Constructive neural network learning algorithms
Parekh, R.; Yang, Jihoon; Honavar, V.
1996-12-31
Constructive Algorithms offer an approach for incremental construction of potentially minimal neural network architectures for pattern classification tasks. These algorithms obviate the need for an ad-hoc a-priori choice of the network topology. The constructive algorithm design involves alternately augmenting the existing network topology by adding one or more threshold logic units and training the newly added threshold neuron(s) using a stable variant of the perception learning algorithm (e.g., pocket algorithm, thermal perception, and barycentric correction procedure). Several constructive algorithms including tower, pyramid, tiling, upstart, and perception cascade have been proposed for 2-category pattern classification. These algorithms differ in terms of their topological and connectivity constraints as well as the training strategies used for individual neurons.
Neural Network Algorithm for Particle Loading
J. L. V. Lewandowski
2003-04-25
An artificial neural network algorithm for continuous minimization is developed and applied to the case of numerical particle loading. It is shown that higher-order moments of the probability distribution function can be efficiently renormalized using this technique. A general neural network for the renormalization of an arbitrary number of moments is given.
Parameter incremental learning algorithm for neural networks.
Wan, Sheng; Banta, Larry E
2006-11-01
In this paper, a novel stochastic (or online) training algorithm for neural networks, named parameter incremental learning (PIL) algorithm, is proposed and developed. The main idea of the PIL strategy is that the learning algorithm should not only adapt to the newly presented input-output training pattern by adjusting parameters, but also preserve the prior results. A general PIL algorithm for feedforward neural networks is accordingly presented as the first-order approximate solution to an optimization problem, where the performance index is the combination of proper measures of preservation and adaptation. The PIL algorithms for the multilayer perceptron (MLP) are subsequently derived. Numerical studies show that for all the three benchmark problems used in this paper the PIL algorithm for MLP is measurably superior to the standard online backpropagation (BP) algorithm and the stochastic diagonal Levenberg-Marquardt (SDLM) algorithm in terms of the convergence speed and accuracy. Other appealing features of the PIL algorithm are that it is computationally as simple as the BP algorithm, and as easy to use as the BP algorithm. It, therefore, can be applied, with better performance, to any situations where the standard online BP algorithm is applicable. PMID:17131658
Pruning Neural Networks with Distribution Estimation Algorithms
Cantu-Paz, E
2003-01-15
This paper describes the application of four evolutionary algorithms to the pruning of neural networks used in classification problems. Besides of a simple genetic algorithm (GA), the paper considers three distribution estimation algorithms (DEAs): a compact GA, an extended compact GA, and the Bayesian Optimization Algorithm. The objective is to determine if the DEAs present advantages over the simple GA in terms of accuracy or speed in this problem. The experiments used a feed forward neural network trained with standard back propagation and public-domain and artificial data sets. The pruned networks seemed to have better or equal accuracy than the original fully-connected networks. Only in a few cases, pruning resulted in less accurate networks. We found few differences in the accuracy of the networks pruned by the four EAs, but found important differences in the execution time. The results suggest that a simple GA with a small population might be the best algorithm for pruning networks on the data sets we tested.
Algorithm For A Self-Growing Neural Network
NASA Technical Reports Server (NTRS)
Cios, Krzysztof J.
1996-01-01
CID3 algorithm simulates self-growing neural network. Constructs decision trees equivalent to hidden layers of neural network. Based on ID3 algorithm, which dynamically generates decision tree while minimizing entropy of information. CID3 algorithm generates feedforward neural network by use of either crisp or fuzzy measure of entropy.
Training product unit neural networks with genetic algorithms
NASA Technical Reports Server (NTRS)
Janson, D. J.; Frenzel, J. F.; Thelen, D. C.
1991-01-01
The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.
Learning evasive maneuvers using evolutionary algorithms and neural networks
NASA Astrophysics Data System (ADS)
Kang, Moung Hung
In this research, evolutionary algorithms and recurrent neural networks are combined to evolve control knowledge to help pilots avoid being struck by a missile, based on a two-dimensional air combat simulation model. The recurrent neural network is used for representing the pilot's control knowledge and evolutionary algorithms (i.e., Genetic Algorithms, Evolution Strategies, and Evolutionary Programming) are used for optimizing the weights and/or topology of the recurrent neural network. The simulation model of the two-dimensional evasive maneuver problem evolved is used for evaluating the performance of the recurrent neural network. Five typical air combat conditions were selected to evaluate the performance of the recurrent neural networks evolved by the evolutionary algorithms. Analysis of Variance (ANOVA) tests and response graphs were used to analyze the results. Overall, there was little difference in the performance of the three evolutionary algorithms used to evolve the control knowledge. However, the number of generations of each algorithm required to obtain the best performance was significantly different. ES converges the fastest, followed by EP and then by GA. The recurrent neural networks evolved by the evolutionary algorithms provided better performance than the traditional recommendations for evasive maneuvers, maximum gravitational turn, for each air combat condition. Furthermore, the recommended actions of the recurrent neural networks are reasonable and can be used for pilot training.
Genetic Algorithm Based Neural Networks for Nonlinear Optimization
Energy Science and Technology Software Center (ESTSC)
1994-09-28
This software develops a novel approach to nonlinear optimization using genetic algorithm based neural networks. To our best knowledge, this approach represents the first attempt at applying both neural network and genetic algorithm techniques to solve a nonlinear optimization problem. The approach constructs a neural network structure and an appropriately shaped energy surface whose minima correspond to optimal solutions of the problem. A genetic algorithm is employed to perform a parallel and powerful search ofmore » the energy surface.« less
Training Feedforward Neural Networks: An Algorithm Giving Improved Generalization.
Lee, Charles W.
1997-01-01
An algorithm is derived for supervised training in multilayer feedforward neural networks. Relative to the gradient descent backpropagation algorithm it appears to give both faster convergence and improved generalization, whilst preserving the system of backpropagating errors through the network. Copyright 1996 Elsevier Science Ltd. PMID:12662887
A TLD dose algorithm using artificial neural networks
Moscovitch, M.; Rotunda, J.E.; Tawil, R.A.; Rathbone, B.A.
1995-12-31
An artificial neural network was designed and used to develop a dose algorithm for a multi-element thermoluminescence dosimeter (TLD). The neural network architecture is based on the concept of functional links network (FLN). Neural network is an information processing method inspired by the biological nervous system. A dose algorithm based on neural networks is fundamentally different as compared to conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with given responses of a multi-element dosimeter (input) many times. The algorithm, being trained that way, eventually is capable to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personal dosimetry, the output consists of the desired dose components: deep dose, shallow dose and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. The neural network approach was applied to the Harshaw Type 8825 TLD, and was shown to significantly improve the performance of this dosimeter, well within the U.S. accreditation requirements for personnel dosimeters.
Neural-network algorithms and architectures for pattern classification
Mao, Weidong.
1991-01-01
The study of the artificial neural networks is an integrated research field that involves the disciplines of applied mathematics, physics, neurobiology, computer science, information, control, parallel processing and VLSI. This dissertation deals with a number of topics from a broad spectrum of neural network research in models, algorithms, applications and VLSI architectures. Specifically, this dissertation is aimed at studying neural network algorithms and architectures for pattern classification tasks. The work presented in this dissertation has a wide range of applications including speech recognition, image recognition, and high level knowledge processing. Supervised neural networks, such as the back-propagation network, can be used for classification tasks as the result of approximating an input/output mapping. They are the approximation-based classifiers. The original gradient descent back propagation learning algorithm exhibits slow convergence speed. Fast algorithms such as the conjugate gradient and quasi-Newton algorithms can be adopted. The main emphasis on neural network classifiers in this dissertation is the competition-based classifiers. Due to the rapid advance in VLSI technology, parallel processing, and computer aided design (CAD), application-specific VLSI systems are becoming more and more powerful and feasible. In particular, VLSI array processors offer high speed and efficiency through their massive parallelism and pipelining, regularity, modularity, and local communication. A unified VLSI array architecture can be used for implementing neural networks and Hidden Markov Models. He also proposes a pipeline interleaving approach to design VLSI array architectures for real-time image and video signal processing.
