Sample records for algorithm level re-computing

  1. A heuristic re-mapping algorithm reducing inter-level communication in SAMR applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steensland, Johan; Ray, Jaideep

    2003-07-01

    This paper aims at decreasing execution time for large-scale structured adaptive mesh refinement (SAMR) applications by proposing a new heuristic re-mapping algorithm and experimentally showing its effectiveness in reducing inter-level communication. Tests were done for five different SAMR applications. The overall goal is to engineer a dynamically adaptive meta-partitioner capable of selecting and configuring the most appropriate partitioning strategy at run-time based on current system and application state. Such a metapartitioner can significantly reduce execution times for general SAMR applications. Computer simulations of physical phenomena are becoming increasingly popular as they constitute an important complement to real-life testing. In manymore » cases, such simulations are based on solving partial differential equations by numerical methods. Adaptive methods are crucial to efficiently utilize computer resources such as memory and CPU. But even with adaption, the simulations are computationally demanding and yield huge data sets. Thus parallelization and the efficient partitioning of data become issues of utmost importance. Adaption causes the workload to change dynamically, calling for dynamic (re-) partitioning to maintain efficient resource utilization. The proposed heuristic algorithm reduced inter-level communication substantially. Since the complexity of the proposed algorithm is low, this decrease comes at a relatively low cost. As a consequence, we draw the conclusion that the proposed re-mapping algorithm would be useful to lower overall execution times for many large SAMR applications. Due to its usefulness and its parameterization, the proposed algorithm would constitute a natural and important component of the meta-partitioner.« less

  2. Rational use of cognitive resources: levels of analysis between the computational and the algorithmic.

    PubMed

    Griffiths, Thomas L; Lieder, Falk; Goodman, Noah D

    2015-04-01

    Marr's levels of analysis-computational, algorithmic, and implementation-have served cognitive science well over the last 30 years. But the recent increase in the popularity of the computational level raises a new challenge: How do we begin to relate models at different levels of analysis? We propose that it is possible to define levels of analysis that lie between the computational and the algorithmic, providing a way to build a bridge between computational- and algorithmic-level models. The key idea is to push the notion of rationality, often used in defining computational-level models, deeper toward the algorithmic level. We offer a simple recipe for reverse-engineering the mind's cognitive strategies by deriving optimal algorithms for a series of increasingly more realistic abstract computational architectures, which we call "resource-rational analysis." Copyright © 2015 Cognitive Science Society, Inc.

  3. A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data.

    PubMed

    Baur, Brittany; Bozdag, Serdar

    2016-01-01

    DNA methylation is an important epigenetic event that effects gene expression during development and various diseases such as cancer. Understanding the mechanism of action of DNA methylation is important for downstream analysis. In the Illumina Infinium HumanMethylation 450K array, there are tens of probes associated with each gene. Given methylation intensities of all these probes, it is necessary to compute which of these probes are most representative of the gene centric methylation level. In this study, we developed a feature selection algorithm based on sequential forward selection that utilized different classification methods to compute gene centric DNA methylation using probe level DNA methylation data. We compared our algorithm to other feature selection algorithms such as support vector machines with recursive feature elimination, genetic algorithms and ReliefF. We evaluated all methods based on the predictive power of selected probes on their mRNA expression levels and found that a K-Nearest Neighbors classification using the sequential forward selection algorithm performed better than other algorithms based on all metrics. We also observed that transcriptional activities of certain genes were more sensitive to DNA methylation changes than transcriptional activities of other genes. Our algorithm was able to predict the expression of those genes with high accuracy using only DNA methylation data. Our results also showed that those DNA methylation-sensitive genes were enriched in Gene Ontology terms related to the regulation of various biological processes.

  4. Towards a computational- and algorithmic-level account of concept blending using analogies and amalgams

    NASA Astrophysics Data System (ADS)

    Besold, Tarek R.; Kühnberger, Kai-Uwe; Plaza, Enric

    2017-10-01

    Concept blending - a cognitive process which allows for the combination of certain elements (and their relations) from originally distinct conceptual spaces into a new unified space combining these previously separate elements, and enables reasoning and inference over the combination - is taken as a key element of creative thought and combinatorial creativity. In this article, we summarise our work towards the development of a computational-level and algorithmic-level account of concept blending, combining approaches from computational analogy-making and case-based reasoning (CBR). We present the theoretical background, as well as an algorithmic proposal integrating higher-order anti-unification matching and generalisation from analogy with amalgams from CBR. The feasibility of the approach is then exemplified in two case studies.

  5. Adaptive re-tracking algorithm for retrieval of water level variations and wave heights from satellite altimetry data for middle-sized inland water bodies

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Lebedev, Sergey; Soustova, Irina; Rybushkina, Galina; Papko, Vladislav; Baidakov, Georgy; Panyutin, Andrey

    One of the recent applications of satellite altimetry originally designed for measurements of the sea level [1] is associated with remote investigation of the water level of inland waters: lakes, rivers, reservoirs [2-7]. The altimetry data re-tracking algorithms developed for open ocean conditions (e.g. Ocean-1,2) [1] often cannot be used in these cases, since the radar return is significantly contaminated by reflection from the land. The problem of minimization of errors in the water level retrieval for inland waters from altimetry measurements can be resolved by re-tracking satellite altimetry data. Recently, special re-tracking algorithms have been actively developed for re-processing altimetry data in the coastal zone when reflection from land strongly affects echo shapes: threshold re-tracking, The other methods of re-tracking (threshold re-tracking, beta-re-tracking, improved threshold re-tracking) were developed in [9-11]. The latest development in this field is PISTACH product [12], in which retracking bases on the classification of typical forms of telemetric waveforms in the coastal zones and inland water bodies. In this paper a novel method of regional adaptive re-tracking based on constructing a theoretical model describing the formation of telemetric waveforms by reflection from the piecewise constant model surface corresponding to the geography of the region is considered. It was proposed in [13, 14], where the algorithm for assessing water level in inland water bodies and in the coastal zone of the ocean with an error of about 10-15 cm was constructed. The algorithm includes four consecutive steps: - constructing a local piecewise model of a reflecting surface in the neighbourhood of the reservoir; - solving a direct problem by calculating the reflected waveforms within the framework of the model; - imposing restrictions and validity criteria for the algorithm based on waveform modelling; - solving the inverse problem by retrieving a tracking point

  6. Computer algorithm for coding gain

    NASA Technical Reports Server (NTRS)

    Dodd, E. E.

    1974-01-01

    Development of a computer algorithm for coding gain for use in an automated communications link design system. Using an empirical formula which defines coding gain as used in space communications engineering, an algorithm is constructed on the basis of available performance data for nonsystematic convolutional encoding with soft-decision (eight-level) Viterbi decoding.

  7. Microscope self-calibration based on micro laser line imaging and soft computing algorithms

    NASA Astrophysics Data System (ADS)

    Apolinar Muñoz Rodríguez, J.

    2018-06-01

    A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.

  8. A computational model to protect patient data from location-based re-identification.

    PubMed

    Malin, Bradley

    2007-07-01

    Health care organizations must preserve a patient's anonymity when disclosing personal data. Traditionally, patient identity has been protected by stripping identifiers from sensitive data such as DNA. However, simple automated methods can re-identify patient data using public information. In this paper, we present a solution to prevent a threat to patient anonymity that arises when multiple health care organizations disclose data. In this setting, a patient's location visit pattern, or "trail", can re-identify seemingly anonymous DNA to patient identity. This threat exists because health care organizations (1) cannot prevent the disclosure of certain types of patient information and (2) do not know how to systematically avoid trail re-identification. In this paper, we develop and evaluate computational methods that health care organizations can apply to disclose patient-specific DNA records that are impregnable to trail re-identification. To prevent trail re-identification, we introduce a formal model called k-unlinkability, which enables health care administrators to specify different degrees of patient anonymity. Specifically, k-unlinkability is satisfied when the trail of each DNA record is linkable to no less than k identified records. We present several algorithms that enable health care organizations to coordinate their data disclosure, so that they can determine which DNA records can be shared without violating k-unlinkability. We evaluate the algorithms with the trails of patient populations derived from publicly available hospital discharge databases. Algorithm efficacy is evaluated using metrics based on real world applications, including the number of suppressed records and the number of organizations that disclose records. Our experiments indicate that it is unnecessary to suppress all patient records that initially violate k-unlinkability. Rather, only portions of the trails need to be suppressed. For example, if each hospital discloses 100% of its

  9. Parallel algorithms for computation of the manipulator inertia matrix

    NASA Technical Reports Server (NTRS)

    Amin-Javaheri, Masoud; Orin, David E.

    1989-01-01

    The development of an O(log2N) parallel algorithm for the manipulator inertia matrix is presented. It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal elements of the matrix. It results in O(log2N) levels of computation. Computation of the off-diagonal elements involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position and orientation transforms for the manipulator, is developed. The O(log2N) algorithm is presented in both equation and graphic forms which clearly show the parallelism inherent in the algorithm.

  10. An Automated Method to Compute Orbital Re-Entry Trajectories with Heating Constraints

    NASA Technical Reports Server (NTRS)

    Zimmerman, Curtis; Dukeman, Greg; Hanson, John; Fogle, Frank R. (Technical Monitor)

    2002-01-01

    Determining how to properly manipulate the controls of a re-entering re-usable launch vehicle (RLV) so that it is able to safely return to Earth and land involves the solution of a two-point boundary value problem (TPBVP). This problem, which can be quite difficult, is traditionally solved on the ground prior to flight. If necessary, a nearly unlimited amount of time is available to find the "best" solution using a variety of trajectory design and optimization tools. The role of entry guidance during flight is to follow the pre-determined reference solution while correcting for any errors encountered along the way. This guidance method is both highly reliable and very efficient in terms of onboard computer resources. There is a growing interest in a style of entry guidance that places the responsibility of solving the TPBVP in the actual entry guidance flight software. Here there is very limited computer time. The powerful, but finicky, mathematical tools used by trajectory designers on the ground cannot in general be made to do the job. Nonconvergence or slow convergence can result in disaster. The challenges of designing such an algorithm are numerous and difficult. Yet the payoff (in the form of decreased operational costs and increased safety) can be substantial. This paper presents an algorithm that incorporates features of both types of guidance strategies. It takes an initial RLV orbital re-entry state and finds a trajectory that will safely transport the vehicle to a Terminal Area Energy Management (TAEM) region. During actual flight, the computed trajectory is used as the reference to be flown by a more traditional guidance method.

  11. An Automated Method to Compute Orbital Re-entry Trajectories with Heating Constraints

    NASA Technical Reports Server (NTRS)

    Zimmerman, Curtis; Dukeman, Greg; Hanson, John; Fogle, Frank R. (Technical Monitor)

    2002-01-01

    Determining how to properly manipulate the controls of a re-entering re-usable launch vehicle (RLV) so that it is able to safely return to Earth and land involves the solution of a two-point boundary value problem (TPBVP). This problem, which can be quite difficult, is traditionally solved on the ground prior to flight. If necessary, a nearly unlimited amount of time is available to find the 'best' solution using a variety of trajectory design and optimization tools. The role of entry guidance during flight is to follow the pre- determined reference solution while correcting for any errors encountered along the way. This guidance method is both highly reliable and very efficient in terms of onboard computer resources. There is a growing interest in a style of entry guidance that places the responsibility of solving the TPBVP in the actual entry guidance flight software. Here there is very limited computer time. The powerful, but finicky, mathematical tools used by trajectory designers on the ground cannot in general be converted to do the job. Non-convergence or slow convergence can result in disaster. The challenges of designing such an algorithm are numerous and difficult. Yet the payoff (in the form of decreased operational costs and increased safety) can be substantiaL This paper presents an algorithm that incorporates features of both types of guidance strategies. It takes an initial RLV orbital re-entry state and finds a trajectory that will safely transport the vehicle to Earth. During actual flight, the computed trajectory is used as the reference to be flown by a more traditional guidance method.

  12. Function-Based Algorithms for Biological Sequences

    ERIC Educational Resources Information Center

    Mohanty, Pragyan Sheela P.

    2015-01-01

    Two problems at two different abstraction levels of computational biology are studied. At the molecular level, efficient pattern matching algorithms in DNA sequences are presented. For gene order data, an efficient data structure is presented capable of storing all gene re-orderings in a systematic manner. A common characteristic of presented…

  13. QPSO-Based Adaptive DNA Computing Algorithm

    PubMed Central

    Karakose, Mehmet; Cigdem, Ugur

    2013-01-01

    DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm. PMID:23935409

  14. Algorithmic Mechanism Design of Evolutionary Computation.

    PubMed

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.

  15. Algorithmic Mechanism Design of Evolutionary Computation

    PubMed Central

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm. PMID:26257777

  16. Parallel grid generation algorithm for distributed memory computers

    NASA Technical Reports Server (NTRS)

    Moitra, Stuti; Moitra, Anutosh

    1994-01-01

    A parallel grid-generation algorithm and its implementation on the Intel iPSC/860 computer are described. The grid-generation scheme is based on an algebraic formulation of homotopic relations. Methods for utilizing the inherent parallelism of the grid-generation scheme are described, and implementation of multiple levELs of parallelism on multiple instruction multiple data machines are indicated. The algorithm is capable of providing near orthogonality and spacing control at solid boundaries while requiring minimal interprocessor communications. Results obtained on the Intel hypercube for a blended wing-body configuration are used to demonstrate the effectiveness of the algorithm. Fortran implementations bAsed on the native programming model of the iPSC/860 computer and the Express system of software tools are reported. Computational gains in execution time speed-up ratios are given.

  17. Computing Bounds on Resource Levels for Flexible Plans

    NASA Technical Reports Server (NTRS)

    Muscvettola, Nicola; Rijsman, David

    2009-01-01

    A new algorithm efficiently computes the tightest exact bound on the levels of resources induced by a flexible activity plan (see figure). Tightness of bounds is extremely important for computations involved in planning because tight bounds can save potentially exponential amounts of search (through early backtracking and detection of solutions), relative to looser bounds. The bound computed by the new algorithm, denoted the resource-level envelope, constitutes the measure of maximum and minimum consumption of resources at any time for all fixed-time schedules in the flexible plan. At each time, the envelope guarantees that there are two fixed-time instantiations one that produces the minimum level and one that produces the maximum level. Therefore, the resource-level envelope is the tightest possible resource-level bound for a flexible plan because any tighter bound would exclude the contribution of at least one fixed-time schedule. If the resource- level envelope can be computed efficiently, one could substitute looser bounds that are currently used in the inner cores of constraint-posting scheduling algorithms, with the potential for great improvements in performance. What is needed to reduce the cost of computation is an algorithm, the measure of complexity of which is no greater than a low-degree polynomial in N (where N is the number of activities). The new algorithm satisfies this need. In this algorithm, the computation of resource-level envelopes is based on a novel combination of (1) the theory of shortest paths in the temporal-constraint network for the flexible plan and (2) the theory of maximum flows for a flow network derived from the temporal and resource constraints. The measure of asymptotic complexity of the algorithm is O(N O(maxflow(N)), where O(x) denotes an amount of computing time or a number of arithmetic operations proportional to a number of the order of x and O(maxflow(N)) is the measure of complexity (and thus of cost) of a maximumflow

  18. Evaluation of Semantic Web Technologies for Storing Computable Definitions of Electronic Health Records Phenotyping Algorithms.

    PubMed

    Papež, Václav; Denaxas, Spiros; Hemingway, Harry

    2017-01-01

    Electronic Health Records are electronic data generated during or as a byproduct of routine patient care. Structured, semi-structured and unstructured EHR offer researchers unprecedented phenotypic breadth and depth and have the potential to accelerate the development of precision medicine approaches at scale. A main EHR use-case is defining phenotyping algorithms that identify disease status, onset and severity. Phenotyping algorithms utilize diagnoses, prescriptions, laboratory tests, symptoms and other elements in order to identify patients with or without a specific trait. No common standardized, structured, computable format exists for storing phenotyping algorithms. The majority of algorithms are stored as human-readable descriptive text documents making their translation to code challenging due to their inherent complexity and hinders their sharing and re-use across the community. In this paper, we evaluate the two key Semantic Web Technologies, the Web Ontology Language and the Resource Description Framework, for enabling computable representations of EHR-driven phenotyping algorithms.

  19. Advanced biologically plausible algorithms for low-level image processing

    NASA Astrophysics Data System (ADS)

    Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan

    1999-08-01

    At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.

  20. An adaptive multi-level simulation algorithm for stochastic biological systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, C., E-mail: lesterc@maths.ox.ac.uk; Giles, M. B.; Baker, R. E.

    2015-01-14

    Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Montemore » Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We

  1. Mental Computation or Standard Algorithm? Children's Strategy Choices on Multi-Digit Subtractions

    ERIC Educational Resources Information Center

    Torbeyns, Joke; Verschaffel, Lieven

    2016-01-01

    This study analyzed children's use of mental computation strategies and the standard algorithm on multi-digit subtractions. Fifty-eight Flemish 4th graders of varying mathematical achievement level were individually offered subtractions that either stimulated the use of mental computation strategies or the standard algorithm in one choice and two…

  2. Sculpting Computational-Level Models.

    PubMed

    Blokpoel, Mark

    2017-06-27

    In this commentary, I advocate for strict relations between Marr's levels of analysis. Under a strict relationship, each level is exactly implemented by the subordinate level. This yields two benefits. First, it brings consistency for multilevel explanations. Second, similar to how a sculptor chisels away superfluous marble, a modeler can chisel a computational-level model by applying constraints. By sculpting the model, one restricts the (potentially infinitely large) set of possible algorithmic- and implementational-level theories. Copyright © 2017 Cognitive Science Society, Inc.

  3. Computional algorithm for lifetime exposure to antimicrobials in pigs using register data-The LEA algorithm.

    PubMed

    Birkegård, Anna Camilla; Andersen, Vibe Dalhoff; Halasa, Tariq; Jensen, Vibeke Frøkjær; Toft, Nils; Vigre, Håkan

    2017-10-01

    Accurate and detailed data on antimicrobial exposure in pig production are essential when studying the association between antimicrobial exposure and antimicrobial resistance. Due to difficulties in obtaining primary data on antimicrobial exposure in a large number of farms, there is a need for a robust and valid method to estimate the exposure using register data. An approach that estimates the antimicrobial exposure in every rearing period during the lifetime of a pig using register data was developed into a computational algorithm. In this approach data from national registers on antimicrobial purchases, movements of pigs and farm demographics registered at farm level are used. The algorithm traces batches of pigs retrospectively from slaughter to the farm(s) that housed the pigs during their finisher, weaner, and piglet period. Subsequently, the algorithm estimates the antimicrobial exposure as the number of Animal Defined Daily Doses for treatment of one kg pig in each of the rearing periods. Thus, the antimicrobial purchase data at farm level are translated into antimicrobial exposure estimates at batch level. A batch of pigs is defined here as pigs sent to slaughter at the same day from the same farm. In this study we present, validate, and optimise a computational algorithm that calculate the lifetime exposure of antimicrobials for slaughter pigs. The algorithm was evaluated by comparing the computed estimates to data on antimicrobial usage from farm records in 15 farm units. We found a good positive correlation between the two estimates. The algorithm was run for Danish slaughter pigs sent to slaughter in January to March 2015 from farms with more than 200 finishers to estimate the proportion of farms that it was applicable for. In the final process, the algorithm was successfully run for batches of pigs originating from 3026 farms with finisher units (77% of the initial population). This number can be increased if more accurate register data can be

  4. High-Order Discontinuous Galerkin Level Set Method for Interface Tracking and Re-Distancing on Unstructured Meshes

    NASA Astrophysics Data System (ADS)

    Greene, Patrick; Nourgaliev, Robert; Schofield, Sam

    2015-11-01

    A new sharp high-order interface tracking method for multi-material flow problems on unstructured meshes is presented. The method combines the marker-tracking algorithm with a discontinuous Galerkin (DG) level set method to implicitly track interfaces. DG projection is used to provide a mapping from the Lagrangian marker field to the Eulerian level set field. For the level set re-distancing, we developed a novel marching method that takes advantage of the unique features of the DG representation of the level set. The method efficiently marches outward from the zero level set with values in the new cells being computed solely from cell neighbors. Results are presented for a number of different interface geometries including ones with sharp corners and multiple hierarchical level sets. The method can robustly handle the level set discontinuities without explicit utilization of solution limiters. Results show that the expected high order (3rd and higher) of convergence for the DG representation of the level set is obtained for smooth solutions on unstructured meshes. High-order re-distancing on irregular meshes is a must for applications were the interfacial curvature is important for underlying physics, such as surface tension, wetting and detonation shock dynamics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Information management release number LLNL-ABS-675636.

  5. Automated Development of Accurate Algorithms and Efficient Codes for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.; Dyson, Rodger W.

    1999-01-01

    The simulation of sound generation and propagation in three space dimensions with realistic aircraft components is a very large time dependent computation with fine details. Simulations in open domains with embedded objects require accurate and robust algorithms for propagation, for artificial inflow and outflow boundaries, and for the definition of geometrically complex objects. The development, implementation, and validation of methods for solving these demanding problems is being done to support the NASA pillar goals for reducing aircraft noise levels. Our goal is to provide algorithms which are sufficiently accurate and efficient to produce usable results rapidly enough to allow design engineers to study the effects on sound levels of design changes in propulsion systems, and in the integration of propulsion systems with airframes. There is a lack of design tools for these purposes at this time. Our technical approach to this problem combines the development of new, algorithms with the use of Mathematica and Unix utilities to automate the algorithm development, code implementation, and validation. We use explicit methods to ensure effective implementation by domain decomposition for SPMD parallel computing. There are several orders of magnitude difference in the computational efficiencies of the algorithms which we have considered. We currently have new artificial inflow and outflow boundary conditions that are stable, accurate, and unobtrusive, with implementations that match the accuracy and efficiency of the propagation methods. The artificial numerical boundary treatments have been proven to have solutions which converge to the full open domain problems, so that the error from the boundary treatments can be driven as low as is required. The purpose of this paper is to briefly present a method for developing highly accurate algorithms for computational aeroacoustics, the use of computer automation in this process, and a brief survey of the algorithms that

  6. Re-Computation of Numerical Results Contained in NACA Report No. 496

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III

    2015-01-01

    An extensive examination of NACA Report No. 496 (NACA 496), "General Theory of Aerodynamic Instability and the Mechanism of Flutter," by Theodore Theodorsen, is described. The examination included checking equations and solution methods and re-computing interim quantities and all numerical examples in NACA 496. The checks revealed that NACA 496 contains computational shortcuts (time- and effort-saving devices for engineers of the time) and clever artifices (employed in its solution methods), but, unfortunately, also contains numerous tripping points (aspects of NACA 496 that have the potential to cause confusion) and some errors. The re-computations were performed employing the methods and procedures described in NACA 496, but using modern computational tools. With some exceptions, the magnitudes and trends of the original results were in fair-to-very-good agreement with the re-computed results. The exceptions included what are speculated to be computational errors in the original in some instances and transcription errors in the original in others. Independent flutter calculations were performed and, in all cases, including those where the original and re-computed results differed significantly, were in excellent agreement with the re-computed results. Appendix A contains NACA 496; Appendix B contains a Matlab(Reistered) program that performs the re-computation of results; Appendix C presents three alternate solution methods, with examples, for the two-degree-of-freedom solution method of NACA 496; Appendix D contains the three-degree-of-freedom solution method (outlined in NACA 496 but never implemented), with examples.

  7. A multi-level solution algorithm for steady-state Markov chains

    NASA Technical Reports Server (NTRS)

    Horton, Graham; Leutenegger, Scott T.

    1993-01-01

    A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial differential equations. Initial results of numerical experiments are reported, showing significant reductions in computation time, often an order of magnitude or more, relative to the Gauss-Seidel and optimal SOR algorithms for a variety of test problems. The multi-level method is compared and contrasted with the iterative aggregation-disaggregation algorithm of Takahashi.

  8. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking

    PubMed Central

    2014-01-01

    Background Protein-protein docking is an in silico method to predict the formation of protein complexes. Due to limited computational resources, the protein-protein docking approach has been developed under the assumption of rigid docking, in which one of the two protein partners remains rigid during the protein associations and water contribution is ignored or implicitly presented. Despite obtaining a number of acceptable complex predictions, it seems to-date that most initial rigid docking algorithms still find it difficult or even fail to discriminate successfully the correct predictions from the other incorrect or false positive ones. To improve the rigid docking results, re-ranking is one of the effective methods that help re-locate the correct predictions in top high ranks, discriminating them from the other incorrect ones. In this paper, we propose a new re-ranking technique using a new energy-based scoring function, namely IFACEwat - a combined Interface Atomic Contact Energy (IFACE) and water effect. The IFACEwat aims to further improve the discrimination of the near-native structures of the initial rigid docking algorithm ZDOCK3.0.2. Unlike other re-ranking techniques, the IFACEwat explicitly implements interfacial water into the protein interfaces to account for the water-mediated contacts during the protein interactions. Results Our results showed that the IFACEwat increased both the numbers of the near-native structures and improved their ranks as compared to the initial rigid docking ZDOCK3.0.2. In fact, the IFACEwat achieved a success rate of 83.8% for Antigen/Antibody complexes, which is 10% better than ZDOCK3.0.2. As compared to another re-ranking technique ZRANK, the IFACEwat obtains success rates of 92.3% (8% better) and 90% (5% better) respectively for medium and difficult cases. When comparing with the latest published re-ranking method F2Dock, the IFACEwat performed equivalently well or even better for several Antigen/Antibody complexes

  9. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking.

    PubMed

    Su, Chinh; Nguyen, Thuy-Diem; Zheng, Jie; Kwoh, Chee-Keong

    2014-01-01

    Protein-protein docking is an in silico method to predict the formation of protein complexes. Due to limited computational resources, the protein-protein docking approach has been developed under the assumption of rigid docking, in which one of the two protein partners remains rigid during the protein associations and water contribution is ignored or implicitly presented. Despite obtaining a number of acceptable complex predictions, it seems to-date that most initial rigid docking algorithms still find it difficult or even fail to discriminate successfully the correct predictions from the other incorrect or false positive ones. To improve the rigid docking results, re-ranking is one of the effective methods that help re-locate the correct predictions in top high ranks, discriminating them from the other incorrect ones. Our results showed that the IFACEwat increased both the numbers of the near-native structures and improved their ranks as compared to the initial rigid docking ZDOCK3.0.2. In fact, the IFACEwat achieved a success rate of 83.8% for Antigen/Antibody complexes, which is 10% better than ZDOCK3.0.2. As compared to another re-ranking technique ZRANK, the IFACEwat obtains success rates of 92.3% (8% better) and 90% (5% better) respectively for medium and difficult cases. When comparing with the latest published re-ranking method F2Dock, the IFACEwat performed equivalently well or even better for several Antigen/Antibody complexes. With the inclusion of interfacial water, the IFACEwat improves mostly results of the initial rigid docking, especially for Antigen/Antibody complexes. The improvement is achieved by explicitly taking into account the contribution of water during the protein interactions, which was ignored or not fully presented by the initial rigid docking and other re-ranking techniques. In addition, the IFACEwat maintains sufficient computational efficiency of the initial docking algorithm, yet improves the ranks as well as the number of the near

  10. Algorithms Bridging Quantum Computation and Chemistry

    NASA Astrophysics Data System (ADS)

    McClean, Jarrod Ryan

    The design of new materials and chemicals derived entirely from computation has long been a goal of computational chemistry, and the governing equation whose solution would permit this dream is known. Unfortunately, the exact solution to this equation has been far too expensive and clever approximations fail in critical situations. Quantum computers offer a novel solution to this problem. In this work, we develop not only new algorithms to use quantum computers to study hard problems in chemistry, but also explore how such algorithms can help us to better understand and improve our traditional approaches. In particular, we first introduce a new method, the variational quantum eigensolver, which is designed to maximally utilize the quantum resources available in a device to solve chemical problems. We apply this method in a real quantum photonic device in the lab to study the dissociation of the helium hydride (HeH+) molecule. We also enhance this methodology with architecture specific optimizations on ion trap computers and show how linear-scaling techniques from traditional quantum chemistry can be used to improve the outlook of similar algorithms on quantum computers. We then show how studying quantum algorithms such as these can be used to understand and enhance the development of classical algorithms. In particular we use a tool from adiabatic quantum computation, Feynman's Clock, to develop a new discrete time variational principle and further establish a connection between real-time quantum dynamics and ground state eigenvalue problems. We use these tools to develop two novel parallel-in-time quantum algorithms that outperform competitive algorithms as well as offer new insights into the connection between the fermion sign problem of ground states and the dynamical sign problem of quantum dynamics. Finally we use insights gained in the study of quantum circuits to explore a general notion of sparsity in many-body quantum systems. In particular we use

  11. Approximate Algorithms for Computing Spatial Distance Histograms with Accuracy Guarantees

    PubMed Central

    Grupcev, Vladimir; Yuan, Yongke; Tu, Yi-Cheng; Huang, Jin; Chen, Shaoping; Pandit, Sagar; Weng, Michael

    2014-01-01

    Particle simulation has become an important research tool in many scientific and engineering fields. Data generated by such simulations impose great challenges to database storage and query processing. One of the queries against particle simulation data, the spatial distance histogram (SDH) query, is the building block of many high-level analytics, and requires quadratic time to compute using a straightforward algorithm. Previous work has developed efficient algorithms that compute exact SDHs. While beating the naive solution, such algorithms are still not practical in processing SDH queries against large-scale simulation data. In this paper, we take a different path to tackle this problem by focusing on approximate algorithms with provable error bounds. We first present a solution derived from the aforementioned exact SDH algorithm, and this solution has running time that is unrelated to the system size N. We also develop a mathematical model to analyze the mechanism that leads to errors in the basic approximate algorithm. Our model provides insights on how the algorithm can be improved to achieve higher accuracy and efficiency. Such insights give rise to a new approximate algorithm with improved time/accuracy tradeoff. Experimental results confirm our analysis. PMID:24693210

  12. Computation of Symmetric Discrete Cosine Transform Using Bakhvalov's Algorithm

    NASA Technical Reports Server (NTRS)

    Aburdene, Maurice F.; Strojny, Brian C.; Dorband, John E.

    2005-01-01

    A number of algorithms for recursive computation of the discrete cosine transform (DCT) have been developed recently. This paper presents a new method for computing the discrete cosine transform and its inverse using Bakhvalov's algorithm, a method developed for evaluation of a polynomial at a point. In this paper, we will focus on both the application of the algorithm to the computation of the DCT-I and its complexity. In addition, Bakhvalov s algorithm is compared with Clenshaw s algorithm for the computation of the DCT.

  13. A micro-hydrology computation ordering algorithm

    NASA Astrophysics Data System (ADS)

    Croley, Thomas E.

    1980-11-01

    Discrete-distributed-parameter models are essential for watershed modelling where practical consideration of spatial variations in watershed properties and inputs is desired. Such modelling is necessary for analysis of detailed hydrologic impacts from management strategies and land-use effects. Trade-offs between model validity and model complexity exist in resolution of the watershed. Once these are determined, the watershed is then broken into sub-areas which each have essentially spatially-uniform properties. Lumped-parameter (micro-hydrology) models are applied to these sub-areas and their outputs are combined through the use of a computation ordering technique, as illustrated by many discrete-distributed-parameter hydrology models. Manual ordering of these computations requires fore-thought, and is tedious, error prone, sometimes storage intensive and least adaptable to changes in watershed resolution. A programmable algorithm for ordering micro-hydrology computations is presented that enables automatic ordering of computations within the computer via an easily understood and easily implemented "node" definition, numbering and coding scheme. This scheme and the algorithm are detailed in logic flow-charts and an example application is presented. Extensions and modifications of the algorithm are easily made for complex geometries or differing microhydrology models. The algorithm is shown to be superior to manual ordering techniques and has potential use in high-resolution studies.

  14. Parallel Computing Strategies for Irregular Algorithms

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid; Shan, Hongzhang; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Parallel computing promises several orders of magnitude increase in our ability to solve realistic computationally-intensive problems, but relies on their efficient mapping and execution on large-scale multiprocessor architectures. Unfortunately, many important applications are irregular and dynamic in nature, making their effective parallel implementation a daunting task. Moreover, with the proliferation of parallel architectures and programming paradigms, the typical scientist is faced with a plethora of questions that must be answered in order to obtain an acceptable parallel implementation of the solution algorithm. In this paper, we consider three representative irregular applications: unstructured remeshing, sparse matrix computations, and N-body problems, and parallelize them using various popular programming paradigms on a wide spectrum of computer platforms ranging from state-of-the-art supercomputers to PC clusters. We present the underlying problems, the solution algorithms, and the parallel implementation strategies. Smart load-balancing, partitioning, and ordering techniques are used to enhance parallel performance. Overall results demonstrate the complexity of efficiently parallelizing irregular algorithms.

  15. High-order hydrodynamic algorithms for exascale computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Nathaniel Ray

    Hydrodynamic algorithms are at the core of many laboratory missions ranging from simulating ICF implosions to climate modeling. The hydrodynamic algorithms commonly employed at the laboratory and in industry (1) typically lack requisite accuracy for complex multi- material vortical flows and (2) are not well suited for exascale computing due to poor data locality and poor FLOP/memory ratios. Exascale computing requires advances in both computer science and numerical algorithms. We propose to research the second requirement and create a new high-order hydrodynamic algorithm that has superior accuracy, excellent data locality, and excellent FLOP/memory ratios. This proposal will impact a broadmore » range of research areas including numerical theory, discrete mathematics, vorticity evolution, gas dynamics, interface instability evolution, turbulent flows, fluid dynamics and shock driven flows. If successful, the proposed research has the potential to radically transform simulation capabilities and help position the laboratory for computing at the exascale.« less

  16. Efficient mapping algorithms for scheduling robot inverse dynamics computation on a multiprocessor system

    NASA Technical Reports Server (NTRS)

    Lee, C. S. G.; Chen, C. L.

    1989-01-01

    Two efficient mapping algorithms for scheduling the robot inverse dynamics computation consisting of m computational modules with precedence relationship to be executed on a multiprocessor system consisting of p identical homogeneous processors with processor and communication costs to achieve minimum computation time are presented. An objective function is defined in terms of the sum of the processor finishing time and the interprocessor communication time. The minimax optimization is performed on the objective function to obtain the best mapping. This mapping problem can be formulated as a combination of the graph partitioning and the scheduling problems; both have been known to be NP-complete. Thus, to speed up the searching for a solution, two heuristic algorithms were proposed to obtain fast but suboptimal mapping solutions. The first algorithm utilizes the level and the communication intensity of the task modules to construct an ordered priority list of ready modules and the module assignment is performed by a weighted bipartite matching algorithm. For a near-optimal mapping solution, the problem can be solved by the heuristic algorithm with simulated annealing. These proposed optimization algorithms can solve various large-scale problems within a reasonable time. Computer simulations were performed to evaluate and verify the performance and the validity of the proposed mapping algorithms. Finally, experiments for computing the inverse dynamics of a six-jointed PUMA-like manipulator based on the Newton-Euler dynamic equations were implemented on an NCUBE/ten hypercube computer to verify the proposed mapping algorithms. Computer simulation and experimental results are compared and discussed.

  17. Film grain synthesis and its application to re-graining

    NASA Astrophysics Data System (ADS)

    Schallauer, Peter; Mörzinger, Roland

    2006-01-01

    Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.

  18. A parallel Jacobson-Oksman optimization algorithm. [parallel processing (computers)

    NASA Technical Reports Server (NTRS)

    Straeter, T. A.; Markos, A. T.

    1975-01-01

    A gradient-dependent optimization technique which exploits the vector-streaming or parallel-computing capabilities of some modern computers is presented. The algorithm, derived by assuming that the function to be minimized is homogeneous, is a modification of the Jacobson-Oksman serial minimization method. In addition to describing the algorithm, conditions insuring the convergence of the iterates of the algorithm and the results of numerical experiments on a group of sample test functions are presented. The results of these experiments indicate that this algorithm will solve optimization problems in less computing time than conventional serial methods on machines having vector-streaming or parallel-computing capabilities.

  19. Parallel Algorithms for Least Squares and Related Computations.

    DTIC Science & Technology

    1991-03-22

    for dense computations in linear algebra . The work has recently been published in a general reference book on parallel algorithms by SIAM. AFO SR...written his Ph.D. dissertation with the principal investigator. (See publication 6.) • Parallel Algorithms for Dense Linear Algebra Computations. Our...and describe and to put into perspective a selection of the more important parallel algorithms for numerical linear algebra . We give a major new

  20. Onboard autonomous mission re-planning for multi-satellite system

    NASA Astrophysics Data System (ADS)

    Zheng, Zixuan; Guo, Jian; Gill, Eberhard

    2018-04-01

    This paper presents an onboard autonomous mission re-planning system for Multi-Satellites System (MSS) to perform onboard re-planing in disruptive situations. The proposed re-planning system can deal with different potential emergency situations. This paper uses Multi-Objective Hybrid Dynamic Mutation Genetic Algorithm (MO-HDM GA) combined with re-planning techniques as the core algorithm. The Cyclically Re-planning Method (CRM) and the Near Real-time Re-planning Method (NRRM) are developed to meet different mission requirements. Simulations results show that both methods can provide feasible re-planning sequences under unforeseen situations. The comparisons illustrate that using the CRM is average 20% faster than the NRRM on computation time. However, by using the NRRM more raw data can be observed and transmitted than using the CRM within the same period. The usability of this onboard re-planning system is not limited to multi-satellite system. Other mission planning and re-planning problems related to autonomous multiple vehicles with similar demands are also applicable.

  1. Novel non-invasive algorithm to identify the origins of re-entry and ectopic foci in the atria from 64-lead ECGs: A computational study.

    PubMed

    Alday, Erick A Perez; Colman, Michael A; Langley, Philip; Zhang, Henggui

    2017-03-01

    Atrial tachy-arrhytmias, such as atrial fibrillation (AF), are characterised by irregular electrical activity in the atria, generally associated with erratic excitation underlain by re-entrant scroll waves, fibrillatory conduction of multiple wavelets or rapid focal activity. Epidemiological studies have shown an increase in AF prevalence in the developed world associated with an ageing society, highlighting the need for effective treatment options. Catheter ablation therapy, commonly used in the treatment of AF, requires spatial information on atrial electrical excitation. The standard 12-lead electrocardiogram (ECG) provides a method for non-invasive identification of the presence of arrhythmia, due to irregularity in the ECG signal associated with atrial activation compared to sinus rhythm, but has limitations in providing specific spatial information. There is therefore a pressing need to develop novel methods to identify and locate the origin of arrhythmic excitation. Invasive methods provide direct information on atrial activity, but may induce clinical complications. Non-invasive methods avoid such complications, but their development presents a greater challenge due to the non-direct nature of monitoring. Algorithms based on the ECG signals in multiple leads (e.g. a 64-lead vest) may provide a viable approach. In this study, we used a biophysically detailed model of the human atria and torso to investigate the correlation between the morphology of the ECG signals from a 64-lead vest and the location of the origin of rapid atrial excitation arising from rapid focal activity and/or re-entrant scroll waves. A focus-location algorithm was then constructed from this correlation. The algorithm had success rates of 93% and 76% for correctly identifying the origin of focal and re-entrant excitation with a spatial resolution of 40 mm, respectively. The general approach allows its application to any multi-lead ECG system. This represents a significant extension to

  2. Impedance computed tomography using an adaptive smoothing coefficient algorithm.

    PubMed

    Suzuki, A; Uchiyama, A

    2001-01-01

    In impedance computed tomography, a fixed coefficient regularization algorithm has been frequently used to improve the ill-conditioning problem of the Newton-Raphson algorithm. However, a lot of experimental data and a long period of computation time are needed to determine a good smoothing coefficient because a good smoothing coefficient has to be manually chosen from a number of coefficients and is a constant for each iteration calculation. Thus, sometimes the fixed coefficient regularization algorithm distorts the information or fails to obtain any effect. In this paper, a new adaptive smoothing coefficient algorithm is proposed. This algorithm automatically calculates the smoothing coefficient from the eigenvalue of the ill-conditioned matrix. Therefore, the effective images can be obtained within a short computation time. Also the smoothing coefficient is automatically adjusted by the information related to the real resistivity distribution and the data collection method. In our impedance system, we have reconstructed the resistivity distributions of two phantoms using this algorithm. As a result, this algorithm only needs one-fifth the computation time compared to the fixed coefficient regularization algorithm. When compared to the fixed coefficient regularization algorithm, it shows that the image is obtained more rapidly and applicable in real-time monitoring of the blood vessel.

  3. Algorithm implementation on the Navier-Stokes computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krist, S.E.; Zang, T.A.

    1987-03-01

    The Navier-Stokes Computer is a multi-purpose parallel-processing supercomputer which is currently under development at Princeton University. It consists of multiple local memory parallel processors, called Nodes, which are interconnected in a hypercube network. Details of the procedures involved in implementing an algorithm on the Navier-Stokes computer are presented. The particular finite difference algorithm considered in this analysis was developed for simulation of laminar-turbulent transition in wall bounded shear flows. Projected timing results for implementing this algorithm indicate that operation rates in excess of 42 GFLOPS are feasible on a 128 Node machine.

  4. Algorithm implementation on the Navier-Stokes computer

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Zang, Thomas A.

    1987-01-01

    The Navier-Stokes Computer is a multi-purpose parallel-processing supercomputer which is currently under development at Princeton University. It consists of multiple local memory parallel processors, called Nodes, which are interconnected in a hypercube network. Details of the procedures involved in implementing an algorithm on the Navier-Stokes computer are presented. The particular finite difference algorithm considered in this analysis was developed for simulation of laminar-turbulent transition in wall bounded shear flows. Projected timing results for implementing this algorithm indicate that operation rates in excess of 42 GFLOPS are feasible on a 128 Node machine.

  5. Sorting on STAR. [CDC computer algorithm timing comparison

    NASA Technical Reports Server (NTRS)

    Stone, H. S.

    1978-01-01

    Timing comparisons are given for three sorting algorithms written for the CDC STAR computer. One algorithm is Hoare's (1962) Quicksort, which is the fastest or nearly the fastest sorting algorithm for most computers. A second algorithm is a vector version of Quicksort that takes advantage of the STAR's vector operations. The third algorithm is an adaptation of Batcher's (1968) sorting algorithm, which makes especially good use of vector operations but has a complexity of N(log N)-squared as compared with a complexity of N log N for the Quicksort algorithms. In spite of its worse complexity, Batcher's sorting algorithm is competitive with the serial version of Quicksort for vectors up to the largest that can be treated by STAR. Vector Quicksort outperforms the other two algorithms and is generally preferred. These results indicate that unusual instruction sets can introduce biases in program execution time that counter results predicted by worst-case asymptotic complexity analysis.

  6. A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix [A projected preconditioned conjugate gradient algorithm for computing a large eigenspace of a Hermitian matrix

    DOE PAGES

    Vecharynski, Eugene; Yang, Chao; Pask, John E.

    2015-02-25

    Here, we present an iterative algorithm for computing an invariant subspace associated with the algebraically smallest eigenvalues of a large sparse or structured Hermitian matrix A. We are interested in the case in which the dimension of the invariant subspace is large (e.g., over several hundreds or thousands) even though it may still be small relative to the dimension of A. These problems arise from, for example, density functional theory (DFT) based electronic structure calculations for complex materials. The key feature of our algorithm is that it performs fewer Rayleigh–Ritz calculations compared to existing algorithms such as the locally optimalmore » block preconditioned conjugate gradient or the Davidson algorithm. It is a block algorithm, and hence can take advantage of efficient BLAS3 operations and be implemented with multiple levels of concurrency. We discuss a number of practical issues that must be addressed in order to implement the algorithm efficiently on a high performance computer.« less

  7. Hybrid Architectures for Evolutionary Computing Algorithms

    DTIC Science & Technology

    2008-01-01

    other EC algorithms to FPGA Core Burns P1026/MAPLD 200532 Genetic Algorithm Hardware References S. Scott, A. Samal , and S. Seth, “HGA: A Hardware Based...on Parallel and Distributed Processing (IPPS/SPDP 󈨦), pp. 316-320, Proceedings. IEEE Computer Society 1998. [12] Scott, S. D. , Samal , A., and...Algorithm Hardware References S. Scott, A. Samal , and S. Seth, “HGA: A Hardware Based Genetic Algorithm”, Proceedings of the 1995 ACM Third

  8. Computationally efficient algorithms for real-time attitude estimation

    NASA Technical Reports Server (NTRS)

    Pringle, Steven R.

    1993-01-01

    For many practical spacecraft applications, algorithms for determining spacecraft attitude must combine inputs from diverse sensors and provide redundancy in the event of sensor failure. A Kalman filter is suitable for this task, however, it may impose a computational burden which may be avoided by sub optimal methods. A suboptimal estimator is presented which was implemented successfully on the Delta Star spacecraft which performed a 9 month SDI flight experiment in 1989. This design sought to minimize algorithm complexity to accommodate the limitations of an 8K guidance computer. The algorithm used is interpreted in the framework of Kalman filtering and a derivation is given for the computation.

  9. Wavelet Algorithms for Illumination Computations

    NASA Astrophysics Data System (ADS)

    Schroder, Peter

    One of the core problems of computer graphics is the computation of the equilibrium distribution of light in a scene. This distribution is given as the solution to a Fredholm integral equation of the second kind involving an integral over all surfaces in the scene. In the general case such solutions can only be numerically approximated, and are generally costly to compute, due to the geometric complexity of typical computer graphics scenes. For this computation both Monte Carlo and finite element techniques (or hybrid approaches) are typically used. A simplified version of the illumination problem is known as radiosity, which assumes that all surfaces are diffuse reflectors. For this case hierarchical techniques, first introduced by Hanrahan et al. (32), have recently gained prominence. The hierarchical approaches lead to an asymptotic improvement when only finite precision is required. The resulting algorithms have cost proportional to O(k^2 + n) versus the usual O(n^2) (k is the number of input surfaces, n the number of finite elements into which the input surfaces are meshed). Similarly a hierarchical technique has been introduced for the more general radiance problem (which allows glossy reflectors) by Aupperle et al. (6). In this dissertation we show the equivalence of these hierarchical techniques to the use of a Haar wavelet basis in a general Galerkin framework. By so doing, we come to a deeper understanding of the properties of the numerical approximations used and are able to extend the hierarchical techniques to higher orders. In particular, we show the correspondence of the geometric arguments underlying hierarchical methods to the theory of Calderon-Zygmund operators and their sparse realization in wavelet bases. The resulting wavelet algorithms for radiosity and radiance are analyzed and numerical results achieved with our implementation are reported. We find that the resulting algorithms achieve smaller and smoother errors at equivalent work.

  10. Approximate Computing Techniques for Iterative Graph Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panyala, Ajay R.; Subasi, Omer; Halappanavar, Mahantesh

    Approximate computing enables processing of large-scale graphs by trading off quality for performance. Approximate computing techniques have become critical not only due to the emergence of parallel architectures but also the availability of large scale datasets enabling data-driven discovery. Using two prototypical graph algorithms, PageRank and community detection, we present several approximate computing heuristics to scale the performance with minimal loss of accuracy. We present several heuristics including loop perforation, data caching, incomplete graph coloring and synchronization, and evaluate their efficiency. We demonstrate performance improvements of up to 83% for PageRank and up to 450x for community detection, with lowmore » impact of accuracy for both the algorithms. We expect the proposed approximate techniques will enable scalable graph analytics on data of importance to several applications in science and their subsequent adoption to scale similar graph algorithms.« less

  11. An improved ant colony optimization algorithm with fault tolerance for job scheduling in grid computing systems

    PubMed Central

    Idris, Hajara; Junaidu, Sahalu B.; Adewumi, Aderemi O.

    2017-01-01

    The Grid scheduler, schedules user jobs on the best available resource in terms of resource characteristics by optimizing job execution time. Resource failure in Grid is no longer an exception but a regular occurring event as resources are increasingly being used by the scientific community to solve computationally intensive problems which typically run for days or even months. It is therefore absolutely essential that these long-running applications are able to tolerate failures and avoid re-computations from scratch after resource failure has occurred, to satisfy the user’s Quality of Service (QoS) requirement. Job Scheduling with Fault Tolerance in Grid Computing using Ant Colony Optimization is proposed to ensure that jobs are executed successfully even when resource failure has occurred. The technique employed in this paper, is the use of resource failure rate, as well as checkpoint-based roll back recovery strategy. Check-pointing aims at reducing the amount of work that is lost upon failure of the system by immediately saving the state of the system. A comparison of the proposed approach with an existing Ant Colony Optimization (ACO) algorithm is discussed. The experimental results of the implemented Fault Tolerance scheduling algorithm show that there is an improvement in the user’s QoS requirement over the existing ACO algorithm, which has no fault tolerance integrated in it. The performance evaluation of the two algorithms was measured in terms of the three main scheduling performance metrics: makespan, throughput and average turnaround time. PMID:28545075

  12. Evaluation of six TPS algorithms in computing entrance and exit doses.

    PubMed

    Tan, Yun I; Metwaly, Mohamed; Glegg, Martin; Baggarley, Shaun; Elliott, Alex

    2014-05-08

    Entrance and exit doses are commonly measured in in vivo dosimetry for comparison with expected values, usually generated by the treatment planning system (TPS), to verify accuracy of treatment delivery. This report aims to evaluate the accuracy of six TPS algorithms in computing entrance and exit doses for a 6 MV beam. The algorithms tested were: pencil beam convolution (Eclipse PBC), analytical anisotropic algorithm (Eclipse AAA), AcurosXB (Eclipse AXB), FFT convolution (XiO Convolution), multigrid superposition (XiO Superposition), and Monte Carlo photon (Monaco MC). Measurements with ionization chamber (IC) and diode detector in water phantoms were used as a reference. Comparisons were done in terms of central axis point dose, 1D relative profiles, and 2D absolute gamma analysis. Entrance doses computed by all TPS algorithms agreed to within 2% of the measured values. Exit doses computed by XiO Convolution, XiO Superposition, Eclipse AXB, and Monaco MC agreed with the IC measured doses to within 2%-3%. Meanwhile, Eclipse PBC and Eclipse AAA computed exit doses were higher than the IC measured doses by up to 5.3% and 4.8%, respectively. Both algorithms assume that full backscatter exists even at the exit level, leading to an overestimation of exit doses. Despite good agreements at the central axis for Eclipse AXB and Monaco MC, 1D relative comparisons showed profiles mismatched at depths beyond 11.5 cm. Overall, the 2D absolute gamma (3%/3 mm) pass rates were better for Monaco MC, while Eclipse AXB failed mostly at the outer 20% of the field area. The findings of this study serve as a useful baseline for the implementation of entrance and exit in vivo dosimetry in clinical departments utilizing any of these six common TPS algorithms for reference comparison.

  13. Simple re-instantiation of small databases using cloud computing.

    PubMed

    Tan, Tin Wee; Xie, Chao; De Silva, Mark; Lim, Kuan Siong; Patro, C Pawan K; Lim, Shen Jean; Govindarajan, Kunde Ramamoorthy; Tong, Joo Chuan; Choo, Khar Heng; Ranganathan, Shoba; Khan, Asif M

    2013-01-01

    Small bioinformatics databases, unlike institutionally funded large databases, are vulnerable to discontinuation and many reported in publications are no longer accessible. This leads to irreproducible scientific work and redundant effort, impeding the pace of scientific progress. We describe a Web-accessible system, available online at http://biodb100.apbionet.org, for archival and future on demand re-instantiation of small databases within minutes. Depositors can rebuild their databases by downloading a Linux live operating system (http://www.bioslax.com), preinstalled with bioinformatics and UNIX tools. The database and its dependencies can be compressed into an ".lzm" file for deposition. End-users can search for archived databases and activate them on dynamically re-instantiated BioSlax instances, run as virtual machines over the two popular full virtualization standard cloud-computing platforms, Xen Hypervisor or vSphere. The system is adaptable to increasing demand for disk storage or computational load and allows database developers to use the re-instantiated databases for integration and development of new databases. Herein, we demonstrate that a relatively inexpensive solution can be implemented for archival of bioinformatics databases and their rapid re-instantiation should the live databases disappear.

  14. Simple re-instantiation of small databases using cloud computing

    PubMed Central

    2013-01-01

    Background Small bioinformatics databases, unlike institutionally funded large databases, are vulnerable to discontinuation and many reported in publications are no longer accessible. This leads to irreproducible scientific work and redundant effort, impeding the pace of scientific progress. Results We describe a Web-accessible system, available online at http://biodb100.apbionet.org, for archival and future on demand re-instantiation of small databases within minutes. Depositors can rebuild their databases by downloading a Linux live operating system (http://www.bioslax.com), preinstalled with bioinformatics and UNIX tools. The database and its dependencies can be compressed into an ".lzm" file for deposition. End-users can search for archived databases and activate them on dynamically re-instantiated BioSlax instances, run as virtual machines over the two popular full virtualization standard cloud-computing platforms, Xen Hypervisor or vSphere. The system is adaptable to increasing demand for disk storage or computational load and allows database developers to use the re-instantiated databases for integration and development of new databases. Conclusions Herein, we demonstrate that a relatively inexpensive solution can be implemented for archival of bioinformatics databases and their rapid re-instantiation should the live databases disappear. PMID:24564380

  15. Parallel Algorithms for Computational Models of Geophysical Systems

    NASA Astrophysics Data System (ADS)

    Carrillo Ledesma, A.; Herrera, I.; de la Cruz, L. M.; Hernández, G.; Grupo de Modelacion Matematica y Computacional

    2013-05-01

    Mathematical models of many systems of interest, including very important continuous systems of Earth Sciences and Engineering, lead to a great variety of partial differential equations (PDEs) whose solution methods are based on the computational processing of large-scale algebraic systems. Furthermore, the incredible expansion experienced by the existing computational hardware and software has made amenable to effective treatment problems of an ever increasing diversity and complexity, posed by scientific and engineering applications. Parallel computing is outstanding among the new computational tools and, in order to effectively use the most advanced computers available today, massively parallel software is required. Domain decomposition methods (DDMs) have been developed precisely for effectively treating PDEs in paralle. Ideally, the main objective of domain decomposition research is to produce algorithms capable of 'obtaining the global solution by exclusively solving local problems', but up-to-now this has only been an aspiration; that is, a strong desire for achieving such a property and so we call it 'the DDM-paradigm'. In recent times, numerically competitive DDM-algorithms are non-overlapping, preconditioned and necessarily incorporate constraints which pose an additional challenge for achieving the DDM-paradigm. Recently a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm, was developed. To derive them a new discretization method, which uses a non-overlapping system of nodes (the derived-nodes), was introduced. This discretization procedure can be applied to any boundary-value problem, or system of such equations. In turn, the resulting system of discrete equations can be treated using any available DDM-algorithm. In particular, two of the four DVS-algorithms mentioned above were obtained by application of the well-known and very effective algorithms BDDC and FETI-DP; these will be referred to as the DVS

  16. CUDA Optimization Strategies for Compute- and Memory-Bound Neuroimaging Algorithms

    PubMed Central

    Lee, Daren; Dinov, Ivo; Dong, Bin; Gutman, Boris; Yanovsky, Igor; Toga, Arthur W.

    2011-01-01

    As neuroimaging algorithms and technology continue to grow faster than CPU performance in complexity and image resolution, data-parallel computing methods will be increasingly important. The high performance, data-parallel architecture of modern graphical processing units (GPUs) can reduce computational times by orders of magnitude. However, its massively threaded architecture introduces challenges when GPU resources are exceeded. This paper presents optimization strategies for compute- and memory-bound algorithms for the CUDA architecture. For compute-bound algorithms, the registers are reduced through variable reuse via shared memory and the data throughput is increased through heavier thread workloads and maximizing the thread configuration for a single thread block per multiprocessor. For memory-bound algorithms, fitting the data into the fast but limited GPU resources is achieved through reorganizing the data into self-contained structures and employing a multi-pass approach. Memory latencies are reduced by selecting memory resources whose cache performance are optimized for the algorithm's access patterns. We demonstrate the strategies on two computationally expensive algorithms and achieve optimized GPU implementations that perform up to 6× faster than unoptimized ones. Compared to CPU implementations, we achieve peak GPU speedups of 129× for the 3D unbiased nonlinear image registration technique and 93× for the non-local means surface denoising algorithm. PMID:21159404

  17. Measuring exertion time, duty cycle and hand activity level for industrial tasks using computer vision.

    PubMed

    Akkas, Oguz; Lee, Cheng Hsien; Hu, Yu Hen; Harris Adamson, Carisa; Rempel, David; Radwin, Robert G

    2017-12-01

    Two computer vision algorithms were developed to automatically estimate exertion time, duty cycle (DC) and hand activity level (HAL) from videos of workers performing 50 industrial tasks. The average DC difference between manual frame-by-frame analysis and the computer vision DC was -5.8% for the Decision Tree (DT) algorithm, and 1.4% for the Feature Vector Training (FVT) algorithm. The average HAL difference was 0.5 for the DT algorithm and 0.3 for the FVT algorithm. A sensitivity analysis, conducted to examine the influence that deviations in DC have on HAL, found it remained unaffected when DC error was less than 5%. Thus, a DC error less than 10% will impact HAL less than 0.5 HAL, which is negligible. Automatic computer vision HAL estimates were therefore comparable to manual frame-by-frame estimates. Practitioner Summary: Computer vision was used to automatically estimate exertion time, duty cycle and hand activity level from videos of workers performing industrial tasks.

  18. Computing NLTE Opacities -- Node Level Parallel Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holladay, Daniel

    Presentation. The goal: to produce a robust library capable of computing reasonably accurate opacities inline with the assumption of LTE relaxed (non-LTE). Near term: demonstrate acceleration of non-LTE opacity computation. Far term (if funded): connect to application codes with in-line capability and compute opacities. Study science problems. Use efficient algorithms that expose many levels of parallelism and utilize good memory access patterns for use on advanced architectures. Portability to multiple types of hardware including multicore processors, manycore processors such as KNL, GPUs, etc. Easily coupled to radiation hydrodynamics and thermal radiative transfer codes.

  19. CUDA optimization strategies for compute- and memory-bound neuroimaging algorithms.

    PubMed

    Lee, Daren; Dinov, Ivo; Dong, Bin; Gutman, Boris; Yanovsky, Igor; Toga, Arthur W

    2012-06-01

    As neuroimaging algorithms and technology continue to grow faster than CPU performance in complexity and image resolution, data-parallel computing methods will be increasingly important. The high performance, data-parallel architecture of modern graphical processing units (GPUs) can reduce computational times by orders of magnitude. However, its massively threaded architecture introduces challenges when GPU resources are exceeded. This paper presents optimization strategies for compute- and memory-bound algorithms for the CUDA architecture. For compute-bound algorithms, the registers are reduced through variable reuse via shared memory and the data throughput is increased through heavier thread workloads and maximizing the thread configuration for a single thread block per multiprocessor. For memory-bound algorithms, fitting the data into the fast but limited GPU resources is achieved through reorganizing the data into self-contained structures and employing a multi-pass approach. Memory latencies are reduced by selecting memory resources whose cache performance are optimized for the algorithm's access patterns. We demonstrate the strategies on two computationally expensive algorithms and achieve optimized GPU implementations that perform up to 6× faster than unoptimized ones. Compared to CPU implementations, we achieve peak GPU speedups of 129× for the 3D unbiased nonlinear image registration technique and 93× for the non-local means surface denoising algorithm. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Thermodynamic cost of computation, algorithmic complexity and the information metric

    NASA Technical Reports Server (NTRS)

    Zurek, W. H.

    1989-01-01

    Algorithmic complexity is discussed as a computational counterpart to the second law of thermodynamics. It is shown that algorithmic complexity, which is a measure of randomness, sets limits on the thermodynamic cost of computations and casts a new light on the limitations of Maxwell's demon. Algorithmic complexity can also be used to define distance between binary strings.

