Level 1 Radiance Scaling and Conditioning Algorithm Theoretical Basis
NASA Technical Reports Server (NTRS)
Bruegge, C.; Diner, D.; Korechoff, R.; Lee, M.
2000-01-01
The Algorithm Theoretical Basis (ATB) document describes the algorithms used to produce the Multi-angle Imaging SpectroRadiometer (MISR) Level 1B1 Radiometric Product, and certain parameters of the Level 1A Reformatted Annotated Product.
Universal single level implicit algorithm for gasdynamics
NASA Technical Reports Server (NTRS)
Lombard, C. K.; Venkatapthy, E.
1984-01-01
A single level effectively explicit implicit algorithm for gasdynamics is presented. The method meets all the requirements for unconditionally stable global iteration over flows with mixed supersonic and supersonic zones including blunt body flow and boundary layer flows with strong interaction and streamwise separation. For hyperbolic (supersonic flow) regions the method is automatically equivalent to contemporary space marching methods. For elliptic (subsonic flow) regions, rapid convergence is facilitated by alternating direction solution sweeps which bring both sets of eigenvectors and the influence of both boundaries of a coordinate line equally into play. Point by point updating of the data with local iteration on the solution procedure at each spatial step as the sweeps progress not only renders the method single level in storage but, also, improves nonlinear accuracy to accelerate convergence by an order of magnitude over related two level linearized implicit methods. The method derives robust stability from the combination of an eigenvector split upwind difference method (CSCM) with diagonally dominant ADI(DDADI) approximate factorization and computed characteristic boundary approximations.
Level 2 Ancillary Products and Datasets Algorithm Theoretical Basis
NASA Technical Reports Server (NTRS)
Diner, D.; Abdou, W.; Gordon, H.; Kahn, R.; Knyazikhin, Y.; Martonchik, J.; McDonald, D.; McMuldroch, S.; Myneni, R.; West, R.
1999-01-01
This Algorithm Theoretical Basis (ATB) document describes the algorithms used to generate the parameters of certain ancillary products and datasets used during Level 2 processing of Multi-angle Imaging SpectroRadiometer (MIST) data.
A three-level BDDC algorithm for Mortar discretizations
Kim, H.; Tu, X.
2007-12-09
In this paper, a three-level BDDC algorithm is developed for the solutions of large sparse algebraic linear systems arising from the mortar discretization of elliptic boundary value problems. The mortar discretization is considered on geometrically non-conforming subdomain partitions. In two-level BDDC algorithms, the coarse problem needs to be solved exactly. However, its size will increase with the increase of the number of the subdomains. To overcome this limitation, the three-level algorithm solves the coarse problem inexactly while a good rate of convergence is maintained. This is an extension of previous work, the three-level BDDC algorithms for standard finite element discretization. Estimates of the condition numbers are provided for the three-level BDDC method and numerical experiments are also discussed.
AIRS Level 1b Algorithm Theoretical Basis Document
NASA Technical Reports Server (NTRS)
Aumann, H.; Gregorich, D.; Gaiser, S.; Hagan, D.; Pagano, T.; Ting, D.
2000-01-01
The level 1b Algorithm Theoretical Basis Document (ATBD) describes the theoretical bases of the algorithms used to convert the raw detector output (data numbers) from the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder Brazil (HSB) to physical radiance units and, in the case of AIRS, perform in-orbit spectral calibrations.
The algorithmic level is the bridge between computation and brain.
Love, Bradley C
2015-04-01
Every scientist chooses a preferred level of analysis and this choice shapes the research program, even determining what counts as evidence. This contribution revisits Marr's (1982) three levels of analysis (implementation, algorithmic, and computational) and evaluates the prospect of making progress at each individual level. After reviewing limitations of theorizing within a level, two strategies for integration across levels are considered. One is top-down in that it attempts to build a bridge from the computational to algorithmic level. Limitations of this approach include insufficient theoretical constraint at the computation level to provide a foundation for integration, and that people are suboptimal for reasons other than capacity limitations. Instead, an inside-out approach is forwarded in which all three levels of analysis are integrated via the algorithmic level. This approach maximally leverages mutual data constraints at all levels. For example, algorithmic models can be used to interpret brain imaging data, and brain imaging data can be used to select among competing models. Examples of this approach to integration are provided. This merging of levels raises questions about the relevance of Marr's tripartite view. PMID:25823496
Advanced biologically plausible algorithms for low-level image processing
NASA Astrophysics Data System (ADS)
Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan
1999-08-01
At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.
The Algorithm Theoretical Basis Document for Level 1A Processing
NASA Technical Reports Server (NTRS)
Jester, Peggy L.; Hancock, David W., III
2012-01-01
The first process of the Geoscience Laser Altimeter System (GLAS) Science Algorithm Software converts the Level 0 data into the Level 1A Data Products. The Level 1A Data Products are the time ordered instrument data converted from counts to engineering units. This document defines the equations that convert the raw instrument data into engineering units. Required scale factors, bias values, and coefficients are defined in this document. Additionally, required quality assurance and browse products are defined in this document.
A two-level detection algorithm for optical fiber vibration
NASA Astrophysics Data System (ADS)
Bi, Fukun; Ren, Xuecong; Qu, Hongquan; Jiang, Ruiqing
2015-09-01
Optical fiber vibration is detected by the coherent optical time domain reflection technique. In addition to the vibration signals, the reflected signals include clutters and noises, which lead to a high false alarm rate. The "cell averaging" constant false alarm rate algorithm has a high computing speed, but its detection performance will be declined in nonhomogeneous environments such as multiple targets. The "order statistics" constant false alarm rate algorithm has a distinct advantage in multiple target environments, but it has a lower computing speed. An intelligent two-level detection algorithm is presented based on "cell averaging" constant false alarm rate and "order statistics" constant false alarm rate which work in serial way, and the detection speed of "cell averaging" constant false alarm rate and performance of "order statistics" constant false alarm rate are conserved, respectively. Through the adaptive selection, the "cell averaging" is applied in homogeneous environments, and the two-level detection algorithm is employed in nonhomogeneous environments. Our Monte Carlo simulation results demonstrate that considering different signal noise ratios, the proposed algorithm gives better detection probability than that of "order statistics".
A Three-level BDDC algorithm for saddle point problems
Tu, X.
2008-12-10
BDDC algorithms have previously been extended to the saddle point problems arising from mixed formulations of elliptic and incompressible Stokes problems. In these two-level BDDC algorithms, all iterates are required to be in a benign space, a subspace in which the preconditioned operators are positive definite. This requirement can lead to large coarse problems, which have to be generated and factored by a direct solver at the beginning of the computation and they can ultimately become a bottleneck. An additional level is introduced in this paper to solve the coarse problem approximately and to remove this difficulty. This three-level BDDC algorithm keeps all iterates in the benign space and the conjugate gradient methods can therefore be used to accelerate the convergence. This work is an extension of the three-level BDDC methods for standard finite element discretization of elliptic problems and the same rate of convergence is obtained for the mixed formulation of the same problems. Estimate of the condition number for this three-level BDDC methods is provided and numerical experiments are discussed.
Re-Computation of Numerical Results Contained in NACA Report No. 496
NASA Technical Reports Server (NTRS)
Perry, Boyd, III
2015-01-01
An extensive examination of NACA Report No. 496 (NACA 496), "General Theory of Aerodynamic Instability and the Mechanism of Flutter," by Theodore Theodorsen, is described. The examination included checking equations and solution methods and re-computing interim quantities and all numerical examples in NACA 496. The checks revealed that NACA 496 contains computational shortcuts (time- and effort-saving devices for engineers of the time) and clever artifices (employed in its solution methods), but, unfortunately, also contains numerous tripping points (aspects of NACA 496 that have the potential to cause confusion) and some errors. The re-computations were performed employing the methods and procedures described in NACA 496, but using modern computational tools. With some exceptions, the magnitudes and trends of the original results were in fair-to-very-good agreement with the re-computed results. The exceptions included what are speculated to be computational errors in the original in some instances and transcription errors in the original in others. Independent flutter calculations were performed and, in all cases, including those where the original and re-computed results differed significantly, were in excellent agreement with the re-computed results. Appendix A contains NACA 496; Appendix B contains a Matlab(Reistered) program that performs the re-computation of results; Appendix C presents three alternate solution methods, with examples, for the two-degree-of-freedom solution method of NACA 496; Appendix D contains the three-degree-of-freedom solution method (outlined in NACA 496 but never implemented), with examples.
On the multi-level solution algorithm for Markov chains
Horton, G.
1996-12-31
We discuss the recently introduced multi-level algorithm for the steady-state solution of Markov chains. The method is based on the aggregation principle, which is well established in the literature. Recursive application of the aggregation yields a multi-level method which has been shown experimentally to give results significantly faster than the methods currently in use. The algorithm can be reformulated as an algebraic multigrid scheme of Galerkin-full approximation type. The uniqueness of the scheme stems from its solution-dependent prolongation operator which permits significant computational savings in the evaluation of certain terms. This paper describes the modeling of computer systems to derive information on performance, measured typically as job throughput or component utilization, and availability, defined as the proportion of time a system is able to perform a certain function in the presence of component failures and possibly also repairs.
Level-treewidth property, exact algorithms and approximation schemes
Marathe, M.V.; Hunt, H.B.; Stearns, R.E.
1997-06-01
Informally, a class of graphs Q is said to have the level-treewidth property (LT-property) if for every G {element_of} Q there is a layout (breadth first ordering) L{sub G} such that the subgraph induced by the vertices in k-consecutive levels in the layout have treewidth O(f (k)), for some function f. We show that several important and well known classes of graphs including planar and bounded genus graphs, (r, s)-civilized graphs, etc, satisfy the LT-property. Building on the recent work, we present two general types of results for the class of graphs obeying the LT-property. (1) All problems in the classes MPSAT, TMAX and TMIN have polynomial time approximation schemes. (2) The problems considered in Eppstein have efficient polynomial time algorithms. These results can be extended to obtain polynomial time approximation algorithms and approximation schemes for a number of PSPACE-hard combinatorial problems specified using different kinds of succinct specifications studied in. Many of the results can also be extended to {delta}-near genus and {delta}-near civilized graphs, for any fixed {delta}. Our results significantly extend the work in and affirmatively answer recent open questions.
Sampling design for classifying contaminant level using annealing search algorithms
NASA Astrophysics Data System (ADS)
Christakos, George; Killam, Bart R.
1993-12-01
A stochastic method for sampling spatially distributed contaminant level is presented. The purpose of sampling is to partition the contaminated region into zones of high and low pollutant concentration levels. In particular, given an initial set of observations of a contaminant within a site, it is desired to find a set of additional sampling locations in a way that takes into consideration the spatial variability characteristics of the site and optimizes certain objective functions emerging from the physical, regulatory and monetary considerations of the specific site cleanup process. Since the interest is in classifying the domain into zones above and below a pollutant threshold level, a natural criterion is the cost of misclassification. The resulting objective function is the expected value of a spatial loss function associated with sampling. Stochastic expectation involves the joint probability distribution of the pollutant level and its estimate, where the latter is calculated by means of spatial estimation techniques. Actual computation requires the discretization of the contaminated domain. As a consequence, any reasonably sized problem results in combinatorics precluding an exhaustive search. The use of an annealing algorithm, although suboptimal, can find a good set of future sampling locations quickly and efficiently. In order to obtain insight about the parameters and the computational requirements of the method, an example is discussed in detail. The implementation of spatial sampling design in practice will provide the model inputs necessary for waste site remediation, groundwater management, and environmental decision making.
Constrained Multi-Level Algorithm for Trajectory Optimization
NASA Astrophysics Data System (ADS)
Adimurthy, V.; Tandon, S. R.; Jessy, Antony; Kumar, C. Ravi
The emphasis on low cost access to space inspired many recent developments in the methodology of trajectory optimization. Ref.1 uses a spectral patching method for optimization, where global orthogonal polynomials are used to describe the dynamical constraints. A two-tier approach of optimization is used in Ref.2 for a missile mid-course trajectory optimization. A hybrid analytical/numerical approach is described in Ref.3, where an initial analytical vacuum solution is taken and gradually atmospheric effects are introduced. Ref.4 emphasizes the fact that the nonlinear constraints which occur in the initial and middle portions of the trajectory behave very nonlinearly with respect the variables making the optimization very difficult to solve in the direct and indirect shooting methods. The problem is further made complex when different phases of the trajectory have different objectives of optimization and also have different path constraints. Such problems can be effectively addressed by multi-level optimization. In the multi-level methods reported so far, optimization is first done in identified sub-level problems, where some coordination variables are kept fixed for global iteration. After all the sub optimizations are completed, higher-level optimization iteration with all the coordination and main variables is done. This is followed by further sub system optimizations with new coordination variables. This process is continued until convergence. In this paper we use a multi-level constrained optimization algorithm which avoids the repeated local sub system optimizations and which also removes the problem of non-linear sensitivity inherent in the single step approaches. Fall-zone constraints, structural load constraints and thermal constraints are considered. In this algorithm, there is only a single multi-level sequence of state and multiplier updates in a framework of an augmented Lagrangian. Han Tapia multiplier updates are used in view of their special role in
Heuristic-based scheduling algorithm for high level synthesis
NASA Technical Reports Server (NTRS)
Mohamed, Gulam; Tan, Han-Ngee; Chng, Chew-Lye
1992-01-01
A new scheduling algorithm is proposed which uses a combination of a resource utilization chart, a heuristic algorithm to estimate the minimum number of hardware units based on operator mobilities, and a list-scheduling technique to achieve fast and near optimal schedules. The schedule time of this algorithm is almost independent of the length of mobilities of operators as can be seen from the benchmark example (fifth order digital elliptical wave filter) presented when the cycle time was increased from 17 to 18 and then to 21 cycles. It is implemented in C on a SUN3/60 workstation.
Level set algorithms comparison for multi-slice CT left ventricle segmentation
NASA Astrophysics Data System (ADS)
Medina, Ruben; La Cruz, Alexandra; Ordoñes, Andrés.; Pesántez, Daniel; Morocho, Villie; Vanegas, Pablo
2015-12-01
The comparison of several Level Set algorithms is performed with respect to 2D left ventricle segmentation in Multi-Slice CT images. Five algorithms are compared by calculating the Dice coefficient between the resulting segmentation contour and a reference contour traced by a cardiologist. The algorithms are also tested on images contaminated with Gaussian noise for several values of PSNR. Additionally an algorithm for providing the initialization shape is proposed. This algorithm is based on a combination of mathematical morphology tools with watershed and region growing algorithms. Results on the set of test images are promising and suggest the extension to 3{D MSCT database segmentation.
Qualls, Joseph; Russomanno, David J.
2011-01-01
The lack of knowledge models to represent sensor systems, algorithms, and missions makes opportunistically discovering a synthesis of systems and algorithms that can satisfy high-level mission specifications impractical. A novel ontological problem-solving framework has been designed that leverages knowledge models describing sensors, algorithms, and high-level missions to facilitate automated inference of assigning systems to subtasks that may satisfy a given mission specification. To demonstrate the efficacy of the ontological problem-solving architecture, a family of persistence surveillance sensor systems and algorithms has been instantiated in a prototype environment to demonstrate the assignment of systems to subtasks of high-level missions. PMID:22164081
A multi-level solution algorithm for steady-state Markov chains
NASA Technical Reports Server (NTRS)
Horton, Graham; Leutenegger, Scott T.
1993-01-01
A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial differential equations. Initial results of numerical experiments are reported, showing significant reductions in computation time, often an order of magnitude or more, relative to the Gauss-Seidel and optimal SOR algorithms for a variety of test problems. The multi-level method is compared and contrasted with the iterative aggregation-disaggregation algorithm of Takahashi.
A novel bit-level image encryption algorithm based on chaotic maps
NASA Astrophysics Data System (ADS)
Xu, Lu; Li, Zhi; Li, Jian; Hua, Wei
2016-03-01
Recently, a number of chaos-based image encryption algorithms have been proposed at the pixel level, but little research at the bit level has been conducted. This paper presents a novel bit-level image encryption algorithm that is based on piecewise linear chaotic maps (PWLCM). First, the plain image is transformed into two binary sequences of the same size. Second, a new diffusion strategy is introduced to diffuse the two sequences mutually. Then, we swap the binary elements in the two sequences by the control of a chaotic map, which can permute the bits in one bitplane into any other bitplane. The proposed algorithm has excellent encryption performance with only one round. The simulation results and performance analysis show that the proposed algorithm is both secure and reliable for image encryption.
Al Hosani, E; Soleimani, M
2016-06-28
Multiphase flow imaging is a very challenging and critical topic in industrial process tomography. In this article, simulation and experimental results of reconstructing the permittivity profile of multiphase material from data collected in electrical capacitance tomography (ECT) are presented. A multiphase narrowband level set algorithm is developed to reconstruct the interfaces between three- or four-phase permittivity values. The level set algorithm is capable of imaging multiphase permittivity by using one set of ECT measurement data, so-called absolute value ECT reconstruction, and this is tested with high-contrast and low-contrast multiphase data. Simulation and experimental results showed the superiority of this algorithm over classical pixel-based image reconstruction methods. The multiphase level set algorithm and absolute ECT reconstruction are presented for the first time, to the best of our knowledge, in this paper and critically evaluated. This article is part of the themed issue 'Supersensing through industrial process tomography'. PMID:27185966
Algorithmic recognition of anomalous time intervals in sea-level observations
NASA Astrophysics Data System (ADS)
Getmanov, V. G.; Gvishiani, A. D.; Kamaev, D. A.; Kornilov, A. S.
2016-03-01
The problem of the algorithmic recognition of anomalous time intervals in the time series of the sea-level observations conducted by the Russian Tsunami Warning Survey (RTWS) is considered. The normal and anomalous sea-level observations are described. The polyharmonic models describing the sea-level fluctuations on the short time intervals are constructed, and sea-level forecasting based on these models is suggested. The algorithm for the recognition of anomalous time intervals is developed and its work is tested on the real RTWS data.
A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data
Baur, Brittany; Bozdag, Serdar
2016-01-01
DNA methylation is an important epigenetic event that effects gene expression during development and various diseases such as cancer. Understanding the mechanism of action of DNA methylation is important for downstream analysis. In the Illumina Infinium HumanMethylation 450K array, there are tens of probes associated with each gene. Given methylation intensities of all these probes, it is necessary to compute which of these probes are most representative of the gene centric methylation level. In this study, we developed a feature selection algorithm based on sequential forward selection that utilized different classification methods to compute gene centric DNA methylation using probe level DNA methylation data. We compared our algorithm to other feature selection algorithms such as support vector machines with recursive feature elimination, genetic algorithms and ReliefF. We evaluated all methods based on the predictive power of selected probes on their mRNA expression levels and found that a K-Nearest Neighbors classification using the sequential forward selection algorithm performed better than other algorithms based on all metrics. We also observed that transcriptional activities of certain genes were more sensitive to DNA methylation changes than transcriptional activities of other genes. Our algorithm was able to predict the expression of those genes with high accuracy using only DNA methylation data. Our results also showed that those DNA methylation-sensitive genes were enriched in Gene Ontology terms related to the regulation of various biological processes. PMID:26872146
VanDongen, A M
1996-01-01
A new algorithm is presented for idealizing single channel data containing any number of conductance levels. The number of levels and their amplitudes do not have to be known a priori. No assumption has to be made about the behavior of the channel, other than that transitions between conductance levels are fast. The algorithm is relatively insensitive to the complexity of the underlying single channel behavior. Idealization may be reliable with signal-to-noise ratios as low as 3.5. The idealization algorithm uses a slope detector to localize transitions between levels and a relative amplitude criterion to remove spurious transitions. After estimating the number of conductances and their amplitudes, conductance states can be assigned to the idealized levels. In addition to improving the quality of the idealization, this "interpretation" allows a statistical analysis of individual (sub)conductance states. PMID:8785286
Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits
NASA Astrophysics Data System (ADS)
Kiktenko, E. O.; Fedorov, A. K.; Strakhov, A. A.; Man'ko, V. I.
2015-07-01
Design of a large-scale quantum computer has paramount importance for science and technologies. We investigate a scheme for realization of quantum algorithms using noncomposite quantum systems, i.e., systems without subsystems. In this framework, n artificially allocated "subsystems" play a role of qubits in n-qubits quantum algorithms. With focus on two-qubit quantum algorithms, we demonstrate a realization of the universal set of gates using a d = 5 single qudit state. Manipulation with an ancillary level in the systems allows effective implementation of operators from U(4) group via operators from SU(5) group. Using a possible experimental realization of such systems through anharmonic superconducting many-level quantum circuits, we present a blueprint for a single qudit realization of the Deutsch algorithm, which generalizes previously studied realization based on the virtual spin representation (Kessel et al., 2002 [9]).
Evaluation of SMAP Level 2 Soil Moisture Algorithms Using SMOS Data
NASA Technical Reports Server (NTRS)
Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann; Shi, J. C.
2011-01-01
The objectives of the SMAP (Soil Moisture Active Passive) mission are global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolution, respectively. SMAP will provide soil moisture with a spatial resolution of 10 km with a 3-day revisit time at an accuracy of 0.04 m3/m3 [1]. In this paper we contribute to the development of the Level 2 soil moisture algorithm that is based on passive microwave observations by exploiting Soil Moisture Ocean Salinity (SMOS) satellite observations and products. SMOS brightness temperatures provide a global real-world, rather than simulated, test input for the SMAP radiometer-only soil moisture algorithm. Output of the potential SMAP algorithms will be compared to both in situ measurements and SMOS soil moisture products. The investigation will result in enhanced SMAP pre-launch algorithms for soil moisture.
An adaptive multi-level simulation algorithm for stochastic biological systems
NASA Astrophysics Data System (ADS)
Lester, C.; Yates, C. A.; Giles, M. B.; Baker, R. E.
2015-01-01
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, "Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics," SIAM Multiscale Model. Simul. 10(1), 146-179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the
An adaptive multi-level simulation algorithm for stochastic biological systems
Lester, C. Giles, M. B.; Baker, R. E.; Yates, C. A.
2015-01-14
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the
An improved bi-level algorithm for partitioning dynamic grid hierarchies.
Deiterding, Ralf (California Institute of Technology, Pasadena, CA); Johansson, Henrik (Uppsala University, Uppsala, Sweden); Steensland, Johan; Ray, Jaideep
2006-05-01
Structured adaptive mesh refinement methods are being widely used for computer simulations of various physical phenomena. Parallel implementations potentially offer realistic simulations of complex three-dimensional applications. But achieving good scalability for large-scale applications is non-trivial. Performance is limited by the partitioner's ability to efficiently use the underlying parallel computer's resources. Designed on sound SAMR principles, Nature+Fable is a hybrid, dedicated SAMR partitioning tool that brings together the advantages of both domain-based and patch-based techniques while avoiding their drawbacks. But the original bi-level partitioning approach in Nature+Fable is insufficient as it for realistic applications regards frequently occurring bi-levels as ''impossible'' and fails. This document describes an improved bi-level partitioning algorithm that successfully copes with all possible bi-levels. The improved algorithm uses the original approach side-by-side with a new, complementing approach. By using a new, customized classification method, the improved algorithm switches automatically between the two approaches. This document describes the algorithms, discusses implementation issues, and presents experimental results. The improved version of Nature+Fable was found to be able to handle realistic applications and also to generate less imbalances, similar box count, but more communication as compared to the native, domain-based partitioner in the SAMR framework AMROC.
An improved bi-level algorithm for partitioning dynamic structured grid hierarchies.
Deiterding, Ralf; Steensland, Johan; Ray, Jaideep
2006-02-01
Structured adaptive mesh refinement methods are being widely used for computer simulations of various physical phenomena. Parallel implementations potentially offer realistic simulations of complex three-dimensional applications. But achieving good scalability for large-scale applications is non-trivial. Performance is limited by the partitioner's ability to efficiently use the underlying parallel computer's resources. Designed on sound SAMR principles, Nature+Fable is a hybrid, dedicated SAMR partitioning tool that brings together the advantages of both domain-based and patch-based techniques while avoiding their drawbacks. But the original bi-level partitioning approach in Nature+Fable is insufficient as it for realistic applications regards frequently occurring bi-levels as 'impossible' and fails. This document describes an improved bi-level partitioning algorithm that successfully copes with all possible hi-levels. The improved algorithm uses the original approach side-by-side with a new, complementing approach. By using a new, customized classification method, the improved algorithm switches automatically between the two approaches. This document describes the algorithms, discusses implementation issues, and presents experimental results. The improved version of Nature+Fable was found to be able to handle realistic applications and also to generate less imbalances, similar box count, but more communication as compared to the native, domain-based partitioner in the SAMR framework AMROC.
A parallel algorithm for switch-level timing simulation on a hypercube multiprocessor
NASA Technical Reports Server (NTRS)
Rao, Hariprasad Nannapaneni
1989-01-01
The parallel approach to speeding up simulation is studied, specifically the simulation of digital LSI MOS circuitry on the Intel iPSC/2 hypercube. The simulation algorithm is based on RSIM, an event driven switch-level simulator that incorporates a linear transistor model for simulating digital MOS circuits. Parallel processing techniques based on the concepts of Virtual Time and rollback are utilized so that portions of the circuit may be simulated on separate processors, in parallel for as large an increase in speed as possible. A partitioning algorithm is also developed in order to subdivide the circuit for parallel processing.
A Real-Time Algorithm for the Approximation of Level-Set-Based Curve Evolution
Shi, Yonggang; Karl, William Clem
2010-01-01
In this paper, we present a complete and practical algorithm for the approximation of level-set-based curve evolution suitable for real-time implementation. In particular, we propose a two-cycle algorithm to approximate level-set-based curve evolution without the need of solving partial differential equations (PDEs). Our algorithm is applicable to a broad class of evolution speeds that can be viewed as composed of a data-dependent term and a curve smoothness regularization term. We achieve curve evolution corresponding to such evolution speeds by separating the evolution process into two different cycles: one cycle for the data-dependent term and a second cycle for the smoothness regularization. The smoothing term is derived from a Gaussian filtering process. In both cycles, the evolution is realized through a simple element switching mechanism between two linked lists, that implicitly represents the curve using an integer valued level-set function. By careful construction, all the key evolution steps require only integer operations. A consequence is that we obtain significant computation speedups compared to exact PDE-based approaches while obtaining excellent agreement with these methods for problems of practical engineering interest. In particular, the resulting algorithm is fast enough for use in real-time video processing applications, which we demonstrate through several image segmentation and video tracking experiments. PMID:18390371
An Evolutionary Algorithm with Double-Level Archives for Multiobjective Optimization.
Chen, Ni; Chen, Wei-Neng; Gong, Yue-Jiao; Zhan, Zhi-Hui; Zhang, Jun; Li, Yun; Tan, Yu-Song
2015-09-01
Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problem-level and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed. PMID:25343775
NASA Technical Reports Server (NTRS)
Barker, John L.; Harnden, Joann M. K.; Montgomery, Harry; Anuta, Paul; Kvaran, Geir; Knight, ED; Bryant, Tom; Mckay, AL; Smid, Jon; Knowles, Dan, Jr.
1994-01-01
The EOS Moderate Resolution Imaging Spectrometer (MODIS) is being developed by NASA for flight on the Earth Observing System (EOS) series of satellites, the first of which (EOS-AM-1) is scheduled for launch in 1998. This document describes the algorithms and their theoretical basis for the MODIS Level 1B characterization, calibration, and geolocation algorithms which must produce radiometrically, spectrally, and spatially calibrated data with sufficient accuracy so that Global change research programs can detect minute changes in biogeophysical parameters. The document first describes the geolocation algorithm which determines geodetic latitude, longitude, and elevation of each MODIS pixel and the determination of geometric parameters for each observation (satellite zenith angle, satellite azimuth, range to the satellite, solar zenith angle, and solar azimuth). Next, the utilization of the MODIS onboard calibration sources, which consist of the Spectroradiometric Calibration Assembly (SRCA), Solar Diffuser (SD), Solar Diffuser Stability Monitor (SDSM), and the Blackbody (BB), is treated. Characterization of these sources and integration of measurements into the calibration process is described. Finally, the use of external sources, including the Moon, instrumented sites on the Earth (called vicarious calibration), and unsupervised normalization sites having invariant reflectance and emissive properties is treated. Finally, algorithms for generating utility masks needed for scene-based calibration are discussed. Eight appendices are provided, covering instrument design and additional algorithm details.
