microarrays data. However, these techniques are unable to produce stable and robust solutions suitable to use in clinical and biomedical studies. This paper presents a novel two-stage evolutionary strategy for gene feature selection combining the genetic algorithm with biological information extracted from the KEGG database. A comparative study is carried out over public data from three different types of cancer (leukemia, lung cancer and prostate cancer). Even though the analyses only use features having KEGG information, the results demonstrate that this two-stage evolutionary strategy increased the consistency, robustness and accuracy of a blind discrimination among relapsed and healthy individuals. Therefore, this approach could facilitate the definition of gene signatures for the clinical prognosis and diagnostic of cancer diseases in a near future. Additionally, it could also be used for biological knowledge discovery about the studied disease. PMID:24480647
Characterizing Large Text Corpora Using a Maximum Variation Sampling Genetic Algorithm
Patton, Robert M
2006-01-01
An enormous amount of information available via the Internet exists. Much of this data is in the form of text-based documents. These documents cover a variety of topics that are vitally important to the scientific, business, and defense/security communities. Currently, there are a many techniques for processing and analyzing such data. However, the ability to quickly characterize a large set of documents still proves challenging. Previous work has successfully demonstrated the use of a genetic algorithm for providing a representative subset for text documents via adaptive sampling. In this work, we further expand and explore this approach on much larger data sets using a parallel Genetic Algorithm (GA) with adaptive parameter control. Experimental results are presented and discussed.
Analytical optimal pulse shapes obtained with the aid of genetic algorithms
NASA Astrophysics Data System (ADS)
Guerrero, RubÃ©n D.; Arango, Carlos A.; Reyes, AndrÃ©s
2015-09-01
We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.
NASA Astrophysics Data System (ADS)
Jun, LIU; Huang, Wei; Hongjie, Fan
2016-02-01
A novel method for finding the initial structure parameters of an optical system via the genetic algorithm (GA) is proposed in this research. Usually, optical designers start their designs from the commonly used structures from a patent database; however, it is time consuming to modify the patented structures to meet the specification. A high-performance design result largely depends on the choice of the starting point. Accordingly, it would be highly desirable to be able to calculate the initial structure parameters automatically. In this paper, a method that combines a genetic algorithm and aberration analysis is used to determine an appropriate initial structure of an optical system. We use a three-mirror system as an example to demonstrate the validity and reliability of this method. On-axis and off-axis telecentric three-mirror systems are obtained based on this method.
Chen, Zaigao; Wang, Jianguo; Northwest Institute of Nuclear Technology, P.O. Box 69-12, Xi'an, Shaanxi 710024 ; Wang, Yue; Qiao, Hailiang; Zhang, Dianhui; Guo, Weijie
2013-11-15
Optimal design method of high-power microwave source using particle simulation and parallel genetic algorithms is presented in this paper. The output power, simulated by the fully electromagnetic particle simulation code UNIPIC, of the high-power microwave device is given as the fitness function, and the float-encoding genetic algorithms are used to optimize the high-power microwave devices. Using this method, we encode the heights of non-uniform slow wave structure in the relativistic backward wave oscillators (RBWO), and optimize the parameters on massively parallel processors. Simulation results demonstrate that we can obtain the optimal parameters of non-uniform slow wave structure in the RBWO, and the output microwave power enhances 52.6% after the device is optimized.
Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms
Irwin, Ryan W.; Tinker, Michael L.
2005-02-06
Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.
Genetic Algorithm for Analysis of Abdominal Aortic Aneurysms in Radiology Reports
Patton, Robert M; Beckerman, Barbara G; Potok, Thomas E; Treadwell, Jim N
2010-01-01
An abdominal aortic aneurysm is a problem in which the wall of the artery that supplies blood to the abdomen and lower extremities expands under pressure or balloons outward. Patients must undergo surgery to repair such aneurysm, and there is currently no known indicator of success or failure from this surgery. Our work uses a genetic algorithm to analyze radiology reports from these patients to look for common patterns in the language used as well as common features of both successful and unsuccessful surgieries. The results of the genetic algorithm show that patients with complications or unusual characteristics can be identified from a set of radiology reports without the use of search keywords, clustering, categorization, or ontology. This allows medical researchers to search and identify interesting patient records without the need for explicitly defining what interesting patient records are.
Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Irwin, Ryan W.; Tinker, Michael L.
2005-01-01
Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.
Soewono, C. N.; Takaki, N.
2012-07-01
In this work genetic algorithm was proposed to solve fuel loading pattern optimization problem in thorium fueled heavy water reactor. The objective function of optimization was to maximize the conversion ratio and minimize power peaking factor. Those objectives were simultaneously optimized using non-dominated Pareto-based population ranking optimal method. Members of non-dominated population were assigned selection probabilities based on their rankings in a manner similar to Baker's single criterion ranking selection procedure. A selected non-dominated member was bred through simple mutation or one-point crossover process to produce a new member. The genetic algorithm program was developed in FORTRAN 90 while neutronic calculation and analysis was done by COREBN code, a module of core burn-up calculation for SRAC. (authors)
Evaluation of Genetic Algorithm Concepts using Model Problems. Part 1; Single-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic-algorithm-based optimization approach is described and evaluated using a simple hill-climbing model problem. The model problem utilized herein allows for the broad specification of a large number of search spaces including spaces with an arbitrary number of genes or decision variables and an arbitrary number hills or modes. In the present study, only single objective problems are considered. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all problems attempted. The most difficult problems - those with large hyper-volumes and multi-mode search spaces containing a large number of genes - require a large number of function evaluations for GA convergence, but they always converge.
Modeling the Volcanic Source at Long Valley, CA, Using a Genetic Algorithm Technique
NASA Technical Reports Server (NTRS)
Tiampo, Kristy F.
1999-01-01
In this project, we attempted to model the deformation pattern due to the magmatic source at Long Valley caldera using a real-value coded genetic algorithm (GA) inversion similar to that found in Michalewicz, 1992. The project has been both successful and rewarding. The genetic algorithm, coded in the C programming language, performs stable inversions over repeated trials, with varying initial and boundary conditions. The original model used a GA in which the geophysical information was coded into the fitness function through the computation of surface displacements for a Mogi point source in an elastic half-space. The program was designed to invert for a spherical magmatic source - its depth, horizontal location and volume - using the known surface deformations. It also included the capability of inverting for multiple sources.