  1. A Computationally Efficient Visual Saliency Algorithm Suitable for an Analog CMOS Implementation.

    PubMed

    D'Angelo, Robert; Wood, Richard; Lowry, Nathan; Freifeld, Geremy; Huang, Haiyao; Salthouse, Christopher D; Hollosi, Brent; Muresan, Matthew; Uy, Wes; Tran, Nhut; Chery, Armand; Poppe, Dorothy C; Sonkusale, Sameer

    2018-06-27

    Computer vision algorithms are often limited in their application by the large amount of data that must be processed. Mammalian vision systems mitigate this high bandwidth requirement by prioritizing certain regions of the visual field with neural circuits that select the most salient regions. This work introduces a novel and computationally efficient visual saliency algorithm for performing this neuromorphic attention-based data reduction. The proposed algorithm has the added advantage that it is compatible with an analog CMOS design while still achieving comparable performance to existing state-of-the-art saliency algorithms. This compatibility allows for direct integration with the analog-to-digital conversion circuitry present in CMOS image sensors. This integration leads to power savings in the converter by quantizing only the salient pixels. Further system-level power savings are gained by reducing the amount of data that must be transmitted and processed in the digital domain. The analog CMOS compatible formulation relies on a pulse width (i.e., time mode) encoding of the pixel data that is compatible with pulse-mode imagers and slope based converters often used in imager designs. This letter begins by discussing this time-mode encoding for implementing neuromorphic architectures. Next, the proposed algorithm is derived. Hardware-oriented optimizations and modifications to this algorithm are proposed and discussed. Next, a metric for quantifying saliency accuracy is proposed, and simulation results of this metric are presented. Finally, an analog synthesis approach for a time-mode architecture is outlined, and postsynthesis transistor-level simulations that demonstrate functionality of an implementation in a modern CMOS process are discussed.

  2. Efficient conjugate gradient algorithms for computation of the manipulator forward dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheid, Robert E.

    1989-01-01

    The applicability of conjugate gradient algorithms for computation of the manipulator forward dynamics is investigated. The redundancies in the previously proposed conjugate gradient algorithm are analyzed. A new version is developed which, by avoiding these redundancies, achieves a significantly greater efficiency. A preconditioned conjugate gradient algorithm is also presented. A diagonal matrix whose elements are the diagonal elements of the inertia matrix is proposed as the preconditioner. In order to increase the computational efficiency, an algorithm is developed which exploits the synergism between the computation of the diagonal elements of the inertia matrix and that required by the conjugate gradient algorithm.

  3. Computational algorithms for simulations in atmospheric optics.

    PubMed

    Konyaev, P A; Lukin, V P

    2016-04-20

    A computer simulation technique for atmospheric and adaptive optics based on parallel programing is discussed. A parallel propagation algorithm is designed and a modified spectral-phase method for computer generation of 2D time-variant random fields is developed. Temporal power spectra of Laguerre-Gaussian beam fluctuations are considered as an example to illustrate the applications discussed. Implementation of the proposed algorithms using Intel MKL and IPP libraries and NVIDIA CUDA technology is shown to be very fast and accurate. The hardware system for the computer simulation is an off-the-shelf desktop with an Intel Core i7-4790K CPU operating at a turbo-speed frequency up to 5 GHz and an NVIDIA GeForce GTX-960 graphics accelerator with 1024 1.5 GHz processors.

  4. Fast algorithm for computing complex number-theoretic transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Liu, K. Y.; Truong, T. K.

    1977-01-01

    A high-radix FFT algorithm for computing transforms over FFT, where q is a Mersenne prime, is developed to implement fast circular convolutions. This new algorithm requires substantially fewer multiplications than the conventional FFT.

  5. Parallel algorithms for mapping pipelined and parallel computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1988-01-01

    Many computational problems in image processing, signal processing, and scientific computing are naturally structured for either pipelined or parallel computation. When mapping such problems onto a parallel architecture it is often necessary to aggregate an obvious problem decomposition. Even in this context the general mapping problem is known to be computationally intractable, but recent advances have been made in identifying classes of problems and architectures for which optimal solutions can be found in polynomial time. Among these, the mapping of pipelined or parallel computations onto linear array, shared memory, and host-satellite systems figures prominently. This paper extends that work first by showing how to improve existing serial mapping algorithms. These improvements have significantly lower time and space complexities: in one case a published O(nm sup 3) time algorithm for mapping m modules onto n processors is reduced to an O(nm log m) time complexity, and its space requirements reduced from O(nm sup 2) to O(m). Run time complexity is further reduced with parallel mapping algorithms based on these improvements, which run on the architecture for which they create the mappings.

  6. Development and application of unified algorithms for problems in computational science

    NASA Technical Reports Server (NTRS)

    Shankar, Vijaya; Chakravarthy, Sukumar

    1987-01-01

    A framework is presented for developing computationally unified numerical algorithms for solving nonlinear equations that arise in modeling various problems in mathematical physics. The concept of computational unification is an attempt to encompass efficient solution procedures for computing various nonlinear phenomena that may occur in a given problem. For example, in Computational Fluid Dynamics (CFD), a unified algorithm will be one that allows for solutions to subsonic (elliptic), transonic (mixed elliptic-hyperbolic), and supersonic (hyperbolic) flows for both steady and unsteady problems. The objectives are: development of superior unified algorithms emphasizing accuracy and efficiency aspects; development of codes based on selected algorithms leading to validation; application of mature codes to realistic problems; and extension/application of CFD-based algorithms to problems in other areas of mathematical physics. The ultimate objective is to achieve integration of multidisciplinary technologies to enhance synergism in the design process through computational simulation. Specific unified algorithms for a hierarchy of gas dynamics equations and their applications to two other areas: electromagnetic scattering, and laser-materials interaction accounting for melting.

  7. Evaluation of six TPS algorithms in computing entrance and exit doses

    PubMed Central

    Metwaly, Mohamed; Glegg, Martin; Baggarley, Shaun P.; Elliott, Alex

    2014-01-01

    Entrance and exit doses are commonly measured in in vivo dosimetry for comparison with expected values, usually generated by the treatment planning system (TPS), to verify accuracy of treatment delivery. This report aims to evaluate the accuracy of six TPS algorithms in computing entrance and exit doses for a 6 MV beam. The algorithms tested were: pencil beam convolution (Eclipse PBC), analytical anisotropic algorithm (Eclipse AAA), AcurosXB (Eclipse AXB), FFT convolution (XiO Convolution), multigrid superposition (XiO Superposition), and Monte Carlo photon (Monaco MC). Measurements with ionization chamber (IC) and diode detector in water phantoms were used as a reference. Comparisons were done in terms of central axis point dose, 1D relative profiles, and 2D absolute gamma analysis. Entrance doses computed by all TPS algorithms agreed to within 2% of the measured values. Exit doses computed by XiO Convolution, XiO Superposition, Eclipse AXB, and Monaco MC agreed with the IC measured doses to within 2%‐3%. Meanwhile, Eclipse PBC and Eclipse AAA computed exit doses were higher than the IC measured doses by up to 5.3% and 4.8%, respectively. Both algorithms assume that full backscatter exists even at the exit level, leading to an overestimation of exit doses. Despite good agreements at the central axis for Eclipse AXB and Monaco MC, 1D relative comparisons showed profiles mismatched at depths beyond 11.5 cm. Overall, the 2D absolute gamma (3%/3 mm) pass rates were better for Monaco MC, while Eclipse AXB failed mostly at the outer 20% of the field area. The findings of this study serve as a useful baseline for the implementation of entrance and exit in vivo dosimetry in clinical departments utilizing any of these six common TPS algorithms for reference comparison. PACS numbers: 87.55.‐x, 87.55.D‐, 87.55.N‐, 87.53.Bn PMID:24892349

  8. An O(log sup 2 N) parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix

    NASA Technical Reports Server (NTRS)

    Swarztrauber, Paul N.

    1989-01-01

    An O(log sup 2 N) parallel algorithm is presented for computing the eigenvalues of a symmetric tridiagonal matrix using a parallel algorithm for computing the zeros of the characteristic polynomial. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The exact behavior of the polynomials at the interval endpoints is used to eliminate the usual problems induced by finite precision arithmetic.

  9. Multiscale computations with a wavelet-adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Rastigejev, Yevgenii Anatolyevich

    A wavelet-based adaptive multiresolution algorithm for the numerical solution of multiscale problems governed by partial differential equations is introduced. The main features of the method include fast algorithms for the calculation of wavelet coefficients and approximation of derivatives on nonuniform stencils. The connection between the wavelet order and the size of the stencil is established. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution which are used in conjunction with an appropriate threshold criteria to adapt the collocation grid. The efficient data structures for grid representation as well as related computational algorithms to support grid rearrangement procedure are developed. The algorithm is applied to the simulation of phenomena described by Navier-Stokes equations. First, we undertake the study of the ignition and subsequent viscous detonation of a H2 : O2 : Ar mixture in a one-dimensional shock tube. Subsequently, we apply the algorithm to solve the two- and three-dimensional benchmark problem of incompressible flow in a lid-driven cavity at large Reynolds numbers. For these cases we show that solutions of comparable accuracy as the benchmarks are obtained with more than an order of magnitude reduction in degrees of freedom. The simulations show the striking ability of the algorithm to adapt to a solution having different scales at different spatial locations so as to produce accurate results at a relatively low computational cost.

  10. Computational Discovery of Materials Using the Firefly Algorithm

    NASA Astrophysics Data System (ADS)

    Avendaño-Franco, Guillermo; Romero, Aldo

    Our current ability to model physical phenomena accurately, the increase computational power and better algorithms are the driving forces behind the computational discovery and design of novel materials, allowing for virtual characterization before their realization in the laboratory. We present the implementation of a novel firefly algorithm, a population-based algorithm for global optimization for searching the structure/composition space. This novel computation-intensive approach naturally take advantage of concurrency, targeted exploration and still keeping enough diversity. We apply the new method in both periodic and non-periodic structures and we present the implementation challenges and solutions to improve efficiency. The implementation makes use of computational materials databases and network analysis to optimize the search and get insights about the geometric structure of local minima on the energy landscape. The method has been implemented in our software PyChemia, an open-source package for materials discovery. We acknowledge the support of DMREF-NSF 1434897 and the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research under Contract 54075-ND10.

  11. Star adaptation for two-algorithms used on serial computers

    NASA Technical Reports Server (NTRS)

    Howser, L. M.; Lambiotte, J. J., Jr.

    1974-01-01

    Two representative algorithms used on a serial computer and presently executed on the Control Data Corporation 6000 computer were adapted to execute efficiently on the Control Data STAR-100 computer. Gaussian elimination for the solution of simultaneous linear equations and the Gauss-Legendre quadrature formula for the approximation of an integral are the two algorithms discussed. A description is given of how the programs were adapted for STAR and why these adaptations were necessary to obtain an efficient STAR program. Some points to consider when adapting an algorithm for STAR are discussed. Program listings of the 6000 version coded in 6000 FORTRAN, the adapted STAR version coded in 6000 FORTRAN, and the STAR version coded in STAR FORTRAN are presented in the appendices.

  12. Multipole Algorithms for Molecular Dynamics Simulation on High Performance Computers.

    NASA Astrophysics Data System (ADS)

    Elliott, William Dewey

    1995-01-01

    A fundamental problem in modeling large molecular systems with molecular dynamics (MD) simulations is the underlying N-body problem of computing the interactions between all pairs of N atoms. The simplest algorithm to compute pair-wise atomic interactions scales in runtime {cal O}(N^2), making it impractical for interesting biomolecular systems, which can contain millions of atoms. Recently, several algorithms have become available that solve the N-body problem by computing the effects of all pair-wise interactions while scaling in runtime less than {cal O}(N^2). One algorithm, which scales {cal O}(N) for a uniform distribution of particles, is called the Greengard-Rokhlin Fast Multipole Algorithm (FMA). This work describes an FMA-like algorithm called the Molecular Dynamics Multipole Algorithm (MDMA). The algorithm contains several features that are new to N-body algorithms. MDMA uses new, efficient series expansion equations to compute general 1/r^{n } potentials to arbitrary accuracy. In particular, the 1/r Coulomb potential and the 1/r^6 portion of the Lennard-Jones potential are implemented. The new equations are based on multivariate Taylor series expansions. In addition, MDMA uses a cell-to-cell interaction region of cells that is closely tied to worst case error bounds. The worst case error bounds for MDMA are derived in this work also. These bounds apply to other multipole algorithms as well. Several implementation enhancements are described which apply to MDMA as well as other N-body algorithms such as FMA and tree codes. The mathematics of the cell -to-cell interactions are converted to the Fourier domain for reduced operation count and faster computation. A relative indexing scheme was devised to locate cells in the interaction region which allows efficient pre-computation of redundant information and prestorage of much of the cell-to-cell interaction. Also, MDMA was integrated into the MD program SIgMA to demonstrate the performance of the program over

  13. Computationally efficient algorithm for high sampling-frequency operation of active noise control

    NASA Astrophysics Data System (ADS)

    Rout, Nirmal Kumar; Das, Debi Prasad; Panda, Ganapati

    2015-05-01

    In high sampling-frequency operation of active noise control (ANC) system the length of the secondary path estimate and the ANC filter are very long. This increases the computational complexity of the conventional filtered-x least mean square (FXLMS) algorithm. To reduce the computational complexity of long order ANC system using FXLMS algorithm, frequency domain block ANC algorithms have been proposed in past. These full block frequency domain ANC algorithms are associated with some disadvantages such as large block delay, quantization error due to computation of large size transforms and implementation difficulties in existing low-end DSP hardware. To overcome these shortcomings, the partitioned block ANC algorithm is newly proposed where the long length filters in ANC are divided into a number of equal partitions and suitably assembled to perform the FXLMS algorithm in the frequency domain. The complexity of this proposed frequency domain partitioned block FXLMS (FPBFXLMS) algorithm is quite reduced compared to the conventional FXLMS algorithm. It is further reduced by merging one fast Fourier transform (FFT)-inverse fast Fourier transform (IFFT) combination to derive the reduced structure FPBFXLMS (RFPBFXLMS) algorithm. Computational complexity analysis for different orders of filter and partition size are presented. Systematic computer simulations are carried out for both the proposed partitioned block ANC algorithms to show its accuracy compared to the time domain FXLMS algorithm.

  14. Associative Algorithms for Computational Creativity

    ERIC Educational Resources Information Center

    Varshney, Lav R.; Wang, Jun; Varshney, Kush R.

    2016-01-01

    Computational creativity, the generation of new, unimagined ideas or artifacts by a machine that are deemed creative by people, can be applied in the culinary domain to create novel and flavorful dishes. In fact, we have done so successfully using a combinatorial algorithm for recipe generation combined with statistical models for recipe ranking…

  15. Efficient image compression algorithm for computer-animated images

    NASA Astrophysics Data System (ADS)

    Yfantis, Evangelos A.; Au, Matthew Y.; Miel, G.

    1992-10-01

    An image compression algorithm is described. The algorithm is an extension of the run-length image compression algorithm and its implementation is relatively easy. This algorithm was implemented and compared with other existing popular compression algorithms and with the Lempel-Ziv (LZ) coding. The Lempel-Ziv algorithm is available as a utility in the UNIX operating system and is also referred to as the UNIX uncompress. Sometimes our algorithm is best in terms of saving memory space, and sometimes one of the competing algorithms is best. The algorithm is lossless, and the intent is for the algorithm to be used in computer graphics animated images. Comparisons made with the LZ algorithm indicate that the decompression time using our algorithm is faster than that using the LZ algorithm. Once the data are in memory, a relatively simple and fast transformation is applied to uncompress the file.

  16. Mining User Dwell Time for Personalized Web Search Re-Ranking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Songhua; Jiang, Hao; Lau, Francis

    We propose a personalized re-ranking algorithm through mining user dwell times derived from a user's previously online reading or browsing activities. We acquire document level user dwell times via a customized web browser, from which we then infer conceptword level user dwell times in order to understand a user's personal interest. According to the estimated concept word level user dwell times, our algorithm can estimate a user's potential dwell time over a new document, based on which personalized webpage re-ranking can be carried out. We compare the rankings produced by our algorithm with rankings generated by popular commercial search enginesmore » and a recently proposed personalized ranking algorithm. The results clearly show the superiority of our method. In this paper, we propose a new personalized webpage ranking algorithmthrough mining dwell times of a user. We introduce a quantitative model to derive concept word level user dwell times from the observed document level user dwell times. Once we have inferred a user's interest over the set of concept words the user has encountered in previous readings, we can then predict the user's potential dwell time over a new document. Such predicted user dwell time allows us to carry out personalized webpage re-ranking. To explore the effectiveness of our algorithm, we measured the performance of our algorithm under two conditions - one with a relatively limited amount of user dwell time data and the other with a doubled amount. Both evaluation cases put our algorithm for generating personalized webpage rankings to satisfy a user's personal preference ahead of those by Google, Yahoo!, and Bing, as well as a recent personalized webpage ranking algorithm.« less

  17. Application of a fast skyline computation algorithm for serendipitous searching problems

    NASA Astrophysics Data System (ADS)

    Koizumi, Kenichi; Hiraki, Kei; Inaba, Mary

    2018-02-01

    Skyline computation is a method of extracting interesting entries from a large population with multiple attributes. These entries, called skyline or Pareto optimal entries, are known to have extreme characteristics that cannot be found by outlier detection methods. Skyline computation is an important task for characterizing large amounts of data and selecting interesting entries with extreme features. When the population changes dynamically, the task of calculating a sequence of skyline sets is called continuous skyline computation. This task is known to be difficult to perform for the following reasons: (1) information of non-skyline entries must be stored since they may join the skyline in the future; (2) the appearance or disappearance of even a single entry can change the skyline drastically; (3) it is difficult to adopt a geometric acceleration algorithm for skyline computation tasks with high-dimensional datasets. Our new algorithm called jointed rooted-tree (JR-tree) manages entries using a rooted tree structure. JR-tree delays extend the tree to deep levels to accelerate tree construction and traversal. In this study, we presented the difficulties in extracting entries tagged with a rare label in high-dimensional space and the potential of fast skyline computation in low-latency cell identification technology.

  18. A class of parallel algorithms for computation of the manipulator inertia matrix

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1989-01-01

    Parallel and parallel/pipeline algorithms for computation of the manipulator inertia matrix are presented. An algorithm based on composite rigid-body spatial inertia method, which provides better features for parallelization, is used for the computation of the inertia matrix. Two parallel algorithms are developed which achieve the time lower bound in computation. Also described is the mapping of these algorithms with topological variation on a two-dimensional processor array, with nearest-neighbor connection, and with cardinality variation on a linear processor array. An efficient parallel/pipeline algorithm for the linear array was also developed, but at significantly higher efficiency.

  19. Cloud computing task scheduling strategy based on improved differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Ge, Junwei; He, Qian; Fang, Yiqiu

    2017-04-01

    In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.

  20. Single-step reinitialization and extending algorithms for level-set based multi-phase flow simulations

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-12-01

    We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.

  1. Equation-free multiscale computation: algorithms and applications.

    PubMed

    Kevrekidis, Ioannis G; Samaey, Giovanni

    2009-01-01

    In traditional physicochemical modeling, one derives evolution equations at the (macroscopic, coarse) scale of interest; these are used to perform a variety of tasks (simulation, bifurcation analysis, optimization) using an arsenal of analytical and numerical techniques. For many complex systems, however, although one observes evolution at a macroscopic scale of interest, accurate models are only given at a more detailed (fine-scale, microscopic) level of description (e.g., lattice Boltzmann, kinetic Monte Carlo, molecular dynamics). Here, we review a framework for computer-aided multiscale analysis, which enables macroscopic computational tasks (over extended spatiotemporal scales) using only appropriately initialized microscopic simulation on short time and length scales. The methodology bypasses the derivation of macroscopic evolution equations when these equations conceptually exist but are not available in closed form-hence the term equation-free. We selectively discuss basic algorithms and underlying principles and illustrate the approach through representative applications. We also discuss potential difficulties and outline areas for future research.

  2. Fast algorithms for computing phylogenetic divergence time.

    PubMed

    Crosby, Ralph W; Williams, Tiffani L

    2017-12-06

    The inference of species divergence time is a key step in most phylogenetic studies. Methods have been available for the last ten years to perform the inference, but the performance of the methods does not yet scale well to studies with hundreds of taxa and thousands of DNA base pairs. For example a study of 349 primate taxa was estimated to require over 9 months of processing time. In this work, we present a new algorithm, AncestralAge, that significantly improves the performance of the divergence time process. As part of AncestralAge, we demonstrate a new method for the computation of phylogenetic likelihood and our experiments show a 90% improvement in likelihood computation time on the aforementioned dataset of 349 primates taxa with over 60,000 DNA base pairs. Additionally, we show that our new method for the computation of the Bayesian prior on node ages reduces the running time for this computation on the 349 taxa dataset by 99%. Through the use of these new algorithms we open up the ability to perform divergence time inference on large phylogenetic studies.

  3. On the performances of computer vision algorithms on mobile platforms

    NASA Astrophysics Data System (ADS)

    Battiato, S.; Farinella, G. M.; Messina, E.; Puglisi, G.; Ravì, D.; Capra, A.; Tomaselli, V.

    2012-01-01

    Computer Vision enables mobile devices to extract the meaning of the observed scene from the information acquired with the onboard sensor cameras. Nowadays, there is a growing interest in Computer Vision algorithms able to work on mobile platform (e.g., phone camera, point-and-shot-camera, etc.). Indeed, bringing Computer Vision capabilities on mobile devices open new opportunities in different application contexts. The implementation of vision algorithms on mobile devices is still a challenging task since these devices have poor image sensors and optics as well as limited processing power. In this paper we have considered different algorithms covering classic Computer Vision tasks: keypoint extraction, face detection, image segmentation. Several tests have been done to compare the performances of the involved mobile platforms: Nokia N900, LG Optimus One, Samsung Galaxy SII.

  4. Correlation signatures of wet soils and snows. [algorithm development and computer programming

    NASA Technical Reports Server (NTRS)

    Phillips, M. R.

    1972-01-01

    Interpretation, analysis, and development of algorithms have provided the necessary computational programming tools for soil data processing, data handling and analysis. Algorithms that have been developed thus far, are adequate and have been proven successful for several preliminary and fundamental applications such as software interfacing capabilities, probability distributions, grey level print plotting, contour plotting, isometric data displays, joint probability distributions, boundary mapping, channel registration and ground scene classification. A description of an Earth Resources Flight Data Processor, (ERFDP), which handles and processes earth resources data under a users control is provided.

  5. Correlation of HIFiRE-5 Flight Data with Computed Pressure and Heat Transfer (Postprint)

    DTIC Science & Technology

    2015-06-01

    AFRL-RQ-WP-TP-2015-0149 CORRELATION OF HIFiRE-5 FLIGHT DATA WITH COMPUTED PRESSURE AND HEAT TRANSFER (POSTPRINT) Joseph S. Jewell...results with St was compared to flight heat transfer measurements, and transition locations were inferred. Finally, a computational heat conduction...HIFiRE-5 Flight Data With Computed Pressure and Heat Transfer Joseph S. Jewell,1 James H. Miller,2 and Roger L. Kimmel3 U.S. Air Force Research

  6. Parallelization of Nullspace Algorithm for the computation of metabolic pathways

    PubMed Central

    Jevremović, Dimitrije; Trinh, Cong T.; Srienc, Friedrich; Sosa, Carlos P.; Boley, Daniel

    2011-01-01

    Elementary mode analysis is a useful metabolic pathway analysis tool in understanding and analyzing cellular metabolism, since elementary modes can represent metabolic pathways with unique and minimal sets of enzyme-catalyzed reactions of a metabolic network under steady state conditions. However, computation of the elementary modes of a genome- scale metabolic network with 100–1000 reactions is very expensive and sometimes not feasible with the commonly used serial Nullspace Algorithm. In this work, we develop a distributed memory parallelization of the Nullspace Algorithm to handle efficiently the computation of the elementary modes of a large metabolic network. We give an implementation in C++ language with the support of MPI library functions for the parallel communication. Our proposed algorithm is accompanied with an analysis of the complexity and identification of major bottlenecks during computation of all possible pathways of a large metabolic network. The algorithm includes methods to achieve load balancing among the compute-nodes and specific communication patterns to reduce the communication overhead and improve efficiency. PMID:22058581

  7. Tools for Analyzing Computing Resource Management Strategies and Algorithms for SDR Clouds

    NASA Astrophysics Data System (ADS)

    Marojevic, Vuk; Gomez-Miguelez, Ismael; Gelonch, Antoni

    2012-09-01

    Software defined radio (SDR) clouds centralize the computing resources of base stations. The computing resource pool is shared between radio operators and dynamically loads and unloads digital signal processing chains for providing wireless communications services on demand. Each new user session request particularly requires the allocation of computing resources for executing the corresponding SDR transceivers. The huge amount of computing resources of SDR cloud data centers and the numerous session requests at certain hours of a day require an efficient computing resource management. We propose a hierarchical approach, where the data center is divided in clusters that are managed in a distributed way. This paper presents a set of computing resource management tools for analyzing computing resource management strategies and algorithms for SDR clouds. We use the tools for evaluating a different strategies and algorithms. The results show that more sophisticated algorithms can achieve higher resource occupations and that a tradeoff exists between cluster size and algorithm complexity.

  8. Integrand-level reduction of loop amplitudes by computational algebraic geometry methods

    NASA Astrophysics Data System (ADS)

    Zhang, Yang

    2012-09-01

    We present an algorithm for the integrand-level reduction of multi-loop amplitudes of renormalizable field theories, based on computational algebraic geometry. This algorithm uses (1) the Gröbner basis method to determine the basis for integrand-level reduction, (2) the primary decomposition of an ideal to classify all inequivalent solutions of unitarity cuts. The resulting basis and cut solutions can be used to reconstruct the integrand from unitarity cuts, via polynomial fitting techniques. The basis determination part of the algorithm has been implemented in the Mathematica package, BasisDet. The primary decomposition part can be readily carried out by algebraic geometry softwares, with the output of the package BasisDet. The algorithm works in both D = 4 and D = 4 - 2 ɛ dimensions, and we present some two and three-loop examples of applications of this algorithm.

  9. Performance analysis of a dual-tree algorithm for computing spatial distance histograms

    PubMed Central

    Chen, Shaoping; Tu, Yi-Cheng; Xia, Yuni

    2011-01-01

    Many scientific and engineering fields produce large volume of spatiotemporal data. The storage, retrieval, and analysis of such data impose great challenges to database systems design. Analysis of scientific spatiotemporal data often involves computing functions of all point-to-point interactions. One such analytics, the Spatial Distance Histogram (SDH), is of vital importance to scientific discovery. Recently, algorithms for efficient SDH processing in large-scale scientific databases have been proposed. These algorithms adopt a recursive tree-traversing strategy to process point-to-point distances in the visited tree nodes in batches, thus require less time when compared to the brute-force approach where all pairwise distances have to be computed. Despite the promising experimental results, the complexity of such algorithms has not been thoroughly studied. In this paper, we present an analysis of such algorithms based on a geometric modeling approach. The main technique is to transform the analysis of point counts into a problem of quantifying the area of regions where pairwise distances can be processed in batches by the algorithm. From the analysis, we conclude that the number of pairwise distances that are left to be processed decreases exponentially with more levels of the tree visited. This leads to the proof of a time complexity lower than the quadratic time needed for a brute-force algorithm and builds the foundation for a constant-time approximate algorithm. Our model is also general in that it works for a wide range of point spatial distributions, histogram types, and space-partitioning options in building the tree. PMID:21804753

  10. Fast computation algorithms for speckle pattern simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nascov, Victor; Samoilă, Cornel; Ursuţiu, Doru

    2013-11-13

    We present our development of a series of efficient computation algorithms, generally usable to calculate light diffraction and particularly for speckle pattern simulation. We use mainly the scalar diffraction theory in the form of Rayleigh-Sommerfeld diffraction formula and its Fresnel approximation. Our algorithms are based on a special form of the convolution theorem and the Fast Fourier Transform. They are able to evaluate the diffraction formula much faster than by direct computation and we have circumvented the restrictions regarding the relative sizes of the input and output domains, met on commonly used procedures. Moreover, the input and output planes canmore » be tilted each to other and the output domain can be off-axis shifted.« less

  11. Algorithms for the explicit computation of Penrose diagrams

    NASA Astrophysics Data System (ADS)

    Schindler, J. C.; Aguirre, A.

    2018-05-01

    An algorithm is given for explicitly computing Penrose diagrams for spacetimes of the form . The resulting diagram coordinates are shown to extend the metric continuously and nondegenerately across an arbitrary number of horizons. The method is extended to include piecewise approximations to dynamically evolving spacetimes using a standard hypersurface junction procedure. Examples generated by an implementation of the algorithm are shown for standard and new cases. In the appendix, this algorithm is compared to existing methods.

  12. CCOMP: An efficient algorithm for complex roots computation of determinantal equations

    NASA Astrophysics Data System (ADS)

    Zouros, Grigorios P.

    2018-01-01

    In this paper a free Python algorithm, entitled CCOMP (Complex roots COMPutation), is developed for the efficient computation of complex roots of determinantal equations inside a prescribed complex domain. The key to the method presented is the efficient determination of the candidate points inside the domain which, in their close neighborhood, a complex root may lie. Once these points are detected, the algorithm proceeds to a two-dimensional minimization problem with respect to the minimum modulus eigenvalue of the system matrix. In the core of CCOMP exist three sub-algorithms whose tasks are the efficient estimation of the minimum modulus eigenvalues of the system matrix inside the prescribed domain, the efficient computation of candidate points which guarantee the existence of minima, and finally, the computation of minima via bound constrained minimization algorithms. Theoretical results and heuristics support the development and the performance of the algorithm, which is discussed in detail. CCOMP supports general complex matrices, and its efficiency, applicability and validity is demonstrated to a variety of microwave applications.

  13. A modified dual-level algorithm for large-scale three-dimensional Laplace and Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Li, Junpu; Chen, Wen; Fu, Zhuojia

    2018-01-01

    A modified dual-level algorithm is proposed in the article. By the help of the dual level structure, the fully-populated interpolation matrix on the fine level is transformed to a local supported sparse matrix to solve the highly ill-conditioning and excessive storage requirement resulting from fully-populated interpolation matrix. The kernel-independent fast multipole method is adopted to expediting the solving process of the linear equations on the coarse level. Numerical experiments up to 2-million fine-level nodes have successfully been achieved. It is noted that the proposed algorithm merely needs to place 2-3 coarse-level nodes in each wavelength per direction to obtain the reasonable solution, which almost down to the minimum requirement allowed by the Shannon's sampling theorem. In the real human head model example, it is observed that the proposed algorithm can simulate well computationally very challenging exterior high-frequency harmonic acoustic wave propagation up to 20,000 Hz.

  14. A Computationally Efficient Parallel Levenberg-Marquardt Algorithm for Large-Scale Big-Data Inversion

    NASA Astrophysics Data System (ADS)

    Lin, Y.; O'Malley, D.; Vesselinov, V. V.

    2015-12-01

    Inverse modeling seeks model parameters given a set of observed state variables. However, for many practical problems due to the facts that the observed data sets are often large and model parameters are often numerous, conventional methods for solving the inverse modeling can be computationally expensive. We have developed a new, computationally-efficient Levenberg-Marquardt method for solving large-scale inverse modeling. Levenberg-Marquardt methods require the solution of a dense linear system of equations which can be prohibitively expensive to compute for large-scale inverse problems. Our novel method projects the original large-scale linear problem down to a Krylov subspace, such that the dimensionality of the measurements can be significantly reduced. Furthermore, instead of solving the linear system for every Levenberg-Marquardt damping parameter, we store the Krylov subspace computed when solving the first damping parameter and recycle it for all the following damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved by using these computational techniques. We apply this new inverse modeling method to invert for a random transitivity field. Our algorithm is fast enough to solve for the distributed model parameters (transitivity) at each computational node in the model domain. The inversion is also aided by the use regularization techniques. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. By comparing with a Levenberg-Marquardt method using standard linear inversion techniques, our Levenberg-Marquardt method yields speed-up ratio of 15 in a multi-core computational environment and a speed-up ratio of 45 in a single-core computational environment. Therefore, our new inverse modeling method is a

  15. Algorithms in nature: the convergence of systems biology and computational thinking

    PubMed Central

    Navlakha, Saket; Bar-Joseph, Ziv

    2011-01-01

    Computer science and biology have enjoyed a long and fruitful relationship for decades. Biologists rely on computational methods to analyze and integrate large data sets, while several computational methods were inspired by the high-level design principles of biological systems. Recently, these two directions have been converging. In this review, we argue that thinking computationally about biological processes may lead to more accurate models, which in turn can be used to improve the design of algorithms. We discuss the similar mechanisms and requirements shared by computational and biological processes and then present several recent studies that apply this joint analysis strategy to problems related to coordination, network analysis, and tracking and vision. We also discuss additional biological processes that can be studied in a similar manner and link them to potential computational problems. With the rapid accumulation of data detailing the inner workings of biological systems, we expect this direction of coupling biological and computational studies to greatly expand in the future. PMID:22068329

  16. PACCE: Perl Algorithm to Compute Continuum and Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Riffel, Rogério; Borges Vale, Tibério

    2011-05-01

    PACCE (Perl Algorithm to Compute continuum and Equivalent Widths) computes continuum and equivalent widths. PACCE is able to determine mean continuum and continuum at line center values, which are helpful in stellar population studies, and is also able to compute the uncertainties in the equivalent widths using photon statistics.

  17. Desiderata for computable representations of electronic health records-driven phenotype algorithms

    PubMed Central

    Mo, Huan; Thompson, William K; Rasmussen, Luke V; Pacheco, Jennifer A; Jiang, Guoqian; Kiefer, Richard; Zhu, Qian; Xu, Jie; Montague, Enid; Carrell, David S; Lingren, Todd; Mentch, Frank D; Ni, Yizhao; Wehbe, Firas H; Peissig, Peggy L; Tromp, Gerard; Larson, Eric B; Chute, Christopher G; Pathak, Jyotishman; Speltz, Peter; Kho, Abel N; Jarvik, Gail P; Bejan, Cosmin A; Williams, Marc S; Borthwick, Kenneth; Kitchner, Terrie E; Roden, Dan M; Harris, Paul A

    2015-01-01

    Background Electronic health records (EHRs) are increasingly used for clinical and translational research through the creation of phenotype algorithms. Currently, phenotype algorithms are most commonly represented as noncomputable descriptive documents and knowledge artifacts that detail the protocols for querying diagnoses, symptoms, procedures, medications, and/or text-driven medical concepts, and are primarily meant for human comprehension. We present desiderata for developing a computable phenotype representation model (PheRM). Methods A team of clinicians and informaticians reviewed common features for multisite phenotype algorithms published in PheKB.org and existing phenotype representation platforms. We also evaluated well-known diagnostic criteria and clinical decision-making guidelines to encompass a broader category of algorithms. Results We propose 10 desired characteristics for a flexible, computable PheRM: (1) structure clinical data into queryable forms; (2) recommend use of a common data model, but also support customization for the variability and availability of EHR data among sites; (3) support both human-readable and computable representations of phenotype algorithms; (4) implement set operations and relational algebra for modeling phenotype algorithms; (5) represent phenotype criteria with structured rules; (6) support defining temporal relations between events; (7) use standardized terminologies and ontologies, and facilitate reuse of value sets; (8) define representations for text searching and natural language processing; (9) provide interfaces for external software algorithms; and (10) maintain backward compatibility. Conclusion A computable PheRM is needed for true phenotype portability and reliability across different EHR products and healthcare systems. These desiderata are a guide to inform the establishment and evolution of EHR phenotype algorithm authoring platforms and languages. PMID:26342218

  18. Algorithms for computing the geopotential using a simple density layer

    NASA Technical Reports Server (NTRS)

    Morrison, F.

    1976-01-01

    Several algorithms have been developed for computing the potential and attraction of a simple density layer. These are numerical cubature, Taylor series, and a mixed analytic and numerical integration using a singularity-matching technique. A computer program has been written to combine these techniques for computing the disturbing acceleration on an artificial earth satellite. A total of 1640 equal-area, constant surface density blocks on an oblate spheroid are used. The singularity-matching algorithm is used in the subsatellite region, Taylor series in the surrounding zone, and numerical cubature on the rest of the earth.

  19. LAWS simulation: Sampling strategies and wind computation algorithms

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D. A.; Wood, S. A.; Houston, S. H.

    1989-01-01

    In general, work has continued on developing and evaluating algorithms designed to manage the Laser Atmospheric Wind Sounder (LAWS) lidar pulses and to compute the horizontal wind vectors from the line-of-sight (LOS) measurements. These efforts fall into three categories: Improvements to the shot management and multi-pair algorithms (SMA/MPA); observing system simulation experiments; and ground-based simulations of LAWS.

  20. Nonlinear Computational Aeroelasticity: Formulations and Solution Algorithms

    DTIC Science & Technology

    2003-03-01

    problem is proposed. Fluid-structure coupling algorithms are then discussed with some emphasis on distributed computing strategies. Numerical results...the structure and the exchange of structure motion to the fluid. The computational fluid dynamics code PFES is our finite element code for the numerical ...unstructured meshes). It was numerically demonstrated [1-3] that EBS can be less diffusive than SUPG [4-6] and the standard Finite Volume schemes

  1. Computationally efficient algorithms for Brownian dynamics simulation of long flexible macromolecules modeled as bead-rod chains

    NASA Astrophysics Data System (ADS)

    Moghani, Mahdy Malekzadeh; Khomami, Bamin

    2017-02-01

    The computational efficiency of Brownian dynamics (BD) simulation of the constrained model of a polymeric chain (bead-rod) with n beads and in the presence of hydrodynamic interaction (HI) is reduced to the order of n2 via an efficient algorithm which utilizes the conjugate-gradient (CG) method within a Picard iteration scheme. Moreover, the utility of the Barnes and Hut (BH) multipole method in BD simulation of polymeric solutions in the presence of HI, with regard to computational cost, scaling, and accuracy, is discussed. Overall, it is determined that this approach leads to a scaling of O (n1.2) . Furthermore, a stress algorithm is developed which accurately captures the transient stress growth in the startup of flow for the bead-rod model with HI and excluded volume (EV) interaction. Rheological properties of the chains up to n =350 in the presence of EV and HI are computed via the former algorithm. The result depicts qualitative differences in shear thinning behavior of the polymeric solutions in the intermediate values of the Weissenburg number (10 re, at high Wi under shear flow is shown to be the consequence of frozen folded state in the third (neutral) direction for systems with HI and EV. The uniaxial extensional flow of polymeric solutions has also been investigated and it is shown that the critical strain rates scales with n1.6, which is also commensurate with the scaling of the longest relaxation time for systems with HI and EV.

  2. GIFTS SM EDU Level 1B Algorithms

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Gazarik, Michael J.; Reisse, Robert A.; Johnson, David G.

    2007-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) SensorModule (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiances using a Fourier transform spectrometer (FTS). The GIFTS instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the GIFTS SM EDU Level 1B algorithms involved in the calibration. The GIFTS Level 1B calibration procedures can be subdivided into four blocks. In the first block, the measured raw interferograms are first corrected for the detector nonlinearity distortion, followed by the complex filtering and decimation procedure. In the second block, a phase correction algorithm is applied to the filtered and decimated complex interferograms. The resulting imaginary part of the spectrum contains only the noise component of the uncorrected spectrum. Additional random noise reduction can be accomplished by applying a spectral smoothing routine to the phase-corrected spectrum. The phase correction and spectral smoothing operations are performed on a set of interferogram scans for both ambient and hot blackbody references. To continue with the calibration, we compute the spectral responsivity based on the previous results, from which, the calibrated ambient blackbody (ABB), hot blackbody (HBB), and scene spectra can be obtained. We now can estimate the noise equivalent spectral radiance (NESR) from the calibrated ABB and HBB spectra. The correction schemes that compensate for the fore-optics offsets and off-axis effects are also implemented. In the third block, we developed an efficient method of generating pixel performance assessments. In addition, a

  3. Fast parallel algorithms that compute transitive closure of a fuzzy relation

    NASA Technical Reports Server (NTRS)

    Kreinovich, Vladik YA.

    1993-01-01

    The notion of a transitive closure of a fuzzy relation is very useful for clustering in pattern recognition, for fuzzy databases, etc. The original algorithm proposed by L. Zadeh (1971) requires the computation time O(n(sup 4)), where n is the number of elements in the relation. In 1974, J. C. Dunn proposed a O(n(sup 2)) algorithm. Since we must compute n(n-1)/2 different values s(a, b) (a not equal to b) that represent the fuzzy relation, and we need at least one computational step to compute each of these values, we cannot compute all of them in less than O(n(sup 2)) steps. So, Dunn's algorithm is in this sense optimal. For small n, it is ok. However, for big n (e.g., for big databases), it is still a lot, so it would be desirable to decrease the computation time (this problem was formulated by J. Bezdek). Since this decrease cannot be done on a sequential computer, the only way to do it is to use a computer with several processors working in parallel. We show that on a parallel computer, transitive closure can be computed in time O((log(sub 2)(n))2).

  4. Desiderata for computable representations of electronic health records-driven phenotype algorithms.

    PubMed

    Mo, Huan; Thompson, William K; Rasmussen, Luke V; Pacheco, Jennifer A; Jiang, Guoqian; Kiefer, Richard; Zhu, Qian; Xu, Jie; Montague, Enid; Carrell, David S; Lingren, Todd; Mentch, Frank D; Ni, Yizhao; Wehbe, Firas H; Peissig, Peggy L; Tromp, Gerard; Larson, Eric B; Chute, Christopher G; Pathak, Jyotishman; Denny, Joshua C; Speltz, Peter; Kho, Abel N; Jarvik, Gail P; Bejan, Cosmin A; Williams, Marc S; Borthwick, Kenneth; Kitchner, Terrie E; Roden, Dan M; Harris, Paul A

    2015-11-01

    Electronic health records (EHRs) are increasingly used for clinical and translational research through the creation of phenotype algorithms. Currently, phenotype algorithms are most commonly represented as noncomputable descriptive documents and knowledge artifacts that detail the protocols for querying diagnoses, symptoms, procedures, medications, and/or text-driven medical concepts, and are primarily meant for human comprehension. We present desiderata for developing a computable phenotype representation model (PheRM). A team of clinicians and informaticians reviewed common features for multisite phenotype algorithms published in PheKB.org and existing phenotype representation platforms. We also evaluated well-known diagnostic criteria and clinical decision-making guidelines to encompass a broader category of algorithms. We propose 10 desired characteristics for a flexible, computable PheRM: (1) structure clinical data into queryable forms; (2) recommend use of a common data model, but also support customization for the variability and availability of EHR data among sites; (3) support both human-readable and computable representations of phenotype algorithms; (4) implement set operations and relational algebra for modeling phenotype algorithms; (5) represent phenotype criteria with structured rules; (6) support defining temporal relations between events; (7) use standardized terminologies and ontologies, and facilitate reuse of value sets; (8) define representations for text searching and natural language processing; (9) provide interfaces for external software algorithms; and (10) maintain backward compatibility. A computable PheRM is needed for true phenotype portability and reliability across different EHR products and healthcare systems. These desiderata are a guide to inform the establishment and evolution of EHR phenotype algorithm authoring platforms and languages. © The Author 2015. Published by Oxford University Press on behalf of the American Medical

  5. Reconstruction of sparse-view X-ray computed tomography using adaptive iterative algorithms.

    PubMed

    Liu, Li; Lin, Weikai; Jin, Mingwu

    2015-01-01

    In this paper, we propose two reconstruction algorithms for sparse-view X-ray computed tomography (CT). Treating the reconstruction problems as data fidelity constrained total variation (TV) minimization, both algorithms adapt the alternate two-stage strategy: projection onto convex sets (POCS) for data fidelity and non-negativity constraints and steepest descent for TV minimization. The novelty of this work is to determine iterative parameters automatically from data, thus avoiding tedious manual parameter tuning. In TV minimization, the step sizes of steepest descent are adaptively adjusted according to the difference from POCS update in either the projection domain or the image domain, while the step size of algebraic reconstruction technique (ART) in POCS is determined based on the data noise level. In addition, projection errors are used to compare with the error bound to decide whether to perform ART so as to reduce computational costs. The performance of the proposed methods is studied and evaluated using both simulated and physical phantom data. Our methods with automatic parameter tuning achieve similar, if not better, reconstruction performance compared to a representative two-stage algorithm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Algorithms for Zonal Methods and Development of Three Dimensional Mesh Generation Procedures.

    DTIC Science & Technology

    1984-02-01

    a r-re complete set of equations is used, but their effect is imposed by means of a right hand side forcing function, not by means of a zonal boundary...modifications of flow-simulation algorithms The explicit finite-difference code of Magnus and are discussed. Computational tests in two dimensions...used to simplify the task of grid generation without an adverse achieve computational efficiency. More recently, effect on flow-field algorithms and

  7. Universal single level implicit algorithm for gasdynamics

    NASA Technical Reports Server (NTRS)

    Lombard, C. K.; Venkatapthy, E.

    1984-01-01

    A single level effectively explicit implicit algorithm for gasdynamics is presented. The method meets all the requirements for unconditionally stable global iteration over flows with mixed supersonic and supersonic zones including blunt body flow and boundary layer flows with strong interaction and streamwise separation. For hyperbolic (supersonic flow) regions the method is automatically equivalent to contemporary space marching methods. For elliptic (subsonic flow) regions, rapid convergence is facilitated by alternating direction solution sweeps which bring both sets of eigenvectors and the influence of both boundaries of a coordinate line equally into play. Point by point updating of the data with local iteration on the solution procedure at each spatial step as the sweeps progress not only renders the method single level in storage but, also, improves nonlinear accuracy to accelerate convergence by an order of magnitude over related two level linearized implicit methods. The method derives robust stability from the combination of an eigenvector split upwind difference method (CSCM) with diagonally dominant ADI(DDADI) approximate factorization and computed characteristic boundary approximations.

  8. Computational plasticity algorithm for particle dynamics simulations

    NASA Astrophysics Data System (ADS)

    Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.

    2018-01-01

    The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.

  9. A review of classification algorithms for EEG-based brain-computer interfaces.

    PubMed

    Lotte, F; Congedo, M; Lécuyer, A; Lamarche, F; Arnaldi, B

    2007-06-01

    In this paper we review classification algorithms used to design brain-computer interface (BCI) systems based on electroencephalography (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.

  10. HIFiRE-1 Turbulent Shock Boundary Layer Interaction - Flight Data and Computations

    NASA Technical Reports Server (NTRS)

    Kimmel, Roger L.; Prabhu, Dinesh

    2015-01-01

    The Hypersonic International Flight Research Experimentation (HIFiRE) program is a hypersonic flight test program executed by the Air Force Research Laboratory (AFRL) and Australian Defence Science and Technology Organisation (DSTO). This flight contained a cylinder-flare induced shock boundary layer interaction (SBLI). Computations of the interaction were conducted for a number of times during the ascent. The DPLR code used for predictions was calibrated against ground test data prior to exercising the code at flight conditions. Generally, the computations predicted the upstream influence and interaction pressures very well. Plateau pressures on the cylinder were predicted well at all conditions. Although the experimental heat transfer showed a large amount of scatter, especially at low heating levels, the measured heat transfer agreed well with computations. The primary discrepancy between the experiment and computation occurred in the pressures measured on the flare during second stage burn. Measured pressures exhibited large overshoots late in the second stage burn, the mechanism of which is unknown. The good agreement between flight measurements and CFD helps validate the philosophy of calibrating CFD against ground test, prior to exercising it at flight conditions.

  11. Aeon: Synthesizing Scheduling Algorithms from High-Level Models

    NASA Astrophysics Data System (ADS)

    Monette, Jean-Noël; Deville, Yves; van Hentenryck, Pascal

    This paper describes the aeon system whose aim is to synthesize scheduling algorithms from high-level models. A eon, which is entirely written in comet, receives as input a high-level model for a scheduling application which is then analyzed to generate a dedicated scheduling algorithm exploiting the structure of the model. A eon provides a variety of synthesizers for generating complete or heuristic algorithms. Moreover, synthesizers are compositional, making it possible to generate complex hybrid algorithms naturally. Preliminary experimental results indicate that this approach may be competitive with state-of-the-art search algorithms.

  12. Petascale self-consistent electromagnetic computations using scalable and accurate algorithms for complex structures

    NASA Astrophysics Data System (ADS)

    Cary, John R.; Abell, D.; Amundson, J.; Bruhwiler, D. L.; Busby, R.; Carlsson, J. A.; Dimitrov, D. A.; Kashdan, E.; Messmer, P.; Nieter, C.; Smithe, D. N.; Spentzouris, P.; Stoltz, P.; Trines, R. M.; Wang, H.; Werner, G. R.

    2006-09-01

    As the size and cost of particle accelerators escalate, high-performance computing plays an increasingly important role; optimization through accurate, detailed computermodeling increases performance and reduces costs. But consequently, computer simulations face enormous challenges. Early approximation methods, such as expansions in distance from the design orbit, were unable to supply detailed accurate results, such as in the computation of wake fields in complex cavities. Since the advent of message-passing supercomputers with thousands of processors, earlier approximations are no longer necessary, and it is now possible to compute wake fields, the effects of dampers, and self-consistent dynamics in cavities accurately. In this environment, the focus has shifted towards the development and implementation of algorithms that scale to large numbers of processors. So-called charge-conserving algorithms evolve the electromagnetic fields without the need for any global solves (which are difficult to scale up to many processors). Using cut-cell (or embedded) boundaries, these algorithms can simulate the fields in complex accelerator cavities with curved walls. New implicit algorithms, which are stable for any time-step, conserve charge as well, allowing faster simulation of structures with details small compared to the characteristic wavelength. These algorithmic and computational advances have been implemented in the VORPAL7 Framework, a flexible, object-oriented, massively parallel computational application that allows run-time assembly of algorithms and objects, thus composing an application on the fly.

  13. Study of Computational Structures for Multiobject Tracking Algorithms

    DTIC Science & Technology

    1986-12-01

    MULTIOBJECT TRACKING ALGORITHMS 12. PERSONAL AUTHOR(S) i Allen, Thomas G .; Kurien, Thomas; Washburn, Robert B. Jr. 13a. TYPE OF REPORT 13b. TIME COVERED 14...mentioned possible restructurings of the tracking algorithm that increase the amount of available parallelism ’ g ~. are investigated. This step is extremely...sufficient for our needs here. In the following section we will examine the structure and computational requirements of the track- g , oriented approach

  14. Dynamically reassigning a connected node to a block of compute nodes for re-launching a failed job

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budnik, Thomas A; Knudson, Brant L; Megerian, Mark G

    Methods, systems, and products for dynamically reassigning a connected node to a block of compute nodes for re-launching a failed job that include: identifying that a job failed to execute on the block of compute nodes because connectivity failed between a compute node assigned as at least one of the connected nodes for the block of compute nodes and its supporting I/O node; and re-launching the job, including selecting an alternative connected node that is actively coupled for data communications with an active I/O node; and assigning the alternative connected node as the connected node for the block of computemore » nodes running the re-launched job.« less

  15. Risk-Hedged Approach for Re-Routing Air Traffic Under Weather Uncertainty

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.; Bilimoria, Karl D.

    2016-01-01

    This presentation corresponds to: our paper explores a new risk-hedged approach for re-routing air traffic around forecast convective weather. In this work, flying through a more likely weather instantiation is considered to pose a higher level of risk. Current operational practice strategically plans re-routes to avoid only the most likely (highest risk) weather instantiation, and then tactically makes any necessary adjustments as the weather evolves. The risk-hedged approach strategically plans re-routes by minimizing the risk-adjusted path length, incorporating multiple possible weather instantiations with associated likelihoods (risks). The resulting model is transparent and is readily analyzed for realism and treated with well-understood shortest-path algorithms. Risk-hedged re-routes are computed for some example weather instantiations. The main result is that in some scenarios, relative to an operational-practice proxy solution, the risk-hedged solution provides the benefits of lower risk as well as shorter path length. In other scenarios, the benefits of the risk-hedged solution are ambiguous, because the solution is characterized by a tradeoff between risk and path length. The risk-hedged solution can be executed in those scenarios where it provides a clear benefit over current operational practice.

  16. An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Anerson, W. Kyle; Bonhaus, Daryl L.

    1994-01-01

    An implicit, Navier-Stokes solution algorithm is presented for the computation of turbulent flow on unstructured grids. The inviscid fluxes are computed using an upwind algorithm and the solution is advanced in time using a backward-Euler time-stepping scheme. At each time step, the linear system of equations is approximately solved with a point-implicit relaxation scheme. This methodology provides a viable and robust algorithm for computing turbulent flows on unstructured meshes. Results are shown for subsonic flow over a NACA 0012 airfoil and for transonic flow over a RAE 2822 airfoil exhibiting a strong upper-surface shock. In addition, results are shown for 3 element and 4 element airfoil configurations. For the calculations, two one equation turbulence models are utilized. For the NACA 0012 airfoil, a pressure distribution and force data are compared with other computational results as well as with experiment. Comparisons of computed pressure distributions and velocity profiles with experimental data are shown for the RAE airfoil and for the 3 element configuration. For the 4 element case, comparisons of surface pressure distributions with experiment are made. In general, the agreement between the computations and the experiment is good.

  17. Volumetric visualization algorithm development for an FPGA-based custom computing machine

    NASA Astrophysics Data System (ADS)

    Sallinen, Sami J.; Alakuijala, Jyrki; Helminen, Hannu; Laitinen, Joakim

    1998-05-01

    Rendering volumetric medical images is a burdensome computational task for contemporary computers due to the large size of the data sets. Custom designed reconfigurable hardware could considerably speed up volume visualization if an algorithm suitable for the platform is used. We present an algorithm and speedup techniques for visualizing volumetric medical CT and MR images with a custom-computing machine based on a Field Programmable Gate Array (FPGA). We also present simulated performance results of the proposed algorithm calculated with a software implementation running on a desktop PC. Our algorithm is capable of generating perspective projection renderings of single and multiple isosurfaces with transparency, simulated X-ray images, and Maximum Intensity Projections (MIP). Although more speedup techniques exist for parallel projection than for perspective projection, we have constrained ourselves to perspective viewing, because of its importance in the field of radiotherapy. The algorithm we have developed is based on ray casting, and the rendering is sped up by three different methods: shading speedup by gradient precalculation, a new generalized version of Ray-Acceleration by Distance Coding (RADC), and background ray elimination by speculative ray selection.

  18. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation.

    PubMed

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it.

  19. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation

    PubMed Central

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133

  20. A Genetic Algorithm for the Bi-Level Topological Design of Local Area Networks

    PubMed Central

    Camacho-Vallejo, José-Fernando; Mar-Ortiz, Julio; López-Ramos, Francisco; Rodríguez, Ricardo Pedraza

    2015-01-01

    Local access networks (LAN) are commonly used as communication infrastructures which meet the demand of a set of users in the local environment. Usually these networks consist of several LAN segments connected by bridges. The topological LAN design bi-level problem consists on assigning users to clusters and the union of clusters by bridges in order to obtain a minimum response time network with minimum connection cost. Therefore, the decision of optimally assigning users to clusters will be made by the leader and the follower will make the decision of connecting all the clusters while forming a spanning tree. In this paper, we propose a genetic algorithm for solving the bi-level topological design of a Local Access Network. Our solution method considers the Stackelberg equilibrium to solve the bi-level problem. The Stackelberg-Genetic algorithm procedure deals with the fact that the follower’s problem cannot be optimally solved in a straightforward manner. The computational results obtained from two different sets of instances show that the performance of the developed algorithm is efficient and that it is more suitable for solving the bi-level problem than a previous Nash-Genetic approach. PMID:26102502

  1. Architecutres, Models, Algorithms, and Software Tools for Configurable Computing

    DTIC Science & Technology

    2000-03-06

    and J.G. Nash. The gated interconnection network for dynamic programming. Plenum, 1988 . [18] Ju wook Jang, Heonchul Park, and Viktor K. Prasanna. A ...Sep. 1997. [2] C. Ebeling, D. C. Cronquist , P. Franklin and C. Fisher, "RaPiD - A configurable computing architecture for compute-intensive...ABSTRACT (Maximum 200 words) The Models, Algorithms, and Architectures for Reconfigurable Computing (MAARC) project developed a sound framework for

  2. Algorithms for the Computation of Debris Risk

    NASA Technical Reports Server (NTRS)

    Matney, Mark J.

    2017-01-01

    Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of satellites. A number of tools have been developed in NASA’s Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA’s Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper presents an introduction to these algorithms and the assumptions upon which they are based.

  3. Computer Music

    NASA Astrophysics Data System (ADS)

    Cook, Perry R.

    This chapter covers algorithms, technologies, computer languages, and systems for computer music. Computer music involves the application of computers and other digital/electronic technologies to music composition, performance, theory, history, and the study of perception. The field combines digital signal processing, computational algorithms, computer languages, hardware and software systems, acoustics, psychoacoustics (low-level perception of sounds from the raw acoustic signal), and music cognition (higher-level perception of musical style, form, emotion, etc.).

  4. An algorithm of discovering signatures from DNA databases on a computer cluster.

    PubMed

    Lee, Hsiao Ping; Sheu, Tzu-Fang

    2014-10-05

    Signatures are short sequences that are unique and not similar to any other sequence in a database that can be used as the basis to identify different species. Even though several signature discovery algorithms have been proposed in the past, these algorithms require the entirety of databases to be loaded in the memory, thus restricting the amount of data that they can process. It makes those algorithms unable to process databases with large amounts of data. Also, those algorithms use sequential models and have slower discovery speeds, meaning that the efficiency can be improved. In this research, we are debuting the utilization of a divide-and-conquer strategy in signature discovery and have proposed a parallel signature discovery algorithm on a computer cluster. The algorithm applies the divide-and-conquer strategy to solve the problem posed to the existing algorithms where they are unable to process large databases and uses a parallel computing mechanism to effectively improve the efficiency of signature discovery. Even when run with just the memory of regular personal computers, the algorithm can still process large databases such as the human whole-genome EST database which were previously unable to be processed by the existing algorithms. The algorithm proposed in this research is not limited by the amount of usable memory and can rapidly find signatures in large databases, making it useful in applications such as Next Generation Sequencing and other large database analysis and processing. The implementation of the proposed algorithm is available at http://www.cs.pu.edu.tw/~fang/DDCSDPrograms/DDCSD.htm.

  5. Molecular simulation workflows as parallel algorithms: the execution engine of Copernicus, a distributed high-performance computing platform.

    PubMed

    Pronk, Sander; Pouya, Iman; Lundborg, Magnus; Rotskoff, Grant; Wesén, Björn; Kasson, Peter M; Lindahl, Erik

    2015-06-09

    Computational chemistry and other simulation fields are critically dependent on computing resources, but few problems scale efficiently to the hundreds of thousands of processors available in current supercomputers-particularly for molecular dynamics. This has turned into a bottleneck as new hardware generations primarily provide more processing units rather than making individual units much faster, which simulation applications are addressing by increasingly focusing on sampling with algorithms such as free-energy perturbation, Markov state modeling, metadynamics, or milestoning. All these rely on combining results from multiple simulations into a single observation. They are potentially powerful approaches that aim to predict experimental observables directly, but this comes at the expense of added complexity in selecting sampling strategies and keeping track of dozens to thousands of simulations and their dependencies. Here, we describe how the distributed execution framework Copernicus allows the expression of such algorithms in generic workflows: dataflow programs. Because dataflow algorithms explicitly state dependencies of each constituent part, algorithms only need to be described on conceptual level, after which the execution is maximally parallel. The fully automated execution facilitates the optimization of these algorithms with adaptive sampling, where undersampled regions are automatically detected and targeted without user intervention. We show how several such algorithms can be formulated for computational chemistry problems, and how they are executed efficiently with many loosely coupled simulations using either distributed or parallel resources with Copernicus.

  6. Fracture Analysis of Vessels. Oak Ridge FAVOR, v06.1, Computer Code: Theory and Implementation of Algorithms, Methods, and Correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P. T.; Dickson, T. L.; Yin, S.