A Genetic Algorithm for the Bi-Level Topological Design of Local Area Networks
Camacho-Vallejo, José-Fernando; Mar-Ortiz, Julio; López-Ramos, Francisco; Rodríguez, Ricardo Pedraza
2015-01-01
Local access networks (LAN) are commonly used as communication infrastructures which meet the demand of a set of users in the local environment. Usually these networks consist of several LAN segments connected by bridges. The topological LAN design bi-level problem consists on assigning users to clusters and the union of clusters by bridges in order to obtain a minimum response time network with minimum connection cost. Therefore, the decision of optimally assigning users to clusters will be made by the leader and the follower will make the decision of connecting all the clusters while forming a spanning tree. In this paper, we propose a genetic algorithm for solving the bi-level topological design of a Local Access Network. Our solution method considers the Stackelberg equilibrium to solve the bi-level problem. The Stackelberg-Genetic algorithm procedure deals with the fact that the follower’s problem cannot be optimally solved in a straightforward manner. The computational results obtained from two different sets of instances show that the performance of the developed algorithm is efficient and that it is more suitable for solving the bi-level problem than a previous Nash-Genetic approach. PMID:26102502
Use of the particle swarm optimization algorithm for second order design of levelling networks
NASA Astrophysics Data System (ADS)
Yetkin, Mevlut; Inal, Cevat; Yigit, Cemal Ozer
2009-08-01
The weight problem in geodetic networks can be dealt with as an optimization procedure. This classic problem of geodetic network optimization is also known as second-order design. The basic principles of geodetic network optimization are reviewed. Then the particle swarm optimization (PSO) algorithm is applied to a geodetic levelling network in order to solve the second-order design problem. PSO, which is an iterative-stochastic search algorithm in swarm intelligence, emulates the collective behaviour of bird flocking, fish schooling or bee swarming, to converge probabilistically to the global optimum. Furthermore, it is a powerful method because it is easy to implement and computationally efficient. Second-order design of a geodetic levelling network using PSO yields a practically realizable solution. It is also suitable for non-linear matrix functions that are very often encountered in geodetic network optimization. The fundamentals of the method and a numeric example are given.
An algorithm for solving the system-level problem in multilevel optimization
NASA Technical Reports Server (NTRS)
Balling, R. J.; Sobieszczanski-Sobieski, J.
1994-01-01
A multilevel optimization approach which is applicable to nonhierarchic coupled systems is presented. The approach includes a general treatment of design (or behavior) constraints and coupling constraints at the discipline level through the use of norms. Three different types of norms are examined: the max norm, the Kreisselmeier-Steinhauser (KS) norm, and the 1(sub p) norm. The max norm is recommended. The approach is demonstrated on a class of hub frame structures which simulate multidisciplinary systems. The max norm is shown to produce system-level constraint functions which are non-smooth. A cutting-plane algorithm is presented which adequately deals with the resulting corners in the constraint functions. The algorithm is tested on hub frames with increasing number of members (which simulate disciplines), and the results are summarized.
A heuristic re-mapping algorithm reducing inter-level communication in SAMR applications.
Steensland, Johan; Ray, Jaideep
2003-07-01
This paper aims at decreasing execution time for large-scale structured adaptive mesh refinement (SAMR) applications by proposing a new heuristic re-mapping algorithm and experimentally showing its effectiveness in reducing inter-level communication. Tests were done for five different SAMR applications. The overall goal is to engineer a dynamically adaptive meta-partitioner capable of selecting and configuring the most appropriate partitioning strategy at run-time based on current system and application state. Such a metapartitioner can significantly reduce execution times for general SAMR applications. Computer simulations of physical phenomena are becoming increasingly popular as they constitute an important complement to real-life testing. In many cases, such simulations are based on solving partial differential equations by numerical methods. Adaptive methods are crucial to efficiently utilize computer resources such as memory and CPU. But even with adaption, the simulations are computationally demanding and yield huge data sets. Thus parallelization and the efficient partitioning of data become issues of utmost importance. Adaption causes the workload to change dynamically, calling for dynamic (re-) partitioning to maintain efficient resource utilization. The proposed heuristic algorithm reduced inter-level communication substantially. Since the complexity of the proposed algorithm is low, this decrease comes at a relatively low cost. As a consequence, we draw the conclusion that the proposed re-mapping algorithm would be useful to lower overall execution times for many large SAMR applications. Due to its usefulness and its parameterization, the proposed algorithm would constitute a natural and important component of the meta-partitioner.
A shifting level model algorithm that identifies aberrations in array-CGH data.
Magi, Alberto; Benelli, Matteo; Marseglia, Giuseppina; Nannetti, Genni; Scordo, Maria Rosaria; Torricelli, Francesca
2010-04-01
Array comparative genomic hybridization (aCGH) is a microarray technology that allows one to detect and map genomic alterations. The goal of aCGH analysis is to identify the boundaries of the regions where the number of DNA copies changes (breakpoint identification) and then to label each region as loss, neutral, or gain (calling). In this paper, we introduce a new algorithm, based on the shifting level model (SLM), with the aim of locating regions with different means of the log(2) ratio in genomic profiles obtained from aCGH data. We combine the SLM algorithm with the CGHcall calling procedure and compare their performances with 5 state-of-the-art methods. When dealing with synthetic data, our method outperforms the other 5 algorithms in detecting the change in the number of DNA copies in the most challenging situations. For real aCGH data, SLM is able to locate all the cytogenetically mapped aberrations giving a smaller number of false-positive breakpoints than the compared methods. The application of the SLM algorithm is not limited to aCGH data. Our approach can also be used for the analysis of several emerging experimental strategies such as high-resolution tiling array. PMID:19948744
Weighted least-squares algorithm for phase unwrapping based on confidence level in frequency domain
NASA Astrophysics Data System (ADS)
Wang, Shaohua; Yu, Jie; Yang, Cankun; Jiao, Shuai; Fan, Jun; Wan, Yanyan
2015-12-01
Phase unwrapping is a key step in InSAR (Synthetic Aperture Radar Interferometry) processing, and its result may directly affect the accuracy of DEM (Digital Elevation Model) and ground deformation. However, the decoherence phenomenon such as shadows and layover, in the area of severe land subsidence where the terrain is steep and the slope changes greatly, will cause error transmission in the differential wrapped phase information, leading to inaccurate unwrapping phase. In order to eliminate the effect of the noise and reduce the effect of less sampling which caused by topographical factors, a weighted least-squares method based on confidence level in frequency domain is used in this study. This method considered to express the terrain slope in the interferogram as the partial phase frequency in range and azimuth direction, then integrated them into the confidence level. The parameter was used as the constraints of the nonlinear least squares phase unwrapping algorithm, to smooth the un-requirements unwrapped phase gradient and improve the accuracy of phase unwrapping. Finally, comparing with interferometric data of the Beijing subsidence area obtained from TerraSAR verifies that the algorithm has higher accuracy and stability than the normal weighted least-square phase unwrapping algorithms, and could consider to terrain factors.
NASA Astrophysics Data System (ADS)
Zhao, Tao; Hwang, Feng-Nan; Cai, Xiao-Chuan
2016-07-01
We consider a quintic polynomial eigenvalue problem arising from the finite volume discretization of a quantum dot simulation problem. The problem is solved by the Jacobi-Davidson (JD) algorithm. Our focus is on how to achieve the quadratic convergence of JD in a way that is not only efficient but also scalable when the number of processor cores is large. For this purpose, we develop a projected two-level Schwarz preconditioned JD algorithm that exploits multilevel domain decomposition techniques. The pyramidal quantum dot calculation is carefully studied to illustrate the efficiency of the proposed method. Numerical experiments confirm that the proposed method has a good scalability for problems with hundreds of millions of unknowns on a parallel computer with more than 10,000 processor cores.
ECG signal compression and classification algorithm with quad level vector for ECG holter system.
Kim, Hyejung; Yazicioglu, Refet Firat; Merken, Patrick; Van Hoof, Chris; Yoo, Hoi-Jun
2010-01-01
An ECG signal processing method with quad level vector (QLV) is proposed for the ECG holter system. The ECG processing consists of the compression flow and the classification flow, and the QLV is proposed for both flows to achieve better performance with low-computation complexity. The compression algorithm is performed by using ECG skeleton and the Huffman coding. Unit block size optimization, adaptive threshold adjustment, and 4-bit-wise Huffman coding methods are applied to reduce the processing cost while maintaining the signal quality. The heartbeat segmentation and the R-peak detection methods are employed for the classification algorithm. The performance is evaluated by using the Massachusetts Institute of Technology-Boston's Beth Israel Hospital Arrhythmia Database, and the noise robust test is also performed for the reliability of the algorithm. Its average compression ratio is 16.9:1 with 0.641% percentage root mean square difference value and the encoding rate is 6.4 kbps. The accuracy performance of the R-peak detection is 100% without noise and 95.63% at the worst case with -10-dB SNR noise. The overall processing cost is reduced by 45.3% with the proposed compression techniques. PMID:19775975
A conflict-free, path-level parallelization approach for sequential simulation algorithms
NASA Astrophysics Data System (ADS)
Rasera, Luiz Gustavo; Machado, Péricles Lopes; Costa, João Felipe C. L.
2015-07-01
Pixel-based simulation algorithms are the most widely used geostatistical technique for characterizing the spatial distribution of natural resources. However, sequential simulation does not scale well for stochastic simulation on very large grids, which are now commonly found in many petroleum, mining, and environmental studies. With the availability of multiple-processor computers, there is an opportunity to develop parallelization schemes for these algorithms to increase their performance and efficiency. Here we present a conflict-free, path-level parallelization strategy for sequential simulation. The method consists of partitioning the simulation grid into a set of groups of nodes and delegating all available processors for simulation of multiple groups of nodes concurrently. An automated classification procedure determines which groups are simulated in parallel according to their spatial arrangement in the simulation grid. The major advantage of this approach is that it does not require conflict resolution operations, and thus allows exact reproduction of results. Besides offering a large performance gain when compared to the traditional serial implementation, the method provides efficient use of computational resources and is generic enough to be adapted to several sequential algorithms.
MODIS calibration algorithm improvements developed for Collection 6 Level-1B
NASA Astrophysics Data System (ADS)
Wenny, Brian N.; Sun, Junqiang; Xiong, Xiaoxiong; Wu, Aisheng; Chen, Hongda; Angal, Amit; Choi, Taeyoung; Chen, Na; Madhavan, Sriharsha; Geng, Xu; Kuyper, James; Tan, Liqin
2010-09-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) has been operating on both the Terra and Aqua spacecraft for over 10.5 and 8 years, respectively. Over 40 science products are generated routinely from MODIS Earth images and used extensively by the global science community for a wide variety of land, ocean, and atmosphere applications. Over the mission lifetime, several versions of the MODIS data set have been in use as the calibration and data processing algorithms evolved. Currently Version 5 MODIS data is the baseline Level-1B calibrated science product. The MODIS Characterization Support Team (MCST), with input from the MODIS Science Team, developed and delivered a number of improvements and enhancements to the calibration algorithms, Level-1B processing code and Look-up Tables for the Version 6 Level-1B MODIS data. Version 6 implements a number of changes in the calibration methodology for both the Reflective Solar Bands (RSB) and Thermal Emissive Bands (TEB). This paper describes the improvements introduced in Collection 6 to the RSB and TEB calibration and detector Quality Assurance (QA) handling.
NASA Technical Reports Server (NTRS)
Leutenegger, Scott T.; Horton, Graham
1994-01-01
Recently the Multi-Level algorithm was introduced as a general purpose solver for the solution of steady state Markov chains. In this paper, we consider the performance of the Multi-Level algorithm for solving Nearly Completely Decomposable (NCD) Markov chains, for which special-purpose iteractive aggregation/disaggregation algorithms such as the Koury-McAllister-Stewart (KMS) method have been developed that can exploit the decomposability of the the Markov chain. We present experimental results indicating that the general-purpose Multi-Level algorithm is competitive, and can be significantly faster than the special-purpose KMS algorithm when Gauss-Seidel and Gaussian Elimination are used for solving the individual blocks.
Utilization of PSO algorithm in estimation of water level change of Lake Beysehir
NASA Astrophysics Data System (ADS)
Buyukyildiz, Meral; Tezel, Gulay
2015-12-01
In this study, unlike backpropagation algorithm which gets local best solutions, the usefulness of particle swarm optimization (PSO) algorithm, a population-based optimization technique with a global search feature, inspired by the behavior of bird flocks, in determination of parameters of support vector machines (SVM) and adaptive network-based fuzzy inference system (ANFIS) methods was investigated. For this purpose, the performances of hybrid PSO-ɛ support vector regression (PSO-ɛSVR) and PSO-ANFIS models were studied to estimate water level change of Lake Beysehir in Turkey. The change in water level was also estimated using generalized regression neural network (GRNN) method, an iterative training procedure. Root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R 2) were used to compare the obtained results. Efforts were made to estimate water level change (L) using different input combinations of monthly inflow-lost flow (I), precipitation (P), evaporation (E), and outflow (O). According to the obtained results, the other methods except PSO-ANN generally showed significantly similar performances to each other. PSO-ɛSVR method with the values of minMAE = 0.0052 m, maxMAE = 0.04 m, and medianMAE = 0.0198 m; minRMSE = 0.0070 m, maxRMSE = 0.0518 m, and medianRMSE = 0.0241 m; minR 2 = 0.9169, maxR 2 = 0.9995, medianR 2 = 0.9909 for the I-P-E-O combination in testing period became superior in forecasting water level change of Lake Beysehir than the other methods. PSO-ANN models were the least successful models in all combinations.
NASA Astrophysics Data System (ADS)
White, Ronald P.; Mayne, Howard R.
2000-05-01
An annealing schedule, T(t), is the temperature as function of time whose goal is to bring a system from some initial low-order state to a final high-order state. We use the probability in the lowest energy level as the order parameter, so that an ideally annealed system would have all its population in its ground-state. We consider a model system comprised of discrete energy levels separated by activation barriers. We have carried out annealing calculations on this system for a range of system parameters. In particular, we considered the schedule as a function of the energy level spacing, of the height of the activation barriers, and, in some cases, as a function of degeneracies of the levels. For a given set of physical parameters, and maximum available time, tm, we were able to obtain the optimal schedule by using a genetic algorithm (GA) approach. For the two-level system, analytic solutions are available, and were compared with the GA-optimized results. The agreement was essentially exact. We were able to identify systematic behaviors of the schedules and trends in final probabilities as a function of parameters. We have also carried out Metropolis Monte Carlo (MMC) calculations on simple potential energy functions using the optimal schedules available from the model calculations. Agreement between the model and MMC calculations was excellent.
TES Level 1 Algorithms: Interferogram Processing, Geolocation, Radiometric, and Spectral Calibration
NASA Technical Reports Server (NTRS)
Worden, Helen; Beer, Reinhard; Bowman, Kevin W.; Fisher, Brendan; Luo, Mingzhao; Rider, David; Sarkissian, Edwin; Tremblay, Denis; Zong, Jia
2006-01-01
The Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura satellite measures the infrared radiance emitted by the Earth's surface and atmosphere using Fourier transform spectrometry. The measured interferograms are converted into geolocated, calibrated radiance spectra by the L1 (Level 1) processing, and are the inputs to L2 (Level 2) retrievals of atmospheric parameters, such as vertical profiles of trace gas abundance. We describe the algorithmic components of TES Level 1 processing, giving examples of the intermediate results and diagnostics that are necessary for creating TES L1 products. An assessment of noise-equivalent spectral radiance levels and current systematic errors is provided. As an initial validation of our spectral radiances, TES data are compared to the Atmospheric Infrared Sounder (AIRS) (on EOS Aqua), after accounting for spectral resolution differences by applying the AIRS spectral response function to the TES spectra. For the TES L1 nadir data products currently available, the agreement with AIRS is 1 K or better.
Status of the MODIS Level 1B Algorithms and Calibration Tables
NASA Technical Reports Server (NTRS)
Xiong, X; Salomonson, V V; Kuyper, J; Tan, L; Chiang, K; Sun, J; Barnes, W L
2005-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) makes observations using 36 spectral bands with wavelengths from 0.41 to 14.4 m and nadir spatial resolutions of 0.25km, 0.5km, and 1km. It is currently operating onboard the NASA Earth Observing System (EOS) Terra and Aqua satellites, launched in December 1999 and May 2002, respectively. The MODIS Level 1B (L1B) program converts the sensor's on-orbit responses in digital numbers to radiometrically calibrated and geo-located data products for the duration of each mission. Its primary data products are top of the atmosphere (TOA) reflectance factors for the sensor's reflective solar bands (RSB) and TOA spectral radiances for the thermal emissive bands (TEB). The L1B algorithms perform the TEB calibration on a scan-by-scan basis using the sensor's response to the on-board blackbody (BB) and other parameters which are stored in Lookup Tables (LUTs). The RSB calibration coefficients are processed offline and regularly updated through LUTs. In this paper we provide a brief description of the MODIS L1B calibration algorithms and associated LUTs with emphasis on their recent improvements and updates developed for the MODIS collection 5 processing. We will also discuss sensor on-orbit calibration and performance issues that are critical to maintaining L1B data product quality, such as changes in the sensor's response versus scan-angle.
Terra and Aqua moderate-resolution imaging spectroradiometer collection 6 level 1B algorithm
NASA Astrophysics Data System (ADS)
Toller, Gary; Xiong, Xiaoxiong; Sun, Junqiang; Wenny, Brian N.; Geng, Xu; Kuyper, James; Angal, Amit; Chen, Hongda; Madhavan, Sriharsha; Wu, Aisheng
2013-01-01
The moderate-resolution imaging spectroradiometer (MODIS) was launched on the Terra spacecraft on Dec.18, 1999 and on Aquaon May 4, 2002. The data acquired by these instruments have contributed to the long-term climate data record for more than a decade and represent a key component of NASA's Earth observing system. Each MODIS instrument observes nearly the whole Earth each day, enabling the scientific characterization of the land, ocean, and atmosphere. The MODIS Level 1B (L1B) algorithms input uncalibrated geo-located observations and convert instrument response into calibrated reflectance and radiance, which are used to generate science data products. The instrument characterization needed to run the L1B code is currently implemented using time-dependent lookup tables. The MODIS characterization support team, working closely with the MODIS Science Team, has improved the product quality with each data reprocessing. We provide an overview of the new L1B algorithm release, designated collection 6. Recent improvements made as a consequence of on-orbit calibration, on-orbit analyses, and operational considerations are described. Instrument performance and the expected impact of L1B changes on the collection 6 L1B products are discussed.
Optimal Control of Population Transfer in Three-Level Λ System with Genetic Algorithms
NASA Astrophysics Data System (ADS)
Zhang, Xiang-Yun; Sun, Zhen-Rong; Chen, Guo-Liang; Wang, Zu-Geng; Xü, Zhi-Zhan; Li, Ru-Xin
2004-10-01
Population transfer in a three-level Lambda system is simulated numerically and optimized. Almost complete population transfer from |1rangle to |3rangle is achieved by a genetic algorithm while the population in state |2rangle reached minimum over the entire evolution at the same time. The result shows that the optimal pulse sequence is the well-known stimulated Raman adiabatic passage (STIRAP) scheme. The detuning of pump pulse and Stokes pulse Deltap and Deltas with the opposite sign and the chirps chip and chis with the same sign are in favour of the complete and robust population transfer for few-cycle laser pulse. Rabi frequencies Omegap and Omegas have insensitive effects on the complete population transfer during a large scope of their ratio when they are large enough.
Parallel of low-level computer vision algorithms on a multi-DSP system
NASA Astrophysics Data System (ADS)
Liu, Huaida; Jia, Pingui; Li, Lijian; Yang, Yiping
2011-06-01
Parallel hardware becomes a commonly used approach to satisfy the intensive computation demands of computer vision systems. A multiprocessor architecture based on hypercube interconnecting digital signal processors (DSPs) is described to exploit the temporal and spatial parallelism. This paper presents a parallel implementation of low level vision algorithms designed on multi-DSP system. The convolution operation has been parallelized by using redundant boundary partitioning. Performance of the parallel convolution operation is investigated by varying the image size, mask size and the number of processors. Experimental results show that the speedup is close to the ideal value. However, it can be found that the loading imbalance of processor can significantly affect the computation time and speedup of the multi- DSP system.
An overview of the CATS level 1 processing algorithms and data products
NASA Astrophysics Data System (ADS)
Yorks, J. E.; McGill, M. J.; Palm, S. P.; Hlavka, D. L.; Selmer, P. A.; Nowottnick, E. P.; Vaughan, M. A.; Rodier, S. D.; Hart, W. D.
2016-05-01
The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar that was launched on 10 January 2015 to the International Space Station (ISS). CATS provides both space-based technology demonstrations for future Earth Science missions and operational science measurements. This paper outlines the CATS Level 1 data products and processing algorithms. Initial results and validation data demonstrate the ability to accurately detect optically thin atmospheric layers with 1064 nm nighttime backscatter as low as 5.0E-5 km-1 sr-1. This sensitivity, along with the orbital characteristics of the ISS, enables the use of CATS data for cloud and aerosol climate studies. The near-real-time downlinking and processing of CATS data are unprecedented capabilities and provide data that have applications such as forecasting of volcanic plume transport for aviation safety and aerosol vertical structure that will improve air quality health alerts globally.
Yu, Zhenhua; Fu, Xiao; Cai, Yuanli; Vuran, Mehmet C
2011-01-01
A reliable energy-efficient multi-level routing algorithm in wireless sensor networks is proposed. The proposed algorithm considers the residual energy, number of the neighbors and centrality of each node for cluster formation, which is critical for well-balanced energy dissipation of the network. In the algorithm, a knowledge-based inference approach using fuzzy Petri nets is employed to select cluster heads, and then the fuzzy reasoning mechanism is used to compute the degree of reliability in the route sprouting tree from cluster heads to the base station. Finally, the most reliable route among the cluster heads can be constructed. The algorithm not only balances the energy load of each node but also provides global reliability for the whole network. Simulation results demonstrate that the proposed algorithm effectively prolongs the network lifetime and reduces the energy consumption. PMID:22163802
Yu, Zhenhua; Fu, Xiao; Cai, Yuanli; Vuran, Mehmet C.
2011-01-01
A reliable energy-efficient multi-level routing algorithm in wireless sensor networks is proposed. The proposed algorithm considers the residual energy, number of the neighbors and centrality of each node for cluster formation, which is critical for well-balanced energy dissipation of the network. In the algorithm, a knowledge-based inference approach using fuzzy Petri nets is employed to select cluster heads, and then the fuzzy reasoning mechanism is used to compute the degree of reliability in the route sprouting tree from cluster heads to the base station. Finally, the most reliable route among the cluster heads can be constructed. The algorithm not only balances the energy load of each node but also provides global reliability for the whole network. Simulation results demonstrate that the proposed algorithm effectively prolongs the network lifetime and reduces the energy consumption. PMID:22163802
SMOS/SMAP Synergy for SMAP Level 2 Soil Moisture Algorithm Evaluation
NASA Technical Reports Server (NTRS)
Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann
2011-01-01
ancillary data) were used to correct for surface temperature effects and to derive microwave emissivity. ECMWF data were also used for precipitation forecasts, presence of snow, and frozen ground. Vegetation options are described below. One year of soil moisture observations from a set of four watersheds in the U.S. were used to evaluate four different retrieval methodologies: (1) SMOS soil moisture estimates (version 400), (2) SeA soil moisture estimates using the SMOS/SMAP data with SMOS estimated vegetation optical depth, which is part of the SMOS level 2 product, (3) SeA soil moisture estimates using the SMOS/SMAP data and the MODIS-based vegetation climatology data, and (4) SeA soil moisture estimates using the SMOS/SMAP data and actual MODIS observations. The use of SMOS real-world global microwave observations and the analyses described here will help in the development and selection of different land surface parameters and ancillary observations needed for the SMAP soil moisture algorithms. These investigations will greatly improve the quality and reliability of this SMAP product at launch.
Testing a real-time algorithm for the detection of tsunami signals on sea-level records
NASA Astrophysics Data System (ADS)
Bressan, L.; Tinti, S.; Titov, V.
2009-04-01
One of the important tasks for the implementation of a tsunami warning system in the Mediterranean Sea is to develop a real-time detection algorithm. Unlike the Mediterranean Sea situation, tsunamis happen quite often in the Pacific Ocean and they have been historically recorded with a proper sampling rate. A large database of tsunami records is therefore available for the Pacific. The Tsunami Research Team of the University of Bologna is developing a real-time detection algorithm on synthetic records. Thanks to the collaboration with NCTR of PMEL/NOAA (NOAA Center for Tsunami Research of Pacific and Marine Environmental Laboratory/National Oceanic and Atmospheric Administration), it has been possible to test this algorithm on specific events recorded by Adak Island tide-gage, in Alaska, and by DART buoys, located offshore Alaska. This work has been undertaken in the framework of the Italian national project DPC-INGV S3. The detection algorithm has the goal to discriminate the first tsunami wave from the previous background signal. Shortly, the algorithm is built on a parameter based on the standard deviation of the signal calculated on a short time window and on its comparison with its computed prediction through a control function. The control function indicates a tsunami detection whenever it exceeds a certain threshold. The algorithm was calibrated and tested both on coastal tide-gages and on offshore buoys that measure sea-level changes. Its calibration presents different issues if the algorithm has to be implemented on an offshore buoy or on a coastal tide-gage. In particular, the algorithm parameters are site-specific for coastal sea-level signals, because sea-level changes are here mainly characterized by oscillations induced by the coastal topography. Adak Island background signal was analyzed and the algorithm parameters were set: It was found that there is a persistent presence of seiches with periods in the tsunami range, to which the algorithm is also
CT liver volumetry using geodesic active contour segmentation with a level-set algorithm
NASA Astrophysics Data System (ADS)
Suzuki, Kenji; Epstein, Mark L.; Kohlbrenner, Ryan; Obajuluwa, Ademola; Xu, Jianwu; Hori, Masatoshi; Baron, Richard
2010-03-01
Automatic liver segmentation on CT images is challenging because the liver often abuts other organs of a similar density. Our purpose was to develop an accurate automated liver segmentation scheme for measuring liver volumes. We developed an automated volumetry scheme for the liver in CT based on a 5 step schema. First, an anisotropic smoothing filter was applied to portal-venous phase CT images to remove noise while preserving the liver structure, followed by an edge enhancer to enhance the liver boundary. By using the boundary-enhanced image as a speed function, a fastmarching algorithm generated an initial surface that roughly estimated the liver shape. A geodesic-active-contour segmentation algorithm coupled with level-set contour-evolution refined the initial surface so as to more precisely fit the liver boundary. The liver volume was calculated based on the refined liver surface. Hepatic CT scans of eighteen prospective liver donors were obtained under a liver transplant protocol with a multi-detector CT system. Automated liver volumes obtained were compared with those manually traced by a radiologist, used as "gold standard." The mean liver volume obtained with our scheme was 1,520 cc, whereas the mean manual volume was 1,486 cc, with the mean absolute difference of 104 cc (7.0%). CT liver volumetrics based on an automated scheme agreed excellently with "goldstandard" manual volumetrics (intra-class correlation coefficient was 0.95) with no statistically significant difference (p(F<=f)=0.32), and required substantially less completion time. Our automated scheme provides an efficient and accurate way of measuring liver volumes.