NASA Technical Reports Server (NTRS)
Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy
2002-01-01
A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.
Performance enhancement for crystallization unit of a sugar plant using genetic algorithm technique
NASA Astrophysics Data System (ADS)
Tewari, P. C.; Khanduja, Rajiv; Gupta, Mahesh
2012-05-01
This paper deals with the performance enhancement for crystallization unit of a sugar plant using genetic algorithm. The crystallization unit of a sugar industry has three main subsystems arranged in series. Considering exponential distribution for the probable failures and repairs, the mathematical formulation of the problem is done using probabilistic approach, and differential equations are developed on the basis of Markov birth-death process. These equations are then solved using normalizing conditions so as to determine the steady-state availability of the crystallization unit. The performance of each subsystem of crystallization unit in a sugar plant has also been optimized using genetic algorithm. Thus, the findings of the present paper will be highly useful to the plant management for the timely execution of proper maintenance decisions and, hence, to enhance the system performance.
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2002-01-01
As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.
Use of a genetic algorithm technique in solid-state laser pump cavity development
Franzen, Rene; Apel, Christian; Lampert, Friedrich; Meister, Joerg
2007-03-10
We apply a genetic algorithm to optimize the pump cavity of a complex miniaturized diode-pumped laser to find a balance between the efficient energy transfer of the pump light and the homogeneous illumination of the laser crystal. These two points are in contradiction to each other, whereby a complex optimization situation is given. The genome determines the geometry of the internal optical elements of the pump cavity in which a laser rod is placed.After optimization of the internal optical elements, a homogeneous illumination over the crystal length and a coupling efficiency of 59% were achieved. The results showed that genetic algorithms can find solutions and blueprints for laser pump cavities of consistent quality.
Optimization of the genetic algorithm of jointly fitting different types of X-ray scattering curves
Sutyrin, A. G.; Imamov, R. M.
2011-01-15
A method for jointly processing X-ray scattering data of different types is developed. It is shown that, by optimizing the genetic algorithm of the joint solution of the inverse problem of X-ray diffractometry and reflectometry, one can reduce the amount of calculations and reliably determine the parameters of layers in the structure under study, even when the information about them is a priori limited.
Compounding of ultrasound B-scans of a transfemoral residual limb using a genetic algorithm
NASA Astrophysics Data System (ADS)
Douglas, Tania S.; Lee, Peter; Solomonidis, Stephan E.; Spence, William D.
1998-06-01
Ultrasound may be used for imaging the trans-femoral residual limb in order to provide information for the improvement of prosthetic socket design. Compounding of several ultrasound B-scans is required for obtaining transverse images of the residual limb. In this paper, a method is presented by which a genetic algorithm is used to match B-scans taken in a horizontal plane around the residual limb for image compounding in order to reduce the effects of patient motion during scanning.
Co-expression network analysis and genetic algorithms for gene prioritization in preeclampsia
2013-01-01
Background In this study, we explored the gene prioritization in preeclampsia, combining co-expression network analysis and genetic algorithms optimization approaches. We analysed five public projects obtaining 1,146 significant genes after cross-platform and processing of 81 and 149 microarrays in preeclamptic and normal conditions, respectively. Methods After co-expression network construction, modular and node analysis were performed using several approaches. Moreover, genetic algorithms were also applied in combination with the nearest neighbour and discriminant analysis classification methods. Results Significant differences were found in the genes connectivity distribution, both in normal and preeclampsia conditions pointing to the need and importance of examining connectivity alongside expression for prioritization. We discuss the global as well as intra-modular connectivity for hubs detection and also the utility of genetic algorithms in combination with the network information. FLT1, LEP, INHA and ENG genes were identified according to the literature, however, we also found other genes as FLNB, INHBA, NDRG1 and LYN highly significant but underexplored during normal pregnancy or preeclampsia. Conclusions Weighted genes co-expression network analysis reveals a similar distribution along the modules detected both in normal and preeclampsia conditions. However, major differences were obtained by analysing the nodes connectivity. All models obtained by genetic algorithm procedures were consistent with a correct classification, higher than 90%, restricting to 30 variables in both classification methods applied. Combining the two methods we identified well known genes related to preeclampsia, but also lead us to propose new candidates poorly explored or completely unknown in the pathogenesis of preeclampsia, which may have to be validated experimentally. PMID:24219996
A few results for using genetic algorithms in the design of electrical machines
Wurtz, F.; Richomme, M.; Bigeon, J.; Sabonnadiere, J.C.
1997-03-01
Genetic algorithms (GAs) seem to be attractive for the design of electrical machines but their main difficulty is to find a configuration so that they are efficient. This paper exposes a criterion and a methodology the authors have imagined to find efficient configurations. The first configuration they obtained will then be detailed. The results based on this configuration will be exposed with an example of a design problem.
Fontana, W.
1990-12-13
In this paper complex adaptive systems are defined by a self- referential loop in which objects encode functions that act back on these objects. A model for this loop is presented. It uses a simple recursive formal language, derived from the lambda-calculus, to provide a semantics that maps character strings into functions that manipulate symbols on strings. The interaction between two functions, or algorithms, is defined naturally within the language through function composition, and results in the production of a new function. An iterated map acting on sets of functions and a corresponding graph representation are defined. Their properties are useful to discuss the behavior of a fixed size ensemble of randomly interacting functions. This function gas'', or Turning gas'', is studied under various conditions, and evolves cooperative interaction patterns of considerable intricacy. These patterns adapt under the influence of perturbations consisting in the addition of new random functions to the system. Different organizations emerge depending on the availability of self-replicators.
Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Suman, Vitisha; Sarkar, P. K.
2014-02-01
A spectrum unfolding technique GAMCD (Genetic Algorithm and Monte Carlo based spectrum Deconvolution) has been developed using the genetic algorithm methodology within the framework of Monte Carlo simulations. Each Monte Carlo history starts with initial solution vectors (population) as randomly generated points in the hyper dimensional solution space that are related to the measured data by the response matrix of the detection system. The transition of the solution points in the solution space from one generation to another are governed by the genetic algorithm methodology using the techniques of cross-over (mating) and mutation in a probabilistic manner adding new solution points to the population. The population size is kept constant by discarding solutions having lesser fitness values (larger differences between measured and calculated results). Solutions having the highest fitness value at the end of each Monte Carlo history are averaged over all histories to obtain the final spectral solution. The present method shows promising results in neutron spectrum unfolding for both under-determined and over-determined problems with simulated test data as well as measured data when compared with some existing unfolding codes. An attractive advantage of the present method is the independence of the final spectra from the initial guess spectra.