Genetic-algorithm-based tri-state neural networks
NASA Astrophysics Data System (ADS)
Uang, Chii-Maw; Chen, Wen-Gong; Horng, Ji-Bin
2002-09-01
A new method, using genetic algorithms, for constructing a tri-state neural network is presented. The global searching features of the genetic algorithms are adopted to help us easily find the interconnection weight matrix of a bipolar neural network. The construction method is based on the biological nervous systems, which evolve the parameters encoded in genes. Taking the advantages of conventional (binary) genetic algorithms, a two-level chromosome structure is proposed for training the tri-state neural network. A Matlab program is developed for simulating the network performances. The results show that the proposed genetic algorithms method not only has the features of accurate of constructing the interconnection weight matrix, but also has better network performance.
An Improved Back Propagation Neural Network Algorithm on Classification Problems
NASA Astrophysics Data System (ADS)
Nawi, Nazri Mohd; Ransing, R. S.; Salleh, Mohd Najib Mohd; Ghazali, Rozaida; Hamid, Norhamreeza Abdul
The back propagation algorithm is one the most popular algorithms to train feed forward neural networks. However, the convergence of this algorithm is slow, it is mainly because of gradient descent algorithm. Previous research demonstrated that in 'feed forward' algorithm, the slope of the activation function is directly influenced by a parameter referred to as 'gain'. This research proposed an algorithm for improving the performance of the back propagation algorithm by introducing the adaptive gain of the activation function. The gain values change adaptively for each node. The influence of the adaptive gain on the learning ability of a neural network is analysed. Multi layer feed forward neural networks have been assessed. Physical interpretation of the relationship between the gain value and the learning rate and weight values is given. The efficiency of the proposed algorithm is compared with conventional Gradient Descent Method and verified by means of simulation on four classification problems. In learning the patterns, the simulations result demonstrate that the proposed method converged faster on Wisconsin breast cancer with an improvement ratio of nearly 2.8, 1.76 on diabetes problem, 65% better on thyroid data sets and 97% faster on IRIS classification problem. The results clearly show that the proposed algorithm significantly improves the learning speed of the conventional back-propagation algorithm.
A training algorithm for binary feedforward neural networks.
Gray, D L; Michel, A N
1992-01-01
The authors present a new training algorithm to be used on a four-layer perceptron-type feedforward neural network for the generation of binary-to-binary mappings. This algorithm is called the Boolean-like training algorithm (BLTA) and is derived from original principles of Boolean algebra followed by selected extensions. The algorithm can be implemented on analog hardware, using a four-layer binary feedforward neural network (BFNN). The BLTA does not constitute a traditional circuit building technique. Indeed, the rules which govern the BLTA allow for generalization of data in the face of incompletely specified Boolean functions. When compared with techniques which employ descent methods, training times are greatly reduced in the case of the BLTA. Also, when the BFNN is used in conjunction with A/D converters, the applicability of the present algorithm can be extended to accept real-valued inputs. PMID:18276419
Metaheuristic Algorithms for Convolution Neural Network.
Rere, L M Rasdi; Fanany, Mohamad Ivan; Arymurthy, Aniati Murni
2016-01-01
A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent). PMID:27375738
Metaheuristic Algorithms for Convolution Neural Network
Fanany, Mohamad Ivan; Arymurthy, Aniati Murni
2016-01-01
A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent). PMID:27375738
Simulating and Synthesizing Substructures Using Neural Network and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Liu, Youhua; Kapania, Rakesh K.; VanLandingham, Hugh F.
1997-01-01
The feasibility of simulating and synthesizing substructures by computational neural network models is illustrated by investigating a statically indeterminate beam, using both a 1-D and a 2-D plane stress modelling. The beam can be decomposed into two cantilevers with free-end loads. By training neural networks to simulate the cantilever responses to different loads, the original beam problem can be solved as a match-up between two subsystems under compatible interface conditions. The genetic algorithms are successfully used to solve the match-up problem. Simulated results are found in good agreement with the analytical or FEM solutions.
A neural network algorithm for sea ice edge classification
Alhumaidi, S.M.; Ferguson, S.M.; Jones, W.L.; Park, J.D.
1997-07-01
The NASA Scatterometer (NSCAT), launched in August 1996, is designed to measure wind vectors over ice-free oceans. To prevent contamination f the wind measurements, by the presence of sea ice, algorithms based on neural network technology have been developed to classify ice-free ocean surfaces. Neural networks trained using polarized alone and polarized plus multi-azimuth look Ku-band backscatter are described. Algorithm skill in locating the sea ice edge around Antarctica is experimentally evaluated using backscatter data from the Seasat-A Satellite Scatterometer that operated in 1978. Comparisons between the algorithms demonstrate a slight advantage of combined polarization and multi-look over using co-polarized backscatter alone. Classification skill is evaluated by comparisons with surface truth (sea ice maps), subjective ice classification, and independent over lapping scatterometer measurements (consecutive revolutions).
Adaptive NUC algorithm for uncooled IRFPA based on neural networks
NASA Astrophysics Data System (ADS)
Liu, Ziji; Jiang, Yadong; Lv, Jian; Zhu, Hongbin
2010-10-01
With developments in uncooled infrared plane array (UFPA) technology, many new advanced uncooled infrared sensors are used in defensive weapons, scientific research, industry and commercial applications. A major difference in imaging techniques between infrared IRFPA imaging system and a visible CCD camera is that, IRFPA need nonuniformity correction and dead pixel compensation, we usually called it infrared image pre-processing. Two-point or multi-point correction algorithms based on calibration commonly used may correct the non-uniformity of IRFPAs, but they are limited by pixel linearity and instability. Therefore, adaptive non-uniformity correction techniques are developed. Two of these adaptive non-uniformity correction algorithms are mostly discussed, one is based on temporal high-pass filter, and another is based on neural network. In this paper, a new NUC algorithm based on improved neural networks is introduced, and involves the compare result between improved neural networks and other adaptive correction techniques. A lot of different will discussed in different angle, like correction effects, calculation efficiency, hardware implementation and so on. According to the result and discussion, it could be concluding that the adaptive algorithm offers improved performance compared to traditional calibration mode techniques. This new algorithm not only provides better sensitivity, but also increases the system dynamic range. As the sensor application expended, it will be very useful in future infrared imaging systems.
An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks
Xie, Xiurui; Qu, Hong; Liu, Guisong; Zhang, Malu; Kurths, Jürgen
2016-01-01
The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper. PMID:27044001
An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks.
Xie, Xiurui; Qu, Hong; Liu, Guisong; Zhang, Malu; Kurths, Jürgen
2016-01-01
The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper. PMID:27044001
Neural network fusion capabilities for efficient implementation of tracking algorithms
NASA Astrophysics Data System (ADS)
Sundareshan, Malur K.; Amoozegar, Farid
1996-05-01
The ability to efficiently fuse information of different forms for facilitating intelligent decision-making is one of the major capabilities of trained multilayer neural networks that is being recognized int eh recent times. While development of innovative adaptive control algorithms for nonlinear dynamical plants which attempt to exploit these capabilities seems to be more popular, a corresponding development of nonlinear estimation algorithms using these approaches, particularly for application in target surveillance and guidance operations, has not received similar attention. In this paper we describe the capabilities and functionality of neural network algorithms for data fusion and implementation of nonlinear tracking filters. For a discussion of details and for serving as a vehicle for quantitative performance evaluations, the illustrative case of estimating the position and velocity of surveillance targets is considered. Efficient target tracking algorithms that can utilize data from a host of sensing modalities and are capable of reliably tracking even uncooperative targets executing fast and complex maneuvers are of interest in a number of applications. The primary motivation for employing neural networks in these applications comes form the efficiency with which more features extracted from different sensor measurements can be utilized as inputs for estimating target maneuvers. Such an approach results in an overall nonlinear tracking filter which has several advantages over the popular efforts at designing nonlinear estimation algorithms for tracking applications, the principle one being the reduction of mathematical and computational complexities. A system architecture that efficiently integrates the processing capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described in this paper.