Level 3 trigger algorithm and Hardware Platform for the HADES experiment
NASA Astrophysics Data System (ADS)
Kirschner, Daniel Georg; Agakishiev, Geydar; Liu, Ming; Perez, Tiago; Kühn, Wolfgang; Pechenov, Vladimir; Spataro, Stefano
2009-01-01
A next generation real time trigger method to improve the enrichment of lepton events in the High Acceptance DiElectron Spectrometer (HADES) trigger system has been developed. In addition, a flexible Hardware Platform (Gigabit Ethernet-Multi-Node, GE-MN) was developed to implement and test the trigger method. The trigger method correlates the ring information of the HADES Ring Imaging Cherenkov (RICH) detector with the fired wires (drift cells) of the HADES Mini Drift Chamber (MDC) detector. It is demonstrated that this Level 3 trigger method can enhance the number of events which contain leptons by a factor of up to 50 at efficiencies above 80%. The performance of the correlation method in terms of the events analyzed per second has been studied with the GE-MN prototype in a lab test setup by streaming previously recorded experiment data to the module. This paper is a compilation from Kirschner [Level 3 trigger algorithm and Hardware Platform for the HADES experiment, Ph.D. Thesis, II. Physikalisches Institut der Justus-Liebig-Universität Gießen, urn:nbn:de:hebis:26-opus-50784, October 2007 [1
Intelligence System for Diagnosis Level of Coronary Heart Disease with K-Star Algorithm
Kusnanto, Hari; Herianto, Herianto
2016-01-01
Objectives Coronary heart disease is the leading cause of death worldwide, and it is important to diagnose the level of the disease. Intelligence systems for diagnosis proved can be used to support diagnosis of the disease. Unfortunately, most of the data available between the level/type of coronary heart disease is unbalanced. As a result system performance is low. Methods This paper proposes an intelligence systems for the diagnosis of the level of coronary heart disease taking into account the problem of data imbalance. The first stage of this research was preprocessing, which included resampled non-stratified random sampling (R), the synthetic minority over-sampling technique (SMOTE), clean data out of range attribute (COR), and remove duplicate (RD). The second step was the sharing of data for training and testing using a k-fold cross-validation model and training multiclass classification by the K-star algorithm. The third step was performance evaluation. The proposed system was evaluated using the performance parameters of sensitivity, specificity, positive prediction value (PPV), negative prediction value (NPV), area under the curve (AUC) and F-measure. Results The results showed that the proposed system provides an average performance with sensitivity of 80.1%, specificity of 95%, PPV of 80.1%, NPV of 95%, AUC of 87.5%, and F-measure of 80.1%. Performance of the system without consideration of data imbalance provide showed sensitivity of 53.1%, specificity of 88,3%, PPV of 53.1%, NPV of 88.3%, AUC of 70.7%, and F-measure of 53.1%. Conclusions Based on these results it can be concluded that the proposed system is able to deliver good performance in the category of classification. PMID:26893948
NASA Astrophysics Data System (ADS)
Xu, Shaoping; Hu, Lingyan; Yang, Xiaohui
2016-01-01
The performance of conventional denoising algorithms is usually controlled by one or several parameters whose optimal settings depend on the contents of the processed images and the characteristics of the noises. Among these parameters, noise level is a fundamental parameter that is always assumed to be known by most of the existing denoising algorithms (so-called nonblind denoising algorithms), which largely limits the applicability of these nonblind denoising algorithms in many applications. Moreover, these nonblind algorithms do not always achieve the best denoised images in visual quality even when fed with the actual noise level parameter. To address these shortcomings, in this paper we propose a new quality-aware features-based noise level estimator (NLE), which consists of quality-aware features extraction and optimal noise level parameter prediction. First, considering that image local contrast features convey important structural information that is closely related to image perceptual quality, we utilize the marginal statistics of two local contrast operators, i.e., the gradient magnitude and the Laplacian of Gaussian (LOG), to extract quality-aware features. The proposed quality-aware features have very low computational complexity, making them well suited for time-constrained applications. Then we propose a learning-based framework where the noise level parameter is estimated based on the quality-aware features. Based on the proposed NLE, we develop a blind block matching and three-dimensional filtering (BBM3D) denoising algorithm which is capable of effectively removing additive white Gaussian noise, even coupled with impulse noise. The noise level parameter of the BBM3D algorithm is automatically tuned according to the quality-aware features, guaranteeing the best performance. As such, the classical block matching and three-dimensional algorithm can be transformed into a blind one in an unsupervised manner. Experimental results demonstrate that the
A level 2 wind speed retrieval algorithm for the CYGNSS mission
NASA Astrophysics Data System (ADS)
Clarizia, Maria Paola; Ruf, Christopher; O'Brien, Andrew; Gleason, Scott
2014-05-01
The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) is a spaceborne mission focused on tropical cyclone (TC) inner core process studies. CYGNSS consists of a constellation of 8 microsatellites, which will measure ocean surface wind speed in all precipitating conditions, including those experienced in the TC eyewall, and with sufficient frequency to resolve genesis and rapid intensification. It does so through the use of an innovative remote sensing technique, known as Global Navigation Satellite System-Reflectometry, or GNSS-R. GNSS-R uses signals of opportunity from navigation constellations (e.g. GPS, GLONASS, Galileo), scattered by the surface of the ocean, to retrieve the surface wind speed. The dense space-time sampling capabilities, the ability of L-band signals to penetrate well through rain, and the possibility of simple, low-cost/low-power GNSS receivers, make GNSS-R ideal for the CYGNSS goals. Here we present an overview of a Level 2 (L2) wind speed retrieval algorithm, which would be particularly suitable for CYGNSS, and could be used to estimate winds from GNSS-R in general. The approach makes use of two different observables computed from 1-second Level 2a (L2a) delay-Doppler Maps (DDMs) of radar cross section. The first observable is called Delay-Doppler Map Average (DDMA), and it's the averaged radar cross section over a delay-Doppler window around the DDM peak (i.e. the specular reflection point coordinate in delay and Doppler). The second is called the Leading Edge Slope (LES), and it's the leading edge of the Integrated Delay Waveform (IDW), obtained by integrating the DDM along the Doppler dimension. The observables are calculated over a limited range of delays and Doppler frequencies, to comply with baseline spatial resolution requirements for the retrieved winds, which in the case of CYGNSS is 25 km x 25 km. If the observable from the 1-second DDM corresponds to a resolution higher than the specified one, time-averaging between
NASA Astrophysics Data System (ADS)
Smarda, M.; Alexopoulou, E.; Mazioti, A.; Kordolaimi, S.; Ploussi, A.; Priftis, K.; Efstathopoulos, E.
2015-09-01
Purpose of the study is to determine the appropriate iterative reconstruction (IR) algorithm level that combines image quality and diagnostic confidence, for pediatric patients undergoing high-resolution computed tomography (HRCT). During the last 2 years, a total number of 20 children up to 10 years old with a clinical presentation of chronic bronchitis underwent HRCT in our department's 64-detector row CT scanner using the iDose IR algorithm, with almost similar image settings (80kVp, 40-50 mAs). CT images were reconstructed with all iDose levels (level 1 to 7) as well as with filtered-back projection (FBP) algorithm. Subjective image quality was evaluated by 2 experienced radiologists in terms of image noise, sharpness, contrast and diagnostic acceptability using a 5-point scale (1=excellent image, 5=non-acceptable image). Artifacts existance was also pointed out. All mean scores from both radiologists corresponded to satisfactory image quality (score ≤3), even with the FBP algorithm use. Almost excellent (score <2) overall image quality was achieved with iDose levels 5 to 7, but oversmoothing artifacts appearing with iDose levels 6 and 7 affected the diagnostic confidence. In conclusion, the use of iDose level 5 enables almost excellent image quality without considerable artifacts affecting the diagnosis. Further evaluation is needed in order to draw more precise conclusions.
NASA Astrophysics Data System (ADS)
von Fischer, Joseph; Salo, Jessica; Griebenow, Claire; Bischak, Linde; Cooley, Daniel; Ham, Jay; Schumacher, Russ
2013-04-01
Methane (CH4) is an important greenhouse gas that has 70x greater heat forcing per molecule than CO2 over its ~10 year atmospheric residence time. Given this short residence time, there has been a surge of interest in mitigating anthropogenic CH4 sources because they will have a more immediate effect on warming rates. Recent observations of CH4 concentrations around the city of Boston reveal that natural gas distribution systems can have a very large number of leaks. However, there are a number of conceptual and practical challenges associated with interpretation of CH4 data gathered by car at the street level. In this presentation, we detail our efforts to develop an "algorithm" or set of standard practices for interpreting these patterns based on our own findings. At the most basic, we have evaluated approaches for vehicle driving patterns and management of the raw data. We also identify techniques for evaluating data quality and discerning when elevated CH4 may be due to other vehicles (e.g., CNG-powered city buses). We then compare methods for identifying "peaks" in CH4 concentration, and we discuss several approaches for relating concentration, space and wind data to emission rates. Finally, we provide some considerations for how the data from individual peaks might be aggregated to larger spatial scales.
Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report.
Thompson, Aidan P.; Schultz, Peter A.; Crozier, Paul; Moore, Stan Gerald; Swiler, Laura Painton; Stephens, John Adam; Trott, Christian Robert; Foiles, Stephen M.; Tucker, Garritt J.
2014-09-01
This report summarizes the result of LDRD project 12-0395, titled %22Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations.%22 During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel
NASA Astrophysics Data System (ADS)
Innocenti, Maria Elena; Beck, Arnaud; Markidis, Stefano; Lapenta, Giovanni
2013-10-01
Particle in Cell (PIC) simulations of plasmas are not bound anymore by the stability constraints of explicit algorithms. Semi implicit and fully implicit methods allow to use larger grid spacings and time steps. Adaptive Mesh Refinement (AMR) techniques permit to locally change the simulation resolution. The code proposed in Innocenti et al., 2013 and Beck et al., 2013 is however the first to combine the advantages of both. The use of the Implicit Moment Method allows to taylor the resolution used in each level to the physical scales of interest and to use high Refinement Factors (RF) between the levels. The Multi Level Multi Domain (MLMD) structure, where all levels are simulated as complete domains, conjugates algorithmic and practical advantages. The different levels evolve according to the local dynamics and achieve optimal level interlocking. Also, the capabilities of the Object Oriented programming model are fully exploited. The MLMD algorithm is demonstrated with magnetic reconnection and collisionless shocks simulations with very high RFs between the levels. Notable computational gains are achieved with respect to simulations performed on the entire domain with the higher resolution. Beck A. et al. (2013). submitted. Innocenti M. E. et al. (2013). JCP, 238(0):115-140.
Initial condition for efficient mapping of level set algorithms on many-core architectures
NASA Astrophysics Data System (ADS)
Tornai, Gábor János; Cserey, György
2014-12-01
In this paper, we investigated the effect of adding more small curves to the initial condition which determines the required number of iterations of a fast level set (LS) evolution. As a result, we discovered two new theorems and developed a proof on the worst case of the required number of iterations. Furthermore, we found that these kinds of initial conditions fit well to many-core architectures. To show this, we have included two case studies which are presented on different platforms. One runs on a graphical processing unit (GPU) and the other is executed on a cellular nonlinear network universal machine (CNN-UM). With the new initial conditions, the steady-state solutions of the LS are reached in less than eight iterations depending on the granularity of the initial condition. These dense iterations can be calculated very quickly on many-core platforms according to the two case studies. In the case of the proposed dense initial condition on GPU, there is a significant speedup compared to the sparse initial condition in all cases since our dense initial condition together with the algorithm utilizes the properties of the underlying architecture. Therefore, greater performance gain can be achieved (up to 18 times speedup compared to the sparse initial condition on GPU). Additionally, we have validated our concept against numerically approximated LS evolution of standard flows (mean curvature, Chan-Vese, geodesic active regions). The dice indexes between the fast LS evolutions and the evolutions of the numerically approximated partial differential equations are in the range of 0.99±0.003.
Bieberle, M.; Hampel, U.
2015-01-01
Tomographic image reconstruction is based on recovering an object distribution from its projections, which have been acquired from all angular views around the object. If the angular range is limited to less than 180° of parallel projections, typical reconstruction artefacts arise when using standard algorithms. To compensate for this, specialized algorithms using a priori information about the object need to be applied. The application behind this work is ultrafast limited-angle X-ray computed tomography of two-phase flows. Here, only a binary distribution of the two phases needs to be reconstructed, which reduces the complexity of the inverse problem. To solve it, a new reconstruction algorithm (LSR) based on the level-set method is proposed. It includes one force function term accounting for matching the projection data and one incorporating a curvature-dependent smoothing of the phase boundary. The algorithm has been validated using simulated as well as measured projections of known structures, and its performance has been compared to the algebraic reconstruction technique and a binary derivative of it. The validation as well as the application of the level-set reconstruction on a dynamic two-phase flow demonstrated its applicability and its advantages over other reconstruction algorithms. PMID:25939623
Bieberle, M; Hampel, U
2015-06-13
Tomographic image reconstruction is based on recovering an object distribution from its projections, which have been acquired from all angular views around the object. If the angular range is limited to less than 180° of parallel projections, typical reconstruction artefacts arise when using standard algorithms. To compensate for this, specialized algorithms using a priori information about the object need to be applied. The application behind this work is ultrafast limited-angle X-ray computed tomography of two-phase flows. Here, only a binary distribution of the two phases needs to be reconstructed, which reduces the complexity of the inverse problem. To solve it, a new reconstruction algorithm (LSR) based on the level-set method is proposed. It includes one force function term accounting for matching the projection data and one incorporating a curvature-dependent smoothing of the phase boundary. The algorithm has been validated using simulated as well as measured projections of known structures, and its performance has been compared to the algebraic reconstruction technique and a binary derivative of it. The validation as well as the application of the level-set reconstruction on a dynamic two-phase flow demonstrated its applicability and its advantages over other reconstruction algorithms. PMID:25939623
Improving Limit Surface Search Algorithms in RAVEN Using Acceleration Schemes: Level II Milestone
Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego; Cogliati, Joshua Joseph; Sen, Ramazan Sonat; Smith, Curtis Lee
2015-07-01
The RAVEN code is becoming a comprehensive tool to perform Probabilistic Risk Assessment (PRA); Uncertainty Quantification (UQ) and Propagation; and Verification and Validation (V&V). The RAVEN code is being developed to support the Risk-Informed Safety Margin Characterization (RISMC) pathway by developing an advanced set of methodologies and algorithms for use in advanced risk analysis. The RISMC approach uses system simulator codes applied to stochastic analysis tools. The fundamental idea behind this coupling approach to perturb (by employing sampling strategies) timing and sequencing of events, internal parameters of the system codes (i.e., uncertain parameters of the physics model) and initial conditions to estimate values ranges and associated probabilities of figures of merit of interest for engineering and safety (e.g. core damage probability, etc.). This approach applied to complex systems such as nuclear power plants requires performing a series of computationally expensive simulation runs. The large computational burden is caused by the large set of (uncertain) parameters characterizing those systems. Consequently, exploring the uncertain/parametric domain, with a good level of confidence, is generally not affordable, considering the limited computational resources that are currently available. In addition, the recent tendency to develop newer tools, characterized by higher accuracy and larger computational resources (if compared with the presently used legacy codes, that have been developed decades ago), has made this issue even more compelling. In order to overcome to these limitations, the strategy for the exploration of the uncertain/parametric space needs to use at best the computational resources focusing the computational effort in those regions of the uncertain/parametric space that are “interesting” (e.g., risk-significant regions of the input space) with respect the targeted Figures Of Merit (FOM): for example, the failure of the system
NASA Astrophysics Data System (ADS)
You, Seung-Han; Cho, Young Man; Hahn, Jin-Oh
2013-04-01
This study presents a component-level failure detection and identification (FDI) algorithm for a cascade mechanical system subsuming a plant driven by an actuator unit. The novelty of the FDI algorithm presented in this study is that it is able to discriminate failure occurring in the actuator unit, the sensor measuring the output of the actuator unit, and the plant driven by the actuator unit. The proposed FDI algorithm exploits the measurement of the actuator unit output together with its estimates generated by open-loop (OL) and closed-loop (CL) estimators to enable FDI at the component's level. In this study, the OL estimator is designed based on the system identification of the actuator unit. The CL estimator, which is guaranteed to be stable against variations in the plant, is synthesized based on the dynamics of the entire cascade system. The viability of the proposed algorithm is demonstrated using a hardware-in-the-loop simulation (HILS), which shows that it can detect and identify target failures reliably in the presence of plant uncertainties.
ERIC Educational Resources Information Center
Laakso, Mikko-Jussi; Myller, Niko; Korhonen, Ari
2009-01-01
In this paper, two emerging learning and teaching methods have been studied: collaboration in concert with algorithm visualization. When visualizations have been employed in collaborative learning, collaboration introduces new challenges for the visualization tools. In addition, new theories are needed to guide the development and research of the…
NASA Astrophysics Data System (ADS)
Parasyris, Antonios E.; Spanoudaki, Katerina; Kampanis, Nikolaos A.
2016-04-01
Groundwater level monitoring networks provide essential information for water resources management, especially in areas with significant groundwater exploitation for agricultural and domestic use. Given the high maintenance costs of these networks, development of tools, which can be used by regulators for efficient network design is essential. In this work, a monitoring network optimisation tool is presented. The network optimisation tool couples geostatistical modelling based on the Spartan family variogram with a genetic algorithm method and is applied to Mires basin in Crete, Greece, an area of high socioeconomic and agricultural interest, which suffers from groundwater overexploitation leading to a dramatic decrease of groundwater levels. The purpose of the optimisation tool is to determine which wells to exclude from the monitoring network because they add little or no beneficial information to groundwater level mapping of the area. Unlike previous relevant investigations, the network optimisation tool presented here uses Ordinary Kriging with the recently-established non-differentiable Spartan variogram for groundwater level mapping, which, based on a previous geostatistical study in the area leads to optimal groundwater level mapping. Seventy boreholes operate in the area for groundwater abstraction and water level monitoring. The Spartan variogram gives overall the most accurate groundwater level estimates followed closely by the power-law model. The geostatistical model is coupled to an integer genetic algorithm method programmed in MATLAB 2015a. The algorithm is used to find the set of wells whose removal leads to the minimum error between the original water level mapping using all the available wells in the network and the groundwater level mapping using the reduced well network (error is defined as the 2-norm of the difference between the original mapping matrix with 70 wells and the mapping matrix of the reduced well network). The solution to the
Sentinel-2 Level 2A Prototype Processor: Architecture, Algorithms And First Results
NASA Astrophysics Data System (ADS)
Muller-Wilm, Uwe; Louis, Jerome; Richter, Rudolf; Gascon, Ferran; Niezette, Marc
2013-12-01
Sen2Core is a prototype processor for Sentinel-2 Level 2A product processing and formatting. The processor is developed for and with ESA and performs the tasks of Atmospheric Correction and Scene Classification of Level 1C input data. Level 2A outputs are: Bottom-Of- Atmosphere (BOA) corrected reflectance images, Aerosol Optical Thickness-, Water Vapour-, Scene Classification maps and Quality indicators, including cloud and snow probabilities. The Level 2A Product Formatting performed by the processor follows the specification of the Level 1C User Product.
Lo, Sheng-fu L.; Otake, Yoshito; Puvanesarajah, Varun; Wang, Adam S.; Uneri, Ali; De Silva, Tharindu; Vogt, Sebastian; Kleinszig, Gerhard; Elder, Benjamin D; Goodwin, C. Rory; Kosztowski, Thomas A.; Liauw, Jason A.; Groves, Mari; Bydon, Ali; Sciubba, Daniel M.; Witham, Timothy F.; Wolinsky, Jean-Paul; Aygun, Nafi; Gokaslan, Ziya L.; Siewerdsen, Jeffrey H.
2015-01-01
Study Design A 3D-2D image registration algorithm, “LevelCheck,” was used to automatically label vertebrae in intraoperative mobile radiographs obtained during spine surgery. Accuracy, computation time, and potential failure modes were evaluated in a retrospective study of 20 patients. Objective To measurethe performance of the LevelCheck algorithm using clinical images acquired during spine surgery. Summary of Background Data In spine surgery, the potential for wrong level surgery is significant due to the difficulty of localizing target vertebrae based solely on visual impression, palpation, and fluoroscopy. To remedy this difficulty and reduce the risk of wrong-level surgery, our team introduced a program (dubbed LevelCheck) to automatically localize target vertebrae in mobile radiographs using robust 3D-2D image registration to preoperative CT. Methods Twenty consecutive patients undergoing thoracolumbar spine surgery, for whom both a preoperative CT scan and an intraoperative mobile radiograph were available, were retrospectively analyzed. A board-certified neuroradiologist determined the “true” vertebra levels in each radiograph. Registration of the preoperative CT to the intraoperative radiographwere calculated via LevelCheck, and projection distance errors were analyzed. Five hundred random initializations were performed for eachpatient, andalgorithm settings (viz., the number of robust multi-starts, ranging 50 to 200) were varied to evaluate the tradeoff between registration error and computation time. Failure mode analysis was performed by individually analyzing unsuccessful registrations (>5 mm distance error) observed with 50 multi-starts. Results At 200 robust multi-starts (computation time of ∼26 seconds), the registration accuracy was 100% across all 10,000 trials. As the number of multi-starts (and computation time) decreased, the registration remained fairly robust, down to 99.3% registration accuracy at 50 multi-starts (computation time
Improvements in dark water, low light-level AOD retrievals in MISR operational algorithm
NASA Astrophysics Data System (ADS)
Witek, M. L.; Diner, D. J.; Garay, M. J.; Xu, F.
2015-12-01
Satellite remote sensing of aerosols is taking bold steps towards higher spatial resolutions, as evidenced by the newly released MODIS 3 km product and the soon to be released MISR 4.4 km product. Finer horizontal resolution allows for a better aerosol characterization in proximity to clouds—which is important for studying indirect aerosol effects—but also poses additional challenges due to various cloud artifact effects. It is therefore imperative to refine satellite algorithms to correctly interpret aerosol behavior in the proximity of clouds. For instance, MISR aerosol optical depth (AOD) retrievals frequently overestimate AODs in pristine oceanic areas, in particular close to Antarctica, as evidenced by comparison with Maritime Aerosol Network (MAN) observations. We trace the origin of this overestimation to stray light, or veiling light, being scattered more or less uniformly over the camera's field of view and reducing the contrast of the primary image. We found that the MISR-MODIS radiance difference in dark areas correlates with average scene brightness within the whole MISR camera field of view. A simple, single parameter model is proposed to effect the corrections. Collocated MISR/MODIS pixels are used to fit the parameter in the MISR nadir camera. For the off-nadir cameras two alternative approaches are employed that are based on MISR radiances and radiative transfer model calculations. These two methods are prone to higher uncertainties, but suggest somewhat increasing correction values for the longer focal length cameras. Finally, the empirical corrections applied in the operational MISR retrieval algorithm substantially decrease AODs in analyzed cases, and lead to closer agreement with MAN and MODIS, proving the efficacy of the developed procedure.
On-line algorithm for ground-level ozone prediction with a mobile station
NASA Astrophysics Data System (ADS)
Kocijan, Juš; Gradišar, Dejan; Božnar, Marija Zlata; Grašič, Boštjan; Mlakar, Primož
2016-04-01
It is important to be able to predict high concentrations of tropospheric ozone and to inform the population about any violations of air-quality standards, as defined by international regulations. Although first-principle models that cover large geographical regions and different atmospheric layers are improving constantly, they typically still only cover geographical regions with a relatively low resolution. Such model predictions can be problematic for the micro-locations of a complex terrain, i.e., a terrain with a large geographical diversity or urban terrain. For such micro-locations, statistical models can be utilised. This paper presents a modelling and prediction algorithm that can be used in, or in accordance with, a mobile air-quality measurement station. Such a mobile station would enable the set-up of a statistical model and a relatively rapid access to the model's predictions for a specific geographical micro-location without a large quantity of historical of measurements. Uncertainty information about the model's predictions is also usually required. In addition, such a model can adapt to long-term changes, such as climate changes. In the paper we propose Gaussian-process models for the described modelling and prediction. In particular, we selected evolving Gaussian-process models that update on-line with the incoming measurement data. The proposed algorithm for the mobile air-quality measurement and the forecasting station is evaluated on measurements from five locations in Slovenia with different topographical and geographical properties. The obtained evaluation results confirm the feasibility of the concept.
Umarova, Zhanat; Botayeva, Saule; Yegenova, Aliya; Usenova, Aisaule
2015-05-15
In the given article, the main thermodynamic aspects of the issue of modeling diffusion transfer in molecular sieves have been formulated. Dissipation function is used as a basic notion. The differential equation, connecting volume flow with the change of the concentration of catchable component has been derived. As a result, the expression for changing the concentration of the catchable component and the coefficient of membrane detecting has been received. As well, the system approach to describing the process of gases separation in ultra porous membranes has been realized and micro and meso-levels of mathematical modeling have been distinguished. The non-ideality of the shared system is primarily taken into consideration at the micro-level and the departure from the diffusion law of Fick has been taken into account. The calculation method of selectivity considering fractal structure of membranes has been developed at the meso level. The calculation algorithm and its software implementation have been suggested.
NASA Astrophysics Data System (ADS)
Umarova, Zhanat; Botayeva, Saule; Yegenova, Aliya; Usenova, Aisaule
2015-05-01
In the given article, the main thermodynamic aspects of the issue of modeling diffusion transfer in molecular sieves have been formulated. Dissipation function is used as a basic notion. The differential equation, connecting volume flow with the change of the concentration of catchable component has been derived. As a result, the expression for changing the concentration of the catchable component and the coefficient of membrane detecting has been received. As well, the system approach to describing the process of gases separation in ultra porous membranes has been realized and micro and meso-levels of mathematical modeling have been distinguished. The non-ideality of the shared system is primarily taken into consideration at the micro-level and the departure from the diffusion law of Fick has been taken into account. The calculation method of selectivity considering fractal structure of membranes has been developed at the meso level. The calculation algorithm and its software implementation have been suggested.
NASA Astrophysics Data System (ADS)
Baron, P.; Urban, J.; Sagawa, H.; Möller, J.; Murtagh, D. P.; Mendrok, J.; Dupuy, E.; Sato, T. O.; Ochiai, S.; Suzuki, K.; Manabe, T.; Nishibori, T.; Kikuchi, K.; Sato, R.; Takayanagi, M.; Murayama, Y.; Shiotani, M.; Kasai, Y.
2011-06-01
This paper describes the algorithms of the level-2 research (L2r) processing chain developed for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES). The chain has been developed in parallel to the operational chain for conducting researches on calibration and retrieval algorithms. L2r chain products are available to the scientific community. The objective of version 2 is the retrieval of the vertical distribution of trace gases in the altitude range of 18-90 km. An theoretical error analysis is conducted to estimate the retrieval feasibility of key parameters of the processing: line-of-sight elevation tangent altitudes (or angles), temperature and O3 profiles. The line-of-sight tangent altitudes are retrieved between 20 and 50 km from the strong ozone (O3) line at 625.371 GHz, with low correlation with the O3 volume-mixing ratio and temperature retrieved profiles. Neglecting the non-linearity of the radiometric gain in the calibration procedure is the main systematic error. It is large for the retrieved temperature (between 5-10 K). Therefore, atmospheric pressure can not be derived from the retrieved temperature, and, then, in the altitude range where the line-of-sight tangent altitudes are retrieved, the retrieved trace gases profiles are found to be better represented on pressure levels than on altitude levels. The error analysis for the retrieved HOCl profile demonstrates that best results for inverting weak lines can be obtained by using narrow spectral windows. Future versions of the L2r algorithms will improve the temperature/pressure retrievals and also provide information in the upper tropospheric/lower stratospheric region (e.g., water vapor, ice content, O3) and on stratospheric and mesospheric line-of-sight winds.