    The current regulations to insure that nuclear reactor pressure vessels (RPVs) maintain their structural integrity when subjected to transients such as pressurized thermal shock (PTS) events were derived from computational models developed in the early-to-mid 1980s. Since that time, advancements and refinements in relevant technologies that impact RPV integrity assessment have led to an effort by the NRC to re-evaluate its PTS regulations. Updated computational methodologies have been developed through interactions between experts in the relevant disciplines of thermal hydraulics, probabilistic risk assessment, materials embrittlement, fracture mechanics, and inspection (flaw characterization). Contributors to the development of these methodologies include themore » NRC staff, their contractors, and representatives from the nuclear industry. These updated methodologies have been integrated into the Fracture Analysis of Vessels -- Oak Ridge (FAVOR, v06.1) computer code developed for the NRC by the Heavy Section Steel Technology (HSST) program at Oak Ridge National Laboratory (ORNL). The FAVOR, v04.1, code represents the baseline NRC-selected applications tool for re-assessing the current PTS regulations. This report is intended to document the technical bases for the assumptions, algorithms, methods, and correlations employed in the development of the FAVOR, v06.1, code.« less

  7. Computation-aware algorithm selection approach for interlaced-to-progressive conversion

    NASA Astrophysics Data System (ADS)

    Park, Sang-Jun; Jeon, Gwanggil; Jeong, Jechang

    2010-05-01

    We discuss deinterlacing results in a computationally constrained and varied environment. The proposed computation-aware algorithm selection approach (CASA) for fast interlaced to progressive conversion algorithm consists of three methods: the line-averaging (LA) method for plain regions, the modified edge-based line-averaging (MELA) method for medium regions, and the proposed covariance-based adaptive deinterlacing (CAD) method for complex regions. The proposed CASA uses two criteria, mean-squared error (MSE) and CPU time, for assigning the method. We proposed a CAD method. The principle idea of CAD is based on the correspondence between the high and low-resolution covariances. We estimated the local covariance coefficients from an interlaced image using Wiener filtering theory and then used these optimal minimum MSE interpolation coefficients to obtain a deinterlaced image. The CAD method, though more robust than most known methods, was not found to be very fast compared to the others. To alleviate this issue, we proposed an adaptive selection approach using a fast deinterlacing algorithm rather than using only one CAD algorithm. The proposed hybrid approach of switching between the conventional schemes (LA and MELA) and our CAD was proposed to reduce the overall computational load. A reliable condition to be used for switching the schemes was presented after a wide set of initial training processes. The results of computer simulations showed that the proposed methods outperformed a number of methods presented in the literature.

  8. Using advanced computer vision algorithms on small mobile robots

    NASA Astrophysics Data System (ADS)

    Kogut, G.; Birchmore, F.; Biagtan Pacis, E.; Everett, H. R.

    2006-05-01

    The Technology Transfer project employs a spiral development process to enhance the functionality and autonomy of mobile robot systems in the Joint Robotics Program (JRP) Robotic Systems Pool by converging existing component technologies onto a transition platform for optimization. An example of this approach is the implementation of advanced computer vision algorithms on small mobile robots. We demonstrate the implementation and testing of the following two algorithms useful on mobile robots: 1) object classification using a boosted Cascade of classifiers trained with the Adaboost training algorithm, and 2) human presence detection from a moving platform. Object classification is performed with an Adaboost training system developed at the University of California, San Diego (UCSD) Computer Vision Lab. This classification algorithm has been used to successfully detect the license plates of automobiles in motion in real-time. While working towards a solution to increase the robustness of this system to perform generic object recognition, this paper demonstrates an extension to this application by detecting soda cans in a cluttered indoor environment. The human presence detection from a moving platform system uses a data fusion algorithm which combines results from a scanning laser and a thermal imager. The system is able to detect the presence of humans while both the humans and the robot are moving simultaneously. In both systems, the two aforementioned algorithms were implemented on embedded hardware and optimized for use in real-time. Test results are shown for a variety of environments.

  9. Sort-Mid tasks scheduling algorithm in grid computing.

    PubMed

    Reda, Naglaa M; Tawfik, A; Marzok, Mohamed A; Khamis, Soheir M

    2015-11-01

    Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan.

  10. State-Estimation Algorithm Based on Computer Vision

    NASA Technical Reports Server (NTRS)

    Bayard, David; Brugarolas, Paul

    2007-01-01

    An algorithm and software to implement the algorithm are being developed as means to estimate the state (that is, the position and velocity) of an autonomous vehicle, relative to a visible nearby target object, to provide guidance for maneuvering the vehicle. In the original intended application, the autonomous vehicle would be a spacecraft and the nearby object would be a small astronomical body (typically, a comet or asteroid) to be explored by the spacecraft. The algorithm could also be used on Earth in analogous applications -- for example, for guiding underwater robots near such objects of interest as sunken ships, mineral deposits, or submerged mines. It is assumed that the robot would be equipped with a vision system that would include one or more electronic cameras, image-digitizing circuitry, and an imagedata- processing computer that would generate feature-recognition data products.

  11. Estimating the Resources for Quantum Computation with the QuRE Toolbox

    DTIC Science & Technology

    2013-05-31

    quantum computing. Quantum Info. Comput., 9(7):666–682, July 2009. [13] M. Saffman, T. G. Walker, and K. Mølmer. Quantum information with rydberg atoms...109(5):735–750, 2011. [24] Aram Harrow , Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for solving linear systems of equations. Phys. Rev

  12. Computational complexity of algorithms for sequence comparison, short-read assembly and genome alignment.

    PubMed

    Baichoo, Shakuntala; Ouzounis, Christos A

    A multitude of algorithms for sequence comparison, short-read assembly and whole-genome alignment have been developed in the general context of molecular biology, to support technology development for high-throughput sequencing, numerous applications in genome biology and fundamental research on comparative genomics. The computational complexity of these algorithms has been previously reported in original research papers, yet this often neglected property has not been reviewed previously in a systematic manner and for a wider audience. We provide a review of space and time complexity of key sequence analysis algorithms and highlight their properties in a comprehensive manner, in order to identify potential opportunities for further research in algorithm or data structure optimization. The complexity aspect is poised to become pivotal as we will be facing challenges related to the continuous increase of genomic data on unprecedented scales and complexity in the foreseeable future, when robust biological simulation at the cell level and above becomes a reality. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Arbitrated Quantum Signature with Hamiltonian Algorithm Based on Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Shi, Ronghua; Ding, Wanting; Shi, Jinjing

    2018-03-01

    A novel arbitrated quantum signature (AQS) scheme is proposed motivated by the Hamiltonian algorithm (HA) and blind quantum computation (BQC). The generation and verification of signature algorithm is designed based on HA, which enables the scheme to rely less on computational complexity. It is unnecessary to recover original messages when verifying signatures since the blind quantum computation is applied, which can improve the simplicity and operability of our scheme. It is proved that the scheme can be deployed securely, and the extended AQS has some extensive applications in E-payment system, E-government, E-business, etc.

  14. Arbitrated Quantum Signature with Hamiltonian Algorithm Based on Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Shi, Ronghua; Ding, Wanting; Shi, Jinjing

    2018-07-01

    A novel arbitrated quantum signature (AQS) scheme is proposed motivated by the Hamiltonian algorithm (HA) and blind quantum computation (BQC). The generation and verification of signature algorithm is designed based on HA, which enables the scheme to rely less on computational complexity. It is unnecessary to recover original messages when verifying signatures since the blind quantum computation is applied, which can improve the simplicity and operability of our scheme. It is proved that the scheme can be deployed securely, and the extended AQS has some extensive applications in E-payment system, E-government, E-business, etc.

  15. Impact of Linearity and Write Noise of Analog Resistive Memory Devices in a Neural Algorithm Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs-Gedrim, Robin B.; Agarwal, Sapan; Knisely, Kathrine E.

    Resistive memory (ReRAM) shows promise for use as an analog synapse element in energy-efficient neural network algorithm accelerators. A particularly important application is the training of neural networks, as this is the most computationally-intensive procedure in using a neural algorithm. However, training a network with analog ReRAM synapses can significantly reduce the accuracy at the algorithm level. In order to assess this degradation, analog properties of ReRAM devices were measured and hand-written digit recognition accuracy was modeled for the training using backpropagation. Bipolar filamentary devices utilizing three material systems were measured and compared: one oxygen vacancy system, Ta-TaO x, andmore » two conducting metallization systems, Cu-SiO 2, and Ag/chalcogenide. Analog properties and conductance ranges of the devices are optimized by measuring the response to varying voltage pulse characteristics. Key analog device properties which degrade the accuracy are update linearity and write noise. Write noise may improve as a function of device manufacturing maturity, but write nonlinearity appears relatively consistent among the different device material systems and is found to be the most significant factor affecting accuracy. As a result, this suggests that new materials and/or fundamentally different resistive switching mechanisms may be required to improve device linearity and achieve higher algorithm training accuracy.« less

  16. Impact of Linearity and Write Noise of Analog Resistive Memory Devices in a Neural Algorithm Accelerator

    DOE PAGES

    Jacobs-Gedrim, Robin B.; Agarwal, Sapan; Knisely, Kathrine E.; ...

    2017-12-01

    Resistive memory (ReRAM) shows promise for use as an analog synapse element in energy-efficient neural network algorithm accelerators. A particularly important application is the training of neural networks, as this is the most computationally-intensive procedure in using a neural algorithm. However, training a network with analog ReRAM synapses can significantly reduce the accuracy at the algorithm level. In order to assess this degradation, analog properties of ReRAM devices were measured and hand-written digit recognition accuracy was modeled for the training using backpropagation. Bipolar filamentary devices utilizing three material systems were measured and compared: one oxygen vacancy system, Ta-TaO x, andmore » two conducting metallization systems, Cu-SiO 2, and Ag/chalcogenide. Analog properties and conductance ranges of the devices are optimized by measuring the response to varying voltage pulse characteristics. Key analog device properties which degrade the accuracy are update linearity and write noise. Write noise may improve as a function of device manufacturing maturity, but write nonlinearity appears relatively consistent among the different device material systems and is found to be the most significant factor affecting accuracy. As a result, this suggests that new materials and/or fundamentally different resistive switching mechanisms may be required to improve device linearity and achieve higher algorithm training accuracy.« less

  17. The routing, modulation level, and spectrum allocation algorithm in the virtual optical network mapping

    NASA Astrophysics Data System (ADS)

    Wang, Yunyun; Li, Hui; Liu, Yuze; Ji, Yuefeng; Li, Hongfa

    2017-10-01

    With the development of large video services and cloud computing, the network is increasingly in the form of services. In SDON, the SDN controller holds the underlying physical resource information, thus allocating the appropriate resources and bandwidth to the VON service. However, for some services that require extremely strict QoT (quality of transmission), the shortest distance path algorithm is often unable to meet the requirements because it does not take the link spectrum resources into account. And in accordance with the choice of the most unoccupied links, there may be more spectrum fragments. So here we propose a new RMLSA (the routing, modulation Level, and spectrum allocation) algorithm to reduce the blocking probability. The results show about 40% less blocking probability than the shortest-distance algorithm and the minimum usage of the spectrum priority algorithm. This algorithm is used to satisfy strict request of QoT for demands.

  18. Computational Approaches to Simulation and Optimization of Global Aircraft Trajectories

    NASA Technical Reports Server (NTRS)

    Ng, Hok Kwan; Sridhar, Banavar

    2016-01-01

    This study examines three possible approaches to improving the speed in generating wind-optimal routes for air traffic at the national or global level. They are: (a) using the resources of a supercomputer, (b) running the computations on multiple commercially available computers and (c) implementing those same algorithms into NASAs Future ATM Concepts Evaluation Tool (FACET) and compares those to a standard implementation run on a single CPU. Wind-optimal aircraft trajectories are computed using global air traffic schedules. The run time and wait time on the supercomputer for trajectory optimization using various numbers of CPUs ranging from 80 to 10,240 units are compared with the total computational time for running the same computation on a single desktop computer and on multiple commercially available computers for potential computational enhancement through parallel processing on the computer clusters. This study also re-implements the trajectory optimization algorithm for further reduction of computational time through algorithm modifications and integrates that with FACET to facilitate the use of the new features which calculate time-optimal routes between worldwide airport pairs in a wind field for use with existing FACET applications. The implementations of trajectory optimization algorithms use MATLAB, Python, and Java programming languages. The performance evaluations are done by comparing their computational efficiencies and based on the potential application of optimized trajectories. The paper shows that in the absence of special privileges on a supercomputer, a cluster of commercially available computers provides a feasible approach for national and global air traffic system studies.

  19. Algorithms for the Computation of Debris Risks

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2017-01-01

    Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of non-spherical satellites. A number of tools have been developed in NASA's Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA's Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper will present an introduction to these algorithms and the assumptions upon which they are based.

  20. A control method of the rotor re-levitation for different orbit responses during touchdowns in active magnetic bearings

    NASA Astrophysics Data System (ADS)

    Lyu, Mindong; Liu, Tao; Wang, Zixi; Yan, Shaoze; Jia, Xiaohong; Wang, Yuming

    2018-05-01

    Touchdown can make active magnetic bearings (AMB) unable to work, and bring severe damages to touchdown bearings (TDB). To resolve it, we presents a novel re-levitation method consisting of two operations, i.e., orbit response recognition and rotor re-levitation. In the operation of orbit response recognition, the three orbit responses (pendulum vibration, combined rub and bouncing, and full rub) can be identified by the expectation of radial displacement of rotor and expectation of instantaneous frequency (IF) of rotor motion in the sampling period. In the rotor re-levitation operation, a decentralized PID control algorithm is employed for pendulum vibration and combined rub and bouncing, and the decentralized PID control algorithm and another whirl damping algorithm, in which the weighting factor is determined by the whirl frequency, are jointly executed for the full rub. The method has been demonstrated by the simulation results of an AMB model. The results reveal that the method is effective in actively suppressing the whirl motion and promptly re-levitating the rotor. As the PID control algorithm and the simple operations of signal processing are employed, the algorithm has a low computation intensity, which makes it more easily realized in practical applications.

  1. Surpassing Humans and Computers with JellyBean: Crowd-Vision-Hybrid Counting Algorithms.

    PubMed

    Sarma, Akash Das; Jain, Ayush; Nandi, Arnab; Parameswaran, Aditya; Widom, Jennifer

    2015-11-01

    Counting objects is a fundamental image processisng primitive, and has many scientific, health, surveillance, security, and military applications. Existing supervised computer vision techniques typically require large quantities of labeled training data, and even with that, fail to return accurate results in all but the most stylized settings. Using vanilla crowd-sourcing, on the other hand, can lead to significant errors, especially on images with many objects. In this paper, we present our JellyBean suite of algorithms, that combines the best of crowds and computer vision to count objects in images, and uses judicious decomposition of images to greatly improve accuracy at low cost. Our algorithms have several desirable properties: (i) they are theoretically optimal or near-optimal , in that they ask as few questions as possible to humans (under certain intuitively reasonable assumptions that we justify in our paper experimentally); (ii) they operate under stand-alone or hybrid modes, in that they can either work independent of computer vision algorithms, or work in concert with them, depending on whether the computer vision techniques are available or useful for the given setting; (iii) they perform very well in practice, returning accurate counts on images that no individual worker or computer vision algorithm can count correctly, while not incurring a high cost.

  2. Algorithm for computing descriptive statistics for very large data sets and the exa-scale era

    NASA Astrophysics Data System (ADS)

    Beekman, Izaak

    2017-11-01

    An algorithm for Single-point, Parallel, Online, Converging Statistics (SPOCS) is presented. It is suited for in situ analysis that traditionally would be relegated to post-processing, and can be used to monitor the statistical convergence and estimate the error/residual in the quantity-useful for uncertainty quantification too. Today, data may be generated at an overwhelming rate by numerical simulations and proliferating sensing apparatuses in experiments and engineering applications. Monitoring descriptive statistics in real time lets costly computations and experiments be gracefully aborted if an error has occurred, and monitoring the level of statistical convergence allows them to be run for the shortest amount of time required to obtain good results. This algorithm extends work by Pébay (Sandia Report SAND2008-6212). Pébay's algorithms are recast into a converging delta formulation, with provably favorable properties. The mean, variance, covariances and arbitrary higher order statistical moments are computed in one pass. The algorithm is tested using Sillero, Jiménez, & Moser's (2013, 2014) publicly available UPM high Reynolds number turbulent boundary layer data set, demonstrating numerical robustness, efficiency and other favorable properties.

  3. Embedded assessment algorithms within home-based cognitive computer game exercises for elders.

    PubMed

    Jimison, Holly; Pavel, Misha

    2006-01-01

    With the recent consumer interest in computer-based activities designed to improve cognitive performance, there is a growing need for scientific assessment algorithms to validate the potential contributions of cognitive exercises. In this paper, we present a novel methodology for incorporating dynamic cognitive assessment algorithms within computer games designed to enhance cognitive performance. We describe how this approach works for variety of computer applications and describe cognitive monitoring results for one of the computer game exercises. The real-time cognitive assessments also provide a control signal for adapting the difficulty of the game exercises and providing tailored help for elders of varying abilities.

  4. Unified algorithm of cone optics to compute solar flux on central receiver

    NASA Astrophysics Data System (ADS)

    Grigoriev, Victor; Corsi, Clotilde

    2017-06-01

    Analytical algorithms to compute flux distribution on central receiver are considered as a faster alternative to ray tracing. They have quite too many modifications, with HFLCAL and UNIZAR being the most recognized and verified. In this work, a generalized algorithm is presented which is valid for arbitrary sun shape of radial symmetry. Heliostat mirrors can have a nonrectangular profile, and the effects of shading and blocking, strong defocusing and astigmatism can be taken into account. The algorithm is suitable for parallel computing and can benefit from hardware acceleration of polygon texturing.

  5. Shor's factoring algorithm and modern cryptography. An illustration of the capabilities inherent in quantum computers

    NASA Astrophysics Data System (ADS)

    Gerjuoy, Edward

    2005-06-01

    The security of messages encoded via the widely used RSA public key encryption system rests on the enormous computational effort required to find the prime factors of a large number N using classical (conventional) computers. In 1994 Peter Shor showed that for sufficiently large N, a quantum computer could perform the factoring with much less computational effort. This paper endeavors to explain, in a fashion comprehensible to the nonexpert, the RSA encryption protocol; the various quantum computer manipulations constituting the Shor algorithm; how the Shor algorithm performs the factoring; and the precise sense in which a quantum computer employing Shor's algorithm can be said to accomplish the factoring of very large numbers with less computational effort than a classical computer. It is made apparent that factoring N generally requires many successive runs of the algorithm. Our analysis reveals that the probability of achieving a successful factorization on a single run is about twice as large as commonly quoted in the literature.

  6. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment.

    PubMed

    Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che

    2014-01-16

    To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high

  7. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment

    PubMed Central

    2014-01-01

    Background To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. Results This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Conclusions Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel

  8. A new fast algorithm for computing a complex number: Theoretic transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Liu, K. Y.; Truong, T. K.

    1977-01-01

    A high-radix fast Fourier transformation (FFT) algorithm for computing transforms over GF(sq q), where q is a Mersenne prime, is developed to implement fast circular convolutions. This new algorithm requires substantially fewer multiplications than the conventional FFT.

  9. An Improved Clustering Algorithm of Tunnel Monitoring Data for Cloud Computing

    PubMed Central

    Zhong, Luo; Tang, KunHao; Li, Lin; Yang, Guang; Ye, JingJing

    2014-01-01

    With the rapid development of urban construction, the number of urban tunnels is increasing and the data they produce become more and more complex. It results in the fact that the traditional clustering algorithm cannot handle the mass data of the tunnel. To solve this problem, an improved parallel clustering algorithm based on k-means has been proposed. It is a clustering algorithm using the MapReduce within cloud computing that deals with data. It not only has the advantage of being used to deal with mass data but also is more efficient. Moreover, it is able to compute the average dissimilarity degree of each cluster in order to clean the abnormal data. PMID:24982971

  10. Signal and image processing algorithm performance in a virtual and elastic computing environment

    NASA Astrophysics Data System (ADS)

    Bennett, Kelly W.; Robertson, James

    2013-05-01

    The U.S. Army Research Laboratory (ARL) supports the development of classification, detection, tracking, and localization algorithms using multiple sensing modalities including acoustic, seismic, E-field, magnetic field, PIR, and visual and IR imaging. Multimodal sensors collect large amounts of data in support of algorithm development. The resulting large amount of data, and their associated high-performance computing needs, increases and challenges existing computing infrastructures. Purchasing computer power as a commodity using a Cloud service offers low-cost, pay-as-you-go pricing models, scalability, and elasticity that may provide solutions to develop and optimize algorithms without having to procure additional hardware and resources. This paper provides a detailed look at using a commercial cloud service provider, such as Amazon Web Services (AWS), to develop and deploy simple signal and image processing algorithms in a cloud and run the algorithms on a large set of data archived in the ARL Multimodal Signatures Database (MMSDB). Analytical results will provide performance comparisons with existing infrastructure. A discussion on using cloud computing with government data will discuss best security practices that exist within cloud services, such as AWS.

  11. Sort-Mid tasks scheduling algorithm in grid computing

    PubMed Central

    Reda, Naglaa M.; Tawfik, A.; Marzok, Mohamed A.; Khamis, Soheir M.

    2014-01-01

    Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan. PMID:26644937

  12. Computational Algorithmization: Limitations in Problem Solving Skills in Computational Sciences Majors at University of Oriente

    ERIC Educational Resources Information Center

    Castillo, Antonio S.; Berenguer, Isabel A.; Sánchez, Alexander G.; Álvarez, Tomás R. R.

    2017-01-01

    This paper analyzes the results of a diagnostic study carried out with second year students of the computational sciences majors at University of Oriente, Cuba, to determine the limitations that they present in computational algorithmization. An exploratory research was developed using quantitative and qualitative methods. The results allowed…

  13. Computer-Based Algorithmic Determination of Muscle Movement Onset Using M-Mode Ultrasonography

    DTIC Science & Technology

    2017-05-01

    contraction images were analyzed visually and with three different classes of algorithms: pixel standard deviation (SD), high-pass filter and Teager Kaiser...Linear relationships and agreements between computed and visual muscle onset were calculated. The top algorithms were high-pass filtered with a 30 Hz...suggest that computer automated determination using high-pass filtering is a potential objective alternative to visual determination in human

  14. Computational Fluid Dynamics. [numerical methods and algorithm development

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This collection of papers was presented at the Computational Fluid Dynamics (CFD) Conference held at Ames Research Center in California on March 12 through 14, 1991. It is an overview of CFD activities at NASA Lewis Research Center. The main thrust of computational work at Lewis is aimed at propulsion systems. Specific issues related to propulsion CFD and associated modeling will also be presented. Examples of results obtained with the most recent algorithm development will also be presented.

  15. Accelerating scientific computations with mixed precision algorithms

    NASA Astrophysics Data System (ADS)

    Baboulin, Marc; Buttari, Alfredo; Dongarra, Jack; Kurzak, Jakub; Langou, Julie; Langou, Julien; Luszczek, Piotr; Tomov, Stanimire

    2009-12-01

    On modern architectures, the performance of 32-bit operations is often at least twice as fast as the performance of 64-bit operations. By using a combination of 32-bit and 64-bit floating point arithmetic, the performance of many dense and sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. The approach presented here can apply not only to conventional processors but also to other technologies such as Field Programmable Gate Arrays (FPGA), Graphical Processing Units (GPU), and the STI Cell BE processor. Results on modern processor architectures and the STI Cell BE are presented. Program summaryProgram title: ITER-REF Catalogue identifier: AECO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 7211 No. of bytes in distributed program, including test data, etc.: 41 862 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: desktop, server Operating system: Unix/Linux RAM: 512 Mbytes Classification: 4.8 External routines: BLAS (optional) Nature of problem: On modern architectures, the performance of 32-bit operations is often at least twice as fast as the performance of 64-bit operations. By using a combination of 32-bit and 64-bit floating point arithmetic, the performance of many dense and sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. Solution method: Mixed precision algorithms stem from the observation that, in many cases, a single precision solution of a problem can be refined to the point where double precision accuracy is achieved. A common approach to the solution of linear systems, either dense or sparse, is to perform the LU

  16. Sparse Contextual Activation for Efficient Visual Re-Ranking.

    PubMed

    Bai, Song; Bai, Xiang

    2016-03-01

    In this paper, we propose an extremely efficient algorithm for visual re-ranking. By considering the original pairwise distance in the contextual space, we develop a feature vector called sparse contextual activation (SCA) that encodes the local distribution of an image. Hence, re-ranking task can be simply accomplished by vector comparison under the generalized Jaccard metric, which has its theoretical meaning in the fuzzy set theory. In order to improve the time efficiency of re-ranking procedure, inverted index is successfully introduced to speed up the computation of generalized Jaccard metric. As a result, the average time cost of re-ranking for a certain query can be controlled within 1 ms. Furthermore, inspired by query expansion, we also develop an additional method called local consistency enhancement on the proposed SCA to improve the retrieval performance in an unsupervised manner. On the other hand, the retrieval performance using a single feature may not be satisfactory enough, which inspires us to fuse multiple complementary features for accurate retrieval. Based on SCA, a robust feature fusion algorithm is exploited that also preserves the characteristic of high time efficiency. We assess our proposed method in various visual re-ranking tasks. Experimental results on Princeton shape benchmark (3D object), WM-SRHEC07 (3D competition), YAEL data set B (face), MPEG-7 data set (shape), and Ukbench data set (image) manifest the effectiveness and efficiency of SCA.

  17. An imperialist competitive algorithm for virtual machine placement in cloud computing

    NASA Astrophysics Data System (ADS)

    Jamali, Shahram; Malektaji, Sepideh; Analoui, Morteza

    2017-05-01

    Cloud computing, the recently emerged revolution in IT industry, is empowered by virtualisation technology. In this paradigm, the user's applications run over some virtual machines (VMs). The process of selecting proper physical machines to host these virtual machines is called virtual machine placement. It plays an important role on resource utilisation and power efficiency of cloud computing environment. In this paper, we propose an imperialist competitive-based algorithm for the virtual machine placement problem called ICA-VMPLC. The base optimisation algorithm is chosen to be ICA because of its ease in neighbourhood movement, good convergence rate and suitable terminology. The proposed algorithm investigates search space in a unique manner to efficiently obtain optimal placement solution that simultaneously minimises power consumption and total resource wastage. Its final solution performance is compared with several existing methods such as grouping genetic and ant colony-based algorithms as well as bin packing heuristic. The simulation results show that the proposed method is superior to other tested algorithms in terms of power consumption, resource wastage, CPU usage efficiency and memory usage efficiency.

  18. Implementation and analysis of a Navier-Stokes algorithm on parallel computers

    NASA Technical Reports Server (NTRS)

    Fatoohi, Raad A.; Grosch, Chester E.

    1988-01-01

    The results of the implementation of a Navier-Stokes algorithm on three parallel/vector computers are presented. The object of this research is to determine how well, or poorly, a single numerical algorithm would map onto three different architectures. The algorithm is a compact difference scheme for the solution of the incompressible, two-dimensional, time-dependent Navier-Stokes equations. The computers were chosen so as to encompass a variety of architectures. They are the following: the MPP, an SIMD machine with 16K bit serial processors; Flex/32, an MIMD machine with 20 processors; and Cray/2. The implementation of the algorithm is discussed in relation to these architectures and measures of the performance on each machine are given. The basic comparison is among SIMD instruction parallelism on the MPP, MIMD process parallelism on the Flex/32, and vectorization of a serial code on the Cray/2. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally, conclusions are presented.

  19. A General, Adaptive, Roadmap-Based Algorithm for Protein Motion Computation.

    PubMed

    Molloy, Kevin; Shehu, Amarda

    2016-03-01

    Precious information on protein function can be extracted from a detailed characterization of protein equilibrium dynamics. This remains elusive in wet and dry laboratories, as function-modulating transitions of a protein between functionally-relevant, thermodynamically-stable and meta-stable structural states often span disparate time scales. In this paper we propose a novel, robotics-inspired algorithm that circumvents time-scale challenges by drawing analogies between protein motion and robot motion. The algorithm adapts the popular roadmap-based framework in robot motion computation to handle the more complex protein conformation space and its underlying rugged energy surface. Given known structures representing stable and meta-stable states of a protein, the algorithm yields a time- and energy-prioritized list of transition paths between the structures, with each path represented as a series of conformations. The algorithm balances computational resources between a global search aimed at obtaining a global view of the network of protein conformations and their connectivity and a detailed local search focused on realizing such connections with physically-realistic models. Promising results are presented on a variety of proteins that demonstrate the general utility of the algorithm and its capability to improve the state of the art without employing system-specific insight.

  20. Autumn Algorithm-Computation of Hybridization Networks for Realistic Phylogenetic Trees.

    PubMed

    Huson, Daniel H; Linz, Simone

    2018-01-01

    A minimum hybridization network is a rooted phylogenetic network that displays two given rooted phylogenetic trees using a minimum number of reticulations. Previous mathematical work on their calculation has usually assumed the input trees to be bifurcating, correctly rooted, or that they both contain the same taxa. These assumptions do not hold in biological studies and "realistic" trees have multifurcations, are difficult to root, and rarely contain the same taxa. We present a new algorithm for computing minimum hybridization networks for a given pair of "realistic" rooted phylogenetic trees. We also describe how the algorithm might be used to improve the rooting of the input trees. We introduce the concept of "autumn trees", a nice framework for the formulation of algorithms based on the mathematics of "maximum acyclic agreement forests". While the main computational problem is hard, the run-time depends mainly on how different the given input trees are. In biological studies, where the trees are reasonably similar, our parallel implementation performs well in practice. The algorithm is available in our open source program Dendroscope 3, providing a platform for biologists to explore rooted phylogenetic networks. We demonstrate the utility of the algorithm using several previously studied data sets.

  1. A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures.

    PubMed

    Lipinski, Doug; Mohseni, Kamran

    2010-03-01

    A ridge tracking algorithm for the computation and extraction of Lagrangian coherent structures (LCS) is developed. This algorithm takes advantage of the spatial coherence of LCS by tracking the ridges which form LCS to avoid unnecessary computations away from the ridges. We also make use of the temporal coherence of LCS by approximating the time dependent motion of the LCS with passive tracer particles. To justify this approximation, we provide an estimate of the difference between the motion of the LCS and that of tracer particles which begin on the LCS. In addition to the speedup in computational time, the ridge tracking algorithm uses less memory and results in smaller output files than the standard LCS algorithm. Finally, we apply our ridge tracking algorithm to two test cases, an analytically defined double gyre as well as the more complicated example of the numerical simulation of a swimming jellyfish. In our test cases, we find up to a 35 times speedup when compared with the standard LCS algorithm.

  2. Evaluation of a Text Compression Algorithm Against Computer-Aided Instruction (CAI) Material.

    ERIC Educational Resources Information Center

    Knight, Joseph M., Jr.

    This report describes the initial evaluation of a text compression algorithm against computer assisted instruction (CAI) material. A review of some concepts related to statistical text compression is followed by a detailed description of a practical text compression algorithm. A simulation of the algorithm was programed and used to obtain…

  3. A novel computer algorithm for modeling and treating mandibular fractures: A pilot study.

    PubMed

    Rizzi, Christopher J; Ortlip, Timothy; Greywoode, Jewel D; Vakharia, Kavita T; Vakharia, Kalpesh T

    2017-02-01

    To describe a novel computer algorithm that can model mandibular fracture repair. To evaluate the algorithm as a tool to model mandibular fracture reduction and hardware selection. Retrospective pilot study combined with cross-sectional survey. A computer algorithm utilizing Aquarius Net (TeraRecon, Inc, Foster City, CA) and Adobe Photoshop CS6 (Adobe Systems, Inc, San Jose, CA) was developed to model mandibular fracture repair. Ten different fracture patterns were selected from nine patients who had already undergone mandibular fracture repair. The preoperative computed tomography (CT) images were processed with the computer algorithm to create virtual images that matched the actual postoperative three-dimensional CT images. A survey comparing the true postoperative image with the virtual postoperative images was created and administered to otolaryngology resident and attending physicians. They were asked to rate on a scale from 0 to 10 (0 = completely different; 10 = identical) the similarity between the two images in terms of the fracture reduction and fixation hardware. Ten mandible fracture cases were analyzed and processed. There were 15 survey respondents. The mean score for overall similarity between the images was 8.41 ± 0.91; the mean score for similarity of fracture reduction was 8.61 ± 0.98; and the mean score for hardware appearance was 8.27 ± 0.97. There were no significant differences between attending and resident responses. There were no significant differences based on fracture location. This computer algorithm can accurately model mandibular fracture repair. Images created by the algorithm are highly similar to true postoperative images. The algorithm can potentially assist a surgeon planning mandibular fracture repair. 4. Laryngoscope, 2016 127:331-336, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  4. Intelligent cloud computing security using genetic algorithm as a computational tools

    NASA Astrophysics Data System (ADS)

    Razuky AL-Shaikhly, Mazin H.

    2018-05-01

    An essential change had occurred in the field of Information Technology which represented with cloud computing, cloud giving virtual assets by means of web yet awesome difficulties in the field of information security and security assurance. Currently main problem with cloud computing is how to improve privacy and security for cloud “cloud is critical security”. This paper attempts to solve cloud security by using intelligent system with genetic algorithm as wall to provide cloud data secure, all services provided by cloud must detect who receive and register it to create list of users (trusted or un-trusted) depend on behavior. The execution of present proposal has shown great outcome.

  5. An Agent Inspired Reconfigurable Computing Implementation of a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Weir, John M.; Wells, B. Earl

    2003-01-01

    Many software systems have been successfully implemented using an agent paradigm which employs a number of independent entities that communicate with one another to achieve a common goal. The distributed nature of such a paradigm makes it an excellent candidate for use in high speed reconfigurable computing hardware environments such as those present in modem FPGA's. In this paper, a distributed genetic algorithm that can be applied to the agent based reconfigurable hardware model is introduced. The effectiveness of this new algorithm is evaluated by comparing the quality of the solutions found by the new algorithm with those found by traditional genetic algorithms. The performance of a reconfigurable hardware implementation of the new algorithm on an FPGA is compared to traditional single processor implementations.

  6. Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment.

    PubMed

    Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Abdulhamid, Shafi'i Muhammad; Usman, Mohammed Joda

    2017-01-01

    Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing.

  7. Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment

    PubMed Central

    Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Usman, Mohammed Joda

    2017-01-01

    Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing. PMID:28467505

  8. Computationally efficient algorithm for Gaussian Process regression in case of structured samples

    NASA Astrophysics Data System (ADS)

    Belyaev, M.; Burnaev, E.; Kapushev, Y.

    2016-04-01

    Surrogate modeling is widely used in many engineering problems. Data sets often have Cartesian product structure (for instance factorial design of experiments with missing points). In such case the size of the data set can be very large. Therefore, one of the most popular algorithms for approximation-Gaussian Process regression-can be hardly applied due to its computational complexity. In this paper a computationally efficient approach for constructing Gaussian Process regression in case of data sets with Cartesian product structure is presented. Efficiency is achieved by using a special structure of the data set and operations with tensors. Proposed algorithm has low computational as well as memory complexity compared to existing algorithms. In this work we also introduce a regularization procedure allowing to take into account anisotropy of the data set and avoid degeneracy of regression model.

  9. Computer Music

    NASA Astrophysics Data System (ADS)

    Cook, Perry

    This chapter covers algorithms, technologies, computer languages, and systems for computer music. Computer music involves the application of computers and other digital/electronic technologies to music composition, performance, theory, history, and perception. The field combines digital signal processing, computational algorithms, computer languages, hardware and software systems, acoustics, psychoacoustics (low-level perception of sounds from the raw acoustic signal), and music cognition (higher-level perception of musical style, form, emotion, etc.). Although most people would think that analog synthesizers and electronic music substantially predate the use of computers in music, many experiments and complete computer music systems were being constructed and used as early as the 1950s.

  10. A Comparison of Off-Level Correction Techniques for Airborne Gravity using GRAV-D Re-Flights

    NASA Astrophysics Data System (ADS)

    Preaux, S. A.; Melachroinos, S.; Diehl, T. M.

    2011-12-01

    The airborne gravity data collected for the GRAV-D project contain a number of tracks which have been flown multiple times, either by design or due to data collection issues. Where viable data can be retrieved, these re-flights are a valuable resource not only for assessing the quality of the data but also for evaluating the relative effectiveness of various processing techniques. Correcting for the instantaneous misalignment of the gravimeter sensitive axis with local vertical has been a long standing challenge for stable platform airborne gravimetry. GRAV-D re-flights are used to compare the effectiveness of existing methods of computing this off-level correction (Valliant 1991, Peters and Brozena 1995, Swain 1996, etc.) and to assess the impact of possible modifications to these methods including pre-filtering accelerations, use of IMU horizontal accelerations in place of those derived from GPS positions and accurately compensating for GPS lever-arm and attitude effects prior to computing accelerations from the GPS positions (Melachroinos et al. 2010, B. de Saint-Jean, et al. 2005). The resulting corrected gravity profiles are compared to each other and to EGM08 in order to assess the accuracy and precision of each method. Preliminary results indicate that the methods presented in Peters & Brozena 1995 and Valliant 1991 completely correct the off-level error some of the time but only partially correct it others, while introducing an overall bias to the data of -0.5 to -2 mGal.

  11. Automated Re-Entry System using FNPEG

    NASA Technical Reports Server (NTRS)

    Johnson, Wyatt R.; Lu, Ping; Stachowiak, Susan J.

    2017-01-01

    This paper discusses the implementation and simulated performance of the FNPEG (Fully Numerical Predictor-corrector Entry Guidance) algorithm into GNC FSW (Guidance, Navigation, and Control Flight Software) for use in an autonomous re-entry vehicle. A few modifications to FNPEG are discussed that result in computational savings -- a change to the state propagator, and a modification to cross-range lateral logic. Finally, some Monte Carlo results are presented using a representative vehicle in both a high-fidelity 6-DOF (degree-of-freedom) sim as well as in a 3-DOF sim for independent validation.

  12. A comparison between physicians and computer algorithms for form CMS-2728 data reporting.

    PubMed

    Malas, Mohammed Said; Wish, Jay; Moorthi, Ranjani; Grannis, Shaun; Dexter, Paul; Duke, Jon; Moe, Sharon

    2017-01-01

    CMS-2728 form (Medical Evidence Report) assesses 23 comorbidities chosen to reflect poor outcomes and increased mortality risk. Previous studies questioned the validity of physician reporting on forms CMS-2728. We hypothesize that reporting of comorbidities by computer algorithms identifies more comorbidities than physician completion, and, therefore, is more reflective of underlying disease burden. We collected data from CMS-2728 forms for all 296 patients who had incident ESRD diagnosis and received chronic dialysis from 2005 through 2014 at Indiana University outpatient dialysis centers. We analyzed patients' data from electronic medical records systems that collated information from multiple health care sources. Previously utilized algorithms or natural language processing was used to extract data on 10 comorbidities for a period of up to 10 years prior to ESRD incidence. These algorithms incorporate billing codes, prescriptions, and other relevant elements. We compared the presence or unchecked status of these comorbidities on the forms to the presence or absence according to the algorithms. Computer algorithms had higher reporting of comorbidities compared to forms completion by physicians. This remained true when decreasing data span to one year and using only a single health center source. The algorithms determination was well accepted by a physician panel. Importantly, algorithms use significantly increased the expected deaths and lowered the standardized mortality ratios. Using computer algorithms showed superior identification of comorbidities for form CMS-2728 and altered standardized mortality ratios. Adapting similar algorithms in available EMR systems may offer more thorough evaluation of comorbidities and improve quality reporting. © 2016 International Society for Hemodialysis.

  13. Combinatorial Algorithms to Enable Computational Science and Engineering: Work from the CSCAPES Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boman, Erik G.; Catalyurek, Umit V.; Chevalier, Cedric

    2015-01-16

    This final progress report summarizes the work accomplished at the Combinatorial Scientific Computing and Petascale Simulations Institute. We developed Zoltan, a parallel mesh partitioning library that made use of accurate hypergraph models to provide load balancing in mesh-based computations. We developed several graph coloring algorithms for computing Jacobian and Hessian matrices and organized them into a software package called ColPack. We developed parallel algorithms for graph coloring and graph matching problems, and also designed multi-scale graph algorithms. Three PhD students graduated, six more are continuing their PhD studies, and four postdoctoral scholars were advised. Six of these students and Fellowsmore » have joined DOE Labs (Sandia, Berkeley), as staff scientists or as postdoctoral scientists. We also organized the SIAM Workshop on Combinatorial Scientific Computing (CSC) in 2007, 2009, and 2011 to continue to foster the CSC community.« less

  14. MRPack: Multi-Algorithm Execution Using Compute-Intensive Approach in MapReduce

    PubMed Central

    2015-01-01

    Large quantities of data have been generated from multiple sources at exponential rates in the last few years. These data are generated at high velocity as real time and streaming data in variety of formats. These characteristics give rise to challenges in its modeling, computation, and processing. Hadoop MapReduce (MR) is a well known data-intensive distributed processing framework using the distributed file system (DFS) for Big Data. Current implementations of MR only support execution of a single algorithm in the entire Hadoop cluster. In this paper, we propose MapReducePack (MRPack), a variation of MR that supports execution of a set of related algorithms in a single MR job. We exploit the computational capability of a cluster by increasing the compute-intensiveness of MapReduce while maintaining its data-intensive approach. It uses the available computing resources by dynamically managing the task assignment and intermediate data. Intermediate data from multiple algorithms are managed using multi-key and skew mitigation strategies. The performance study of the proposed system shows that it is time, I/O, and memory efficient compared to the default MapReduce. The proposed approach reduces the execution time by 200% with an approximate 50% decrease in I/O cost. Complexity and qualitative results analysis shows significant performance improvement. PMID:26305223

  15. MRPack: Multi-Algorithm Execution Using Compute-Intensive Approach in MapReduce.

    PubMed

    Idris, Muhammad; Hussain, Shujaat; Siddiqi, Muhammad Hameed; Hassan, Waseem; Syed Muhammad Bilal, Hafiz; Lee, Sungyoung

    2015-01-01

    Large quantities of data have been generated from multiple sources at exponential rates in the last few years. These data are generated at high velocity as real time and streaming data in variety of formats. These characteristics give rise to challenges in its modeling, computation, and processing. Hadoop MapReduce (MR) is a well known data-intensive distributed processing framework using the distributed file system (DFS) for Big Data. Current implementations of MR only support execution of a single algorithm in the entire Hadoop cluster. In this paper, we propose MapReducePack (MRPack), a variation of MR that supports execution of a set of related algorithms in a single MR job. We exploit the computational capability of a cluster by increasing the compute-intensiveness of MapReduce while maintaining its data-intensive approach. It uses the available computing resources by dynamically managing the task assignment and intermediate data. Intermediate data from multiple algorithms are managed using multi-key and skew mitigation strategies. The performance study of the proposed system shows that it is time, I/O, and memory efficient compared to the default MapReduce. The proposed approach reduces the execution time by 200% with an approximate 50% decrease in I/O cost. Complexity and qualitative results analysis shows significant performance improvement.

  16. QSPIN: A High Level Java API for Quantum Computing Experimentation

    NASA Technical Reports Server (NTRS)

    Barth, Tim

    2017-01-01

    QSPIN is a high level Java language API for experimentation in QC models used in the calculation of Ising spin glass ground states and related quadratic unconstrained binary optimization (QUBO) problems. The Java API is intended to facilitate research in advanced QC algorithms such as hybrid quantum-classical solvers, automatic selection of constraint and optimization parameters, and techniques for the correction and mitigation of model and solution errors. QSPIN includes high level solver objects tailored to the D-Wave quantum annealing architecture that implement hybrid quantum-classical algorithms [Booth et al.] for solving large problems on small quantum devices, elimination of variables via roof duality, and classical computing optimization methods such as GPU accelerated simulated annealing and tabu search for comparison. A test suite of documented NP-complete applications ranging from graph coloring, covering, and partitioning to integer programming and scheduling are provided to demonstrate current capabilities.

  17. Exploration of a physiologically-inspired hearing-aid algorithm using a computer model mimicking impaired hearing.

    PubMed

    Jürgens, Tim; Clark, Nicholas R; Lecluyse, Wendy; Meddis, Ray

    2016-01-01

    To use a computer model of impaired hearing to explore the effects of a physiologically-inspired hearing-aid algorithm on a range of psychoacoustic measures. A computer model of a hypothetical impaired listener's hearing was constructed by adjusting parameters of a computer model of normal hearing. Absolute thresholds, estimates of compression, and frequency selectivity (summarized to a hearing profile) were assessed using this model with and without pre-processing the stimuli by a hearing-aid algorithm. The influence of different settings of the algorithm on the impaired profile was investigated. To validate the model predictions, the effect of the algorithm on hearing profiles of human impaired listeners was measured. A computer model simulating impaired hearing (total absence of basilar membrane compression) was used, and three hearing-impaired listeners participated. The hearing profiles of the model and the listeners showed substantial changes when the test stimuli were pre-processed by the hearing-aid algorithm. These changes consisted of lower absolute thresholds, steeper temporal masking curves, and sharper psychophysical tuning curves. The hearing-aid algorithm affected the impaired hearing profile of the model to approximate a normal hearing profile. Qualitatively similar results were found with the impaired listeners' hearing profiles.

  18. Area collapse algorithm computing new curve of 2D geometric objects

    NASA Astrophysics Data System (ADS)

    Buczek, Michał Mateusz

    2017-06-01

    The processing of cartographic data demands human involvement. Up-to-date algorithms try to automate a part of this process. The goal is to obtain a digital model, or additional information about shape and topology of input geometric objects. A topological skeleton is one of the most important tools in the branch of science called shape analysis. It represents topological and geometrical characteristics of input data. Its plot depends on using algorithms such as medial axis, skeletonization, erosion, thinning, area collapse and many others. Area collapse, also known as dimension change, replaces input data with lower-dimensional geometric objects like, for example, a polygon with a polygonal chain, a line segment with a point. The goal of this paper is to introduce a new algorithm for the automatic calculation of polygonal chains representing a 2D polygon. The output is entirely contained within the area of the input polygon, and it has a linear plot without branches. The computational process is automatic and repeatable. The requirements of input data are discussed. The author analyzes results based on the method of computing ends of output polygonal chains. Additional methods to improve results are explored. The algorithm was tested on real-world cartographic data received from BDOT/GESUT databases, and on point clouds from laser scanning. An implementation for computing hatching of embankment is described.

  19. Multi-Threaded Algorithms for GPGPU in the ATLAS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Conde Muíño, P.; ATLAS Collaboration

    2017-10-01

    General purpose Graphics Processor Units (GPGPU) are being evaluated for possible future inclusion in an upgraded ATLAS High Level Trigger farm. We have developed a demonstrator including GPGPU implementations of Inner Detector and Muon tracking and Calorimeter clustering within the ATLAS software framework. ATLAS is a general purpose particle physics experiment located on the LHC collider at CERN. The ATLAS Trigger system consists of two levels, with Level-1 implemented in hardware and the High Level Trigger implemented in software running on a farm of commodity CPU. The High Level Trigger reduces the trigger rate from the 100 kHz Level-1 acceptance rate to 1.5 kHz for recording, requiring an average per-event processing time of ∼ 250 ms for this task. The selection in the high level trigger is based on reconstructing tracks in the Inner Detector and Muon Spectrometer and clusters of energy deposited in the Calorimeter. Performing this reconstruction within the available farm resources presents a significant challenge that will increase significantly with future LHC upgrades. During the LHC data taking period starting in 2021, luminosity will reach up to three times the original design value. Luminosity will increase further to 7.5 times the design value in 2026 following LHC and ATLAS upgrades. Corresponding improvements in the speed of the reconstruction code will be needed to provide the required trigger selection power within affordable computing resources. Key factors determining the potential benefit of including GPGPU as part of the HLT processor farm are: the relative speed of the CPU and GPGPU algorithm implementations; the relative execution times of the GPGPU algorithms and serial code remaining on the CPU; the number of GPGPU required, and the relative financial cost of the selected GPGPU. We give a brief overview of the algorithms implemented and present new measurements that compare the performance of various configurations exploiting GPGPU cards.

  20. Survivable algorithms and redundancy management in NASA's distributed computing systems

    NASA Technical Reports Server (NTRS)

    Malek, Miroslaw

    1992-01-01

    The design of survivable algorithms requires a solid foundation for executing them. While hardware techniques for fault-tolerant computing are relatively well understood, fault-tolerant operating systems, as well as fault-tolerant applications (survivable algorithms), are, by contrast, little understood, and much more work in this field is required. We outline some of our work that contributes to the foundation of ultrareliable operating systems and fault-tolerant algorithm design. We introduce our consensus-based framework for fault-tolerant system design. This is followed by a description of a hierarchical partitioning method for efficient consensus. A scheduler for redundancy management is introduced, and application-specific fault tolerance is described. We give an overview of our hybrid algorithm technique, which is an alternative to the formal approach given.

  1. Concurrent extensions to the FORTRAN language for parallel programming of computational fluid dynamics algorithms

    NASA Technical Reports Server (NTRS)

    Weeks, Cindy Lou

    1986-01-01

    Experiments were conducted at NASA Ames Research Center to define multi-tasking software requirements for multiple-instruction, multiple-data stream (MIMD) computer architectures. The focus was on specifying solutions for algorithms in the field of computational fluid dynamics (CFD). The program objectives were to allow researchers to produce usable parallel application software as soon as possible after acquiring MIMD computer equipment, to provide researchers with an easy-to-learn and easy-to-use parallel software language which could be implemented on several different MIMD machines, and to enable researchers to list preferred design specifications for future MIMD computer architectures. Analysis of CFD algorithms indicated that extensions of an existing programming language, adaptable to new computer architectures, provided the best solution to meeting program objectives. The CoFORTRAN Language was written in response to these objectives and to provide researchers a means to experiment with parallel software solutions to CFD algorithms on machines with parallel architectures.

  2. Computer aided lung cancer diagnosis with deep learning algorithms

    NASA Astrophysics Data System (ADS)

    Sun, Wenqing; Zheng, Bin; Qian, Wei

    2016-03-01

    Deep learning is considered as a popular and powerful method in pattern recognition and classification. However, there are not many deep structured applications used in medical imaging diagnosis area, because large dataset is not always available for medical images. In this study we tested the feasibility of using deep learning algorithms for lung cancer diagnosis with the cases from Lung Image Database Consortium (LIDC) database. The nodules on each computed tomography (CT) slice were segmented according to marks provided by the radiologists. After down sampling and rotating we acquired 174412 samples with 52 by 52 pixel each and the corresponding truth files. Three deep learning algorithms were designed and implemented, including Convolutional Neural Network (CNN), Deep Belief Networks (DBNs), Stacked Denoising Autoencoder (SDAE). To compare the performance of deep learning algorithms with traditional computer aided diagnosis (CADx) system, we designed a scheme with 28 image features and support vector machine. The accuracies of CNN, DBNs, and SDAE are 0.7976, 0.8119, and 0.7929, respectively; the accuracy of our designed traditional CADx is 0.7940, which is slightly lower than CNN and DBNs. We also noticed that the mislabeled nodules using DBNs are 4% larger than using traditional CADx, this might be resulting from down sampling process lost some size information of the nodules.

  3. Study on the algorithm of computational ghost imaging based on discrete fourier transform measurement matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua

    2016-07-01

    On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.

  4. A parallel simulated annealing algorithm for standard cell placement on a hypercube computer

    NASA Technical Reports Server (NTRS)

    Jones, Mark Howard

    1987-01-01

    A parallel version of a simulated annealing algorithm is presented which is targeted to run on a hypercube computer. A strategy for mapping the cells in a two dimensional area of a chip onto processors in an n-dimensional hypercube is proposed such that both small and large distance moves can be applied. Two types of moves are allowed: cell exchanges and cell displacements. The computation of the cost function in parallel among all the processors in the hypercube is described along with a distributed data structure that needs to be stored in the hypercube to support parallel cost evaluation. A novel tree broadcasting strategy is used extensively in the algorithm for updating cell locations in the parallel environment. Studies on the performance of the algorithm on example industrial circuits show that it is faster and gives better final placement results than the uniprocessor simulated annealing algorithms. An improved uniprocessor algorithm is proposed which is based on the improved results obtained from parallelization of the simulated annealing algorithm.

  5. A multiresolution approach to iterative reconstruction algorithms in X-ray computed tomography.

    PubMed

    De Witte, Yoni; Vlassenbroeck, Jelle; Van Hoorebeke, Luc

    2010-09-01

    In computed tomography, the application of iterative reconstruction methods in practical situations is impeded by their high computational demands. Especially in high resolution X-ray computed tomography, where reconstruction volumes contain a high number of volume elements (several giga voxels), this computational burden prevents their actual breakthrough. Besides the large amount of calculations, iterative algorithms require the entire volume to be kept in memory during reconstruction, which quickly becomes cumbersome for large data sets. To overcome this obstacle, we present a novel multiresolution reconstruction, which greatly reduces the required amount of memory without significantly affecting the reconstructed image quality. It is shown that, combined with an efficient implementation on a graphical processing unit, the multiresolution approach enables the application of iterative algorithms in the reconstruction of large volumes at an acceptable speed using only limited resources.

  6. A parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix

    NASA Technical Reports Server (NTRS)

    Swarztrauber, Paul N.

    1993-01-01

    A parallel algorithm, called polysection, is presented for computing the eigenvalues of a symmetric tridiagonal matrix. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The signs of the polynomials at the interval endpoints are determined a priori and used to guarantee that all zeros are found. The use of finite-precision arithmetic may result in multiple zeros; however, in this case, the intervals coalesce and their number determines exactly the multiplicity of the zero. For an N x N matrix the eigenvalues can be determined in O(log-squared N) time with N-squared processors and O(N) time with N processors. The method is compared with a parallel variant of bisection that requires O(N-squared) time on a single processor, O(N) time with N processors, and O(log N) time with N-squared processors.

  7. Analysis of stationary availability factor of two-level backbone computer networks with arbitrary topology

    NASA Astrophysics Data System (ADS)

    Rahman, P. A.

    2018-05-01

    This scientific paper deals with the two-level backbone computer networks with arbitrary topology. A specialized method, offered by the author for calculation of the stationary availability factor of the two-level backbone computer networks, based on the Markov reliability models for the set of the independent repairable elements with the given failure and repair rates and the methods of the discrete mathematics, is also discussed. A specialized algorithm, offered by the author for analysis of the network connectivity, taking into account different kinds of the network equipment failures, is also observed. Finally, this paper presents an example of calculation of the stationary availability factor for the backbone computer network with the given topology.

  8. Postprocessing of Voxel-Based Topologies for Additive Manufacturing Using the Computational Geometry Algorithms Library (CGAL)

    DTIC Science & Technology

    2015-06-01

    10-2014 to 00-11-2014 4. TITLE AND SUBTITLE Postprocessing of Voxel-Based Topologies for Additive Manufacturing Using the Computational Geometry...ABSTRACT Postprocessing of 3-dimensional (3-D) topologies that are defined as a set of voxels using the Computational Geometry Algorithms Library (CGAL... computational geometry algorithms, several of which are suited to the task. The work flow described in this report involves first defining a set of

  9. A simple algorithm for computing positively weighted straight skeletons of monotone polygons☆

    PubMed Central

    Biedl, Therese; Held, Martin; Huber, Stefan; Kaaser, Dominik; Palfrader, Peter

    2015-01-01

    We study the characteristics of straight skeletons of monotone polygonal chains and use them to devise an algorithm for computing positively weighted straight skeletons of monotone polygons. Our algorithm runs in O(nlog⁡n) time and O(n) space, where n denotes the number of vertices of the polygon. PMID:25648376

  10. A simple algorithm for computing positively weighted straight skeletons of monotone polygons.

    PubMed

    Biedl, Therese; Held, Martin; Huber, Stefan; Kaaser, Dominik; Palfrader, Peter

    2015-02-01

    We study the characteristics of straight skeletons of monotone polygonal chains and use them to devise an algorithm for computing positively weighted straight skeletons of monotone polygons. Our algorithm runs in [Formula: see text] time and [Formula: see text] space, where n denotes the number of vertices of the polygon.

  11. GeoBuilder: a geometric algorithm visualization and debugging system for 2D and 3D geometric computing.

    PubMed

    Wei, Jyh-Da; Tsai, Ming-Hung; Lee, Gen-Cher; Huang, Jeng-Hung; Lee, Der-Tsai

    2009-01-01

    Algorithm visualization is a unique research topic that integrates engineering skills such as computer graphics, system programming, database management, computer networks, etc., to facilitate algorithmic researchers in testing their ideas, demonstrating new findings, and teaching algorithm design in the classroom. Within the broad applications of algorithm visualization, there still remain performance issues that deserve further research, e.g., system portability, collaboration capability, and animation effect in 3D environments. Using modern technologies of Java programming, we develop an algorithm visualization and debugging system, dubbed GeoBuilder, for geometric computing. The GeoBuilder system features Java's promising portability, engagement of collaboration in algorithm development, and automatic camera positioning for tracking 3D geometric objects. In this paper, we describe the design of the GeoBuilder system and demonstrate its applications.

  12. Comparison of algorithms for computing the two-dimensional discrete Hartley transform

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Burton, John C.; Miller, Keith W.

    1989-01-01

    Three methods have been described for computing the two-dimensional discrete Hartley transform. Two of these employ a separable transform, the third method, the vector-radix algorithm, does not require separability. In-place computation of the vector-radix method is described. Operation counts and execution times indicate that the vector-radix method is fastest.

  13. Computed tomography imaging with the Adaptive Statistical Iterative Reconstruction (ASIR) algorithm: dependence of image quality on the blending level of reconstruction.

    PubMed

    Barca, Patrizio; Giannelli, Marco; Fantacci, Maria Evelina; Caramella, Davide

    2018-06-01

    Computed tomography (CT) is a useful and widely employed imaging technique, which represents the largest source of population exposure to ionizing radiation in industrialized countries. Adaptive Statistical Iterative Reconstruction (ASIR) is an iterative reconstruction algorithm with the potential to allow reduction of radiation exposure while preserving diagnostic information. The aim of this phantom study was to assess the performance of ASIR, in terms of a number of image quality indices, when different reconstruction blending levels are employed. CT images of the Catphan-504 phantom were reconstructed using conventional filtered back-projection (FBP) and ASIR with reconstruction blending levels of 20, 40, 60, 80, and 100%. Noise, noise power spectrum (NPS), contrast-to-noise ratio (CNR) and modulation transfer function (MTF) were estimated for different scanning parameters and contrast objects. Noise decreased and CNR increased non-linearly up to 50 and 100%, respectively, with increasing blending level of reconstruction. Also, ASIR has proven to modify the NPS curve shape. The MTF of ASIR reconstructed images depended on tube load/contrast and decreased with increasing blending level of reconstruction. In particular, for low radiation exposure and low contrast acquisitions, ASIR showed lower performance than FBP, in terms of spatial resolution for all blending levels of reconstruction. CT image quality varies substantially with the blending level of reconstruction. ASIR has the potential to reduce noise whilst maintaining diagnostic information in low radiation exposure CT imaging. Given the opposite variation of CNR and spatial resolution with the blending level of reconstruction, it is recommended to use an optimal value of this parameter for each specific clinical application.

  14. Parallel algorithm for computation of second-order sequential best rotations

    NASA Astrophysics Data System (ADS)

    Redif, Soydan; Kasap, Server

    2013-12-01

    Algorithms for computing an approximate polynomial matrix eigenvalue decomposition of para-Hermitian systems have emerged as a powerful, generic signal processing tool. A technique that has shown much success in this regard is the sequential best rotation (SBR2) algorithm. Proposed is a scheme for parallelising SBR2 with a view to exploiting the modern architectural features and inherent parallelism of field-programmable gate array (FPGA) technology. Experiments show that the proposed scheme can achieve low execution times while requiring minimal FPGA resources.

  15. A Family of Algorithms for Computing Consensus about Node State from Network Data

    PubMed Central

    Brush, Eleanor R.; Krakauer, David C.; Flack, Jessica C.