Recursive least-squares learning algorithms for neural networks
Lewis, P.S. ); Hwang, Jenq-Neng . Dept. of Electrical Engineering)
1990-01-01
This paper presents the development of a pair of recursive least squares (RLS) algorithms for online training of multilayer perceptrons, which are a class of feedforward artificial neural networks. These algorithms incorporate second order information about the training error surface in order to achieve faster learning rates than are possible using first order gradient descent algorithms such as the generalized delta rule. A least squares formulation is derived from a linearization of the training error function. Individual training pattern errors are linearized about the network parameters that were in effect when the pattern was presented. This permits the recursive solution of the least squares approximation, either via conventional RLS recursions or by recursive QR decomposition-based techniques. The computational complexity of the update is in the order of (N{sup 2}), where N is the number of network parameters. This is due to the estimation of the N {times} N inverse Hessian matrix. Less computationally intensive approximations of the RLS algorithms can be easily derived by using only block diagonal elements of this matrix, thereby partitioning the learning into independent sets. A simulation example is presented in which a neural network is trained to approximate a two dimensional Gaussian bump. In this example, RLS training required an order of magnitude fewer iterations on average (527) than did training with the generalized delta rule (6331). 14 refs., 3 figs.
Constructive neural-network learning algorithms for pattern classification.
Parekh, R; Yang, J; Honavar, V
2000-01-01
Constructive learning algorithms offer an attractive approach for the incremental construction of near-minimal neural-network architectures for pattern classification. They help overcome the need for ad hoc and often inappropriate choices of network topology in algorithms that search for suitable weights in a priori fixed network architectures. Several such algorithms are proposed in the literature and shown to converge to zero classification errors (under certain assumptions) on tasks that involve learning a binary to binary mapping (i.e., classification problems involving binary-valued input attributes and two output categories). We present two constructive learning algorithms MPyramid-real and MTiling-real that extend the pyramid and tiling algorithms, respectively, for learning real to M-ary mappings (i.e., classification problems involving real-valued input attributes and multiple output classes). We prove the convergence of these algorithms and empirically demonstrate their applicability to practical pattern classification problems. Additionally, we show how the incorporation of a local pruning step can eliminate several redundant neurons from MTiling-real networks. PMID:18249773
NASA Astrophysics Data System (ADS)
Timofeew, Sergey; Eliseev, Vladimir; Tcherkassov, Oleg; Birukow, Valentin; Orbachevskyi, Leonid; Shamsutdinov, Uriy
1998-04-01
Some problems of creation of medical expert systems and the ways of their overcoming using artificial neural networks are discussed. The instrumental system for projecting neural network algorithms `Neural Architector', developed by the authors, is described. It allows to perform effective modeling of artificial neural networks and to analyze their work. The example of the application of the `Neural Architector' system in composing an expert system for diagnostics of pulmonological diseases is shown.
On-line learning algorithms for locally recurrent neural networks.
Campolucci, P; Uncini, A; Piazza, F; Rao, B D
1999-01-01
This paper focuses on on-line learning procedures for locally recurrent neural networks with emphasis on multilayer perceptron (MLP) with infinite impulse response (IIR) synapses and its variations which include generalized output and activation feedback multilayer networks (MLN's). We propose a new gradient-based procedure called recursive backpropagation (RBP) whose on-line version, causal recursive backpropagation (CRBP), presents some advantages with respect to the other on-line training methods. The new CRBP algorithm includes as particular cases backpropagation (BP), temporal backpropagation (TBP), backpropagation for sequences (BPS), Back-Tsoi algorithm among others, thereby providing a unifying view on gradient calculation techniques for recurrent networks with local feedback. The only learning method that has been proposed for locally recurrent networks with no architectural restriction is the one by Back and Tsoi. The proposed algorithm has better stability and higher speed of convergence with respect to the Back-Tsoi algorithm, which is supported by the theoretical development and confirmed by simulations. The computational complexity of the CRBP is comparable with that of the Back-Tsoi algorithm, e.g., less that a factor of 1.5 for usual architectures and parameter settings. The superior performance of the new algorithm, however, easily justifies this small increase in computational burden. In addition, the general paradigms of truncated BPTT and RTRL are applied to networks with local feedback and compared with the new CRBP method. The simulations show that CRBP exhibits similar performances and the detailed analysis of complexity reveals that CRBP is much simpler and easier to implement, e.g., CRBP is local in space and in time while RTRL is not local in space. PMID:18252525
Combining neural networks and genetic algorithms for hydrological flow forecasting
NASA Astrophysics Data System (ADS)
Neruda, Roman; Srejber, Jan; Neruda, Martin; Pascenko, Petr
2010-05-01
We present a neural network approach to rainfall-runoff modeling for small size river basins based on several time series of hourly measured data. Different neural networks are considered for short time runoff predictions (from one to six hours lead time) based on runoff and rainfall data observed in previous time steps. Correlation analysis shows that runoff data, short time rainfall history, and aggregated API values are the most significant data for the prediction. Neural models of multilayer perceptron and radial basis function networks with different numbers of units are used and compared with more traditional linear time series predictors. Out of possible 48 hours of relevant history of all the input variables, the most important ones are selected by means of input filters created by a genetic algorithm. The genetic algorithm works with population of binary encoded vectors defining input selection patterns. Standard genetic operators of two-point crossover, random bit-flipping mutation, and tournament selection were used. The evaluation of objective function of each individual consists of several rounds of building and testing a particular neural network model. The whole procedure is rather computational exacting (taking hours to days on a desktop PC), thus a high-performance mainframe computer has been used for our experiments. Results based on two years worth data from the Ploucnice river in Northern Bohemia suggest that main problems connected with this approach to modeling are ovetraining that can lead to poor generalization, and relatively small number of extreme events which makes it difficult for a model to predict the amplitude of the event. Thus, experiments with both absolute and relative runoff predictions were carried out. In general it can be concluded that the neural models show about 5 per cent improvement in terms of efficiency coefficient over liner models. Multilayer perceptrons with one hidden layer trained by back propagation algorithm and
A constructive algorithm for training cooperative neural network ensembles.
Islam, Md M; Yao, Xin; Murase, K
2003-01-01
Presents a constructive algorithm for training cooperative neural-network ensembles (CNNEs). CNNE combines ensemble architecture design with cooperative training for individual neural networks (NNs) in ensembles. Unlike most previous studies on training ensembles, CNNE puts emphasis on both accuracy and diversity among individual NNs in an ensemble. In order to maintain accuracy among individual NNs, the number of hidden nodes in individual NNs are also determined by a constructive approach. Incremental training based on negative correlation is used in CNNE to train individual NNs for different numbers of training epochs. The use of negative correlation learning and different training epochs for training individual NNs reflect CNNEs emphasis on diversity among individual NNs in an ensemble. CNNE has been tested extensively on a number of benchmark problems in machine learning and neural networks, including Australian credit card assessment, breast cancer, diabetes, glass, heart disease, letter recognition, soybean, and Mackey-Glass time series prediction problems. The experimental results show that CNNE can produce NN ensembles with good generalization ability. PMID:18238062
Applications of genetic algorithms and neural networks to interatomic potentials
NASA Astrophysics Data System (ADS)
Hobday, Steven; Smith, Roger; BelBruno, Joe
1999-06-01
Applications of two modern artificial intelligence (AI) techniques, genetic algorithms (GA) and neural networks (NN) to computer simulations are reported. It is shown that the GA are very useful tools for determining the minimum energy structures of clusters of atoms described by interatomic potential functions and generally outperform other optimisation methods for this task. A number of applications are given including covalent, and close packed structures of single or multi-component atomic species. It is also shown that (many body) interatomic potential functions for multi-component systems can be derived by training a specially constructed NN on a variety of structural data.
Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
Walter, Florian; Röhrbein, Florian; Knoll, Alois
2015-12-01
The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. PMID:26422422
A fast neural-network algorithm for VLSI cell placement.
Aykanat, Cevdet; Bultan, Tevfik; Haritaoğlu, Ismail
1998-12-01
Cell placement is an important phase of current VLSI circuit design styles such as standard cell, gate array, and Field Programmable Gate Array (FPGA). Although nondeterministic algorithms such as Simulated Annealing (SA) were successful in solving this problem, they are known to be slow. In this paper, a neural network algorithm is proposed that produces solutions as good as SA in substantially less time. This algorithm is based on Mean Field Annealing (MFA) technique, which was successfully applied to various combinatorial optimization problems. A MFA formulation for the cell placement problem is derived which can easily be applied to all VLSI design styles. To demonstrate that the proposed algorithm is applicable in practice, a detailed formulation for the FPGA design style is derived, and the layouts of several benchmark circuits are generated. The performance of the proposed cell placement algorithm is evaluated in comparison with commercial automated circuit design software Xilinx Automatic Place and Route (APR) which uses SA technique. Performance evaluation is conducted using ACM/SIGDA Design Automation benchmark circuits. Experimental results indicate that the proposed MFA algorithm produces comparable results with APR. However, MFA is almost 20 times faster than APR on the average. PMID:12662737
Neural Networks Art: Solving Problems with Multiple Solutions and New Teaching Algorithm
Dmitrienko, V. D; Zakovorotnyi, A. Yu.; Leonov, S. Yu.; Khavina, I. P
2014-01-01
A new discrete neural networks adaptive resonance theory (ART), which allows solving problems with multiple solutions, is developed. New algorithms neural networks teaching ART to prevent degradation and reproduction classes at training noisy input data is developed. Proposed learning algorithms discrete ART networks, allowing obtaining different classification methods of input. PMID:25246988
APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION
Musson, John C.; Seaton, Chad; Spata, Mike F.; Yan, Jianxun
2012-11-01
Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementation of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.
Neural network implementations of data association algorithms for sensor fusion
NASA Technical Reports Server (NTRS)
Brown, Donald E.; Pittard, Clarence L.; Martin, Worthy N.
1989-01-01
The paper is concerned with locating a time varying set of entities in a fixed field when the entities are sensed at discrete time instances. At a given time instant a collection of bivariate Gaussian sensor reports is produced, and these reports estimate the location of a subset of the entities present in the field. A database of reports is maintained, which ideally should contain one report for each entity sensed. Whenever a collection of sensor reports is received, the database must be updated to reflect the new information. This updating requires association processing between the database reports and the new sensor reports to determine which pairs of sensor and database reports correspond to the same entity. Algorithms for performing this association processing are presented. Neural network implementation of the algorithms, along with simulation results comparing the approaches are provided.
Novel maximum-margin training algorithms for supervised neural networks.
Ludwig, Oswaldo; Nunes, Urbano
2010-06-01
This paper proposes three novel training methods, two of them based on the backpropagation approach and a third one based on information theory for multilayer perceptron (MLP) binary classifiers. Both backpropagation methods are based on the maximal-margin (MM) principle. The first one, based on the gradient descent with adaptive learning rate algorithm (GDX) and named maximum-margin GDX (MMGDX), directly increases the margin of the MLP output-layer hyperplane. The proposed method jointly optimizes both MLP layers in a single process, backpropagating the gradient of an MM-based objective function, through the output and hidden layers, in order to create a hidden-layer space that enables a higher margin for the output-layer hyperplane, avoiding the testing of many arbitrary kernels, as occurs in case of support vector machine (SVM) training. The proposed MM-based objective function aims to stretch out the margin to its limit. An objective function based on Lp-norm is also proposed in order to take into account the idea of support vectors, however, overcoming the complexity involved in solving a constrained optimization problem, usually in SVM training. In fact, all the training methods proposed in this paper have time and space complexities O(N) while usual SVM training methods have time complexity O(N (3)) and space complexity O(N (2)) , where N is the training-data-set size. The second approach, named minimization of interclass interference (MICI), has an objective function inspired on the Fisher discriminant analysis. Such algorithm aims to create an MLP hidden output where the patterns have a desirable statistical distribution. In both training methods, the maximum area under ROC curve (AUC) is applied as stop criterion. The third approach offers a robust training framework able to take the best of each proposed training method. The main idea is to compose a neural model by using neurons extracted from three other neural networks, each one previously trained by
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms
Garro, Beatriz A.; Vázquez, Roberto A.
2015-01-01
Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems. PMID:26221132
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.
Garro, Beatriz A; Vázquez, Roberto A
2015-01-01
Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems. PMID:26221132
Optimized approximation algorithm in neural networks without overfitting.
Liu, Yinyin; Starzyk, Janusz A; Zhu, Zhen
2008-06-01
In this paper, an optimized approximation algorithm (OAA) is proposed to address the overfitting problem in function approximation using neural networks (NNs). The optimized approximation algorithm avoids overfitting by means of a novel and effective stopping criterion based on the estimation of the signal-to-noise-ratio figure (SNRF). Using SNRF, which checks the goodness-of-fit in the approximation, overfitting can be automatically detected from the training error only without use of a separate validation set. The algorithm has been applied to problems of optimizing the number of hidden neurons in a multilayer perceptron (MLP) and optimizing the number of learning epochs in MLP's backpropagation training using both synthetic and benchmark data sets. The OAA algorithm can also be utilized in the optimization of other parameters of NNs. In addition, it can be applied to the problem of function approximation using any kind of basis functions, or to the problem of learning model selection when overfitting needs to be considered. PMID:18541499
A synergisitic Neural Network Soil Moisture Retrieval Algorithm for SMAP
NASA Astrophysics Data System (ADS)
Kolassa, J.; Reichle, R. H.; Gentine, P.; Prigent, C.; Aires, F.; Fang, B.
2015-12-01
A Neural Network (NN)-based algorithm is developed to retrieve surface soil moisture from Soil Moisture Active/Passive (SMAP) microwave observations. This statistical approach serves as an alternative to the official Radiative Transfer (RT) based SMAP retrieval algorithm, since it avoids an explicit formulation of the RT processes as well as the use of often uncertain or unavailable a priori knowledge for additional surface parameters. The NN algorithm is calibrated on observations from the SMAP radiometer and radar as well as surface soil moisture fields from the MERRA-2 reanalysis. To highlight different physical aspects of the satellite signals and to maximize the soil moisture information, different preprocessing techniques of the SMAP data are investigated. These include an analysis of radiometer polarization and diurnal indices to isolate the surface temperature contribution, as well as the radar co- and cross-polarized channels to account for vegetation effects. A major difference with respect to the official retrieval is the increased importance given to the information provided by the SMAP radar or other active sensors, utilizing not only the relative spatial structures, but also the absolute soil moisture information provided. The NN methodology combines multiple sensor observations in a data fusion approach and is thus able to fully exploit the complementarity of the information provided by the different instruments. The algorithm is used to compute global estimates of surface soil moisture and evaluated against retrieved soil moisture from SMOS as well as in situ observations from the International Soil Moisture Network (ISMN). The calibration on MERRA-2 data means that the NN retrieval algorithm functions as the model operator in a data assimilation framework yielding soil moisture estimates that are very compatible with the model. This could facilitate the assimilation of SMAP observations into land surface and numerical weather prediction models.