NASA Astrophysics Data System (ADS)
Di Giacomo, Domenico; Bondár, István; Storchak, Dmitry A.; Engdahl, E. Robert; Bormann, Peter; Harris, James
2015-02-01
This paper outlines the re-computation and compilation of the magnitudes now contained in the final ISC-GEM Reference Global Instrumental Earthquake Catalogue (1900-2009). The catalogue is available via the ISC website (http://www.isc.ac.uk/iscgem/). The available re-computed MS and mb provided an ideal basis for deriving new conversion relationships to moment magnitude MW. Therefore, rather than using previously published regression models, we derived new empirical relationships using both generalized orthogonal linear and exponential non-linear models to obtain MW proxies from MS and mb. The new models were tested against true values of MW, and the newly derived exponential models were then preferred to the linear ones in computing MW proxies. For the final magnitude composition of the ISC-GEM catalogue, we preferred directly measured MW values as published by the Global CMT project for the period 1976-2009 (plus intermediate-depth earthquakes between 1962 and 1975). In addition, over 1000 publications have been examined to obtain direct seismic moment M0 and, therefore, also MW estimates for 967 large earthquakes during 1900-1978 (Lee and Engdahl, 2015) by various alternative methods to the current GCMT procedure. In all other instances we computed MW proxy values by converting our re-computed MS and mb values into MW, using the newly derived non-linear regression models. The final magnitude composition is an improvement in terms of magnitude homogeneity compared to previous catalogues. The magnitude completeness is not homogeneous over the 110 years covered by the ISC-GEM catalogue. Therefore, seismicity rate estimates may be strongly affected without a careful time window selection. In particular, the ISC-GEM catalogue appears to be complete down to MW 5.6 starting from 1964, whereas for the early instrumental period the completeness varies from ∼7.5 to 6.2. Further time and resources would be necessary to homogenize the magnitude of completeness over the
NASA Astrophysics Data System (ADS)
Ribeiro, Vitor B.; Silva, Flávio A.; Oliveira, Julio C. R. F.; Franz, Lucas V.; Schneider, Eduardo O.; Moretti, Cleber; Ranzini, Stenio M.
2013-01-01
Today and next generation optical coherent systems rely more and more in DSP algorithms to improve capacity, spectral efficiency and fiber impairments mitigation. The amount of signal processing is remarkable, and because of that ASICs are preferable in order to comply with cost, power consumption and size, required in OIF 100G optical module standards. One important step in the ASIC development process is the validation of the DSP algorithms mathematical models in a high level language that consider HW characteristics and constrains. In this work we present, compare and evaluate in experimental data the mathematical model developed in Matlab and the SystemC model developed in C++. The DSP algorithms functionalities implemented were orthonormalization, CD equalizer, clock recovery, dynamic equalizer, frequency offset and phase estimation. The SystemC model considers clock signals, reset/enable structures, parallelization, finite fixed-point operations and structures that are closer to the ASIC HW implementation; due to these restrictions the performance is not as good as the mathematical modeling. The DSP algorithms models are evaluated in two 112 Gbit/s DP-QPSK experimental scenarios. In the first scenario the models are evaluated in back-to-back with ASE noise loading; in the second scenario the models are compared in a 226km optical fiber recirculation loop, with 80x112 Gbit/s DP-QPSK channels (8.96 Tbit/s). In the back-to-back experiment the OSNR penalty from the mathematical model to the SystemC model is only 1,0dB and in the recirculation loop the maximum reach is 2,600 km and 2,200 km for the Matlab and SystemC models respectively.
Gras, R; Müller, M; Gasteiger, E; Gay, S; Binz, P A; Bienvenut, W; Hoogland, C; Sanchez, J C; Bairoch, A; Hochstrasser, D F; Appel, R D
1999-12-01
We have developed a new algorithm to identify proteins by means of peptide mass fingerprinting. Starting from the matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) spectra and environmental data such as species, isoelectric point and molecular weight, as well as chemical modifications or number of missed cleavages of a protein, the program performs a fully automated identification of the protein. The first step is a peak detection algorithm, which allows precise and fast determination of peptide masses, even if the peaks are of low intensity or they overlap. In the second step the masses and environmental data are used by the identification algorithm to search in protein sequence databases (SWISS-PROT and/or TrEMBL) for protein entries that match the input data. Consequently, a list of candidate proteins is selected from the database, and a score calculation provides a ranking according to the quality of the match. To define the most discriminating scoring calculation we analyzed the respective role of each parameter in two directions. The first one is based on filtering and exploratory effects, while the second direction focuses on the levels where the parameters intervene in the identification process. Thus, according to our analysis, all input parameters contribute to the score, however with different weights. Since it is difficult to estimate the weights in advance, they have been computed with a generic algorithm, using a training set of 91 protein spectra with their environmental data. We tested the resulting scoring calculation on a test set of ten proteins and compared the identification results with those of other peptide mass fingerprinting programs. PMID:10612280
NASA Astrophysics Data System (ADS)
Quan, Haiyang; Wu, Fan; Hou, Xi
2015-10-01
New method for reconstructing rotationally asymmetric surface deviation with pixel-level spatial resolution is proposed. It is based on basic iterative scheme and accelerates the Gauss-Seidel method by introducing an acceleration parameter. This modified Successive Over-relaxation (SOR) is effective for solving the rotationally asymmetric components with pixel-level spatial resolution, without the usage of a fitting procedure. Compared to the Jacobi and Gauss-Seidel method, the modified SOR method with an optimal relaxation factor converges much faster and saves more computational costs and memory space without reducing accuracy. It has been proved by real experimental results.
NASA Astrophysics Data System (ADS)
Siddeq, M. M.; Rodrigues, M. A.
2015-09-01
Image compression techniques are widely used on 2D image 2D video 3D images and 3D video. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level discrete cosine transform (DCT) and a two level discrete wavelet transform (DWT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of four steps. (1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix, respectively, (2) apply a second level DCT on the DC-Matrix to generate two arrays, namely nonzero-array and zero-array, (3) apply the Minimize-Matrix-Size algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT, (4) apply arithmetic coding to the output of previous steps. A novel decompression algorithm, Fast-Match-Search algorithm (FMS), is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined in one matrix followed by inverse two levels DCT with two levels DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D root-mean-square-error following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D.
NASA Astrophysics Data System (ADS)
Baron, P.; Urban, J.; Sagawa, H.; Möller, J.; Murtagh, D. P.; Mendrok, J.; Dupuy, E.; Sato, T. O.; Ochiai, S.; Suzuki, K.; Manabe, T.; Nishibori, T.; Kikuchi, K.; Sato, R.; Takayanagi, M.; Murayama, Y.; Shiotani, M.; Kasai, Y.
2011-10-01
This paper describes the algorithms of the level-2 research (L2r) processing chain developed for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES). The chain has been developed in parallel to the operational chain for conducting researches on calibration and retrieval algorithms. L2r chain products are available to the scientific community. The objective of version 2 is the retrieval of the vertical distribution of trace gases in the altitude range of 18-90 km. A theoretical error analysis is conducted to estimate the retrieval feasibility of key parameters of the processing: line-of-sight elevation tangent altitudes (or angles), temperature and ozone profiles. While pointing information is often retrieved from molecular oxygen lines, there is no oxygen line in the SMILES spectra, so the strong ozone line at 625.371 GHz has been chosen. The pointing parameters and the ozone profiles are retrieved from the line wings which are measured with high signal to noise ratio, whereas the temperature profile is retrieved from the optically thick line center. The main systematic component of the retrieval error was found to be the neglect of the non-linearity of the radiometric gain in the calibration procedure. This causes a temperature retrieval error of 5-10 K. Because of these large temperature errors, it is not possible to construct a reliable hydrostatic pressure profile. However, as a consequence of the retrieval of pointing parameters, pressure induced errors are significantly reduced if the retrieved trace gas profiles are represented on pressure levels instead of geometric altitude levels. Further, various setups of trace gas retrievals have been tested. The error analysis for the retrieved HOCl profile demonstrates that best results for inverting weak lines can be obtained by using narrow spectral windows.
NASA Astrophysics Data System (ADS)
Yang, Haiqing; Yang, Haiqing; He, Yong
In order to detect leaf chlorophyll level nondestructively and instantly, VIS/NIR reflection spectroscopy technique was examined. In the test, 70 leaf samples were collected for model calibration and another 50 for model verification. Each leaf sample was optically measured by USB4000, a modular spectrometer. By the observation of spectral curves, the spectral range between 650nm and 750nm was found significant for mathematic modeling of leaf chlorophyll level. SPAD-502 meter was used for chemometrical measurement of leaf chlorophyll value. In the test, it was found necessary to put leaf thickness into consideration. The procedure of shaping the prediction model is as follows: First, leaf chlorophyll level prediction equation was created with uncertain parameters. Second, a genetic algorithm was programmed by Visual Basic 6.0 for parameter optimization. As the result of the calculation, the optimal spectral range was narrowed within 683.24nm and 733.91nm. Compared with the R2=0.2309 for calibration set and R2=0.5675 for on the spectral modeling is significant: the R2 of calibration set and verification set has been improved as high as 0.8658 and 0.9161 respectively. The test showed that it is practical to use VIS/NIR reflection spectrometer for the quantitative determination of leaf chlorophyll level.
Chapman, Brian E; Lee, Sean; Kang, Hyunseok Peter; Chapman, Wendy W
2011-10-01
In this paper we describe an application called peFinder for document-level classification of CT pulmonary angiography reports. peFinder is based on a generalized version of the ConText algorithm, a simple text processing algorithm for identifying features in clinical report documents. peFinder was used to answer questions about the disease state (pulmonary emboli present or absent), the certainty state of the diagnosis (uncertainty present or absent), the temporal state of an identified pulmonary embolus (acute or chronic), and the technical quality state of the exam (diagnostic or not diagnostic). Gold standard answers for each question were determined from the consensus classifications of three human annotators. peFinder results were compared to naive Bayes' classifiers using unigrams and bigrams. The sensitivities (and positive predictive values) for peFinder were 0.98(0.83), 0.86(0.96), 0.94(0.93), and 0.60(0.90) for disease state, quality state, certainty state, and temporal state respectively, compared to 0.68(0.77), 0.67(0.87), 0.62(0.82), and 0.04(0.25) for the naive Bayes' classifier using unigrams, and 0.75(0.79), 0.52(0.69), 0.59(0.84), and 0.04(0.25) for the naive Bayes' classifier using bigrams. PMID:21459155
NASA Astrophysics Data System (ADS)
Lu, Hailiang; Li, Qingxia; Li, Yan; Li, Yinan; Li, Hao
2015-01-01
At present, the Soil Moisture and Ocean Salinity (SMOS) mission is severely affected by radio frequency interferences (RFIs), and the detection of low-level RFI-contamination brightness temperatures (BTs) is still a challenge in SMOS. A low-level RFI detection algorithm is proposed, which is based on the soil surface temperature products provided by the European Centre for Medium-Range Weather Forecasting. The algorithm is analyzed in terms of RFI-flagged snapshot, RFI-flagged probability, and localization accuracy. The performance of the algorithm is demonstrated by SMOS data. The results show this algorithm can detect and flag more low-level RFI-contamination BTs and show a better performance.
A cascadic monotonic time-discretized algorithm for finite-level quantum control computation
NASA Astrophysics Data System (ADS)
Ditz, P.; Borzi`, A.
2008-03-01
A computer package (CNMS) is presented aimed at the solution of finite-level quantum optimal control problems. This package is based on a recently developed computational strategy known as monotonic schemes. Quantum optimal control problems arise in particular in quantum optics where the optimization of a control representing laser pulses is required. The purpose of the external control field is to channel the system's wavefunction between given states in its most efficient way. Physically motivated constraints, such as limited laser resources, are accommodated through appropriately chosen cost functionals. Program summaryProgram title: CNMS Catalogue identifier: ADEB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADEB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 770 No. of bytes in distributed program, including test data, etc.: 7098 Distribution format: tar.gz Programming language: MATLAB 6 Computer: AMD Athlon 64 × 2 Dual, 2:21 GHz, 1:5 GB RAM Operating system: Microsoft Windows XP Word size: 32 Classification: 4.9 Nature of problem: Quantum control Solution method: Iterative Running time: 60-600 sec
Akkoç, Betül; Arslan, Ahmet; Kök, Hatice
2016-06-01
Gender is one of the intrinsic properties of identity, with performance enhancement reducing the cluster when a search is performed. Teeth have durable and resistant structure, and as such are important sources of identification in disasters (accident, fire, etc.). In this study, gender determination is accomplished by maxillary tooth plaster models of 40 people (20 males and 20 females). The images of tooth plaster models are taken with a lighting mechanism set-up. A gray level co-occurrence matrix of the image with segmentation is formed and classified via a Random Forest (RF) algorithm by extracting pertinent features of the matrix. Automatic gender determination has a 90% success rate, with an applicable system to determine gender from maxillary tooth plaster images. PMID:27104495
Ramadas, Gisela C V; Rocha, Ana Maria A C; Fernandes, Edite M G P
2015-01-01
This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. PMID:25875591
Fernandes, Edite M. G. P.
2015-01-01
This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as ‘erf’, is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. PMID:25875591
None, None
2015-09-28
Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics. In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.
None, None
2015-09-28
Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less
Algorithms and Algorithmic Languages.
ERIC Educational Resources Information Center
Veselov, V. M.; Koprov, V. M.
This paper is intended as an introduction to a number of problems connected with the description of algorithms and algorithmic languages, particularly the syntaxes and semantics of algorithmic languages. The terms "letter, word, alphabet" are defined and described. The concept of the algorithm is defined and the relation between the algorithm and…
Pantic, Igor; Dimitrijevic, Draga; Nesic, Dejan; Petrovic, Danica
2016-10-01
We demonstrate that a proapoptotic chemical agent, oxidopamine, induces dose dependent changes in chromatin textural patterns which can be quantified using the Gray level co-occurrence matrix (GLCM) method. Peripheral blood (heparin-pretreated) samples were treated with oxidopamine (6-OHDA, 6-hydroxydopamine) to achieve effective concentrations of 100, 200 and 300µM. The samples were smeared on microscope slides and fixated in methanol. The smears were stained using a modification of Feulgen method for DNA visualization. For each stained smear, a sample of 30 lymphocyte chromatin structures were visualized and analyzed. This way, textural parameters for a total of 120 nuclei micrographs were calculated. For each chromatin structure, five different GLCM features were calculated: angular second moment, GLCM entropy, inverse difference moment, GLCM correlation, and GLCM variance. Oxidopamine induced the rise of the values of GLCM entropy and variance, and the reduction of angular second moment, correlation, and inverse difference moment. The trends for GLCM parameter changes were found to be highly significant (p<0.001). These results indicate that GLCM mathematical algorithm might be successfully used in detection and evaluation of discrete early apoptotic structural changes in Feulgen-stained chromatin of peripheral blood lymphocytes that are not detectable using conventional microscopy/cell biology techniques. PMID:27424557
NASA Astrophysics Data System (ADS)
Wei, Chiang; Yeh, Hui-Chung; Chen, Yen-Chang
2015-04-01
This study assessed the classification of landslide areas by Genetic Algorithm of Operation Tree (GAOT) of Chen-Yu-Lan River upstream watershed of National Taiwan University Experimental Forest (NTUEF) after the Typhoon Morakot in 2009 using remotely and geological data. Landslides of 624.5 ha which accounting for 1.9% of total area were delineated with the threshold of slope (22°) and area size (1 hectare), 48 landslide sites were located in the upstream Chen-Yu-Lan watershed using FORMOSAT-II satellite imagery, the aerial photo and GIS related coverage. The five risk levels of these landslide areas was classified by the area, elevation, slope order, aspect, erosion order and geological factor order using the Simplicity Method suggested in the Technical Regulations for Soil and Water Conservation of Taiwan. If all the landslide sites were considered, the accuracy of classification using GAOT is 97.9%, superior than the K-means, Ward method, Shared Nearest Neighbor method, Maximum Likelihood Classifier and Bayesian Classifier; if 36 sites were used as training samples and the rest 12 sites were tested, the accuracy still can reach 81.3%. More geological data, anthropogenic influence and hydrological factors may be necessary for clarifying the landside area and the results benefit the assessment for future correction and management of the authorities.
NASA Technical Reports Server (NTRS)
Panciera, Rocco; Walker, Jeffrey P.; Kalma, Jetse; Kim, Edward
2011-01-01
The Soil Moisture and Ocean Salinity (SMOS)mission, launched in November 2009, provides global maps of soil moisture and ocean salinity by measuring the L-band (1.4 GHz) emission of the Earth's surface with a spatial resolution of 40-50 km.Uncertainty in the retrieval of soilmoisture over large heterogeneous areas such as SMOS pixels is expected, due to the non-linearity of the relationship between soil moisture and the microwave emission. The current baseline soilmoisture retrieval algorithm adopted by SMOS and implemented in the SMOS Level 2 (SMOS L2) processor partially accounts for the sub-pixel heterogeneity of the land surface, by modelling the individual contributions of different pixel fractions to the overall pixel emission. This retrieval approach is tested in this study using airborne L-band data over an area the size of a SMOS pixel characterised by a mix Eucalypt forest and moderate vegetation types (grassland and crops),with the objective of assessing its ability to correct for the soil moisture retrieval error induced by the land surface heterogeneity. A preliminary analysis using a traditional uniform pixel retrieval approach shows that the sub-pixel heterogeneity of land cover type causes significant errors in soil moisture retrieval (7.7%v/v RMSE, 2%v/v bias) in pixels characterised by a significant amount of forest (40-60%). Although the retrieval approach adopted by SMOS partially reduces this error, it is affected by errors beyond the SMOS target accuracy, presenting in particular a strong dry bias when a fraction of the pixel is occupied by forest (4.1%v/v RMSE,-3.1%v/v bias). An extension to the SMOS approach is proposed that accounts for the heterogeneity of vegetation optical depth within the SMOS pixel. The proposed approach is shown to significantly reduce the error in retrieved soil moisture (2.8%v/v RMSE, -0.3%v/v bias) in pixels characterised by a critical amount of forest (40-60%), at the limited cost of only a crude estimate of the
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Campbell, Janet W.; Blaisdell, John M.; Darzi, Michael
1995-01-01
The level-3 data products from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are statistical data sets derived from level-2 data. Each data set will be based on a fixed global grid of equal-area bins that are approximately 9 x 9 sq km. Statistics available for each bin include the sum and sum of squares of the natural logarithm of derived level-2 geophysical variables where sums are accumulated over a binning period. Operationally, products with binning periods of 1 day, 8 days, 1 month, and 1 year will be produced and archived. From these accumulated values and for each bin, estimates of the mean, standard deviation, median, and mode may be derived for each geophysical variable. This report contains two major parts: the first (Section 2) is intended as a users' guide for level-3 SeaWiFS data products. It contains an overview of level-0 to level-3 data processing, a discussion of important statistical considerations when using level-3 data, and details of how to use the level-3 data. The second part (Section 3) presents a comparative statistical study of several binning algorithms based on CZCS and moored fluorometer data. The operational binning algorithms were selected based on the results of this study.
NASA Astrophysics Data System (ADS)
Bressan, L.; Tinti, S.
2012-05-01
Real-time detection of a tsunami on instrumental sea-level records is quite an important task for a Tsunami Warning System (TWS), and in case of alert conditions for an ongoing tsunami it is often performed by visual inspection in operational warning centres. In this paper we stress the importance of automatic detection algorithms and apply the TEDA (Tsunami Early Detection Algorithm) to identify tsunami arrivals of the 2011 Tohoku tsunami in a real-time virtual exercise. TEDA is designed to work at station level, that is on sea-level data of a single station, and was calibrated on data from the Adak island, Alaska, USA, tide-gauge station. Using the parameters' configuration devised for the Adak station, the TEDA has been applied to 123 coastal sea-level records from the coasts of the Pacific Ocean, which enabled us to evaluate the efficiency and sensitivity of the algorithm on a wide range of background conditions and of signal-to-noise ratios. The result is that TEDA is able to detect quickly the majority of the tsunami signals and therefore proves to have the potential for being a valid tool in the operational TWS practice.
Spurr, Robert; Loyola, Diego; Thomas, Werner; Balzer, Wolfgang; Mikusch, Eberhard; Aberle, Bernd; Slijkhuis, Sander; Ruppert, Thomas; van Roozendael, Michel; Lambert, Jean-Christopher; Soebijanta, Trisnanto
2005-11-20
The global ozone monitoring experiment (GOME) was launched in April 1995, and the GOME data processor (GDP) retrieval algorithm has processed operational total ozone amounts since July 1995. GDP level 1-to-2 is based on the two-step differential optical absorption spectroscopy (DOAS) approach, involving slant column fitting followed by air mass factor (AMF) conversions to vertical column amounts. We present a major upgrade of this algorithm to version 3.0. GDP 3.0 was implemented in July 2002, and the 9-year GOME data record from July 1995 to December 2004 has been processed using this algorithm. The key component in GDP 3.0 is an iterative approach to AMF calculation, in which AMFs and corresponding vertical column densities are adjusted to reflect the true ozone distribution as represented by the fitted DOAS effective slant column. A neural network ensemble is used to optimize the fast and accurate parametrization of AMFs. We describe results of a recent validation exercise for the operational version of the total ozone algorithm; in particular, seasonal and meridian errors are reduced by a factor of 2. On a global basis, GDP 3.0 ozone total column results lie between -2% and +4% of ground-based values for moderate solar zenith angles lower than 70 degrees. A larger variability of about +5% and -8% is observed for higher solar zenith angles up to 90 degrees. PMID:16318193
Lao, Oscar; Liu, Fan; Wollstein, Andreas; Kayser, Manfred
2014-01-01
Attempts to detect genetic population substructure in humans are troubled by the fact that the vast majority of the total amount of observed genetic variation is present within populations rather than between populations. Here we introduce a new algorithm for transforming a genetic distance matrix that reduces the within-population variation considerably. Extensive computer simulations revealed that the transformed matrix captured the genetic population differentiation better than the original one which was based on the T1 statistic. In an empirical genomic data set comprising 2,457 individuals from 23 different European subpopulations, the proportion of individuals that were determined as a genetic neighbour to another individual from the same sampling location increased from 25% with the original matrix to 52% with the transformed matrix. Similarly, the percentage of genetic variation explained between populations by means of Analysis of Molecular Variance (AMOVA) increased from 1.62% to 7.98%. Furthermore, the first two dimensions of a classical multidimensional scaling (MDS) using the transformed matrix explained 15% of the variance, compared to 0.7% obtained with the original matrix. Application of MDS with Mclust, SPA with Mclust, and GemTools algorithms to the same dataset also showed that the transformed matrix gave a better association of the genetic clusters with the sampling locations, and particularly so when it was used in the AMOVA framework with a genetic algorithm. Overall, the new matrix transformation introduced here substantially reduces the within population genetic differentiation, and can be broadly applied to methods such as AMOVA to enhance their sensitivity to reveal population substructure. We herewith provide a publically available (http://www.erasmusmc.nl/fmb/resources/GAGA) model-free method for improved genetic population substructure detection that can be applied to human as well as any other species data in future studies relevant to
Not Available
1986-12-15
During this quarter a set of seven benchmark problems were developed and analyzed for the IUA. These included Hough Transform, Convex Hull, Voronoi Diagram, Minimal Spanning Tree, Visibility of Vertices in a projected 3-dimensional model, subgraph isomorphism, and the minimum-cost path between points in a weighted graph. These problems are commonly considered intermediate-level processing in many visions research groups parallel implementations of UMass intermediate level processing algorithms, such as Boldt's line merging and Anandan's motion analysis continued to develop. A commercial processor, the TMS320C25, was chosen as the Intermediate Communications and Associative Processor (ICAP) processing element. The TMS320C25 has the advantages that it is a five-million instruction per second signal-processing unit with a fast multiplier and software support for fast floating-point operations. It also has a built in 5 Mb/S serial port that will interface well with the intermediate-level communications network. Also being explored is a set of group-theoretic network topologies with respect to the communication needs of intermediate-level processing. This has required the analysis of the classes of communication needed in each of the algorithms implemented.
Sussman, M. . Dept. of Mathematics); Fatemi, E.
1999-04-01
In Sussman, Smereka, and Osher, a numerical scheme was presented for computing incompressible air-water flows using the level set method. Crucial to the above method was a new iteration method for maintaining the level set function as the signed distance from the zero level set. In this paper the authors implement a constraint along with higher order difference schemes in order to make the iteration method more accurate and efficient. Accuracy is measured in terms of the new computed signed distance function and the original level set function having the same zero level set. The authors apply the redistancing scheme to incompressible flows with noticeably better resolved results at reduced cost. They validate the results with experiment and theory. They show that the distance level set scheme with the added constraint competes well with available interface tracking schemes for basic advection of an interface. They perform basic accuracy checks and more stringent tests involving complicated interfacial structures. As with all level set schemes, the method is easy to implement.
La Ruche, G.; Lorougnon, F.; Digbeu, N.
1995-01-01
In the acquired immunodeficiency syndrome (AIDS) era, adequate management of sexually transmitted diseases (STDs) is a primary concern in Africa. Assessed in this study is the clinical efficacy and feasibility of WHO-recommended therapeutic algorithms for genital discharges and ulcers, diagnosed without laboratory tests, for use at the primary health care level. Drugs were sold on a cost-recovery basis and included intramuscular ceftriaxone and oral ciprofloxacin for single-dose therapy of gonorrhoea and chancroid. During April 1993 in 10 peripheral health care centres in Abidjan, Côte d'Ivoire, a total of 207 patients were followed up, including 89 cases of male urethritis, 92 cases of vaginal discharges and 26 cases of genital ulcers; clinical success, assessed 7 days after the onset of therapy, was, respectively, 92%, 87%, and 100%. Less than 10% of the 207 patients were referred to the next care level, an acceptable rate from a public health point of view. Medical adherence to the algorithms was excellent for urethral discharges and genital ulcers but poor for vaginal discharges, partly because of intentional therapeutic modifications, without detriment to success. For drugs, the average cost per cure was 1546 francs CFA (US$ 5.60) (maximum, 2980 francs CFA (US$ 10.70). Effective and affordable treatments for STDs are necessary for their realistic case management in Africa. PMID:7614662
Dakua, Sarada Prasad; Abinahed, Julien; Al-Ansari, Abdulla
2015-01-01
Abstract. Liver segmentation continues to remain a major challenge, largely due to its intense complexity with surrounding anatomical structures (stomach, kidney, and heart), high noise level and lack of contrast in pathological computed tomography (CT) data. We present an approach to reconstructing the liver surface in low contrast CT. The main contributions are: (1) a stochastic resonance-based methodology in discrete cosine transform domain is developed to enhance the contrast of pathological liver images, (2) a new formulation is proposed to prevent the object boundary, resulting from the cellular automata method, from leaking into the surrounding areas of similar intensity, and (3) a level-set method is suggested to generate intermediate segmentation contours from two segmented slices distantly located in a subject sequence. We have tested the algorithm on real datasets obtained from two sources, Hamad General Hospital and medical image computing and computer-assisted interventions grand challenge workshop. Various parameters in the algorithm, such as w, Δt, z, α, μ, α1, and α2, play imperative roles, thus their values are precisely selected. Both qualitative and quantitative evaluation performed on liver data show promising segmentation accuracy when compared with ground truth data reflecting the potential of the proposed method. PMID:26158101
NASA Astrophysics Data System (ADS)
Troitskaya, Yuliya; Lebedev, Sergey; Soustova, Irina; Rybushkina, Galina; Papko, Vladislav; Baidakov, Georgy; Panyutin, Andrey
One of the recent applications of satellite altimetry originally designed for measurements of the sea level [1] is associated with remote investigation of the water level of inland waters: lakes, rivers, reservoirs [2-7]. The altimetry data re-tracking algorithms developed for open ocean conditions (e.g. Ocean-1,2) [1] often cannot be used in these cases, since the radar return is significantly contaminated by reflection from the land. The problem of minimization of errors in the water level retrieval for inland waters from altimetry measurements can be resolved by re-tracking satellite altimetry data. Recently, special re-tracking algorithms have been actively developed for re-processing altimetry data in the coastal zone when reflection from land strongly affects echo shapes: threshold re-tracking, The other methods of re-tracking (threshold re-tracking, beta-re-tracking, improved threshold re-tracking) were developed in [9-11]. The latest development in this field is PISTACH product [12], in which retracking bases on the classification of typical forms of telemetric waveforms in the coastal zones and inland water bodies. In this paper a novel method of regional adaptive re-tracking based on constructing a theoretical model describing the formation of telemetric waveforms by reflection from the piecewise constant model surface corresponding to the geography of the region is considered. It was proposed in [13, 14], where the algorithm for assessing water level in inland water bodies and in the coastal zone of the ocean with an error of about 10-15 cm was constructed. The algorithm includes four consecutive steps: - constructing a local piecewise model of a reflecting surface in the neighbourhood of the reservoir; - solving a direct problem by calculating the reflected waveforms within the framework of the model; - imposing restrictions and validity criteria for the algorithm based on waveform modelling; - solving the inverse problem by retrieving a tracking point
Semioptimal practicable algorithmic cooling
Elias, Yuval; Mor, Tal; Weinstein, Yossi
2011-04-15
Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.