    2013-01-01

    Biological and social networks are composed of heterogeneous nodes that contribute differentially to network structure and function. A number of algorithms have been developed to measure this variation. These algorithms have proven useful for applications that require assigning scores to individual nodes–from ranking websites to determining critical species in ecosystems–yet the mechanistic basis for why they produce good rankings remains poorly understood. We show that a unifying property of these algorithms is that they quantify consensus in the network about a node's state or capacity to perform a function. The algorithms capture consensus by either taking into account the number of a target node's direct connections, and, when the edges are weighted, the uniformity of its weighted in-degree distribution (breadth), or by measuring net flow into a target node (depth). Using data from communication, social, and biological networks we find that that how an algorithm measures consensus–through breadth or depth– impacts its ability to correctly score nodes. We also observe variation in sensitivity to source biases in interaction/adjacency matrices: errors arising from systematic error at the node level or direct manipulation of network connectivity by nodes. Our results indicate that the breadth algorithms, which are derived from information theory, correctly score nodes (assessed using independent data) and are robust to errors. However, in cases where nodes “form opinions” about other nodes using indirect information, like reputation, depth algorithms, like Eigenvector Centrality, are required. One caveat is that Eigenvector Centrality is not robust to error unless the network is transitive or assortative. In these cases the network structure allows the depth algorithms to effectively capture breadth as well as depth. Finally, we discuss the algorithms' cognitive and computational demands. This is an important consideration in systems in which

  16. Online Planning Algorithm

    NASA Technical Reports Server (NTRS)

    Rabideau, Gregg R.; Chien, Steve A.

    2010-01-01

    AVA v2 software selects goals for execution from a set of goals that oversubscribe shared resources. The term goal refers to a science or engineering request to execute a possibly complex command sequence, such as image targets or ground-station downlinks. Developed as an extension to the Virtual Machine Language (VML) execution system, the software enables onboard and remote goal triggering through the use of an embedded, dynamic goal set that can oversubscribe resources. From the set of conflicting goals, a subset must be chosen that maximizes a given quality metric, which in this case is strict priority selection. A goal can never be pre-empted by a lower priority goal, and high-level goals can be added, removed, or updated at any time, and the "best" goals will be selected for execution. The software addresses the issue of re-planning that must be performed in a short time frame by the embedded system where computational resources are constrained. In particular, the algorithm addresses problems with well-defined goal requests without temporal flexibility that oversubscribes available resources. By using a fast, incremental algorithm, goal selection can be postponed in a "just-in-time" fashion allowing requests to be changed or added at the last minute. Thereby enabling shorter response times and greater autonomy for the system under control.

  17. Bulk refrigeration of fruits and vegetables. Part 2: Computer algorithm for heat loads and moisture loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, B.; Misra, A.; Fricke, B.A.

    1997-12-31

    A computer algorithm was developed that estimates the latent and sensible heat loads due to the bulk refrigeration of fruits and vegetables. The algorithm also predicts the commodity moisture loss and temperature distribution which occurs during refrigeration. Part 1 focused upon the thermophysical properties of commodities and the flowfield parameters which govern the heat and mass transfer from fresh fruits and vegetables. This paper, Part 2, discusses the modeling methodology utilized in the current computer algorithm and describes the development of the heat and mass transfer models. Part 2 also compares the results of the computer algorithm to experimental datamore » taken from the literature and describes a parametric study which was performed with the algorithm. In addition, this paper also reviews existing numerical models for determining the heat and mass transfer in bulk loads of fruits and vegetables.« less

  18. Computing return times or return periods with rare event algorithms

    NASA Astrophysics Data System (ADS)

    Lestang, Thibault; Ragone, Francesco; Bréhier, Charles-Edouard; Herbert, Corentin; Bouchet, Freddy

    2018-04-01

    The average time between two occurrences of the same event, referred to as its return time (or return period), is a useful statistical concept for practical applications. For instance insurances or public agencies may be interested by the return time of a 10 m flood of the Seine river in Paris. However, due to their scarcity, reliably estimating return times for rare events is very difficult using either observational data or direct numerical simulations. For rare events, an estimator for return times can be built from the extrema of the observable on trajectory blocks. Here, we show that this estimator can be improved to remain accurate for return times of the order of the block size. More importantly, we show that this approach can be generalised to estimate return times from numerical algorithms specifically designed to sample rare events. So far those algorithms often compute probabilities, rather than return times. The approach we propose provides a computationally extremely efficient way to estimate numerically the return times of rare events for a dynamical system, gaining several orders of magnitude of computational costs. We illustrate the method on two kinds of observables, instantaneous and time-averaged, using two different rare event algorithms, for a simple stochastic process, the Ornstein–Uhlenbeck process. As an example of realistic applications to complex systems, we finally discuss extreme values of the drag on an object in a turbulent flow.

  19. Multi-step EMG Classification Algorithm for Human-Computer Interaction

    NASA Astrophysics Data System (ADS)

    Ren, Peng; Barreto, Armando; Adjouadi, Malek

    A three-electrode human-computer interaction system, based on digital processing of the Electromyogram (EMG) signal, is presented. This system can effectively help disabled individuals paralyzed from the neck down to interact with computers or communicate with people through computers using point-and-click graphic interfaces. The three electrodes are placed on the right frontalis, the left temporalis and the right temporalis muscles in the head, respectively. The signal processing algorithm used translates the EMG signals during five kinds of facial movements (left jaw clenching, right jaw clenching, eyebrows up, eyebrows down, simultaneous left & right jaw clenching) into five corresponding types of cursor movements (left, right, up, down and left-click), to provide basic mouse control. The classification strategy is based on three principles: the EMG energy of one channel is typically larger than the others during one specific muscle contraction; the spectral characteristics of the EMG signals produced by the frontalis and temporalis muscles during different movements are different; the EMG signals from adjacent channels typically have correlated energy profiles. The algorithm is evaluated on 20 pre-recorded EMG signal sets, using Matlab simulations. The results show that this method provides improvements and is more robust than other previous approaches.

  20. Fast parallel molecular algorithms for DNA-based computation: factoring integers.

    PubMed

    Chang, Weng-Long; Guo, Minyi; Ho, Michael Shan-Hui

    2005-06-01

    The RSA public-key cryptosystem is an algorithm that converts input data to an unrecognizable encryption and converts the unrecognizable data back into its original decryption form. The security of the RSA public-key cryptosystem is based on the difficulty of factoring the product of two large prime numbers. This paper demonstrates to factor the product of two large prime numbers, and is a breakthrough in basic biological operations using a molecular computer. In order to achieve this, we propose three DNA-based algorithms for parallel subtractor, parallel comparator, and parallel modular arithmetic that formally verify our designed molecular solutions for factoring the product of two large prime numbers. Furthermore, this work indicates that the cryptosystems using public-key are perhaps insecure and also presents clear evidence of the ability of molecular computing to perform complicated mathematical operations.

  1. Fixed-point image orthorectification algorithms for reduced computational cost

    NASA Astrophysics Data System (ADS)

    French, Joseph Clinton

    Imaging systems have been applied to many new applications in recent years. With the advent of low-cost, low-power focal planes and more powerful, lower cost computers, remote sensing applications have become more wide spread. Many of these applications require some form of geolocation, especially when relative distances are desired. However, when greater global positional accuracy is needed, orthorectification becomes necessary. Orthorectification is the process of projecting an image onto a Digital Elevation Map (DEM), which removes terrain distortions and corrects the perspective distortion by changing the viewing angle to be perpendicular to the projection plane. Orthorectification is used in disaster tracking, landscape management, wildlife monitoring and many other applications. However, orthorectification is a computationally expensive process due to floating point operations and divisions in the algorithm. To reduce the computational cost of on-board processing, two novel algorithm modifications are proposed. One modification is projection utilizing fixed-point arithmetic. Fixed point arithmetic removes the floating point operations and reduces the processing time by operating only on integers. The second modification is replacement of the division inherent in projection with a multiplication of the inverse. The inverse must operate iteratively. Therefore, the inverse is replaced with a linear approximation. As a result of these modifications, the processing time of projection is reduced by a factor of 1.3x with an average pixel position error of 0.2% of a pixel size for 128-bit integer processing and over 4x with an average pixel position error of less than 13% of a pixel size for a 64-bit integer processing. A secondary inverse function approximation is also developed that replaces the linear approximation with a quadratic. The quadratic approximation produces a more accurate approximation of the inverse, allowing for an integer multiplication calculation

  2. Special-purpose computer for holography HORN-4 with recurrence algorithm

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Hishinuma, Sinsuke; Ito, Tomoyoshi

    2002-10-01

    We designed and built a special-purpose computer for holography, HORN-4 (HOlographic ReconstructioN) using PLD (Programmable Logic Device) technology. HORN computers have a pipeline architecture. We use HORN-4 as an attached processor to enhance the performance of a general-purpose computer when it is used to generate holograms using a "recurrence formulas" algorithm developed by our previous paper. In the HORN-4 system, we designed the pipeline by adopting our "recurrence formulas" algorithm which can calculate the phase on a hologram. As the result, we could integrate the pipeline composed of 21 units into one PLD chip. The units in the pipeline consists of one BPU (Basic Phase Unit) unit and twenty CU (Cascade Unit) units. These CU units can compute twenty light intensities on a hologram plane at one time. By mounting two of the PLD chips on a PCI (Peripheral Component Interconnect) universal board, HORN-4 can calculate holograms at high speed of about 42 Gflops equivalent. The cost of HORN-4 board is about 1700 US dollar. We could obtain 800×600 grids hologram from a 3D-image composed of 415 points in about 0.45 sec with the HORN-4 system.

  3. Level 2 Ancillary Products and Datasets Algorithm Theoretical Basis

    NASA Technical Reports Server (NTRS)

    Diner, D.; Abdou, W.; Gordon, H.; Kahn, R.; Knyazikhin, Y.; Martonchik, J.; McDonald, D.; McMuldroch, S.; Myneni, R.; West, R.

    1999-01-01

    This Algorithm Theoretical Basis (ATB) document describes the algorithms used to generate the parameters of certain ancillary products and datasets used during Level 2 processing of Multi-angle Imaging SpectroRadiometer (MIST) data.

  4. A contourlet transform based algorithm for real-time video encoding

    NASA Astrophysics Data System (ADS)

    Katsigiannis, Stamos; Papaioannou, Georgios; Maroulis, Dimitris

    2012-06-01

    In recent years, real-time video communication over the internet has been widely utilized for applications like video conferencing. Streaming live video over heterogeneous IP networks, including wireless networks, requires video coding algorithms that can support various levels of quality in order to adapt to the network end-to-end bandwidth and transmitter/receiver resources. In this work, a scalable video coding and compression algorithm based on the Contourlet Transform is proposed. The algorithm allows for multiple levels of detail, without re-encoding the video frames, by just dropping the encoded information referring to higher resolution than needed. Compression is achieved by means of lossy and lossless methods, as well as variable bit rate encoding schemes. Furthermore, due to the transformation utilized, it does not suffer from blocking artifacts that occur with many widely adopted compression algorithms. Another highly advantageous characteristic of the algorithm is the suppression of noise induced by low-quality sensors usually encountered in web-cameras, due to the manipulation of the transform coefficients at the compression stage. The proposed algorithm is designed to introduce minimal coding delay, thus achieving real-time performance. Performance is enhanced by utilizing the vast computational capabilities of modern GPUs, providing satisfactory encoding and decoding times at relatively low cost. These characteristics make this method suitable for applications like video-conferencing that demand real-time performance, along with the highest visual quality possible for each user. Through the presented performance and quality evaluation of the algorithm, experimental results show that the proposed algorithm achieves better or comparable visual quality relative to other compression and encoding methods tested, while maintaining a satisfactory compression ratio. Especially at low bitrates, it provides more human-eye friendly images compared to

  5. A fast algorithm for computer aided collimation gamma camera (CACAO)

    NASA Astrophysics Data System (ADS)

    Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Franck, D.; Pihet, P.; Ballongue, P.

    2000-08-01

    The computer aided collimation gamma camera is aimed at breaking down the resolution sensitivity trade-off of the conventional parallel hole collimator. It uses larger and longer holes, having an added linear movement at the acquisition sequence. A dedicated algorithm including shift and sum, deconvolution, parabolic filtering and rotation is described. Examples of reconstruction are given. This work shows that a simple and fast algorithm, based on a diagonal dominant approximation of the problem can be derived. Its gives a practical solution to the CACAO reconstruction problem.

  6. Validated Computational Model to Compute Re-apposition Pressures for Treating Type-B Aortic Dissections.

    PubMed

    Ahuja, Aashish; Guo, Xiaomei; Noblet, Jillian N; Krieger, Joshua F; Roeder, Blayne; Haulon, Stephan; Chambers, Sean; Kassab, Ghassan S

    2018-01-01

    The use of endovascular treatment in the thoracic aorta has revolutionized the clinical approach for treating Stanford type B aortic dissection. The endograft procedure is a minimally invasive alternative to traditional surgery for the management of complicated type-B patients. The endograft is first deployed to exclude the proximal entry tear to redirect blood flow toward the true lumen and then a stent graft is used to push the intimal flap against the false lumen (FL) wall such that the aorta is reconstituted by sealing the FL. Although endovascular treatment has reduced the mortality rate in patients compared to those undergoing surgical repair, more than 30% of patients who were initially successfully treated require a new endovascular or surgical intervention in the aortic segments distal to the endograft. One reason for failure of the repair is persistent FL perfusion from distal entry tears. This creates a patent FL channel which can be associated with FL growth. Thus, it is necessary to develop stents that can promote full re-apposition of the flap leading to complete closure of the FL. In the current study, we determine the radial pressures required to re-appose the mid and distal ends of a dissected porcine thoracic aorta using a balloon catheter under static inflation pressure. The same analysis is simulated using finite element analysis (FEA) models by incorporating the hyperelastic properties of porcine aortic tissues. It is shown that the FEA models capture the change in the radial pressures required to re-appose the intimal flap as a function of pressure. The predictions from the simulation models match closely the results from the bench experiments. The use of validated computational models can support development of better stents by calculating the proper radial pressures required for complete re-apposition of the intimal flap.

  7. Computational Psychiatry of ADHD: Neural Gain Impairments across Marrian Levels of Analysis

    PubMed Central

    Hauser, Tobias U.; Fiore, Vincenzo G.; Moutoussis, Michael; Dolan, Raymond J.

    2016-01-01

    Attention-deficit hyperactivity disorder (ADHD), one of the most common psychiatric disorders, is characterised by unstable response patterns across multiple cognitive domains. However, the neural mechanisms that explain these characteristic features remain unclear. Using a computational multilevel approach, we propose that ADHD is caused by impaired gain modulation in systems that generate this phenotypic increased behavioural variability. Using Marr's three levels of analysis as a heuristic framework, we focus on this variable behaviour, detail how it can be explained algorithmically, and how it might be implemented at a neural level through catecholamine influences on corticostriatal loops. This computational, multilevel, approach to ADHD provides a framework for bridging gaps between descriptions of neuronal activity and behaviour, and provides testable predictions about impaired mechanisms. PMID:26787097

  8. Determining electrically evoked compound action potential thresholds: a comparison of computer versus human analysis methods.

    PubMed

    Glassman, E Katelyn; Hughes, Michelle L

    2013-01-01

    Current cochlear implants (CIs) have telemetry capabilities for measuring the electrically evoked compound action potential (ECAP). Neural Response Telemetry (Cochlear) and Neural Response Imaging (Advanced Bionics [AB]) can measure ECAP responses across a range of stimulus levels to obtain an amplitude growth function. Software-specific algorithms automatically mark the leading negative peak, N1, and the following positive peak/plateau, P2, and apply linear regression to estimate ECAP threshold. Alternatively, clinicians may apply expert judgments to modify the peak markers placed by the software algorithms, or use visual detection to identify the lowest level yielding a measurable ECAP response. The goals of this study were to: (1) assess the variability between human and computer decisions for (a) marking N1 and P2 and (b) determining linear-regression threshold (LRT) and visual-detection threshold (VDT); and (2) compare LRT and VDT methods within and across human- and computer-decision methods. ECAP amplitude-growth functions were measured for three electrodes in each of 20 ears (10 Cochlear Nucleus® 24RE/CI512, and 10 AB CII/90K). LRT, defined as the current level yielding an ECAP with zero amplitude, was calculated for both computer- (C-LRT) and human-picked peaks (H-LRT). VDT, defined as the lowest level resulting in a measurable ECAP response, was also calculated for both computer- (C-VDT) and human-picked peaks (H-VDT). Because Neural Response Imaging assigns peak markers to all waveforms but does not include waveforms with amplitudes less than 20 μV in its regression calculation, C-VDT for AB subjects was defined as the lowest current level yielding an amplitude of 20 μV or more. Overall, there were significant correlations between human and computer decisions for peak-marker placement, LRT, and VDT for both manufacturers (r = 0.78-1.00, p < 0.001). For Cochlear devices, LRT and VDT correlated equally well for both computer- and human-picked peaks (r

  9. A Novel 2D Image Compression Algorithm Based on Two Levels DWT and DCT Transforms with Enhanced Minimize-Matrix-Size Algorithm for High Resolution Structured Light 3D Surface Reconstruction

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2015-09-01

    Image compression techniques are widely used on 2D image 2D video 3D images and 3D video. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level discrete cosine transform (DCT) and a two level discrete wavelet transform (DWT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of four steps. (1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix, respectively, (2) apply a second level DCT on the DC-Matrix to generate two arrays, namely nonzero-array and zero-array, (3) apply the Minimize-Matrix-Size algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT, (4) apply arithmetic coding to the output of previous steps. A novel decompression algorithm, Fast-Match-Search algorithm (FMS), is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined in one matrix followed by inverse two levels DCT with two levels DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D root-mean-square-error following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D.

  10. Pediatric chest HRCT using the iDose4 Hybrid Iterative Reconstruction Algorithm: Which iDose level to choose?

    NASA Astrophysics Data System (ADS)

    Smarda, M.; Alexopoulou, E.; Mazioti, A.; Kordolaimi, S.; Ploussi, A.; Priftis, K.; Efstathopoulos, E.

    2015-09-01

    Purpose of the study is to determine the appropriate iterative reconstruction (IR) algorithm level that combines image quality and diagnostic confidence, for pediatric patients undergoing high-resolution computed tomography (HRCT). During the last 2 years, a total number of 20 children up to 10 years old with a clinical presentation of chronic bronchitis underwent HRCT in our department's 64-detector row CT scanner using the iDose IR algorithm, with almost similar image settings (80kVp, 40-50 mAs). CT images were reconstructed with all iDose levels (level 1 to 7) as well as with filtered-back projection (FBP) algorithm. Subjective image quality was evaluated by 2 experienced radiologists in terms of image noise, sharpness, contrast and diagnostic acceptability using a 5-point scale (1=excellent image, 5=non-acceptable image). Artifacts existance was also pointed out. All mean scores from both radiologists corresponded to satisfactory image quality (score ≤3), even with the FBP algorithm use. Almost excellent (score <2) overall image quality was achieved with iDose levels 5 to 7, but oversmoothing artifacts appearing with iDose levels 6 and 7 affected the diagnostic confidence. In conclusion, the use of iDose level 5 enables almost excellent image quality without considerable artifacts affecting the diagnosis. Further evaluation is needed in order to draw more precise conclusions.

  11. An algorithm to compute the sequency ordered Walsh transform

    NASA Technical Reports Server (NTRS)

    Larsen, H.

    1976-01-01

    A fast sequency-ordered Walsh transform algorithm is presented; this sequency-ordered fast transform is complementary to the sequency-ordered fast Walsh transform introduced by Manz (1972) and eliminating gray code reordering through a modification of the basic fast Hadamard transform structure. The new algorithm retains the advantages of its complement (it is in place and is its own inverse), while differing in having a decimation-in time structure, accepting data in normal order, and returning the coefficients in bit-reversed sequency order. Applications include estimation of Walsh power spectra for a random process, sequency filtering and computing logical autocorrelations, and selective bit reversing.

  12. SequenceL: Automated Parallel Algorithms Derived from CSP-NT Computational Laws

    NASA Technical Reports Server (NTRS)

    Cooke, Daniel; Rushton, Nelson

    2013-01-01

    With the introduction of new parallel architectures like the cell and multicore chips from IBM, Intel, AMD, and ARM, as well as the petascale processing available for highend computing, a larger number of programmers will need to write parallel codes. Adding the parallel control structure to the sequence, selection, and iterative control constructs increases the complexity of code development, which often results in increased development costs and decreased reliability. SequenceL is a high-level programming language that is, a programming language that is closer to a human s way of thinking than to a machine s. Historically, high-level languages have resulted in decreased development costs and increased reliability, at the expense of performance. In recent applications at JSC and in industry, SequenceL has demonstrated the usual advantages of high-level programming in terms of low cost and high reliability. SequenceL programs, however, have run at speeds typically comparable with, and in many cases faster than, their counterparts written in C and C++ when run on single-core processors. Moreover, SequenceL is able to generate parallel executables automatically for multicore hardware, gaining parallel speedups without any extra effort from the programmer beyond what is required to write the sequen tial/singlecore code. A SequenceL-to-C++ translator has been developed that automatically renders readable multithreaded C++ from a combination of a SequenceL program and sample data input. The SequenceL language is based on two fundamental computational laws, Consume-Simplify- Produce (CSP) and Normalize-Trans - pose (NT), which enable it to automate the creation of parallel algorithms from high-level code that has no annotations of parallelism whatsoever. In our anecdotal experience, SequenceL development has been in every case less costly than development of the same algorithm in sequential (that is, single-core, single process) C or C++, and an order of magnitude less

  13. Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.

    PubMed

    Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo

    2016-07-19

    Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .

  14. 911 Emergency Medical Services and Re-Triage to Level I Trauma Centers.

    PubMed

    Kuncir, Eric; Spencer, Dean; Feldman, Kelly; Barrios, Cristobal; Miller, Kenneth; Lush, Stephanie; Dolich, Matthew; Lekawa, Michael

    2018-01-01

    Interfacility transfer of undertriaged patients to higher-level trauma centers has been found to result in a delay of appropriate care and an increase in mortality. To address this, for the last 10 years our region has used 911 emergency medical services (EMS) paramedics for rapid re-triage of undertriaged patients to our institution's Level I trauma center. We sought to determine whether using 911 EMS for re-triage to our institution was associated with worse outcomes-with mortality as the primary end point-compared with direct EMS transport from point of injury. We retrospectively reviewed all trauma activations to our institution during a 16-month period; 3,394 active traumas were analyzed. Two hundred and seventy patients (8%) arrived via 911 EMS re-triage and 3,124 (92%) arrived via direct EMS transport. Total EMS transport time was significantly longer (122.5 minutes vs 33.7 minutes; p < 0.001) between the 2 groups, but there was no significant difference in mortality rates (4.1% vs 3.6%; p = 0.67). These data show that although using 911 EMS for re-triage is associated with an increase in total transport time, it does not result in an increase in mortality compared with direct EMS transport. We conclude that the use of 911 EMS can be considered a safe method to re-triage patients to higher-level trauma centers. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Effects of Computer Architecture on FFT (Fast Fourier Transform) Algorithm Performance.

    DTIC Science & Technology

    1983-12-01

    Criteria for Efficient Implementation of FFT Algorithms," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-30, pp. 107-109, Feb...1982. Burrus, C. S. and P. W. Eschenbacher. "An In-Place, In-Order Prime Factor FFT Algorithm," IEEE Transactions on Acoustics, Speech, and Signal... Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-30, pp. 217-226, Apr. 1982. Control Data Corporation. CDC Cyber 170 Computer Systems

  16. Computational fluid dynamics research

    NASA Technical Reports Server (NTRS)

    Chandra, Suresh; Jones, Kenneth; Hassan, Hassan; Mcrae, David Scott

    1992-01-01

    The focus of research in the computational fluid dynamics (CFD) area is two fold: (1) to develop new approaches for turbulence modeling so that high speed compressible flows can be studied for applications to entry and re-entry flows; and (2) to perform research to improve CFD algorithm accuracy and efficiency for high speed flows. Research activities, faculty and student participation, publications, and financial information are outlined.

  17. Computing the multifractal spectrum from time series: an algorithmic approach.

    PubMed

    Harikrishnan, K P; Misra, R; Ambika, G; Amritkar, R E

    2009-12-01

    We show that the existing methods for computing the f(alpha) spectrum from a time series can be improved by using a new algorithmic scheme. The scheme relies on the basic idea that the smooth convex profile of a typical f(alpha) spectrum can be fitted with an analytic function involving a set of four independent parameters. While the standard existing schemes [P. Grassberger et al., J. Stat. Phys. 51, 135 (1988); A. Chhabra and R. V. Jensen, Phys. Rev. Lett. 62, 1327 (1989)] generally compute only an incomplete f(alpha) spectrum (usually the top portion), we show that this can be overcome by an algorithmic approach, which is automated to compute the D(q) and f(alpha) spectra from a time series for any embedding dimension. The scheme is first tested with the logistic attractor with known f(alpha) curve and subsequently applied to higher-dimensional cases. We also show that the scheme can be effectively adapted for analyzing practical time series involving noise, with examples from two widely different real world systems. Moreover, some preliminary results indicating that the set of four independent parameters may be used as diagnostic measures are also included.

  18. Rapid execution of fan beam image reconstruction algorithms using efficient computational techniques and special-purpose processors

    NASA Astrophysics Data System (ADS)

    Gilbert, B. K.; Robb, R. A.; Chu, A.; Kenue, S. K.; Lent, A. H.; Swartzlander, E. E., Jr.

    1981-02-01

    Rapid advances during the past ten years of several forms of computer-assisted tomography (CT) have resulted in the development of numerous algorithms to convert raw projection data into cross-sectional images. These reconstruction algorithms are either 'iterative,' in which a large matrix algebraic equation is solved by successive approximation techniques; or 'closed form'. Continuing evolution of the closed form algorithms has allowed the newest versions to produce excellent reconstructed images in most applications. This paper will review several computer software and special-purpose digital hardware implementations of closed form algorithms, either proposed during the past several years by a number of workers or actually implemented in commercial or research CT scanners. The discussion will also cover a number of recently investigated algorithmic modifications which reduce the amount of computation required to execute the reconstruction process, as well as several new special-purpose digital hardware implementations under development in laboratories at the Mayo Clinic.

  19. Parallel Architectures and Parallel Algorithms for Integrated Vision Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok Nidhi

    1989-01-01

    Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems.

  20. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1994-01-01

    Research was performed in the area of computational modeling and application of hypersonic, high-enthalpy, thermo-chemical nonequilibrium flow (Aerothermodynamics) problems. A number of computational fluid dynamic (CFD) codes were developed and applied to simulate high altitude rocket-plume, the Aeroassist Flight Experiment (AFE), hypersonic base flow for planetary probes, the single expansion ramp model (SERN) connected with the National Aerospace Plane, hypersonic drag devices, hypersonic ramp flows, ballistic range models, shock tunnel facility nozzles, transient and steady flows in the shock tunnel facility, arc-jet flows, thermochemical nonequilibrium flows around simple and complex bodies, axisymmetric ionized flows of interest to re-entry, unsteady shock induced combustion phenomena, high enthalpy pulsed facility simulations, and unsteady shock boundary layer interactions in shock tunnels. Computational modeling involved developing appropriate numerical schemes for the flows on interest and developing, applying, and validating appropriate thermochemical processes. As part of improving the accuracy of the numerical predictions, adaptive grid algorithms were explored, and a user-friendly, self-adaptive code (SAGE) was developed. Aerothermodynamic flows of interest included energy transfer due to strong radiation, and a significant level of effort was spent in developing computational codes for calculating radiation and radiation modeling. In addition, computational tools were developed and applied to predict the radiative heat flux and spectra that reach the model surface.

  1. Objective performance assessment of five computed tomography iterative reconstruction algorithms.

    PubMed

    Omotayo, Azeez; Elbakri, Idris

    2016-11-22

    Iterative algorithms are gaining clinical acceptance in CT. We performed objective phantom-based image quality evaluation of five commercial iterative reconstruction algorithms available on four different multi-detector CT (MDCT) scanners at different dose levels as well as the conventional filtered back-projection (FBP) reconstruction. Using the Catphan500 phantom, we evaluated image noise, contrast-to-noise ratio (CNR), modulation transfer function (MTF) and noise-power spectrum (NPS). The algorithms were evaluated over a CTDIvol range of 0.75-18.7 mGy on four major MDCT scanners: GE DiscoveryCT750HD (algorithms: ASIR™ and VEO™); Siemens Somatom Definition AS+ (algorithm: SAFIRE™); Toshiba Aquilion64 (algorithm: AIDR3D™); and Philips Ingenuity iCT256 (algorithm: iDose4™). Images were reconstructed using FBP and the respective iterative algorithms on the four scanners. Use of iterative algorithms decreased image noise and increased CNR, relative to FBP. In the dose range of 1.3-1.5 mGy, noise reduction using iterative algorithms was in the range of 11%-51% on GE DiscoveryCT750HD, 10%-52% on Siemens Somatom Definition AS+, 49%-62% on Toshiba Aquilion64, and 13%-44% on Philips Ingenuity iCT256. The corresponding CNR increase was in the range 11%-105% on GE, 11%-106% on Siemens, 85%-145% on Toshiba and 13%-77% on Philips respectively. Most algorithms did not affect the MTF, except for VEO™ which produced an increase in the limiting resolution of up to 30%. A shift in the peak of the NPS curve towards lower frequencies and a decrease in NPS amplitude were obtained with all iterative algorithms. VEO™ required long reconstruction times, while all other algorithms produced reconstructions in real time. Compared to FBP, iterative algorithms reduced image noise and increased CNR. The iterative algorithms available on different scanners achieved different levels of noise reduction and CNR increase while spatial resolution improvements were obtained only with

  2. Strategic Control Algorithm Development : Volume 4A. Computer Program Report.

    DOT National Transportation Integrated Search

    1974-08-01

    A description of the strategic algorithm evaluation model is presented, both at the user and programmer levels. The model representation of an airport configuration, environmental considerations, the strategic control algorithm logic, and the airplan...

  3. Testing Nelder-Mead based repulsion algorithms for multiple roots of nonlinear systems via a two-level factorial design of experiments.

    PubMed

    Ramadas, Gisela C V; Rocha, Ana Maria A C; Fernandes, Edite M G P

    2015-01-01

    This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.

  4. Efficient algorithms for computing a strong rank-revealing QR factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, M.; Eisenstat, S.C.

    1996-07-01

    Given an m x n matrix M with m {ge} n, it is shown that there exists a permutation {Pi} and an integer k such that the QR factorization given by equation (1) reveals the numerical rank of M: the k x k upper-triangular matrix A{sub k} is well conditioned, norm of (C{sub k}){sub 2} is small, and B{sub k} is linearly dependent on A{sub k} with coefficients bounded by a low-degree polynomial in n. Existing rank-revealing QR (RRQR) algorithms are related to such factorizations and two algorithms are presented for computing them. The new algorithms are nearly as efficientmore » as QR with column pivoting for most problems and take O(mn{sup 2}) floating-point operations in the worst case.« less

  5. The Use of Computer Vision Algorithms for Automatic Orientation of Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Markiewicz, Jakub Stefan

    2016-06-01

    The paper presents analysis of the orientation of terrestrial laser scanning (TLS) data. In the proposed data processing methodology, point clouds are considered as panoramic images enriched by the depth map. Computer vision (CV) algorithms are used for orientation, which are applied for testing the correctness of the detection of tie points and time of computations, and for assessing difficulties in their implementation. The BRISK, FASRT, MSER, SIFT, SURF, ASIFT and CenSurE algorithms are used to search for key-points. The source data are point clouds acquired using a Z+F 5006h terrestrial laser scanner on the ruins of Iłża Castle, Poland. Algorithms allowing combination of the photogrammetric and CV approaches are also presented.

  6. Impact of transplant nephrectomy on peak PRA levels and outcome after kidney re-transplantation

    PubMed Central

    Tittelbach-Helmrich, Dietlind; Pisarski, Przemyslaw; Offermann, Gerd; Geyer, Marcel; Thomusch, Oliver; Hopt, Ulrich Theodor; Drognitz, Oliver

    2014-01-01

    AIM: To determine the impact of transplant nephrectomy on peak panel reactive antibody (PRA) levels, patient and graft survival in kidney re-transplants. METHODS: From 1969 to 2006, a total of 609 kidney re-transplantations were performed at the University of Freiburg and the Campus Benjamin Franklin of the University of Berlin. Patients with PRA levels above (5%) before first kidney transplantation were excluded from further analysis (n = 304). Patients with graft nephrectomy (n = 245, NE+) were retrospectively compared to 60 kidney re-transplants without prior graft nephrectomy (NE-). RESULTS: Peak PRA levels between the first and the second transplantation were higher in patients undergoing graft nephrectomy (P = 0.098), whereas the last PRA levels before the second kidney transplantation did not differ between the groups. Age adjusted survival for the second kidney graft, censored for death with functioning graft, were comparable in both groups. Waiting time between first and second transplantation did not influence the graft survival significantly in the group that underwent nephrectomy. In contrast, patients without nephrectomy experienced better graft survival rates when re-transplantation was performed within one year after graft loss (P = 0.033). Age adjusted patient survival rates at 1 and 5 years were 94.1% and 86.3% vs 83.1% and 75.4% group NE+ and NE-, respectively (P < 0.01). CONCLUSION: Transplant nephrectomy leads to a temporary increase in PRA levels that normalize before kidney re-transplantation. In patients without nephrectomy of a non-viable kidney graft timing of re-transplantation significantly influences graft survival after a second transplantation. Most importantly, transplant nephrectomy is associated with a significantly longer patient survival. PMID:25032103

  7. Cloud computing-based TagSNP selection algorithm for human genome data.

    PubMed

    Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling

    2015-01-05

    Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used.

  8. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less

  9. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    NASA Astrophysics Data System (ADS)

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-09-01

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2-D and a random hydraulic conductivity field in 3-D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ˜101 to ˜102 in a multicore computational environment. Therefore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate to large-scale problems.

  10. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    DOE PAGES

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-09-01

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less

  11. A depth-first search algorithm to compute elementary flux modes by linear programming.

    PubMed

    Quek, Lake-Ee; Nielsen, Lars K

    2014-07-30

    The decomposition of complex metabolic networks into elementary flux modes (EFMs) provides a useful framework for exploring reaction interactions systematically. Generating a complete set of EFMs for large-scale models, however, is near impossible. Even for moderately-sized models (<400 reactions), existing approaches based on the Double Description method must iterate through a large number of combinatorial candidates, thus imposing an immense processor and memory demand. Based on an alternative elementarity test, we developed a depth-first search algorithm using linear programming (LP) to enumerate EFMs in an exhaustive fashion. Constraints can be introduced to directly generate a subset of EFMs satisfying the set of constraints. The depth-first search algorithm has a constant memory overhead. Using flux constraints, a large LP problem can be massively divided and parallelized into independent sub-jobs for deployment into computing clusters. Since the sub-jobs do not overlap, the approach scales to utilize all available computing nodes with minimal coordination overhead or memory limitations. The speed of the algorithm was comparable to efmtool, a mainstream Double Description method, when enumerating all EFMs; the attrition power gained from performing flux feasibility tests offsets the increased computational demand of running an LP solver. Unlike the Double Description method, the algorithm enables accelerated enumeration of all EFMs satisfying a set of constraints.

  12. A depth-first search algorithm to compute elementary flux modes by linear programming

    PubMed Central

    2014-01-01

    Background The decomposition of complex metabolic networks into elementary flux modes (EFMs) provides a useful framework for exploring reaction interactions systematically. Generating a complete set of EFMs for large-scale models, however, is near impossible. Even for moderately-sized models (<400 reactions), existing approaches based on the Double Description method must iterate through a large number of combinatorial candidates, thus imposing an immense processor and memory demand. Results Based on an alternative elementarity test, we developed a depth-first search algorithm using linear programming (LP) to enumerate EFMs in an exhaustive fashion. Constraints can be introduced to directly generate a subset of EFMs satisfying the set of constraints. The depth-first search algorithm has a constant memory overhead. Using flux constraints, a large LP problem can be massively divided and parallelized into independent sub-jobs for deployment into computing clusters. Since the sub-jobs do not overlap, the approach scales to utilize all available computing nodes with minimal coordination overhead or memory limitations. Conclusions The speed of the algorithm was comparable to efmtool, a mainstream Double Description method, when enumerating all EFMs; the attrition power gained from performing flux feasibility tests offsets the increased computational demand of running an LP solver. Unlike the Double Description method, the algorithm enables accelerated enumeration of all EFMs satisfying a set of constraints. PMID:25074068

  13. A computational algorithm addressing how vessel length might depend on vessel diameter

    Treesearch

    Jing Cai; Shuoxin Zhang; Melvin T. Tyree

    2010-01-01

    The objective of this method paper was to examine a computational algorithm that may reveal how vessel length might depend on vessel diameter within any given stem or species. The computational method requires the assumption that vessels remain approximately constant in diameter over their entire length. When this method is applied to three species or hybrids in the...

  14. Automated Reconstruction of Neural Trees Using Front Re-initialization

    PubMed Central

    Mukherjee, Amit; Stepanyants, Armen

    2013-01-01

    This paper proposes a greedy algorithm for automated reconstruction of neural arbors from light microscopy stacks of images. The algorithm is based on the minimum cost path method. While the minimum cost path, obtained using the Fast Marching Method, results in a trace with the least cumulative cost between the start and the end points, it is not sufficient for the reconstruction of neural trees. This is because sections of the minimum cost path can erroneously travel through the image background with undetectable detriment to the cumulative cost. To circumvent this problem we propose an algorithm that grows a neural tree from a specified root by iteratively re-initializing the Fast Marching fronts. The speed image used in the Fast Marching Method is generated by computing the average outward flux of the gradient vector flow field. Each iteration of the algorithm produces a candidate extension by allowing the front to travel a specified distance and then tracking from the farthest point of the front back to the tree. Robust likelihood ratio test is used to evaluate the quality of the candidate extension by comparing voxel intensities along the extension to those in the foreground and the background. The qualified extensions are appended to the current tree, the front is re-initialized, and Fast Marching is continued until the stopping criterion is met. To evaluate the performance of the algorithm we reconstructed 6 stacks of two-photon microscopy images and compared the results to the ground truth reconstructions by using the DIADEM metric. The average comparison score was 0.82 out of 1.0, which is on par with the performance achieved by expert manual tracers. PMID:24386539

  15. Creation of parallel algorithms for the solution of problems of gas dynamics on multi-core computers and GPU

    NASA Astrophysics Data System (ADS)

    Rybakin, B.; Bogatencov, P.; Secrieru, G.; Iliuha, N.

    2013-10-01

    The paper deals with a parallel algorithm for calculations on multiprocessor computers and GPU accelerators. The calculations of shock waves interaction with low-density bubble results and the problem of the gas flow with the forces of gravity are presented. This algorithm combines a possibility to capture a high resolution of shock waves, the second-order accuracy for TVD schemes, and a possibility to observe a low-level diffusion of the advection scheme. Many complex problems of continuum mechanics are numerically solved on structured or unstructured grids. To improve the accuracy of the calculations is necessary to choose a sufficiently small grid (with a small cell size). This leads to the drawback of a substantial increase of computation time. Therefore, for the calculations of complex problems it is reasonable to use the method of Adaptive Mesh Refinement. That is, the grid refinement is performed only in the areas of interest of the structure, where, e.g., the shock waves are generated, or a complex geometry or other such features exist. Thus, the computing time is greatly reduced. In addition, the execution of the application on the resulting sequence of nested, decreasing nets can be parallelized. Proposed algorithm is based on the AMR method. Utilization of AMR method can significantly improve the resolution of the difference grid in areas of high interest, and from other side to accelerate the processes of the multi-dimensional problems calculating. Parallel algorithms of the analyzed difference models realized for the purpose of calculations on graphic processors using the CUDA technology [1].

  16. Free energy computations employing Jarzynski identity and Wang – Landau algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyan, M. Suman, E-mail: maroju.sk@gmail.com; Murthy, K. P. N.; School of Physics, University of Hyderabad, Hyderabad, Telangana, India – 500046

    We introduce a simple method to compute free energy differences employing Jarzynski identity in conjunction with Wang – Landau algorithm. We demonstrate this method on Ising spin system by comparing the results with those obtained from canonical sampling.

  17. Multithreaded Model for Dynamic Load Balancing Parallel Adaptive PDE Computations

    NASA Technical Reports Server (NTRS)

    Chrisochoides, Nikos

    1995-01-01

    We present a multithreaded model for the dynamic load-balancing of numerical, adaptive computations required for the solution of Partial Differential Equations (PDE's) on multiprocessors. Multithreading is used as a means of exploring concurrency in the processor level in order to tolerate synchronization costs inherent to traditional (non-threaded) parallel adaptive PDE solvers. Our preliminary analysis for parallel, adaptive PDE solvers indicates that multithreading can be used an a mechanism to mask overheads required for the dynamic balancing of processor workloads with computations required for the actual numerical solution of the PDE's. Also, multithreading can simplify the implementation of dynamic load-balancing algorithms, a task that is very difficult for traditional data parallel adaptive PDE computations. Unfortunately, multithreading does not always simplify program complexity, often makes code re-usability not an easy task, and increases software complexity.

  18. Biclustering Protein Complex Interactions with a Biclique FindingAlgorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Chris; Zhang, Anne Ya; Holbrook, Stephen

    2006-12-01

    Biclustering has many applications in text mining, web clickstream mining, and bioinformatics. When data entries are binary, the tightest biclusters become bicliques. We propose a flexible and highly efficient algorithm to compute bicliques. We first generalize the Motzkin-Straus formalism for computing the maximal clique from L{sub 1} constraint to L{sub p} constraint, which enables us to provide a generalized Motzkin-Straus formalism for computing maximal-edge bicliques. By adjusting parameters, the algorithm can favor biclusters with more rows less columns, or vice verse, thus increasing the flexibility of the targeted biclusters. We then propose an algorithm to solve the generalized Motzkin-Straus optimizationmore » problem. The algorithm is provably convergent and has a computational complexity of O(|E|) where |E| is the number of edges. It relies on a matrix vector multiplication and runs efficiently on most current computer architectures. Using this algorithm, we bicluster the yeast protein complex interaction network. We find that biclustering protein complexes at the protein level does not clearly reflect the functional linkage among protein complexes in many cases, while biclustering at protein domain level can reveal many underlying linkages. We show several new biologically significant results.« less

  19. A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path.

    PubMed

    Xie, Zhiqiang; Shao, Xia; Xin, Yu

    2016-01-01

    To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective.

  20. A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path

    PubMed Central

    Xie, Zhiqiang; Shao, Xia; Xin, Yu

    2016-01-01

    To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective. PMID:27490901

  1. Next Generation Seismic Imaging; High Fidelity Algorithms and High-End Computing

    NASA Astrophysics Data System (ADS)

    Bevc, D.; Ortigosa, F.; Guitton, A.; Kaelin, B.

    2007-05-01

    The rich oil reserves of the Gulf of Mexico are buried in deep and ultra-deep waters up to 30,000 feet from the surface. Minerals Management Service (MMS), the federal agency in the U.S. Department of the Interior that manages the nation's oil, natural gas and other mineral resources on the outer continental shelf in federal offshore waters, estimates that the Gulf of Mexico holds 37 billion barrels of "undiscovered, conventionally recoverable" oil, which, at 50/barrel, would be worth approximately 1.85 trillion. These reserves are very difficult to find and reach due to the extreme depths. Technological advances in seismic imaging represent an opportunity to overcome this obstacle by providing more accurate models of the subsurface. Among these technological advances, Reverse Time Migration (RTM) yields the best possible images. RTM is based on the solution of the two-way acoustic wave-equation. This technique relies on the velocity model to image turning waves. These turning waves are particularly important to unravel subsalt reservoirs and delineate salt-flanks, a natural trap for oil and gas. Because it relies on an accurate velocity model, RTM opens new frontier in designing better velocity estimation algorithms. RTM has been widely recognized as the next chapter in seismic exploration, as it can overcome the limitations of current migration methods in imaging complex geologic structures that exist in the Gulf of Mexico. The chief impediment to the large-scale, routine deployment of RTM has been a lack of sufficient computer power. RTM needs thirty times the computing power used in exploration today to be commercially viable and widely usable. Therefore, advancing seismic imaging to the next level of precision poses a multi-disciplinary challenge. To overcome these challenges, the Kaleidoscope project, a partnership between Repsol YPF, Barcelona Supercomputing Center, 3DGeo Inc., and IBM brings together the necessary components of modeling, algorithms and the

  2. Using the High-Level Based Program Interface to Facilitate the Large Scale Scientific Computing

    PubMed Central

    Shang, Yizi; Shang, Ling; Gao, Chuanchang; Lu, Guiming; Ye, Yuntao; Jia, Dongdong

    2014-01-01

    This paper is to make further research on facilitating the large-scale scientific computing on the grid and the desktop grid platform. The related issues include the programming method, the overhead of the high-level program interface based middleware, and the data anticipate migration. The block based Gauss Jordan algorithm as a real example of large-scale scientific computing is used to evaluate those issues presented above. The results show that the high-level based program interface makes the complex scientific applications on large-scale scientific platform easier, though a little overhead is unavoidable. Also, the data anticipation migration mechanism can improve the efficiency of the platform which needs to process big data based scientific applications. PMID:24574931

  3. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment.

    PubMed

    Abdullahi, Mohammed; Ngadi, Md Asri

    2016-01-01

    Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.

  4. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment

    PubMed Central

    Abdullahi, Mohammed; Ngadi, Md Asri

    2016-01-01

    Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan. PMID:27348127

  5. Plagiarism Detection Algorithm for Source Code in Computer Science Education

    ERIC Educational Resources Information Center

    Liu, Xin; Xu, Chan; Ouyang, Boyu

    2015-01-01

    Nowadays, computer programming is getting more necessary in the course of program design in college education. However, the trick of plagiarizing plus a little modification exists among some students' home works. It's not easy for teachers to judge if there's plagiarizing in source code or not. Traditional detection algorithms cannot fit this…

  6. Design of a Performance-Responsive Drill and Practice Algorithm for Computer-Based Training.

    ERIC Educational Resources Information Center

    Vazquez-Abad, Jesus; LaFleur, Marc

    1990-01-01

    Reviews criticisms of the use of drill and practice programs in educational computing and describes potentials for its use in instruction. Topics discussed include guidelines for developing computer-based drill and practice; scripted training courseware; item format design; item bank design; and a performance-responsive algorithm for item…

  7. Cloud Computing-Based TagSNP Selection Algorithm for Human Genome Data

    PubMed Central

    Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling

    2015-01-01

    Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used. PMID:25569088

  8. Undergraduate computational physics projects on quantum computing

    NASA Astrophysics Data System (ADS)

    Candela, D.

    2015-08-01

    Computational projects on quantum computing suitable for students in a junior-level quantum mechanics course are described. In these projects students write their own programs to simulate quantum computers. Knowledge is assumed of introductory quantum mechanics through the properties of spin 1/2. Initial, more easily programmed projects treat the basics of quantum computation, quantum gates, and Grover's quantum search algorithm. These are followed by more advanced projects to increase the number of qubits and implement Shor's quantum factoring algorithm. The projects can be run on a typical laptop or desktop computer, using most programming languages. Supplementing resources available elsewhere, the projects are presented here in a self-contained format especially suitable for a short computational module for physics students.

  9. Constrained Multi-Level Algorithm for Trajectory Optimization

    NASA Astrophysics Data System (ADS)

    Adimurthy, V.; Tandon, S. R.; Jessy, Antony; Kumar, C. Ravi

    The emphasis on low cost access to space inspired many recent developments in the methodology of trajectory optimization. Ref.1 uses a spectral patching method for optimization, where global orthogonal polynomials are used to describe the dynamical constraints. A two-tier approach of optimization is used in Ref.2 for a missile mid-course trajectory optimization. A hybrid analytical/numerical approach is described in Ref.3, where an initial analytical vacuum solution is taken and gradually atmospheric effects are introduced. Ref.4 emphasizes the fact that the nonlinear constraints which occur in the initial and middle portions of the trajectory behave very nonlinearly with respect the variables making the optimization very difficult to solve in the direct and indirect shooting methods. The problem is further made complex when different phases of the trajectory have different objectives of optimization and also have different path constraints. Such problems can be effectively addressed by multi-level optimization. In the multi-level methods reported so far, optimization is first done in identified sub-level problems, where some coordination variables are kept fixed for global iteration. After all the sub optimizations are completed, higher-level optimization iteration with all the coordination and main variables is done. This is followed by further sub system optimizations with new coordination variables. This process is continued until convergence. In this paper we use a multi-level constrained optimization algorithm which avoids the repeated local sub system optimizations and which also removes the problem of non-linear sensitivity inherent in the single step approaches. Fall-zone constraints, structural load constraints and thermal constraints are considered. In this algorithm, there is only a single multi-level sequence of state and multiplier updates in a framework of an augmented Lagrangian. Han Tapia multiplier updates are used in view of their special role in

  10. Computational Workbench for Multibody Dynamics

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2007-01-01

    PyCraft is a computer program that provides an interactive, workbenchlike computing environment for developing and testing algorithms for multibody dynamics. Examples of multibody dynamic systems amenable to analysis with the help of PyCraft include land vehicles, spacecraft, robots, and molecular models. PyCraft is based on the Spatial-Operator- Algebra (SOA) formulation for multibody dynamics. The SOA operators enable construction of simple and compact representations of complex multibody dynamical equations. Within the Py-Craft computational workbench, users can, essentially, use the high-level SOA operator notation to represent the variety of dynamical quantities and algorithms and to perform computations interactively. PyCraft provides a Python-language interface to underlying C++ code. Working with SOA concepts, a user can create and manipulate Python-level operator classes in order to implement and evaluate new dynamical quantities and algorithms. During use of PyCraft, virtually all SOA-based algorithms are available for computational experiments.

  11. Verifying a Computer Algorithm Mathematically.

    ERIC Educational Resources Information Center

    Olson, Alton T.

    1986-01-01

    Presents an example of mathematics from an algorithmic point of view, with emphasis on the design and verification of this algorithm. The program involves finding roots for algebraic equations using the half-interval search algorithm. The program listing is included. (JN)

  12. Computer algorithms in the search for unrelated stem cell donors.

    PubMed

    Steiner, David

    2012-01-01

    Hematopoietic stem cell transplantation (HSCT) is a medical procedure in the field of hematology and oncology, most often performed for patients with certain cancers of the blood or bone marrow. A lot of patients have no suitable HLA-matched donor within their family, so physicians must activate a "donor search process" by interacting with national and international donor registries who will search their databases for adult unrelated donors or cord blood units (CBU). Information and communication technologies play a key role in the donor search process in donor registries both nationally and internationaly. One of the major challenges for donor registry computer systems is the development of a reliable search algorithm. This work discusses the top-down design of such algorithms and current practice. Based on our experience with systems used by several stem cell donor registries, we highlight typical pitfalls in the implementation of an algorithm and underlying data structure.

  13. Algorithms for the computation of solutions of the Ornstein-Zernike equation.

    PubMed

    Peplow, A T; Beardmore, R E; Bresme, F

    2006-10-01

    We introduce a robust and efficient methodology to solve the Ornstein-Zernike integral equation using the pseudoarc length (PAL) continuation method that reformulates the integral equation in an equivalent but nonstandard form. This enables the computation of solutions in regions where the compressibility experiences large changes or where the existence of multiple solutions and so-called branch points prevents Newton's method from converging. We illustrate the use of the algorithm with a difficult problem that arises in the numerical solution of integral equations, namely the evaluation of the so-called no-solution line of the Ornstein-Zernike hypernetted chain (HNC) integral equation for the Lennard-Jones potential. We are able to use the PAL algorithm to solve the integral equation along this line and to connect physical and nonphysical solution branches (both isotherms and isochores) where appropriate. We also show that PAL continuation can compute solutions within the no-solution region that cannot be computed when Newton and Picard methods are applied directly to the integral equation. While many solutions that we find are new, some correspond to states with negative compressibility and consequently are not physical.

  14. Semiautomated hybrid algorithm for estimation of three-dimensional liver surface in CT using dynamic cellular automata and level-sets

    PubMed Central

    Dakua, Sarada Prasad; Abinahed, Julien; Al-Ansari, Abdulla

    2015-01-01

    Abstract. Liver segmentation continues to remain a major challenge, largely due to its intense complexity with surrounding anatomical structures (stomach, kidney, and heart), high noise level and lack of contrast in pathological computed tomography (CT) data. We present an approach to reconstructing the liver surface in low contrast CT. The main contributions are: (1) a stochastic resonance-based methodology in discrete cosine transform domain is developed to enhance the contrast of pathological liver images, (2) a new formulation is proposed to prevent the object boundary, resulting from the cellular automata method, from leaking into the surrounding areas of similar intensity, and (3) a level-set method is suggested to generate intermediate segmentation contours from two segmented slices distantly located in a subject sequence. We have tested the algorithm on real datasets obtained from two sources, Hamad General Hospital and medical image computing and computer-assisted interventions grand challenge workshop. Various parameters in the algorithm, such as w, Δt, z, α, μ, α1, and α2, play imperative roles, thus their values are precisely selected. Both qualitative and quantitative evaluation performed on liver data show promising segmentation accuracy when compared with ground truth data reflecting the potential of the proposed method. PMID:26158101

  15. Semiautomated hybrid algorithm for estimation of three-dimensional liver surface in CT using dynamic cellular automata and level-sets.

    PubMed

    Dakua, Sarada Prasad; Abinahed, Julien; Al-Ansari, Abdulla

    2015-04-01

    Liver segmentation continues to remain a major challenge, largely due to its intense complexity with surrounding anatomical structures (stomach, kidney, and heart), high noise level and lack of contrast in pathological computed tomography (CT) data. We present an approach to reconstructing the liver surface in low contrast CT. The main contributions are: (1) a stochastic resonance-based methodology in discrete cosine transform domain is developed to enhance the contrast of pathological liver images, (2) a new formulation is proposed to prevent the object boundary, resulting from the cellular automata method, from leaking into the surrounding areas of similar intensity, and (3) a level-set method is suggested to generate intermediate segmentation contours from two segmented slices distantly located in a subject sequence. We have tested the algorithm on real datasets obtained from two sources, Hamad General Hospital and medical image computing and computer-assisted interventions grand challenge workshop. Various parameters in the algorithm, such as [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text], play imperative roles, thus their values are precisely selected. Both qualitative and quantitative evaluation performed on liver data show promising segmentation accuracy when compared with ground truth data reflecting the potential of the proposed method.

  16. A charge- and energy-conserving implicit, electrostatic particle-in-cell algorithm on mapped computational meshes

    NASA Astrophysics Data System (ADS)

    Chacón, L.; Chen, G.; Barnes, D. C.

    2013-01-01

    We describe the extension of the recent charge- and energy-conserving one-dimensional electrostatic particle-in-cell algorithm in Ref. [G. Chen, L. Chacón, D.C. Barnes, An energy- and charge-conserving, implicit electrostatic particle-in-cell algorithm, Journal of Computational Physics 230 (2011) 7018-7036] to mapped (body-fitted) computational meshes. The approach maintains exact charge and energy conservation properties. Key to the algorithm is a hybrid push, where particle positions are updated in logical space, while velocities are updated in physical space. The effectiveness of the approach is demonstrated with a challenging numerical test case, the ion acoustic shock wave. The generalization of the approach to multiple dimensions is outlined.

  17. Fast Ss-Ilm a Computationally Efficient Algorithm to Discover Socially Important Locations

    NASA Astrophysics Data System (ADS)

    Dokuz, A. S.; Celik, M.

    2017-11-01

    Socially important locations are places which are frequently visited by social media users in their social media lifetime. Discovering socially important locations provide several valuable information about user behaviours on social media networking sites. However, discovering socially important locations are challenging due to data volume and dimensions, spatial and temporal calculations, location sparseness in social media datasets, and inefficiency of current algorithms. In the literature, several studies are conducted to discover important locations, however, the proposed approaches do not work in computationally efficient manner. In this study, we propose Fast SS-ILM algorithm by modifying the algorithm of SS-ILM to mine socially important locations efficiently. Experimental results show that proposed Fast SS-ILM algorithm decreases execution time of socially important locations discovery process up to 20 %.

  18. Algorithms to evaluate multiple sums for loop computations

    NASA Astrophysics Data System (ADS)

    Anzai, C.; Sumino, Y.

    2013-03-01

    We present algorithms to evaluate two types of multiple sums, which appear in higher-order loop computations. We consider expansions of a generalized hyper-geometric-type sums, sum _{n_1,\\cdots,n_N} Γ ({a}_1\\cdot {n}+c_1) Γ ({a}_2\\cdot {n}+c_2) \\cdots Γ ({a}_P\\cdot {n}+c_P) / Γ ({b_1\\cdot {n}+d_1) Γ ({b}_2\\cdot {n}+d_2) \\cdots Γ ({b}_Q\\cdot {n}+d_Q) } x_1^{n_1}\\cdots x_N^{n_N} with {a}_i \\cdot {n} = sum _{j=1}^N a_{ij}n_j, etc., in a small parameter ɛ around rational values of ci,di's. Type I sum corresponds to the case where, in the limit ɛ → 0, the summand reduces to a rational function of nj's times x_1^{n_1}\\cdots x_N^{n_N}; ci,di's can depend on an external integer index. Type II sum is a double sum (N = 2), where ci, di's are half-integers or integers as ɛ → 0 and xi = 1; we consider some specific cases where at most six Γ functions remain in the limit ɛ → 0. The algorithms enable evaluations of arbitrary expansion coefficients in ɛ in terms of Z-sums and multiple polylogarithms (generalized multiple zeta values). We also present applications of these algorithms. In particular, Type I sums can be used to generate a new class of relations among generalized multiple zeta values. We provide a Mathematica package, in which these algorithms are implemented.

  19. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm

    PubMed Central

    Sidky, Emil Y.; Jørgensen, Jakob H.; Pan, Xiaochuan

    2012-01-01

    The primal-dual optimization algorithm developed in Chambolle and Pock (CP), 2011 is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems for the purpose of designing iterative image reconstruction algorithms for CT. The primal-dual algorithm is briefly summarized in the article, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application modeling breast CT with low-intensity X-ray illumination is presented. PMID:22538474

  20. Strategic Control Algorithm Development : Volume 4B. Computer Program Report (Concluded)

    DOT National Transportation Integrated Search

    1974-08-01

    A description of the strategic algorithm evaluation model is presented, both at the user and programmer levels. The model representation of an airport configuration, environmental considerations, the strategic control algorithm logic, and the airplan...

  1. Computation of Quasi-Periodic Normally Hyperbolic Invariant Tori: Algorithms, Numerical Explorations and Mechanisms of Breakdown

    NASA Astrophysics Data System (ADS)

    Canadell, Marta; Haro, Àlex

    2017-12-01

    We present several algorithms for computing normally hyperbolic invariant tori carrying quasi-periodic motion of a fixed frequency in families of dynamical systems. The algorithms are based on a KAM scheme presented in Canadell and Haro (J Nonlinear Sci, 2016. doi: 10.1007/s00332-017-9389-y), to find the parameterization of the torus with prescribed dynamics by detuning parameters of the model. The algorithms use different hyperbolicity and reducibility properties and, in particular, compute also the invariant bundles and Floquet transformations. We implement these methods in several 2-parameter families of dynamical systems, to compute quasi-periodic arcs, that is, the parameters for which 1D normally hyperbolic invariant tori with a given fixed frequency do exist. The implementation lets us to perform the continuations up to the tip of the quasi-periodic arcs, for which the invariant curves break down. Three different mechanisms of breakdown are analyzed, using several observables, leading to several conjectures.

  2. Image preprocessing for improving computational efficiency in implementation of restoration and superresolution algorithms.