NASA Astrophysics Data System (ADS)
Xie, Yan; Li, Mu; Zhou, Jin; Zheng, Chang-zheng
2009-07-01
Agricultural machinery total power is an important index to reflex and evaluate the level of agricultural mechanization. It is the power source of agricultural production, and is the main factors to enhance the comprehensive agricultural production capacity expand production scale and increase the income of the farmers. Its demand is affected by natural, economic, technological and social and other "grey" factors. Therefore, grey system theory can be used to analyze the development of agricultural machinery total power. A method based on genetic algorithm optimizing grey modeling process is introduced in this paper. This method makes full use of the advantages of the grey prediction model and characteristics of genetic algorithm to find global optimization. So the prediction model is more accurate. According to data from a province, the GM (1, 1) model for predicting agricultural machinery total power was given based on the grey system theories and genetic algorithm. The result indicates that the model can be used as agricultural machinery total power an effective tool for prediction.
Structural studies of Au-Pd bimetallic nanoparticles by a genetic algorithm method
NASA Astrophysics Data System (ADS)
Shao, Gui-Fang; Tu, Na-Na; Liu, Tun-Dong; Xu, Liang-You; Wen, Yu-Hua
2015-06-01
Metallic nanoparticles have attracted particular interests due to their excellent electronic, catalytic and optical properties over the past decades. Atomic-level understanding of structural characteristics of metallic nanoparticles is of great importance for their syntheses and applications because the structural characteristics strongly determine their chemical and physical properties. In this article, we systematically investigated the structural stability and structural features of Au-Pd nanoparticles by using the genetic algorithm with the quantum correction Sutton-Chen potentials. Layered coordinate ranking method and an effective fitness function have been introduced into the genetic algorithm to enhance its searching ability of low-energy configurations. Here were addressed eight representative nanoshapes including single-crystalline and multiple-twinned structures. The results reveal that the developed genetic algorithm exhibits superior searching ability. In all polyhedra, the truncated octahedron possessed the best stability, while the icosahedron did the worst. Moreover, segregation of Au to the surface and that of Pd to the core were disclosed in these polyhedral Au-Pd nanoparticles. Particularly, for Au composition of 50%, the optimized structures of Au-Pd nanoparticles were predicted to exhibit core-shell structures.
Optimization of fuels from waste composition with application of genetic algorithm.
MaÅ‚gorzata, Wzorek
2014-05-01
The objective of this article is to elaborate a method to optimize the composition of the fuels from sewage sludge (PBS fuel - fuel based on sewage sludge and coal slime, PBM fuel - fuel based on sewage sludge and meat and bone meal, PBT fuel - fuel based on sewage sludge and sawdust). As a tool for an optimization procedure, the use of a genetic algorithm is proposed. The optimization task involves the maximization of mass fraction of sewage sludge in a fuel developed on the basis of quality-based criteria for the use as an alternative fuel used by the cement industry. The selection criteria of fuels composition concerned such parameters as: calorific value, content of chlorine, sulphur and heavy metals. Mathematical descriptions of fuel compositions and general forms of the genetic algorithm, as well as the obtained optimization results are presented. The results of this study indicate that the proposed genetic algorithm offers an optimization tool, which could be useful in the determination of the composition of fuels that are produced from waste. PMID:24718361
NASA Astrophysics Data System (ADS)
Paksi, A. B. N.; Ma'ruf, A.
2016-02-01
In general, both machines and human resources are needed for processing a job on production floor. However, most classical scheduling problems have ignored the possible constraint caused by availability of workers and have considered only machines as a limited resource. In addition, along with production technology development, routing flexibility appears as a consequence of high product variety and medium demand for each product. Routing flexibility is caused by capability of machines that offers more than one machining process. This paper presents a method to address scheduling problem constrained by both machines and workers, considering routing flexibility. Scheduling in a Dual-Resource Constrained shop is categorized as NP-hard problem that needs long computational time. Meta-heuristic approach, based on Genetic Algorithm, is used due to its practical implementation in industry. Developed Genetic Algorithm uses indirect chromosome representative and procedure to transform chromosome into Gantt chart. Genetic operators, namely selection, elitism, crossover, and mutation are developed to search the best fitness value until steady state condition is achieved. A case study in a manufacturing SME is used to minimize tardiness as objective function. The algorithm has shown 25.6% reduction of tardiness, equal to 43.5 hours.
Improved Cost-Base Design of Water Distribution Networks using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Moradzadeh Azar, Foad; Abghari, Hirad; Taghi Alami, Mohammad; Weijs, Steven
2010-05-01
Population growth and progressive extension of urbanization in different places of Iran cause an increasing demand for primary needs. The water, this vital liquid is the most important natural need for human life. Providing this natural need is requires the design and construction of water distribution networks, that incur enormous costs on the country's budget. Any reduction in these costs enable more people from society to access extreme profit least cost. Therefore, investment of Municipal councils need to maximize benefits or minimize expenditures. To achieve this purpose, the engineering design depends on the cost optimization techniques. This paper, presents optimization models based on genetic algorithm(GA) to find out the minimum design cost Mahabad City's (North West, Iran) water distribution network. By designing two models and comparing the resulting costs, the abilities of GA were determined. the GA based model could find optimum pipe diameters to reduce the design costs of network. Results show that the water distribution network design using Genetic Algorithm could lead to reduction of at least 7% in project costs in comparison to the classic model. Keywords: Genetic Algorithm, Optimum Design of Water Distribution Network, Mahabad City, Iran.
Using a genetic algorithm to optimize a water-monitoring network for accuracy and cost effectiveness
NASA Astrophysics Data System (ADS)
Julich, R. J.