Fisher, Jason C.
2013-01-01
Long-term groundwater monitoring networks can provide essential information for the planning and management of water resources. Budget constraints in water resource management agencies often mean a reduction in the number of observation wells included in a monitoring network. A network design tool, distributed as an R package, was developed to determine which wells to exclude from a monitoring network because they add little or no beneficial information. A kriging-based genetic algorithm method was used to optimize the monitoring network. The algorithm was used to find the set of wells whose removal leads to the smallest increase in the weighted sum of the (1) mean standard error at all nodes in the kriging grid where the water table is estimated, (2) root-mean-squared-error between the measured and estimated water-level elevation at the removed sites, (3) mean standard deviation of measurements across time at the removed sites, and (4) mean measurement error of wells in the reduced network. The solution to the optimization problem (the best wells to retain in the monitoring network) depends on the total number of wells removed; this number is a management decision. The network design tool was applied to optimize two observation well networks monitoring the water table of the eastern Snake River Plain aquifer, Idaho; these networks include the 2008 Federal-State Cooperative water-level monitoring network (Co-op network) with 166 observation wells, and the 2008 U.S. Geological Survey-Idaho National Laboratory water-level monitoring network (USGS-INL network) with 171 wells. Each water-level monitoring network was optimized five times: by removing (1) 10, (2) 20, (3) 40, (4) 60, and (5) 80 observation wells from the original network. An examination of the trade-offs associated with changes in the number of wells to remove indicates that 20 wells can be removed from the Co-op network with a relatively small degradation of the estimated water table map, and 40 wells
2012-01-01
Background The algorithmic approach to guidelines has been introduced and promoted on a large scale since the 1970s. This study aims at comparing the performance of three algorithms for the management of chronic cough in patients with HIV infection, and at reassessing the current position of algorithmic guidelines in clinical decision making through an analysis of accuracy, harm and complexity. Methods Data were collected at the University Hospital of Kigali (CHUK) in a total of 201 HIV-positive hospitalised patients with chronic cough. We simulated management of each patient following the three algorithms. The first was locally tailored by clinicians from CHUK, the second and third were drawn from publications by Médecins sans Frontières (MSF) and the World Health Organisation (WHO). Semantic analysis techniques known as Clinical Algorithm Nosology were used to compare them in terms of complexity and similarity. For each of them, we assessed the sensitivity, delay to diagnosis and hypothetical harm of false positives and false negatives. Results The principal diagnoses were tuberculosis (21%) and pneumocystosis (19%). Sensitivity, representing the proportion of correct diagnoses made by each algorithm, was 95.7%, 88% and 70% for CHUK, MSF and WHO, respectively. Mean time to appropriate management was 1.86 days for CHUK and 3.46 for the MSF algorithm. The CHUK algorithm was the most complex, followed by MSF and WHO. Total harm was by far the highest for the WHO algorithm, followed by MSF and CHUK. Conclusions This study confirms our hypothesis that sensitivity and patient safety (i.e. less expected harm) are proportional to the complexity of algorithms, though increased complexity may make them difficult to use in practice. PMID:22260242
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steven E.
1991-01-01
Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.
Suzuki, Kenji; Kohlbrenner, Ryan; Epstein, Mark L.; Obajuluwa, Ademola M.; Xu Jianwu; Hori, Masatoshi
2010-05-15
Purpose: Computerized liver extraction from hepatic CT images is challenging because the liver often abuts other organs of a similar density. The purpose of this study was to develop a computer-aided measurement of liver volumes in hepatic CT. Methods: The authors developed a computerized liver extraction scheme based on geodesic active contour segmentation coupled with level-set contour evolution. First, an anisotropic diffusion filter was applied to portal-venous-phase CT images for noise reduction while preserving the liver structure, followed by a scale-specific gradient magnitude filter to enhance the liver boundaries. Then, a nonlinear grayscale converter enhanced the contrast of the liver parenchyma. By using the liver-parenchyma-enhanced image as a speed function, a fast-marching level-set algorithm generated an initial contour that roughly estimated the liver shape. A geodesic active contour segmentation algorithm coupled with level-set contour evolution refined the initial contour to define the liver boundaries more precisely. The liver volume was then calculated using these refined boundaries. Hepatic CT scans of 15 prospective liver donors were obtained under a liver transplant protocol with a multidetector CT system. The liver volumes extracted by the computerized scheme were compared to those traced manually by a radiologist, used as ''gold standard.''Results: The mean liver volume obtained with our scheme was 1504 cc, whereas the mean gold standard manual volume was 1457 cc, resulting in a mean absolute difference of 105 cc (7.2%). The computer-estimated liver volumetrics agreed excellently with the gold-standard manual volumetrics (intraclass correlation coefficient was 0.95) with no statistically significant difference (F=0.77; p(F{<=}f)=0.32). The average accuracy, sensitivity, specificity, and percent volume error were 98.4%, 91.1%, 99.1%, and 7.2%, respectively. Computerized CT liver volumetry would require substantially less completion time
Rajković, Nemanja; Kolarević, Daniela; Kanjer, Ksenija; Milošević, Nebojša T; Nikolić-Vukosavljević, Dragica; Radulovic, Marko
2016-10-01
Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously established on tumour histology images, but without any direct performance comparison. Therefore, this study was designed to compare the prognostic power of the monofractal, multifractal and co-occurrence algorithms on the same set of images. The investigation was retrospective, with 51 patients selected on account of non-metastatic IBC diagnosis, stage IIIB. Image analysis was performed on digital images of primary tumour tissue sections stained with haematoxylin/eosin. Bootstrap-corrected Cox proportional hazards regression P-values indicated a significant association with metastasis outcome of at least one of the features within each group. AUC values were far better for co-occurrence (0.66-0.77) then for fractal features (0.60-0.64). Correction by the split-sample cross-validation likewise indicated the generalizability only for the co-occurrence features, with their classification accuracies ranging between 67 and 72 %, while accuracies of monofractal and multifractal features were reduced to nearly random 52-55 %. These findings indicate for the first time that the prognostic value of texture analysis of tumour histology is less dependent on the morphological complexity of the image as measured by fractal analysis, but predominantly on the spatial distribution of the gray pixel intensities as calculated by the co-occurrence features. PMID:27549346
NASA Astrophysics Data System (ADS)
Erenskjold Moeslund, Jesper; Klith Bøcher, Peder; Svenning, Jens-Christian; Mølhave, Thomas; Arge, Lars
2009-11-01
This study examines the potential impact of 21st century sea-level rise on Aarhus, the second largest city in Denmark, emphasizing the economic risk to the city's real estate. Furthermore, it assesses which possible adaptation measures that can be taken to prevent flooding in areas particularly at risk from flooding. We combine a new national Digital Elevation Model in very fine resolution (~2 meter), a new highly computationally efficient flooding algorithm that accurately models the influence of barriers, and geospatial data on real-estate values to assess the economic real-estate risk posed by future sea-level rise to Aarhus. Under the A2 and A1FI (IPCC) climate scenarios we show that relatively large residential areas in the northern part of the city as well as areas around the river running through the city are likely to become flooded in the event of extreme, but realistic weather events. In addition, most of the large Aarhus harbour would also risk flooding. As much of the area at risk represent high-value real estate, it seems clear that proactive measures other than simple abandonment should be taken in order to avoid heavy economic losses. Among the different possibilities for dealing with an increased sea level, the strategic placement of flood-gates at key potential water-inflow routes and the construction or elevation of existing dikes seems to be the most convenient, most socially acceptable, and maybe also the cheapest solution. Finally, we suggest that high-detail flooding models similar to those produced in this study will become an important tool for a climate-change-integrated planning of future city development as well as for the development of evacuation plans.
Genetic Algorithms and Local Search
NASA Technical Reports Server (NTRS)
Whitley, Darrell
1996-01-01
The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.
Chen, Tao; Yan, Fang-Ping
2013-01-01
The integration with different decisions in the supply chain is a trend, since it can avoid the suboptimal decisions. In this paper, we provide an effective intelligent algorithm for a modified joint replenishment and location-inventory problem (JR-LIP). The problem of the JR-LIP is to determine the reasonable number and location of distribution centers (DCs), the assignment policy of customers, and the replenishment policy of DCs such that the overall cost is minimized. However, due to the JR-LIP's difficult mathematical properties, simple and effective solutions for this NP-hard problem have eluded researchers. To find an effective approach for the JR-LIP, a hybrid self-adapting differential evolution algorithm (HSDE) is designed. To verify the effectiveness of the HSDE, two intelligent algorithms that have been proven to be effective algorithms for the similar problems named genetic algorithm (GA) and hybrid DE (HDE) are chosen to compare with it. Comparative results of benchmark functions and randomly generated JR-LIPs show that HSDE outperforms GA and HDE. Moreover, a sensitive analysis of cost parameters reveals the useful managerial insight. All comparative results show that HSDE is more stable and robust in handling this complex problem especially for the large-scale problem. PMID:24453822
Liu, Yaolin; Wang, Hua; Ji, Yingli; Liu, Zhongqiu; Zhao, Xiang
2012-08-01
Comprehensive land-use planning (CLUP) at the county level in China must include land-use zoning. This is specifically stipulated by the China Land Management Law and aims to achieve strict control on the usages of land. The land-use zoning problem is treated as a multi-objective optimization problem (MOOP) in this article, which is different from the traditional treatment. A particle swarm optimization (PSO) based model is applied to the problem and is developed to maximize the attribute differences between land-use zones, the spatial compactness, the degree of spatial harmony and the ecological benefits of the land-use zones. This is subject to some constraints such as: the quantity limitations for varying land-use zones, regulations assigning land units to a certain land-use zone, and the stipulation of a minimum parcel area in a land-use zoning map. In addition, a crossover and mutation operator from a genetic algorithm is adopted to avoid the prematurity of PSO. The results obtained for Yicheng, a county in central China, using different objective weighting schemes, are compared and suggest that: (1) the fundamental demand for attribute difference between land-use zones leads to a mass of fragmentary land-use zones; (2) the spatial pattern of land-use zones is remarkably optimized when a weight is given to the sub-objectives of spatial compactness and the degree of spatial harmony, simultaneously, with a reduction of attribute difference between land-use zones; (3) when a weight is given to the sub-objective of ecological benefits of the land-use zones, the ecological benefits get a slight increase also at the expense of a reduction in attribute difference between land-use zones; (4) the pursuit of spatial harmony or spatial compactness may have a negative effect on each other; (5) an increase in the ecological benefits may improve the spatial compactness and spatial harmony of the land-use zones; (6) adjusting the weights assigned to each sub-objective can
Liu, Yaolin; Wang, Hua; Ji, Yingli; Liu, Zhongqiu; Zhao, Xiang
2012-01-01
Comprehensive land-use planning (CLUP) at the county level in China must include land-use zoning. This is specifically stipulated by the China Land Management Law and aims to achieve strict control on the usages of land. The land-use zoning problem is treated as a multi-objective optimization problem (MOOP) in this article, which is different from the traditional treatment. A particle swarm optimization (PSO) based model is applied to the problem and is developed to maximize the attribute differences between land-use zones, the spatial compactness, the degree of spatial harmony and the ecological benefits of the land-use zones. This is subject to some constraints such as: the quantity limitations for varying land-use zones, regulations assigning land units to a certain land-use zone, and the stipulation of a minimum parcel area in a land-use zoning map. In addition, a crossover and mutation operator from a genetic algorithm is adopted to avoid the prematurity of PSO. The results obtained for Yicheng, a county in central China, using different objective weighting schemes, are compared and suggest that: (1) the fundamental demand for attribute difference between land-use zones leads to a mass of fragmentary land-use zones; (2) the spatial pattern of land-use zones is remarkably optimized when a weight is given to the sub-objectives of spatial compactness and the degree of spatial harmony, simultaneously, with a reduction of attribute difference between land-use zones; (3) when a weight is given to the sub-objective of ecological benefits of the land-use zones, the ecological benefits get a slight increase also at the expense of a reduction in attribute difference between land-use zones; (4) the pursuit of spatial harmony or spatial compactness may have a negative effect on each other; (5) an increase in the ecological benefits may improve the spatial compactness and spatial harmony of the land-use zones; (6) adjusting the weights assigned to each sub-objective can
NASA Astrophysics Data System (ADS)
Abrams, Daniel S.
This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases (commonly found in ab initio physics and chemistry problems) for which all known classical algorithms require exponential time. Fast algorithms for simulating many body Fermi systems are also provided in both first and second quantized descriptions. An efficient quantum algorithm for anti-symmetrization is given as well as a detailed discussion of a simulation of the Hubbard model. In addition, quantum algorithms that calculate numerical integrals and various characteristics of stochastic processes are described. Two techniques are given, both of which obtain an exponential speed increase in comparison to the fastest known classical deterministic algorithms and a quadratic speed increase in comparison to classical Monte Carlo (probabilistic) methods. I derive a simpler and slightly faster version of Grover's mean algorithm, show how to apply quantum counting to the problem, develop some variations of these algorithms, and show how both (apparently distinct) approaches can be understood from the same unified framework. Finally, the relationship between physics and computation is explored in some more depth, and it is shown that computational complexity theory depends very sensitively on physical laws. In particular, it is shown that nonlinear quantum mechanics allows for the polynomial time solution of NP-complete and #P oracle problems. Using the Weinberg model as a simple example, the explicit construction of the necessary gates is derived from the underlying physics. Nonlinear quantum algorithms are also presented using Polchinski type nonlinearities which do not allow for superluminal communication. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
NOSS Altimeter Detailed Algorithm specifications
NASA Technical Reports Server (NTRS)
Hancock, D. W.; Mcmillan, J. D.
1982-01-01
The details of the algorithms and data sets required for satellite radar altimeter data processing are documented in a form suitable for (1) development of the benchmark software and (2) coding the operational software. The algorithms reported in detail are those established for altimeter processing. The algorithms which required some additional development before documenting for production were only scoped. The algorithms are divided into two levels of processing. The first level converts the data to engineering units and applies corrections for instrument variations. The second level provides geophysical measurements derived from altimeter parameters for oceanographic users.
Sobel, E.; Lange, K.; O`Connell, J.R.
1996-12-31
Haplotyping is the logical process of inferring gene flow in a pedigree based on phenotyping results at a small number of genetic loci. This paper formalizes the haplotyping problem and suggests four algorithms for haplotype reconstruction. These algorithms range from exhaustive enumeration of all haplotype vectors to combinatorial optimization by simulated annealing. Application of the algorithms to published genetic analyses shows that manual haplotyping is often erroneous. Haplotyping is employed in screening pedigrees for phenotyping errors and in positional cloning of disease genes from conserved haplotypes in population isolates. 26 refs., 6 figs., 3 tabs.
NASA Technical Reports Server (NTRS)
Guenther, Bruce W.; Godden, Gerald D.; Xiong, Xiao-Xiong; Knight, Edward J.; Qiu, Shi-Yue; Montgomery, Harry; Hopkins, M. M.; Khayat, Mohammad G.; Hao, Zhi-Dong; Smith, David E. (Technical Monitor)
2000-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) radiometric calibration product is described for the thermal emissive and the reflective solar bands. Specific sensor design characteristics are identified to assist in understanding how the calibration algorithm software product is designed. The reflected solar band software products of radiance and reflectance factor both are described. The product file format is summarized and the MODIS Characterization Support Team (MCST) Homepage location for the current file format is provided.
Tactical Synthesis Of Efficient Global Search Algorithms
NASA Technical Reports Server (NTRS)
Nedunuri, Srinivas; Smith, Douglas R.; Cook, William R.
2009-01-01
Algorithm synthesis transforms a formal specification into an efficient algorithm to solve a problem. Algorithm synthesis in Specware combines the formal specification of a problem with a high-level algorithm strategy. To derive an efficient algorithm, a developer must define operators that refine the algorithm by combining the generic operators in the algorithm with the details of the problem specification. This derivation requires skill and a deep understanding of the problem and the algorithmic strategy. In this paper we introduce two tactics to ease this process. The tactics serve a similar purpose to tactics used for determining indefinite integrals in calculus, that is suggesting possible ways to attack the problem.
Programming parallel vision algorithms
Shapiro, L.G.
1988-01-01
Computer vision requires the processing of large volumes of data and requires parallel architectures and algorithms to be useful in real-time, industrial applications. The INSIGHT dataflow language was designed to allow encoding of vision algorithms at all levels of the computer vision paradigm. INSIGHT programs, which are relational in nature, can be translated into a graph structure that represents an architecture for solving a particular vision problem or a configuration of a reconfigurable computational network. The authors consider here INSIGHT programs that produce a parallel net architecture for solving low-, mid-, and high-level vision tasks.
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Lomax, Harvard
1987-01-01
The past decade has seen considerable activity in algorithm development for the Navier-Stokes equations. This has resulted in a wide variety of useful new techniques. Some examples for the numerical solution of the Navier-Stokes equations are presented, divided into two parts. One is devoted to the incompressible Navier-Stokes equations, and the other to the compressible form.
Computer algorithm for coding gain
NASA Technical Reports Server (NTRS)
Dodd, E. E.
1974-01-01
Development of a computer algorithm for coding gain for use in an automated communications link design system. Using an empirical formula which defines coding gain as used in space communications engineering, an algorithm is constructed on the basis of available performance data for nonsystematic convolutional encoding with soft-decision (eight-level) Viterbi decoding.
Farro, Ignacio; Bia, Daniel; Zócalo, Yanina; Torrado, Juan; Farro, Federico; Florio, Lucía; Olascoaga, Alicia; Alallón, Walter; Lluberas, Ricardo; Armentano, Ricardo L
2012-01-01
Carotid-femoral pulse wave velocity (PWV) has emerged as the gold standard for non-invasive evaluation of aortic stiffness; absence of standardized methodologies of study and lack of normal and reference values have limited a wider clinical implementation. This work was carried out in a Uruguayan (South American) population in order to characterize normal, reference, and threshold levels of PWV considering normal age-related changes in PWV and the prevailing blood pressure level during the study. A conservative approach was used, and we excluded symptomatic subjects; subjects with history of cardiovascular (CV) disease, diabetes mellitus or renal failure; subjects with traditional CV risk factors (other than age and gender); asymptomatic subjects with atherosclerotic plaques in carotid arteries; patients taking anti-hypertensives or lipid-lowering medications. The included subjects (n = 429) were categorized according to the age decade and the blood pressure levels (at study time). All subjects represented the "reference population"; the group of subjects with optimal/normal blood pressures levels at study time represented the "normal population." Results. Normal and reference PWV levels were obtained. Differences in PWV levels and aging-associated changes were obtained. The obtained data could be used to define vascular aging and abnormal or disease-related arterial changes. PMID:22666551
Farro, Ignacio; Bia, Daniel; Zócalo, Yanina; Torrado, Juan; Farro, Federico; Florio, Lucía; Olascoaga, Alicia; Alallón, Walter; Lluberas, Ricardo; Armentano, Ricardo L.
2012-01-01
Carotid-femoral pulse wave velocity (PWV) has emerged as the gold standard for non-invasive evaluation of aortic stiffness; absence of standardized methodologies of study and lack of normal and reference values have limited a wider clinical implementation. This work was carried out in a Uruguayan (South American) population in order to characterize normal, reference, and threshold levels of PWV considering normal age-related changes in PWV and the prevailing blood pressure level during the study. A conservative approach was used, and we excluded symptomatic subjects; subjects with history of cardiovascular (CV) disease, diabetes mellitus or renal failure; subjects with traditional CV risk factors (other than age and gender); asymptomatic subjects with atherosclerotic plaques in carotid arteries; patients taking anti-hypertensives or lipid-lowering medications. The included subjects (n = 429) were categorized according to the age decade and the blood pressure levels (at study time). All subjects represented the “reference population”; the group of subjects with optimal/normal blood pressures levels at study time represented the “normal population.” Results. Normal and reference PWV levels were obtained. Differences in PWV levels and aging-associated changes were obtained. The obtained data could be used to define vascular aging and abnormal or disease-related arterial changes. PMID:22666551
Solar Occultation Retrieval Algorithm Development
NASA Technical Reports Server (NTRS)
Lumpe, Jerry D.
2004-01-01
This effort addresses the comparison and validation of currently operational solar occultation retrieval algorithms, and the development of generalized algorithms for future application to multiple platforms. initial development of generalized forward model algorithms capable of simulating transmission data from of the POAM II/III and SAGE II/III instruments. Work in the 2" quarter will focus on: completion of forward model algorithms, including accurate spectral characteristics for all instruments, and comparison of simulated transmission data with actual level 1 instrument data for specific occultation events.
NASA Astrophysics Data System (ADS)
Imani, Moslem; You, Rey-Jer; Kuo, Chung-Yen
2014-10-01
Sea level forecasting at various time intervals is of great importance in water supply management. Evolutionary artificial intelligence (AI) approaches have been accepted as an appropriate tool for modeling complex nonlinear phenomena in water bodies. In the study, we investigated the ability of two AI techniques: support vector machine (SVM), which is mathematically well-founded and provides new insights into function approximation, and gene expression programming (GEP), which is used to forecast Caspian Sea level anomalies using satellite altimetry observations from June 1992 to December 2013. SVM demonstrates the best performance in predicting Caspian Sea level anomalies, given the minimum root mean square error (RMSE = 0.035) and maximum coefficient of determination (R2 = 0.96) during the prediction periods. A comparison between the proposed AI approaches and the cascade correlation neural network (CCNN) model also shows the superiority of the GEP and SVM models over the CCNN.
NASA Astrophysics Data System (ADS)
Ahmed, Oumer S.; Franklin, Steven E.; Wulder, Michael A.; White, Joanne C.
2015-03-01
Many forest management activities, including the development of forest inventories, require spatially detailed forest canopy cover and height data. Among the various remote sensing technologies, LiDAR (Light Detection and Ranging) offers the most accurate and consistent means for obtaining reliable canopy structure measurements. A potential solution to reduce the cost of LiDAR data, is to integrate transects (samples) of LiDAR data with frequently acquired and spatially comprehensive optical remotely sensed data. Although multiple regression is commonly used for such modeling, often it does not fully capture the complex relationships between forest structure variables. This study investigates the potential of Random Forest (RF), a machine learning technique, to estimate LiDAR measured canopy structure using a time series of Landsat imagery. The study is implemented over a 2600 ha area of industrially managed coastal temperate forests on Vancouver Island, British Columbia, Canada. We implemented a trajectory-based approach to time series analysis that generates time since disturbance (TSD) and disturbance intensity information for each pixel and we used this information to stratify the forest land base into two strata: mature forests and young forests. Canopy cover and height for three forest classes (i.e. mature, young and mature and young (combined)) were modeled separately using multiple regression and Random Forest (RF) techniques. For all forest classes, the RF models provided improved estimates relative to the multiple regression models. The lowest validation error was obtained for the mature forest strata in a RF model (R2 = 0.88, RMSE = 2.39 m and bias = -0.16 for canopy height; R2 = 0.72, RMSE = 0.068% and bias = -0.0049 for canopy cover). This study demonstrates the value of using disturbance and successional history to inform estimates of canopy structure and obtain improved estimates of forest canopy cover and height using the RF algorithm.
Routing Algorithm Exploits Spatial Relations
NASA Technical Reports Server (NTRS)
Okino, Clayton; Jennings, Esther
2004-01-01
A recently developed routing algorithm for broadcasting in an ad hoc wireless communication network takes account of, and exploits, the spatial relationships among the locations of nodes, in addition to transmission power levels and distances between the nodes. In contrast, most prior algorithms for discovering routes through ad hoc networks rely heavily on transmission power levels and utilize limited graph-topology techniques that do not involve consideration of the aforesaid spatial relationships. The present algorithm extracts the relevant spatial-relationship information by use of a construct denoted the relative-neighborhood graph (RNG).
In-Trail Procedure (ITP) Algorithm Design
NASA Technical Reports Server (NTRS)
Munoz, Cesar A.; Siminiceanu, Radu I.
2007-01-01
The primary objective of this document is to provide a detailed description of the In-Trail Procedure (ITP) algorithm, which is part of the Airborne Traffic Situational Awareness In-Trail Procedure (ATSA-ITP) application. To this end, the document presents a high level description of the ITP Algorithm and a prototype implementation of this algorithm in the programming language C.
Fontana, W.
1990-12-13
In this paper complex adaptive systems are defined by a self- referential loop in which objects encode functions that act back on these objects. A model for this loop is presented. It uses a simple recursive formal language, derived from the lambda-calculus, to provide a semantics that maps character strings into functions that manipulate symbols on strings. The interaction between two functions, or algorithms, is defined naturally within the language through function composition, and results in the production of a new function. An iterated map acting on sets of functions and a corresponding graph representation are defined. Their properties are useful to discuss the behavior of a fixed size ensemble of randomly interacting functions. This function gas'', or Turning gas'', is studied under various conditions, and evolves cooperative interaction patterns of considerable intricacy. These patterns adapt under the influence of perturbations consisting in the addition of new random functions to the system. Different organizations emerge depending on the availability of self-replicators.
Developing dataflow algorithms
Hiromoto, R.E. ); Bohm, A.P.W. . Dept. of Computer Science)
1991-01-01
Our goal is to study the performance of a collection of numerical algorithms written in Id which is available to users of Motorola's dataflow machine Monsoon. We will study the dataflow performance of these implementations first under the parallel profiling simulator Id World, and second in comparison with actual dataflow execution on the Motorola Monsoon. This approach will allow us to follow the computational and structural details of the parallel algorithms as implemented on dataflow systems. When running our programs on the Id World simulator we will examine the behaviour of algorithms at dataflow graph level, where each instruction takes one timestep and data becomes available at the next. This implies that important machine level phenomena such as the effect that global communication time may have on the computation are not addressed. These phenomena will be addressed when we run our programs on the Monsoon hardware. Potential ramifications for compilation techniques, functional programming style, and program efficiency are significant to this study. In a later stage of our research we will compare the efficiency of Id programs to programs written in other languages. This comparison will be of a rather qualitative nature as there are too many degrees of freedom in a language implementation for a quantitative comparison to be of interest. We begin our study by examining one routine that exhibit different computational characteristics. This routine and its corresponding characteristics is Fast Fourier Transforms; computational parallelism and data dependences between the butterfly shuffles.
Localization algorithm for acoustic emission
NASA Astrophysics Data System (ADS)
Salinas, V.; Vargas, Y.; Ruzzante, J.; Gaete, L.
2010-01-01
In this paper, an iterative algorithm for localization of acoustic emission (AE) source is presented. The main advantage of the system is that it is independent of the 'ability' in the determination of signal level to triggering the signal by the researcher. The system was tested in cylindrical samples with an AE localized in a known position; the precision in the source determination was of about 2 mm, better than the precision obtained with classic localization algorithms (˜1 cm).
Tomasz Plawski, J. Hovater
2010-09-01
A digital low level radio frequency (RF) system typically incorporates either a heterodyne or direct sampling technique, followed by fast ADCs, then an FPGA, and finally a transmitting DAC. This universal platform opens up the possibilities for a variety of control algorithm implementations. The foremost concern for an RF control system is cavity field stability, and to meet the required quality of regulation, the chosen control system needs to have sufficient feedback gain. In this paper we will investigate the effectiveness of the regulation for three basic control system algorithms: I&Q (In-phase and Quadrature), Amplitude & Phase and digital SEL (Self Exciting Loop) along with the example of the Jefferson Lab 12 GeV cavity field control system.
Stability of Bareiss algorithm
NASA Astrophysics Data System (ADS)
Bojanczyk, Adam W.; Brent, Richard P.; de Hoog, F. R.