Quantum Associative Neural Network with Nonlinear Search Algorithm
NASA Astrophysics Data System (ADS)
Zhou, Rigui; Wang, Huian; Wu, Qian; Shi, Yang
2012-03-01
Based on analysis on properties of quantum linear superposition, to overcome the complexity of existing quantum associative memory which was proposed by Ventura, a new storage method for multiply patterns is proposed in this paper by constructing the quantum array with the binary decision diagrams. Also, the adoption of the nonlinear search algorithm increases the pattern recalling speed of this model which has multiply patterns to O( {log2}^{2^{n -t}} ) = O( n - t ) time complexity, where n is the number of quantum bit and t is the quantum information of the t quantum bit. Results of case analysis show that the associative neural network model proposed in this paper based on quantum learning is much better and optimized than other researchers' counterparts both in terms of avoiding the additional qubits or extraordinary initial operators, storing pattern and improving the recalling speed.
Strawberry Maturity Neural Network Detectng System Based on Genetic Algorithm
NASA Astrophysics Data System (ADS)
Xu, Liming
The quick and non-detective detection of agriculture product is one of the measures to increase the precision and productivity of harvesting and grading. Having analyzed H frequency of different maturities in different light intensities, the results show that H frequency for the same maturity has little influence in different light intensities; Under the same light intensity, three strawberry maturities are changing in order. After having confirmed the H frequency section to distinguish the different strawberry maturity, the triplelayer feed-forward neural network system to detect strawberry maturity was designed by using genetic algorithm. The test results show that the detecting precision ratio is 91.7%, it takes 160ms to distinguish one strawberry. Therefore, the online non-detective detecting the strawberry maturity could be realized.
Neural-network-biased genetic algorithms for materials design
NASA Astrophysics Data System (ADS)
Patra, Tarak; Meenakshisundaram, Venkatesh; Simmons, David
Machine learning tools have been progressively adopted by the materials science community to accelerate design of materials with targeted properties. However, in the search for new materials exhibiting properties and performance beyond that previously achieved, machine learning approaches are frequently limited by two major shortcomings. First, they are intrinsically interpolative. They are therefore better suited to the optimization of properties within the known range of accessible behavior than to the discovery of new materials with extremal behavior. Second, they require the availability of large datasets, which in some fields are not available and would be prohibitively expensive to produce. Here we describe a new strategy for combining genetic algorithms, neural networks and other machine learning tools, and molecular simulation to discover materials with extremal properties in the absence of pre-existing data. Predictions from progressively constructed machine learning tools are employed to bias the evolution of a genetic algorithm, with fitness evaluations performed via direct molecular dynamics simulation. We survey several initial materials design problems we have addressed with this framework and compare its performance to that of standard genetic algorithm approaches. We acknowledge the W. M. Keck Foundation for support of this work.
NASA Astrophysics Data System (ADS)
Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min
2015-12-01
In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.
Digit and command interpretation for electronic book using neural network and genetic algorithm.
Lam, H K; Leung, Frank H F
2004-12-01
This paper presents the interpretation of digits and commands using a modified neural network and the genetic algorithm. The modified neural network exhibits a node-to-node relationship which enhances its learning and generalization abilities. A digit-and-command interpreter constructed by the modified neural networks is proposed to recognize handwritten digits and commands. A genetic algorithm is employed to train the parameters of the modified neural networks of the digit-and-command interpreter. The proposed digit-and-command interpreter is successfully realized in an electronic book. Simulation and experimental results will be presented to show the applicability and merits of the proposed approach. PMID:15619928
Echoed time series predictions, neural networks and genetic algorithms
NASA Astrophysics Data System (ADS)
Conway, A.
This work aims to illustrate a potentially serious and previously unrecognised problem in using Neural Networks (NNs), and possibly other techniques, to predict Time Series (TS). It also demonstrates how a new training scheme using a genetic algorithm can alleviate this problem. Although it is already established that NNs can predict TS such as Sunspot Number (SSN) with reasonable success, the accuracy of these predictions is often judged solely by an RMS or related error. The use of this type of error overlooks the presence of what we have termed echoing, where the NN outputs its most recent input as its prediction. Therefore, a method of detecting echoed predictions is introduced, called time-shifting. Reasons for the presence of echo are discussed and then related to the choice of TS sampling. Finally, a new specially designed training scheme is described, which is a hybrid of a genetic algorithm search and back propagation. With this method we have successfully trained NNs to predict without any echo.
NASA Astrophysics Data System (ADS)
Zhang, Xiuping
In this paper, the weights of a Neural Network using Chaotic Imperialist Competitive Algorithm are updated. A three-layered Perseptron Neural Network applied for prediction of the maximum worth of the stocks changed in TEHRAN's bourse market. We trained this neural network with CICA, ICA, PSO and GA algorithms and compared the results with each other. The consideration of the results showed that the training and test error of the network trained by the CICA algorithm has been reduced in comparison to the other three methods.
NASA Technical Reports Server (NTRS)
Boussalis, Dhemetrios; Wang, Shyh J.
1992-01-01
This paper presents a method for utilizing artificial neural networks for direct adaptive control of dynamic systems with poorly known dynamics. The neural network weights (controller gains) are adapted in real time using state measurements and a random search optimization algorithm. The results are demonstrated via simulation using two highly nonlinear systems.
Performance evaluation of a routing algorithm based on Hopfield Neural Network for network-on-chip
NASA Astrophysics Data System (ADS)
Esmaelpoor, Jamal; Ghafouri, Abdollah
2015-12-01
Network on chip (NoC) has emerged as a solution to overcome the system on chip growing complexity and design challenges. A proper routing algorithm is a key issue of an NoC design. An appropriate routing method balances load across the network channels and keeps path length as short as possible. This survey investigates the performance of a routing algorithm based on Hopfield Neural Network. It is a dynamic programming to provide optimal path and network monitoring in real time. The aim of this article is to analyse the possibility of using a neural network as a router. The algorithm takes into account the path with the lowest delay (cost) form source to destination. In other words, the path a message takes from source to destination depends on network traffic situation at the time and it is the fastest one. The simulation results show that the proposed approach improves average delay, throughput and network congestion efficiently. At the same time, the increase in power consumption is almost negligible.
A Speech Endpoint Detection Algorithm Based on BP Neural Network and Multiple Features
NASA Astrophysics Data System (ADS)
Shi, Yong-Qiang; Li, Ru-Wei; Zhang, Shuang; Wang, Shuai; Yi, Xiao-Qun
Focusing on a sharp decline in the performance of endpoint detection algorithm in a complicated noise environment, a new speech endpoint detection method based on BPNN (back propagation neural network) and multiple features is presented. Firstly, maximum of short-time autocorrelation function and spectrum variance of speech signals are extracted respectively. Secondly, these feature vectors as the input of BP neural network are trained and modeled and then the Genetic Algorithm is used to optimize the BP Neural Network. Finally, the signal's type is determined according to the output of Neural Network. The experiments show that the correct rate of this proposed algorithm is improved, because this method has better robustness and adaptability than algorithm based on maximum of short-time autocorrelation function or spectrum variance.
Application of BP Neural Network Based on Genetic Algorithm in Quantitative Analysis of Mixed GAS
NASA Astrophysics Data System (ADS)
Chen, Hongyan; Liu, Wenzhen; Qu, Jian; Zhang, Bing; Li, Zhibin
Aiming at the problem of mixed gas detection in neural network and analysis on the principle of gas detection. Combining BP algorithm of genetic algorithm with hybrid gas sensors, a kind of quantitative analysis system of mixed gas is designed. The local minimum of network learning is the main reason which affects the precision of gas analysis. On the basis of the network study to improve the learning algorithms, the analyses and tests for CO, CO2 and HC compounds were tested. The results showed that the above measures effectively improve and enhance the accuracy of the neural network for gas analysis.