    PubMed

    Sundareshan, Malur K; Bhattacharjee, Supratik; Inampudi, Radhika; Pang, Ho-Yuen

    2002-12-10

    Computational complexity is a major impediment to the real-time implementation of image restoration and superresolution algorithms in many applications. Although powerful restoration algorithms have been developed within the past few years utilizing sophisticated mathematical machinery (based on statistical optimization and convex set theory), these algorithms are typically iterative in nature and require a sufficient number of iterations to be executed to achieve the desired resolution improvement that may be needed to meaningfully perform postprocessing image exploitation tasks in practice. Additionally, recent technological breakthroughs have facilitated novel sensor designs (focal plane arrays, for instance) that make it possible to capture megapixel imagery data at video frame rates. A major challenge in the processing of these large-format images is to complete the execution of the image processing steps within the frame capture times and to keep up with the output rate of the sensor so that all data captured by the sensor can be efficiently utilized. Consequently, development of novel methods that facilitate real-time implementation of image restoration and superresolution algorithms is of significant practical interest and is the primary focus of this study. The key to designing computationally efficient processing schemes lies in strategically introducing appropriate preprocessing steps together with the superresolution iterations to tailor optimized overall processing sequences for imagery data of specific formats. For substantiating this assertion, three distinct methods for tailoring a preprocessing filter and integrating it with the superresolution processing steps are outlined. These methods consist of a region-of-interest extraction scheme, a background-detail separation procedure, and a scene-derived information extraction step for implementing a set-theoretic restoration of the image that is less demanding in computation compared with the

  3. Non-Evolutionary Algorithms for Scheduling Dependent Tasks in Distributed Heterogeneous Computing Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne F. Boyer; Gurdeep S. Hura

    2005-09-01

    The Problem of obtaining an optimal matching and scheduling of interdependent tasks in distributed heterogeneous computing (DHC) environments is well known to be an NP-hard problem. In a DHC system, task execution time is dependent on the machine to which it is assigned and task precedence constraints are represented by a directed acyclic graph. Recent research in evolutionary techniques has shown that genetic algorithms usually obtain more efficient schedules that other known algorithms. We propose a non-evolutionary random scheduling (RS) algorithm for efficient matching and scheduling of inter-dependent tasks in a DHC system. RS is a succession of randomized taskmore » orderings and a heuristic mapping from task order to schedule. Randomized task ordering is effectively a topological sort where the outcome may be any possible task order for which the task precedent constraints are maintained. A detailed comparison to existing evolutionary techniques (GA and PSGA) shows the proposed algorithm is less complex than evolutionary techniques, computes schedules in less time, requires less memory and fewer tuning parameters. Simulation results show that the average schedules produced by RS are approximately as efficient as PSGA schedules for all cases studied and clearly more efficient than PSGA for certain cases. The standard formulation for the scheduling problem addressed in this paper is Rm|prec|Cmax.,« less

  4. BWM*: A Novel, Provable, Ensemble-based Dynamic Programming Algorithm for Sparse Approximations of Computational Protein Design.

    PubMed

    Jou, Jonathan D; Jain, Swati; Georgiev, Ivelin S; Donald, Bruce R

    2016-06-01

    Sparse energy functions that ignore long range interactions between residue pairs are frequently used by protein design algorithms to reduce computational cost. Current dynamic programming algorithms that fully exploit the optimal substructure produced by these energy functions only compute the GMEC. This disproportionately favors the sequence of a single, static conformation and overlooks better binding sequences with multiple low-energy conformations. Provable, ensemble-based algorithms such as A* avoid this problem, but A* cannot guarantee better performance than exhaustive enumeration. We propose a novel, provable, dynamic programming algorithm called Branch-Width Minimization* (BWM*) to enumerate a gap-free ensemble of conformations in order of increasing energy. Given a branch-decomposition of branch-width w for an n-residue protein design with at most q discrete side-chain conformations per residue, BWM* returns the sparse GMEC in O([Formula: see text]) time and enumerates each additional conformation in merely O([Formula: see text]) time. We define a new measure, Total Effective Search Space (TESS), which can be computed efficiently a priori before BWM* or A* is run. We ran BWM* on 67 protein design problems and found that TESS discriminated between BWM*-efficient and A*-efficient cases with 100% accuracy. As predicted by TESS and validated experimentally, BWM* outperforms A* in 73% of the cases and computes the full ensemble or a close approximation faster than A*, enumerating each additional conformation in milliseconds. Unlike A*, the performance of BWM* can be predicted in polynomial time before running the algorithm, which gives protein designers the power to choose the most efficient algorithm for their particular design problem.

  5. Bringing Algorithms to Life: Cooperative Computing Activities Using Students as Processors.

    ERIC Educational Resources Information Center

    Bachelis, Gregory F.; And Others

    1994-01-01

    Presents cooperative computing activities in which each student plays the role of a switch or processor and acts out algorithms. Includes binary counting, finding the smallest card in a deck, sorting by selection and merging, adding and multiplying large numbers, and sieving for primes. (16 references) (Author/MKR)

  6. The Research and Implementation of MUSER CLEAN Algorithm Based on OpenCL

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Chen, K.; Deng, H.; Wang, F.; Mei, Y.; Wei, S. L.; Dai, W.; Yang, Q. P.; Liu, Y. B.; Wu, J. P.

    2017-03-01

    It's urgent to carry out high-performance data processing with a single machine in the development of astronomical software. However, due to the different configuration of the machine, traditional programming techniques such as multi-threading, and CUDA (Compute Unified Device Architecture)+GPU (Graphic Processing Unit) have obvious limitations in portability and seamlessness between different operation systems. The OpenCL (Open Computing Language) used in the development of MUSER (MingantU SpEctral Radioheliograph) data processing system is introduced. And the Högbom CLEAN algorithm is re-implemented into parallel CLEAN algorithm by the Python language and PyOpenCL extended package. The experimental results show that the CLEAN algorithm based on OpenCL has approximately equally operating efficiency compared with the former CLEAN algorithm based on CUDA. More important, the data processing in merely CPU (Central Processing Unit) environment of this system can also achieve high performance, which has solved the problem of environmental dependence of CUDA+GPU. Overall, the research improves the adaptability of the system with emphasis on performance of MUSER image clean computing. In the meanwhile, the realization of OpenCL in MUSER proves its availability in scientific data processing. In view of the high-performance computing features of OpenCL in heterogeneous environment, it will probably become the preferred technology in the future high-performance astronomical software development.

  7. [Influence of venom immunotherapy on anxiety level of being re-stung].

    PubMed

    Sacha, Małgorzata; Czarnobilska, Ewa; Stobiecki, Marcin; Dyga, Wojciech

    2012-01-01

    Hymenoptera venom allergy is related to higher risk of potential life -threatening anaphylactic reactions, which leads to anxiety and decreased quality of life. The aim of this paper was: 1) estimation of fear level of being re-stung among venom allergy adults treated with venom specific immunotherapy (VIT)--before and during treatment; 2) estimation of expectation of outcome of VIT as compared to level of anxiety of being re-strug, in the Visual Analogue Scale--VAS score; 3) identification of factors influencing changes in the fear level among patients during VIT. The study group comprised 42 patients (18 women, 24 men) in the mean age 42.6 years, with bee or vespid allergy, who had been qualified to the VIT treatment with Alutard SQ. Visual Analogue Scale--VAS and the Expectation of Outcome Questionnaire were used. The demographic data were collected. The VAS score before VIT for insect venom allergic patients was 8.8 (SD = 0.9). It decreased after achieving maintenance dose to 3.1 (SD = 1.6) and was significantly lower in men (p < 0.05). Score achieved in the Expectation of Outcome Questionnaire was for each question 2.2 (SD = 1.5) and there was correlation with VAS score during VIT. The patients with insect venom allergy, who undergo a serious allergic reaction (SR) as a result of being stung and who are qualified to VIT, have a high level of anxiety of being re-stung. Achieving the maintenance dose of VIT, results in a significant decrease of anxiety level in women and men, significantly so in men. There is a significant correlation between VAS score and the Expectation of Outcome Questionnaire results during VIT. Both VAS for anxiety level and the Expectation of Outcome Questionnaire can be simple, easily available and useful instruments helping to estimate quality of life. VIT significantly decreases the patients level of anxiety of being restung and improves their quality of life.

  8. Parallel Algorithms for the Exascale Era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robey, Robert W.

    New parallel algorithms are needed to reach the Exascale level of parallelism with millions of cores. We look at some of the research developed by students in projects at LANL. The research blends ideas from the early days of computing while weaving in the fresh approach brought by students new to the field of high performance computing. We look at reproducibility of global sums and why it is important to parallel computing. Next we look at how the concept of hashing has led to the development of more scalable algorithms suitable for next-generation parallel computers. Nearly all of this workmore » has been done by undergraduates and published in leading scientific journals.« less

  9. High- and low-level hierarchical classification algorithm based on source separation process

    NASA Astrophysics Data System (ADS)

    Loghmari, Mohamed Anis; Karray, Emna; Naceur, Mohamed Saber

    2016-10-01

    High-dimensional data applications have earned great attention in recent years. We focus on remote sensing data analysis on high-dimensional space like hyperspectral data. From a methodological viewpoint, remote sensing data analysis is not a trivial task. Its complexity is caused by many factors, such as large spectral or spatial variability as well as the curse of dimensionality. The latter describes the problem of data sparseness. In this particular ill-posed problem, a reliable classification approach requires appropriate modeling of the classification process. The proposed approach is based on a hierarchical clustering algorithm in order to deal with remote sensing data in high-dimensional space. Indeed, one obvious method to perform dimensionality reduction is to use the independent component analysis process as a preprocessing step. The first particularity of our method is the special structure of its cluster tree. Most of the hierarchical algorithms associate leaves to individual clusters, and start from a large number of individual classes equal to the number of pixels; however, in our approach, leaves are associated with the most relevant sources which are represented according to mutually independent axes to specifically represent some land covers associated with a limited number of clusters. These sources contribute to the refinement of the clustering by providing complementary rather than redundant information. The second particularity of our approach is that at each level of the cluster tree, we combine both a high-level divisive clustering and a low-level agglomerative clustering. This approach reduces the computational cost since the high-level divisive clustering is controlled by a simple Boolean operator, and optimizes the clustering results since the low-level agglomerative clustering is guided by the most relevant independent sources. Then at each new step we obtain a new finer partition that will participate in the clustering process to enhance

  10. An exact computational method for performance analysis of sequential test algorithms for detecting network intrusions

    NASA Astrophysics Data System (ADS)

    Chen, Xinjia; Lacy, Fred; Carriere, Patrick

    2015-05-01

    Sequential test algorithms are playing increasingly important roles for quick detecting network intrusions such as portscanners. In view of the fact that such algorithms are usually analyzed based on intuitive approximation or asymptotic analysis, we develop an exact computational method for the performance analysis of such algorithms. Our method can be used to calculate the probability of false alarm and average detection time up to arbitrarily pre-specified accuracy.

  11. Reducing false-positive detections by combining two stage-1 computer-aided mass detection algorithms

    NASA Astrophysics Data System (ADS)

    Bedard, Noah D.; Sampat, Mehul P.; Stokes, Patrick A.; Markey, Mia K.

    2006-03-01

    In this paper we present a strategy for reducing the number of false-positives in computer-aided mass detection. Our approach is to only mark "consensus" detections from among the suspicious sites identified by different "stage-1" detection algorithms. By "stage-1" we mean that each of the Computer-aided Detection (CADe) algorithms is designed to operate with high sensitivity, allowing for a large number of false positives. In this study, two mass detection methods were used: (1) Heath and Bowyer's algorithm based on the average fraction under the minimum filter (AFUM) and (2) a low-threshold bi-lateral subtraction algorithm. The two methods were applied separately to a set of images from the Digital Database for Screening Mammography (DDSM) to obtain paired sets of mass candidates. The consensus mass candidates for each image were identified by a logical "and" operation of the two CADe algorithms so as to eliminate regions of suspicion that were not independently identified by both techniques. It was shown that by combining the evidence from the AFUM filter method with that obtained from bi-lateral subtraction, the same sensitivity could be reached with fewer false-positives per image relative to using the AFUM filter alone.

  12. Metal-induced streak artifact reduction using iterative reconstruction algorithms in x-ray computed tomography image of the dentoalveolar region.

    PubMed

    Dong, Jian; Hayakawa, Yoshihiko; Kannenberg, Sven; Kober, Cornelia

    2013-02-01

    The objective of this study was to reduce metal-induced streak artifact on oral and maxillofacial x-ray computed tomography (CT) images by developing the fast statistical image reconstruction system using iterative reconstruction algorithms. Adjacent CT images often depict similar anatomical structures in thin slices. So, first, images were reconstructed using the same projection data of an artifact-free image. Second, images were processed by the successive iterative restoration method where projection data were generated from reconstructed image in sequence. Besides the maximum likelihood-expectation maximization algorithm, the ordered subset-expectation maximization algorithm (OS-EM) was examined. Also, small region of interest (ROI) setting and reverse processing were applied for improving performance. Both algorithms reduced artifacts instead of slightly decreasing gray levels. The OS-EM and small ROI reduced the processing duration without apparent detriments. Sequential and reverse processing did not show apparent effects. Two alternatives in iterative reconstruction methods were effective for artifact reduction. The OS-EM algorithm and small ROI setting improved the performance. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Computationally efficient real-time interpolation algorithm for non-uniform sampled biosignals

    PubMed Central

    Eftekhar, Amir; Kindt, Wilko; Constandinou, Timothy G.

    2016-01-01

    This Letter presents a novel, computationally efficient interpolation method that has been optimised for use in electrocardiogram baseline drift removal. In the authors’ previous Letter three isoelectric baseline points per heartbeat are detected, and here utilised as interpolation points. As an extension from linear interpolation, their algorithm segments the interpolation interval and utilises different piecewise linear equations. Thus, the algorithm produces a linear curvature that is computationally efficient while interpolating non-uniform samples. The proposed algorithm is tested using sinusoids with different fundamental frequencies from 0.05 to 0.7 Hz and also validated with real baseline wander data acquired from the Massachusetts Institute of Technology University and Boston's Beth Israel Hospital (MIT-BIH) Noise Stress Database. The synthetic data results show an root mean square (RMS) error of 0.9 μV (mean), 0.63 μV (median) and 0.6 μV (standard deviation) per heartbeat on a 1 mVp–p 0.1 Hz sinusoid. On real data, they obtain an RMS error of 10.9 μV (mean), 8.5 μV (median) and 9.0 μV (standard deviation) per heartbeat. Cubic spline interpolation and linear interpolation on the other hand shows 10.7 μV, 11.6 μV (mean), 7.8 μV, 8.9 μV (median) and 9.8 μV, 9.3 μV (standard deviation) per heartbeat. PMID:27382478

  14. Computationally efficient real-time interpolation algorithm for non-uniform sampled biosignals.

    PubMed

    Guven, Onur; Eftekhar, Amir; Kindt, Wilko; Constandinou, Timothy G

    2016-06-01

    This Letter presents a novel, computationally efficient interpolation method that has been optimised for use in electrocardiogram baseline drift removal. In the authors' previous Letter three isoelectric baseline points per heartbeat are detected, and here utilised as interpolation points. As an extension from linear interpolation, their algorithm segments the interpolation interval and utilises different piecewise linear equations. Thus, the algorithm produces a linear curvature that is computationally efficient while interpolating non-uniform samples. The proposed algorithm is tested using sinusoids with different fundamental frequencies from 0.05 to 0.7 Hz and also validated with real baseline wander data acquired from the Massachusetts Institute of Technology University and Boston's Beth Israel Hospital (MIT-BIH) Noise Stress Database. The synthetic data results show an root mean square (RMS) error of 0.9 μV (mean), 0.63 μV (median) and 0.6 μV (standard deviation) per heartbeat on a 1 mVp-p 0.1 Hz sinusoid. On real data, they obtain an RMS error of 10.9 μV (mean), 8.5 μV (median) and 9.0 μV (standard deviation) per heartbeat. Cubic spline interpolation and linear interpolation on the other hand shows 10.7 μV, 11.6 μV (mean), 7.8 μV, 8.9 μV (median) and 9.8 μV, 9.3 μV (standard deviation) per heartbeat.

  15. Efficiency Analysis of the Parallel Implementation of the SIMPLE Algorithm on Multiprocessor Computers

    NASA Astrophysics Data System (ADS)

    Lashkin, S. V.; Kozelkov, A. S.; Yalozo, A. V.; Gerasimov, V. Yu.; Zelensky, D. K.

    2017-12-01

    This paper describes the details of the parallel implementation of the SIMPLE algorithm for numerical solution of the Navier-Stokes system of equations on arbitrary unstructured grids. The iteration schemes for the serial and parallel versions of the SIMPLE algorithm are implemented. In the description of the parallel implementation, special attention is paid to computational data exchange among processors under the condition of the grid model decomposition using fictitious cells. We discuss the specific features for the storage of distributed matrices and implementation of vector-matrix operations in parallel mode. It is shown that the proposed way of matrix storage reduces the number of interprocessor exchanges. A series of numerical experiments illustrates the effect of the multigrid SLAE solver tuning on the general efficiency of the algorithm; the tuning involves the types of the cycles used (V, W, and F), the number of iterations of a smoothing operator, and the number of cells for coarsening. Two ways (direct and indirect) of efficiency evaluation for parallelization of the numerical algorithm are demonstrated. The paper presents the results of solving some internal and external flow problems with the evaluation of parallelization efficiency by two algorithms. It is shown that the proposed parallel implementation enables efficient computations for the problems on a thousand processors. Based on the results obtained, some general recommendations are made for the optimal tuning of the multigrid solver, as well as for selecting the optimal number of cells per processor.

  16. The Computational Complexity, Parallel Scalability, and Performance of Atmospheric Data Assimilation Algorithms

    NASA Technical Reports Server (NTRS)

    Lyster, Peter M.; Guo, J.; Clune, T.; Larson, J. W.; Atlas, Robert (Technical Monitor)

    2001-01-01

    The computational complexity of algorithms for Four Dimensional Data Assimilation (4DDA) at NASA's Data Assimilation Office (DAO) is discussed. In 4DDA, observations are assimilated with the output of a dynamical model to generate best-estimates of the states of the system. It is thus a mapping problem, whereby scattered observations are converted into regular accurate maps of wind, temperature, moisture and other variables. The DAO is developing and using 4DDA algorithms that provide these datasets, or analyses, in support of Earth System Science research. Two large-scale algorithms are discussed. The first approach, the Goddard Earth Observing System Data Assimilation System (GEOS DAS), uses an atmospheric general circulation model (GCM) and an observation-space based analysis system, the Physical-space Statistical Analysis System (PSAS). GEOS DAS is very similar to global meteorological weather forecasting data assimilation systems, but is used at NASA for climate research. Systems of this size typically run at between 1 and 20 gigaflop/s. The second approach, the Kalman filter, uses a more consistent algorithm to determine the forecast error covariance matrix than does GEOS DAS. For atmospheric assimilation, the gridded dynamical fields typically have More than 10(exp 6) variables, therefore the full error covariance matrix may be in excess of a teraword. For the Kalman filter this problem can easily scale to petaflop/s proportions. We discuss the computational complexity of GEOS DAS and our implementation of the Kalman filter. We also discuss and quantify some of the technical issues and limitations in developing efficient, in terms of wall clock time, and scalable parallel implementations of the algorithms.

  17. Seismic waveform tomography with shot-encoding using a restarted L-BFGS algorithm.

    PubMed

    Rao, Ying; Wang, Yanghua

    2017-08-17

    In seismic waveform tomography, or full-waveform inversion (FWI), one effective strategy used to reduce the computational cost is shot-encoding, which encodes all shots randomly and sums them into one super shot to significantly reduce the number of wavefield simulations in the inversion. However, this process will induce instability in the iterative inversion regardless of whether it uses a robust limited-memory BFGS (L-BFGS) algorithm. The restarted L-BFGS algorithm proposed here is both stable and efficient. This breakthrough ensures, for the first time, the applicability of advanced FWI methods to three-dimensional seismic field data. In a standard L-BFGS algorithm, if the shot-encoding remains unchanged, it will generate a crosstalk effect between different shots. This crosstalk effect can only be suppressed by employing sufficient randomness in the shot-encoding. Therefore, the implementation of the L-BFGS algorithm is restarted at every segment. Each segment consists of a number of iterations; the first few iterations use an invariant encoding, while the remainder use random re-coding. This restarted L-BFGS algorithm balances the computational efficiency of shot-encoding, the convergence stability of the L-BFGS algorithm, and the inversion quality characteristic of random encoding in FWI.

  18. Development of water level estimation algorithms using SARAL/Altika dataset and validation over the Ukai reservoir, India

    NASA Astrophysics Data System (ADS)

    Chander, Shard; Ganguly, Debojyoti

    2017-01-01

    Water level was estimated, using AltiKa radar altimeter onboard the SARAL satellite, over the Ukai reservoir using modified algorithms specifically for inland water bodies. The methodology was based on waveform classification, waveform retracking, and dedicated inland range corrections algorithms. The 40-Hz waveforms were classified based on linear discriminant analysis and Bayesian classifier. Waveforms were retracked using Brown, Ice-2, threshold, and offset center of gravity methods. Retracking algorithms were implemented on full waveform and subwaveforms (only one leading edge) for estimating the improvement in the retrieved range. European Centre for Medium-Range Weather Forecasts (ECMWF) operational, ECMWF re-analysis pressure fields, and global ionosphere maps were used to exactly estimate the range corrections. The microwave and optical images were used for estimating the extent of the water body and altimeter track location. Four global positioning system (GPS) field trips were conducted on same day as the SARAL pass using two dual frequency GPS. One GPS was mounted close to the dam in static mode and the other was used on a moving vehicle within the reservoir in Kinematic mode. In situ gauge dataset was provided by the Ukai dam authority for the time period January 1972 to March 2015. The altimeter retrieved water level results were then validated with the GPS survey and in situ gauge dataset. With good selection of virtual station (waveform classification, back scattering coefficient), Ice-2 retracker and subwaveform retracker both work better with an overall root-mean-square error <15 cm. The results support that the AltiKa dataset, due to a smaller foot-print and sharp trailing edge of the Ka-band waveform, can be utilized for more accurate water level information over inland water bodies.

  19. Development of Online Cognitive and Algorithm Tests as Assessment Tools in Introductory Computer Science Courses

    ERIC Educational Resources Information Center

    Avancena, Aimee Theresa; Nishihara, Akinori; Vergara, John Paul

    2012-01-01

    This paper presents the online cognitive and algorithm tests, which were developed in order to determine if certain cognitive factors and fundamental algorithms correlate with the performance of students in their introductory computer science course. The tests were implemented among Management Information Systems majors from the Philippines and…

  20. A Computational Algorithm for Functional Clustering of Proteome Dynamics During Development

    PubMed Central

    Wang, Yaqun; Wang, Ningtao; Hao, Han; Guo, Yunqian; Zhen, Yan; Shi, Jisen; Wu, Rongling

    2014-01-01

    Phenotypic traits, such as seed development, are a consequence of complex biochemical interactions among genes, proteins and metabolites, but the underlying mechanisms that operate in a coordinated and sequential manner remain elusive. Here, we address this issue by developing a computational algorithm to monitor proteome changes during the course of trait development. The algorithm is built within the mixture-model framework in which each mixture component is modeled by a specific group of proteins that display a similar temporal pattern of expression in trait development. A nonparametric approach based on Legendre orthogonal polynomials was used to fit dynamic changes of protein expression, increasing the power and flexibility of protein clustering. By analyzing a dataset of proteomic dynamics during early embryogenesis of the Chinese fir, the algorithm has successfully identified several distinct types of proteins that coordinate with each other to determine seed development in this forest tree commercially and environmentally important to China. The algorithm will find its immediate applications for the characterization of mechanistic underpinnings for any other biological processes in which protein abundance plays a key role. PMID:24955031

  1. Computer architecture for efficient algorithmic executions in real-time systems: New technology for avionics systems and advanced space vehicles

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Youngblood, John N.; Saha, Aindam

    1987-01-01

    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processing elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.

  2. Computer architecture for efficient algorithmic executions in real-time systems: new technology for avionics systems and advanced space vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, C.C.; Youngblood, J.N.; Saha, A.

    1987-12-01

    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processingmore » elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.« less

  3. Cognitive Correlates of Performance in Algorithms in a Computer Science Course for High School

    ERIC Educational Resources Information Center

    Avancena, Aimee Theresa; Nishihara, Akinori

    2014-01-01

    Computer science for high school faces many challenging issues. One of these is whether the students possess the appropriate cognitive ability for learning the fundamentals of computer science. Online tests were created based on known cognitive factors and fundamental algorithms and were implemented among the second grade students in the…

  4. Advances in systems biology: computational algorithms and applications.

    PubMed

    Huang, Yufei; Zhao, Zhongming; Xu, Hua; Shyr, Yu; Zhang, Bing

    2012-01-01

    The 2012 International Conference on Intelligent Biology and Medicine (ICIBM 2012) was held on April 22-24, 2012 in Nashville, Tennessee, USA. The conference featured six technical sessions, one tutorial session, one workshop, and 3 keynote presentations that covered state-of-the-art research activities in genomics, systems biology, and intelligent computing. In addition to a major emphasis on the next generation sequencing (NGS)-driven informatics, ICIBM 2012 aligned significant interests in systems biology and its applications in medicine. We highlight in this editorial the selected papers from the meeting that address the developments of novel algorithms and applications in systems biology.

  5. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm.

    PubMed

    Shi, Junwei; Liu, Fei; Zhang, Guanglei; Luo, Jianwen; Bai, Jing

    2014-04-01

    Owing to the high degree of scattering of light through tissues, the ill-posedness of fluorescence molecular tomography (FMT) inverse problem causes relatively low spatial resolution in the reconstruction results. Unlike L2 regularization, L1 regularization can preserve the details and reduce the noise effectively. Reconstruction is obtained through a restarted L1 regularization-based nonlinear conjugate gradient (re-L1-NCG) algorithm, which has been proven to be able to increase the computational speed with low memory consumption. The algorithm consists of inner and outer iterations. In the inner iteration, L1-NCG is used to obtain the L1-regularized results. In the outer iteration, the restarted strategy is used to increase the convergence speed of L1-NCG. To demonstrate the performance of re-L1-NCG in terms of spatial resolution, simulation and physical phantom studies with fluorescent targets located with different edge-to-edge distances were carried out. The reconstruction results show that the re-L1-NCG algorithm has the ability to resolve targets with an edge-to-edge distance of 0.1 cm at a depth of 1.5 cm, which is a significant improvement for FMT.

  6. Large-Scale Parallel Viscous Flow Computations using an Unstructured Multigrid Algorithm

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1999-01-01

    The development and testing of a parallel unstructured agglomeration multigrid algorithm for steady-state aerodynamic flows is discussed. The agglomeration multigrid strategy uses a graph algorithm to construct the coarse multigrid levels from the given fine grid, similar to an algebraic multigrid approach, but operates directly on the non-linear system using the FAS (Full Approximation Scheme) approach. The scalability and convergence rate of the multigrid algorithm are examined on the SGI Origin 2000 and the Cray T3E. An argument is given which indicates that the asymptotic scalability of the multigrid algorithm should be similar to that of its underlying single grid smoothing scheme. For medium size problems involving several million grid points, near perfect scalability is obtained for the single grid algorithm, while only a slight drop-off in parallel efficiency is observed for the multigrid V- and W-cycles, using up to 128 processors on the SGI Origin 2000, and up to 512 processors on the Cray T3E. For a large problem using 25 million grid points, good scalability is observed for the multigrid algorithm using up to 1450 processors on a Cray T3E, even when the coarsest grid level contains fewer points than the total number of processors.

  7. Quantitative Imaging Biomarkers: A Review of Statistical Methods for Computer Algorithm Comparisons

    PubMed Central

    2014-01-01

    Quantitative biomarkers from medical images are becoming important tools for clinical diagnosis, staging, monitoring, treatment planning, and development of new therapies. While there is a rich history of the development of quantitative imaging biomarker (QIB) techniques, little attention has been paid to the validation and comparison of the computer algorithms that implement the QIB measurements. In this paper we provide a framework for QIB algorithm comparisons. We first review and compare various study designs, including designs with the true value (e.g. phantoms, digital reference images, and zero-change studies), designs with a reference standard (e.g. studies testing equivalence with a reference standard), and designs without a reference standard (e.g. agreement studies and studies of algorithm precision). The statistical methods for comparing QIB algorithms are then presented for various study types using both aggregate and disaggregate approaches. We propose a series of steps for establishing the performance of a QIB algorithm, identify limitations in the current statistical literature, and suggest future directions for research. PMID:24919829

  8. Quantitative imaging biomarkers: a review of statistical methods for computer algorithm comparisons.

    PubMed

    Obuchowski, Nancy A; Reeves, Anthony P; Huang, Erich P; Wang, Xiao-Feng; Buckler, Andrew J; Kim, Hyun J Grace; Barnhart, Huiman X; Jackson, Edward F; Giger, Maryellen L; Pennello, Gene; Toledano, Alicia Y; Kalpathy-Cramer, Jayashree; Apanasovich, Tatiyana V; Kinahan, Paul E; Myers, Kyle J; Goldgof, Dmitry B; Barboriak, Daniel P; Gillies, Robert J; Schwartz, Lawrence H; Sullivan, Daniel C

    2015-02-01

    Quantitative biomarkers from medical images are becoming important tools for clinical diagnosis, staging, monitoring, treatment planning, and development of new therapies. While there is a rich history of the development of quantitative imaging biomarker (QIB) techniques, little attention has been paid to the validation and comparison of the computer algorithms that implement the QIB measurements. In this paper we provide a framework for QIB algorithm comparisons. We first review and compare various study designs, including designs with the true value (e.g. phantoms, digital reference images, and zero-change studies), designs with a reference standard (e.g. studies testing equivalence with a reference standard), and designs without a reference standard (e.g. agreement studies and studies of algorithm precision). The statistical methods for comparing QIB algorithms are then presented for various study types using both aggregate and disaggregate approaches. We propose a series of steps for establishing the performance of a QIB algorithm, identify limitations in the current statistical literature, and suggest future directions for research. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Person Re-Identification via Distance Metric Learning With Latent Variables.

    PubMed

    Sun, Chong; Wang, Dong; Lu, Huchuan

    2017-01-01

    In this paper, we propose an effective person re-identification method with latent variables, which represents a pedestrian as the mixture of a holistic model and a number of flexible models. Three types of latent variables are introduced to model uncertain factors in the re-identification problem, including vertical misalignments, horizontal misalignments and leg posture variations. The distance between two pedestrians can be determined by minimizing a given distance function with respect to latent variables, and then be used to conduct the re-identification task. In addition, we develop a latent metric learning method for learning the effective metric matrix, which can be solved via an iterative manner: once latent information is specified, the metric matrix can be obtained based on some typical metric learning methods; with the computed metric matrix, the latent variables can be determined by searching the state space exhaustively. Finally, extensive experiments are conducted on seven databases to evaluate the proposed method. The experimental results demonstrate that our method achieves better performance than other competing algorithms.

  10. Dynamic re-weighted total variation technique and statistic Iterative reconstruction method for x-ray CT metal artifact reduction

    NASA Astrophysics Data System (ADS)

    Peng, Chengtao; Qiu, Bensheng; Zhang, Cheng; Ma, Changyu; Yuan, Gang; Li, Ming

    2017-07-01

    Over the years, the X-ray computed tomography (CT) has been successfully used in clinical diagnosis. However, when the body of the patient to be examined contains metal objects, the image reconstructed would be polluted by severe metal artifacts, which affect the doctor's diagnosis of disease. In this work, we proposed a dynamic re-weighted total variation (DRWTV) technique combined with the statistic iterative reconstruction (SIR) method to reduce the artifacts. The DRWTV method is based on the total variation (TV) and re-weighted total variation (RWTV) techniques, but it provides a sparser representation than TV and protects the tissue details better than RWTV. Besides, the DRWTV can suppress the artifacts and noise, and the SIR convergence speed is also accelerated. The performance of the algorithm is tested on both simulated phantom dataset and clinical dataset, which are the teeth phantom with two metal implants and the skull with three metal implants, respectively. The proposed algorithm (SIR-DRWTV) is compared with two traditional iterative algorithms, which are SIR and SIR constrained by RWTV regulation (SIR-RWTV). The results show that the proposed algorithm has the best performance in reducing metal artifacts and protecting tissue details.

  11. Computational model of in vivo human energy metabolism during semi-starvation and re-feeding

    PubMed Central

    Hall, Kevin D.

    2008-01-01

    Changes of body weight and composition are the result of complex interactions among metabolic fluxes contributing to macronutrient balances. To better understand these interactions, a mathematical model was constructed that used the measured dietary macronutrient intake during semi-starvation and re-feeding as model inputs and computed whole-body energy expenditure, de novo lipogenesis, gluconeogenesis, as well as turnover and oxidation of carbohydrate, fat and protein. Published in vivo human data provided the basis for the model components which were integrated by fitting a few unknown parameters to the classic Minnesota human starvation experiment. The model simulated the measured body weight and fat mass changes during semi-starvation and re-feeding and predicted the unmeasured metabolic fluxes underlying the body composition changes. The resting metabolic rate matched the experimental measurements and required a model of adaptive thermogenesis. Re-feeding caused an elevation of de novo lipogenesis which, along with increased fat intake, resulted in a rapid repletion and overshoot of body fat. By continuing the computer simulation with the pre-starvation diet and physical activity, the original body weight and composition was eventually restored, but body fat mass was predicted to take more than one additional year to return to within 5% of its original value. The model was validated by simulating a recently published short-term caloric restriction experiment without changing the model parameters. The predicted changes of body weight, fat mass, resting metabolic rate, and nitrogen balance matched the experimental measurements thereby providing support for the validity of the model. PMID:16449298

  12. A High-Level Language for Modeling Algorithms and Their Properties

    NASA Astrophysics Data System (ADS)

    Akhtar, Sabina; Merz, Stephan; Quinson, Martin

    Designers of concurrent and distributed algorithms usually express them using pseudo-code. In contrast, most verification techniques are based on more mathematically-oriented formalisms such as state transition systems. This conceptual gap contributes to hinder the use of formal verification techniques. Leslie Lamport introduced PlusCal, a high-level algorithmic language that has the "look and feel" of pseudo-code, but is equipped with a precise semantics and includes a high-level expression language based on set theory. PlusCal models can be compiled to TLA + and verified using the model checker tlc.

  13. The computation of pi to 29,360,000 decimal digits using Borweins' quartically convergent algorithm

    NASA Technical Reports Server (NTRS)

    Bailey, David H.

    1988-01-01

    The quartically convergent numerical algorithm developed by Borwein and Borwein (1987) for 1/pi is implemented via a prime-modulus-transform multiprecision technique on the NASA Ames Cray-2 supercomputer to compute the first 2.936 x 10 to the 7th digits of the decimal expansion of pi. The history of pi computations is briefly recalled; the most recent algorithms are characterized; the implementation procedures are described; and samples of the output listing are presented. Statistical analyses show that the present decimal expansion is completely random, with only acceptable numbers of long repeating strings and single-digit runs.

  14. Study of the mapping of Navier-Stokes algorithms onto multiple-instruction/multiple-data-stream computers

    NASA Technical Reports Server (NTRS)

    Eberhardt, D. S.; Baganoff, D.; Stevens, K.

    1984-01-01

    Implicit approximate-factored algorithms have certain properties that are suitable for parallel processing. A particular computational fluid dynamics (CFD) code, using this algorithm, is mapped onto a multiple-instruction/multiple-data-stream (MIMD) computer architecture. An explanation of this mapping procedure is presented, as well as some of the difficulties encountered when trying to run the code concurrently. Timing results are given for runs on the Ames Research Center's MIMD test facility which consists of two VAX 11/780's with a common MA780 multi-ported memory. Speedups exceeding 1.9 for characteristic CFD runs were indicated by the timing results.

  15. A framelet-based iterative maximum-likelihood reconstruction algorithm for spectral CT

    NASA Astrophysics Data System (ADS)

    Wang, Yingmei; Wang, Ge; Mao, Shuwei; Cong, Wenxiang; Ji, Zhilong; Cai, Jian-Feng; Ye, Yangbo

    2016-11-01

    Standard computed tomography (CT) cannot reproduce spectral information of an object. Hardware solutions include dual-energy CT which scans the object twice in different x-ray energy levels, and energy-discriminative detectors which can separate lower and higher energy levels from a single x-ray scan. In this paper, we propose a software solution and give an iterative algorithm that reconstructs an image with spectral information from just one scan with a standard energy-integrating detector. The spectral information obtained can be used to produce color CT images, spectral curves of the attenuation coefficient μ (r,E) at points inside the object, and photoelectric images, which are all valuable imaging tools in cancerous diagnosis. Our software solution requires no change on hardware of a CT machine. With the Shepp-Logan phantom, we have found that although the photoelectric and Compton components were not perfectly reconstructed, their composite effect was very accurately reconstructed as compared to the ground truth and the dual-energy CT counterpart. This means that our proposed method has an intrinsic benefit in beam hardening correction and metal artifact reduction. The algorithm is based on a nonlinear polychromatic acquisition model for x-ray CT. The key technique is a sparse representation of iterations in a framelet system. Convergence of the algorithm is studied. This is believed to be the first application of framelet imaging tools to a nonlinear inverse problem.

  16. Semi-Infinite Geology Modeling Algorithm (SIGMA): a Modular Approach to 3D Gravity

    NASA Astrophysics Data System (ADS)

    Chang, J. C.; Crain, K.

    2015-12-01

    Conventional 3D gravity computations can take up to days, weeks, and even months, depending on the size and resolution of the data being modeled. Additional modeling runs, due to technical malfunctions or additional data modifications, only compound computation times even further. We propose a new modeling algorithm that utilizes vertical line elements to approximate mass, and non-gridded (point) gravity observations. This algorithm is (1) magnitudes faster than conventional methods, (2) accurate to less than 0.1% error, and (3) modular. The modularity of this methodology means that researchers can modify their geology/terrain or gravity data, and only the modified component needs to be re-run. Additionally, land-, sea-, and air-based platforms can be modeled at their observation point, without having to filter data into a synthesized grid.

  17. Computing energy levels of CH4, CHD3, CH3D, and CH3F with a direct product basis and coordinates based on the methyl subsystem.

    PubMed

    Zhao, Zhiqiang; Chen, Jun; Zhang, Zhaojun; Zhang, Dong H; Wang, Xiao-Gang; Carrington, Tucker; Gatti, Fabien

    2018-02-21

    Quantum mechanical calculations of ro-vibrational energies of CH 4 , CHD 3 , CH 3 D, and CH 3 F were made with two different numerical approaches. Both use polyspherical coordinates. The computed energy levels agree, confirming the accuracy of the methods. In the first approach, for all the molecules, the coordinates are defined using three Radau vectors for the CH 3 subsystem and a Jacobi vector between the remaining atom and the centre of mass of CH 3 . Euler angles specifying the orientation of a frame attached to CH 3 with respect to a frame attached to the Jacobi vector are used as vibrational coordinates. A direct product potential-optimized discrete variable vibrational basis is used to build a Hamiltonian matrix. Ro-vibrational energies are computed using a re-started Arnoldi eigensolver. In the second approach, the coordinates are the spherical coordinates associated with four Radau vectors or three Radau vectors and a Jacobi vector, and the frame is an Eckart frame. Vibrational basis functions are products of contracted stretch and bend functions, and eigenvalues are computed with the Lanczos algorithm. For CH 4 , CHD 3 , and CH 3 D, we report the first J > 0 energy levels computed on the Wang-Carrington potential energy surface [X.-G. Wang and T. Carrington, J. Chem. Phys. 141(15), 154106 (2014)]. For CH 3 F, the potential energy surface of Zhao et al. [J. Chem. Phys. 144, 204302 (2016)] was used. All the results are in good agreement with experimental data.

  18. Computing energy levels of CH4, CHD3, CH3D, and CH3F with a direct product basis and coordinates based on the methyl subsystem

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiqiang; Chen, Jun; Zhang, Zhaojun; Zhang, Dong H.; Wang, Xiao-Gang; Carrington, Tucker; Gatti, Fabien

    2018-02-01

    Quantum mechanical calculations of ro-vibrational energies of CH4, CHD3, CH3D, and CH3F were made with two different numerical approaches. Both use polyspherical coordinates. The computed energy levels agree, confirming the accuracy of the methods. In the first approach, for all the molecules, the coordinates are defined using three Radau vectors for the CH3 subsystem and a Jacobi vector between the remaining atom and the centre of mass of CH3. Euler angles specifying the orientation of a frame attached to CH3 with respect to a frame attached to the Jacobi vector are used as vibrational coordinates. A direct product potential-optimized discrete variable vibrational basis is used to build a Hamiltonian matrix. Ro-vibrational energies are computed using a re-started Arnoldi eigensolver. In the second approach, the coordinates are the spherical coordinates associated with four Radau vectors or three Radau vectors and a Jacobi vector, and the frame is an Eckart frame. Vibrational basis functions are products of contracted stretch and bend functions, and eigenvalues are computed with the Lanczos algorithm. For CH4, CHD3, and CH3D, we report the first J > 0 energy levels computed on the Wang-Carrington potential energy surface [X.-G. Wang and T. Carrington, J. Chem. Phys. 141(15), 154106 (2014)]. For CH3F, the potential energy surface of Zhao et al. [J. Chem. Phys. 144, 204302 (2016)] was used. All the results are in good agreement with experimental data.

  19. Design of an optimum computer vision-based automatic abalone (Haliotis discus hannai) grading algorithm.

    PubMed

    Lee, Donggil; Lee, Kyounghoon; Kim, Seonghun; Yang, Yongsu

    2015-04-01

    An automatic abalone grading algorithm that estimates abalone weights on the basis of computer vision using 2D images is developed and tested. The algorithm overcomes the problems experienced by conventional abalone grading methods that utilize manual sorting and mechanical automatic grading. To design an optimal algorithm, a regression formula and R(2) value were investigated by performing a regression analysis for each of total length, body width, thickness, view area, and actual volume against abalone weights. The R(2) value between the actual volume and abalone weight was 0.999, showing a relatively high correlation. As a result, to easily estimate the actual volumes of abalones based on computer vision, the volumes were calculated under the assumption that abalone shapes are half-oblate ellipsoids, and a regression formula was derived to estimate the volumes of abalones through linear regression analysis between the calculated and actual volumes. The final automatic abalone grading algorithm is designed using the abalone volume estimation regression formula derived from test results, and the actual volumes and abalone weights regression formula. In the range of abalones weighting from 16.51 to 128.01 g, the results of evaluation of the performance of algorithm via cross-validation indicate root mean square and worst-case prediction errors of are 2.8 and ±8 g, respectively. © 2015 Institute of Food Technologists®

  20. A fast bottom-up algorithm for computing the cut sets of noncoherent fault trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corynen, G.C.

    1987-11-01

    An efficient procedure for finding the cut sets of large fault trees has been developed. Designed to address coherent or noncoherent systems, dependent events, shared or common-cause events, the method - called SHORTCUT - is based on a fast algorithm for transforming a noncoherent tree into a quasi-coherent tree (COHERE), and on a new algorithm for reducing cut sets (SUBSET). To assure sufficient clarity and precision, the procedure is discussed in the language of simple sets, which is also developed in this report. Although the new method has not yet been fully implemented on the computer, we report theoretical worst-casemore » estimates of its computational complexity. 12 refs., 10 figs.« less

  1. Smart algorithms and adaptive methods in computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Tinsley Oden, J.

    1989-05-01

    A review is presented of the use of smart algorithms which employ adaptive methods in processing large amounts of data in computational fluid dynamics (CFD). Smart algorithms use a rationally based set of criteria for automatic decision making in an attempt to produce optimal simulations of complex fluid dynamics problems. The information needed to make these decisions is not known beforehand and evolves in structure and form during the numerical solution of flow problems. Once the code makes a decision based on the available data, the structure of the data may change, and criteria may be reapplied in order to direct the analysis toward an acceptable end. Intelligent decisions are made by processing vast amounts of data that evolve unpredictably during the calculation. The basic components of adaptive methods and their application to complex problems of fluid dynamics are reviewed. The basic components of adaptive methods are: (1) data structures, that is what approaches are available for modifying data structures of an approximation so as to reduce errors; (2) error estimation, that is what techniques exist for estimating error evolution in a CFD calculation; and (3) solvers, what algorithms are available which can function in changing meshes. Numerical examples which demonstrate the viability of these approaches are presented.

  2. Efficient quantum algorithm for computing n-time correlation functions.

    PubMed

    Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E

    2014-07-11

    We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.

  3. Efficient frequent pattern mining algorithm based on node sets in cloud computing environment

    NASA Astrophysics Data System (ADS)

    Billa, V. N. Vinay Kumar; Lakshmanna, K.; Rajesh, K.; Reddy, M. Praveen Kumar; Nagaraja, G.; Sudheer, K.

    2017-11-01

    The ultimate goal of Data Mining is to determine the hidden information which is useful in making decisions using the large databases collected by an organization. This Data Mining involves many tasks that are to be performed during the process. Mining frequent itemsets is the one of the most important tasks in case of transactional databases. These transactional databases contain the data in very large scale where the mining of these databases involves the consumption of physical memory and time in proportion to the size of the database. A frequent pattern mining algorithm is said to be efficient only if it consumes less memory and time to mine the frequent itemsets from the given large database. Having these points in mind in this thesis we proposed a system which mines frequent itemsets in an optimized way in terms of memory and time by using cloud computing as an important factor to make the process parallel and the application is provided as a service. A complete framework which uses a proven efficient algorithm called FIN algorithm. FIN algorithm works on Nodesets and POC (pre-order coding) tree. In order to evaluate the performance of the system we conduct the experiments to compare the efficiency of the same algorithm applied in a standalone manner and in cloud computing environment on a real time data set which is traffic accidents data set. The results show that the memory consumption and execution time taken for the process in the proposed system is much lesser than those of standalone system.

  4. Distributed-Memory Computing With the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA)

    NASA Technical Reports Server (NTRS)

    Riley, Christopher J.; Cheatwood, F. McNeil

    1997-01-01

    The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA), a Navier-Stokes solver, has been modified for use in a parallel, distributed-memory environment using the Message-Passing Interface (MPI) standard. A standard domain decomposition strategy is used in which the computational domain is divided into subdomains with each subdomain assigned to a processor. Performance is examined on dedicated parallel machines and a network of desktop workstations. The effect of domain decomposition and frequency of boundary updates on performance and convergence is also examined for several realistic configurations and conditions typical of large-scale computational fluid dynamic analysis.

  5. pacce: Perl algorithm to compute continuum and equivalent widths

    NASA Astrophysics Data System (ADS)

    Riffel, Rogério; Borges Vale, Tibério

    2011-08-01

    We present Perl Algorithm to Compute continuum and Equivalent Widths ( pacce). We describe the methods used in the computations and the requirements for its usage. We compare the measurements made with pacce and "manual" ones made using iraf splot task. These tests show that for synthetic simple stellar population (SSP) models the equivalent widths strengths are very similar (differences ≲0.2 Å) for both measurements. In real stellar spectra, the correlation between both values is still very good, but with differences of up to 0.5 Å. pacce is also able to determine mean continuum and continuum at line center values, which are helpful in stellar population studies. In addition, it is also able to compute the uncertainties in the equivalent widths using photon statistics. The code is made available for the community through the web at http://www.if.ufrgs.br/~riffel/software.html .

  6. Level Structure Above the T1/2 = 2 . 0 ×105 yr Isomer in 186Re

    NASA Astrophysics Data System (ADS)

    Matters, D. A.; McClory, J. W.; Kondev, F. G.; Carpenter, M. P.; Carroll, J. J.; Chiara, C. J.; Lane, G. J.; Kibédi, T.; Ideguchi, E.; Fang, Y.; Watanabe, H.; E435 Cagra Collaboration

    2016-03-01

    The level structure above the Kπ = (8+) , 149-keV isomer in 186Re is largely undeveloped. The isomer could play a role in the s-process nucleosynthesis of 187Os and 187Re and affect the accuracy of the Re-Os cosmochronometer. An experiment was conducted at the Research Center for Nuclear Physics (RCNP) at Osaka University, Japan, using the Clover Array Gamma-ray spectrometer at RCNP/RIBF for Advanced research (CAGRA) to measure γ-ray coincidences from (d , 2 n) reactions on an enriched 186W target. The γ - γ coincidence data obtained from the CAGRA array were analyzed along with data from a similar experiment performed in 2006 at the Australian National University. A preliminary analysis of the data reveals several new levels and transitions feeding the 186mRe isomer.

  7. Competitive repetition suppression (CoRe) clustering: a biologically inspired learning model with application to robust clustering.

    PubMed

    Bacciu, Davide; Starita, Antonina

    2008-11-01

    Determining a compact neural coding for a set of input stimuli is an issue that encompasses several biological memory mechanisms as well as various artificial neural network models. In particular, establishing the optimal network structure is still an open problem when dealing with unsupervised learning models. In this paper, we introduce a novel learning algorithm, named competitive repetition-suppression (CoRe) learning, inspired by a cortical memory mechanism called repetition suppression (RS). We show how such a mechanism is used, at various levels of the cerebral cortex, to generate compact neural representations of the visual stimuli. From the general CoRe learning model, we derive a clustering algorithm, named CoRe clustering, that can automatically estimate the unknown cluster number from the data without using a priori information concerning the input distribution. We illustrate how CoRe clustering, besides its biological plausibility, posses strong theoretical properties in terms of robustness to noise and outliers, and we provide an error function describing CoRe learning dynamics. Such a description is used to analyze CoRe relationships with the state-of-the art clustering models and to highlight CoRe similitude with rival penalized competitive learning (RPCL), showing how CoRe extends such a model by strengthening the rival penalization estimation by means of loss functions from robust statistics.

  8. An Accurate Fire-Spread Algorithm in the Weather Research and Forecasting Model Using the Level-Set Method

    NASA Astrophysics Data System (ADS)

    Muñoz-Esparza, Domingo; Kosović, Branko; Jiménez, Pedro A.; Coen, Janice L.

    2018-04-01

    The level-set method is typically used to track and propagate the fire perimeter in wildland fire models. Herein, a high-order level-set method using fifth-order WENO scheme for the discretization of spatial derivatives and third-order explicit Runge-Kutta temporal integration is implemented within the Weather Research and Forecasting model wildland fire physics package, WRF-Fire. The algorithm includes solution of an additional partial differential equation for level-set reinitialization. The accuracy of the fire-front shape and rate of spread in uncoupled simulations is systematically analyzed. It is demonstrated that the common implementation used by level-set-based wildfire models yields to rate-of-spread errors in the range 10-35% for typical grid sizes (Δ = 12.5-100 m) and considerably underestimates fire area. Moreover, the amplitude of fire-front gradients in the presence of explicitly resolved turbulence features is systematically underestimated. In contrast, the new WRF-Fire algorithm results in rate-of-spread errors that are lower than 1% and that become nearly grid independent. Also, the underestimation of fire area at the sharp transition between the fire front and the lateral flanks is found to be reduced by a factor of ≈7. A hybrid-order level-set method with locally reduced artificial viscosity is proposed, which substantially alleviates the computational cost associated with high-order discretizations while preserving accuracy. Simulations of the Last Chance wildfire demonstrate additional benefits of high-order accurate level-set algorithms when dealing with complex fuel heterogeneities, enabling propagation across narrow fuel gaps and more accurate fire backing over the lee side of no fuel clusters.

  9. An evaluation of computer assisted clinical classification algorithms.

    PubMed

    Chute, C G; Yang, Y; Buntrock, J

    1994-01-01

    The Mayo Clinic has a long tradition of indexing patient records in high resolution and volume. Several algorithms have been developed which promise to help human coders in the classification process. We evaluate variations on code browsers and free text indexing systems with respect to their speed and error rates in our production environment. The more sophisticated indexing systems save measurable time in the coding process, but suffer from incompleteness which requires a back-up system or human verification. Expert Network does the best job of rank ordering clinical text, potentially enabling the creation of thresholds for the pass through of computer coded data without human review.

  10. Dynamic programming and graph algorithms in computer vision.

    PubMed

    Felzenszwalb, Pedro F; Zabih, Ramin

    2011-04-01

    Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial guarantees concerning solution quality. In this paper, we review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo, the mid-level problem of interactive object segmentation, and the high-level problem of model-based recognition.

  11. A fast algorithm for multiscale electromagnetic problems using interpolative decomposition and multilevel fast multipole algorithm

    NASA Astrophysics Data System (ADS)

    Pan, Xiao-Min; Wei, Jian-Gong; Peng, Zhen; Sheng, Xin-Qing

    2012-02-01

    The interpolative decomposition (ID) is combined with the multilevel fast multipole algorithm (MLFMA), denoted by ID-MLFMA, to handle multiscale problems. The ID-MLFMA first generates ID levels by recursively dividing the boxes at the finest MLFMA level into smaller boxes. It is specifically shown that near-field interactions with respect to the MLFMA, in the form of the matrix vector multiplication (MVM), are efficiently approximated at the ID levels. Meanwhile, computations on far-field interactions at the MLFMA levels remain unchanged. Only a small portion of matrix entries are required to approximate coupling among well-separated boxes at the ID levels, and these submatrices can be filled without computing the complete original coupling matrix. It follows that the matrix filling in the ID-MLFMA becomes much less expensive. The memory consumed is thus greatly reduced and the MVM is accelerated as well. Several factors that may influence the accuracy, efficiency and reliability of the proposed ID-MLFMA are investigated by numerical experiments. Complex targets are calculated to demonstrate the capability of the ID-MLFMA algorithm.

  12. A Fast Full Tensor Gravity computation algorithm for High Resolution 3D Geologic Interpretations

    NASA Astrophysics Data System (ADS)

    Jayaram, V.; Crain, K.; Keller, G. R.

    2011-12-01

    We present an algorithm to rapidly calculate the vertical gravity and full tensor gravity (FTG) values due to a 3-D geologic model. This algorithm can be implemented on single, multi-core CPU and graphical processing units (GPU) architectures. Our technique is based on the line element approximation with a constant density within each grid cell. This type of parameterization is well suited for high-resolution elevation datasets with grid size typically in the range of 1m to 30m. The large high-resolution data grids in our studies employ a pre-filtered mipmap pyramid type representation for the grid data known as the Geometry clipmap. The clipmap was first introduced by Microsoft Research in 2004 to do fly-through terrain visualization. This method caches nested rectangular extents of down-sampled data layers in the pyramid to create view-dependent calculation scheme. Together with the simple grid structure, this allows the gravity to be computed conveniently on-the-fly, or stored in a highly compressed format. Neither of these capabilities has previously been available. Our approach can perform rapid calculations on large topographies including crustal-scale models derived from complex geologic interpretations. For example, we used a 1KM Sphere model consisting of 105000 cells at 10m resolution with 100000 gravity stations. The line element approach took less than 90 seconds to compute the FTG and vertical gravity on an Intel Core i7 CPU at 3.07 GHz utilizing just its single core. Also, unlike traditional gravity computational algorithms, the line-element approach can calculate gravity effects at locations interior or exterior to the model. The only condition that must be met is the observation point cannot be located directly above the line element. Therefore, we perform a location test and then apply appropriate formulation to those data points. We will present and compare the computational performance of the traditional prism method versus the line element

  13. Fast parallel molecular algorithms for DNA-based computation: solving the elliptic curve discrete logarithm problem over GF2.

    PubMed

    Li, Kenli; Zou, Shuting; Xv, Jin

    2008-01-01

    Elliptic curve cryptographic algorithms convert input data to unrecognizable encryption and the unrecognizable data back again into its original decrypted form. The security of this form of encryption hinges on the enormous difficulty that is required to solve the elliptic curve discrete logarithm problem (ECDLP), especially over GF(2(n)), n in Z+. This paper describes an effective method to find solutions to the ECDLP by means of a molecular computer. We propose that this research accomplishment would represent a breakthrough for applied biological computation and this paper demonstrates that in principle this is possible. Three DNA-based algorithms: a parallel adder, a parallel multiplier, and a parallel inverse over GF(2(n)) are described. The biological operation time of all of these algorithms is polynomial with respect to n. Considering this analysis, cryptography using a public key might be less secure. In this respect, a principal contribution of this paper is to provide enhanced evidence of the potential of molecular computing to tackle such ambitious computations.

  14. Generalization of the Lord-Wingersky Algorithm to Computing the Distribution of Summed Test Scores Based on Real-Number Item Scores

    ERIC Educational Resources Information Center

    Kim, Seonghoon

    2013-01-01

    With known item response theory (IRT) item parameters, Lord and Wingersky provided a recursive algorithm for computing the conditional frequency distribution of number-correct test scores, given proficiency. This article presents a generalized algorithm for computing the conditional distribution of summed test scores involving real-number item…

  15. Comparative phyloinformatics of virus genes at micro and macro levels in a distributed computing environment.

    PubMed

    Singh, Dadabhai T; Trehan, Rahul; Schmidt, Bertil; Bretschneider, Timo

    2008-01-01

    Preparedness for a possible global pandemic caused by viruses such as the highly pathogenic influenza A subtype H5N1 has become a global priority. In particular, it is critical to monitor the appearance of any new emerging subtypes. Comparative phyloinformatics can be used to monitor, analyze, and possibly predict the evolution of viruses. However, in order to utilize the full functionality of available analysis packages for large-scale phyloinformatics studies, a team of computer scientists, biostatisticians and virologists is needed--a requirement which cannot be fulfilled in many cases. Furthermore, the time complexities of many algorithms involved leads to prohibitive runtimes on sequential computer platforms. This has so far hindered the use of comparative phyloinformatics as a commonly applied tool in this area. In this paper the graphical-oriented workflow design system called Quascade and its efficient usage for comparative phyloinformatics are presented. In particular, we focus on how this task can be effectively performed in a distributed computing environment. As a proof of concept, the designed workflows are used for the phylogenetic analysis of neuraminidase of H5N1 isolates (micro level) and influenza viruses (macro level). The results of this paper are hence twofold. Firstly, this paper demonstrates the usefulness of a graphical user interface system to design and execute complex distributed workflows for large-scale phyloinformatics studies of virus genes. Secondly, the analysis of neuraminidase on different levels of complexity provides valuable insights of this virus's tendency for geographical based clustering in the phylogenetic tree and also shows the importance of glycan sites in its molecular evolution. The current study demonstrates the efficiency and utility of workflow systems providing a biologist friendly approach to complex biological dataset analysis using high performance computing. In particular, the utility of the platform Quascade

  16. Un algorithme efficace d'intégration plastique pour un matériau obéissant au critère anisotrope de Hill

    NASA Astrophysics Data System (ADS)

    Titeux, Isabelle; Li, Yuming M.; Debray, Karl; Guo, Ying-Qiao

    2004-11-01

    This Note deals with an efficient algorithm to carry out the plastic integration and compute the stresses due to large strains for materials satisfying the Hill's anisotropic yield criterion. The classical algorithm of plastic integration such as 'Return Mapping Method' is largely used for nonlinear analyses of structures and numerical simulations of forming processes, but it requires an iterative schema and may have convergence problems. A new direct algorithm based on a scalar method is developed which allows us to directly obtain the plastic multiplier without an iteration procedure; thus the computation time is largely reduced and the numerical problems are avoided. To cite this article: I. Titeux et al., C. R. Mecanique 332 (2004).

  17. ReSeqTools: an integrated toolkit for large-scale next-generation sequencing based resequencing analysis.

    PubMed

    He, W; Zhao, S; Liu, X; Dong, S; Lv, J; Liu, D; Wang, J; Meng, Z

    2013-12-04

    Large-scale next-generation sequencing (NGS)-based resequencing detects sequence variations, constructs evolutionary histories, and identifies phenotype-related genotypes. However, NGS-based resequencing studies generate extraordinarily large amounts of data, making computations difficult. Effective use and analysis of these data for NGS-based resequencing studies remains a difficult task for individual researchers. Here, we introduce ReSeqTools, a full-featured toolkit for NGS (Illumina sequencing)-based resequencing analysis, which processes raw data, interprets mapping results, and identifies and annotates sequence variations. ReSeqTools provides abundant scalable functions for routine resequencing analysis in different modules to facilitate customization of the analysis pipeline. ReSeqTools is designed to use compressed data files as input or output to save storage space and facilitates faster and more computationally efficient large-scale resequencing studies in a user-friendly manner. It offers abundant practical functions and generates useful statistics during the analysis pipeline, which significantly simplifies resequencing analysis. Its integrated algorithms and abundant sub-functions provide a solid foundation for special demands in resequencing projects. Users can combine these functions to construct their own pipelines for other purposes.

  18. Parallel computation of level set method for 500 Hz visual servo control

    NASA Astrophysics Data System (ADS)

    Fei, Xianfeng; Igarashi, Yasunobu; Hashimoto, Koichi

    2008-11-01

    We propose a 2D microorganism tracking system using a parallel level set method and a column parallel vision system (CPV). This system keeps a single microorganism in the middle of the visual field under a microscope by visual servoing an automated stage. We propose a new energy function for the level set method. This function constrains an amount of light intensity inside the detected object contour to control the number of the detected objects. This algorithm is implemented in CPV system and computational time for each frame is 2 [ms], approximately. A tracking experiment for about 25 s is demonstrated. Also we demonstrate a single paramecium can be kept tracking even if other paramecia appear in the visual field and contact with the tracked paramecium.