1991-12-01
In this paper, we present a numerical stability analysis of Bareiss algorithm for solving a symmetric positive definite Toeplitz system of linear equations. We also compare Bareiss algorithm with Levinson algorithm and conclude that the former has superior numerical properties.
An onboard star identification algorithm
NASA Astrophysics Data System (ADS)
Ha, Kong; Femiano, Michael
The paper presents the autonomous Initial Stellar Acquisition (ISA) algorithm developed for the X-Ray Timing Explorer for prividing the attitude quaternion within the desired accuracy, based on the one-axis attitude knowledge (through the use of the Digital Sun Sensor, CCD Star Trackers, and the onboard star catalog, OSC). Mathematical analysis leads to an accurate measure of the performance of the algorithm as a function of various parameters, such as the probability of a tracked star being in the OSC, the sensor noise level, and the number of stars matched. It is shown that the simplicity, tractability, and robustness of the ISA algorithm, compared to a general three-axis attiude determination algorithm, make it a viable on-board solution.
An onboard star identification algorithm
NASA Technical Reports Server (NTRS)
Ha, Kong; Femiano, Michael
1993-01-01
The paper presents the autonomous Initial Stellar Acquisition (ISA) algorithm developed for the X-Ray Timing Explorer for prividing the attitude quaternion within the desired accuracy, based on the one-axis attitude knowledge (through the use of the Digital Sun Sensor, CCD Star Trackers, and the onboard star catalog, OSC). Mathematical analysis leads to an accurate measure of the performance of the algorithm as a function of various parameters, such as the probability of a tracked star being in the OSC, the sensor noise level, and the number of stars matched. It is shown that the simplicity, tractability, and robustness of the ISA algorithm, compared to a general three-axis attiude determination algorithm, make it a viable on-board solution.
NASA Astrophysics Data System (ADS)
Gravirov, V. V.; Kislov, K. V.
2009-12-01
The chief hazard posed by earthquakes consists in their suddenness. The number of earthquakes annually recorded is in excess of 100,000; of these, over 1000 are strong ones. Great human losses usually occur because no devices exist for advance warning of earthquakes. It is therefore high time that mobile information automatic systems should be developed for analysis of seismic information at high levels of manmade noise. The systems should be operated in real time with the minimum possible computational delays and be able to make fast decisions. The chief statement of the project is that sufficiently complete information about an earthquake can be obtained in real time by examining its first onset as recorded by a single seismic sensor or a local seismic array. The essential difference from the existing systems consists in the following: analysis of local seismic data at high levels of manmade noise (that is, when the noise level may be above the seismic signal level), as well as self-contained operation. The algorithms developed during the execution of the project will be capable to be used with success for individual personal protection kits and for warning the population in earthquake-prone areas over the world. The system being developed for this project uses P and S waves as well. The difference in the velocities of these seismic waves permits a technique to be developed for identifying a damaging earthquake. Real time analysis of first onsets yields the time that remains before surface waves arrive and the damage potential of these waves. Estimates show that, when the difference between the earthquake epicenter and the monitored site is of order 200 km, the time difference between the arrivals of P waves and surface waves will be about 30 seconds, which is quite sufficient to evacuate people from potentially hazardous space, insertion of moderators at nuclear power stations, pipeline interlocking, transportation stoppage, warnings issued to rescue services
Distilling the Verification Process for Prognostics Algorithms
NASA Technical Reports Server (NTRS)
Roychoudhury, Indranil; Saxena, Abhinav; Celaya, Jose R.; Goebel, Kai
2013-01-01
The goal of prognostics and health management (PHM) systems is to ensure system safety, and reduce downtime and maintenance costs. It is important that a PHM system is verified and validated before it can be successfully deployed. Prognostics algorithms are integral parts of PHM systems. This paper investigates a systematic process of verification of such prognostics algorithms. To this end, first, this paper distinguishes between technology maturation and product development. Then, the paper describes the verification process for a prognostics algorithm as it moves up to higher maturity levels. This process is shown to be an iterative process where verification activities are interleaved with validation activities at each maturation level. In this work, we adopt the concept of technology readiness levels (TRLs) to represent the different maturity levels of a prognostics algorithm. It is shown that at each TRL, the verification of a prognostics algorithm depends on verifying the different components of the algorithm according to the requirements laid out by the PHM system that adopts this prognostics algorithm. Finally, using simplified examples, the systematic process for verifying a prognostics algorithm is demonstrated as the prognostics algorithm moves up TRLs.
A Synthesized Heuristic Task Scheduling Algorithm
Dai, Yanyan; Zhang, Xiangli
2014-01-01
Aiming at the static task scheduling problems in heterogeneous environment, a heuristic task scheduling algorithm named HCPPEFT is proposed. In task prioritizing phase, there are three levels of priority in the algorithm to choose task. First, the critical tasks have the highest priority, secondly the tasks with longer path to exit task will be selected, and then algorithm will choose tasks with less predecessors to schedule. In resource selection phase, the algorithm is selected task duplication to reduce the interresource communication cost, besides forecasting the impact of an assignment for all children of the current task permits better decisions to be made in selecting resources. The algorithm proposed is compared with STDH, PEFT, and HEFT algorithms through randomly generated graphs and sets of task graphs. The experimental results show that the new algorithm can achieve better scheduling performance. PMID:25254244
Library of Continuation Algorithms
Energy Science and Technology Software Center (ESTSC)
2005-03-01
LOCA (Library of Continuation Algorithms) is scientific software written in C++ that provides advanced analysis tools for nonlinear systems. In particular, it provides parameter continuation algorithms. bifurcation tracking algorithms, and drivers for linear stability analysis. The algorithms are aimed at large-scale applications that use Newtons method for their nonlinear solve.
Geist, G.A.; Howell, G.W.; Watkins, D.S.
1997-11-01
The BR algorithm, a new method for calculating the eigenvalues of an upper Hessenberg matrix, is introduced. It is a bulge-chasing algorithm like the QR algorithm, but, unlike the QR algorithm, it is well adapted to computing the eigenvalues of the narrowband, nearly tridiagonal matrices generated by the look-ahead Lanczos process. This paper describes the BR algorithm and gives numerical evidence that it works well in conjunction with the Lanczos process. On the biggest problems run so far, the BR algorithm beats the QR algorithm by a factor of 30--60 in computing time and a factor of over 100 in matrix storage space.
Evolutionary Algorithm for Optimal Vaccination Scheme
NASA Astrophysics Data System (ADS)
Parousis-Orthodoxou, K. J.; Vlachos, D. S.
2014-03-01
The following work uses the dynamic capabilities of an evolutionary algorithm in order to obtain an optimal immunization strategy in a user specified network. The produced algorithm uses a basic genetic algorithm with crossover and mutation techniques, in order to locate certain nodes in the inputted network. These nodes will be immunized in an SIR epidemic spreading process, and the performance of each immunization scheme, will be evaluated by the level of containment that provides for the spreading of the disease.
Understanding Algorithms in Different Presentations
ERIC Educational Resources Information Center
Csernoch, Mária; Biró, Piroska; Abari, Kálmán; Máth, János
2015-01-01
Within the framework of the Testing Algorithmic and Application Skills project we tested first year students of Informatics at the beginning of their tertiary education. We were focusing on the students' level of understanding in different programming environments. In the present paper we provide the results from the University of Debrecen, the…
NASA Technical Reports Server (NTRS)
Rabideau, Gregg R.; Chien, Steve A.
2010-01-01
AVA v2 software selects goals for execution from a set of goals that oversubscribe shared resources. The term goal refers to a science or engineering request to execute a possibly complex command sequence, such as image targets or ground-station downlinks. Developed as an extension to the Virtual Machine Language (VML) execution system, the software enables onboard and remote goal triggering through the use of an embedded, dynamic goal set that can oversubscribe resources. From the set of conflicting goals, a subset must be chosen that maximizes a given quality metric, which in this case is strict priority selection. A goal can never be pre-empted by a lower priority goal, and high-level goals can be added, removed, or updated at any time, and the "best" goals will be selected for execution. The software addresses the issue of re-planning that must be performed in a short time frame by the embedded system where computational resources are constrained. In particular, the algorithm addresses problems with well-defined goal requests without temporal flexibility that oversubscribes available resources. By using a fast, incremental algorithm, goal selection can be postponed in a "just-in-time" fashion allowing requests to be changed or added at the last minute. Thereby enabling shorter response times and greater autonomy for the system under control.
A parallel algorithm for global routing
NASA Technical Reports Server (NTRS)
Brouwer, Randall J.; Banerjee, Prithviraj
1990-01-01
A Parallel Hierarchical algorithm for Global Routing (PHIGURE) is presented. The router is based on the work of Burstein and Pelavin, but has many extensions for general global routing and parallel execution. Main features of the algorithm include structured hierarchical decomposition into separate independent tasks which are suitable for parallel execution and adaptive simplex solution for adding feedthroughs and adjusting channel heights for row-based layout. Alternative decomposition methods and the various levels of parallelism available in the algorithm are examined closely. The algorithm is described and results are presented for a shared-memory multiprocessor implementation.
Algorithm and program for information processing with the filin apparatus
NASA Technical Reports Server (NTRS)
Gurin, L. S.; Morkrov, V. S.; Moskalenko, Y. I.; Tsoy, K. A.
1979-01-01
The reduction of spectral radiation data from space sources is described. The algorithm and program for identifying segments of information obtained from the Film telescope-spectrometer on the Salyut-4 are presented. The information segments represent suspected X-ray sources. The proposed algorithm is an algorithm of the lowest level. Following evaluation, information free of uninformative segments is subject to further processing with algorithms of a higher level. The language used is FORTRAN 4.
Some nonlinear space decomposition algorithms
Tai, Xue-Cheng; Espedal, M.
1996-12-31
Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.
Reasoning about systolic algorithms
Purushothaman, S.
1986-01-01
Systolic algorithms are a class of parallel algorithms, with small grain concurrency, well suited for implementation in VLSI. They are intended to be implemented as high-performance, computation-bound back-end processors and are characterized by a tesselating interconnection of identical processing elements. This dissertation investigates the problem of providing correctness of systolic algorithms. The following are reported in this dissertation: (1) a methodology for verifying correctness of systolic algorithms based on solving the representation of an algorithm as recurrence equations. The methodology is demonstrated by proving the correctness of a systolic architecture for optimal parenthesization. (2) The implementation of mechanical proofs of correctness of two systolic algorithms, a convolution algorithm and an optimal parenthesization algorithm, using the Boyer-Moore theorem prover. (3) An induction principle for proving correctness of systolic arrays which are modular. Two attendant inference rules, weak equivalence and shift transformation, which capture equivalent behavior of systolic arrays, are also presented.
Algorithm-development activities
NASA Technical Reports Server (NTRS)
Carder, Kendall L.
1994-01-01
The task of algorithm-development activities at USF continues. The algorithm for determining chlorophyll alpha concentration, (Chl alpha) and gelbstoff absorption coefficient for SeaWiFS and MODIS-N radiance data is our current priority.
Accurate Finite Difference Algorithms
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1996-01-01
Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.
POSE Algorithms for Automated Docking
NASA Technical Reports Server (NTRS)
Heaton, Andrew F.; Howard, Richard T.
2011-01-01
POSE (relative position and attitude) can be computed in many different ways. Given a sensor that measures bearing to a finite number of spots corresponding to known features (such as a target) of a spacecraft, a number of different algorithms can be used to compute the POSE. NASA has sponsored the development of a flash LIDAR proximity sensor called the Vision Navigation Sensor (VNS) for use by the Orion capsule in future docking missions. This sensor generates data that can be used by a variety of algorithms to compute POSE solutions inside of 15 meters, including at the critical docking range of approximately 1-2 meters. Previously NASA participated in a DARPA program called Orbital Express that achieved the first automated docking for the American space program. During this mission a large set of high quality mated sensor data was obtained at what is essentially the docking distance. This data set is perhaps the most accurate truth data in existence for docking proximity sensors in orbit. In this paper, the flight data from Orbital Express is used to test POSE algorithms at 1.22 meters range. Two different POSE algorithms are tested for two different Fields-of-View (FOVs) and two different pixel noise levels. The results of the analysis are used to predict future performance of the POSE algorithms with VNS data.
A Parallel Rendering Algorithm for MIMD Architectures
NASA Technical Reports Server (NTRS)
Crockett, Thomas W.; Orloff, Tobias
1991-01-01
Applications such as animation and scientific visualization demand high performance rendering of complex three dimensional scenes. To deliver the necessary rendering rates, highly parallel hardware architectures are required. The challenge is then to design algorithms and software which effectively use the hardware parallelism. A rendering algorithm targeted to distributed memory MIMD architectures is described. For maximum performance, the algorithm exploits both object-level and pixel-level parallelism. The behavior of the algorithm is examined both analytically and experimentally. Its performance for large numbers of processors is found to be limited primarily by communication overheads. An experimental implementation for the Intel iPSC/860 shows increasing performance from 1 to 128 processors across a wide range of scene complexities. It is shown that minimal modifications to the algorithm will adapt it for use on shared memory architectures as well.
Algorithms Could Automate Cancer Diagnosis
NASA Technical Reports Server (NTRS)
Baky, A. A.; Winkler, D. G.
1982-01-01
Five new algorithms are a complete statistical procedure for quantifying cell abnormalities from digitized images. Procedure could be basis for automated detection and diagnosis of cancer. Objective of procedure is to assign each cell an atypia status index (ASI), which quantifies level of abnormality. It is possible that ASI values will be accurate and economical enough to allow diagnoses to be made quickly and accurately by computer processing of laboratory specimens extracted from patients.
NASA Astrophysics Data System (ADS)
Salami, M. J. E.; Tijani, I. B.; Abdullateef, A. I.; Aibinu, M. A.
2013-12-01
A hybrid optimization algorithm using Differential Evolution (DE) and Genetic Algorithm (GA) is proposed in this study to address the problem of network parameters determination associated with the Nonlinear Autoregressive with eXogenous inputs Network (NARX-network). The proposed algorithm involves a two level optimization scheme to search for both optimal network architecture and weights. The DE at the upper level is formulated as combinatorial optimization to search for the network architecture while the associated network weights that minimize the prediction error is provided by the GA at the lower level. The performance of the algorithm is evaluated on identification of a laboratory rotary motion system. The system identification results show the effectiveness of the proposed algorithm for nonparametric model development.
Reasoning about systolic algorithms
Purushothaman, S.; Subrahmanyam, P.A.
1988-12-01
The authors present a methodology for verifying correctness of systolic algorithms. The methodology is based on solving a set of Uniform Recurrence Equations obtained from a description of systolic algorithms as a set of recursive equations. They present an approach to mechanically verify correctness of systolic algorithms, using the Boyer-Moore theorem proven. A mechanical correctness proof of an example from the literature is also presented.
Competing Sudakov veto algorithms
NASA Astrophysics Data System (ADS)
Kleiss, Ronald; Verheyen, Rob
2016-07-01
We present a formalism to analyze the distribution produced by a Monte Carlo algorithm. We perform these analyses on several versions of the Sudakov veto algorithm, adding a cutoff, a second variable and competition between emission channels. The formal analysis allows us to prove that multiple, seemingly different competition algorithms, including those that are currently implemented in most parton showers, lead to the same result. Finally, we test their performance in a semi-realistic setting and show that there are significantly faster alternatives to the commonly used algorithms.
Algorithm That Synthesizes Other Algorithms for Hashing
NASA Technical Reports Server (NTRS)
James, Mark
2010-01-01
An algorithm that includes a collection of several subalgorithms has been devised as a means of synthesizing still other algorithms (which could include computer code) that utilize hashing to determine whether an element (typically, a number or other datum) is a member of a set (typically, a list of numbers). Each subalgorithm synthesizes an algorithm (e.g., a block of code) that maps a static set of key hashes to a somewhat linear monotonically increasing sequence of integers. The goal in formulating this mapping is to cause the length of the sequence thus generated to be as close as practicable to the original length of the set and thus to minimize gaps between the elements. The advantage of the approach embodied in this algorithm is that it completely avoids the traditional approach of hash-key look-ups that involve either secondary hash generation and look-up or further searching of a hash table for a desired key in the event of collisions. This algorithm guarantees that it will never be necessary to perform a search or to generate a secondary key in order to determine whether an element is a member of a set. This algorithm further guarantees that any algorithm that it synthesizes can be executed in constant time. To enforce these guarantees, the subalgorithms are formulated to employ a set of techniques, each of which works very effectively covering a certain class of hash-key values. These subalgorithms are of two types, summarized as follows: Given a list of numbers, try to find one or more solutions in which, if each number is shifted to the right by a constant number of bits and then masked with a rotating mask that isolates a set of bits, a unique number is thereby generated. In a variant of the foregoing procedure, omit the masking. Try various combinations of shifting, masking, and/or offsets until the solutions are found. From the set of solutions, select the one that provides the greatest compression for the representation and is executable in the
Parallel scheduling algorithms
Dekel, E.; Sahni, S.
1983-01-01
Parallel algorithms are given for scheduling problems such as scheduling to minimize the number of tardy jobs, job sequencing with deadlines, scheduling to minimize earliness and tardiness penalties, channel assignment, and minimizing the mean finish time. The shared memory model of parallel computers is used to obtain fast algorithms. 26 references.
Developmental Algorithms Have Meaning!
ERIC Educational Resources Information Center
Green, John
1997-01-01
Adapts Stanic and McKillip's ideas for the use of developmental algorithms to propose that the present emphasis on symbolic manipulation should be tempered with an emphasis on the conceptual understanding of the mathematics underlying the algorithm. Uses examples from the areas of numeric computation, algebraic manipulation, and equation solving…
Algorithm refinement for fluctuating hydrodynamics
Williams, Sarah A.; Bell, John B.; Garcia, Alejandro L.
2007-07-03
This paper introduces an adaptive mesh and algorithmrefinement method for fluctuating hydrodynamics. This particle-continuumhybrid simulates the dynamics of a compressible fluid with thermalfluctuations. The particle algorithm is direct simulation Monte Carlo(DSMC), a molecular-level scheme based on the Boltzmann equation. Thecontinuum algorithm is based on the Landau-Lifshitz Navier-Stokes (LLNS)equations, which incorporate thermal fluctuations into macroscopichydrodynamics by using stochastic fluxes. It uses a recently-developedsolver for LLNS, based on third-order Runge-Kutta. We present numericaltests of systems in and out of equilibrium, including time-dependentsystems, and demonstrate dynamic adaptive refinement by the computationof a moving shock wave. Mean system behavior and second moment statisticsof our simulations match theoretical values and benchmarks well. We findthat particular attention should be paid to the spectrum of the flux atthe interface between the particle and continuum methods, specificallyfor the non-hydrodynamic (kinetic) time scales.
Optimisation algorithms for microarray biclustering.
Perrin, Dimitri; Duhamel, Christophe
2013-01-01
In providing simultaneous information on expression profiles for thousands of genes, microarray technologies have, in recent years, been largely used to investigate mechanisms of gene expression. Clustering and classification of such data can, indeed, highlight patterns and provide insight on biological processes. A common approach is to consider genes and samples of microarray datasets as nodes in a bipartite graphs, where edges are weighted e.g. based on the expression levels. In this paper, using a previously-evaluated weighting scheme, we focus on search algorithms and evaluate, in the context of biclustering, several variations of Genetic Algorithms. We also introduce a new heuristic "Propagate", which consists in recursively evaluating neighbour solutions with one more or one less active conditions. The results obtained on three well-known datasets show that, for a given weighting scheme, optimal or near-optimal solutions can be identified. PMID:24109756
MUSIC algorithms for rebar detection
NASA Astrophysics Data System (ADS)
Solimene, Raffaele; Leone, Giovanni; Dell'Aversano, Angela
2013-12-01
The MUSIC (MUltiple SIgnal Classification) algorithm is employed to detect and localize an unknown number of scattering objects which are small in size as compared to the wavelength. The ensemble of objects to be detected consists of both strong and weak scatterers. This represents a scattering environment challenging for detection purposes as strong scatterers tend to mask the weak ones. Consequently, the detection of more weakly scattering objects is not always guaranteed and can be completely impaired when the noise corrupting data is of a relatively high level. To overcome this drawback, here a new technique is proposed, starting from the idea of applying a two-stage MUSIC algorithm. In the first stage strong scatterers are detected. Then, information concerning their number and location is employed in the second stage focusing only on the weak scatterers. The role of an adequate scattering model is emphasized to improve drastically detection performance in realistic scenarios.
Function-Based Algorithms for Biological Sequences
ERIC Educational Resources Information Center
Mohanty, Pragyan Sheela P.
2015-01-01
Two problems at two different abstraction levels of computational biology are studied. At the molecular level, efficient pattern matching algorithms in DNA sequences are presented. For gene order data, an efficient data structure is presented capable of storing all gene re-orderings in a systematic manner. A common characteristic of presented…
Promoting Understanding of Linear Equations with the Median-Slope Algorithm
ERIC Educational Resources Information Center
Edwards, Michael Todd
2005-01-01
The preliminary findings resulting when invented algorithm is used with entry-level students while introducing linear equations is described. As calculations are accessible, the algorithm is preferable to more rigorous statistical procedures in entry-level classrooms.
Adaptive mesh and algorithm refinement using direct simulation Monte Carlo
Garcia, A.L.; Bell, J.B.; Crutchfield, W.Y.; Alder, B.J.
1999-09-01
Adaptive mesh and algorithm refinement (AMAR) embeds a particle method within a continuum method at the finest level of an adaptive mesh refinement (AMR) hierarchy. The coupling between the particle region and the overlaying continuum grid is algorithmically equivalent to that between the fine and coarse levels of AMR. Direct simulation Monte Carlo (DSMC) is used as the particle algorithm embedded within a Godunov-type compressible Navier-Stokes solver. Several examples are presented and compared with purely continuum calculations.
Improved Bat Algorithm Applied to Multilevel Image Thresholding
2014-01-01
Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation and further higher level processing. However, the required computational time for exhaustive search grows exponentially with the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm, for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving convergence speed. PMID:25165733
Improved bat algorithm applied to multilevel image thresholding.
Alihodzic, Adis; Tuba, Milan
2014-01-01
Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation and further higher level processing. However, the required computational time for exhaustive search grows exponentially with the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm, for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving convergence speed. PMID:25165733
GOES-R Algorithm Working Group (AWG)
NASA Astrophysics Data System (ADS)
Daniels, Jaime; Goldberg, Mitch; Wolf, Walter; Zhou, Lihang; Lowe, Kenneth
2009-08-01
For the next-generation of GOES-R instruments to meet stated performance requirements, state-of-the-art algorithms will be needed to convert raw instrument data to calibrated radiances and derived geophysical parameters (atmosphere, land, ocean, and space weather). The GOES-R Program Office (GPO) assigned the NOAA/NESDIS Center for Satellite Research and Applications (STAR) the responsibility for technical leadership and management of GOES-R algorithm development and calibration/validation. STAR responded with the creation of the GOES-R Algorithm Working Group (AWG) to manage and coordinate development and calibration/validation activities for GOES-R proxy data and geophysical product algorithms. The AWG consists of 15 application teams that bring expertise in product algorithms that span atmospheric, land, oceanic, and space weather disciplines. Each AWG teams will develop new scientific Level- 2 algorithms for GOES-R and will also leverage science developments from other communities (other government agencies, universities and industry), and heritage approaches from current operational GOES and POES product systems. All algorithms will be demonstrated and validated in a scalable operational demonstration environment. All software developed by the AWG will adhere to new standards established within NOAA/NESDIS. The AWG Algorithm Integration Team (AIT) has the responsibility for establishing the system framework, integrating the product software from each team into this framework, enforcing the established software development standards, and preparing system deliveries. The AWG will deliver an Algorithm Theoretical Basis Document (ATBD) for each GOES-R geophysical product as well as Delivered Algorithm Packages (DAPs) to the GPO.
NASA Astrophysics Data System (ADS)
Gandomi, A. H.; Yang, X.-S.; Talatahari, S.; Alavi, A. H.
2013-01-01
A recently developed metaheuristic optimization algorithm, firefly algorithm (FA), mimics the social behavior of fireflies based on the flashing and attraction characteristics of fireflies. In the present study, we will introduce chaos into FA so as to increase its global search mobility for robust global optimization. Detailed studies are carried out on benchmark problems with different chaotic maps. Here, 12 different chaotic maps are utilized to tune the attractive movement of the fireflies in the algorithm. The results show that some chaotic FAs can clearly outperform the standard FA.
Rempp, Florian; Mahler, Guenter; Michel, Mathias
2007-09-15
We introduce a scheme to perform the cooling algorithm, first presented by Boykin et al. in 2002, for an arbitrary number of times on the same set of qbits. We achieve this goal by adding an additional SWAP gate and a bath contact to the algorithm. This way one qbit may repeatedly be cooled without adding additional qbits to the system. By using a product Liouville space to model the bath contact we calculate the density matrix of the system after a given number of applications of the algorithm.
Parallel algorithms and architectures
Albrecht, A.; Jung, H.; Mehlhorn, K.
1987-01-01
Contents of this book are the following: Preparata: Deterministic simulation of idealized parallel computers on more realistic ones; Convex hull of randomly chosen points from a polytope; Dataflow computing; Parallel in sequence; Towards the architecture of an elementary cortical processor; Parallel algorithms and static analysis of parallel programs; Parallel processing of combinatorial search; Communications; An O(nlogn) cost parallel algorithms for the single function coarsest partition problem; Systolic algorithms for computing the visibility polygon and triangulation of a polygonal region; and RELACS - A recursive layout computing system. Parallel linear conflict-free subtree access.
The Algorithm Selection Problem
NASA Technical Reports Server (NTRS)
Minton, Steve; Allen, John; Deiss, Ron (Technical Monitor)
1994-01-01
Work on NP-hard problems has shown that many instances of these theoretically computationally difficult problems are quite easy. The field has also shown that choosing the right algorithm for the problem can have a profound effect on the time needed to find a solution. However, to date there has been little work showing how to select the right algorithm for solving any particular problem. The paper refers to this as the algorithm selection problem. It describes some of the aspects that make this problem difficult, as well as proposes a technique for addressing it.
A Simple Calculator Algorithm.
ERIC Educational Resources Information Center
Cook, Lyle; McWilliam, James
1983-01-01
The problem of finding cube roots when limited to a calculator with only square root capability is discussed. An algorithm is demonstrated and explained which should always produce a good approximation within a few iterations. (MP)
Zhou, Yongquan; Xie, Jian; Li, Liangliang; Ma, Mingzhi
2014-01-01
Bat algorithm (BA) is a novel stochastic global optimization algorithm. Cloud model is an effective tool in transforming between qualitative concepts and their quantitative representation. Based on the bat echolocation mechanism and excellent characteristics of cloud model on uncertainty knowledge representation, a new cloud model bat algorithm (CBA) is proposed. This paper focuses on remodeling echolocation model based on living and preying characteristics of bats, utilizing the transformation theory of cloud model to depict the qualitative concept: "bats approach their prey." Furthermore, Lévy flight mode and population information communication mechanism of bats are introduced to balance the advantage between exploration and exploitation. The simulation results show that the cloud model bat algorithm has good performance on functions optimization. PMID:24967425
NASA Astrophysics Data System (ADS)
Feigin, G.; Ben-Yosef, N.
1983-10-01
A thinning algorithm, of the banana-peel type, is presented. In each iteration pixels are attacked from all directions (there are no sub-iterations), and the deletion criteria depend on the 24 nearest neighbours.
Diagnostic Algorithm Benchmarking
NASA Technical Reports Server (NTRS)
Poll, Scott
2011-01-01
A poster for the NASA Aviation Safety Program Annual Technical Meeting. It describes empirical benchmarking on diagnostic algorithms using data from the ADAPT Electrical Power System testbed and a diagnostic software framework.
Algorithmically specialized parallel computers
Snyder, L.; Jamieson, L.H.; Gannon, D.B.; Siegel, H.J.
1985-01-01
This book is based on a workshop which dealt with array processors. Topics considered include algorithmic specialization using VLSI, innovative architectures, signal processing, speech recognition, image processing, specialized architectures for numerical computations, and general-purpose computers.