Training the Recurrent neural network by the Fuzzy Min-Max algorithm for fault prediction
Zemouri, Ryad; Racoceanu, Daniel; Minca, Eugenia; Filip, Florin
2009-03-05
In this paper, we present a training technique of a Recurrent Radial Basis Function neural network for fault prediction. We use the Fuzzy Min-Max technique to initialize the k-center of the RRBF neural network. The k-means algorithm is then applied to calculate the centers that minimize the mean square error of the prediction task. The performances of the k-means algorithm are then boosted by the Fuzzy Min-Max technique.
A stochastic learning algorithm for layered neural networks
Bartlett, E.B.; Uhrig, R.E.
1992-12-31
The random optimization method typically uses a Gaussian probability density function (PDF) to generate a random search vector. In this paper the random search technique is applied to the neural network training problem and is modified to dynamically seek out the optimal probability density function (OPDF) from which to select the search vector. The dynamic OPDF search process, combined with an auto-adaptive stratified sampling technique and a dynamic node architecture (DNA) learning scheme, completes the modifications of the basic method. The DNA technique determines the appropriate number of hidden nodes needed for a given training problem. By using DNA, researchers do not have to set the neural network architectures before training is initiated. The approach is applied to networks of generalized, fully interconnected, continuous perceptions. Computer simulation results are given.
A stochastic learning algorithm for layered neural networks
Bartlett, E.B. . Dept. of Mechanical Engineering); Uhrig, R.E. . Dept. of Nuclear Engineering)
1992-01-01
The random optimization method typically uses a Gaussian probability density function (PDF) to generate a random search vector. In this paper the random search technique is applied to the neural network training problem and is modified to dynamically seek out the optimal probability density function (OPDF) from which to select the search vector. The dynamic OPDF search process, combined with an auto-adaptive stratified sampling technique and a dynamic node architecture (DNA) learning scheme, completes the modifications of the basic method. The DNA technique determines the appropriate number of hidden nodes needed for a given training problem. By using DNA, researchers do not have to set the neural network architectures before training is initiated. The approach is applied to networks of generalized, fully interconnected, continuous perceptions. Computer simulation results are given.
The No-Prop algorithm: a new learning algorithm for multilayer neural networks.
Widrow, Bernard; Greenblatt, Aaron; Kim, Youngsik; Park, Dookun
2013-01-01
A new learning algorithm for multilayer neural networks that we have named No-Propagation (No-Prop) is hereby introduced. With this algorithm, the weights of the hidden-layer neurons are set and fixed with random values. Only the weights of the output-layer neurons are trained, using steepest descent to minimize mean square error, with the LMS algorithm of Widrow and Hoff. The purpose of introducing nonlinearity with the hidden layers is examined from the point of view of Least Mean Square Error Capacity (LMS Capacity), which is defined as the maximum number of distinct patterns that can be trained into the network with zero error. This is shown to be equal to the number of weights of each of the output-layer neurons. The No-Prop algorithm and the Back-Prop algorithm are compared. Our experience with No-Prop is limited, but from the several examples presented here, it seems that the performance regarding training and generalization of both algorithms is essentially the same when the number of training patterns is less than or equal to LMS Capacity. When the number of training patterns exceeds Capacity, Back-Prop is generally the better performer. But equivalent performance can be obtained with No-Prop by increasing the network Capacity by increasing the number of neurons in the hidden layer that drives the output layer. The No-Prop algorithm is much simpler and easier to implement than Back-Prop. Also, it converges much faster. It is too early to definitively say where to use one or the other of these algorithms. This is still a work in progress. PMID:23140797
Study on Optimized Elman Neural Network Classification Algorithm Based on PLS and CA
Zhao, Dean; Shen, Tian; Zhao, Yuyan
2014-01-01
High-dimensional large sample data sets, between feature variables and between samples, may cause some correlative or repetitive factors, occupy lots of storage space, and consume much computing time. Using the Elman neural network to deal with them, too many inputs will influence the operating efficiency and recognition accuracy; too many simultaneous training samples, as well as being not able to get precise neural network model, also restrict the recognition accuracy. Aiming at these series of problems, we introduce the partial least squares (PLS) and cluster analysis (CA) into Elman neural network algorithm, by the PLS for dimension reduction which can eliminate the correlative and repetitive factors of the features. Using CA eliminates the correlative and repetitive factors of the sample. If some subclass becomes small sample, with high-dimensional feature and fewer numbers, PLS shows a unique advantage. Each subclass is regarded as one training sample to train the different precise neural network models. Then simulation samples are discriminated and classified into different subclasses, using the corresponding neural network to recognize it. An optimized Elman neural network classification algorithm based on PLS and CA (PLS-CA-Elman algorithm) is established. The new algorithm aims at improving the operating efficiency and recognition accuracy. By the case analysis, the new algorithm has unique superiority, worthy of further promotion. PMID:25165470
NASA Technical Reports Server (NTRS)
Thakoor, Anil
1990-01-01
Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.
NASA Astrophysics Data System (ADS)
Cheng, Xinmin; Zhang, Xiaodan; Zhao, Li; Deng, Aideng; Bao, Yongqiang; Liu, Yong; Jiang, Yunliang
2014-04-01
When using acoustic emission to locate the friction fault source of rotating machinery, the effects of strong noise and waveform distortion make accurate locating difficult. Applying neural network for acoustic emission source location could be helpful. In the BP Wavelet Neural Network, BP is a local search algorithm, which falls into local minimum easily. The probability of successful search is low. We used Shuffled Frog Leaping Algorithm (SFLA) to optimize the parameters of the Wavelet Neural Network, and the optimized Wavelet Neural Network to locate the source. After having performed the experiments of friction acoustic emission's source location on the rotor friction test machine, the results show that the calculation of SFLA is simple and effective, and that locating is accurate with proper structure of the network and input parameters.
Farber, R.M.; Lapedes, A.S.; Rico-Martinez, R.; Kevrekidis, I.G.
1993-06-01
Time-delay mappings constructed using neural networks have proven successful performing nonlinear system identification; however, because of their discrete nature, their use in bifurcation analysis of continuous-tune systems is limited. This shortcoming can be avoided by embedding the neural networks in a training algorithm that mimics a numerical integrator. Both explicit and implicit integrators can be used. The former case is based on repeated evaluations of the network in a feedforward implementation; the latter relies on a recurrent network implementation. Here the algorithms and their implementation on parallel machines (SIMD and MIMD architectures) are discussed.
Farber, R.M.; Lapedes, A.S. ); Rico-Martinez, R.; Kevrekidis, I.G. . Dept. of Chemical Engineering)
1993-01-01
Time-delay mappings constructed using neural networks have proven successful performing nonlinear system identification; however, because of their discrete nature, their use in bifurcation analysis of continuous-tune systems is limited. This shortcoming can be avoided by embedding the neural networks in a training algorithm that mimics a numerical integrator. Both explicit and implicit integrators can be used. The former case is based on repeated evaluations of the network in a feedforward implementation; the latter relies on a recurrent network implementation. Here the algorithms and their implementation on parallel machines (SIMD and MIMD architectures) are discussed.
Computational-complexity reduction for neural network algorithms
Guez, A.; Kam, M. . Dept. of Electrical and Computer Engineering); Eilbert, J.L. )
1989-03-01
An important class of neural models is described as a set of coupled nonlinear differential equations with state variables corresponding to the axon hillock potential of neurons. Through a nonlinear transformation, these models can be converted to an equivalent system of differential equations whose state variables correspond to firing rates. The new firing rate formulation has certain computational advantages over the potential formulation of the model. The computational and storage burdens per cycle in simulations are reduced, and the resulting equations become quasi-linear in a large significant subset of the state space. Moreover, the dynamic range of the state space is bounded, alleviating the numerical stability problems in network simulation. These advantages are demonstrated through an example, using their model for the neural solution to the traveling salesman proposed by Hopfield and Tank.
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2002-01-01
As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.
Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.
2007-01-01
To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.
Elements of an algorithm for optimizing a parameter-structural neural network
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2016-06-01
The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.