2004-05-01
The purpose of this project is to determine the optimal spatial distribution of water-monitoring wells to maximize important data collection and to minimize the cost of managing the network. We have employed a genetic algorithm (GA) towards this goal. The GA uses a simple fitness measure with two parts: the first part awards a maximal score to those combinations of hydraulic head observations whose net uncertainty is closest to the value representing all observations present, thereby maximizing accuracy; the second part applies a penalty function to minimize the number of observations, thereby minimizing the overall cost of the monitoring network. We used the linear statistical inference equation to calculate standard deviations on predictions from a numerical model generated for the 501-observation Death Valley Regional Flow System as the basis for our uncertainty calculations. We have organized the results to address the following three questions: 1) what is the optimal design strategy for a genetic algorithm to optimize this problem domain; 2) what is the consistency of solutions over several optimization runs; and 3) how do these results compare to what is known about the conceptual hydrogeology? Our results indicate the genetic algorithms are a more efficient and robust method for solving this class of optimization problems than have been traditional optimization approaches.
Computational fluid dynamics based bulbous bow optimization using a genetic algorithm
NASA Astrophysics Data System (ADS)
Mahmood, Shahid; Huang, Debo
2012-09-01
Computational fluid dynamics (CFD) plays a major role in predicting the flow behavior of a ship. With the development of fast computers and robust CFD software, CFD has become an important tool for designers and engineers in the ship industry. In this paper, the hull form of a ship was optimized for total resistance using CFD as a calculation tool and a genetic algorithm as an optimization tool. CFD based optimization consists of major steps involving automatic generation of geometry based on design parameters, automatic generation of mesh, automatic analysis of fluid flow to calculate the required objective/cost function, and finally an optimization tool to evaluate the cost for optimization. In this paper, integration of a genetic algorithm program, written in MATLAB, was carried out with the geometry and meshing software GAMBIT and CFD analysis software FLUENT. Different geometries of additive bulbous bow were incorporated in the original hull based on design parameters. These design variables were optimized to achieve a minimum cost function of "total resistance". Integration of a genetic algorithm with CFD tools proves to be effective for hull form optimization.
A Genetic Algorithm for the Bi-Level Topological Design of Local Area Networks
Camacho-Vallejo, JosÃ©-Fernando; Mar-Ortiz, Julio; LÃ³pez-Ramos, Francisco; RodrÃguez, Ricardo Pedraza
2015-01-01
Local access networks (LAN) are commonly used as communication infrastructures which meet the demand of a set of users in the local environment. Usually these networks consist of several LAN segments connected by bridges. The topological LAN design bi-level problem consists on assigning users to clusters and the union of clusters by bridges in order to obtain a minimum response time network with minimum connection cost. Therefore, the decision of optimally assigning users to clusters will be made by the leader and the follower will make the decision of connecting all the clusters while forming a spanning tree. In this paper, we propose a genetic algorithm for solving the bi-level topological design of a Local Access Network. Our solution method considers the Stackelberg equilibrium to solve the bi-level problem. The Stackelberg-Genetic algorithm procedure deals with the fact that the followerâ€™s problem cannot be optimally solved in a straightforward manner. The computational results obtained from two different sets of instances show that the performance of the developed algorithm is efficient and that it is more suitable for solving the bi-level problem than a previous Nash-Genetic approach. PMID:26102502
A Genetic Algorithm for the Bi-Level Topological Design of Local Area Networks.
Camacho-Vallejo, José-Fernando; Mar-Ortiz, Julio; López-Ramos, Francisco; Rodríguez, Ricardo Pedraza
2015-01-01
Local access networks (LAN) are commonly used as communication infrastructures which meet the demand of a set of users in the local environment. Usually these networks consist of several LAN segments connected by bridges. The topological LAN design bi-level problem consists on assigning users to clusters and the union of clusters by bridges in order to obtain a minimum response time network with minimum connection cost. Therefore, the decision of optimally assigning users to clusters will be made by the leader and the follower will make the decision of connecting all the clusters while forming a spanning tree. In this paper, we propose a genetic algorithm for solving the bi-level topological design of a Local Access Network. Our solution method considers the Stackelberg equilibrium to solve the bi-level problem. The Stackelberg-Genetic algorithm procedure deals with the fact that the follower's problem cannot be optimally solved in a straightforward manner. The computational results obtained from two different sets of instances show that the performance of the developed algorithm is efficient and that it is more suitable for solving the bi-level problem than a previous Nash-Genetic approach. PMID:26102502
NASA Astrophysics Data System (ADS)
Baran, Ismet; Tutum, Cem C.; Hattel, Jesper H.
2013-08-01
In this paper thermo-chemical simulation of the pultrusion process of a composite rod is first used as a validation case to ensure that the utilized numerical scheme is stable and converges to results given in literature. Following this validation case, a cylindrical die block with heaters is added to the pultrusion domain of a composite part and thermal contact resistance (TCR) regions at the die-part interface are defined. Two optimization case studies are performed on this new configuration. In the first one, optimal die radius and TCR values are found by using a hybrid genetic algorithm based on a sequential combination of a genetic algorithm (GA) and a local search technique to fit the centerline temperature of the composite with the one calculated in the validation case. In the second optimization study, the productivity of the process is improved by using a mixed integer genetic algorithm (MIGA) such that the total number of heaters is minimized while satisfying the constraints for the maximum composite temperature, the mean of the cure degree at the die exit and the pulling speed.
Optimization of cocoa butter analog synthesis variables using neural networks and genetic algorithm.
Shekarchizadeh, Hajar; Tikani, Reza; Kadivar, Mahdi
2014-09-01
Cocoa butter analog was prepared from camel hump fat and tristearin by enzymatic interesterification in supercritical carbon dioxide (SC-CO2) using immobilized Thermomyces lanuginosus lipase (Lipozyme TL IM) as a biocatalyst. Optimal process conditions were determined using neural networks and genetic algorithm optimization. Response surfaces methodology was used to design the experiments to collect data for the neural network modelling. A general regression neural network model was developed to predict the response of triacylglycerol (TAG) distribution of cocoa butter analog from the process pressure, temperature, tristearin/camel hump fat ratio, water content, and incubation time. A genetic algorithm was used to search for a combination of the process variables for production of most similar cocoa butter analog to the corresponding cocoa butter. The combinations of the process variables during genetic algorithm optimization were evaluated using the neural network model. The pressure of 10Â MPa; temperature of 40Â Â°C; SSS/CHF ratio of 0.6:1; water content of 13Â % (w/w); and incubation time of 4.5Â h were found to be the optimum conditions to achieve the most similar cocoa butter analog to the corresponding cocoa butter. PMID:25190869
NASA Astrophysics Data System (ADS)
Wu, Chris Y.; Tsujii, Osamu; Freedman, Matthew T.; Mun, Seong K.