Algorithmic synthesis using Python compiler
NASA Astrophysics Data System (ADS)
Cieszewski, Radoslaw; Romaniuk, Ryszard; Pozniak, Krzysztof; Linczuk, Maciej
2015-09-01
This paper presents a python to VHDL compiler. The compiler interprets an algorithmic description of a desired behavior written in Python and translate it to VHDL. FPGA combines many benefits of both software and ASIC implementations. Like software, the programmed circuit is flexible, and can be reconfigured over the lifetime of the system. FPGAs have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. This can be achieved by using many computational resources at the same time. Creating parallel programs implemented in FPGAs in pure HDL is difficult and time consuming. Using higher level of abstraction and High-Level Synthesis compiler implementation time can be reduced. The compiler has been implemented using the Python language. This article describes design, implementation and results of created tools.
Energy Science and Technology Software Center (ESTSC)
2013-07-29
The OpenEIS Algorithm package seeks to provide a low-risk path for building owners, service providers and managers to explore analytical methods for improving building control and operational efficiency. Users of this software can analyze building data, and learn how commercial implementations would provide long-term value. The code also serves as a reference implementation for developers who wish to adapt the algorithms for use in commercial tools or service offerings.
The Superior Lambert Algorithm
NASA Astrophysics Data System (ADS)
der, G.
2011-09-01
Lambert algorithms are used extensively for initial orbit determination, mission planning, space debris correlation, and missile targeting, just to name a few applications. Due to the significance of the Lambert problem in Astrodynamics, Gauss, Battin, Godal, Lancaster, Gooding, Sun and many others (References 1 to 15) have provided numerous formulations leading to various analytic solutions and iterative methods. Most Lambert algorithms and their computer programs can only work within one revolution, break down or converge slowly when the transfer angle is near zero or 180 degrees, and their multi-revolution limitations are either ignored or barely addressed. Despite claims of robustness, many Lambert algorithms fail without notice, and the users seldom have a clue why. The DerAstrodynamics lambert2 algorithm, which is based on the analytic solution formulated by Sun, works for any number of revolutions and converges rapidly at any transfer angle. It provides significant capability enhancements over every other Lambert algorithm in use today. These include improved speed, accuracy, robustness, and multirevolution capabilities as well as implementation simplicity. Additionally, the lambert2 algorithm provides a powerful tool for solving the angles-only problem without artificial singularities (pointed out by Gooding in Reference 16), which involves 3 lines of sight captured by optical sensors, or systems such as the Air Force Space Surveillance System (AFSSS). The analytic solution is derived from the extended Godal’s time equation by Sun, while the iterative method of solution is that of Laguerre, modified for robustness. The Keplerian solution of a Lambert algorithm can be extended to include the non-Keplerian terms of the Vinti algorithm via a simple targeting technique (References 17 to 19). Accurate analytic non-Keplerian trajectories can be predicted for satellites and ballistic missiles, while performing at least 100 times faster in speed than most
Birefringent filter design by use of a modified genetic algorithm.
Wen, Mengtao; Yao, Jianping
2006-06-10
A modified genetic algorithm is proposed for the optimization of fiber birefringent filters. The orientation angles and the element lengths are determined by the genetic algorithm to minimize the sidelobe levels of the filters. Being different from the normal genetic algorithm, the algorithm proposed reduces the problem space of the birefringent filter design to achieve faster speed and better performance. The design of 4-, 8-, and 14-section birefringent filters with an improved sidelobe suppression ratio is realized. A 4-section birefringent filter designed with the algorithm is experimentally realized. PMID:16761031
Updated treatment algorithm of pulmonary arterial hypertension.
Galiè, Nazzareno; Corris, Paul A; Frost, Adaani; Girgis, Reda E; Granton, John; Jing, Zhi Cheng; Klepetko, Walter; McGoon, Michael D; McLaughlin, Vallerie V; Preston, Ioana R; Rubin, Lewis J; Sandoval, Julio; Seeger, Werner; Keogh, Anne
2013-12-24
The demands on a pulmonary arterial hypertension (PAH) treatment algorithm are multiple and in some ways conflicting. The treatment algorithm usually includes different types of recommendations with varying degrees of scientific evidence. In addition, the algorithm is required to be comprehensive but not too complex, informative yet simple and straightforward. The type of information in the treatment algorithm are heterogeneous including clinical, hemodynamic, medical, interventional, pharmacological and regulatory recommendations. Stakeholders (or users) including physicians from various specialties and with variable expertise in PAH, nurses, patients and patients' associations, healthcare providers, regulatory agencies and industry are often interested in the PAH treatment algorithm for different reasons. These are the considerable challenges faced when proposing appropriate updates to the current evidence-based treatment algorithm.The current treatment algorithm may be divided into 3 main areas: 1) general measures, supportive therapy, referral strategy, acute vasoreactivity testing and chronic treatment with calcium channel blockers; 2) initial therapy with approved PAH drugs; and 3) clinical response to the initial therapy, combination therapy, balloon atrial septostomy, and lung transplantation. All three sections will be revisited highlighting information newly available in the past 5 years and proposing updates where appropriate. The European Society of Cardiology grades of recommendation and levels of evidence will be adopted to rank the proposed treatments. PMID:24355643
Passive MMW algorithm performance characterization using MACET
NASA Astrophysics Data System (ADS)
Williams, Bradford D.; Watson, John S.; Amphay, Sengvieng A.
1997-06-01
As passive millimeter wave sensor technology matures, algorithms which are tailored to exploit the benefits of this technology are being developed. The expedient development of such algorithms requires an understanding of not only the gross phenomenology, but also specific quirks and limitations inherent in sensors and the data gathering methodology specific to this regime. This level of understanding is approached as the technology matures and increasing amounts of data become available for analysis. The Armament Directorate of Wright Laboratory, WL/MN, has spearheaded the advancement of passive millimeter-wave technology in algorithm development tools and modeling capability as well as sensor development. A passive MMW channel is available within WL/MNs popular multi-channel modeling program Irma, and a sample passive MMW algorithm is incorporated into the Modular Algorithm Concept Evaluation Tool, an algorithm development and evaluation system. The Millimeter Wave Analysis of Passive Signatures system provides excellent data collection capability in the 35, 60, and 95 GHz MMW bands. This paper exploits these assets for the study of the PMMW signature of a High Mobility Multi- Purpose Wheeled Vehicle in the three bands mentioned, and the effect of camouflage upon this signature and autonomous target recognition algorithm performance.
Project resource reallocation algorithm
NASA Technical Reports Server (NTRS)
Myers, J. E.
1981-01-01
A methodology for adjusting baseline cost estimates according to project schedule changes is described. An algorithm which performs a linear expansion or contraction of the baseline project resource distribution in proportion to the project schedule expansion or contraction is presented. Input to the algorithm consists of the deck of cards (PACE input data) prepared for the baseline project schedule as well as a specification of the nature of the baseline schedule change. Output of the algorithm is a new deck of cards with all work breakdown structure block and element of cost estimates redistributed for the new project schedule. This new deck can be processed through PACE to produce a detailed cost estimate for the new schedule.
Optical rate sensor algorithms
NASA Technical Reports Server (NTRS)
Uhde-Lacovara, Jo A.
1989-01-01
Optical sensors, in particular Charge Coupled Device (CCD) arrays, will be used on Space Station to track stars in order to provide inertial attitude reference. Algorithms are presented to derive attitude rate from the optical sensors. The first algorithm is a recursive differentiator. A variance reduction factor (VRF) of 0.0228 was achieved with a rise time of 10 samples. A VRF of 0.2522 gives a rise time of 4 samples. The second algorithm is based on the direct manipulation of the pixel intensity outputs of the sensor. In 1-dimensional simulations, the derived rate was with 0.07 percent of the actual rate in the presence of additive Gaussian noise with a signal to noise ratio of 60 dB.
Temperature Corrected Bootstrap Algorithm
NASA Technical Reports Server (NTRS)
Comiso, Joey C.; Zwally, H. Jay
1997-01-01
A temperature corrected Bootstrap Algorithm has been developed using Nimbus-7 Scanning Multichannel Microwave Radiometer data in preparation to the upcoming AMSR instrument aboard ADEOS and EOS-PM. The procedure first calculates the effective surface emissivity using emissivities of ice and water at 6 GHz and a mixing formulation that utilizes ice concentrations derived using the current Bootstrap algorithm but using brightness temperatures from 6 GHz and 37 GHz channels. These effective emissivities are then used to calculate surface ice which in turn are used to convert the 18 GHz and 37 GHz brightness temperatures to emissivities. Ice concentrations are then derived using the same technique as with the Bootstrap algorithm but using emissivities instead of brightness temperatures. The results show significant improvement in the area where ice temperature is expected to vary considerably such as near the continental areas in the Antarctic, where the ice temperature is colder than average, and in marginal ice zones.
Power spectral estimation algorithms
NASA Technical Reports Server (NTRS)
Bhatia, Manjit S.
1989-01-01
Algorithms to estimate the power spectrum using Maximum Entropy Methods were developed. These algorithms were coded in FORTRAN 77 and were implemented on the VAX 780. The important considerations in this analysis are: (1) resolution, i.e., how close in frequency two spectral components can be spaced and still be identified; (2) dynamic range, i.e., how small a spectral peak can be, relative to the largest, and still be observed in the spectra; and (3) variance, i.e., how accurate the estimate of the spectra is to the actual spectra. The application of the algorithms based on Maximum Entropy Methods to a variety of data shows that these criteria are met quite well. Additional work in this direction would help confirm the findings. All of the software developed was turned over to the technical monitor. A copy of a typical program is included. Some of the actual data and graphs used on this data are also included.
Local multiplicative Schwarz algorithms for convection-diffusion equations
NASA Technical Reports Server (NTRS)
Cai, Xiao-Chuan; Sarkis, Marcus
1995-01-01
We develop a new class of overlapping Schwarz type algorithms for solving scalar convection-diffusion equations discretized by finite element or finite difference methods. The preconditioners consist of two components, namely, the usual two-level additive Schwarz preconditioner and the sum of some quadratic terms constructed by using products of ordered neighboring subdomain preconditioners. The ordering of the subdomain preconditioners is determined by considering the direction of the flow. We prove that the algorithms are optimal in the sense that the convergence rates are independent of the mesh size, as well as the number of subdomains. We show by numerical examples that the new algorithms are less sensitive to the direction of the flow than either the classical multiplicative Schwarz algorithms, and converge faster than the additive Schwarz algorithms. Thus, the new algorithms are more suitable for fluid flow applications than the classical additive or multiplicative Schwarz algorithms.
Machine Protection System algorithm compiler and simulator
White, G.R.; Sherwin, G.
1993-04-01
The Machine Protection System (MPS) component of the SLC`s beam selection system, in which integrated current is continuously monitored and limited to safe levels through careful selection and feedback of the beam repetition rate, is described elsewhere in these proceedings. The novel decision making mechanism by which that system can evaluate ``safe levels,`` and choose an appropriate repetition rate in real-time, is described here. The algorithm that this mechanism uses to make its decision is written in text files and expressed in states of the accelerator and its devices, one file per accelerator region. Before being used, a file is ``compiled`` to a binary format which can be easily processed as a forward-chaining decision tree. It is processed by distributed microcomputers local to the accelerator regions. A parent algorithm evaluates all results, and reports directly to the beam control microprocessor. Operators can test new algorithms, or changes they make to them, with an online graphical NPS simulator.
Carroll, T.; Joshi, U.; Auchincloss, P.
1989-04-01
CDF is currently taking data at a luminosity of 10{sup 30} cm{sup -2} sec{sup -1} using a four level event filtering scheme. The fourth level, LEVEL3, uses ACP (Fermilab`s Advanced Computer Program) designed 32 bit VME based parallel processors (1) capable of executing algorithms written in FORTRAN. LEVEL3 currently rejects about 50% of the events.
New Effective Multithreaded Matching Algorithms
Manne, Fredrik; Halappanavar, Mahantesh
2014-05-19
Matching is an important combinatorial problem with a number of applications in areas such as community detection, sparse linear algebra, and network alignment. Since computing optimal matchings can be very time consuming, several fast approximation algorithms, both sequential and parallel, have been suggested. Common to the algorithms giving the best solutions is that they tend to be sequential by nature, while algorithms more suitable for parallel computation give solutions of less quality. We present a new simple 1 2 -approximation algorithm for the weighted matching problem. This algorithm is both faster than any other suggested sequential 1 2 -approximation algorithm on almost all inputs and also scales better than previous multithreaded algorithms. We further extend this to a general scalable multithreaded algorithm that computes matchings of weight comparable with the best sequential algorithms. The performance of the suggested algorithms is documented through extensive experiments on different multithreaded architectures.
Algorithm for Detecting Significant Locations from Raw GPS Data
NASA Astrophysics Data System (ADS)
Kami, Nobuharu; Enomoto, Nobuyuki; Baba, Teruyuki; Yoshikawa, Takashi
We present a fast algorithm for probabilistically extracting significant locations from raw GPS data based on data point density. Extracting significant locations from raw GPS data is the first essential step of algorithms designed for location-aware applications. Assuming that a location is significant if users spend a certain time around that area, most current algorithms compare spatial/temporal variables, such as stay duration and a roaming diameter, with given fixed thresholds to extract significant locations. However, the appropriate threshold values are not clearly known in priori and algorithms with fixed thresholds are inherently error-prone, especially under high noise levels. Moreover, for N data points, they are generally O(N 2) algorithms since distance computation is required. We developed a fast algorithm for selective data point sampling around significant locations based on density information by constructing random histograms using locality sensitive hashing. Evaluations show competitive performance in detecting significant locations even under high noise levels.
Mapped Landmark Algorithm for Precision Landing
NASA Technical Reports Server (NTRS)
Johnson, Andrew; Ansar, Adnan; Matthies, Larry
2007-01-01
A report discusses a computer vision algorithm for position estimation to enable precision landing during planetary descent. The Descent Image Motion Estimation System for the Mars Exploration Rovers has been used as a starting point for creating code for precision, terrain-relative navigation during planetary landing. The algorithm is designed to be general because it handles images taken at different scales and resolutions relative to the map, and can produce mapped landmark matches for any planetary terrain of sufficient texture. These matches provide a measurement of horizontal position relative to a known landing site specified on the surface map. Multiple mapped landmarks generated per image allow for automatic detection and elimination of bad matches. Attitude and position can be generated from each image; this image-based attitude measurement can be used by the onboard navigation filter to improve the attitude estimate, which will improve the position estimates. The algorithm uses normalized correlation of grayscale images, producing precise, sub-pixel images. The algorithm has been broken into two sub-algorithms: (1) FFT Map Matching (see figure), which matches a single large template by correlation in the frequency domain, and (2) Mapped Landmark Refinement, which matches many small templates by correlation in the spatial domain. Each relies on feature selection, the homography transform, and 3D image correlation. The algorithm is implemented in C++ and is rated at Technology Readiness Level (TRL) 4.
Parallel Architectures and Parallel Algorithms for Integrated Vision Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Choudhary, Alok Nidhi
1989-01-01
Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems.
Predictive Caching Using the TDAG Algorithm
NASA Technical Reports Server (NTRS)
Laird, Philip; Saul, Ronald
1992-01-01
We describe how the TDAG algorithm for learning to predict symbol sequences can be used to design a predictive cache store. A model of a two-level mass storage system is developed and used to calculate the performance of the cache under various conditions. Experimental simulations provide good confirmation of the model.
A Monotonically Convergent Algorithm for FACTALS.
ERIC Educational Resources Information Center
Kiers, Henk A. L.; And Others
1993-01-01
A new procedure is proposed for handling nominal variables in the analysis of variables of mixed measurement levels, and a procedure is developed for handling ordinal variables. Using these procedures, a monotonically convergent algorithm is constructed for the FACTALS method for any mixture of variables. (SLD)
Fractal Landscape Algorithms for Environmental Simulations
NASA Astrophysics Data System (ADS)
Mao, H.; Moran, S.
2014-12-01
Natural science and geographical research are now able to take advantage of environmental simulations that more accurately test experimental hypotheses, resulting in deeper understanding. Experiments affected by the natural environment can benefit from 3D landscape simulations capable of simulating a variety of terrains and environmental phenomena. Such simulations can employ random terrain generation algorithms that dynamically simulate environments to test specific models against a variety of factors. Through the use of noise functions such as Perlin noise, Simplex noise, and diamond square algorithms, computers can generate simulations that model a variety of landscapes and ecosystems. This study shows how these algorithms work together to create realistic landscapes. By seeding values into the diamond square algorithm, one can control the shape of landscape. Perlin noise and Simplex noise are also used to simulate moisture and temperature. The smooth gradient created by coherent noise allows more realistic landscapes to be simulated. Terrain generation algorithms can be used in environmental studies and physics simulations. Potential studies that would benefit from simulations include the geophysical impact of flash floods or drought on a particular region and regional impacts on low lying area due to global warming and rising sea levels. Furthermore, terrain generation algorithms also serve as aesthetic tools to display landscapes (Google Earth), and simulate planetary landscapes. Hence, it can be used as a tool to assist science education. Algorithms used to generate these natural phenomena provide scientists a different approach in analyzing our world. The random algorithms used in terrain generation not only contribute to the generating the terrains themselves, but are also capable of simulating weather patterns.
Sampling Within k-Means Algorithm to Cluster Large Datasets
Bejarano, Jeremy; Bose, Koushiki; Brannan, Tyler; Thomas, Anita; Adragni, Kofi; Neerchal, Nagaraj; Ostrouchov, George
2011-08-01
Due to current data collection technology, our ability to gather data has surpassed our ability to analyze it. In particular, k-means, one of the simplest and fastest clustering algorithms, is ill-equipped to handle extremely large datasets on even the most powerful machines. Our new algorithm uses a sample from a dataset to decrease runtime by reducing the amount of data analyzed. We perform a simulation study to compare our sampling based k-means to the standard k-means algorithm by analyzing both the speed and accuracy of the two methods. Results show that our algorithm is significantly more efficient than the existing algorithm with comparable accuracy. Further work on this project might include a more comprehensive study both on more varied test datasets as well as on real weather datasets. This is especially important considering that this preliminary study was performed on rather tame datasets. Also, these datasets should analyze the performance of the algorithm on varied values of k. Lastly, this paper showed that the algorithm was accurate for relatively low sample sizes. We would like to analyze this further to see how accurate the algorithm is for even lower sample sizes. We could find the lowest sample sizes, by manipulating width and confidence level, for which the algorithm would be acceptably accurate. In order for our algorithm to be a success, it needs to meet two benchmarks: match the accuracy of the standard k-means algorithm and significantly reduce runtime. Both goals are accomplished for all six datasets analyzed. However, on datasets of three and four dimension, as the data becomes more difficult to cluster, both algorithms fail to obtain the correct classifications on some trials. Nevertheless, our algorithm consistently matches the performance of the standard algorithm while becoming remarkably more efficient with time. Therefore, we conclude that analysts can use our algorithm, expecting accurate results in considerably less time.
Face recognition algorithms surpass humans matching faces over changes in illumination.
O'Toole, Alice J; Jonathon Phillips, P; Jiang, Fang; Ayyad, Janet; Penard, Nils; Abdi, Hervé
2007-09-01
There has been significant progress in improving the performance of computer-based face recognition algorithms over the last decade. Although algorithms have been tested and compared extensively with each other, there has been remarkably little work comparing the accuracy of computer-based face recognition systems with humans. We compared seven state-of-the-art face recognition algorithms with humans on a facematching task. Humans and algorithms determined whether pairs of face images, taken under different illumination conditions, were pictures of the same person or of different people. Three algorithms surpassed human performance matching face pairs prescreened to be "difficult" and six algorithms surpassed humans on "easy" face pairs. Although illumination variation continues to challenge face recognition algorithms, current algorithms compete favorably with humans. The superior performance of the best algorithms over humans, in light of the absolute performance levels of the algorithms, underscores the need to compare algorithms with the best current control--humans. PMID:17627050
Energy Science and Technology Software Center (ESTSC)
2005-03-30
The Robotic Follow Algorithm enables allows any robotic vehicle to follow a moving target while reactively choosing a route around nearby obstacles. The robotic follow behavior can be used with different camera systems and can be used with thermal or visual tracking as well as other tracking methods such as radio frequency tags.
Data Structures and Algorithms.
ERIC Educational Resources Information Center
Wirth, Niklaus
1984-01-01
Built-in data structures are the registers and memory words where binary values are stored; hard-wired algorithms are the fixed rules, embodied in electronic logic circuits, by which stored data are interpreted as instructions to be executed. Various topics related to these two basic elements of every computer program are discussed. (JN)
General cardinality genetic algorithms
Koehler; Bhattacharyya; Vose
1997-01-01
A complete generalization of the Vose genetic algorithm model from the binary to higher cardinality case is provided. Boolean AND and EXCLUSIVE-OR operators are replaced by multiplication and addition over rings of integers. Walsh matrices are generalized with finite Fourier transforms for higher cardinality usage. Comparison of results to the binary case are provided. PMID:10021767
ERIC Educational Resources Information Center
Drake, Michael
2011-01-01
One debate that periodically arises in mathematics education is the issue of how to teach calculation more effectively. "Modern" approaches seem to initially favour mental calculation, informal methods, and the development of understanding before introducing written forms, while traditionalists tend to champion particular algorithms. The debate is…
The Xmath Integration Algorithm
ERIC Educational Resources Information Center
Bringslid, Odd
2009-01-01
The projects Xmath (Bringslid and Canessa, 2002) and dMath (Bringslid, de la Villa and Rodriguez, 2007) were supported by the European Commission in the so called Minerva Action (Xmath) and The Leonardo da Vinci programme (dMath). The Xmath eBook (Bringslid, 2006) includes algorithms into a wide range of undergraduate mathematical issues embedded…
Toward Developing an Unbiased Scoring Algorithm for "NASA" and Similar Ranking Tasks.
ERIC Educational Resources Information Center
Lane, Irving M.; And Others
1981-01-01
Presents both logical and empirical evidence to illustrate that the conventional scoring algorithm for ranking tasks significantly underestimates the initial level of group ability and that Slevin's alternative scoring algorithm significantly overestimates the initial level of ability. Presents a modification of Slevin's algorithm which authors…
The evaluation of the OSGLR algorithm for restructurable controls
NASA Technical Reports Server (NTRS)
Bonnice, W. F.; Wagner, E.; Hall, S. R.; Motyka, P.
1986-01-01
The detection and isolation of commercial aircraft control surface and actuator failures using the orthogonal series generalized likelihood ratio (OSGLR) test was evaluated. The OSGLR algorithm was chosen as the most promising algorithm based on a preliminary evaluation of three failure detection and isolation (FDI) algorithms (the detection filter, the generalized likelihood ratio test, and the OSGLR test) and a survey of the literature. One difficulty of analytic FDI techniques and the OSGLR algorithm in particular is their sensitivity to modeling errors. Therefore, methods of improving the robustness of the algorithm were examined with the incorporation of age-weighting into the algorithm being the most effective approach, significantly reducing the sensitivity of the algorithm to modeling errors. The steady-state implementation of the algorithm based on a single cruise linear model was evaluated using a nonlinear simulation of a C-130 aircraft. A number of off-nominal no-failure flight conditions including maneuvers, nonzero flap deflections, different turbulence levels and steady winds were tested. Based on the no-failure decision functions produced by off-nominal flight conditions, the failure detection performance at the nominal flight condition was determined. The extension of the algorithm to a wider flight envelope by scheduling the linear models used by the algorithm on dynamic pressure and flap deflection was also considered. Since simply scheduling the linear models over the entire flight envelope is unlikely to be adequate, scheduling of the steady-state implentation of the algorithm was briefly investigated.
Mapping robust parallel multigrid algorithms to scalable memory architectures
NASA Technical Reports Server (NTRS)
Overman, Andrea; Vanrosendale, John
1993-01-01
The convergence rate of standard multigrid algorithms degenerates on problems with stretched grids or anisotropic operators. The usual cure for this is the use of line or plane relaxation. However, multigrid algorithms based on line and plane relaxation have limited and awkward parallelism and are quite difficult to map effectively to highly parallel architectures. Newer multigrid algorithms that overcome anisotropy through the use of multiple coarse grids rather than relaxation are better suited to massively parallel architectures because they require only simple point-relaxation smoothers. In this paper, we look at the parallel implementation of a V-cycle multiple semicoarsened grid (MSG) algorithm on distributed-memory architectures such as the Intel iPSC/860 and Paragon computers. The MSG algorithms provide two levels of parallelism: parallelism within the relaxation or interpolation on each grid and across the grids on each multigrid level. Both levels of parallelism must be exploited to map these algorithms effectively to parallel architectures. This paper describes a mapping of an MSG algorithm to distributed-memory architectures that demonstrates how both levels of parallelism can be exploited. The result is a robust and effective multigrid algorithm for distributed-memory machines.
Mapping robust parallel multigrid algorithms to scalable memory architectures
NASA Technical Reports Server (NTRS)
Overman, Andrea; Vanrosendale, John
1993-01-01
The convergence rate of standard multigrid algorithms degenerates on problems with stretched grids or anisotropic operators. The usual cure for this is the use of line or plane relaxation. However, multigrid algorithms based on line and plane relaxation have limited and awkward parallelism and are quite difficult to map effectively to highly parallel architectures. Newer multigrid algorithms that overcome anisotropy through the use of multiple coarse grids rather than line relaxation are better suited to massively parallel architectures because they require only simple point-relaxation smoothers. The parallel implementation of a V-cycle multiple semi-coarsened grid (MSG) algorithm or distributed-memory architectures such as the Intel iPSC/860 and Paragon computers is addressed. The MSG algorithms provide two levels of parallelism: parallelism within the relaxation or interpolation on each grid and across the grids on each multigrid level. Both levels of parallelism must be exploited to map these algorithms effectively to parallel architectures. A mapping of an MSG algorithm to distributed-memory architectures that demonstrate how both levels of parallelism can be exploited is described. The results is a robust and effective multigrid algorithm for distributed-memory machines.
The SISCone and anti-k_t jet algorithms
Soyez,G.
2008-04-07
We illustrate how the midpoint and iterative cone (with progressive removal) algorithms fail to satisfy the fundamental requirements of infrared and collinear safety, causing divergences in the perturbative expansion. We introduce SISCone and the anti-k{sub t} algorithms as respective replacements that do not have those failures without any cost at the experimental level.
A general algorithm for the construction of contour plots
NASA Technical Reports Server (NTRS)
Johnson, W.; Silva, F.
1981-01-01
An algorithm is described that performs the task of drawing equal level contours on a plane, which requires interpolation in two dimensions based on data prescribed at points distributed irregularly over the plane. The approach is described in detail. The computer program that implements the algorithm is documented and listed.
Traffic Noise Ground Attenuation Algorithm Evaluation
NASA Astrophysics Data System (ADS)
Herman, Lloyd Allen
The Federal Highway Administration traffic noise prediction program, STAMINA 2.0, was evaluated for its accuracy. In addition, the ground attenuation algorithm used in the Ontario ORNAMENT method was evaluated to determine its potential to improve these predictions. Field measurements of sound levels were made at 41 sites on I-440 in Nashville, Tennessee in order to both study noise barrier effectiveness and to evaluate STAMINA 2.0 and the performance of the ORNAMENT ground attenuation algorithm. The measurement sites, which contain large variations in terrain, included several cross sections. Further, all sites contain some type of barrier, natural or constructed, which could more fully expose the strength and weaknesses of the ground attenuation algorithms. The noise barrier evaluation was accomplished in accordance with American National Standard Methods for Determination of Insertion Loss of Outdoor Noise Barriers which resulted in an evaluation of this standard. The entire 7.2 mile length of I-440 was modeled using STAMINA 2.0. A multiple run procedure was developed to emulate the results that would be obtained if the ORNAMENT algorithm was incorporated into STAMINA 2.0. Finally, the predicted noise levels based on STAMINA 2.0 and STAMINA with the ORNAMENT ground attenuation algorithm were compared with each other and with the field measurements. It was found that STAMINA 2.0 overpredicted noise levels by an average of over 2 dB for the receivers on I-440, whereas, the STAMINA with ORNAMENT ground attenuation algorithm overpredicted noise levels by an average of less than 0.5 dB. The mean errors for the two predictions were found to be statistically different from each other, and the mean error for the prediction with the ORNAMENT ground attenuation algorithm was not found to be statistically different from zero. The STAMINA 2.0 program predicts little, if any, ground attenuation for receivers at typical first-row distances from highways where noise barriers
Applying a Genetic Algorithm to Reconfigurable Hardware
NASA Technical Reports Server (NTRS)
Wells, B. Earl; Weir, John; Trevino, Luis; Patrick, Clint; Steincamp, Jim
2004-01-01
This paper investigates the feasibility of applying genetic algorithms to solve optimization problems that are implemented entirely in reconfgurable hardware. The paper highlights the pe$ormance/design space trade-offs that must be understood to effectively implement a standard genetic algorithm within a modem Field Programmable Gate Array, FPGA, reconfgurable hardware environment and presents a case-study where this stochastic search technique is applied to standard test-case problems taken from the technical literature. In this research, the targeted FPGA-based platform and high-level design environment was the Starbridge Hypercomputing platform, which incorporates multiple Xilinx Virtex II FPGAs, and the Viva TM graphical hardware description language.