  19. Novel Fluorescein Angiography-Based Computer-Aided Algorithm for Assessment of Retinal Vessel Permeability

    PubMed Central

    Chassidim, Yoash; Parmet, Yisrael; Tomkins, Oren; Knyazer, Boris; Friedman, Alon; Levy, Jaime

    2013-01-01

    Purpose To present a novel method for quantitative assessment of retinal vessel permeability using a fluorescein angiography-based computer algorithm. Methods Twenty-one subjects (13 with diabetic retinopathy, 8 healthy volunteers) underwent fluorescein angiography (FA). Image pre-processing included removal of non-retinal and noisy images and registration to achieve spatial and temporal pixel-based analysis. Permeability was assessed for each pixel by computing intensity kinetics normalized to arterial values. A linear curve was fitted and the slope value was assigned, color-coded and displayed. The initial FA studies and the computed permeability maps were interpreted in a masked and randomized manner by three experienced ophthalmologists for statistical validation of diagnosis accuracy and efficacy. Results Permeability maps were successfully generated for all subjects. For healthy volunteers permeability values showed a normal distribution with a comparable range between subjects. Based on the mean cumulative histogram for the healthy population a threshold (99.5%) for pathological permeability was determined. Clear differences were found between patients and healthy subjects in the number and spatial distribution of pixels with pathological vascular leakage. The computed maps improved the discrimination between patients and healthy subjects, achieved sensitivity and specificity of 0.974 and 0.833 respectively, and significantly improved the consensus among raters for the localization of pathological regions. Conclusion The new algorithm allows quantification of retinal vessel permeability and provides objective, more sensitive and accurate evaluation than the present subjective clinical diagnosis. Future studies with a larger patients’ cohort and different retinal pathologies are awaited to further validate this new approach and its role in diagnosis and treatment follow-up. Successful evaluation of vasculature permeability may be used for the early

  20. A Mathematical Model and Algorithm for Routing Air Traffic Under Weather Uncertainty

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.

    2016-01-01

    A central challenge in managing today's commercial en route air traffic is the task of routing the aircraft in the presence of adverse weather. Such weather can make regions of the airspace unusable, so all affected flights must be re-routed. Today this task is carried out by conference and negotiation between human air traffic controllers (ATC) responsible for the involved sectors of the airspace. One can argue that, in so doing, ATC try to solve an optimization problem without giving it a precise quantitative formulation. Such a formulation gives the mathematical machinery for constructing and verifying algorithms that are aimed at solving the problem. This paper contributes one such formulation and a corresponding algorithm. The algorithm addresses weather uncertainty and has closed form, which allows transparent analysis of correctness, realism, and computational costs.

  1. Ontological Problem-Solving Framework for Assigning Sensor Systems and Algorithms to High-Level Missions

    PubMed Central

    Qualls, Joseph; Russomanno, David J.

    2011-01-01

    The lack of knowledge models to represent sensor systems, algorithms, and missions makes opportunistically discovering a synthesis of systems and algorithms that can satisfy high-level mission specifications impractical. A novel ontological problem-solving framework has been designed that leverages knowledge models describing sensors, algorithms, and high-level missions to facilitate automated inference of assigning systems to subtasks that may satisfy a given mission specification. To demonstrate the efficacy of the ontological problem-solving architecture, a family of persistence surveillance sensor systems and algorithms has been instantiated in a prototype environment to demonstrate the assignment of systems to subtasks of high-level missions. PMID:22164081

  2. Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation.

    PubMed

    Tomazou, Marios; Barahona, Mauricio; Polizzi, Karen M; Stan, Guy-Bart

    2018-04-25

    To perform well in biotechnology applications, synthetic genetic oscillators must be engineered to allow independent modulation of amplitude and period. This need is currently unmet. Here, we demonstrate computationally how two classic genetic oscillators, the dual-feedback oscillator and the repressilator, can be re-designed to provide independent control of amplitude and period and improve tunability-that is, a broad dynamic range of periods and amplitudes accessible through the input "dials." Our approach decouples frequency and amplitude modulation by incorporating an orthogonal "sink module" where the key molecular species are channeled for enzymatic degradation. This sink module maintains fast oscillation cycles while alleviating the translational coupling between the oscillator's transcription factors and output. We characterize the behavior of our re-designed oscillators over a broad range of physiologically reasonable parameters, explain why this facilitates broader function and control, and provide general design principles for building synthetic genetic oscillators that are more precisely controllable. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Dynamic Programming and Graph Algorithms in Computer Vision*

    PubMed Central

    Felzenszwalb, Pedro F.; Zabih, Ramin

    2013-01-01

    Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting, since by carefully exploiting problem structure they often provide non-trivial guarantees concerning solution quality. In this paper we briefly review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo; the mid-level problem of interactive object segmentation; and the high-level problem of model-based recognition. PMID:20660950

  4. POSE Algorithms for Automated Docking

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Howard, Richard T.

    2011-01-01

    POSE (relative position and attitude) can be computed in many different ways. Given a sensor that measures bearing to a finite number of spots corresponding to known features (such as a target) of a spacecraft, a number of different algorithms can be used to compute the POSE. NASA has sponsored the development of a flash LIDAR proximity sensor called the Vision Navigation Sensor (VNS) for use by the Orion capsule in future docking missions. This sensor generates data that can be used by a variety of algorithms to compute POSE solutions inside of 15 meters, including at the critical docking range of approximately 1-2 meters. Previously NASA participated in a DARPA program called Orbital Express that achieved the first automated docking for the American space program. During this mission a large set of high quality mated sensor data was obtained at what is essentially the docking distance. This data set is perhaps the most accurate truth data in existence for docking proximity sensors in orbit. In this paper, the flight data from Orbital Express is used to test POSE algorithms at 1.22 meters range. Two different POSE algorithms are tested for two different Fields-of-View (FOVs) and two different pixel noise levels. The results of the analysis are used to predict future performance of the POSE algorithms with VNS data.

  5. A simple computational algorithm of model-based choice preference.

    PubMed

    Toyama, Asako; Katahira, Kentaro; Ohira, Hideki

    2017-08-01

    A broadly used computational framework posits that two learning systems operate in parallel during the learning of choice preferences-namely, the model-free and model-based reinforcement-learning systems. In this study, we examined another possibility, through which model-free learning is the basic system and model-based information is its modulator. Accordingly, we proposed several modified versions of a temporal-difference learning model to explain the choice-learning process. Using the two-stage decision task developed by Daw, Gershman, Seymour, Dayan, and Dolan (2011), we compared their original computational model, which assumes a parallel learning process, and our proposed models, which assume a sequential learning process. Choice data from 23 participants showed a better fit with the proposed models. More specifically, the proposed eligibility adjustment model, which assumes that the environmental model can weight the degree of the eligibility trace, can explain choices better under both model-free and model-based controls and has a simpler computational algorithm than the original model. In addition, the forgetting learning model and its variation, which assume changes in the values of unchosen actions, substantially improved the fits to the data. Overall, we show that a hybrid computational model best fits the data. The parameters used in this model succeed in capturing individual tendencies with respect to both model use in learning and exploration behavior. This computational model provides novel insights into learning with interacting model-free and model-based components.

  6. Coordinate Systems, Numerical Objects and Algorithmic Operations of Computational Experiment in Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Degtyarev, Alexander; Khramushin, Vasily

    2016-02-01

    The paper deals with the computer implementation of direct computational experiments in fluid mechanics, constructed on the basis of the approach developed by the authors. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the effciency of the algorithms developed by numerical procedures with natural parallelism. The paper examines the main objects and operations that let you manage computational experiments and monitor the status of the computation process. Special attention is given to a) realization of tensor representations of numerical schemes for direct simulation; b) realization of representation of large particles of a continuous medium motion in two coordinate systems (global and mobile); c) computing operations in the projections of coordinate systems, direct and inverse transformation in these systems. Particular attention is paid to the use of hardware and software of modern computer systems.

  7. Algorithms and Heuristics for Time-Window-Constrained Traveling Salesman Problems.

    DTIC Science & Technology

    1985-09-01

    w-r.- v-- n - ,u-,, u- v-v-.: .r-r-ri v-. r, - t -. \\ _ . . . S :.:, 1 .J - 1 5 ,*’:: C - V * t_ t. . 4’ *,W Ii NAVAL POSTGRADUATE SCHOOL Monterey...q- -- Computational experience is re- ported for all the heuristics and algorithms we develop. DD IFOAN3 1473 EDITION OF I NOV 65 IS OBSOLETE N ...Approved by Ri .R n ~~Advisor Ric E... a, R. shencSo deader A-lan R. Washburn Chairman, -~ Department of Operaiions Research Knealg--.T _ yarshall

  8. Vectorized algorithms for spiking neural network simulation.

    PubMed

    Brette, Romain; Goodman, Dan F M

    2011-06-01

    High-level languages (Matlab, Python) are popular in neuroscience because they are flexible and accelerate development. However, for simulating spiking neural networks, the cost of interpretation is a bottleneck. We describe a set of algorithms to simulate large spiking neural networks efficiently with high-level languages using vector-based operations. These algorithms constitute the core of Brian, a spiking neural network simulator written in the Python language. Vectorized simulation makes it possible to combine the flexibility of high-level languages with the computational efficiency usually associated with compiled languages.

  9. Domain decomposition algorithms and computation fluid dynamics

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.

    1988-01-01

    In the past several years, domain decomposition was a very popular topic, partly motivated by the potential of parallelization. While a large body of theory and algorithms were developed for model elliptic problems, they are only recently starting to be tested on realistic applications. The application of some of these methods to two model problems in computational fluid dynamics are investigated. Some examples are two dimensional convection-diffusion problems and the incompressible driven cavity flow problem. The construction and analysis of efficient preconditioners for the interface operator to be used in the iterative solution of the interface solution is described. For the convection-diffusion problems, the effect of the convection term and its discretization on the performance of some of the preconditioners is discussed. For the driven cavity problem, the effectiveness of a class of boundary probe preconditioners is discussed.

  10. Highly Scalable Matching Pursuit Signal Decomposition Algorithm

    NASA Technical Reports Server (NTRS)

    Christensen, Daniel; Das, Santanu; Srivastava, Ashok N.

    2009-01-01

    Matching Pursuit Decomposition (MPD) is a powerful iterative algorithm for signal decomposition and feature extraction. MPD decomposes any signal into linear combinations of its dictionary elements or atoms . A best fit atom from an arbitrarily defined dictionary is determined through cross-correlation. The selected atom is subtracted from the signal and this procedure is repeated on the residual in the subsequent iterations until a stopping criterion is met. The reconstructed signal reveals the waveform structure of the original signal. However, a sufficiently large dictionary is required for an accurate reconstruction; this in return increases the computational burden of the algorithm, thus limiting its applicability and level of adoption. The purpose of this research is to improve the scalability and performance of the classical MPD algorithm. Correlation thresholds were defined to prune insignificant atoms from the dictionary. The Coarse-Fine Grids and Multiple Atom Extraction techniques were proposed to decrease the computational burden of the algorithm. The Coarse-Fine Grids method enabled the approximation and refinement of the parameters for the best fit atom. The ability to extract multiple atoms within a single iteration enhanced the effectiveness and efficiency of each iteration. These improvements were implemented to produce an improved Matching Pursuit Decomposition algorithm entitled MPD++. Disparate signal decomposition applications may require a particular emphasis of accuracy or computational efficiency. The prominence of the key signal features required for the proper signal classification dictates the level of accuracy necessary in the decomposition. The MPD++ algorithm may be easily adapted to accommodate the imposed requirements. Certain feature extraction applications may require rapid signal decomposition. The full potential of MPD++ may be utilized to produce incredible performance gains while extracting only slightly less energy than the

  11. An efficient dynamic load balancing algorithm

    NASA Astrophysics Data System (ADS)

    Lagaros, Nikos D.

    2014-01-01

    In engineering problems, randomness and uncertainties are inherent. Robust design procedures, formulated in the framework of multi-objective optimization, have been proposed in order to take into account sources of randomness and uncertainty. These design procedures require orders of magnitude more computational effort than conventional analysis or optimum design processes since a very large number of finite element analyses is required to be dealt. It is therefore an imperative need to exploit the capabilities of computing resources in order to deal with this kind of problems. In particular, parallel computing can be implemented at the level of metaheuristic optimization, by exploiting the physical parallelization feature of the nondominated sorting evolution strategies method, as well as at the level of repeated structural analyses required for assessing the behavioural constraints and for calculating the objective functions. In this study an efficient dynamic load balancing algorithm for optimum exploitation of available computing resources is proposed and, without loss of generality, is applied for computing the desired Pareto front. In such problems the computation of the complete Pareto front with feasible designs only, constitutes a very challenging task. The proposed algorithm achieves linear speedup factors and almost 100% speedup factor values with reference to the sequential procedure.

  12. An efficient parallel termination detection algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, A. H.; Crivelli, S.; Jessup, E. R.

    2004-05-27

    Information local to any one processor is insufficient to monitor the overall progress of most distributed computations. Typically, a second distributed computation for detecting termination of the main computation is necessary. In order to be a useful computational tool, the termination detection routine must operate concurrently with the main computation, adding minimal overhead, and it must promptly and correctly detect termination when it occurs. In this paper, we present a new algorithm for detecting the termination of a parallel computation on distributed-memory MIMD computers that satisfies all of those criteria. A variety of termination detection algorithms have been devised. Ofmore » these, the algorithm presented by Sinha, Kale, and Ramkumar (henceforth, the SKR algorithm) is unique in its ability to adapt to the load conditions of the system on which it runs, thereby minimizing the impact of termination detection on performance. Because their algorithm also detects termination quickly, we consider it to be the most efficient practical algorithm presently available. The termination detection algorithm presented here was developed for use in the PMESC programming library for distributed-memory MIMD computers. Like the SKR algorithm, our algorithm adapts to system loads and imposes little overhead. Also like the SKR algorithm, ours is tree-based, and it does not depend on any assumptions about the physical interconnection topology of the processors or the specifics of the distributed computation. In addition, our algorithm is easier to implement and requires only half as many tree traverses as does the SKR algorithm. This paper is organized as follows. In section 2, we define our computational model. In section 3, we review the SKR algorithm. We introduce our new algorithm in section 4, and prove its correctness in section 5. We discuss its efficiency and present experimental results in section 6.« less

  13. DNA Cryptography and Deep Learning using Genetic Algorithm with NW algorithm for Key Generation.

    PubMed

    Kalsi, Shruti; Kaur, Harleen; Chang, Victor

    2017-12-05

    Cryptography is not only a science of applying complex mathematics and logic to design strong methods to hide data called as encryption, but also to retrieve the original data back, called decryption. The purpose of cryptography is to transmit a message between a sender and receiver such that an eavesdropper is unable to comprehend it. To accomplish this, not only we need a strong algorithm, but a strong key and a strong concept for encryption and decryption process. We have introduced a concept of DNA Deep Learning Cryptography which is defined as a technique of concealing data in terms of DNA sequence and deep learning. In the cryptographic technique, each alphabet of a letter is converted into a different combination of the four bases, namely; Adenine (A), Cytosine (C), Guanine (G) and Thymine (T), which make up the human deoxyribonucleic acid (DNA). Actual implementations with the DNA don't exceed laboratory level and are expensive. To bring DNA computing on a digital level, easy and effective algorithms are proposed in this paper. In proposed work we have introduced firstly, a method and its implementation for key generation based on the theory of natural selection using Genetic Algorithm with Needleman-Wunsch (NW) algorithm and Secondly, a method for implementation of encryption and decryption based on DNA computing using biological operations Transcription, Translation, DNA Sequencing and Deep Learning.

  14. Cloud identification using genetic algorithms and massively parallel computation

    NASA Technical Reports Server (NTRS)

    Buckles, Bill P.; Petry, Frederick E.

    1996-01-01

    As a Guest Computational Investigator under the NASA administered component of the High Performance Computing and Communication Program, we implemented a massively parallel genetic algorithm on the MasPar SIMD computer. Experiments were conducted using Earth Science data in the domains of meteorology and oceanography. Results obtained in these domains are competitive with, and in most cases better than, similar problems solved using other methods. In the meteorological domain, we chose to identify clouds using AVHRR spectral data. Four cloud speciations were used although most researchers settle for three. Results were remarkedly consistent across all tests (91% accuracy). Refinements of this method may lead to more timely and complete information for Global Circulation Models (GCMS) that are prevalent in weather forecasting and global environment studies. In the oceanographic domain, we chose to identify ocean currents from a spectrometer having similar characteristics to AVHRR. Here the results were mixed (60% to 80% accuracy). Given that one is willing to run the experiment several times (say 10), then it is acceptable to claim the higher accuracy rating. This problem has never been successfully automated. Therefore, these results are encouraging even though less impressive than the cloud experiment. Successful conclusion of an automated ocean current detection system would impact coastal fishing, naval tactics, and the study of micro-climates. Finally we contributed to the basic knowledge of GA (genetic algorithm) behavior in parallel environments. We developed better knowledge of the use of subpopulations in the context of shared breeding pools and the migration of individuals. Rigorous experiments were conducted based on quantifiable performance criteria. While much of the work confirmed current wisdom, for the first time we were able to submit conclusive evidence. The software developed under this grant was placed in the public domain. An extensive user

  15. Highly efficient computer algorithm for identifying layer thickness of atomically thin 2D materials

    NASA Astrophysics Data System (ADS)

    Lee, Jekwan; Cho, Seungwan; Park, Soohyun; Bae, Hyemin; Noh, Minji; Kim, Beom; In, Chihun; Yang, Seunghoon; Lee, Sooun; Seo, Seung Young; Kim, Jehyun; Lee, Chul-Ho; Shim, Woo-Young; Jo, Moon-Ho; Kim, Dohun; Choi, Hyunyong

    2018-03-01

    The fields of layered material research, such as transition-metal dichalcogenides (TMDs), have demonstrated that the optical, electrical and mechanical properties strongly depend on the layer number N. Thus, efficient and accurate determination of N is the most crucial step before the associated device fabrication. An existing experimental technique using an optical microscope is the most widely used one to identify N. However, a critical drawback of this approach is that it relies on extensive laboratory experiences to estimate N; it requires a very time-consuming image-searching task assisted by human eyes and secondary measurements such as atomic force microscopy and Raman spectroscopy, which are necessary to ensure N. In this work, we introduce a computer algorithm based on the image analysis of a quantized optical contrast. We show that our algorithm can apply to a wide variety of layered materials, including graphene, MoS2, and WS2 regardless of substrates. The algorithm largely consists of two parts. First, it sets up an appropriate boundary between target flakes and substrate. Second, to compute N, it automatically calculates the optical contrast using an adaptive RGB estimation process between each target, which results in a matrix with different integer Ns and returns a matrix map of Ns onto the target flake position. Using a conventional desktop computational power, the time taken to display the final N matrix was 1.8 s on average for the image size of 1280 pixels by 960 pixels and obtained a high accuracy of 90% (six estimation errors among 62 samples) when compared to the other methods. To show the effectiveness of our algorithm, we also apply it to TMD flakes transferred on optically transparent c-axis sapphire substrates and obtain a similar result of the accuracy of 94% (two estimation errors among 34 samples).

  16. Landmark-Based Drift Compensation Algorithm for Inertial Pedestrian Navigation

    PubMed Central

    Munoz Diaz, Estefania; Caamano, Maria; Fuentes Sánchez, Francisco Javier

    2017-01-01

    The navigation of pedestrians based on inertial sensors, i.e., accelerometers and gyroscopes, has experienced a great growth over the last years. However, the noise of medium- and low-cost sensors causes a high error in the orientation estimation, particularly in the yaw angle. This error, called drift, is due to the bias of the z-axis gyroscope and other slow changing errors, such as temperature variations. We propose a seamless landmark-based drift compensation algorithm that only uses inertial measurements. The proposed algorithm adds a great value to the state of the art, because the vast majority of the drift elimination algorithms apply corrections to the estimated position, but not to the yaw angle estimation. Instead, the presented algorithm computes the drift value and uses it to prevent yaw errors and therefore position errors. In order to achieve this goal, a detector of landmarks, i.e., corners and stairs, and an association algorithm have been developed. The results of the experiments show that it is possible to reliably detect corners and stairs using only inertial measurements eliminating the need that the user takes any action, e.g., pressing a button. Associations between re-visited landmarks are successfully made taking into account the uncertainty of the position. After that, the drift is computed out of all associations and used during a post-processing stage to obtain a low-drifted yaw angle estimation, that leads to successfully drift compensated trajectories. The proposed algorithm has been tested with quasi-error-free turn rate measurements introducing known biases and with medium-cost gyroscopes in 3D indoor and outdoor scenarios. PMID:28671622

  17. Exploiting Genomic Knowledge in Optimising Molecular Breeding Programmes: Algorithms from Evolutionary Computing

    PubMed Central

    O'Hagan, Steve; Knowles, Joshua; Kell, Douglas B.

    2012-01-01

    Comparatively few studies have addressed directly the question of quantifying the benefits to be had from using molecular genetic markers in experimental breeding programmes (e.g. for improved crops and livestock), nor the question of which organisms should be mated with each other to best effect. We argue that this requires in silico modelling, an approach for which there is a large literature in the field of evolutionary computation (EC), but which has not really been applied in this way to experimental breeding programmes. EC seeks to optimise measurable outcomes (phenotypic fitnesses) by optimising in silico the mutation, recombination and selection regimes that are used. We review some of the approaches from EC, and compare experimentally, using a biologically relevant in silico landscape, some algorithms that have knowledge of where they are in the (genotypic) search space (G-algorithms) with some (albeit well-tuned ones) that do not (F-algorithms). For the present kinds of landscapes, F- and G-algorithms were broadly comparable in quality and effectiveness, although we recognise that the G-algorithms were not equipped with any ‘prior knowledge’ of epistatic pathway interactions. This use of algorithms based on machine learning has important implications for the optimisation of experimental breeding programmes in the post-genomic era when we shall potentially have access to the full genome sequence of every organism in a breeding population. The non-proprietary code that we have used is made freely available (via Supplementary information). PMID:23185279

  18. A POSTERIORI ERROR ANALYSIS OF TWO STAGE COMPUTATION METHODS WITH APPLICATION TO EFFICIENT DISCRETIZATION AND THE PARAREAL ALGORITHM.

    PubMed

    Chaudhry, Jehanzeb Hameed; Estep, Don; Tavener, Simon; Carey, Varis; Sandelin, Jeff

    2016-01-01

    We consider numerical methods for initial value problems that employ a two stage approach consisting of solution on a relatively coarse discretization followed by solution on a relatively fine discretization. Examples include adaptive error control, parallel-in-time solution schemes, and efficient solution of adjoint problems for computing a posteriori error estimates. We describe a general formulation of two stage computations then perform a general a posteriori error analysis based on computable residuals and solution of an adjoint problem. The analysis accommodates various variations in the two stage computation and in formulation of the adjoint problems. We apply the analysis to compute "dual-weighted" a posteriori error estimates, to develop novel algorithms for efficient solution that take into account cancellation of error, and to the Parareal Algorithm. We test the various results using several numerical examples.

  19. Interactomes to Biological Phase Space: a call to begin thinking at a new level in computational biology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, George S.; Brown, William Michael

    2007-09-01

    Techniques for high throughput determinations of interactomes, together with high resolution protein collocalizations maps within organelles and through membranes will soon create a vast resource. With these data, biological descriptions, akin to the high dimensional phase spaces familiar to physicists, will become possible. These descriptions will capture sufficient information to make possible realistic, system-level models of cells. The descriptions and the computational models they enable will require powerful computing techniques. This report is offered as a call to the computational biology community to begin thinking at this scale and as a challenge to develop the required algorithms and codes tomore » make use of the new data.3« less

  20. Knowledge-based low-level image analysis for computer vision systems

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.; Baxi, Himanshu; Ranganath, M. V.

    1988-01-01

    Two algorithms for entry-level image analysis and preliminary segmentation are proposed which are flexible enough to incorporate local properties of the image. The first algorithm involves pyramid-based multiresolution processing and a strategy to define and use interlevel and intralevel link strengths. The second algorithm, which is designed for selected window processing, extracts regions adaptively using local histograms. The preliminary segmentation and a set of features are employed as the input to an efficient rule-based low-level analysis system, resulting in suboptimal meaningful segmentation.

  1. A review on quantum search algorithms

    NASA Astrophysics Data System (ADS)

    Giri, Pulak Ranjan; Korepin, Vladimir E.

    2017-12-01

    The use of superposition of states in quantum computation, known as quantum parallelism, has significant advantage in terms of speed over the classical computation. It is evident from the early invented quantum algorithms such as Deutsch's algorithm, Deutsch-Jozsa algorithm and its variation as Bernstein-Vazirani algorithm, Simon algorithm, Shor's algorithms, etc. Quantum parallelism also significantly speeds up the database search algorithm, which is important in computer science because it comes as a subroutine in many important algorithms. Quantum database search of Grover achieves the task of finding the target element in an unsorted database in a time quadratically faster than the classical computer. We review Grover's quantum search algorithms for a singe and multiple target elements in a database. The partial search algorithm of Grover and Radhakrishnan and its optimization by Korepin called GRK algorithm are also discussed.

  2. Implementation of Automatic Focusing Algorithms for a Computer Vision System with Camera Control.

    DTIC Science & Technology

    1983-08-15

    obtainable from real data, rather than relying on a stock database. Often, computer vision and image processing algorithms become subconsciously tuned to...two coils on the same mount structure. Since it was not possible to reprogram the binary system, we turned to the POPEYE system for both its grey

  3. Experimental realization of a one-way quantum computer algorithm solving Simon's problem.

    PubMed

    Tame, M S; Bell, B A; Di Franco, C; Wadsworth, W J; Rarity, J G

    2014-11-14

    We report an experimental demonstration of a one-way implementation of a quantum algorithm solving Simon's problem-a black-box period-finding problem that has an exponential gap between the classical and quantum runtime. Using an all-optical setup and modifying the bases of single-qubit measurements on a five-qubit cluster state, key representative functions of the logical two-qubit version's black box can be queried and solved. To the best of our knowledge, this work represents the first experimental realization of the quantum algorithm solving Simon's problem. The experimental results are in excellent agreement with the theoretical model, demonstrating the successful performance of the algorithm. With a view to scaling up to larger numbers of qubits, we analyze the resource requirements for an n-qubit version. This work helps highlight how one-way quantum computing provides a practical route to experimentally investigating the quantum-classical gap in the query complexity model.

  4. Algorithms for computing solvents of unilateral second-order matrix polynomials over prime finite fields using lambda-matrices

    NASA Astrophysics Data System (ADS)

    Burtyka, Filipp

    2018-01-01

    The paper considers algorithms for finding diagonalizable and non-diagonalizable roots (so called solvents) of monic arbitrary unilateral second-order matrix polynomial over prime finite field. These algorithms are based on polynomial matrices (lambda-matrices). This is an extension of existing general methods for computing solvents of matrix polynomials over field of complex numbers. We analyze how techniques for complex numbers can be adapted for finite field and estimate asymptotic complexity of the obtained algorithms.

  5. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms.

    PubMed

    Altazi, Baderaldeen A; Zhang, Geoffrey G; Fernandez, Daniel C; Montejo, Michael E; Hunt, Dylan; Werner, Joan; Biagioli, Matthew C; Moros, Eduardo G

    2017-11-01

    Site-specific investigations of the role of radiomics in cancer diagnosis and therapy are emerging. We evaluated the reproducibility of radiomic features extracted from 18 Flourine-fluorodeoxyglucose ( 18 F-FDG) PET images for three parameters: manual versus computer-aided segmentation methods, gray-level discretization, and PET image reconstruction algorithms. Our cohort consisted of pretreatment PET/CT scans from 88 cervical cancer patients. Two board-certified radiation oncologists manually segmented the metabolic tumor volume (MTV 1 and MTV 2 ) for each patient. For comparison, we used a graphical-based method to generate semiautomated segmented volumes (GBSV). To address any perturbations in radiomic feature values, we down-sampled the tumor volumes into three gray-levels: 32, 64, and 128 from the original gray-level of 256. Finally, we analyzed the effect on radiomic features on PET images of eight patients due to four PET 3D-reconstruction algorithms: maximum likelihood-ordered subset expectation maximization (OSEM) iterative reconstruction (IR) method, fourier rebinning-ML-OSEM (FOREIR), FORE-filtered back projection (FOREFBP), and 3D-Reprojection (3DRP) analytical method. We extracted 79 features from all segmentation method, gray-levels of down-sampled volumes, and PET reconstruction algorithms. The features were extracted using gray-level co-occurrence matrices (GLCM), gray-level size zone matrices (GLSZM), gray-level run-length matrices (GLRLM), neighborhood gray-tone difference matrices (NGTDM), shape-based features (SF), and intensity histogram features (IHF). We computed the Dice coefficient between each MTV and GBSV to measure segmentation accuracy. Coefficient values close to one indicate high agreement, and values close to zero indicate low agreement. We evaluated the effect on radiomic features by calculating the mean percentage differences (d¯) between feature values measured from each pair of parameter elements (i.e. segmentation methods: MTV

  6. Multiscale computing.

    PubMed

    Kobayashi, M; Irino, T; Sweldens, W

    2001-10-23

    Multiscale computing (MSC) involves the computation, manipulation, and analysis of information at different resolution levels. Widespread use of MSC algorithms and the discovery of important relationships between different approaches to implementation were catalyzed, in part, by the recent interest in wavelets. We present two examples that demonstrate how MSC can help scientists understand complex data. The first is from acoustical signal processing and the second is from computer graphics.

  7. A Semi-Automated Machine Learning Algorithm for Tree Cover Delineation from 1-m Naip Imagery Using a High Performance Computing Architecture

    NASA Astrophysics Data System (ADS)

    Basu, S.; Ganguly, S.; Nemani, R. R.; Mukhopadhyay, S.; Milesi, C.; Votava, P.; Michaelis, A.; Zhang, G.; Cook, B. D.; Saatchi, S. S.; Boyda, E.

    2014-12-01

    Accurate tree cover delineation is a useful instrument in the derivation of Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree cover delineation in high to coarse resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR datasets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree cover estimates for the whole of Continental United States, using a High Performance Computing Architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field (CRF), which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the state of California, which covers a total of 11,095 NAIP tiles and spans a total geographical area of 163,696 sq. miles. Our framework produced correct detection rates of around 85% for fragmented forests and 70% for urban tree cover areas, with false positive rates lower than 3% for both regions. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR high-resolution canopy height model shows the effectiveness of our algorithm in generating accurate high-resolution tree cover maps.

  8. Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study

    PubMed Central

    Rudyanto, Rina D.; Kerkstra, Sjoerd; van Rikxoort, Eva M.; Fetita, Catalin; Brillet, Pierre-Yves; Lefevre, Christophe; Xue, Wenzhe; Zhu, Xiangjun; Liang, Jianming; Öksüz, İlkay; Ünay, Devrim; Kadipaşaogandcaron;lu, Kamuran; Estépar, Raúl San José; Ross, James C.; Washko, George R.; Prieto, Juan-Carlos; Hoyos, Marcela Hernández; Orkisz, Maciej; Meine, Hans; Hüllebrand, Markus; Stöcker, Christina; Mir, Fernando Lopez; Naranjo, Valery; Villanueva, Eliseo; Staring, Marius; Xiao, Changyan; Stoel, Berend C.; Fabijanska, Anna; Smistad, Erik; Elster, Anne C.; Lindseth, Frank; Foruzan, Amir Hossein; Kiros, Ryan; Popuri, Karteek; Cobzas, Dana; Jimenez-Carretero, Daniel; Santos, Andres; Ledesma-Carbayo, Maria J.; Helmberger, Michael; Urschler, Martin; Pienn, Michael; Bosboom, Dennis G.H.; Campo, Arantza; Prokop, Mathias; de Jong, Pim A.; Ortiz-de-Solorzano, Carlos; Muñoz-Barrutia, Arrate; van Ginneken, Bram

    2016-01-01

    The VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography (CT) scans. Vessel segmentation is fundamental in computer aided processing of data generated by 3D imaging modalities. As manual vessel segmentation is prohibitively time consuming, any real world application requires some form of automation. Several approaches exist for automated vessel segmentation, but judging their relative merits is difficult due to a lack of standardized evaluation. We present an annotated reference dataset containing 20 CT scans and propose nine categories to perform a comprehensive evaluation of vessel segmentation algorithms from both academia and industry. Twenty algorithms participated in the VESSEL12 challenge, held at International Symposium on Biomedical Imaging (ISBI) 2012. All results have been published at the VESSEL12 website http://vessel12.grand-challenge.org. The challenge remains ongoing and open to new participants. Our three contributions are: (1) an annotated reference dataset available online for evaluation of new algorithms; (2) a quantitative scoring system for objective comparison of algorithms; and (3) performance analysis of the strengths and weaknesses of the various vessel segmentation methods in the presence of various lung diseases. PMID:25113321

  9. Computing Principal Eigenvectors of Large Web Graphs: Algorithms and Accelerations Related to PageRank and HITS

    ERIC Educational Resources Information Center

    Nagasinghe, Iranga

    2010-01-01

    This thesis investigates and develops a few acceleration techniques for the search engine algorithms used in PageRank and HITS computations. PageRank and HITS methods are two highly successful applications of modern Linear Algebra in computer science and engineering. They constitute the essential technologies accounted for the immense growth and…

  10. Re-parameterization of a quasi-analytical algorithm for colored dissolved organic matter dominant inland waters

    NASA Astrophysics Data System (ADS)

    Ogashawara, Igor; Mishra, Deepak R.; Nascimento, Renata F. F.; Alcântara, Enner H.; Kampel, Milton; Stech, Jose L.

    2016-12-01

    Quasi-Analytical Algorithms (QAAs) are based on radiative transfer equations and have been used to derive inherent optical properties (IOPs) from the above surface remote sensing reflectance (Rrs) in aquatic systems in which phytoplankton is the dominant optically active constituents (OACs). However, Colored Dissolved Organic Matter (CDOM) and Non Algal Particles (NAP) can also be dominant OACs in water bodies and till now a QAA has not been parametrized for these aquatic systems. In this study, we compared the performance of three widely used QAAs in two CDOM dominated aquatic systems which were unsuccessful in retrieving the spectral shape of IOPS and produced minimum errors of 350% for the total absorption coefficient (a), 39% for colored dissolved matter absorption coefficient (aCDM) and 7566.33% for phytoplankton absorption coefficient (aphy). We re-parameterized a QAA for CDOM dominated (hereafter QAACDOM) waters which was able to not only achieve the spectral shape of the OACs absorption coefficients but also brought the error magnitude to a reasonable level. The average errors found for the 400-750 nm range were 30.71 and 14.51 for a, 14.89 and 8.95 for aCDM and 25.90 and 29.76 for aphy in Funil and Itumbiara Reservoirs, Brazil respectively. Although QAACDOM showed significant promise for retrieving IOPs in CDOM dominated waters, results indicated further tuning is needed in the estimation of a(λ) and aphy(λ). Successful retrieval of the absorption coefficients by QAACDOM would be very useful in monitoring the spatio-temporal variability of IOPS in CDOM dominated waters.

  11. Dynamic programming re-ranking for PPI interactor and pair extraction in full-text articles

    PubMed Central

    2011-01-01

    Background Experimentally verified protein-protein interactions (PPIs) cannot be easily retrieved by researchers unless they are stored in PPI databases. The curation of such databases can be facilitated by employing text-mining systems to identify genes which play the interactor role in PPIs and to map these genes to unique database identifiers (interactor normalization task or INT) and then to return a list of interaction pairs for each article (interaction pair task or IPT). These two tasks are evaluated in terms of the area under curve of the interpolated precision/recall (AUC iP/R) score because the order of identifiers in the output list is important for ease of curation. Results Our INT system developed for the BioCreAtIvE II.5 INT challenge achieved a promising AUC iP/R of 43.5% by using a support vector machine (SVM)-based ranking procedure. Using our new re-ranking algorithm, we have been able to improve system performance (AUC iP/R) by 1.84%. Our experimental results also show that with the re-ranked INT results, our unsupervised IPT system can achieve a competitive AUC iP/R of 23.86%, which outperforms the best BC II.5 INT system by 1.64%. Compared to using only SVM ranked INT results, using re-ranked INT results boosts AUC iP/R by 7.84%. Statistical significance t-test results show that our INT/IPT system with re-ranking outperforms that without re-ranking by a statistically significant difference. Conclusions In this paper, we present a new re-ranking algorithm that considers co-occurrence among identifiers in an article to improve INT and IPT ranking results. Combining the re-ranked INT results with an unsupervised approach to find associations among interactors, the proposed method can boost the IPT performance. We also implement score computation using dynamic programming, which is faster and more efficient than traditional approaches. PMID:21342534

  12. Dynamic programming re-ranking for PPI interactor and pair extraction in full-text articles.

    PubMed

    Tsai, Richard Tzong-Han; Lai, Po-Ting

    2011-02-23

    Experimentally verified protein-protein interactions (PPIs) cannot be easily retrieved by researchers unless they are stored in PPI databases. The curation of such databases can be facilitated by employing text-mining systems to identify genes which play the interactor role in PPIs and to map these genes to unique database identifiers (interactor normalization task or INT) and then to return a list of interaction pairs for each article (interaction pair task or IPT). These two tasks are evaluated in terms of the area under curve of the interpolated precision/recall (AUC iP/R) score because the order of identifiers in the output list is important for ease of curation. Our INT system developed for the BioCreAtIvE II.5 INT challenge achieved a promising AUC iP/R of 43.5% by using a support vector machine (SVM)-based ranking procedure. Using our new re-ranking algorithm, we have been able to improve system performance (AUC iP/R) by 1.84%. Our experimental results also show that with the re-ranked INT results, our unsupervised IPT system can achieve a competitive AUC iP/R of 23.86%, which outperforms the best BC II.5 INT system by 1.64%. Compared to using only SVM ranked INT results, using re-ranked INT results boosts AUC iP/R by 7.84%. Statistical significance t-test results show that our INT/IPT system with re-ranking outperforms that without re-ranking by a statistically significant difference. In this paper, we present a new re-ranking algorithm that considers co-occurrence among identifiers in an article to improve INT and IPT ranking results. Combining the re-ranked INT results with an unsupervised approach to find associations among interactors, the proposed method can boost the IPT performance. We also implement score computation using dynamic programming, which is faster and more efficient than traditional approaches.

  13. Accelerating artificial intelligence with reconfigurable computing

    NASA Astrophysics Data System (ADS)

    Cieszewski, Radoslaw

    Reconfigurable computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated by placing the computationally intense portions of an algorithm into reconfigurable hardware. Reconfigurable computing combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be changed over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware. Reconfigurable systems therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Such a field, where there is many different algorithms which can be accelerated, is an artificial intelligence. This paper presents example hardware implementations of Artificial Neural Networks, Genetic Algorithms and Expert Systems.

  14. Computationally Efficient Power Allocation Algorithm in Multicarrier-Based Cognitive Radio Networks: OFDM and FBMC Systems

    NASA Astrophysics Data System (ADS)

    Shaat, Musbah; Bader, Faouzi

    2010-12-01

    Cognitive Radio (CR) systems have been proposed to increase the spectrum utilization by opportunistically access the unused spectrum. Multicarrier communication systems are promising candidates for CR systems. Due to its high spectral efficiency, filter bank multicarrier (FBMC) can be considered as an alternative to conventional orthogonal frequency division multiplexing (OFDM) for transmission over the CR networks. This paper addresses the problem of resource allocation in multicarrier-based CR networks. The objective is to maximize the downlink capacity of the network under both total power and interference introduced to the primary users (PUs) constraints. The optimal solution has high computational complexity which makes it unsuitable for practical applications and hence a low complexity suboptimal solution is proposed. The proposed algorithm utilizes the spectrum holes in PUs bands as well as active PU bands. The performance of the proposed algorithm is investigated for OFDM and FBMC based CR systems. Simulation results illustrate that the proposed resource allocation algorithm with low computational complexity achieves near optimal performance and proves the efficiency of using FBMC in CR context.

  15. Efficient Round-Trip Time Optimization for Replica-Exchange Enveloping Distribution Sampling (RE-EDS).

    PubMed

    Sidler, Dominik; Cristòfol-Clough, Michael; Riniker, Sereina

    2017-06-13

    Replica-exchange enveloping distribution sampling (RE-EDS) allows the efficient estimation of free-energy differences between multiple end-states from a single molecular dynamics (MD) simulation. In EDS, a reference state is sampled, which can be tuned by two types of parameters, i.e., smoothness parameters(s) and energy offsets, such that all end-states are sufficiently sampled. However, the choice of these parameters is not trivial. Replica exchange (RE) or parallel tempering is a widely applied technique to enhance sampling. By combining EDS with the RE technique, the parameter choice problem could be simplified and the challenge shifted toward an optimal distribution of the replicas in the smoothness-parameter space. The choice of a certain replica distribution can alter the sampling efficiency significantly. In this work, global round-trip time optimization (GRTO) algorithms are tested for the use in RE-EDS simulations. In addition, a local round-trip time optimization (LRTO) algorithm is proposed for systems with slowly adapting environments, where a reliable estimate for the round-trip time is challenging to obtain. The optimization algorithms were applied to RE-EDS simulations of a system of nine small-molecule inhibitors of phenylethanolamine N-methyltransferase (PNMT). The energy offsets were determined using our recently proposed parallel energy-offset (PEOE) estimation scheme. While the multistate GRTO algorithm yielded the best replica distribution for the ligands in water, the multistate LRTO algorithm was found to be the method of choice for the ligands in complex with PNMT. With this, the 36 alchemical free-energy differences between the nine ligands were calculated successfully from a single RE-EDS simulation 10 ns in length. Thus, RE-EDS presents an efficient method for the estimation of relative binding free energies.

  16. cOSPREY: A Cloud-Based Distributed Algorithm for Large-Scale Computational Protein Design

    PubMed Central

    Pan, Yuchao; Dong, Yuxi; Zhou, Jingtian; Hallen, Mark; Donald, Bruce R.; Xu, Wei

    2016-01-01

    Abstract Finding the global minimum energy conformation (GMEC) of a huge combinatorial search space is the key challenge in computational protein design (CPD) problems. Traditional algorithms lack a scalable and efficient distributed design scheme, preventing researchers from taking full advantage of current cloud infrastructures. We design cloud OSPREY (cOSPREY), an extension to a widely used protein design software OSPREY, to allow the original design framework to scale to the commercial cloud infrastructures. We propose several novel designs to integrate both algorithm and system optimizations, such as GMEC-specific pruning, state search partitioning, asynchronous algorithm state sharing, and fault tolerance. We evaluate cOSPREY on three different cloud platforms using different technologies and show that it can solve a number of large-scale protein design problems that have not been possible with previous approaches. PMID:27154509

  17. Human Computation in Visualization: Using Purpose Driven Games for Robust Evaluation of Visualization Algorithms.

    PubMed

    Ahmed, N; Zheng, Ziyi; Mueller, K

    2012-12-01

    Due to the inherent characteristics of the visualization process, most of the problems in this field have strong ties with human cognition and perception. This makes the human brain and sensory system the only truly appropriate evaluation platform for evaluating and fine-tuning a new visualization method or paradigm. However, getting humans to volunteer for these purposes has always been a significant obstacle, and thus this phase of the development process has traditionally formed a bottleneck, slowing down progress in visualization research. We propose to take advantage of the newly emerging field of Human Computation (HC) to overcome these challenges. HC promotes the idea that rather than considering humans as users of the computational system, they can be made part of a hybrid computational loop consisting of traditional computation resources and the human brain and sensory system. This approach is particularly successful in cases where part of the computational problem is considered intractable using known computer algorithms but is trivial to common sense human knowledge. In this paper, we focus on HC from the perspective of solving visualization problems and also outline a framework by which humans can be easily seduced to volunteer their HC resources. We introduce a purpose-driven game titled "Disguise" which serves as a prototypical example for how the evaluation of visualization algorithms can be mapped into a fun and addicting activity, allowing this task to be accomplished in an extensive yet cost effective way. Finally, we sketch out a framework that transcends from the pure evaluation of existing visualization methods to the design of a new one.

  18. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems

    PubMed Central

    Ehsan, Shoaib; Clark, Adrian F.; ur Rehman, Naveed; McDonald-Maier, Klaus D.

    2015-01-01

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems. PMID:26184211

  19. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems.

    PubMed

    Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D

    2015-07-10

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.

  20. New algorithms to compute the nearness symmetric solution of the matrix equation.

    PubMed

    Peng, Zhen-Yun; Fang, Yang-Zhi; Xiao, Xian-Wei; Du, Dan-Dan

    2016-01-01

    In this paper we consider the nearness symmetric solution of the matrix equation AXB = C to a given matrix [Formula: see text] in the sense of the Frobenius norm. By discussing equivalent form of the considered problem, we derive some necessary and sufficient conditions for the matrix [Formula: see text] is a solution of the considered problem. Based on the idea of the alternating variable minimization with multiplier method, we propose two iterative methods to compute the solution of the considered problem, and analyze the global convergence results of the proposed algorithms. Numerical results illustrate the proposed methods are more effective than the existing two methods proposed in Peng et al. (Appl Math Comput 160:763-777, 2005) and Peng (Int J Comput Math 87: 1820-1830, 2010).

  1. A general algorithm for the construction of contour plots

    NASA Technical Reports Server (NTRS)

    Johnson, W.; Silva, F.

    1981-01-01

    An algorithm is described that performs the task of drawing equal level contours on a plane, which requires interpolation in two dimensions based on data prescribed at points distributed irregularly over the plane. The approach is described in detail. The computer program that implements the algorithm is documented and listed.

  2. The explicit computation of integration algorithms and first integrals for ordinary differential equations with polynomials coefficients using trees

    NASA Technical Reports Server (NTRS)

    Crouch, P. E.; Grossman, Robert

    1992-01-01

    This note is concerned with the explicit symbolic computation of expressions involving differential operators and their actions on functions. The derivation of specialized numerical algorithms, the explicit symbolic computation of integrals of motion, and the explicit computation of normal forms for nonlinear systems all require such computations. More precisely, if R = k(x(sub 1),...,x(sub N)), where k = R or C, F denotes a differential operator with coefficients from R, and g member of R, we describe data structures and algorithms for efficiently computing g. The basic idea is to impose a multiplicative structure on the vector space with basis the set of finite rooted trees and whose nodes are labeled with the coefficients of the differential operators. Cancellations of two trees with r + 1 nodes translates into cancellation of O(N(exp r)) expressions involving the coefficient functions and their derivatives.

  3. Ergonomic intervention for improving work postures during notebook computer operation.

    PubMed

    Jamjumrus, Nuchrawee; Nanthavanij, Suebsak

    2008-06-01

    This paper discusses the application of analytical algorithms to determine necessary adjustments for operating notebook computers (NBCs) and workstations so that NBC users can assume correct work postures during NBC operation. Twenty-two NBC users (eleven males and eleven females) were asked to operate their NBCs according to their normal work practice. Photographs of their work postures were taken and analyzed using the Rapid Upper Limb Assessment (RULA) technique. The algorithms were then employed to determine recommended adjustments for their NBCs and workstations. After implementing the necessary adjustments, the NBC users were then re-seated at their workstations, and photographs of their work postures were re-taken, to perform the posture analysis. The results show that the NBC users' work postures are improved when their NBCs and workstations are adjusted according to the recommendations. The effectiveness of ergonomic intervention is verified both visually and objectively.

  4. Marcus canonical integral for non-Gaussian processes and its computation: pathwise simulation and tau-leaping algorithm.

    PubMed

    Li, Tiejun; Min, Bin; Wang, Zhiming

    2013-03-14

    The stochastic integral ensuring the Newton-Leibnitz chain rule is essential in stochastic energetics. Marcus canonical integral has this property and can be understood as the Wong-Zakai type smoothing limit when the driving process is non-Gaussian. However, this important concept seems not well-known for physicists. In this paper, we discuss Marcus integral for non-Gaussian processes and its computation in the context of stochastic energetics. We give a comprehensive introduction to Marcus integral and compare three equivalent definitions in the literature. We introduce the exact pathwise simulation algorithm and give the error analysis. We show how to compute the thermodynamic quantities based on the pathwise simulation algorithm. We highlight the information hidden in the Marcus mapping, which plays the key role in determining thermodynamic quantities. We further propose the tau-leaping algorithm, which advance the process with deterministic time steps when tau-leaping condition is satisfied. The numerical experiments and its efficiency analysis show that it is very promising.

  5. Fast noise level estimation algorithm based on principal component analysis transform and nonlinear rectification

    NASA Astrophysics Data System (ADS)

    Xu, Shaoping; Zeng, Xiaoxia; Jiang, Yinnan; Tang, Yiling

    2018-01-01

    We proposed a noniterative principal component analysis (PCA)-based noise level estimation (NLE) algorithm that addresses the problem of estimating the noise level with a two-step scheme. First, we randomly extracted a number of raw patches from a given noisy image and took the smallest eigenvalue of the covariance matrix of the raw patches as the preliminary estimation of the noise level. Next, the final estimation was directly obtained with a nonlinear mapping (rectification) function that was trained on some representative noisy images corrupted with different known noise levels. Compared with the state-of-art NLE algorithms, the experiment results show that the proposed NLE algorithm can reliably infer the noise level and has robust performance over a wide range of image contents and noise levels, showing a good compromise between speed and accuracy in general.

  6. Phase-unwrapping algorithm by a rounding-least-squares approach

    NASA Astrophysics Data System (ADS)

    Juarez-Salazar, Rigoberto; Robledo-Sanchez, Carlos; Guerrero-Sanchez, Fermin

    2014-02-01

    A simple and efficient phase-unwrapping algorithm based on a rounding procedure and a global least-squares minimization is proposed. Instead of processing the gradient of the wrapped phase, this algorithm operates over the gradient of the phase jumps by a robust and noniterative scheme. Thus, the residue-spreading and over-smoothing effects are reduced. The algorithm's performance is compared with four well-known phase-unwrapping methods: minimum cost network flow (MCNF), fast Fourier transform (FFT), quality-guided, and branch-cut. A computer simulation and experimental results show that the proposed algorithm reaches a high-accuracy level than the MCNF method by a low-computing time similar to the FFT phase-unwrapping method. Moreover, since the proposed algorithm is simple, fast, and user-free, it could be used in metrological interferometric and fringe-projection automatic real-time applications.

  7. Support the Design of Improved IUE NEWSIPS High Dispersion Extraction Algorithms: Improved IUE High Dispersion Extraction Algorithms

    NASA Technical Reports Server (NTRS)

    Lawton, Pat

    2004-01-01

    The objective of this work was to support the design of improved IUE NEWSIPS high dispersion extraction algorithms. The purpose of this work was to evaluate use of the Linearized Image (LIHI) file versus the Re-Sampled Image (SIHI) file, evaluate various extraction, and design algorithms for evaluation of IUE High Dispersion spectra. It was concluded the use of the Re-Sampled Image (SIHI) file was acceptable. Since the Gaussian profile worked well for the core and the Lorentzian profile worked well for the wings, the Voigt profile was chosen for use in the extraction algorithm. It was found that the gamma and sigma parameters varied significantly across the detector, so gamma and sigma masks for the SWP detector were developed. Extraction code was written.

  8. Atrial Fibrillation Screening in Nonmetropolitan Areas Using a Telehealth Surveillance System With an Embedded Cloud-Computing Algorithm: Prospective Pilot Study

    PubMed Central

    Chen, Ying-Hsien; Hung, Chi-Sheng; Huang, Ching-Chang; Hung, Yu-Chien

    2017-01-01

    Background Atrial fibrillation (AF) is a common form of arrhythmia that is associated with increased risk of stroke and mortality. Detecting AF before the first complication occurs is a recognized priority. No previous studies have examined the feasibility of undertaking AF screening using a telehealth surveillance system with an embedded cloud-computing algorithm; we address this issue in this study. Objective The objective of this study was to evaluate the feasibility of AF screening in nonmetropolitan areas using a telehealth surveillance system with an embedded cloud-computing algorithm. Methods We conducted a prospective AF screening study in a nonmetropolitan area using a single-lead electrocardiogram (ECG) recorder. All ECG measurements were reviewed on the telehealth surveillance system and interpreted by the cloud-computing algorithm and a cardiologist. The process of AF screening was evaluated with a satisfaction questionnaire. Results Between March 11, 2016 and August 31, 2016, 967 ECGs were recorded from 922 residents in nonmetropolitan areas. A total of 22 (2.4%, 22/922) residents with AF were identified by the physician’s ECG interpretation, and only 0.2% (2/967) of ECGs contained significant artifacts. The novel cloud-computing algorithm for AF detection had a sensitivity of 95.5% (95% CI 77.2%-99.9%) and specificity of 97.7% (95% CI 96.5%-98.5%). The overall satisfaction score for the process of AF screening was 92.1%. Conclusions AF screening in nonmetropolitan areas using a telehealth surveillance system with an embedded cloud-computing algorithm is feasible. PMID:28951384

  9. Integrated Graphics Operations and Analysis Lab Development of Advanced Computer Graphics Algorithms

    NASA Technical Reports Server (NTRS)

    Wheaton, Ira M.

    2011-01-01

    The focus of this project is to aid the IGOAL in researching and implementing algorithms for advanced computer graphics. First, this project focused on porting the current International Space Station (ISS) Xbox experience to the web. Previously, the ISS interior fly-around education and outreach experience only ran on an Xbox 360. One of the desires was to take this experience and make it into something that can be put on NASA s educational site for anyone to be able to access. The current code works in the Unity game engine which does have cross platform capability but is not 100% compatible. The tasks for an intern to complete this portion consisted of gaining familiarity with Unity and the current ISS Xbox code, porting the Xbox code to the web as is, and modifying the code to work well as a web application. In addition, a procedurally generated cloud algorithm will be developed. Currently, the clouds used in AGEA animations and the Xbox experiences are a texture map. The desire is to create a procedurally generated cloud algorithm to provide dynamically generated clouds for both AGEA animations and the Xbox experiences. This task consists of gaining familiarity with AGEA and the plug-in interface, developing the algorithm, creating an AGEA plug-in to implement the algorithm inside AGEA, and creating a Unity script to implement the algorithm for the Xbox. This portion of the project was unable to be completed in the time frame of the internship; however, the IGOAL will continue to work on it in the future.

  10. Fast Parallel Molecular Algorithms for DNA-Based Computation: Solving the Elliptic Curve Discrete Logarithm Problem over GF(2n)

    PubMed Central

    Li, Kenli; Zou, Shuting; Xv, Jin

    2008-01-01

    Elliptic curve cryptographic algorithms convert input data to unrecognizable encryption and the unrecognizable data back again into its original decrypted form. The security of this form of encryption hinges on the enormous difficulty that is required to solve the elliptic curve discrete logarithm problem (ECDLP), especially over GF(2n), n ∈ Z+. This paper describes an effective method to find solutions to the ECDLP by means of a molecular computer. We propose that this research accomplishment would represent a breakthrough for applied biological computation and this paper demonstrates that in principle this is possible. Three DNA-based algorithms: a parallel adder, a parallel multiplier, and a parallel inverse over GF(2n) are described. The biological operation time of all of these algorithms is polynomial with respect to n. Considering this analysis, cryptography using a public key might be less secure. In this respect, a principal contribution of this paper is to provide enhanced evidence of the potential of molecular computing to tackle such ambitious computations. PMID:18431451

  11. Fast algorithm for wavefront reconstruction in XAO/SCAO with pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Shatokhina, Iuliia; Obereder, Andreas; Ramlau, Ronny

    2014-08-01

    We present a fast wavefront reconstruction algorithm developed for an extreme adaptive optics system equipped with a pyramid wavefront sensor on a 42m telescope. The method is called the Preprocessed Cumulative Reconstructor with domain decomposition (P-CuReD). The algorithm is based on the theoretical relationship between pyramid and Shack-Hartmann wavefront sensor data. The algorithm consists of two consecutive steps - a data preprocessing, and an application of the CuReD algorithm, which is a fast method for wavefront reconstruction from Shack-Hartmann sensor data. The closed loop simulation results show that the P-CuReD method provides the same reconstruction quality and is significantly faster than an MVM.

  12. Algorithms for Computing the Magnetic Field, Vector Potential, and Field Derivatives for Circular Current Loops in Cylindrical Coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walstrom, Peter Lowell

    A numerical algorithm for computing the field components B r and B z and their r and z derivatives with open boundaries in cylindrical coordinates for circular current loops is described. An algorithm for computing the vector potential is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations (especially for the field derivatives) are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. Since cel can evaluate complete elliptic integrals of a fairlymore » general type, in some cases the elliptic integrals can be evaluated without first reducing them to forms containing standard Legendre forms. The algorithms avoid the numerical difficulties that many of the textbook solutions have for points near the axis because of explicit factors of 1=r or 1=r 2 in the some of the expressions.« less

  13. Algorithmic complexity of quantum capacity

    NASA Astrophysics Data System (ADS)

    Oskouei, Samad Khabbazi; Mancini, Stefano

    2018-04-01

    We analyze the notion of quantum capacity from the perspective of algorithmic (descriptive) complexity. To this end, we resort to the concept of semi-computability in order to describe quantum states and quantum channel maps. We introduce algorithmic entropies (like algorithmic quantum coherent information) and derive relevant properties for them. Then we show that quantum capacity based on semi-computable concept equals the entropy rate of algorithmic coherent information, which in turn equals the standard quantum capacity. Thanks to this, we finally prove that the quantum capacity, for a given semi-computable channel, is limit computable.

  14. System Level Applications of Adaptive Computing (SLAAC)

    DTIC Science & Technology

    2003-11-01

    saved clock cycles, as the computation cycle time was directly proportional to the number of bitplanes in the image. The simulation was undertaken in...S-1][D -1] SK E W E R [k+K S-1][0] SK E W E R [k+K S-1][1] MinMax MinMax MinMax Min - IdxMin Max - IdxMax 0 Figure 3: PPI algorithm architeture ...parallel processing of data. The total throughput in these extended architectures is directly proportional to the amount of resources (CLB slices

  15. Asynchronous Replica Exchange Software for Grid and Heterogeneous Computing.

    PubMed

    Gallicchio, Emilio; Xia, Junchao; Flynn, William F; Zhang, Baofeng; Samlalsingh, Sade; Mentes, Ahmet; Levy, Ronald M

    2015-11-01

    Parallel replica exchange sampling is an extended ensemble technique often used to accelerate the exploration of the conformational ensemble of atomistic molecular simulations of chemical systems. Inter-process communication and coordination requirements have historically discouraged the deployment of replica exchange on distributed and heterogeneous resources. Here we describe the architecture of a software (named ASyncRE) for performing asynchronous replica exchange molecular simulations on volunteered computing grids and heterogeneous high performance clusters. The asynchronous replica exchange algorithm on which the software is based avoids centralized synchronization steps and the need for direct communication between remote processes. It allows molecular dynamics threads to progress at different rates and enables parameter exchanges among arbitrary sets of replicas independently from other replicas. ASyncRE is written in Python following a modular design conducive to extensions to various replica exchange schemes and molecular dynamics engines. Applications of the software for the modeling of association equilibria of supramolecular and macromolecular complexes on BOINC campus computational grids and on the CPU/MIC heterogeneous hardware of the XSEDE Stampede supercomputer are illustrated. They show the ability of ASyncRE to utilize large grids of desktop computers running the Windows, MacOS, and/or Linux operating systems as well as collections of high performance heterogeneous hardware devices.

  16. A novel angle computation and calibration algorithm of bio-inspired sky-light polarization navigation sensor.

    PubMed

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-09-15

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice.

  17. Using MaxCompiler for the high level synthesis of trigger algorithms

    NASA Astrophysics Data System (ADS)

    Summers, S.; Rose, A.; Sanders, P.

    2017-02-01

    Firmware for FPGA trigger applications at the CMS experiment is conventionally written using hardware description languages such as Verilog and VHDL. MaxCompiler is an alternative, Java based, tool for developing FPGA applications which uses a higher level of abstraction from the hardware than a hardware description language. An implementation of the jet and energy sum algorithms for the CMS Level-1 calorimeter trigger has been written using MaxCompiler to benchmark against the VHDL implementation in terms of accuracy, latency, resource usage, and code size. A Kalman Filter track fitting algorithm has been developed using MaxCompiler for a proposed CMS Level-1 track trigger for the High-Luminosity LHC upgrade. The design achieves a low resource usage, and has a latency of 187.5 ns per iteration.