1997-04-01
We have developed an image feature-based algorithm to classify microcalcifications associated with benign and malignant processes in digital mammograms for the diagnosis of breast cancer. The feature-based algorithm is an alternative approach to image based method for classification of microcalcifications in digital mammograms. Microcalcifications can be characterized by a number of quantitative variables describing the underling key features of a suspicious region such as the size, shape, and number of microcalcifications in a cluster. These features are calculated by an automated extraction scheme for each of the selected regions. The features are then used as input to a backpropagation neural network to make a decision regarding the probability of malignancy of a selected region. The initial selection of image features set is a rough estimation that may include redundant and non-discriminant features. A genetic algorithm is employed to select an optimal image feature set from the initial feature set and select an optimized structure of the neural network for the optimal input features. The performance of neural network is compared with that of radiologists in classifying the clusters of microcalcifications. Two set of mammogram cases are used in this study. The first set is from the digital mammography database from the Mammographic Image Analysis Society (MIAS). The second set is from cases collected at Georgetown University Medical Center (GUMC). The diagnostic truth of the cases have been verified by biopsy. The performance of the neural network system is evaluated by ROC analysis. The system of neural network and genetic algorithms improves performance of our previous TRBF neural network. The neural network system was able to classify benign and malignant microcalcifications at a level favorably compared to experienced radiologists. The use of the neural network system can be used to help radiologists reducing the number biopsies in clinical applications. Genetic algorithms are an effective tool to select optimal input features and structure of a backpropagation neural network. The neural network, combined with genetic algorithms, is able to effectively classify benign and malignant microcalcifications. The results of the neural network system can be used to help reducing the number of benign biopsies.
Time series segmentation: a new approach based on Genetic Algorithm and Hidden Markov Model
NASA Astrophysics Data System (ADS)
Toreti, A.; Kuglitsch, F. G.; Xoplaki, E.; Luterbacher, J.
2009-04-01
The subdivision of a time series into homogeneous segments has been performed using various methods applied to different disciplines. In climatology, for example, it is accompanied by the well-known homogenization problem and the detection of artificial change points. In this context, we present a new method (GAMM) based on Hidden Markov Model (HMM) and Genetic Algorithm (GA), applicable to series of independent observations (and easily adaptable to autoregressive processes). A left-to-right hidden Markov model, estimating the parameters and the best-state sequence, respectively, with the Baum-Welch and Viterbi algorithms, was applied. In order to avoid the well-known dependence of the Baum-Welch algorithm on the initial condition, a Genetic Algorithm was developed. This algorithm is characterized by mutation, elitism and a crossover procedure implemented with some restrictive rules. Moreover the function to be minimized was derived following the approach of Kehagias (2004), i.e. it is the so-called complete log-likelihood. The number of states was determined applying a two-fold cross-validation procedure (Celeux and Durand, 2008). Being aware that the last issue is complex, and it influences all the analysis, a Multi Response Permutation Procedure (MRPP; Mielke et al., 1981) was inserted. It tests the model with K+1 states (where K is the state number of the best model) if its likelihood is close to K-state model. Finally, an evaluation of the GAMM performances, applied as a break detection method in the field of climate time series homogenization, is shown. 1. G. Celeux and J.B. Durand, Comput Stat 2008. 2. A. Kehagias, Stoch Envir Res 2004. 3. P.W. Mielke, K.J. Berry, G.W. Brier, Monthly Wea Rev 1981.
Genetic algorithms applied to the scheduling of the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Sponsler, Jeffrey L.
1989-01-01
A prototype system employing a genetic algorithm (GA) has been developed to support the scheduling of the Hubble Space Telescope. A non-standard knowledge structure is used and appropriate genetic operators have been created. Several different crossover styles (random point selection, evolving points, and smart point selection) are tested and the best GA is compared with a neural network (NN) based optimizer. The smart crossover operator produces the best results and the GA system is able to evolve complete schedules using it. The GA is not as time-efficient as the NN system and the NN solutions tend to be better.
Chen, Ying-ping; Chen, Chao-Hong
2010-01-01
An adaptive discretization method, called split-on-demand (SoD), enables estimation of distribution algorithms (EDAs) for discrete variables to solve continuous optimization problems. SoD randomly splits a continuous interval if the number of search points within the interval exceeds a threshold, which is decreased at every iteration. After the split operation, the nonempty intervals are assigned integer codes, and the search points are discretized accordingly. As an example of using SoD with EDAs, the integration of SoD and the extended compact genetic algorithm (ECGA) is presented and numerically examined. In this integration, we adopt a local search mechanism as an optional component of our back end optimization engine. As a result, the proposed framework can be considered as a memetic algorithm, and SoD can potentially be applied to other memetic algorithms. The numerical experiments consist of two parts: (1) a set of benchmark functions on which ECGA with SoD and ECGA with two well-known discretization methods: the fixed-height histogram (FHH) and the fixed-width histogram (FWH) are compared; (2) a real-world application, the economic dispatch problem, on which ECGA with SoD is compared to other methods. The experimental results indicate that SoD is a better discretization method to work with ECGA. Moreover, ECGA with SoD works quite well on the economic dispatch problem and delivers solutions better than the best known results obtained by other methods in existence. PMID:20210600
NASA Astrophysics Data System (ADS)
Nikolaou, Athanasia; GutiÃ©rrez, Pedro Antonio; DurÃ¡n, Antonio; Dicaire, Isabelle; FernÃ¡ndez-Navarro, Francisco; HervÃ¡s-MartÃnez, CÃ©sar
2015-04-01
This paper proposes a time series segmentation algorithm combining a clustering technique and a genetic algorithm to automatically find segments sharing common statistical characteristics in paleoclimate time series. The segments are transformed into a six-dimensional space composed of six statistical measures, most of which have been previously considered in the detection of warning signals of critical transitions. Experimental results show that the proposed approach applied to paleoclimate data could effectively analyse Dansgaard-Oeschger (DO) events and uncover commonalities and differences in their statistical and possibly their dynamical characterisation. In particular, warning signals were robustly detected in the GISP2 and NGRIP ice core data for several DO events (e.g. DO 1, 4, 8 and 12) in the form of an order of magnitude increase in variance, autocorrelation and mean square distance from a linear approximation (i.e. the mean square error). The increase in mean square error, suggesting nonlinear behaviour, has been found to correspond with an increase in variance prior to several DO events for 90 % of the algorithm runs for the GISP2 dataset and for 100 % of the algorithm runs for the NGRIP dataset. The proposed approach applied to well-known dynamical systems and paleoclimate datasets provides a novel visualisation tool in the field of climate time series analysis.
Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed
NASA Technical Reports Server (NTRS)
Taylor, Jaime R.
2003-01-01
NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.
Multicycle Optimization of Advanced Gas-Cooled Reactor Loading Patterns Using Genetic Algorithms
Ziver, A. Kemal; Carter, Jonathan N.; Pain, Christopher C.; Oliveira, Cassiano R.E. de; Goddard, Antony J. H.; Overton, Richard S.
2003-02-15
A genetic algorithm (GA)-based optimizer (GAOPT) has been developed for in-core fuel management of advanced gas-cooled reactors (AGRs) at HINKLEY B and HARTLEPOOL, which employ on-load and off-load refueling, respectively. The optimizer has been linked to the reactor analysis code PANTHER for the automated evaluation of loading patterns in a two-dimensional geometry, which is collapsed from the three-dimensional reactor model. GAOPT uses a directed stochastic (Monte Carlo) algorithm to generate initial population members, within predetermined constraints, for use in GAs, which apply the standard genetic operators: selection by tournament, crossover, and mutation. The GAOPT is able to generate and optimize loading patterns for successive reactor cycles (multicycle) within acceptable CPU times even on single-processor systems. The algorithm allows radial shuffling of fuel assemblies in a multicycle refueling optimization, which is constructed to aid long-term core management planning decisions. This paper presents the application of the GA-based optimization to two AGR stations, which apply different in-core management operational rules. Results obtained from the testing of GAOPT are discussed.
Dimensionality Reduction in Complex Medical Data: Improved Self-Adaptive Niche Genetic Algorithm
Zhu, Min; Xia, Jing; Yan, Molei; Cai, Guolong; Yan, Jing; Ning, Gangmin
2015-01-01
With the development of medical technology, more and more parameters are produced to describe the human physiological condition, forming high-dimensional clinical datasets. In clinical analysis, data are commonly utilized to establish mathematical models and carry out classification. High-dimensional clinical data will increase the complexity of classification, which is often utilized in the models, and thus reduce efficiency. The Niche Genetic Algorithm (NGA) is an excellent algorithm for dimensionality reduction. However, in the conventional NGA, the niche distance parameter is set in advance, which prevents it from adjusting to the environment. In this paper, an Improved Niche Genetic Algorithm (INGA) is introduced. It employs a self-adaptive niche-culling operation in the construction of the niche environment to improve the population diversity and prevent local optimal solutions. The INGA was verified in a stratification model for sepsis patients. The results show that, by applying INGA, the feature dimensionality of datasets was reduced from 77 to 10 and that the model achieved an accuracy of 92% in predicting 28-day death in sepsis patients, which is significantly higher than other methods. PMID:26649071
NASA Astrophysics Data System (ADS)
Castellini, P.; Cecchini, S.; Stroppa, L.; Paone, N.
2015-02-01
The paper presents an adaptive illumination system for image quality enhancement in vision-based quality control systems. In particular, a spatial modulation of illumination intensity is proposed in order to improve image quality, thus compensating for different target scattering properties, local reflections and fluctuations of ambient light. The desired spatial modulation of illumination is obtained by a digital light projector, used to illuminate the scene with an arbitrary spatial distribution of light intensity, designed to improve feature extraction in the region of interest. The spatial distribution of illumination is optimized by running a genetic algorithm. An image quality estimator is used to close the feedback loop and to stop iterations once the desired image quality is reached. The technique proves particularly valuable for optimizing the spatial illumination distribution in the region of interest, with the remarkable capability of the genetic algorithm to adapt the light distribution to very different target reflectivity and ambient conditions. The final objective of the proposed technique is the improvement of the matching score in the recognition of parts through matching algorithms, hence of the diagnosis of machine vision-based quality inspections. The procedure has been validated both by a numerical model and by an experimental test, referring to a significant problem of quality control for the washing machine manufacturing industry: the recognition of a metallic clamp. Its applicability to other domains is also presented, specifically for the visual inspection of shoes with retro-reflective tape and T-shirts with paillettes.
Performance Enhancement of Embedded System Based Multilevel Inverter Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Perumal, Maruthu Pandi; Nanjudapan, Devarajan
2011-07-01
This paper presents an optimal solution for eliminating pre specified order of harmonics from a stepped waveform of a multilevel inverter topology with equal dc sources. The main challenge of solving the associated non linear equation which are transcendental in nature and therefore have multiple solutions is the convergence of the relevant algorithms and therefore an initial point selected considerably close to the exact solution is required. The paper describes an efficient genetic algorithm that reduces significantly the computational burden resulting in fast convergence. An objective function describing a measure of effectiveness of eliminating selected order of harmonics while controlling the fundamental component is derived. The performance of cascaded multilevel inverter is compared based on computation of switching angle using Genetic Algorithm as well as conventional Newton Raphson approach. A significant improvement in harmonic profile is achieved in the GA based approach. A nine level cascaded multi level inverter is simulated in MATLAB Simulink and a proto type model has been fabricated to validate the simulation results.
Determining Relative Importance and Effective Settings for Genetic Algorithm Control Parameters.