A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2001-01-01
In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.
Neural network based algorithm for automatic identification of cough sounds.
Swarnkar, V; Abeyratne, U R; Amrulloh, Yusuf; Hukins, Craig; Triasih, Rina; Setyati, Amalia
2013-01-01
Cough is the most common symptom of the several respiratory diseases containing diagnostic information. It is the best suitable candidate to develop a simplified screening technique for the management of respiratory diseases in timely manner, both in developing and developed countries, particularly in remote areas where medical facilities are limited. However, major issue hindering the development is the non-availability of reliable technique to automatically identify cough events. Medical practitioners still rely on manual counting, which is laborious and time consuming. In this paper we propose a novel method, based on the neural network to automatically identify cough segments, discarding other sounds such a speech, ambient noise etc. We achieved the accuracy of 98% in classifying 13395 segments into two classes, 'cough' and 'other sounds', with the sensitivity of 93.44% and specificity of 94.52%. Our preliminary results indicate that method can develop into a real-time cough identification technique in continuous cough monitoring systems. PMID:24110049
NASA Technical Reports Server (NTRS)
Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy
2002-01-01
A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.
Zhang, Mei; Hu, Yueming; Wang, Tao; Zhu, Jinhui
2009-12-01
This paper addresses the predicting problem of peritoneal fluid absorption rate(PFAR). An innovative predicting model was developed, which employed the improved genetic algorithm embedded in neural network for predicting the important PFAR index in the peritoneal dialysis treatment process of renal failure. The significance of PFAR and the complexity of dialysis process were analyzed. The improved genetic algorithm was used for defining the initial weight and bias of neural network, and then the neural network was used for finding out the optimal predicting model of PFAR. This method utilizes the global search capability of genetic algorithm and the local search advantage of neural network completely. For the purpose of showing the validity of the model, the improved optimal predicting model is compared with the standard hybrid method of genetic algorithm and neural network. The simulation results show that the predicting accuracy of the improved optimal neural network is greatly improved and the learning process needs less time. PMID:20095466
Volume learning algorithm artificial neural networks for 3D QSAR studies.
Tetko, I V; Kovalishyn, V V; Livingstone, D J
2001-07-19
The current study introduces a new method, the volume learning algorithm (VLA), for the investigation of three-dimensional quantitative structure-activity relationships (QSAR) of chemical compounds. This method incorporates the advantages of comparative molecular field analysis (CoMFA) and artificial neural network approaches. VLA is a combination of supervised and unsupervised neural networks applied to solve the same problem. The supervised algorithm is a feed-forward neural network trained with a back-propagation algorithm while the unsupervised network is a self-organizing map of Kohonen. The use of both of these algorithms makes it possible to cluster the input CoMFA field variables and to use only a small number of the most relevant parameters to correlate spatial properties of the molecules with their activity. The statistical coefficients calculated by the proposed algorithm for cannabimimetic aminoalkyl indoles were comparable to, or improved, in comparison to the original study using the partial least squares algorithm. The results of the algorithm can be visualized and easily interpreted. Thus, VLA is a new convenient tool for three-dimensional QSAR studies. PMID:11448223
Combining neural network and genetic algorithm for prediction of lung sounds.
Güler, Inan; Polat, Hüseyin; Ergün, Uçman
2005-06-01
Recognition of lung sounds is an important goal in pulmonary medicine. In this work, we present a study for neural networks-genetic algorithm approach intended to aid in lung sound classification. Lung sound was captured from the chest wall of The subjects with different pulmonary diseases and also from the healthy subjects. Sound intervals with duration of 15-20 s were sampled from subjects. From each interval, full breath cycles were selected. Of each selected breath cycle, a 256-point Fourier Power Spectrum Density (PSD) was calculated. Total of 129 data values calculated by the spectral analysis are selected by genetic algorithm and applied to neural network. Multilayer perceptron (MLP) neural network employing backpropagation training algorithm was used to predict the presence or absence of adventitious sounds (wheeze and crackle). We used genetic algorithms to search for optimal structure and training parameters of neural network for a better predicting of lung sounds. This application resulted in designing of optimum network structure and, hence reducing the processing load and time. PMID:16050077
Genetic algorithm-based neural fuzzy decision tree for mixed scheduling in ATM networks.
Lin, Chin-Teng; Chung, I-Fang; Pu, Her-Chang; Lee', Tsern-Huei; Chang, Jyh-Yeong
2002-01-01
Future broadband integrated services networks based on asynchronous transfer mode (ATM) technology are expected to support multiple types of multimedia information with diverse statistical characteristics and quality of service (QoS) requirements. To meet these requirements, efficient scheduling methods are important for traffic control in ATM networks. Among general scheduling schemes, the rate monotonic algorithm is simple enough to be used in high-speed networks, but does not attain the high system utilization of the deadline driven algorithm. However, the deadline driven scheme is computationally complex and hard to implement in hardware. The mixed scheduling algorithm is a combination of the rate monotonic algorithm and the deadline driven algorithm; thus it can provide most of the benefits of these two algorithms. In this paper, we use the mixed scheduling algorithm to achieve high system utilization under the hardware constraint. Because there is no analytic method for schedulability testing of mixed scheduling, we propose a genetic algorithm-based neural fuzzy decision tree (GANFDT) to realize it in a real-time environment. The GANFDT combines a GA and a neural fuzzy network into a binary classification tree. This approach also exploits the power of the classification tree. Simulation results show that the GANFDT provides an efficient way of carrying out mixed scheduling in ATM networks. PMID:18244889
Predicting recurrent aphthous ulceration using genetic algorithms-optimized neural networks
Dar-Odeh, Najla S; Alsmadi, Othman M; Bakri, Faris; Abu-Hammour, Zaer; Shehabi, Asem A; Al-Omiri, Mahmoud K; Abu-Hammad, Shatha M K; Al-Mashni, Hamzeh; Saeed, Mohammad B; Muqbil, Wael; Abu-Hammad, Osama A
2010-01-01
Objective To construct and optimize a neural network that is capable of predicting the occurrence of recurrent aphthous ulceration (RAU) based on a set of appropriate input data. Participants and methods Artificial neural networks (ANN) software employing genetic algorithms to optimize the architecture neural networks was used. Input and output data of 86 participants (predisposing factors and status of the participants with regards to recurrent aphthous ulceration) were used to construct and train the neural networks. The optimized neural networks were then tested using untrained data of a further 10 participants. Results The optimized neural network, which produced the most accurate predictions for the presence or absence of recurrent aphthous ulceration was found to employ: gender, hematological (with or without ferritin) and mycological data of the participants, frequency of tooth brushing, and consumption of vegetables and fruits. Conclusions Factors appearing to be related to recurrent aphthous ulceration and appropriate for use as input data to construct ANNs that predict recurrent aphthous ulceration were found to include the following: gender, hemoglobin, serum vitamin B12, serum ferritin, red cell folate, salivary candidal colony count, frequency of tooth brushing, and the number of fruits or vegetables consumed daily. PMID:21918622
A model selection algorithm for a posteriori probability estimation with neural networks.
Arribas, Juan Ignacio; Cid-Sueiro, Jesús
2005-07-01
This paper proposes a novel algorithm to jointly determine the structure and the parameters of a posteriori probability model based on neural networks (NNs). It makes use of well-known ideas of pruning, splitting, and merging neural components and takes advantage of the probabilistic interpretation of these components. The algorithm, so called a posteriori probability model selection (PPMS), is applied to an NN architecture called the generalized softmax perceptron (GSP) whose outputs can be understood as probabilities although results shown can be extended to more general network architectures. Learning rules are derived from the application of the expectation-maximization algorithm to the GSP-PPMS structure. Simulation results show the advantages of the proposed algorithm with respect to other schemes. PMID:16121722
An Efficient Algorithm for Maximum Clique Problem Using Improved Hopfield Neural Network
NASA Astrophysics Data System (ADS)
Wang, Rong Long; Tang, Zheng; Cao, Qi Ping
The maximum clique problem is a classic graph optimization problem that is NP-hard even to approximate. For this and related reasons, it is a problem of considerable interest in theoretical computer science. The maximum clique also has several real-world applications. In this paper, an efficient algorithm for the maximum clique problem using improved Hopfield neural network is presented. In this algorithm, the internal dynamics of the Hopfield neural network is modified to efficiently increase exchange of information between neurons and permit temporary increases in the energy function in order to avoid local minima. The proposed algorithm is tested on two types of random graphs and DIMACS benchmark graphs. The simulation results show that the proposed algorithm is better than previous works for solving the maximum clique problem in terms of the computation time and the solution quality.