Reactive Collision Avoidance Algorithm
NASA Technical Reports Server (NTRS)
Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred
2010-01-01
The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on
Wire Detection Algorithms for Navigation
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia I.
2002-01-01
In this research we addressed the problem of obstacle detection for low altitude rotorcraft flight. In particular, the problem of detecting thin wires in the presence of image clutter and noise was studied. Wires present a serious hazard to rotorcrafts. Since they are very thin, their detection early enough so that the pilot has enough time to take evasive action is difficult, as their images can be less than one or two pixels wide. Two approaches were explored for this purpose. The first approach involved a technique for sub-pixel edge detection and subsequent post processing, in order to reduce the false alarms. After reviewing the line detection literature, an algorithm for sub-pixel edge detection proposed by Steger was identified as having good potential to solve the considered task. The algorithm was tested using a set of images synthetically generated by combining real outdoor images with computer generated wire images. The performance of the algorithm was evaluated both, at the pixel and the wire levels. It was observed that the algorithm performs well, provided that the wires are not too thin (or distant) and that some post processing is performed to remove false alarms due to clutter. The second approach involved the use of an example-based learning scheme namely, Support Vector Machines. The purpose of this approach was to explore the feasibility of an example-based learning based approach for the task of detecting wires from their images. Support Vector Machines (SVMs) have emerged as a promising pattern classification tool and have been used in various applications. It was found that this approach is not suitable for very thin wires and of course, not suitable at all for sub-pixel thick wires. High dimensionality of the data as such does not present a major problem for SVMs. However it is desirable to have a large number of training examples especially for high dimensional data. The main difficulty in using SVMs (or any other example-based learning
NASA Technical Reports Server (NTRS)
Arenstorf, Norbert S.; Jordan, Harry F.
1987-01-01
A barrier is a method for synchronizing a large number of concurrent computer processes. After considering some basic synchronization mechanisms, a collection of barrier algorithms with either linear or logarithmic depth are presented. A graphical model is described that profiles the execution of the barriers and other parallel programming constructs. This model shows how the interaction between the barrier algorithms and the work that they synchronize can impact their performance. One result is that logarithmic tree structured barriers show good performance when synchronizing fixed length work, while linear self-scheduled barriers show better performance when synchronizing fixed length work with an imbedded critical section. The linear barriers are better able to exploit the process skew associated with critical sections. Timing experiments, performed on an eighteen processor Flex/32 shared memory multiprocessor, that support these conclusions are detailed.
Algorithms, games, and evolution
Chastain, Erick; Livnat, Adi; Papadimitriou, Christos; Vazirani, Umesh
2014-01-01
Even the most seasoned students of evolution, starting with Darwin himself, have occasionally expressed amazement that the mechanism of natural selection has produced the whole of Life as we see it around us. There is a computational way to articulate the same amazement: “What algorithm could possibly achieve all this in a mere three and a half billion years?” In this paper we propose an answer: We demonstrate that in the regime of weak selection, the standard equations of population genetics describing natural selection in the presence of sex become identical to those of a repeated game between genes played according to multiplicative weight updates (MWUA), an algorithm known in computer science to be surprisingly powerful and versatile. MWUA maximizes a tradeoff between cumulative performance and entropy, which suggests a new view on the maintenance of diversity in evolution. PMID:24979793
NASA Technical Reports Server (NTRS)
Arenstorf, Norbert S.; Jordan, Harry F.
1989-01-01
A barrier is a method for synchronizing a large number of concurrent computer processes. After considering some basic synchronization mechanisms, a collection of barrier algorithms with either linear or logarithmic depth are presented. A graphical model is described that profiles the execution of the barriers and other parallel programming constructs. This model shows how the interaction between the barrier algorithms and the work that they synchronize can impact their performance. One result is that logarithmic tree structured barriers show good performance when synchronizing fixed length work, while linear self-scheduled barriers show better performance when synchronizing fixed length work with an imbedded critical section. The linear barriers are better able to exploit the process skew associated with critical sections. Timing experiments, performed on an eighteen processor Flex/32 shared memory multiprocessor that support these conclusions, are detailed.
NASA Astrophysics Data System (ADS)
Deprit, André; Palacián, Jesúus; Deprit, Etienne
2001-03-01
The relegation algorithm extends the method of normalization by Lie transformations. Given a Hamiltonian that is a power series ℋ = ℋ0+ ɛℋ1+ ... of a small parameter ɛ, normalization constructs a map which converts the principal part ℋ0into an integral of the transformed system — relegation does the same for an arbitrary function ℋ[G]. If the Lie derivative induced by ℋ[G] is semi-simple, a double recursion produces the generator of the relegating transformation. The relegation algorithm is illustrated with an elementary example borrowed from galactic dynamics; the exercise serves as a standard against which to test software implementations. Relegation is also applied to the more substantial example of a Keplerian system perturbed by radiation pressure emanating from a rotating source.
Genetic Algorithm for Optimization: Preprocessor and Algorithm
NASA Technical Reports Server (NTRS)
Sen, S. K.; Shaykhian, Gholam A.
2006-01-01
Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.
MOPITT V7 Level 1 & Level 2 Release Announcement
Atmospheric Science Data Center
2016-08-02
MOPITT V7 Level 1 & Level 2 Release Announcement Wednesday, August 10, 2016 ... Infrared Radiances) • MOP01 - MOPITT Level 1 Radiances Several significant retrieval algorithm and product ... Featured improvements in the V7 retrieval products include (1) the representation of changing atmospheric concentrations of N2O, (2) ...
Algorithmic cooling in liquid-state nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi
2016-01-01
Algorithmic cooling is a method that employs thermalization to increase qubit purification level; namely, it reduces the qubit system's entropy. We utilized gradient ascent pulse engineering, an optimal control algorithm, to implement algorithmic cooling in liquid-state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of C132-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic-resonance spectroscopy.
An efficient algorithm for function optimization: modified stem cells algorithm
NASA Astrophysics Data System (ADS)
Taherdangkoo, Mohammad; Paziresh, Mahsa; Yazdi, Mehran; Bagheri, Mohammad
2013-03-01
In this paper, we propose an optimization algorithm based on the intelligent behavior of stem cell swarms in reproduction and self-organization. Optimization algorithms, such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Artificial Bee Colony (ABC) algorithm, can give solutions to linear and non-linear problems near to the optimum for many applications; however, in some case, they can suffer from becoming trapped in local optima. The Stem Cells Algorithm (SCA) is an optimization algorithm inspired by the natural behavior of stem cells in evolving themselves into new and improved cells. The SCA avoids the local optima problem successfully. In this paper, we have made small changes in the implementation of this algorithm to obtain improved performance over previous versions. Using a series of benchmark functions, we assess the performance of the proposed algorithm and compare it with that of the other aforementioned optimization algorithms. The obtained results prove the superiority of the Modified Stem Cells Algorithm (MSCA).
Algorithm Visualization System for Teaching Spatial Data Algorithms
ERIC Educational Resources Information Center
Nikander, Jussi; Helminen, Juha; Korhonen, Ari
2010-01-01
TRAKLA2 is a web-based learning environment for data structures and algorithms. The system delivers automatically assessed algorithm simulation exercises that are solved using a graphical user interface. In this work, we introduce a novel learning environment for spatial data algorithms, SDA-TRAKLA2, which has been implemented on top of the…
NASA Astrophysics Data System (ADS)
Reda, Ibrahim; Andreas, Afshin
2015-04-01
The Solar Position Algorithm (SPA) calculates the solar zenith and azimuth angles in the period from the year -2000 to 6000, with uncertainties of +/- 0.0003 degrees based on the date, time, and location on Earth. SPA is implemented in C; in addition to being available for download, an online calculator using this code is available at http://www.nrel.gov/midc/solpos/spa.html.
Quantum defragmentation algorithm
Burgarth, Daniel; Giovannetti, Vittorio
2010-08-15
In this addendum to our paper [D. Burgarth and V. Giovannetti, Phys. Rev. Lett. 99, 100501 (2007)] we prove that during the transformation that allows one to enforce control by relaxation on a quantum system, the ancillary memory can be kept at a finite size, independently from the fidelity one wants to achieve. The result is obtained by introducing the quantum analog of defragmentation algorithms which are employed for efficiently reorganizing classical information in conventional hard disks.
NOSS altimeter algorithm specifications
NASA Technical Reports Server (NTRS)
Hancock, D. W.; Forsythe, R. G.; Mcmillan, J. D.
1982-01-01
A description of all algorithms required for altimeter processing is given. Each description includes title, description, inputs/outputs, general algebraic sequences and data volume. All required input/output data files are described and the computer resources required for the entire altimeter processing system were estimated. The majority of the data processing requirements for any radar altimeter of the Seasat-1 type are scoped. Additions and deletions could be made for the specific altimeter products required by other projects.
NASA Astrophysics Data System (ADS)
Nardi, Jerry
The Satellite Aided Search and Rescue (Sarsat) is designed to detect and locate distress beacons using satellite receivers. Algorithms used for calculating the positions of 406 MHz beacons and 121.5/243 MHz beacons are presented. The techniques for matching, resolving and averaging calculated locations from multiple satellite passes are also described along with results pertaining to single pass and multiple pass location estimate accuracy.
Algorithms for builder guidelines
Balcomb, J.D.; Lekov, A.B.
1989-06-01
The Builder Guidelines are designed to make simple, appropriate guidelines available to builders for their specific localities. Builders may select from passive solar and conservation strategies with different performance potentials. They can then compare the calculated results for their particular house design with a typical house in the same location. Algorithms used to develop the Builder Guidelines are described. The main algorithms used are the monthly solar ratio (SLR) method for winter heating, the diurnal heat capacity (DHC) method for temperature swing, and a new simplified calculation method (McCool) for summer cooling. This paper applies the algorithms to estimate the performance potential of passive solar strategies, and the annual heating and cooling loads of various combinations of conservation and passive solar strategies. The basis of the McCool method is described. All three methods are implemented in a microcomputer program used to generate the guideline numbers. Guidelines for Denver, Colorado, are used to illustrate the results. The structure of the guidelines and worksheet booklets are also presented. 5 refs., 3 tabs.
Symbalisty, E.M.D.; Zinn, J.; Whitaker, R.W.
1995-09-01
This paper describes the history, physics, and algorithms of the computer code RADFLO and its extension HYCHEM. RADFLO is a one-dimensional, radiation-transport hydrodynamics code that is used to compute early-time fireball behavior for low-altitude nuclear bursts. The primary use of the code is the prediction of optical signals produced by nuclear explosions. It has also been used to predict thermal and hydrodynamic effects that are used for vulnerability and lethality applications. Another closely related code, HYCHEM, is an extension of RADFLO which includes the effects of nonequilibrium chemistry. Some examples of numerical results will be shown, along with scaling expressions derived from those results. We describe new computations of the structures and luminosities of steady-state shock waves and radiative thermal waves, which have been extended to cover a range of ambient air densities for high-altitude applications. We also describe recent modifications of the codes to use a one-dimensional analog of the CAVEAT fluid-dynamics algorithm in place of the former standard Richtmyer-von Neumann algorithm.
Large scale tracking algorithms.
Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry
2015-01-01
Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.
Baudoin, T; Grgić, M V; Zadravec, D; Geber, G; Tomljenović, D; Kalogjera, L
2013-12-01
ENT navigation has given new opportunities in performing Endoscopic Sinus Surgery (ESS) and improving surgical outcome of the patients` treatment. ESS assisted by a navigation system could be called Navigated Endoscopic Sinus Surgery (NESS). As it is generally accepted that the NESS should be performed only in cases of complex anatomy and pathology, it has not yet been established as a state-of-the-art procedure and thus not used on a daily basis. This paper presents an algorithm for use of a navigation system for basic ESS in the treatment of chronic rhinosinusitis (CRS). The algorithm includes five units that should be highlighted using a navigation system. They are as follows: 1) nasal vestibule unit, 2) OMC unit, 3) anterior ethmoid unit, 4) posterior ethmoid unit, and 5) sphenoid unit. Each unit has a shape of a triangular pyramid and consists of at least four reference points or landmarks. As many landmarks as possible should be marked when determining one of the five units. Navigated orientation in each unit should always precede any surgical intervention. The algorithm should improve the learning curve of trainees and enable surgeons to use the navigation system routinely and systematically. PMID:24260766
Evaluating super resolution algorithms
NASA Astrophysics Data System (ADS)
Kim, Youn Jin; Park, Jong Hyun; Shin, Gun Shik; Lee, Hyun-Seung; Kim, Dong-Hyun; Park, Se Hyeok; Kim, Jaehyun
2011-01-01
This study intends to establish a sound testing and evaluation methodology based upon the human visual characteristics for appreciating the image restoration accuracy; in addition to comparing the subjective results with predictions by some objective evaluation methods. In total, six different super resolution (SR) algorithms - such as iterative back-projection (IBP), robust SR, maximum a posteriori (MAP), projections onto convex sets (POCS), a non-uniform interpolation, and frequency domain approach - were selected. The performance comparison between the SR algorithms in terms of their restoration accuracy was carried out through both subjectively and objectively. The former methodology relies upon the paired comparison method that involves the simultaneous scaling of two stimuli with respect to image restoration accuracy. For the latter, both conventional image quality metrics and color difference methods are implemented. Consequently, POCS and a non-uniform interpolation outperformed the others for an ideal situation, while restoration based methods appear more accurate to the HR image in a real world case where any prior information about the blur kernel is remained unknown. However, the noise-added-image could not be restored successfully by any of those methods. The latest International Commission on Illumination (CIE) standard color difference equation CIEDE2000 was found to predict the subjective results accurately and outperformed conventional methods for evaluating the restoration accuracy of those SR algorithms.
[Algorithm for treating preoperative anemia].
Bisbe Vives, E; Basora Macaya, M
2015-06-01
Hemoglobin optimization and treatment of preoperative anemia in surgery with a moderate to high risk of surgical bleeding reduces the rate of transfusions and improves hemoglobin levels at discharge and can also improve postoperative outcomes. To this end, we need to schedule preoperative visits sufficiently in advance to treat the anemia. The treatment algorithm we propose comes with a simple checklist to determine whether we should refer the patient to a specialist or if we can treat the patient during the same visit. With the blood count test and additional tests for iron metabolism, inflammation parameter and glomerular filtration rate, we can decide whether to start the treatment with intravenous iron alone or erythropoietin with or without iron. With significant anemia, a visit after 15 days might be necessary to observe the response and supplement the treatment if required. The hemoglobin objective will depend on the type of surgery and the patient's characteristics. PMID:26320341
Improved Global Ocean Color Using Polymer Algorithm
NASA Astrophysics Data System (ADS)
Steinmetz, Francois; Ramon, Didier; Deschamps, ierre-Yves; Stum, Jacques
2010-12-01
A global ocean color product has been developed based on the use of the POLYMER algorithm to correct atmospheric scattering and sun glint and to process the data to a Level 2 ocean color product. Thanks to the use of this algorithm, the coverage and accuracy of the MERIS ocean color product have been significantly improved when compared to the standard product, therefore increasing its usefulness for global ocean monitor- ing applications like GLOBCOLOUR. We will present the latest developments of the algorithm, its first application to MODIS data and its validation against in-situ data from the MERMAID database. Examples will be shown of global NRT chlorophyll maps produced by CLS with POLYMER for operational applications like fishing or oil and gas industry, as well as its use by Scripps for a NASA study of the Beaufort and Chukchi seas.
Factorization using the quadratic sieve algorithm
Davis, J.A.; Holdridge, D.B.
1983-12-01
Since the cryptosecurity of the RSA two key cryptoalgorithm is no greater than the difficulty of factoring the modulus (product of two secret primes), a code that implements the Quadratic Sieve factorization algorithm on the CRAY I computer has been developed at the Sandia National Laboratories to determine as sharply as possible the current state-of-the-art in factoring. Because all viable attacks on RSA thus far proposed are equivalent to factorization of the modulus, sharper bounds on the computational difficulty of factoring permit improved estimates for the size of RSA parameters needed for given levels of cryptosecurity. Analysis of the Quadratic Sieve indicates that it may be faster than any previously published general purpose algorithm for factoring large integers. The high speed of the CRAY I coupled with the capability of the CRAY to pipeline certain vectorized operations make this algorithm (and code) the front runner in current factoring techniques.
Factorization using the quadratic sieve algorithm
Davis, J.A.; Holdridge, D.B.
1983-01-01
Since the cryptosecurity of the RSA two key cryptoalgorithm is no greater than the difficulty of factoring the modulus (product of two secret primes), a code that implements the Quadratic Sieve factorization algorithm on the CRAY I computer has been developed at the Sandia National Laboratories to determine as sharply as possible the current state-of-the-art in factoring. Because all viable attacks on RSA thus far proposed are equivalent to factorization of the modulus, sharper bounds on the computational difficulty of factoring permit improved estimates for the size of RSA parameters needed for given levels of cryptosecurity. Analysis of the Quadratic Sieve indicates that it may be faster than any previously published general purpose algorithm for factoring large integers. The high speed of the CRAY I coupled with the capability of the CRAY to pipeline certain vectorized operations make this algorithm (and code) the front runner in current factoring techniques.
New convergence estimates for multigrid algorithms
Bramble, J.H.; Pasciak, J.E.
1987-10-01
In this paper, new convergence estimates are proved for both symmetric and nonsymmetric multigrid algorithms applied to symmetric positive definite problems. Our theory relates the convergence of multigrid algorithms to a ''regularity and approximation'' parameter ..cap alpha.. epsilon (0, 1) and the number of relaxations m. We show that for the symmetric and nonsymmetric ..nu.. cycles, the multigrid iteration converges for any positive m at a rate which deteriorates no worse than 1-cj/sup -(1-//sup ..cap alpha..//sup )///sup ..cap alpha../, where j is the number of grid levels. We then define a generalized ..nu.. cycle algorithm which involves exponentially increasing (for example, doubling) the number of smoothings on successively coarser grids. We show that the resulting symmetric and nonsymmetric multigrid iterations converge for any ..cap alpha.. with rates that are independent of the mesh size. The theory is presented in an abstract setting which can be applied to finite element multigrid and finite difference multigrid methods.
Linear-scaling and parallelisable algorithms for stochastic quantum chemistry
NASA Astrophysics Data System (ADS)
Booth, George H.; Smart, Simon D.; Alavi, Ali
2014-07-01
For many decades, quantum chemical method development has been dominated by algorithms which involve increasingly complex series of tensor contractions over one-electron orbital spaces. Procedures for their derivation and implementation have evolved to require the minimum amount of logic and rely heavily on computationally efficient library-based matrix algebra and optimised paging schemes. In this regard, the recent development of exact stochastic quantum chemical algorithms to reduce computational scaling and memory overhead requires a contrasting algorithmic philosophy, but one which when implemented efficiently can achieve higher accuracy/cost ratios with small random errors. Additionally, they can exploit the continuing trend for massive parallelisation which hinders the progress of deterministic high-level quantum chemical algorithms. In the Quantum Monte Carlo community, stochastic algorithms are ubiquitous but the discrete Fock space of quantum chemical methods is often unfamiliar, and the methods introduce new concepts required for algorithmic efficiency. In this paper, we explore these concepts and detail an algorithm used for Full Configuration Interaction Quantum Monte Carlo (FCIQMC), which is implemented and available in MOLPRO and as a standalone code, and is designed for high-level parallelism and linear-scaling with walker number. Many of the algorithms are also in use in, or can be transferred to, other stochastic quantum chemical methods and implementations. We apply these algorithms to the strongly correlated chromium dimer to demonstrate their efficiency and parallelism.
SLAP lesions: a treatment algorithm.
Brockmeyer, Matthias; Tompkins, Marc; Kohn, Dieter M; Lorbach, Olaf
2016-02-01
Tears of the superior labrum involving the biceps anchor are a common entity, especially in athletes, and may highly impair shoulder function. If conservative treatment fails, successful arthroscopic repair of symptomatic SLAP lesions has been described in the literature particularly for young athletes. However, the results in throwing athletes are less successful with a significant amount of patients who will not regain their pre-injury level of performance. The clinical results of SLAP repairs in middle-aged and older patients are mixed, with worse results and higher revision rates as compared to younger patients. In this population, tenotomy or tenodesis of the biceps tendon is a viable alternative to SLAP repairs in order to improve clinical outcomes. The present article introduces a treatment algorithm for SLAP lesions based upon the recent literature as well as the authors' clinical experience. The type of lesion, age of patient, concomitant lesions, and functional requirements, as well as sport activity level of the patient, need to be considered. Moreover, normal variations and degenerative changes in the SLAP complex have to be distinguished from "true" SLAP lesions in order to improve results and avoid overtreatment. The suggestion for a treatment algorithm includes: type I: conservative treatment or arthroscopic debridement, type II: SLAP repair or biceps tenotomy/tenodesis, type III: resection of the instable bucket-handle tear, type IV: SLAP repair (biceps tenotomy/tenodesis if >50 % of biceps tendon is affected), type V: Bankart repair and SLAP repair, type VI: resection of the flap and SLAP repair, and type VII: refixation of the anterosuperior labrum and SLAP repair. PMID:26818554
A Danger-Theory-Based Immune Network Optimization Algorithm
Li, Tao; Xiao, Xin; Shi, Yuanquan
2013-01-01
Existing artificial immune optimization algorithms reflect a number of shortcomings, such as premature convergence and poor local search ability. This paper proposes a danger-theory-based immune network optimization algorithm, named dt-aiNet. The danger theory emphasizes that danger signals generated from changes of environments will guide different levels of immune responses, and the areas around danger signals are called danger zones. By defining the danger zone to calculate danger signals for each antibody, the algorithm adjusts antibodies' concentrations through its own danger signals and then triggers immune responses of self-regulation. So the population diversity can be maintained. Experimental results show that the algorithm has more advantages in the solution quality and diversity of the population. Compared with influential optimization algorithms, CLONALG, opt-aiNet, and dopt-aiNet, the algorithm has smaller error values and higher success rates and can find solutions to meet the accuracies within the specified function evaluation times. PMID:23483853
An improved NAS-RIF algorithm for blind image restoration
NASA Astrophysics Data System (ADS)
Liu, Ning; Jiang, Yanbin; Lou, Shuntian
2007-01-01
Image restoration is widely applied in many areas, but when operating on images with different scales for the representation of pixel intensity levels or low SNR, the traditional restoration algorithm lacks validity and induces noise amplification, ringing artifacts and poor convergent ability. In this paper, an improved NAS-RIF algorithm is proposed to overcome the shortcomings of the traditional algorithm. The improved algorithm proposes a new cost function which adds a space-adaptive regularization term and a disunity gain of the adaptive filter. In determining the support region, a pre-segmentation is used to form it close to the object in the image. Compared with the traditional algorithm, simulations show that the improved algorithm behaves better convergence, noise resistance and provides a better estimate of original image.
A set-membership approach to blind channel equalization algorithm
NASA Astrophysics Data System (ADS)
Li, Yue-ming
2013-03-01
The constant modulus algorithm (CMA) has low computational complexity while presenting slow convergence and possible convergence to local minima, the CMA family of algorithms based on affine projection version (AP-CMA) alleviates the speed limitations of the CMA. However, the computational complexity has been a weak point in the implementation of AP-CMA. To reduce the computational complexity of the adaptive filtering algorithm, a new AP-CMA algorithm based on set membership (SM-AP-CMA) is proposed. The new algorithm combines a bounded error specification on the adaptive filter with the concept of data-reusing. Simulations confirmed that the convergence rate of the proposed algorithm is significantly faster; meanwhile, the excess mean square error can be maintained in a relatively low level and a substantial reduction in the number of updates when compared with its conventional counterpart.
A controllable sensor management algorithm capable of learning
NASA Astrophysics Data System (ADS)
Osadciw, Lisa A.; Veeramacheneni, Kalyan K.
2005-03-01
Sensor management technology progress is challenged by the geographic space it spans, the heterogeneity of the sensors, and the real-time timeframes within which plans controlling the assets are executed. This paper presents a new sensor management paradigm and demonstrates its application in a sensor management algorithm designed for a biometric access control system. This approach consists of an artificial intelligence (AI) algorithm focused on uncertainty measures, which makes the high level decisions to reduce uncertainties and interfaces with the user, integrated cohesively with a bottom up evolutionary algorithm, which optimizes the sensor network"s operation as determined by the AI algorithm. The sensor management algorithm presented is composed of a Bayesian network, the AI algorithm component, and a swarm optimization algorithm, the evolutionary algorithm. Thus, the algorithm can change its own performance goals in real-time and will modify its own decisions based on observed measures within the sensor network. The definition of the measures as well as the Bayesian network determine the robustness of the algorithm and its utility in reacting dynamically to changes in the global system.
An Algorithm for Autonomous Formation Obstacle Avoidance
NASA Astrophysics Data System (ADS)
Cruz, Yunior I.
The level of human interaction with Unmanned Aerial Systems varies greatly from remotely piloted aircraft to fully autonomous systems. In the latter end of the spectrum, the challenge lies in designing effective algorithms to dictate the behavior of the autonomous agents. A swarm of autonomous Unmanned Aerial Vehicles requires collision avoidance and formation flight algorithms to negotiate environmental challenges it may encounter during the execution of its mission, which may include obstacles and chokepoints. In this work, a simple algorithm is developed to allow a formation of autonomous vehicles to perform point to point navigation while avoiding obstacles and navigating through chokepoints. Emphasis is placed on maintaining formation structures. Rather than breaking formation and individually navigating around the obstacle or through the chokepoint, vehicles are required to assemble into appropriately sized/shaped sub-formations, bifurcate around the obstacle or negotiate the chokepoint, and reassemble into the original formation at the far side of the obstruction. The algorithm receives vehicle and environmental properties as inputs and outputs trajectories for each vehicle from start to the desired ending location. Simulation results show that the algorithm safely routes all vehicles past the obstruction while adhering to the aforementioned requirements. The formation adapts and successfully negotiates the obstacles and chokepoints in its path while maintaining proper vehicle separation.
Connected-Health Algorithm: Development and Evaluation.
Vlahu-Gjorgievska, Elena; Koceski, Saso; Kulev, Igor; Trajkovik, Vladimir
2016-04-01
Nowadays, there is a growing interest towards the adoption of novel ICT technologies in the field of medical monitoring and personal health care systems. This paper proposes design of a connected health algorithm inspired from social computing paradigm. The purpose of the algorithm is to give a recommendation for performing a specific activity that will improve user's health, based on his health condition and set of knowledge derived from the history of the user and users with similar attitudes to him. The algorithm could help users to have bigger confidence in choosing their physical activities that will improve their health. The proposed algorithm has been experimentally validated using real data collected from a community of 1000 active users. The results showed that the recommended physical activity, contributed towards weight loss of at least 0.5 kg, is found in the first half of the ordered list of recommendations, generated by the algorithm, with the probability > 0.6 with 1 % level of significance. PMID:26922593