  18. Extreme-scale Algorithms and Solver Resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongarra, Jack

    A widening gap exists between the peak performance of high-performance computers and the performance achieved by complex applications running on these platforms. Over the next decade, extreme-scale systems will present major new challenges to algorithm development that could amplify this mismatch in such a way that it prevents the productive use of future DOE Leadership computers due to the following; Extreme levels of parallelism due to multicore processors; An increase in system fault rates requiring algorithms to be resilient beyond just checkpoint/restart; Complex memory hierarchies and costly data movement in both energy and performance; Heterogeneous system architectures (mixing CPUs, GPUs,more » etc.); and Conflicting goals of performance, resilience, and power requirements.« less

  19. Research in Parallel Algorithms and Software for Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Domel, Neal D.

    1996-01-01

    Phase I is complete for the development of a Computational Fluid Dynamics parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.

  20. Independent tasks scheduling in cloud computing via improved estimation of distribution algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Haisheng; Xu, Rui; Chen, Huaping

    2018-04-01

    To minimize makespan for scheduling independent tasks in cloud computing, an improved estimation of distribution algorithm (IEDA) is proposed to tackle the investigated problem in this paper. Considering that the problem is concerned with multi-dimensional discrete problems, an improved population-based incremental learning (PBIL) algorithm is applied, which the parameter for each component is independent with other components in PBIL. In order to improve the performance of PBIL, on the one hand, the integer encoding scheme is used and the method of probability calculation of PBIL is improved by using the task average processing time; on the other hand, an effective adaptive learning rate function that related to the number of iterations is constructed to trade off the exploration and exploitation of IEDA. In addition, both enhanced Max-Min and Min-Min algorithms are properly introduced to form two initial individuals. In the proposed IEDA, an improved genetic algorithm (IGA) is applied to generate partial initial population by evolving two initial individuals and the rest of initial individuals are generated at random. Finally, the sampling process is divided into two parts including sampling by probabilistic model and IGA respectively. The experiment results show that the proposed IEDA not only gets better solution, but also has faster convergence speed.

  1. Parallel Algorithms for Monte Carlo Particle Transport Simulation on Exascale Computing Architectures

    NASA Astrophysics Data System (ADS)

    Romano, Paul Kollath

    measured data from simulations in OpenMC on a full-core benchmark problem. Finally, a novel algorithm for decomposing large tally data was proposed, analyzed, and implemented/tested in OpenMC. The algorithm relies on disjoint sets of compute processes and tally servers. The analysis showed that for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead. Tests were performed on Intrepid and Titan and demonstrated that the algorithm did indeed perform well over a wide range of parameters. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  2. The Automation of Stochastization Algorithm with Use of SymPy Computer Algebra Library

    NASA Astrophysics Data System (ADS)

    Demidova, Anastasya; Gevorkyan, Migran; Kulyabov, Dmitry; Korolkova, Anna; Sevastianov, Leonid

    2018-02-01

    SymPy computer algebra library is used for automatic generation of ordinary and stochastic systems of differential equations from the schemes of kinetic interaction. Schemes of this type are used not only in chemical kinetics but also in biological, ecological and technical models. This paper describes the automatic generation algorithm with an emphasis on application details.

  3. An improved ASIFT algorithm for indoor panorama image matching

    NASA Astrophysics Data System (ADS)

    Fu, Han; Xie, Donghai; Zhong, Ruofei; Wu, Yu; Wu, Qiong

    2017-07-01

    The generation of 3D models for indoor objects and scenes is an attractive tool for digital city, virtual reality and SLAM purposes. Panoramic images are becoming increasingly more common in such applications due to their advantages to capture the complete environment in one single image with large field of view. The extraction and matching of image feature points are important and difficult steps in three-dimensional reconstruction, and ASIFT is a state-of-the-art algorithm to implement these functions. Compared with the SIFT algorithm, more feature points can be generated and the matching accuracy of ASIFT algorithm is higher, even for the panoramic images with obvious distortions. However, the algorithm is really time-consuming because of complex operations and performs not very well for some indoor scenes under poor light or without rich textures. To solve this problem, this paper proposes an improved ASIFT algorithm for indoor panoramic images: firstly, the panoramic images are projected into multiple normal perspective images. Secondly, the original ASIFT algorithm is simplified from the affine transformation of tilt and rotation with the images to the only tilt affine transformation. Finally, the results are re-projected to the panoramic image space. Experiments in different environments show that this method can not only ensure the precision of feature points extraction and matching, but also greatly reduce the computing time.

  4. Atrial Fibrillation Screening in Nonmetropolitan Areas Using a Telehealth Surveillance System With an Embedded Cloud-Computing Algorithm: Prospective Pilot Study.

    PubMed

    Chen, Ying-Hsien; Hung, Chi-Sheng; Huang, Ching-Chang; Hung, Yu-Chien; Hwang, Juey-Jen; Ho, Yi-Lwun

    2017-09-26

    Atrial fibrillation (AF) is a common form of arrhythmia that is associated with increased risk of stroke and mortality. Detecting AF before the first complication occurs is a recognized priority. No previous studies have examined the feasibility of undertaking AF screening using a telehealth surveillance system with an embedded cloud-computing algorithm; we address this issue in this study. The objective of this study was to evaluate the feasibility of AF screening in nonmetropolitan areas using a telehealth surveillance system with an embedded cloud-computing algorithm. We conducted a prospective AF screening study in a nonmetropolitan area using a single-lead electrocardiogram (ECG) recorder. All ECG measurements were reviewed on the telehealth surveillance system and interpreted by the cloud-computing algorithm and a cardiologist. The process of AF screening was evaluated with a satisfaction questionnaire. Between March 11, 2016 and August 31, 2016, 967 ECGs were recorded from 922 residents in nonmetropolitan areas. A total of 22 (2.4%, 22/922) residents with AF were identified by the physician's ECG interpretation, and only 0.2% (2/967) of ECGs contained significant artifacts. The novel cloud-computing algorithm for AF detection had a sensitivity of 95.5% (95% CI 77.2%-99.9%) and specificity of 97.7% (95% CI 96.5%-98.5%). The overall satisfaction score for the process of AF screening was 92.1%. AF screening in nonmetropolitan areas using a telehealth surveillance system with an embedded cloud-computing algorithm is feasible. ©Ying-Hsien Chen, Chi-Sheng Hung, Ching-Chang Huang, Yu-Chien Hung, Juey-Jen Hwang, Yi-Lwun Ho. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 26.09.2017.

  5. Efficient iterative image reconstruction algorithm for dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Antropova, Natalia; Sanchez, Adrian; Reiser, Ingrid S.; Sidky, Emil Y.; Boone, John; Pan, Xiaochuan

    2016-03-01

    Dedicated breast computed tomography (bCT) is currently being studied as a potential screening method for breast cancer. The X-ray exposure is set low to achieve an average glandular dose comparable to that of mammography, yielding projection data that contains high levels of noise. Iterative image reconstruction (IIR) algorithms may be well-suited for the system since they potentially reduce the effects of noise in the reconstructed images. However, IIR outcomes can be difficult to control since the algorithm parameters do not directly correspond to the image properties. Also, IIR algorithms are computationally demanding and have optimal parameter settings that depend on the size and shape of the breast and positioning of the patient. In this work, we design an efficient IIR algorithm with meaningful parameter specifications and that can be used on a large, diverse sample of bCT cases. The flexibility and efficiency of this method comes from having the final image produced by a linear combination of two separately reconstructed images - one containing gray level information and the other with enhanced high frequency components. Both of the images result from few iterations of separate IIR algorithms. The proposed algorithm depends on two parameters both of which have a well-defined impact on image quality. The algorithm is applied to numerous bCT cases from a dedicated bCT prototype system developed at University of California, Davis.

  6. FOCuS: a metaheuristic algorithm for computing knockouts from genome-scale models for strain optimization.

    PubMed

    Mutturi, Sarma

    2017-06-27

    Although handful tools are available for constraint-based flux analysis to generate knockout strains, most of these are either based on bilevel-MIP or its modifications. However, metaheuristic approaches that are known for their flexibility and scalability have been less studied. Moreover, in the existing tools, sectioning of search space to find optimal knocks has not been considered. Herein, a novel computational procedure, termed as FOCuS (Flower-pOllination coupled Clonal Selection algorithm), was developed to find the optimal reaction knockouts from a metabolic network to maximize the production of specific metabolites. FOCuS derives its benefits from nature-inspired flower pollination algorithm and artificial immune system-inspired clonal selection algorithm to converge to an optimal solution. To evaluate the performance of FOCuS, reported results obtained from both MIP and other metaheuristic-based tools were compared in selected case studies. The results demonstrated the robustness of FOCuS irrespective of the size of metabolic network and number of knockouts. Moreover, sectioning of search space coupled with pooling of priority reactions based on their contribution to objective function for generating smaller search space significantly reduced the computational time.

  7. EMILiO: a fast algorithm for genome-scale strain design.

    PubMed

    Yang, Laurence; Cluett, William R; Mahadevan, Radhakrishnan

    2011-05-01

    Systems-level design of cell metabolism is becoming increasingly important for renewable production of fuels, chemicals, and drugs. Computational models are improving in the accuracy and scope of predictions, but are also growing in complexity. Consequently, efficient and scalable algorithms are increasingly important for strain design. Previous algorithms helped to consolidate the utility of computational modeling in this field. To meet intensifying demands for high-performance strains, both the number and variety of genetic manipulations involved in strain construction are increasing. Existing algorithms have experienced combinatorial increases in computational complexity when applied toward the design of such complex strains. Here, we present EMILiO, a new algorithm that increases the scope of strain design to include reactions with individually optimized fluxes. Unlike existing approaches that would experience an explosion in complexity to solve this problem, we efficiently generated numerous alternate strain designs producing succinate, l-glutamate and l-serine. This was enabled by successive linear programming, a technique new to the area of computational strain design. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. DISTING: A web application for fast algorithmic computation of alternative indistinguishable linear compartmental models.

    PubMed

    Davidson, Natalie R; Godfrey, Keith R; Alquaddoomi, Faisal; Nola, David; DiStefano, Joseph J

    2017-05-01

    We describe and illustrate use of DISTING, a novel web application for computing alternative structurally identifiable linear compartmental models that are input-output indistinguishable from a postulated linear compartmental model. Several computer packages are available for analysing the structural identifiability of such models, but DISTING is the first to be made available for assessing indistinguishability. The computational algorithms embedded in DISTING are based on advanced versions of established geometric and algebraic properties of linear compartmental models, embedded in a user-friendly graphic model user interface. Novel computational tools greatly speed up the overall procedure. These include algorithms for Jacobian matrix reduction, submatrix rank reduction, and parallelization of candidate rank computations in symbolic matrix analysis. The application of DISTING to three postulated models with respectively two, three and four compartments is given. The 2-compartment example is used to illustrate the indistinguishability problem; the original (unidentifiable) model is found to have two structurally identifiable models that are indistinguishable from it. The 3-compartment example has three structurally identifiable indistinguishable models. It is found from DISTING that the four-compartment example has five structurally identifiable models indistinguishable from the original postulated model. This example shows that care is needed when dealing with models that have two or more compartments which are neither perturbed nor observed, because the numbering of these compartments may be arbitrary. DISTING is universally and freely available via the Internet. It is easy to use and circumvents tedious and complicated algebraic analysis previously done by hand. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Rock climbing: A local-global algorithm to compute minimum energy and minimum free energy pathways.

    PubMed

    Templeton, Clark; Chen, Szu-Hua; Fathizadeh, Arman; Elber, Ron

    2017-10-21

    The calculation of minimum energy or minimum free energy paths is an important step in the quantitative and qualitative studies of chemical and physical processes. The computations of these coordinates present a significant challenge and have attracted considerable theoretical and computational interest. Here we present a new local-global approach to study reaction coordinates, based on a gradual optimization of an action. Like other global algorithms, it provides a path between known reactants and products, but it uses a local algorithm to extend the current path in small steps. The local-global approach does not require an initial guess to the path, a major challenge for global pathway finders. Finally, it provides an exact answer (the steepest descent path) at the end of the calculations. Numerical examples are provided for the Mueller potential and for a conformational transition in a solvated ring system.

  10. A novel image encryption algorithm based on the chaotic system and DNA computing

    NASA Astrophysics Data System (ADS)

    Chai, Xiuli; Gan, Zhihua; Lu, Yang; Chen, Yiran; Han, Daojun

    A novel image encryption algorithm using the chaotic system and deoxyribonucleic acid (DNA) computing is presented. Different from the traditional encryption methods, the permutation and diffusion of our method are manipulated on the 3D DNA matrix. Firstly, a 3D DNA matrix is obtained through bit plane splitting, bit plane recombination, DNA encoding of the plain image. Secondly, 3D DNA level permutation based on position sequence group (3DDNALPBPSG) is introduced, and chaotic sequences generated from the chaotic system are employed to permutate the positions of the elements of the 3D DNA matrix. Thirdly, 3D DNA level diffusion (3DDNALD) is given, the confused 3D DNA matrix is split into sub-blocks, and XOR operation by block is manipulated to the sub-DNA matrix and the key DNA matrix from the chaotic system. At last, by decoding the diffused DNA matrix, we get the cipher image. SHA 256 hash of the plain image is employed to calculate the initial values of the chaotic system to avoid chosen plaintext attack. Experimental results and security analyses show that our scheme is secure against several known attacks, and it can effectively protect the security of the images.

  11. QCCM Center for Quantum Algorithms

    DTIC Science & Technology

    2008-10-17

    algorithms (e.g., quantum walks and adiabatic computing ), as well as theoretical advances relating algorithms to physical implementations (e.g...Park, NC 27709-2211 15. SUBJECT TERMS Quantum algorithms, quantum computing , fault-tolerant error correction Richard Cleve MITACS East Academic...0511200 Algebraic results on quantum automata A. Ambainis, M. Beaudry, M. Golovkins, A. Kikusts, M. Mercer, D. Thrien Theory of Computing Systems 39(2006

  12. Coronary CT Angiography-derived Fractional Flow Reserve: Machine Learning Algorithm versus Computational Fluid Dynamics Modeling.

    PubMed

    Tesche, Christian; De Cecco, Carlo N; Baumann, Stefan; Renker, Matthias; McLaurin, Tindal W; Duguay, Taylor M; Bayer, Richard R; Steinberg, Daniel H; Grant, Katharine L; Canstein, Christian; Schwemmer, Chris; Schoebinger, Max; Itu, Lucian M; Rapaka, Saikiran; Sharma, Puneet; Schoepf, U Joseph

    2018-04-10

    Purpose To compare two technical approaches for determination of coronary computed tomography (CT) angiography-derived fractional flow reserve (FFR)-FFR derived from coronary CT angiography based on computational fluid dynamics (hereafter, FFR CFD ) and FFR derived from coronary CT angiography based on machine learning algorithm (hereafter, FFR ML )-against coronary CT angiography and quantitative coronary angiography (QCA). Materials and Methods A total of 85 patients (mean age, 62 years ± 11 [standard deviation]; 62% men) who had undergone coronary CT angiography followed by invasive FFR were included in this single-center retrospective study. FFR values were derived on-site from coronary CT angiography data sets by using both FFR CFD and FFR ML . The performance of both techniques for detecting lesion-specific ischemia was compared against visual stenosis grading at coronary CT angiography, QCA, and invasive FFR as the reference standard. Results On a per-lesion and per-patient level, FFR ML showed a sensitivity of 79% and 90% and a specificity of 94% and 95%, respectively, for detecting lesion-specific ischemia. Meanwhile, FFR CFD resulted in a sensitivity of 79% and 89% and a specificity of 93% and 93%, respectively, on a per-lesion and per-patient basis (P = .86 and P = .92). On a per-lesion level, the area under the receiver operating characteristics curve (AUC) of 0.89 for FFR ML and 0.89 for FFR CFD showed significantly higher discriminatory power for detecting lesion-specific ischemia compared with that of coronary CT angiography (AUC, 0.61) and QCA (AUC, 0.69) (all P < .0001). Also, on a per-patient level, FFR ML (AUC, 0.91) and FFR CFD (AUC, 0.91) performed significantly better than did coronary CT angiography (AUC, 0.65) and QCA (AUC, 0.68) (all P < .0001). Processing time for FFR ML was significantly shorter compared with that of FFR CFD (40.5 minutes ± 6.3 vs 43.4 minutes ± 7.1; P = .042). Conclusion The FFR ML algorithm performs equally in

  13. Micro-seismic waveform matching inversion based on gravitational search algorithm and parallel computation

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Xing, H. L.

    2016-12-01

    Micro-seismic events induced by water injection, mining activity or oil/gas extraction are quite informative, the interpretation of which can be applied for the reconstruction of underground stress and monitoring of hydraulic fracturing progress in oil/gas reservoirs. The source characterises and locations are crucial parameters that required for these purposes, which can be obtained through the waveform matching inversion (WMI) method. Therefore it is imperative to develop a WMI algorithm with high accuracy and convergence speed. Heuristic algorithm, as a category of nonlinear method, possesses a very high convergence speed and good capacity to overcome local minimal values, and has been well applied for many areas (e.g. image processing, artificial intelligence). However, its effectiveness for micro-seismic WMI is still poorly investigated; very few literatures exits that addressing this subject. In this research an advanced heuristic algorithm, gravitational search algorithm (GSA) , is proposed to estimate the focal mechanism (angle of strike, dip and rake) and source locations in three dimension. Unlike traditional inversion methods, the heuristic algorithm inversion does not require the approximation of green function. The method directly interacts with a CPU parallelized finite difference forward modelling engine, and updating the model parameters under GSA criterions. The effectiveness of this method is tested with synthetic data form a multi-layered elastic model; the results indicate GSA can be well applied on WMI and has its unique advantages. Keywords: Micro-seismicity, Waveform matching inversion, gravitational search algorithm, parallel computation

  14. Computed gray levels in multislice and cone-beam computed tomography.

    PubMed

    Azeredo, Fabiane; de Menezes, Luciane Macedo; Enciso, Reyes; Weissheimer, Andre; de Oliveira, Rogério Belle

    2013-07-01

    Gray level is the range of shades of gray in the pixels, representing the x-ray attenuation coefficient that allows for tissue density assessments in computed tomography (CT). An in-vitro study was performed to investigate the relationship between computed gray levels in 3 cone-beam CT (CBCT) scanners and 1 multislice spiral CT device using 5 software programs. Six materials (air, water, wax, acrylic, plaster, and gutta-percha) were scanned with the CBCT and CT scanners, and the computed gray levels for each material at predetermined points were measured with OsiriX Medical Imaging software (Geneva, Switzerland), OnDemand3D (CyberMed International, Seoul, Korea), E-Film (Merge Healthcare, Milwaukee, Wis), Dolphin Imaging (Dolphin Imaging & Management Solutions, Chatsworth, Calif), and InVivo Dental Software (Anatomage, San Jose, Calif). The repeatability of these measurements was calculated with intraclass correlation coefficients, and the gray levels were averaged to represent each material. Repeated analysis of variance tests were used to assess the differences in gray levels among scanners and materials. There were no differences in mean gray levels with the different software programs. There were significant differences in gray levels between scanners for each material evaluated (P <0.001). The software programs were reliable and had no influence on the CT and CBCT gray level measurements. However, the gray levels might have discrepancies when different CT and CBCT scanners are used. Therefore, caution is essential when interpreting or evaluating CBCT images because of the significant differences in gray levels between different CBCT scanners, and between CBCT and CT values. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  15. Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target

    NASA Astrophysics Data System (ADS)

    Scherer, Artur; Valiron, Benoît; Mau, Siun-Chuon; Alexander, Scott; van den Berg, Eric; Chapuran, Thomas E.

    2017-03-01

    advanced quantum-computation techniques are developed, they nevertheless provide a valid baseline for research targeting a reduction of the algorithmic-level resource requirements, implying that a reduction by many orders of magnitude is necessary for the algorithm to become practical.

  16. Algorithmic cooling in liquid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2016-01-01

    Algorithmic cooling is a method that employs thermalization to increase qubit purification level; namely, it reduces the qubit system's entropy. We utilized gradient ascent pulse engineering, an optimal control algorithm, to implement algorithmic cooling in liquid-state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of C132-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic-resonance spectroscopy.

  17. Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Aidan Patrick; Schultz, Peter Andrew; Crozier, Paul

    2014-09-01

    This report summarizes the result of LDRD project 12-0395, titled "Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations." During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projectedmore » on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel

  18. On the utility of the multi-level algorithm for the solution of nearly completely decomposable Markov chains

    NASA Technical Reports Server (NTRS)

    Leutenegger, Scott T.; Horton, Graham

    1994-01-01

    Recently the Multi-Level algorithm was introduced as a general purpose solver for the solution of steady state Markov chains. In this paper, we consider the performance of the Multi-Level algorithm for solving Nearly Completely Decomposable (NCD) Markov chains, for which special-purpose iteractive aggregation/disaggregation algorithms such as the Koury-McAllister-Stewart (KMS) method have been developed that can exploit the decomposability of the the Markov chain. We present experimental results indicating that the general-purpose Multi-Level algorithm is competitive, and can be significantly faster than the special-purpose KMS algorithm when Gauss-Seidel and Gaussian Elimination are used for solving the individual blocks.

  19. Algorithms and analytical solutions for rapidly approximating long-term dispersion from line and area sources

    NASA Astrophysics Data System (ADS)

    Barrett, Steven R. H.; Britter, Rex E.

    Predicting long-term mean pollutant concentrations in the vicinity of airports, roads and other industrial sources are frequently of concern in regulatory and public health contexts. Many emissions are represented geometrically as ground-level line or area sources. Well developed modelling tools such as AERMOD and ADMS are able to model dispersion from finite (i.e. non-point) sources with considerable accuracy, drawing upon an up-to-date understanding of boundary layer behaviour. Due to mathematical difficulties associated with line and area sources, computationally expensive numerical integration schemes have been developed. For example, some models decompose area sources into a large number of line sources orthogonal to the mean wind direction, for which an analytical (Gaussian) solution exists. Models also employ a time-series approach, which involves computing mean pollutant concentrations for every hour over one or more years of meteorological data. This can give rise to computer runtimes of several days for assessment of a site. While this may be acceptable for assessment of a single industrial complex, airport, etc., this level of computational cost precludes national or international policy assessments at the level of detail available with dispersion modelling. In this paper, we extend previous work [S.R.H. Barrett, R.E. Britter, 2008. Development of algorithms and approximations for rapid operational air quality modelling. Atmospheric Environment 42 (2008) 8105-8111] to line and area sources. We introduce approximations which allow for the development of new analytical solutions for long-term mean dispersion from line and area sources, based on hypergeometric functions. We describe how these solutions can be parameterized from a single point source run from an existing advanced dispersion model, thereby accounting for all processes modelled in the more costly algorithms. The parameterization method combined with the analytical solutions for long-term mean

  20. On Gamma Ray Instrument On-Board Data Processing Real-Time Computational Algorithm for Cosmic Ray Rejection

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Hunter, Stanley D.; Hanu, Andrei R.; Sheets, Teresa B.

    2016-01-01

    Richard O. Duda and Peter E. Hart of Stanford Research Institute in [1] described the recurring problem in computer image processing as the detection of straight lines in digitized images. The problem is to detect the presence of groups of collinear or almost collinear figure points. It is clear that the problem can be solved to any desired degree of accuracy by testing the lines formed by all pairs of points. However, the computation required for n=NxM points image is approximately proportional to n2 or O(n2), becoming prohibitive for large images or when data processing cadence time is in milliseconds. Rosenfeld in [2] described an ingenious method due to Hough [3] for replacing the original problem of finding collinear points by a mathematically equivalent problem of finding concurrent lines. This method involves transforming each of the figure points into a straight line in a parameter space. Hough chose to use the familiar slope-intercept parameters, and thus his parameter space was the two-dimensional slope-intercept plane. A parallel Hough transform running on multi-core processors was elaborated in [4]. There are many other proposed methods of solving a similar problem, such as sampling-up-the-ramp algorithm (SUTR) [5] and algorithms involving artificial swarm intelligence techniques [6]. However, all state-of-the-art algorithms lack in real time performance. Namely, they are slow for large images that require performance cadence of a few dozens of milliseconds (50ms). This problem arises in spaceflight applications such as near real-time analysis of gamma ray measurements contaminated by overwhelming amount of traces of cosmic rays (CR). Future spaceflight instruments such as the Advanced Energetic Pair Telescope instrument (AdEPT) [7-9] for cosmos gamma ray survey employ large detector readout planes registering multitudes of cosmic ray interference events and sparse science gamma ray event traces' projections. The AdEPT science of interest is in the

  1. A conduction velocity adapted eikonal model for electrophysiology problems with re-excitability evaluation.

    PubMed

    Corrado, Cesare; Zemzemi, Nejib

    2018-01-01

    Computational models of heart electrophysiology achieved a considerable interest in the medical community as they represent a novel framework for the study of the mechanisms underpinning heart pathologies. The high demand of computational resources and the long computational time required to evaluate the model solution hamper the use of detailed computational models in clinical applications. In this paper, we present a multi-front eikonal algorithm that adapts the conduction velocity (CV) to the activation frequency of the tissue substrate. We then couple the eikonal new algorithm with the Mitchell-Schaeffer (MS) ionic model to determine the tissue electrical state. Compared to the standard eikonal model, this model introduces three novelties: first, it evaluates the local value of the transmembrane potential and of the ionic variable solving an ionic model; second, it computes the action potential duration (APD) and the diastolic interval (DI) from the solution of the MS model and uses them to determine if the tissue is locally re-excitable; third, it adapts the CV to the underpinning electrophysiological state through an analytical expression of the CV restitution and the computed local DI. We conduct series of simulations on a 3D tissue slab and on a realistic heart geometry and compare the solutions with those obtained solving the monodomain equation. Our results show that the new model is significantly more accurate than the standard eikonal model. The proposed model enables the numerical simulation of the heart electrophysiology on a clinical time scale and thus constitutes a viable model candidate for computer-guided radio-frequency ablation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Repetitive element signature-based visualization, distance computation, and classification of 1766 microbial genomes.

    PubMed

    Lee, Kang-Hoon; Shin, Kyung-Seop; Lim, Debora; Kim, Woo-Chan; Chung, Byung Chang; Han, Gyu-Bum; Roh, Jeongkyu; Cho, Dong-Ho; Cho, Kiho

    2015-07-01

    The genomes of living organisms are populated with pleomorphic repetitive elements (REs) of varying densities. Our hypothesis that genomic RE landscapes are species/strain/individual-specific was implemented into the Genome Signature Imaging system to visualize and compute the RE-based signatures of any genome. Following the occurrence profiling of 5-nucleotide REs/words, the information from top-50 frequency words was transformed into a genome-specific signature and visualized as Genome Signature Images (GSIs), using a CMYK scheme. An algorithm for computing distances among GSIs was formulated using the GSIs' variables (word identity, frequency, and frequency order). The utility of the GSI-distance computation system was demonstrated with control genomes. GSI-based computation of genome-relatedness among 1766 microbes (117 archaea and 1649 bacteria) identified their clustering patterns; although the majority paralleled the established classification, some did not. The Genome Signature Imaging system, with its visualization and distance computation functions, enables genome-scale evolutionary studies involving numerous genomes with varying sizes. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Efficient computer algebra algorithms for polynomial matrices in control design

    NASA Technical Reports Server (NTRS)

    Baras, J. S.; Macenany, D. C.; Munach, R.

    1989-01-01

    The theory of polynomial matrices plays a key role in the design and analysis of multi-input multi-output control and communications systems using frequency domain methods. Examples include coprime factorizations of transfer functions, cannonical realizations from matrix fraction descriptions, and the transfer function design of feedback compensators. Typically, such problems abstract in a natural way to the need to solve systems of Diophantine equations or systems of linear equations over polynomials. These and other problems involving polynomial matrices can in turn be reduced to polynomial matrix triangularization procedures, a result which is not surprising given the importance of matrix triangularization techniques in numerical linear algebra. Matrices with entries from a field and Gaussian elimination play a fundamental role in understanding the triangularization process. In the case of polynomial matrices, matrices with entries from a ring for which Gaussian elimination is not defined and triangularization is accomplished by what is quite properly called Euclidean elimination. Unfortunately, the numerical stability and sensitivity issues which accompany floating point approaches to Euclidean elimination are not very well understood. New algorithms are presented which circumvent entirely such numerical issues through the use of exact, symbolic methods in computer algebra. The use of such error-free algorithms guarantees that the results are accurate to within the precision of the model data--the best that can be hoped for. Care must be taken in the design of such algorithms due to the phenomenon of intermediate expressions swell.

  4. Evaluation of SMAP Level 2 Soil Moisture Algorithms Using SMOS Data

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann; Shi, J. C.

    2011-01-01

    The objectives of the SMAP (Soil Moisture Active Passive) mission are global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolution, respectively. SMAP will provide soil moisture with a spatial resolution of 10 km with a 3-day revisit time at an accuracy of 0.04 m3/m3 [1]. In this paper we contribute to the development of the Level 2 soil moisture algorithm that is based on passive microwave observations by exploiting Soil Moisture Ocean Salinity (SMOS) satellite observations and products. SMOS brightness temperatures provide a global real-world, rather than simulated, test input for the SMAP radiometer-only soil moisture algorithm. Output of the potential SMAP algorithms will be compared to both in situ measurements and SMOS soil moisture products. The investigation will result in enhanced SMAP pre-launch algorithms for soil moisture.

  5. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm

    PubMed Central

    Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239

  6. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm.

    PubMed

    Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.

  7. A Novel Angle Computation and Calibration Algorithm of Bio-Inspired Sky-Light Polarization Navigation Sensor

    PubMed Central

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-01-01

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice. PMID:25225872

  8. An integral conservative gridding--algorithm using Hermitian curve interpolation.

    PubMed

    Volken, Werner; Frei, Daniel; Manser, Peter; Mini, Roberto; Born, Ernst J; Fix, Michael K

    2008-11-07

    The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to

  9. Open-source chemogenomic data-driven algorithms for predicting drug-target interactions.

    PubMed

    Hao, Ming; Bryant, Stephen H; Wang, Yanli

    2018-02-06

    While novel technologies such as high-throughput screening have advanced together with significant investment by pharmaceutical companies during the past decades, the success rate for drug development has not yet been improved prompting researchers looking for new strategies of drug discovery. Drug repositioning is a potential approach to solve this dilemma. However, experimental identification and validation of potential drug targets encoded by the human genome is both costly and time-consuming. Therefore, effective computational approaches have been proposed to facilitate drug repositioning, which have proved to be successful in drug discovery. Doubtlessly, the availability of open-accessible data from basic chemical biology research and the success of human genome sequencing are crucial to develop effective in silico drug repositioning methods allowing the identification of potential targets for existing drugs. In this work, we review several chemogenomic data-driven computational algorithms with source codes publicly accessible for predicting drug-target interactions (DTIs). We organize these algorithms by model properties and model evolutionary relationships. We re-implemented five representative algorithms in R programming language, and compared these algorithms by means of mean percentile ranking, a new recall-based evaluation metric in the DTI prediction research field. We anticipate that this review will be objective and helpful to researchers who would like to further improve existing algorithms or need to choose appropriate algorithms to infer potential DTIs in the projects. The source codes for DTI predictions are available at: https://github.com/minghao2016/chemogenomicAlg4DTIpred. Published by Oxford University Press 2018. This work is written by US Government employees and is in the public domain in the US.

  10. The Algorithm Theoretical Basis Document for Level 1A Processing

    NASA Technical Reports Server (NTRS)

    Jester, Peggy L.; Hancock, David W., III

    2012-01-01

    The first process of the Geoscience Laser Altimeter System (GLAS) Science Algorithm Software converts the Level 0 data into the Level 1A Data Products. The Level 1A Data Products are the time ordered instrument data converted from counts to engineering units. This document defines the equations that convert the raw instrument data into engineering units. Required scale factors, bias values, and coefficients are defined in this document. Additionally, required quality assurance and browse products are defined in this document.

  11. Factors influencing exemplary science teachers' levels of computer use

    NASA Astrophysics Data System (ADS)

    Hakverdi, Meral

    This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to

  12. The development of an explicit thermochemical nonequilibrium algorithm and its application to compute three dimensional AFE flowfields

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1989-01-01

    This study presents a three-dimensional explicit, finite-difference, shock-capturing numerical algorithm applied to viscous hypersonic flows in thermochemical nonequilibrium. The algorithm employs a two-temperature physical model. Equations governing the finite-rate chemical reactions are fully-coupled to the gas dynamic equations using a novel coupling technique. The new coupling method maintains stability in the explicit, finite-rate formulation while allowing relatively large global time steps. The code uses flux-vector accuracy. Comparisons with experimental data and other numerical computations verify the accuracy of the present method. The code is used to compute the three-dimensional flowfield over the Aeroassist Flight Experiment (AFE) vehicle at one of its trajectory points.

  13. Robust numerical electromagnetic eigenfunction expansion algorithms

    NASA Astrophysics Data System (ADS)

    Sainath, Kamalesh

    -region-dependent integration order (Chapter 3), (3) Integration partition-extrapolation-based (Chapter 3) and Gauss-Laguerre Quadrature (GLQ)-based (Chapter 4) evaluations of the deformed, semi-infinite-length integration contour tails, (4) Robust in-situ-based (i.e., at the spectral-domain integrand level) direct/homogeneous-medium field contribution subtraction and analytical curbing of the source current spatial spectrum function's ill behavior (Chapter 5), and (5) Analytical re-casting of the direct-field expressions when the source is embedded within a NBAM, short for non-birefringent anisotropic medium (Chapter 6). The benefits of these contributions are, respectively, (1) Avoiding computationally intensive critical-point location and tracking (computation time savings), (2) Sensor and material-robust curbing of the integrand's oscillatory and slow decay behavior, as well as preventing undesirable critical-point migration within the complex plane (computation speed, precision, and instability-avoidance benefits), (3) sensor and material-robust reduction (or, for GLQ, elimination) of integral truncation error, (4) robustly stable modeling of scattered fields and/or fields radiated from current sources modeled as spatially distributed (10 to 1000-fold compute-speed acceleration also realized for distributed-source computations), and (5) numerically stable modeling of fields radiated from sources within NBAM layers. Having addressed these limitations, are PWE algorithms applicable to modeling EM waves in tilted planar-layered geometries too? This question is explored in Chapter 7 using a Transformation Optics-based approach, allowing one to model wave propagation through layered media that (in the sensor's vicinity) possess tilted planar interfaces. The technique leads to spurious wave scattering however, whose induced computation accuracy degradation requires analysis. Mathematical exhibition, and exhaustive simulation-based study and analysis of the limitations of, this novel tilted

  14. An accurate and computationally efficient algorithm for ground peak identification in large footprint waveform LiDAR data

    NASA Astrophysics Data System (ADS)

    Zhuang, Wei; Mountrakis, Giorgos

    2014-09-01

    Large footprint waveform LiDAR sensors have been widely used for numerous airborne studies. Ground peak identification in a large footprint waveform is a significant bottleneck in exploring full usage of the waveform datasets. In the current study, an accurate and computationally efficient algorithm was developed for ground peak identification, called Filtering and Clustering Algorithm (FICA). The method was evaluated on Land, Vegetation, and Ice Sensor (LVIS) waveform datasets acquired over Central NY. FICA incorporates a set of multi-scale second derivative filters and a k-means clustering algorithm in order to avoid detecting false ground peaks. FICA was tested in five different land cover types (deciduous trees, coniferous trees, shrub, grass and developed area) and showed more accurate results when compared to existing algorithms. More specifically, compared with Gaussian decomposition, the RMSE ground peak identification by FICA was 2.82 m (5.29 m for GD) in deciduous plots, 3.25 m (4.57 m for GD) in coniferous plots, 2.63 m (2.83 m for GD) in shrub plots, 0.82 m (0.93 m for GD) in grass plots, and 0.70 m (0.51 m for GD) in plots of developed areas. FICA performance was also relatively consistent under various slope and canopy coverage (CC) conditions. In addition, FICA showed better computational efficiency compared to existing methods. FICA's major computational and accuracy advantage is a result of the adopted multi-scale signal processing procedures that concentrate on local portions of the signal as opposed to the Gaussian decomposition that uses a curve-fitting strategy applied in the entire signal. The FICA algorithm is a good candidate for large-scale implementation on future space-borne waveform LiDAR sensors.

  15. A single frequency component-based re-estimated MUSIC algorithm for impact localization on complex composite structures

    NASA Astrophysics Data System (ADS)

    Yuan, Shenfang; Bao, Qiao; Qiu, Lei; Zhong, Yongteng

    2015-10-01

    The growing use of composite materials on aircraft structures has attracted much attention for impact monitoring as a kind of structural health monitoring (SHM) method. Multiple signal classification (MUSIC)-based monitoring technology is a promising method because of its directional scanning ability and easy arrangement of the sensor array. However, for applications on real complex structures, some challenges still exist. The impact-induced elastic waves usually exhibit a wide-band performance, giving rise to the difficulty in obtaining the phase velocity directly. In addition, composite structures usually have obvious anisotropy, and the complex structural style of real aircrafts further enhances this performance, which greatly reduces the localization precision of the MUSIC-based method. To improve the MUSIC-based impact monitoring method, this paper first analyzes and demonstrates the influence of measurement precision of the phase velocity on the localization results of the MUSIC impact localization method. In order to improve the accuracy of the phase velocity measurement, a single frequency component extraction method is presented. Additionally, a single frequency component-based re-estimated MUSIC (SFCBR-MUSIC) algorithm is proposed to reduce the localization error caused by the anisotropy of the complex composite structure. The proposed method is verified on a real composite aircraft wing box, which has T-stiffeners and screw holes. Three typical categories of 41 impacts are monitored. Experimental results show that the SFCBR-MUSIC algorithm can localize impact on complex composite structures with an obviously improved accuracy.

  16. Retrieving and Indexing Spatial Data in the Cloud Computing Environment

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Wang, Sheng; Zhou, Daliang

    In order to solve the drawbacks of spatial data storage in common Cloud Computing platform, we design and present a framework for retrieving, indexing, accessing and managing spatial data in the Cloud environment. An interoperable spatial data object model is provided based on the Simple Feature Coding Rules from the OGC such as Well Known Binary (WKB) and Well Known Text (WKT). And the classic spatial indexing algorithms like Quad-Tree and R-Tree are re-designed in the Cloud Computing environment. In the last we develop a prototype software based on Google App Engine to implement the proposed model.

  17. Algorithms for Computing the Magnetic Field, Vector Potential, and Field Derivatives for a Thin Solenoid with Uniform Current Density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walstrom, Peter Lowell

    A numerical algorithm for computing the field components B r and B z and their r and z derivatives with open boundaries in cylindrical coordinates for radially thin solenoids with uniform current density is described in this note. An algorithm for computing the vector potential A θ is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. The (apparently) new feature of themore » algorithms described in this note applies to cases where the field point is outside of the bore of the solenoid and the field-point radius approaches the solenoid radius. Since the elliptic integrals of the third kind normally used in computing B z and A θ become infinite in this region of parameter space, fields for points with the axial coordinate z outside of the ends of the solenoid and near the solenoid radius are treated by use of elliptic integrals of the third kind of modified argument, derived by use of an addition theorem. Also, the algorithms also avoid the numerical difficulties the textbook solutions have for points near the axis arising from explicit factors of 1/r or 1/r 2 in the some of the expressions.« less

  18. High-speed scanning: an improved algorithm

    NASA Astrophysics Data System (ADS)

    Nachimuthu, A.; Hoang, Khoi

    1995-10-01

    In using machine vision for assessing an object's surface quality, many images are required to be processed in order to separate the good areas from the defective ones. Examples can be found in the leather hide grading process; in the inspection of garments/canvas on the production line; in the nesting of irregular shapes into a given surface... . The most common method of subtracting the total area from the sum of defective areas does not give an acceptable indication of how much of the `good' area can be used, particularly if the findings are to be used for the nesting of irregular shapes. This paper presents an image scanning technique which enables the estimation of useable areas within an inspected surface in terms of the user's definition, not the supplier's claims. That is, how much useable area the user can use, not the total good area as the supplier estimated. An important application of the developed technique is in the leather industry where the tanner (the supplier) and the footwear manufacturer (the user) are constantly locked in argument due to disputed quality standards of finished leather hide, which disrupts production schedules and wasted costs in re-grading, re- sorting... . The developed basic algorithm for area scanning of a digital image will be presented. The implementation of an improved scanning algorithm will be discussed in detail. The improved features include Boolean OR operations and many other innovative functions which aim at optimizing the scanning process in terms of computing time and the accurate estimation of useable areas.

  19. Research in Parallel Algorithms and Software for Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Domel, Neal D.

    1996-01-01

    Phase 1 is complete for the development of a computational fluid dynamics CFD) parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.

  20. Dynamic virtual machine allocation policy in cloud computing complying with service level agreement using CloudSim

    NASA Astrophysics Data System (ADS)

    Aneri, Parikh; Sumathy, S.

    2017-11-01

    Cloud computing provides services over the internet and provides application resources and data to the users based on their demand. Base of the Cloud Computing is consumer provider model. Cloud provider provides resources which consumer can access using cloud computing model in order to build their application based on their demand. Cloud data center is a bulk of resources on shared pool architecture for cloud user to access. Virtualization is the heart of the Cloud computing model, it provides virtual machine as per application specific configuration and those applications are free to choose their own configuration. On one hand, there is huge number of resources and on other hand it has to serve huge number of requests effectively. Therefore, resource allocation policy and scheduling policy play very important role in allocation and managing resources in this cloud computing model. This paper proposes the load balancing policy using Hungarian algorithm. Hungarian Algorithm provides dynamic load balancing policy with a monitor component. Monitor component helps to increase cloud resource utilization by managing the Hungarian algorithm by monitoring its state and altering its state based on artificial intelligent. CloudSim used in this proposal is an extensible toolkit and it simulates cloud computing environment.

  1. A Scheduling Algorithm for Computational Grids that Minimizes Centralized Processing in Genome Assembly of Next-Generation Sequencing Data

    PubMed Central

    Lima, Jakelyne; Cerdeira, Louise Teixeira; Bol, Erick; Schneider, Maria Paula Cruz; Silva, Artur; Azevedo, Vasco; Abelém, Antônio Jorge Gomes

    2012-01-01

    Improvements in genome sequencing techniques have resulted in generation of huge volumes of data. As a consequence of this progress, the genome assembly stage demands even more computational power, since the incoming sequence files contain large amounts of data. To speed up the process, it is often necessary to distribute the workload among a group of machines. However, this requires hardware and software solutions specially configured for this purpose. Grid computing try to simplify this process of aggregate resources, but do not always offer the best performance possible due to heterogeneity and decentralized management of its resources. Thus, it is necessary to develop software that takes into account these peculiarities. In order to achieve this purpose, we developed an algorithm aimed to optimize the functionality of de novo assembly software ABySS in order to optimize its operation in grids. We run ABySS with and without the algorithm we developed in the grid simulator SimGrid. Tests showed that our algorithm is viable, flexible, and scalable even on a heterogeneous environment, which improved the genome assembly time in computational grids without changing its quality. PMID:22461785

  2. Thermal weapon sights with integrated fire control computers: algorithms and experiences

    NASA Astrophysics Data System (ADS)

    Rothe, Hendrik; Graswald, Markus; Breiter, Rainer

    2008-04-01

    The HuntIR long range thermal weapon sight of AIM is deployed in various out of area missions since 2004 as a part of the German Future Infantryman system (IdZ). In 2007 AIM fielded RangIR as upgrade with integrated laser Range finder (LRF), digital magnetic compass (DMC) and fire control unit (FCU). RangIR fills the capability gaps of day/night fire control for grenade machine guns (GMG) and the enhanced system of the IdZ. Due to proven expertise and proprietary methods in fire control, fast access to military trials for optimisation loops and similar hardware platforms, AIM and the University of the Federal Armed Forces Hamburg (HSU) decided to team for the development of suitable fire control algorithms. The pronounced ballistic trajectory of the 40mm GMG requires most accurate FCU-solutions specifically for air burst ammunition (ABM) and is most sensitive to faint effects like levelling or firing up/downhill. This weapon was therefore selected to validate the quality of the FCU hard- and software under relevant military conditions. For exterior ballistics the modified point mass model according to STANAG 4355 is used. The differential equations of motions are solved numerically, the two point boundary value problem is solved iteratively. Computing time varies according to the precision needed and is typical in the range from 0.1 - 0.5 seconds. RangIR provided outstanding hit accuracy including ABM fuze timing in various trials of the German Army and allied partners in 2007 and is now ready for series production. This paper deals mainly with the fundamentals of the fire control algorithms and shows how to implement them in combination with any DSP-equipped thermal weapon sights (TWS) in a variety of light supporting weapon systems.

  3. Strategic Control Algorithm Development : Volume 3. Strategic Algorithm Report.

    DOT National Transportation Integrated Search

    1974-08-01

    The strategic algorithm report presents a detailed description of the functional basic strategic control arrival algorithm. This description is independent of a particular computer or language. Contained in this discussion are the geometrical and env...

  4. Acceleration of Image Segmentation Algorithm for (Breast) Mammogram Images Using High-Performance Reconfigurable Dataflow Computers

    PubMed Central

    Filipovic, Nenad D.

    2017-01-01

    Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler's acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration. PMID:28611851

  5. Acceleration of Image Segmentation Algorithm for (Breast) Mammogram Images Using High-Performance Reconfigurable Dataflow Computers.

    PubMed

    Milankovic, Ivan L; Mijailovic, Nikola V; Filipovic, Nenad D; Peulic, Aleksandar S

    2017-01-01

    Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler's acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration.

  6. An algorithm of adaptive scale object tracking in occlusion

    NASA Astrophysics Data System (ADS)

    Zhao, Congmei

    2017-05-01

    Although the correlation filter-based trackers achieve the competitive results both on accuracy and robustness, there are still some problems in handling scale variations, object occlusion, fast motions and so on. In this paper, a multi-scale kernel correlation filter algorithm based on random fern detector was proposed. The tracking task was decomposed into the target scale estimation and the translation estimation. At the same time, the Color Names features and HOG features were fused in response level to further improve the overall tracking performance of the algorithm. In addition, an online random fern classifier was trained to re-obtain the target after the target was lost. By comparing with some algorithms such as KCF, DSST, TLD, MIL, CT and CSK, experimental results show that the proposed approach could estimate the object state accurately and handle the object occlusion effectively.

  7. Load Balancing in Cloud Computing Environment Using Improved Weighted Round Robin Algorithm for Nonpreemptive Dependent Tasks.

    PubMed

    Devi, D Chitra; Uthariaraj, V Rhymend

    2016-01-01

    Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods.

  8. Load Balancing in Cloud Computing Environment Using Improved Weighted Round Robin Algorithm for Nonpreemptive Dependent Tasks

    PubMed Central

    Devi, D. Chitra; Uthariaraj, V. Rhymend

    2016-01-01

    Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods. PMID:26955656

  9. Hardware Acceleration of Adaptive Neural Algorithms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Conrad D.

    As tradit ional numerical computing has faced challenges, researchers have turned towards alternative computing approaches to reduce power - per - computation metrics and improve algorithm performance. Here, we describe an approach towards non - conventional computing that strengthens the connection between machine learning and neuroscience concepts. The Hardware Acceleration of Adaptive Neural Algorithms (HAANA) project ha s develop ed neural machine learning algorithms and hardware for applications in image processing and cybersecurity. While machine learning methods are effective at extracting relevant features from many types of data, the effectiveness of these algorithms degrades when subjected to real - worldmore » conditions. Our team has generated novel neural - inspired approa ches to improve the resiliency and adaptability of machine learning algorithms. In addition, we have also designed and fabricated hardware architectures and microelectronic devices specifically tuned towards the training and inference operations of neural - inspired algorithms. Finally, our multi - scale simulation framework allows us to assess the impact of microelectronic device properties on algorithm performance.« less

  10. Software Method for Computed Tomography Cylinder Data Unwrapping, Re-slicing, and Analysis

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    2013-01-01

    A software method has been developed that is applicable for analyzing cylindrical and partially cylindrical objects inspected using computed tomography (CT). This method involves unwrapping and re-slicing data so that the CT data from the cylindrical object can be viewed as a series of 2D sheets (or flattened onion skins ) in addition to a series of top view slices and 3D volume rendering. The advantages of viewing the data in this fashion are as follows: (1) the use of standard and specialized image processing and analysis methods is facilitated having 2D array data versus a volume rendering; (2) accurate lateral dimensional analysis of flaws is possible in the unwrapped sheets versus volume rendering; (3) flaws in the part jump out at the inspector with the proper contrast expansion settings in the unwrapped sheets; and (4) it is much easier for the inspector to locate flaws in the unwrapped sheets versus top view slices for very thin cylinders. The method is fully automated and requires no input from the user except proper voxel dimension from the CT experiment and wall thickness of the part. The software is available in 32-bit and 64-bit versions, and can be used with binary data (8- and 16-bit) and BMP type CT image sets. The software has memory (RAM) and hard-drive based modes. The advantage of the (64-bit) RAM-based mode is speed (and is very practical for users of 64-bit Windows operating systems and computers having 16 GB or more RAM). The advantage of the hard-drive based analysis is one can work with essentially unlimited-sized data sets. Separate windows are spawned for the unwrapped/re-sliced data view and any image processing interactive capability. Individual unwrapped images and un -wrapped image series can be saved in common image formats. More information is available at http://www.grc.nasa.gov/WWW/OptInstr/ NDE_CT_CylinderUnwrapper.html.

  11. Implementation of Multispectral Image Classification on a Remote Adaptive Computer

    NASA Technical Reports Server (NTRS)

    Figueiredo, Marco A.; Gloster, Clay S.; Stephens, Mark; Graves, Corey A.; Nakkar, Mouna

    1999-01-01

    As the demand for higher performance computers for the processing of remote sensing science algorithms increases, the need to investigate new computing paradigms its justified. Field Programmable Gate Arrays enable the implementation of algorithms at the hardware gate level, leading to orders of m a,gnitude performance increase over microprocessor based systems. The automatic classification of spaceborne multispectral images is an example of a computation intensive application, that, can benefit from implementation on an FPGA - based custom computing machine (adaptive or reconfigurable computer). A probabilistic neural network is used here to classify pixels of of a multispectral LANDSAT-2 image. The implementation described utilizes Java client/server application programs to access the adaptive computer from a remote site. Results verify that a remote hardware version of the algorithm (implemented on an adaptive computer) is significantly faster than a local software version of the same algorithm implemented on a typical general - purpose computer).

  12. Method for implementation of recursive hierarchical segmentation on parallel computers

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Inventor)

    2005-01-01

    A method, computer readable storage, and apparatus for implementing a recursive hierarchical segmentation algorithm on a parallel computing platform. The method includes setting a bottom level of recursion that defines where a recursive division of an image into sections stops dividing, and setting an intermediate level of recursion where the recursive division changes from a parallel implementation into a serial implementation. The segmentation algorithm is implemented according to the set levels. The method can also include setting a convergence check level of recursion with which the first level of recursion communicates with when performing a convergence check.

  13. Extreme-Scale Algorithms & Software Resilience (EASIR) Architecture-Aware Algorithms for Scalable Performance and Resilience on Heterogeneous Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demmel, James W.

    This project addresses both communication-avoiding algorithms, and reproducible floating-point computation. Communication, i.e. moving data, either between levels of memory or processors over a network, is much more expensive per operation than arithmetic (measured in time or energy), so we seek algorithms that greatly reduce communication. We developed many new algorithms for both dense and sparse, and both direct and iterative linear algebra, attaining new communication lower bounds, and getting large speedups in many cases. We also extended this work in several ways: (1) We minimize writes separately from reads, since writes may be much more expensive than reads on emergingmore » memory technologies, like Flash, sometimes doing asymptotically fewer writes than reads. (2) We extend the lower bounds and optimal algorithms to arbitrary algorithms that may be expressed as perfectly nested loops accessing arrays, where the array subscripts may be arbitrary affine functions of the loop indices (eg A(i), B(i,j+k, k+3*m-7, …) etc.). (3) We extend our communication-avoiding approach to some machine learning algorithms, such as support vector machines. This work has won a number of awards. We also address reproducible floating-point computation. We define reproducibility to mean getting bitwise identical results from multiple runs of the same program, perhaps with different hardware resources or other changes that should ideally not change the answer. Many users depend on reproducibility for debugging or correctness. However, dynamic scheduling of parallel computing resources, combined with nonassociativity of floating point addition, makes attaining reproducibility a challenge even for simple operations like summing a vector of numbers, or more complicated operations like the Basic Linear Algebra Subprograms (BLAS). We describe an algorithm that computes a reproducible sum of floating point numbers, independent of the order of summation. The algorithm depends only on

  14. Study of one- and two-dimensional filtering and deconvolution algorithms for a streaming array computer

    NASA Technical Reports Server (NTRS)

    Ioup, G. E.

    1985-01-01

    Appendix 5 of the Study of One- and Two-Dimensional Filtering and Deconvolution Algorithms for a Streaming Array Computer includes a resume of the professional background of the Principal Investigator on the project, lists of this publications and research papers, graduate thesis supervised, and grants received.

  15. Re-Form: FPGA-Powered True Codesign Flow for High-Performance Computing In The Post-Moore Era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappello, Franck; Yoshii, Kazutomo; Finkel, Hal

    Multicore scaling will end soon because of practical power limits. Dark silicon is becoming a major issue even more than the end of Moore’s law. In the post-Moore era, the energy efficiency of computing will be a major concern. FPGAs could be a key to maximizing the energy efficiency. In this paper we address severe challenges in the adoption of FPGA in HPC and describe “Re-form,” an FPGA-powered codesign flow.

  16. An algorithm for solving the system-level problem in multilevel optimization

    NASA Technical Reports Server (NTRS)

    Balling, R. J.; Sobieszczanski-Sobieski, J.

    1994-01-01

    A multilevel optimization approach which is applicable to nonhierarchic coupled systems is presented. The approach includes a general treatment of design (or behavior) constraints and coupling constraints at the discipline level through the use of norms. Three different types of norms are examined: the max norm, the Kreisselmeier-Steinhauser (KS) norm, and the 1(sub p) norm. The max norm is recommended. The approach is demonstrated on a class of hub frame structures which simulate multidisciplinary systems. The max norm is shown to produce system-level constraint functions which are non-smooth. A cutting-plane algorithm is presented which adequately deals with the resulting corners in the constraint functions. The algorithm is tested on hub frames with increasing number of members (which simulate disciplines), and the results are summarized.

  17. International standards for neurological classification of spinal cord injury: classification skills of clinicians versus computational algorithms.

    PubMed

    Schuld, C; Franz, S; van Hedel, H J A; Moosburger, J; Maier, D; Abel, R; van de Meent, H; Curt, A; Weidner, N; Rupp, R

    2015-04-01

    This is a retrospective analysis. The objective of this study was to describe and quantify the discrepancy in the classification of the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) by clinicians versus a validated computational algorithm. European Multicenter Study on Human Spinal Cord Injury (EMSCI). Fully documented ISNCSCI data sets from EMSCI's first years (2003-2005) classified by clinicians (mostly spinal cord medicine residents, who received in-house ISNCSCI training by senior SCI physicians) were computationally reclassified. Any differences in the scoring of sensory and motor levels, American Spinal Injury Association Impairment Scale (AIS) or the zone of partial preservation (ZPP) were quantified. Four hundred and twenty ISNCSCI data sets were evaluated. The lowest agreement was found in motor levels (right: 62.1%, P=0.002; left: 61.8%, P=0.003), followed by motor ZPP (right: 81.6%, P=0.74; left 80.0%, P=0.27) and then AIS (83.4%, P=0.001). Sensory levels and sensory ZPP showed the best concordance (right sensory level: 90.8%, P=0.66; left sensory level: 90.0%, P=0.30; right sensory ZPP: 91.0%, P=0.18; left sensory ZPP: 92.2%, P=0.03). AIS B was most often misinterpreted as AIS C and vice versa (AIS B as C: 29.4% and AIS C as B: 38.6%). Most difficult classification tasks were the correct determination of motor levels and the differentiation between AIS B and AIS C/D. These issues should be addressed in upcoming ISNCSCI revisions. Training is strongly recommended to improve classification skills for clinical practice, as well as for clinical investigators conducting spinal cord studies. This study is partially funded by the International Foundation for Research in Paraplegia, Zurich, Switzerland.

  18. A parallel algorithm for Hamiltonian matrix construction in electron-molecule collision calculations: MPI-SCATCI

    NASA Astrophysics Data System (ADS)

    Al-Refaie, Ahmed F.; Tennyson, Jonathan

    2017-12-01

    Construction and diagonalization of the Hamiltonian matrix is the rate-limiting step in most low-energy electron - molecule collision calculations. Tennyson (1996) implemented a novel algorithm for Hamiltonian construction which took advantage of the structure of the wavefunction in such calculations. This algorithm is re-engineered to make use of modern computer architectures and the use of appropriate diagonalizers is considered. Test calculations demonstrate that significant speed-ups can be gained using multiple CPUs. This opens the way to calculations which consider higher collision energies, larger molecules and / or more target states. The methodology, which is implemented as part of the UK molecular R-matrix codes (UKRMol and UKRMol+) can also be used for studies of bound molecular Rydberg states, photoionization and positron-molecule collisions.

  19. Numerical algorithms for computations of feedback laws arising in control of flexible systems

    NASA Technical Reports Server (NTRS)

    Lasiecka, Irena

    1989-01-01

    Several continuous models will be examined, which describe flexible structures with boundary or point control/observation. Issues related to the computation of feedback laws are examined (particularly stabilizing feedbacks) with sensors and actuators located either on the boundary or at specific point locations of the structure. One of the main difficulties is due to the great sensitivity of the system (hyperbolic systems with unbounded control actions), with respect to perturbations caused either by uncertainty of the model or by the errors introduced in implementing numerical algorithms. Thus, special care must be taken in the choice of the appropriate numerical schemes which eventually lead to implementable finite dimensional solutions. Finite dimensional algorithms are constructed on a basis of a priority analysis of the properties of the original, continuous (infinite diversional) systems with the following criteria in mind: (1) convergence and stability of the algorithms and (2) robustness (reasonable insensitivity with respect to the unknown parameters of the systems). Examples with mixed finite element methods and spectral methods are provided.

  20. Cone-Beam Computed Tomography for Image-Guided Radiation Therapy of Prostate Cancer

    DTIC Science & Technology

    2008-01-01

    forexa t volumetri image re onstru tion. As a onsequense, images re onstru ted by approx-imate algorithms, mostly based on the Feldkamp algorithm...patient dose from CBCT. Reverse heli al CBCT has been developed for exa tre onstru tion of volumetri images, region-of-interest (ROI) re onstru tion...algorithm with a priori informa-tion in few-view CBCT for IGRT. We expe t the proposed algorithm an redu e the numberof proje tions needed for volumetri

  1. A synthetic visual plane algorithm for visibility computation in consideration of accuracy and efficiency

    NASA Astrophysics Data System (ADS)

    Yu, Jieqing; Wu, Lixin; Hu, Qingsong; Yan, Zhigang; Zhang, Shaoliang

    2017-12-01

    Visibility computation is of great interest to location optimization, environmental planning, ecology, and tourism. Many algorithms have been developed for visibility computation. In this paper, we propose a novel method of visibility computation, called synthetic visual plane (SVP), to achieve better performance with respect to efficiency, accuracy, or both. The method uses a global horizon, which is a synthesis of line-of-sight information of all nearer points, to determine the visibility of a point, which makes it an accurate visibility method. We used discretization of horizon to gain a good performance in efficiency. After discretization, the accuracy and efficiency of SVP depends on the scale of discretization (i.e., zone width). The method is more accurate at smaller zone widths, but this requires a longer operating time. Users must strike a balance between accuracy and efficiency at their discretion. According to our experiments, SVP is less accurate but more efficient than R2 if the zone width is set to one grid. However, SVP becomes more accurate than R2 when the zone width is set to 1/24 grid, while it continues to perform as fast or faster than R2. Although SVP performs worse than reference plane and depth map with respect to efficiency, it is superior in accuracy to these other two algorithms.