Mills, K L; Filliben, J J; Haines, A L
2015-01-01
Setting the control parameters of a genetic algorithm to obtain good results is a long-standing problem. We define an experiment design and analysis method to determine relative importance and effective settings for control parameters of any evolutionary algorithm, and we apply this method to a classic binary-encoded genetic algorithm (GA). Subsequently, as reported elsewhere, we applied the GA, with the control parameter settings determined here, to steer a population of cloud-computing simulators toward behaviors that reveal degraded performance and system collapse. GA-steered simulators could serve as a design tool, empowering system engineers to identify and mitigate low-probability, costly failure scenarios. In the existing GA literature, we uncovered conflicting opinions and evidence regarding key GA control parameters and effective settings to adopt. Consequently, we designed and executed an experiment to determine relative importance and effective settings for seven GA control parameters, when applied across a set of numerical optimization problems drawn from the literature. This paper describes our experiment design, analysis, and results. We found that crossover most significantly influenced GA success, followed by mutation rate and population size and then by rerandomization point and elite selection. Selection method and the precision used within the chromosome to represent numerical values had least influence. Our findings are robust over 60 numerical optimization problems. PMID:25254350
Solving multi-objective job shop scheduling problems using a non-dominated sorting genetic algorithm
NASA Astrophysics Data System (ADS)
Piroozfard, Hamed; Wong, Kuan Yew
2015-05-01
The efforts of finding optimal schedules for the job shop scheduling problems are highly important for many real-world industrial applications. In this paper, a multi-objective based job shop scheduling problem by simultaneously minimizing makespan and tardiness is taken into account. The problem is considered to be more complex due to the multiple business criteria that must be satisfied. To solve the problem more efficiently and to obtain a set of non-dominated solutions, a meta-heuristic based non-dominated sorting genetic algorithm is presented. In addition, task based representation is used for solution encoding, and tournament selection that is based on rank and crowding distance is applied for offspring selection. Swapping and insertion mutations are employed to increase diversity of population and to perform intensive search. To evaluate the modified non-dominated sorting genetic algorithm, a set of modified benchmarking job shop problems obtained from the OR-Library is used, and the results are considered based on the number of non-dominated solutions and quality of schedules obtained by the algorithm.
NASA Astrophysics Data System (ADS)
Sykas, Dimitris; Karathanassi, Vassilia
2015-06-01
This paper presents a new method for automatically determining the optimum regression model, which enable the estimation of a parameter. The concept lies on the combination of k spectral pre-processing algorithms (SPPAs) that enhance spectral features correlated to the desired parameter. Initially a pre-processing algorithm uses as input a single spectral signature and transforms it according to the SPPA function. A k-step combination of SPPAs uses k preprocessing algorithms serially. The result of each SPPA is used as input to the next SPPA, and so on until the k desired pre-processed signatures are reached. These signatures are then used as input to three different regression methods: the Normalized band Difference Regression (NDR), the Multiple Linear Regression (MLR) and the Partial Least Squares Regression (PLSR). Three Simple Genetic Algorithms (SGAs) are used, one for each regression method, for the selection of the optimum combination of k SPPAs. The performance of the SGAs is evaluated based on the RMS error of the regression models. The evaluation not only indicates the selection of the optimum SPPA combination but also the regression method that produces the optimum prediction model. The proposed method was applied on soil spectral measurements in order to predict Soil Organic Matter (SOM). In this study, the maximum value assigned to k was 3. PLSR yielded the highest accuracy while NDR's accuracy was satisfactory compared to its complexity. MLR method showed severe drawbacks due to the presence of noise in terms of collinearity at the spectral bands. Most of the regression methods required a 3-step combination of SPPAs for achieving the highest performance. The selected preprocessing algorithms were different for each regression method since each regression method handles with a different way the explanatory variables.
NASA Astrophysics Data System (ADS)
Biswas, S.; Goswami, S. K.
2010-10-01
In the present paper an attempt has been made to place the distributed generation at an optimal location so as to improve the technical as well as economical performance. Among technical issues the sag performance and the loss have been considered. Genetic algorithm method has been used as the optimization technique in this problem. For sag analysis the impact of 3-phase symmetrical short circuit faults is considered. Total load disturbed during the faults is considered as an indicator of sag performance. The solution algorithm is demonstrated on a 34 bus radial distribution system with some lateral branches. For simplicity only one DG of predefined capacity is considered. MATLAB has been used as the programming environment.
Application of artificial neural network and genetic algorithm in flow and transport simulations
NASA Astrophysics Data System (ADS)
Morshed, Jahangir; Kaluarachchi, Jagath J.
Artificial neural network (ANN) is considered to be a powerful tool for solving groundwater problems which require a large number of flow and contaminant transport (GFCT) simulations. Often, GFCT models are nonlinear, and they are difficult to solve using traditional numerical methods to simulate specific input-output responses. In order to avoid these difficulties, ANN may be used to simulate the GFCT responses explicitly. In this manuscript, recent research related to the application of ANN in simulating GFCT responses is critically reviewed, and six research areas are identified. In order to study these areas, a one-dimensional unsaturated flow and transport scenario was developed, and ANN was used to simulate the effects of specific GFCT parameters on overall results. Using these results, ANN concepts related to architecture, sampling, training, and multiple function approximations are studied, and ANN training using back-propagation algorithm (BPA) and genetic algorithm (GA) are compared. These results are summarized, and appropriate conclusions are made.
Multi-objective optimization of lithium-ion battery model using genetic algorithm approach
NASA Astrophysics Data System (ADS)
Zhang, Liqiang; Wang, Lixin; Hinds, Gareth; Lyu, Chao; Zheng, Jun; Li, Junfu
2014-12-01
A multi-objective parameter identification method for modeling of Li-ion battery performance is presented. Terminal voltage and surface temperature curves at 15 °C and 30 °C are used as four identification objectives. The Pareto fronts of two types of Li-ion battery are obtained using the modified multi-objective genetic algorithm NSGA-II and the final identification results are selected using the multiple criteria decision making method TOPSIS. The simulated data using the final identification results are in good agreement with experimental data under a range of operating conditions. The validation results demonstrate that the modified NSGA-II and TOPSIS algorithms can be used as robust and reliable tools for identifying parameters of multi-physics models for many types of Li-ion batteries.
Optimization of Aero Engine Acceleration Control in Combat State Based on Genetic Algorithms
NASA Astrophysics Data System (ADS)
Li, Jie; Fan, Ding; Sreeram, Victor
2012-03-01
In order to drastically exploit the potential of the aero engine and improve acceleration performance in the combat state, an on-line optimized controller based on genetic algorithms is designed for an aero engine. For testing the validity of the presented control method, detailed joint simulation tests of the designed controller and the aero engine model are performed in the whole flight envelope. Simulation test results show that the presented control algorithm has characteristics of rapid convergence speed, high efficiency and can fully exploit the acceleration performance potential of the aero engine. Compared with the former controller, the designed on-line optimized controller (DOOC) can improve the security of the acceleration process and greatly enhance the aero engine thrust in the whole range of the flight envelope, the thrust increases an average of 8.1% in the randomly selected working states. The plane which adopts DOOC can acquire better fighting advantage in the combat state.
NASA Astrophysics Data System (ADS)
Lim, Wei Jer; Neoh, Siew Chin; Norizan, Mohd Natashah; Mohamad, Ili Salwani
2015-05-01
Optimization for complex circuit design often requires large amount of manpower and computational resources. In order to optimize circuit performance, it is critical not only for circuit designers to adjust the component value but also to fulfill objectives such as gain, cutoff frequency, ripple and etc. This paper proposes Non-dominated Sorting Genetic Algorithm II (NSGA-II) to optimize a ninth order multiple feedback Chebyshev low pass filter. Multi-objective Pareto-Based optimization is involved whereby the research aims to obtain the best trade-off for minimizing the pass-band ripple, maximizing the output gain and achieving the targeted cut-off frequency. The developed NSGA-II algorithm is executed on the NGSPICE circuit simulator to assess the filter performance. Overall results show satisfactory in the achievements of the required design specifications.
Genetic Algorithms and Classification Trees in Feature Discovery: Diabetes and the NHANES database
Heredia-Langner, Alejandro; Jarman, Kristin H.; Amidan, Brett G.; Pounds, Joel G.
2013-09-01
This paper presents a feature selection methodology that can be applied to datasets containing a mixture of continuous and categorical variables. Using a Genetic Algorithm (GA), this method explores a dataset and selects a small set of features relevant for the prediction of a binary (1/0) response. Binary classification trees and an objective function based on conditional probabilities are used to measure the fitness of a given subset of features. The method is applied to health data in order to find factors useful for the prediction of diabetes. Results show that our algorithm is capable of narrowing down the set of predictors to around 8 factors that can be validated using reputable medical and public health resources.
Genetic Algorithm for Opto-thermal Skin Hydration Depth Profiling Measurements
NASA Astrophysics Data System (ADS)
Cui, Y.; Xiao, Perry; Imhof, R. E.
2013-09-01
Stratum corneum is the outermost skin layer, and the water content in stratum corneum plays a key role in skin cosmetic properties as well as skin barrier functions. However, to measure the water content, especially the water concentration depth profile, within stratum corneum is very difficult. Opto-thermal emission radiometry, or OTTER, is a promising technique that can be used for such measurements. In this paper, a study on stratum corneum hydration depth profiling by using a genetic algorithm (GA) is presented. The pros and cons of a GA compared against other inverse algorithms such as neural networks, maximum entropy, conjugate gradient, and singular value decomposition will be discussed first. Then, it will be shown how to use existing knowledge to optimize a GA for analyzing the opto-thermal signals. Finally, these latest GA results on hydration depth profiling of stratum corneum under different conditions, as well as on the penetration profiles of externally applied solvents, will be shown.
Optimal field-scale groundwater remediation using neural networks and the genetic algorithm
Rogers, L.L.; Dowla, F.U.; Johnson, V.M.
1993-05-01
We present a new approach for field-scale nonlinear management of groundwater remediation. First, an artificial neural network (ANN) is trained to predict the outcome of a groundwater transport simulation. Then a genetic algorithm (GA) searches through possible pumping realizations, evaluating the fitness of each with a prediction from the trained ANN. Traditional approaches rely on optimization algorithms requiring sequential calls of the groundwater transport simulation. Our approach processes the transport simulations in parallel and ``recycles`` the knowledge base of these simulations, greatly reducing the computational and real-time burden, often the primary impediment to developing field-scale management models. We present results from a Superfund site suggesting that such management techniques can reduce cleanup costs by over a hundred million dollars.
Optimization of min-max vehicle routing problem based on genetic algorithm
NASA Astrophysics Data System (ADS)
Liu, Xia
2013-10-01
In some cases, there are some special requirements for the vehicle routing problem. Personnel or goods geographically scattered, should be delivered simultaneously to an assigned place by a fleet of vehicles as soon as possible. In this case the objective is to minimize the distance of the longest route among all sub-routes. An improved genetic algorithm was adopted to solve these problems. Each customer has a unique integer identifier and the chromosome is defined as a string of integers. Initial routes are constructed randomly, and then standard proportional selection incorporating elitist is chosen to guarantee the best member survives. New crossover and 2-exchange mutation is adopted to increase the diversity of group. The algorithm was implemented and tested on some instances. The results demonstrate the effectiveness of the method.
Search for spinning black hole binaries in mock LISA data using a genetic algorithm
Petiteau, Antoine; Shang Yu; Babak, Stanislav; Feroz, Farhan
2010-05-15
Coalescing massive black hole binaries are the strongest and probably the most important gravitational wave sources in the LISA band. The spin and orbital precessions bring complexity in the waveform and make the likelihood surface richer in structure as compared to the nonspinning case. We introduce an extended multimodal genetic algorithm which utilizes the properties of the signal and the detector response function to analyze the data from the third round of mock LISA data challenge (MLDC3.2). The performance of this method is comparable, if not better, to already existing algorithms. We have found all five sources present in MLDC3.2 and recovered the coalescence time, chirp mass, mass ratio, and sky location with reasonable accuracy. As for the orbital angular momentum and two spins of the black holes, we have found a large number of widely separated modes in the parameter space with similar maximum likelihood values.
Yang, Yeh-Fen; Su, Tung-Ching; Huang, Kai-Siang
2014-01-01
Genetic algorithm (GA) is designed to search the optimal solution via weeding out the worse gene strings based on a fitness function. GA had demonstrated effectiveness in solving the problems of unsupervised image classification, one of the optimization problems in a large domain. Many indices or hybrid algorithms as a fitness function in a GA classifier are built to improve the classification accuracy. This paper proposes a new index, DBFCMI, by integrating two common indices, DBI and FCMI, in a GA classifier to improve the accuracy and robustness of classification. For the purpose of testing and verifying DBFCMI, well-known indices such as DBI, FCMI, and PASI are employed as well for comparison. A SPOT-5 satellite image in a partial watershed of Shihmen reservoir is adopted as the examined material for landuse classification. As a result, DBFCMI acquires higher overall accuracy and robustness than the rest indices in unsupervised classification. PMID:24701151