  2. Characterisation of re-entrant circuit (or rotational activity) in vitro using the HL1-6 myocyte cell line.

    PubMed

    Houston, Charles; Tzortzis, Konstantinos N; Roney, Caroline; Saglietto, Andrea; Pitcher, David S; Cantwell, Chris D; Chowdhury, Rasheda A; Ng, Fu Siong; Peters, Nicholas S; Dupont, Emmanuel

    2018-06-01

    Fibrillation is the most common arrhythmia observed in clinical practice. Understanding of the mechanisms underlying its initiation and maintenance remains incomplete. Functional re-entries are potential drivers of the arrhythmia. Two main concepts are still debated, the "leading circle" and the "spiral wave or rotor" theories. The homogeneous subclone of the HL1 atrial-derived cardiomyocyte cell line, HL1-6, spontaneously exhibits re-entry on a microscopic scale due to its slow conduction velocity and the presence of triggers, making it possible to examine re-entry at the cellular level. We therefore investigated the re-entry cores in cell monolayers through the use of fluorescence optical mapping at high spatiotemporal resolution in order to obtain insights into the mechanisms of re-entry. Re-entries in HL1-6 myocytes required at least two triggers and a minimum colony area to initiate (3.5 to 6.4 mm 2 ). After electrical activity was completely stopped and re-started by varying the extracellular K + concentration, re-entries never returned to the same location while 35% of triggers re-appeared at the same position. A conduction delay algorithm also allows visualisation of the core of the re-entries. This work has revealed that the core of re-entries is conduction blocks constituted by lines and/or groups of cells rather than the round area assumed by the other concepts of functional re-entry. This highlights the importance of experimentation at the microscopic level in the study of re-entry mechanisms. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Solving Hard Computational Problems Efficiently: Asymptotic Parametric Complexity 3-Coloring Algorithm

    PubMed Central

    Martín H., José Antonio

    2013-01-01

    Many practical problems in almost all scientific and technological disciplines have been classified as computationally hard (NP-hard or even NP-complete). In life sciences, combinatorial optimization problems frequently arise in molecular biology, e.g., genome sequencing; global alignment of multiple genomes; identifying siblings or discovery of dysregulated pathways. In almost all of these problems, there is the need for proving a hypothesis about certain property of an object that can be present if and only if it adopts some particular admissible structure (an NP-certificate) or be absent (no admissible structure), however, none of the standard approaches can discard the hypothesis when no solution can be found, since none can provide a proof that there is no admissible structure. This article presents an algorithm that introduces a novel type of solution method to “efficiently” solve the graph 3-coloring problem; an NP-complete problem. The proposed method provides certificates (proofs) in both cases: present or absent, so it is possible to accept or reject the hypothesis on the basis of a rigorous proof. It provides exact solutions and is polynomial-time (i.e., efficient) however parametric. The only requirement is sufficient computational power, which is controlled by the parameter . Nevertheless, here it is proved that the probability of requiring a value of to obtain a solution for a random graph decreases exponentially: , making tractable almost all problem instances. Thorough experimental analyses were performed. The algorithm was tested on random graphs, planar graphs and 4-regular planar graphs. The obtained experimental results are in accordance with the theoretical expected results. PMID:23349711

  4. An Enhanced Memetic Algorithm for Single-Objective Bilevel Optimization Problems.

    PubMed

    Islam, Md Monjurul; Singh, Hemant Kumar; Ray, Tapabrata; Sinha, Ankur

    2017-01-01

    Bilevel optimization, as the name reflects, deals with optimization at two interconnected hierarchical levels. The aim is to identify the optimum of an upper-level  leader problem, subject to the optimality of a lower-level follower problem. Several problems from the domain of engineering, logistics, economics, and transportation have an inherent nested structure which requires them to be modeled as bilevel optimization problems. Increasing size and complexity of such problems has prompted active theoretical and practical interest in the design of efficient algorithms for bilevel optimization. Given the nested nature of bilevel problems, the computational effort (number of function evaluations) required to solve them is often quite high. In this article, we explore the use of a Memetic Algorithm (MA) to solve bilevel optimization problems. While MAs have been quite successful in solving single-level optimization problems, there have been relatively few studies exploring their potential for solving bilevel optimization problems. MAs essentially attempt to combine advantages of global and local search strategies to identify optimum solutions with low computational cost (function evaluations). The approach introduced in this article is a nested Bilevel Memetic Algorithm (BLMA). At both upper and lower levels, either a global or a local search method is used during different phases of the search. The performance of BLMA is presented on twenty-five standard test problems and two real-life applications. The results are compared with other established algorithms to demonstrate the efficacy of the proposed approach.

  5. Compute-unified device architecture implementation of a block-matching algorithm for multiple graphical processing unit cards

    PubMed Central

    Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G.

    2012-01-01

    In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids. The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable. In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation. We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards. PMID:22347787

  6. Compute-unified device architecture implementation of a block-matching algorithm for multiple graphical processing unit cards.

    PubMed

    Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G

    2011-07-01

    In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids.The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable.In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation.We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards.

  7. A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peyret, Thomas; Poulin, Patrick; Krishnan, Kannan, E-mail: kannan.krishnan@umontreal.ca

    The algorithms in the literature focusing to predict tissue:blood PC (P{sub tb}) for environmental chemicals and tissue:plasma PC based on total (K{sub p}) or unbound concentration (K{sub pu}) for drugs differ in their consideration of binding to hemoglobin, plasma proteins and charged phospholipids. The objective of the present study was to develop a unified algorithm such that P{sub tb}, K{sub p} and K{sub pu} for both drugs and environmental chemicals could be predicted. The development of the unified algorithm was accomplished by integrating all mechanistic algorithms previously published to compute the PCs. Furthermore, the algorithm was structured in such amore » way as to facilitate predictions of the distribution of organic compounds at the macro (i.e. whole tissue) and micro (i.e. cells and fluids) levels. The resulting unified algorithm was applied to compute the rat P{sub tb}, K{sub p} or K{sub pu} of muscle (n = 174), liver (n = 139) and adipose tissue (n = 141) for acidic, neutral, zwitterionic and basic drugs as well as ketones, acetate esters, alcohols, aliphatic hydrocarbons, aromatic hydrocarbons and ethers. The unified algorithm reproduced adequately the values predicted previously by the published algorithms for a total of 142 drugs and chemicals. The sensitivity analysis demonstrated the relative importance of the various compound properties reflective of specific mechanistic determinants relevant to prediction of PC values of drugs and environmental chemicals. Overall, the present unified algorithm uniquely facilitates the computation of macro and micro level PCs for developing organ and cellular-level PBPK models for both chemicals and drugs.« less

  8. Beyond the computer-based patient record: re-engineering with a vision.

    PubMed

    Genn, B; Geukers, L

    1995-01-01

    In order to achieve real benefit from the potential offered by a Computer-Based Patient Record, the capabilities of the technology must be applied along with true re-engineering of healthcare delivery processes. University Hospital recognizes this and is using systems implementation projects, such as the catalyst, for transforming the way we care for our patients. Integration is fundamental to the success of these initiatives and this must be explicitly planned against an organized systems architecture whose standards are market-driven. University Hospital also recognizes that Community Health Information Networks will offer improved quality of patient care at a reduced overall cost to the system. All of these implementation factors are considered up front as the hospital makes its initial decisions on to how to computerize its patient records. This improves our chances for success and will provide a consistent vision to guide the hospital's development of new and better patient care.

  9. Development of Fast Algorithms Using Recursion, Nesting and Iterations for Computational Electromagnetics

    NASA Technical Reports Server (NTRS)

    Chew, W. C.; Song, J. M.; Lu, C. C.; Weedon, W. H.

    1995-01-01

    In the first phase of our work, we have concentrated on laying the foundation to develop fast algorithms, including the use of recursive structure like the recursive aggregate interaction matrix algorithm (RAIMA), the nested equivalence principle algorithm (NEPAL), the ray-propagation fast multipole algorithm (RPFMA), and the multi-level fast multipole algorithm (MLFMA). We have also investigated the use of curvilinear patches to build a basic method of moments code where these acceleration techniques can be used later. In the second phase, which is mainly reported on here, we have concentrated on implementing three-dimensional NEPAL on a massively parallel machine, the Connection Machine CM-5, and have been able to obtain some 3D scattering results. In order to understand the parallelization of codes on the Connection Machine, we have also studied the parallelization of 3D finite-difference time-domain (FDTD) code with PML material absorbing boundary condition (ABC). We found that simple algorithms like the FDTD with material ABC can be parallelized very well allowing us to solve within a minute a problem of over a million nodes. In addition, we have studied the use of the fast multipole method and the ray-propagation fast multipole algorithm to expedite matrix-vector multiplication in a conjugate-gradient solution to integral equations of scattering. We find that these methods are faster than LU decomposition for one incident angle, but are slower than LU decomposition when many incident angles are needed as in the monostatic RCS calculations.

  10. Factors Influencing Exemplary Science Teachers' Levels of Computer Use

    ERIC Educational Resources Information Center

    Hakverdi, Meral; Dana, Thomas M.; Swain, Colleen

    2011-01-01

    The purpose of this study was to examine exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their…

  11. Design of automata theory of cubical complexes with applications to diagnosis and algorithmic description

    NASA Technical Reports Server (NTRS)

    Roth, J. P.

    1972-01-01

    The following problems are considered: (1) methods for development of logic design together with algorithms, so that it is possible to compute a test for any failure in the logic design, if such a test exists, and developing algorithms and heuristics for the purpose of minimizing the computation for tests; and (2) a method of design of logic for ultra LSI (large scale integration). It was discovered that the so-called quantum calculus can be extended to render it possible: (1) to describe the functional behavior of a mechanism component by component, and (2) to compute tests for failures, in the mechanism, using the diagnosis algorithm. The development of an algorithm for the multioutput two-level minimization problem is presented and the program MIN 360 was written for this algorithm. The program has options of mode (exact minimum or various approximations), cost function, cost bound, etc., providing flexibility.

  12. Limitations and potentials of current motif discovery algorithms

    PubMed Central

    Hu, Jianjun; Li, Bin; Kihara, Daisuke

    2005-01-01

    Computational methods for de novo identification of gene regulation elements, such as transcription factor binding sites, have proved to be useful for deciphering genetic regulatory networks. However, despite the availability of a large number of algorithms, their strengths and weaknesses are not sufficiently understood. Here, we designed a comprehensive set of performance measures and benchmarked five modern sequence-based motif discovery algorithms using large datasets generated from Escherichia coli RegulonDB. Factors that affect the prediction accuracy, scalability and reliability are characterized. It is revealed that the nucleotide and the binding site level accuracy are very low, while the motif level accuracy is relatively high, which indicates that the algorithms can usually capture at least one correct motif in an input sequence. To exploit diverse predictions from multiple runs of one or more algorithms, a consensus ensemble algorithm has been developed, which achieved 6–45% improvement over the base algorithms by increasing both the sensitivity and specificity. Our study illustrates limitations and potentials of existing sequence-based motif discovery algorithms. Taking advantage of the revealed potentials, several promising directions for further improvements are discussed. Since the sequence-based algorithms are the baseline of most of the modern motif discovery algorithms, this paper suggests substantial improvements would be possible for them. PMID:16284194

  13. Is It Ethical for Patents to Be Issued for the Computer Algorithms that Affect Course Management Systems for Distance Learning?

    ERIC Educational Resources Information Center

    Moreau, Nancy

    2008-01-01

    This article discusses the impact of patents for computer algorithms in course management systems. Referring to historical documents and court cases, the positive and negative aspects of software patents are presented. The key argument is the accessibility to algorithms comprising a course management software program such as Blackboard. The…

  14. Experimental data filtration algorithm

    NASA Astrophysics Data System (ADS)

    Oanta, E.; Tamas, R.; Danisor, A.

    2017-08-01

    Experimental data reduction is an important topic because the resulting information is used to calibrate the theoretical models and to verify the accuracy of their results. The paper presents some ideas used to extract a subset of points from the initial set of points which defines an experimentally acquired curve. The objective is to get a subset with significantly fewer points as the initial data set and which accurately defines a smooth curve that preserves the shape of the initial curve. Being a general study we used only data filtering criteria based geometric features that at a later stage may be related to upper level conditions specific to the phenomenon under investigation. Five algorithms were conceived and implemented in an original software consisting of more than 1800 computer code lines which has a flexible structure that allows us to easily update it using new algorithms. The software instrument was used to process the data of several case studies. Conclusions are drawn regarding the values of the parameters used in the algorithms to decide if a series of points may be considered either noise, or a relevant part of the curve. Being a general analysis, the result is a computer based trial-and-error method that efficiently solves this kind of problems.

  15. Computer vision camera with embedded FPGA processing

    NASA Astrophysics Data System (ADS)

    Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel

    2000-03-01

    Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.

  16. A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications

    DOE PAGES

    James, Conrad D.; Aimone, James B.; Miner, Nadine E.; ...

    2017-01-04

    In this study, biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here in this research, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classesmore » such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. Additionally, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.« less

  17. A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Conrad D.; Aimone, James B.; Miner, Nadine E.

    In this study, biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here in this research, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classesmore » such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. Additionally, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.« less

  18. Re-OPCAB vs. Re-CABG for myocardial revascularization.

    PubMed

    Schütz, A; Mair, H; Wildhirt, S M; Gillrath, G; Lamm, P; Kilger, E; Reichart, B

    2001-06-01

    The present study compared redo coronary artery bypass grafting (Re-OPCAB) techniques with conventional redo coronary artery bypass grafting (Re-CABG) with particular focus on myocardial damage and clinical outcome parameters. Redo OPCAB (Re-OPCAB) was performed on 20 consecutive patients (15 males, mean age 63.2 +/- 9.3 years) using either the anterolateral approach for minimally invasive direct coronary artery bypass (n = 4) or the Octopus technique with regular sternotomy (n = 16). The Re-CABG group consisted of 20 consecutive patients (18 males, mean age 67.1 +/- 6.6 years). Groups did not differ in the number of atherosclerotic risk factors, or left ventricular, renal or liver function. Duration of surgery, number of bypass grafts and amount of transfused red blood cells did not differ significantly between both groups. Requirement of epinephrine (mg/h) within the first 24 h was lower in the Re-OPCAB group (Re-OPCAB: 0.14 +/- 0.22 vs. CABG: 0.88 +/- 0.97; p<0.01). In addition, CKMB levels at 24 h after operation were lower in the Re-OPCAB group (Re-OPCAB: 10.0 +/- 10.1 vs. Re-CABG: 38.7 +/- 28.1 U/l, p<0.001). There were no acute myocardial infarctions or deaths in the perioperative period. In the CABG group, there was a longer time period to extubation (hours) (Re-OPCAB: 9.8 +/- 3.9 vs. Re-CABG: 28.7 +/- 25.5; p<0.001), and the length of ICU stay was significantly prolonged (OPCAB: 1.3 +/- 0.5 versus Re-CABG: 4.4 +/- 8.7; p<0.001). The graft patency rate at follow-up was 95% in the Re-OPCAB group. Re-OPCAB results in decreased cardiac specific enzyme release, reduced requirement of inotropes and comparable clinical outcome in the early postoperative period. It is an appropriate alternative to conventional Re-CABG in selected patients awaiting reoperation for myocardial revascularization. Larger prospective and randomized trials are required to select the appropriate patient who benefits most from one or the other treatment regime.

  19. Re-Entry Point Targeting for LEO Spacecraft using Aerodynamic Drag

    NASA Technical Reports Server (NTRS)

    Omar, Sanny; Bevilacqua, Riccardo; Fineberg, Laurence; Treptow, Justin; Johnson, Yusef; Clark, Scott

    2016-01-01

    Most Low Earth Orbit (LEO) spacecraft do not have thrusters and re-enter atmosphere in random locations at uncertain times. Objects pose a risk to persons, property, or other satellites. Has become a larger concern with the recent increase in small satellites. Working on a NASA funded project to design a retractable drag device to expedite de-orbit and target a re-entry location through modulation of the drag area. Will be discussing the re-entry point targeting algorithm here.

  20. Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Hui; Peng, Ao-Ping; Zhang, Han-Xin; Yang, Jaw-Yen

    2015-04-01

    This article reviews rarefied gas flow computations based on nonlinear model Boltzmann equations using deterministic high-order gas-kinetic unified algorithms (GKUA) in phase space. The nonlinear Boltzmann model equations considered include the BGK model, the Shakhov model, the Ellipsoidal Statistical model and the Morse model. Several high-order gas-kinetic unified algorithms, which combine the discrete velocity ordinate method in velocity space and the compact high-order finite-difference schemes in physical space, are developed. The parallel strategies implemented with the accompanying algorithms are of equal importance. Accurate computations of rarefied gas flow problems using various kinetic models over wide ranges of Mach numbers 1.2-20 and Knudsen numbers 0.0001-5 are reported. The effects of different high resolution schemes on the flow resolution under the same discrete velocity ordinate method are studied. A conservative discrete velocity ordinate method to ensure the kinetic compatibility condition is also implemented. The present algorithms are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the steady normal shock wave structures for different Mach numbers, the two-dimensional flows past a circular cylinder and a NACA 0012 airfoil to verify the present methodology and to simulate gas transport phenomena covering various flow regimes. Illustrations of large scale parallel computations of three-dimensional hypersonic rarefied flows over the reusable sphere-cone satellite and the re-entry spacecraft using almost the largest computer systems available in China are also reported. The present computed results are compared with the theoretical prediction from gas dynamics, related DSMC results, slip N-S solutions and experimental data, and good agreement can be found. The numerical experience indicates that although the direct model Boltzmann equation solver in phase space can be computationally expensive

  1. Using Linear Algebra to Introduce Computer Algebra, Numerical Analysis, Data Structures and Algorithms (and To Teach Linear Algebra, Too).

    ERIC Educational Resources Information Center

    Gonzalez-Vega, Laureano

    1999-01-01

    Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)

  2. On the Multilevel Solution Algorithm for Markov Chains

    NASA Technical Reports Server (NTRS)

    Horton, Graham

    1997-01-01

    We discuss the recently introduced multilevel algorithm for the steady-state solution of Markov chains. The method is based on an aggregation principle which is well established in the literature and features a multiplicative coarse-level correction. Recursive application of the aggregation principle, which uses an operator-dependent coarsening, yields a multi-level method which has been shown experimentally to give results significantly faster than the typical methods currently in use. When cast as a multigrid-like method, the algorithm is seen to be a Galerkin-Full Approximation Scheme with a solution-dependent prolongation operator. Special properties of this prolongation lead to the cancellation of the computationally intensive terms of the coarse-level equations.

  3. Computer algorithms and applications used to assist the evaluation and treatment of adolescent idiopathic scoliosis: a review of published articles 2000-2009.

    PubMed

    Phan, Philippe; Mezghani, Neila; Aubin, Carl-Éric; de Guise, Jacques A; Labelle, Hubert

    2011-07-01

    Adolescent idiopathic scoliosis (AIS) is a complex spinal deformity whose assessment and treatment present many challenges. Computer applications have been developed to assist clinicians. A literature review on computer applications used in AIS evaluation and treatment has been undertaken. The algorithms used, their accuracy and clinical usability were analyzed. Computer applications have been used to create new classifications for AIS based on 2D and 3D features, assess scoliosis severity or risk of progression and assist bracing and surgical treatment. It was found that classification accuracy could be improved using computer algorithms that AIS patient follow-up and screening could be done using surface topography thereby limiting radiation and that bracing and surgical treatment could be optimized using simulations. Yet few computer applications are routinely used in clinics. With the development of 3D imaging and databases, huge amounts of clinical and geometrical data need to be taken into consideration when researching and managing AIS. Computer applications based on advanced algorithms will be able to handle tasks that could otherwise not be done which can possibly improve AIS patients' management. Clinically oriented applications and evidence that they can improve current care will be required for their integration in the clinical setting.

  4. Three list scheduling temporal partitioning algorithm of time space characteristic analysis and compare for dynamic reconfigurable computing

    NASA Astrophysics Data System (ADS)

    Chen, Naijin

    2013-03-01

    Level Based Partitioning (LBP) algorithm, Cluster Based Partitioning (CBP) algorithm and Enhance Static List (ESL) temporal partitioning algorithm based on adjacent matrix and adjacent table are designed and implemented in this paper. Also partitioning time and memory occupation based on three algorithms are compared. Experiment results show LBP partitioning algorithm possesses the least partitioning time and better parallel character, as far as memory occupation and partitioning time are concerned, algorithms based on adjacent table have less partitioning time and less space memory occupation.

  5. Power optimization of digital baseband WCDMA receiver components on algorithmic and architectural level

    NASA Astrophysics Data System (ADS)

    Schämann, M.; Bücker, M.; Hessel, S.; Langmann, U.

    2008-05-01

    High data rates combined with high mobility represent a challenge for the design of cellular devices. Advanced algorithms are required which result in higher complexity, more chip area and increased power consumption. However, this contrasts to the limited power supply of mobile devices. This presentation discusses the application of an HSDPA receiver which has been optimized regarding power consumption with the focus on the algorithmic and architectural level. On algorithmic level the Rake combiner, Prefilter-Rake equalizer and MMSE equalizer are compared regarding their BER performance. Both equalizer approaches provide a significant increase of performance for high data rates compared to the Rake combiner which is commonly used for lower data rates. For both equalizer approaches several adaptive algorithms are available which differ in complexity and convergence properties. To identify the algorithm which achieves the required performance with the lowest power consumption the algorithms have been investigated using SystemC models regarding their performance and arithmetic complexity. Additionally, for the Prefilter Rake equalizer the power estimations of a modified Griffith (LMS) and a Levinson (RLS) algorithm have been compared with the tool ORINOCO supplied by ChipVision. The accuracy of this tool has been verified with a scalable architecture of the UMTS channel estimation described both in SystemC and VHDL targeting a 130 nm CMOS standard cell library. An architecture combining all three approaches combined with an adaptive control unit is presented. The control unit monitors the current condition of the propagation channel and adjusts parameters for the receiver like filter size and oversampling ratio to minimize the power consumption while maintaining the required performance. The optimization strategies result in a reduction of the number of arithmetic operations up to 70% for single components which leads to an estimated power reduction of up to 40

  6. Algorithm-Based Fault Tolerance Integrated with Replication

    NASA Technical Reports Server (NTRS)

    Some, Raphael; Rennels, David

    2008-01-01

    In a proposed approach to programming and utilization of commercial off-the-shelf computing equipment, a combination of algorithm-based fault tolerance (ABFT) and replication would be utilized to obtain high degrees of fault tolerance without incurring excessive costs. The basic idea of the proposed approach is to integrate ABFT with replication such that the algorithmic portions of computations would be protected by ABFT, and the logical portions by replication. ABFT is an extremely efficient, inexpensive, high-coverage technique for detecting and mitigating faults in computer systems used for algorithmic computations, but does not protect against errors in logical operations surrounding algorithms.

  7. Fast precalculated triangular mesh algorithm for 3D binary computer-generated holograms.

    PubMed

    Yang, Fan; Kaczorowski, Andrzej; Wilkinson, Tim D

    2014-12-10

    A new method for constructing computer-generated holograms using a precalculated triangular mesh is presented. The speed of calculation can be increased dramatically by exploiting both the precalculated base triangle and GPU parallel computing. Unlike algorithms using point-based sources, this method can reconstruct a more vivid 3D object instead of a "hollow image." In addition, there is no need to do a fast Fourier transform for each 3D element every time. A ferroelectric liquid crystal spatial light modulator is used to display the binary hologram within our experiment and the hologram of a base right triangle is produced by utilizing just a one-step Fourier transform in the 2D case, which can be expanded to the 3D case by multiplying by a suitable Fresnel phase plane. All 3D holograms generated in this paper are based on Fresnel propagation; thus, the Fresnel plane is treated as a vital element in producing the hologram. A GeForce GTX 770 graphics card with 2 GB memory is used to achieve parallel computing.

  8. Accelerating statistical image reconstruction algorithms for fan-beam x-ray CT using cloud computing

    NASA Astrophysics Data System (ADS)

    Srivastava, Somesh; Rao, A. Ravishankar; Sheinin, Vadim

    2011-03-01

    Statistical image reconstruction algorithms potentially offer many advantages to x-ray computed tomography (CT), e.g. lower radiation dose. But, their adoption in practical CT scanners requires extra computation power, which is traditionally provided by incorporating additional computing hardware (e.g. CPU-clusters, GPUs, FPGAs etc.) into a scanner. An alternative solution is to access the required computation power over the internet from a cloud computing service, which is orders-of-magnitude more cost-effective. This is because users only pay a small pay-as-you-go fee for the computation resources used (i.e. CPU time, storage etc.), and completely avoid purchase, maintenance and upgrade costs. In this paper, we investigate the benefits and shortcomings of using cloud computing for statistical image reconstruction. We parallelized the most time-consuming parts of our application, the forward and back projectors, using MapReduce, the standard parallelization library on clouds. From preliminary investigations, we found that a large speedup is possible at a very low cost. But, communication overheads inside MapReduce can limit the maximum speedup, and a better MapReduce implementation might become necessary in the future. All the experiments for this paper, including development and testing, were completed on the Amazon Elastic Compute Cloud (EC2) for less than $20.

  9. A study of metaheuristic algorithms for high dimensional feature selection on microarray data

    NASA Astrophysics Data System (ADS)

    Dankolo, Muhammad Nasiru; Radzi, Nor Haizan Mohamed; Sallehuddin, Roselina; Mustaffa, Noorfa Haszlinna

    2017-11-01

    Microarray systems enable experts to examine gene profile at molecular level using machine learning algorithms. It increases the potentials of classification and diagnosis of many diseases at gene expression level. Though, numerous difficulties may affect the efficiency of machine learning algorithms which includes vast number of genes features comprised in the original data. Many of these features may be unrelated to the intended analysis. Therefore, feature selection is necessary to be performed in the data pre-processing. Many feature selection algorithms are developed and applied on microarray which including the metaheuristic optimization algorithms. This paper discusses the application of the metaheuristics algorithms for feature selection in microarray dataset. This study reveals that, the algorithms have yield an interesting result with limited resources thereby saving computational expenses of machine learning algorithms.

  10. Generalized and efficient algorithm for computing multipole energies and gradients based on Cartesian tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Dejun, E-mail: dejun.lin@gmail.com

    2015-09-21

    Accurate representation of intermolecular forces has been the central task of classical atomic simulations, known as molecular mechanics. Recent advancements in molecular mechanics models have put forward the explicit representation of permanent and/or induced electric multipole (EMP) moments. The formulas developed so far to calculate EMP interactions tend to have complicated expressions, especially in Cartesian coordinates, which can only be applied to a specific kernel potential function. For example, one needs to develop a new formula each time a new kernel function is encountered. The complication of these formalisms arises from an intriguing and yet obscured mathematical relation between themore » kernel functions and the gradient operators. Here, I uncover this relation via rigorous derivation and find that the formula to calculate EMP interactions is basically invariant to the potential kernel functions as long as they are of the form f(r), i.e., any Green’s function that depends on inter-particle distance. I provide an algorithm for efficient evaluation of EMP interaction energies, forces, and torques for any kernel f(r) up to any arbitrary rank of EMP moments in Cartesian coordinates. The working equations of this algorithm are essentially the same for any kernel f(r). Recently, a few recursive algorithms were proposed to calculate EMP interactions. Depending on the kernel functions, the algorithm here is about 4–16 times faster than these algorithms in terms of the required number of floating point operations and is much more memory efficient. I show that it is even faster than a theoretically ideal recursion scheme, i.e., one that requires 1 floating point multiplication and 1 addition per recursion step. This algorithm has a compact vector-based expression that is optimal for computer programming. The Cartesian nature of this algorithm makes it fit easily into modern molecular simulation packages as compared with spherical coordinate

  11. A hybrid lung and vessel segmentation algorithm for computer aided detection of pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Raghupathi, Laks; Lakare, Sarang

    2009-02-01

    Advances in multi-detector technology have made CT pulmonary angiography (CTPA) a popular radiological tool for pulmonary emboli (PE) detection. CTPA provide rich detail of lung anatomy and is a useful diagnostic aid in highlighting even very small PE. However analyzing hundreds of slices is laborious and time-consuming for the practicing radiologist which may also cause misdiagnosis due to the presence of various PE look-alike. Computer-aided diagnosis (CAD) can be a potential second reader in providing key diagnostic information. Since PE occurs only in vessel arteries, it is important to mark this region of interest (ROI) during CAD preprocessing. In this paper, we present a new lung and vessel segmentation algorithm for extracting contrast-enhanced vessel ROI in CTPA. Existing approaches to segmentation either provide only the larger lung area without highlighting the vessels or is computationally prohibitive. In this paper, we propose a hybrid lung and vessel segmentation which uses an initial lung ROI and determines the vessels through a series of refinement steps. We first identify a coarse vessel ROI by finding the "holes" from the lung ROI. We then use the initial ROI as seed-points for a region-growing process while carefully excluding regions which are not relevant. The vessel segmentation mask covers 99% of the 259 PE from a real-world set of 107 CTPA. Further, our algorithm increases the net sensitivity of a prototype CAD system by 5-9% across all PE categories in the training and validation data sets. The average run-time of algorithm was only 100 seconds on a standard workstation.

  12. Improved Bat Algorithm Applied to Multilevel Image Thresholding

    PubMed Central

    2014-01-01

    Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation and further higher level processing. However, the required computational time for exhaustive search grows exponentially with the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm, for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving convergence speed. PMID:25165733

  13. Pre-Hardware Optimization of Spacecraft Image Processing Software Algorithms and Hardware Implementation

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Flatley, Thomas P.; Hestnes, Phyllis; Jentoft-Nilsen, Marit; Petrick, David J.; Day, John H. (Technical Monitor)

    2001-01-01

    class of applications with moderate input-output data rates but large intermediate multi-thread data streams has been addressed and mitigated. This opens a new class of satellite image processing applications for bottleneck problems solution using RC technologies. The issue of a science algorithm level of abstraction necessary for RC hardware implementation is also described. Selected Matlab functions already implemented in hardware were investigated for their direct applicability to the GOES-8 application with the intent to create a library of Matlab and IDL RC functions for ongoing work. A complete class of spacecraft image processing applications using embedded re-configurable computing technology to meet real-time requirements, including performance results and comparison with the existing system, is described in this paper.

  14. A quantitative evaluation of pleural effusion on computed tomography scans using B-spline and local clustering level set.

    PubMed

    Song, Lei; Gao, Jungang; Wang, Sheng; Hu, Huasi; Guo, Youmin

    2017-01-01

    Estimation of the pleural effusion's volume is an important clinical issue. The existing methods cannot assess it accurately when there is large volume of liquid in the pleural cavity and/or the patient has some other disease (e.g. pneumonia). In order to help solve this issue, the objective of this study is to develop and test a novel algorithm using B-spline and local clustering level set method jointly, namely BLL. The BLL algorithm was applied to a dataset involving 27 pleural effusions detected on chest CT examination of 18 adult patients with the presence of free pleural effusion. Study results showed that average volumes of pleural effusion computed using the BLL algorithm and assessed manually by the physicians were 586 ml±339 ml and 604±352 ml, respectively. For the same patient, the volume of the pleural effusion, segmented semi-automatically, was 101.8% ±4.6% of that was segmented manually. Dice similarity was found to be 0.917±0.031. The study demonstrated feasibility of applying the new BLL algorithm to accurately measure the volume of pleural effusion.

  15. Iterative algorithms for computing the feedback Nash equilibrium point for positive systems

    NASA Astrophysics Data System (ADS)

    Ivanov, I.; Imsland, Lars; Bogdanova, B.

    2017-03-01

    The paper studies N-player linear quadratic differential games on an infinite time horizon with deterministic feedback information structure. It introduces two iterative methods (the Newton method as well as its accelerated modification) in order to compute the stabilising solution of a set of generalised algebraic Riccati equations. The latter is related to the Nash equilibrium point of the considered game model. Moreover, we derive the sufficient conditions for convergence of the proposed methods. Finally, we discuss two numerical examples so as to illustrate the performance of both of the algorithms.

  16. Computing the Envelope for Stepwise Constant Resource Allocations

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Clancy, Daniel (Technical Monitor)

    2001-01-01

    Estimating tight resource level is a fundamental problem in the construction of flexible plans with resource utilization. In this paper we describe an efficient algorithm that builds a resource envelope, the tightest possible such bound. The algorithm is based on transforming the temporal network of resource consuming and producing events into a flow network with noises equal to the events and edges equal to the necessary predecessor links between events. The incremental solution of a staged maximum flow problem on the network is then used to compute the time of occurrence and the height of each step of the resource envelope profile. The staged algorithm has the same computational complexity of solving a maximum flow problem on the entire flow network. This makes this method computationally feasible for use in the inner loop of search-based scheduling algorithms.

  17. Approximation algorithms for planning and control

    NASA Technical Reports Server (NTRS)

    Boddy, Mark; Dean, Thomas

    1989-01-01

    A control system operating in a complex environment will encounter a variety of different situations, with varying amounts of time available to respond to critical events. Ideally, such a control system will do the best possible with the time available. In other words, its responses should approximate those that would result from having unlimited time for computation, where the degree of the approximation depends on the amount of time it actually has. There exist approximation algorithms for a wide variety of problems. Unfortunately, the solution to any reasonably complex control problem will require solving several computationally intensive problems. Algorithms for successive approximation are a subclass of the class of anytime algorithms, algorithms that return answers for any amount of computation time, where the answers improve as more time is allotted. An architecture is described for allocating computation time to a set of anytime algorithms, based on expectations regarding the value of the answers they return. The architecture described is quite general, producing optimal schedules for a set of algorithms under widely varying conditions.

  18. Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs.

    PubMed

    Li, Nan; Zarepisheh, Masoud; Uribe-Sanchez, Andres; Moore, Kevin; Tian, Zhen; Zhen, Xin; Graves, Yan Jiang; Gautier, Quentin; Mell, Loren; Zhou, Linghong; Jia, Xun; Jiang, Steve

    2013-12-21

    Adaptive radiation therapy (ART) can reduce normal tissue toxicity and/or improve tumor control through treatment adaptations based on the current patient anatomy. Developing an efficient and effective re-planning algorithm is an important step toward the clinical realization of ART. For the re-planning process, manual trial-and-error approach to fine-tune planning parameters is time-consuming and is usually considered unpractical, especially for online ART. It is desirable to automate this step to yield a plan of acceptable quality with minimal interventions. In ART, prior information in the original plan is available, such as dose-volume histogram (DVH), which can be employed to facilitate the automatic re-planning process. The goal of this work is to develop an automatic re-planning algorithm to generate a plan with similar, or possibly better, DVH curves compared with the clinically delivered original plan. Specifically, our algorithm iterates the following two loops. An inner loop is the traditional fluence map optimization, in which we optimize a quadratic objective function penalizing the deviation of the dose received by each voxel from its prescribed or threshold dose with a set of fixed voxel weighting factors. In outer loop, the voxel weighting factors in the objective function are adjusted according to the deviation of the current DVH curves from those in the original plan. The process is repeated until the DVH curves are acceptable or maximum iteration step is reached. The whole algorithm is implemented on GPU for high efficiency. The feasibility of our algorithm has been demonstrated with three head-and-neck cancer IMRT cases, each having an initial planning CT scan and another treatment CT scan acquired in the middle of treatment course. Compared with the DVH curves in the original plan, the DVH curves in the resulting plan using our algorithm with 30 iterations are better for almost all structures. The re-optimization process takes about 30 s using

  19. Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs

    NASA Astrophysics Data System (ADS)

    Li, Nan; Zarepisheh, Masoud; Uribe-Sanchez, Andres; Moore, Kevin; Tian, Zhen; Zhen, Xin; Jiang Graves, Yan; Gautier, Quentin; Mell, Loren; Zhou, Linghong; Jia, Xun; Jiang, Steve

    2013-12-01

    Adaptive radiation therapy (ART) can reduce normal tissue toxicity and/or improve tumor control through treatment adaptations based on the current patient anatomy. Developing an efficient and effective re-planning algorithm is an important step toward the clinical realization of ART. For the re-planning process, manual trial-and-error approach to fine-tune planning parameters is time-consuming and is usually considered unpractical, especially for online ART. It is desirable to automate this step to yield a plan of acceptable quality with minimal interventions. In ART, prior information in the original plan is available, such as dose-volume histogram (DVH), which can be employed to facilitate the automatic re-planning process. The goal of this work is to develop an automatic re-planning algorithm to generate a plan with similar, or possibly better, DVH curves compared with the clinically delivered original plan. Specifically, our algorithm iterates the following two loops. An inner loop is the traditional fluence map optimization, in which we optimize a quadratic objective function penalizing the deviation of the dose received by each voxel from its prescribed or threshold dose with a set of fixed voxel weighting factors. In outer loop, the voxel weighting factors in the objective function are adjusted according to the deviation of the current DVH curves from those in the original plan. The process is repeated until the DVH curves are acceptable or maximum iteration step is reached. The whole algorithm is implemented on GPU for high efficiency. The feasibility of our algorithm has been demonstrated with three head-and-neck cancer IMRT cases, each having an initial planning CT scan and another treatment CT scan acquired in the middle of treatment course. Compared with the DVH curves in the original plan, the DVH curves in the resulting plan using our algorithm with 30 iterations are better for almost all structures. The re-optimization process takes about 30 s using

  20. A Strassen-Newton algorithm for high-speed parallelizable matrix inversion

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Ferguson, Helaman R. P.

    1988-01-01

    Techniques are described for computing matrix inverses by algorithms that are highly suited to massively parallel computation. The techniques are based on an algorithm suggested by Strassen (1969). Variations of this scheme use matrix Newton iterations and other methods to improve the numerical stability while at the same time preserving a very high level of parallelism. One-processor Cray-2 implementations of these schemes range from one that is up to 55 percent faster than a conventional library routine to one that is slower than a library routine but achieves excellent numerical stability. The problem of computing the solution to a single set of linear equations is discussed, and it is shown that this problem can also be solved efficiently using these techniques.

  1. PSC algorithm description

    NASA Technical Reports Server (NTRS)

    Nobbs, Steven G.

    1995-01-01

    An overview of the performance seeking control (PSC) algorithm and details of the important components of the algorithm are given. The onboard propulsion system models, the linear programming optimization, and engine control interface are described. The PSC algorithm receives input from various computers on the aircraft including the digital flight computer, digital engine control, and electronic inlet control. The PSC algorithm contains compact models of the propulsion system including the inlet, engine, and nozzle. The models compute propulsion system parameters, such as inlet drag and fan stall margin, which are not directly measurable in flight. The compact models also compute sensitivities of the propulsion system parameters to change in control variables. The engine model consists of a linear steady state variable model (SSVM) and a nonlinear model. The SSVM is updated with efficiency factors calculated in the engine model update logic, or Kalman filter. The efficiency factors are used to adjust the SSVM to match the actual engine. The propulsion system models are mathematically integrated to form an overall propulsion system model. The propulsion system model is then optimized using a linear programming optimization scheme. The goal of the optimization is determined from the selected PSC mode of operation. The resulting trims are used to compute a new operating point about which the optimization process is repeated. This process is continued until an overall (global) optimum is reached before applying the trims to the controllers.

  2. Recognition of Protein-coding Genes Based on Z-curve Algorithms

    PubMed Central

    -Biao Guo, Feng; Lin, Yan; -Ling Chen, Ling

    2014-01-01

    Recognition of protein-coding genes, a classical bioinformatics issue, is an absolutely needed step for annotating newly sequenced genomes. The Z-curve algorithm, as one of the most effective methods on this issue, has been successfully applied in annotating or re-annotating many genomes, including those of bacteria, archaea and viruses. Two Z-curve based ab initio gene-finding programs have been developed: ZCURVE (for bacteria and archaea) and ZCURVE_V (for viruses and phages). ZCURVE_C (for 57 bacteria) and Zfisher (for any bacterium) are web servers for re-annotation of bacterial and archaeal genomes. The above four tools can be used for genome annotation or re-annotation, either independently or combined with the other gene-finding programs. In addition to recognizing protein-coding genes and exons, Z-curve algorithms are also effective in recognizing promoters and translation start sites. Here, we summarize the applications of Z-curve algorithms in gene finding and genome annotation. PMID:24822027

  3. A high level language for a high performance computer

    NASA Technical Reports Server (NTRS)

    Perrott, R. H.

    1978-01-01

    The proposed computational aerodynamic facility will join the ranks of the supercomputers due to its architecture and increased execution speed. At present, the languages used to program these supercomputers have been modifications of programming languages which were designed many years ago for sequential machines. A new programming language should be developed based on the techniques which have proved valuable for sequential programming languages and incorporating the algorithmic techniques required for these supercomputers. The design objectives for such a language are outlined.

  4. Evaluation of a computer-aided detection algorithm for timely diagnosis of small acute intracranial hemorrhage on computed tomography in a critical care environment

    NASA Astrophysics Data System (ADS)

    Lee, Joon K.; Chan, Tao; Liu, Brent J.; Huang, H. K.

    2009-02-01

    Detection of acute intracranial hemorrhage (AIH) is a primary task in the interpretation of computed tomography (CT) brain scans of patients suffering from acute neurological disturbances or after head trauma. Interpretation can be difficult especially when the lesion is inconspicuous or the reader is inexperienced. We have previously developed a computeraided detection (CAD) algorithm to detect small AIH. One hundred and thirty five small AIH CT studies from the Los Angeles County (LAC) + USC Hospital were identified and matched by age and sex with one hundred and thirty five normal studies. These cases were then processed using our AIH CAD system to evaluate the efficacy and constraints of the algorithm.

  5. Computational Fluid Dynamics Technology for Hypersonic Applications

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2003-01-01

    Several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented from code validation and code benchmarking efforts to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified. Highlights of diverse efforts to address these challenges are then discussed. One such effort to re-engineer and synthesize the existing analysis capability in LAURA, VULCAN, and FUN3D will provide context for these discussions. The critical (and evolving) role of agile software engineering practice in the capability enhancement process is also noted.

  6. Generic algorithms for high performance scalable geocomputing

    NASA Astrophysics Data System (ADS)

    de Jong, Kor; Schmitz, Oliver; Karssenberg, Derek

    2016-04-01

    During the last decade, the characteristics of computing hardware have changed a lot. For example, instead of a single general purpose CPU core, personal computers nowadays contain multiple cores per CPU and often general purpose accelerators, like GPUs. Additionally, compute nodes are often grouped together to form clusters or a supercomputer, providing enormous amounts of compute power. For existing earth simulation models to be able to use modern hardware platforms, their compute intensive parts must be rewritten. This can be a major undertaking and may involve many technical challenges. Compute tasks must be distributed over CPU cores, offloaded to hardware accelerators, or distributed to different compute nodes. And ideally, all of this should be done in such a way that the compute task scales well with the hardware resources. This presents two challenges: 1) how to make good use of all the compute resources and 2) how to make these compute resources available for developers of simulation models, who may not (want to) have the required technical background for distributing compute tasks. The first challenge requires the use of specialized technology (e.g.: threads, OpenMP, MPI, OpenCL, CUDA). The second challenge requires the abstraction of the logic handling the distribution of compute tasks from the model-specific logic, hiding the technical details from the model developer. To assist the model developer, we are developing a C++ software library (called Fern) containing algorithms that can use all CPU cores available in a single compute node (distributing tasks over multiple compute nodes will be done at a later stage). The algorithms are grid-based (finite difference) and include local and spatial operations such as convolution filters. The algorithms handle distribution of the compute tasks to CPU cores internally. In the resulting model the low-level details of how this is done is separated from the model-specific logic representing the modeled system

  7. Improved algorithm for computerized detection and quantification of pulmonary emphysema at high-resolution computed tomography (HRCT)

    NASA Astrophysics Data System (ADS)

    Tylen, Ulf; Friman, Ola; Borga, Magnus; Angelhed, Jan-Erik

    2001-05-01

    Emphysema is characterized by destruction of lung tissue with development of small or large holes within the lung. These areas will have Hounsfield values (HU) approaching -1000. It is possible to detect and quantificate such areas using simple density mask technique. The edge enhancement reconstruction algorithm, gravity and motion of the heart and vessels during scanning causes artefacts, however. The purpose of our work was to construct an algorithm that detects such image artefacts and corrects them. The first step is to apply inverse filtering to the image removing much of the effect of the edge enhancement reconstruction algorithm. The next step implies computation of the antero-posterior density gradient caused by gravity and correction for that. Motion artefacts are in a third step corrected for by use of normalized averaging, thresholding and region growing. Twenty healthy volunteers were investigated, 10 with slight emphysema and 10 without. Using simple density mask technique it was not possible to separate persons with disease from those without. Our algorithm improved separation of the two groups considerably. Our algorithm needs further refinement, but may form a basis for further development of methods for computerized diagnosis and quantification of emphysema by HRCT.

  8. MDTri: robust and efficient global mixed integer search of spaces of multiple ternary alloys: A DIRECT-inspired optimization algorithm for experimentally accessible computational material design

    DOE PAGES

    Graf, Peter A.; Billups, Stephen

    2017-07-24

    Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles insteadmore » of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Lastly, we offer an explanation of the efficacy of DIRECT -- specifically, its balance of global and local search -- by showing that 'potentially optimal rectangles' of the original algorithm are akin to the Pareto front of the 'multi-component optimization' of global and local search.« less

  9. MDTri: robust and efficient global mixed integer search of spaces of multiple ternary alloys: A DIRECT-inspired optimization algorithm for experimentally accessible computational material design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Peter A.; Billups, Stephen

    Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles insteadmore » of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Lastly, we offer an explanation of the efficacy of DIRECT -- specifically, its balance of global and local search -- by showing that 'potentially optimal rectangles' of the original algorithm are akin to the Pareto front of the 'multi-component optimization' of global and local search.« less

  10. Identifying the Presence of Prostate Cancer in Individuals with PSA Levels <20 ng ml-1 Using Computational Data Extraction Analysis of High Dimensional Peripheral Blood Flow Cytometric Phenotyping Data.

    PubMed

    Cosma, Georgina; McArdle, Stéphanie E; Reeder, Stephen; Foulds, Gemma A; Hood, Simon; Khan, Masood; Pockley, A Graham

    2017-01-01

    Determining whether an asymptomatic individual with Prostate-Specific Antigen (PSA) levels below 20 ng ml -1 has prostate cancer in the absence of definitive, biopsy-based evidence continues to present a significant challenge to clinicians who must decide whether such individuals with low PSA values have prostate cancer. Herein, we present an advanced computational data extraction approach which can identify the presence of prostate cancer in men with PSA levels <20 ng ml -1 on the basis of peripheral blood immune cell profiles that have been generated using multi-parameter flow cytometry. Statistical analysis of immune phenotyping datasets relating to the presence and prevalence of key leukocyte populations in the peripheral blood, as generated from individuals undergoing routine tests for prostate cancer (including tissue biopsy) using multi-parametric flow cytometric analysis, was unable to identify significant relationships between leukocyte population profiles and the presence of benign disease (no prostate cancer) or prostate cancer. By contrast, a Genetic Algorithm computational approach identified a subset of five flow cytometry features ( CD 8 + CD 45 RA - CD 27 - CD 28 - ( CD 8 + Effector Memory cells); CD 4 + CD 45 RA - CD 27 - CD 28 - ( CD 4 + Terminally Differentiated Effector Memory Cells re-expressing CD45RA); CD 3 - CD 19 + (B cells); CD 3 + CD 56 + CD 8 + CD 4 + (NKT cells)) from a set of twenty features, which could potentially discriminate between benign disease and prostate cancer. These features were used to construct a prostate cancer prediction model using the k-Nearest-Neighbor classification algorithm. The proposed model, which takes as input the set of flow cytometry features, outperformed the predictive model which takes PSA values as input. Specifically, the flow cytometry-based model achieved Accuracy = 83.33%, AUC = 83.40%, and optimal ROC points of FPR = 16.13%, TPR = 82.93%, whereas the PSA-based model achieved

  11. MODA: a new algorithm to compute optical depths in multidimensional hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Perego, Albino; Gafton, Emanuel; Cabezón, Rubén; Rosswog, Stephan; Liebendörfer, Matthias

    2014-08-01

    Aims: We introduce the multidimensional optical depth algorithm (MODA) for the calculation of optical depths in approximate multidimensional radiative transport schemes, equally applicable to neutrinos and photons. Motivated by (but not limited to) neutrino transport in three-dimensional simulations of core-collapse supernovae and neutron star mergers, our method makes no assumptions about the geometry of the matter distribution, apart from expecting optically transparent boundaries. Methods: Based on local information about opacities, the algorithm figures out an escape route that tends to minimize the optical depth without assuming any predefined paths for radiation. Its adaptivity makes it suitable for a variety of astrophysical settings with complicated geometry (e.g., core-collapse supernovae, compact binary mergers, tidal disruptions, star formation, etc.). We implement the MODA algorithm into both a Eulerian hydrodynamics code with a fixed, uniform grid and into an SPH code where we use a tree structure that is otherwise used for searching neighbors and calculating gravity. Results: In a series of numerical experiments, we compare the MODA results with analytically known solutions. We also use snapshots from actual 3D simulations and compare the results of MODA with those obtained with other methods, such as the global and local ray-by-ray method. It turns out that MODA achieves excellent accuracy at a moderate computational cost. In appendix we also discuss implementation details and parallelization strategies.

  12. Conjugate Gradient Algorithms For Manipulator Simulation

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheid, Robert E.

    1991-01-01

    Report discusses applicability of conjugate-gradient algorithms to computation of forward dynamics of robotic manipulators. Rapid computation of forward dynamics essential to teleoperation and other advanced robotic applications. Part of continuing effort to find algorithms meeting requirements for increased computational efficiency and speed. Method used for iterative solution of systems of linear equations.

  13. Computing the Envelope for Stepwise-Constant Resource Allocations

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Computing tight resource-level bounds is a fundamental problem in the construction of flexible plans with resource utilization. In this paper we describe an efficient algorithm that builds a resource envelope, the tightest possible such bound. The algorithm is based on transforming the temporal network of resource consuming and producing events into a flow network with nodes equal to the events and edges equal to the necessary predecessor links between events. A staged maximum flow problem on the network is then used to compute the time of occurrence and the height of each step of the resource envelope profile. Each stage has the same computational complexity of solving a maximum flow problem on the entire flow network. This makes this method computationally feasible and promising for use in the inner loop of flexible-time scheduling algorithms.

  14. Optimisation of groundwater level monitoring networks using geostatistical modelling based on the Spartan family variogram and a genetic algorithm method

    NASA Astrophysics Data System (ADS)

    Parasyris, Antonios E.; Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2016-04-01

    optimization problem (the best wells to retain in the monitoring network) depends on the total number of wells removed; this number is a management decision. The water level monitoring network of Mires basin has been optimized 6 times by removing 5, 8, 12, 15, 20 and 25 wells from the original network. In order to achieve the optimum solution in the minimum possible computational time, a stall generations criterion was set for each optimisation scenario. An improvement made to the classic genetic algorithm was the change of the mutation and crossover fraction in respect to the change of the mean fitness value. This results to a randomness in reproduction, if the solution converges, to avoid local minima, or, in a more educated reproduction (higher crossover ratio) when there is higher change in the mean fitness value. The choice of integer genetic algorithm in MATLAB 2015a poses the restriction of adding custom selection and crossover-mutation functions. Therefore, custom population and crossover-mutation-selection functions have been created to set the initial population type to custom and have the ability to change the mutation crossover probability in respect to the convergence of the genetic algorithm, achieving thus higher accuracy. The application of the network optimisation tool to Mires basin indicates that 25 wells can be removed with a relatively small deterioration of the groundwater level map. The results indicate the robustness of the network optimisation tool: Wells were removed from high well-density areas while preserving the spatial pattern of the original groundwater level map. Varouchakis, E. A. and D. T. Hristopulos (2013). "Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables." Advances in Water Resources 52: 34-49.

  15. 'Extremotaxis': computing with a bacterial-inspired algorithm.

    PubMed

    Nicolau, Dan V; Burrage, Kevin; Nicolau, Dan V; Maini, Philip K

    2008-01-01

    We present a general-purpose optimization algorithm inspired by "run-and-tumble", the biased random walk chemotactic swimming strategy used by the bacterium Escherichia coli to locate regions of high nutrient concentration The method uses particles (corresponding to bacteria) that swim through the variable space (corresponding to the attractant concentration profile). By constantly performing temporal comparisons, the particles drift towards the minimum or maximum of the function of interest. We illustrate the use of our method with four examples. We also present a discrete version of the algorithm. The new algorithm is expected to be useful in combinatorial optimization problems involving many variables, where the functional landscape is apparently stochastic and has local minima, but preserves some derivative structure at intermediate scales.

  16. Study of image matching algorithm and sub-pixel fitting algorithm in target tracking

    NASA Astrophysics Data System (ADS)

    Yang, Ming-dong; Jia, Jianjun; Qiang, Jia; Wang, Jian-yu

    2015-03-01

    Image correlation matching is a tracking method that searched a region most approximate to the target template based on the correlation measure between two images. Because there is no need to segment the image, and the computation of this method is little. Image correlation matching is a basic method of target tracking. This paper mainly studies the image matching algorithm of gray scale image, which precision is at sub-pixel level. The matching algorithm used in this paper is SAD (Sum of Absolute Difference) method. This method excels in real-time systems because of its low computation complexity. The SAD method is introduced firstly and the most frequently used sub-pixel fitting algorithms are introduced at the meantime. These fitting algorithms can't be used in real-time systems because they are too complex. However, target tracking often requires high real-time performance, we put forward a fitting algorithm named paraboloidal fitting algorithm based on the consideration above, this algorithm is simple and realized easily in real-time system. The result of this algorithm is compared with that of surface fitting algorithm through image matching simulation. By comparison, the precision difference between these two algorithms is little, it's less than 0.01pixel. In order to research the influence of target rotation on precision of image matching, the experiment of camera rotation was carried on. The detector used in the camera is a CMOS detector. It is fixed to an arc pendulum table, take pictures when the camera rotated different angles. Choose a subarea in the original picture as the template, and search the best matching spot using image matching algorithm mentioned above. The result shows that the matching error is bigger when the target rotation angle is larger. It's an approximate linear relation. Finally, the influence of noise on matching precision was researched. Gaussian noise and pepper and salt noise were added in the image respectively, and the image

  17. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S.

    DOE PAGES

    Sahoo, S.; Russo, T. A.; Elliott, J.; ...

    2017-05-13

    Climate, groundwater extraction, and surface water flows have complex nonlinear relationships with groundwater level in agricultural regions. To better understand the relative importance of each driver and predict groundwater level change, we develop a new ensemble modeling framework based on spectral analysis, machine learning, and uncertainty analysis, as an alternative to complex and computationally expensive physical models. We apply and evaluate this new approach in the context of two aquifer systems supporting agricultural production in the United States: the High Plains aquifer (HPA) and the Mississippi River Valley alluvial aquifer (MRVA). We select input data sets by using a combinationmore » of mutual information, genetic algorithms, and lag analysis, and then use the selected data sets in a Multilayer Perceptron network architecture to simulate seasonal groundwater level change. As expected, model results suggest that irrigation demand has the highest influence on groundwater level change for a majority of the wells. The subset of groundwater observations not used in model training or cross-validation correlates strongly (R > 0.8) with model results for 88 and 83% of the wells in the HPA and MRVA, respectively. In both aquifer systems, the error in the modeled cumulative groundwater level change during testing (2003-2012) was less than 2 m over a majority of the area. Here, we conclude that our modeling framework can serve as an alternative approach to simulating groundwater level change and water availability, especially in regions where subsurface properties are unknown.« less

  18. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, S.; Russo, T. A.; Elliott, J.

    Climate, groundwater extraction, and surface water flows have complex nonlinear relationships with groundwater level in agricultural regions. To better understand the relative importance of each driver and predict groundwater level change, we develop a new ensemble modeling framework based on spectral analysis, machine learning, and uncertainty analysis, as an alternative to complex and computationally expensive physical models. We apply and evaluate this new approach in the context of two aquifer systems supporting agricultural production in the United States: the High Plains aquifer (HPA) and the Mississippi River Valley alluvial aquifer (MRVA). We select input data sets by using a combinationmore » of mutual information, genetic algorithms, and lag analysis, and then use the selected data sets in a Multilayer Perceptron network architecture to simulate seasonal groundwater level change. As expected, model results suggest that irrigation demand has the highest influence on groundwater level change for a majority of the wells. The subset of groundwater observations not used in model training or cross-validation correlates strongly (R > 0.8) with model results for 88 and 83% of the wells in the HPA and MRVA, respectively. In both aquifer systems, the error in the modeled cumulative groundwater level change during testing (2003-2012) was less than 2 m over a majority of the area. Here, we conclude that our modeling framework can serve as an alternative approach to simulating groundwater level change and water availability, especially in regions where subsurface properties are unknown.« less

  19. Evaluating the Risk of Re-identification of Patients from Hospital Prescription Records.

    PubMed

    Emam, Khaled El; Dankar, Fida K; Vaillancourt, Régis; Roffey, Tyson; Lysyk, Mary

    2009-07-01

    Pharmacies often provide prescription records to private research firms, on the assumption that these records are de-identified (i.e., identifying information has been removed). However, concerns have been expressed about the potential that patients can be re-identified from such records. Recently, a large private research firm requested prescription records from the Children's Hospital of Eastern Ontario (CHEO), as part of a larger effort to develop a database of hospital prescription records across Canada. To evaluate the ability to re-identify patients from CHEO'S prescription records and to determine ways to appropriately de-identify the data if the risk was too high. The risk of re-identification was assessed for 18 months' worth of prescription data. De-identification algorithms were developed to reduce the risk to an acceptable level while maintaining the quality of the data. The probability of patients being re-identified from the original variables and data set requested by the private research firm was deemed quite high. A new de-identified record layout was developed, which had an acceptable level of re-identification risk. The new approach involved replacing the admission and discharge dates with the quarter and year of admission and the length of stay in days, reporting the patient's age in weeks, and including only the first character of the patient's postal code. Additional requirements were included in the data-sharing agreement with the private research firm (e.g., audit requirements and a protocol for notification of a breach of privacy). Without a formal analysis of the risk of re-identification, assurances of data anonymity may not be accurate. A formal risk analysis at one hospital produced a clinically relevant data set that also protects patient privacy and allows the hospital pharmacy to explicitly manage the risks of breach of patient privacy.

  20. ISC-GEM: Global Instrumental Earthquake Catalogue (1900-2009), III. Re-computed MS and mb, proxy MW, final magnitude composition and completeness assessment

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Domenico; Bondár, István; Storchak, Dmitry A.; Engdahl, E. Robert; Bormann, Peter; Harris, James

    2015-02-01

    This paper outlines the re-computation and compilation of the magnitudes now contained in the final ISC-GEM Reference Global Instrumental Earthquake Catalogue (1900-2009). The catalogue is available via the ISC website (http://www.isc.ac.uk/iscgem/). The available re-computed MS and mb provided an ideal basis for deriving new conversion relationships to moment magnitude MW. Therefore, rather than using previously published regression models, we derived new empirical relationships using both generalized orthogonal linear and exponential non-linear models to obtain MW proxies from MS and mb. The new models were tested against true values of MW, and the newly derived exponential models were then preferred to the linear ones in computing MW proxies. For the final magnitude composition of the ISC-GEM catalogue, we preferred directly measured MW values as published by the Global CMT project for the period 1976-2009 (plus intermediate-depth earthquakes between 1962 and 1975). In addition, over 1000 publications have been examined to obtain direct seismic moment M0 and, therefore, also MW estimates for 967 large earthquakes during 1900-1978 (Lee and Engdahl, 2015) by various alternative methods to the current GCMT procedure. In all other instances we computed MW proxy values by converting our re-computed MS and mb values into MW, using the newly derived non-linear regression models. The final magnitude composition is an improvement in terms of magnitude homogeneity compared to previous catalogues. The magnitude completeness is not homogeneous over the 110 years covered by the ISC-GEM catalogue. Therefore, seismicity rate estimates may be strongly affected without a careful time window selection. In particular, the ISC-GEM catalogue appears to be complete down to MW 5.6 starting from 1964, whereas for the early instrumental period the completeness varies from ∼7.5 to 6.2. Further time and resources would be necessary to homogenize the magnitude of completeness over the