A generalized LSTM-like training algorithm for second-order recurrent neural networks
Monner, Derek; Reggia, James A.
2011-01-01
The Long Short Term Memory (LSTM) is a second-order recurrent neural network architecture that excels at storing sequential short-term memories and retrieving them many time-steps later. LSTM’s original training algorithm provides the important properties of spatial and temporal locality, which are missing from other training approaches, at the cost of limiting it’s applicability to a small set of network architectures. Here we introduce the Generalized Long Short-Term Memory (LSTM-g) training algorithm, which provides LSTM-like locality while being applicable without modification to a much wider range of second-order network architectures. With LSTM-g, all units have an identical set of operating instructions for both activation and learning, subject only to the configuration of their local environment in the network; this is in contrast to the original LSTM training algorithm, where each type of unit has its own activation and training instructions. When applied to LSTM architectures with peephole connections, LSTM-g takes advantage of an additional source of back-propagated error which can enable better performance than the original algorithm. Enabled by the broad architectural applicability of LSTM-g, we demonstrate that training recurrent networks engineered for specific tasks can produce better results than single-layer networks. We conclude that LSTM-g has the potential to both improve the performance and broaden the applicability of spatially and temporally local gradient-based training algorithms for recurrent neural networks. PMID:21803542
Orozco-Monteagudo, Maykel; Taboada-Crispi, Alberto; Gutierrez-Hernandez, Liliana
2008-11-06
This paper deals with the controversial topic of the selection of the parameters of a genetic algorithm, in this case hierarchical, used for training of multilayer perceptron neural networks for the binary classification. The parameters to select are the crossover and mutation probabilities of the control and parametric genes and the permanency percent. The results can be considered as a guide for using this kind of algorithm.
NASA Technical Reports Server (NTRS)
Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)
2002-01-01
Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic
Optimization of cocoa butter analog synthesis variables using neural networks and genetic algorithm.
Shekarchizadeh, Hajar; Tikani, Reza; Kadivar, Mahdi
2014-09-01
Cocoa butter analog was prepared from camel hump fat and tristearin by enzymatic interesterification in supercritical carbon dioxide (SC-CO2) using immobilized Thermomyces lanuginosus lipase (Lipozyme TL IM) as a biocatalyst. Optimal process conditions were determined using neural networks and genetic algorithm optimization. Response surfaces methodology was used to design the experiments to collect data for the neural network modelling. A general regression neural network model was developed to predict the response of triacylglycerol (TAG) distribution of cocoa butter analog from the process pressure, temperature, tristearin/camel hump fat ratio, water content, and incubation time. A genetic algorithm was used to search for a combination of the process variables for production of most similar cocoa butter analog to the corresponding cocoa butter. The combinations of the process variables during genetic algorithm optimization were evaluated using the neural network model. The pressure of 10 MPa; temperature of 40 °C; SSS/CHF ratio of 0.6:1; water content of 13 % (w/w); and incubation time of 4.5 h were found to be the optimum conditions to achieve the most similar cocoa butter analog to the corresponding cocoa butter. PMID:25190869
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987
Two neural network algorithms for designing optimal terminal controllers with open final time
NASA Technical Reports Server (NTRS)
Plumer, Edward S.
1992-01-01
Multilayer neural networks, trained by the backpropagation through time algorithm (BPTT), have been used successfully as state-feedback controllers for nonlinear terminal control problems. Current BPTT techniques, however, are not able to deal systematically with open final-time situations such as minimum-time problems. Two approaches which extend BPTT to open final-time problems are presented. In the first, a neural network learns a mapping from initial-state to time-to-go. In the second, the optimal number of steps for each trial run is found using a line-search. Both methods are derived using Lagrange multiplier techniques. This theoretical framework is used to demonstrate that the derived algorithms are direct extensions of forward/backward sweep methods used in N-stage optimal control. The two algorithms are tested on a Zermelo problem and the resulting trajectories compare favorably to optimal control results.
The backpropagation algorithm in J, a fast prototyping tool for researching neural networks.
Brouwer, R K
1999-08-01
This paper illustrates the use of a powerful language, called J, that is ideal for simulating neural networks. The use of J is demonstrated by its application to a gradient descent method for training a multilayer perceptron. It is also shown how the back-propagation algorithm can be easily generalized to multilayer networks without any increase in complexity and that the algorithm can be completely expressed in an array notation which is directly executable through J. J is a general purpose language, which means that its user is given a flexibility not available in neural network simulators or in software packages such as MATLAB. Yet, because of its numerous operators, J allows a very succinct code to be used, leading to a tremendous decrease in development time. PMID:10586987
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network’s initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987
On the use of harmony search algorithm in the training of wavelet neural networks
NASA Astrophysics Data System (ADS)
Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline
2015-10-01
Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.
Negri, Lucas; Nied, Ademir; Kalinowski, Hypolito; Paterno, Aleksander
2011-01-01
This paper presents a benchmark for peak detection algorithms employed in fiber Bragg grating spectrometric interrogation systems. The accuracy, precision, and computational performance of currently used algorithms and those of a new proposed artificial neural network algorithm are compared. Centroid and gaussian fitting algorithms are shown to have the highest precision but produce systematic errors that depend on the FBG refractive index modulation profile. The proposed neural network displays relatively good precision with reduced systematic errors and improved computational performance when compared to other networks. Additionally, suitable algorithms may be chosen with the general guidelines presented. PMID:22163806
Lu, Y; Sundararajan, N; Saratchandran, P
1998-01-01
This paper presents a detailed performance analysis of the minimal resource allocation network (M-RAN) learning algorithm, M-RAN is a sequential learning radial basis function neural network which combines the growth criterion of the resource allocating network (RAN) of Platt (1991) with a pruning strategy based on the relative contribution of each hidden unit to the overall network output. The resulting network leads toward a minimal topology for the RAN. The performance of this algorithm is compared with the multilayer feedforward networks (MFNs) trained with 1) a variant of the standard backpropagation algorithm, known as RPROP and 2) the dependence identification (DI) algorithm of Moody and Antsaklis on several benchmark problems in the function approximation and pattern classification areas. For all these problems, the M-RAN algorithm is shown to realize networks with far fewer hidden neurons with better or same approximation/classification accuracy. Further, the time taken for learning (training) is also considerably shorter as M-RAN does not require repeated presentation of the training data. PMID:18252454
NASA Astrophysics Data System (ADS)
Zainuddin, Zarita; Lai, Kee Huong; Ong, Pauline
2013-04-01
Artificial neural networks (ANNs) are powerful mathematical models that are used to solve complex real world problems. Wavelet neural networks (WNNs), which were developed based on the wavelet theory, are a variant of ANNs. During the training phase of WNNs, several parameters need to be initialized; including the type of wavelet activation functions, translation vectors, and dilation parameter. The conventional k-means and fuzzy c-means clustering algorithms have been used to select the translation vectors. However, the solution vectors might get trapped at local minima. In this regard, the evolutionary harmony search algorithm, which is capable of searching for near-optimum solution vectors, both locally and globally, is introduced to circumvent this problem. In this paper, the conventional k-means and fuzzy c-means clustering algorithms were hybridized with the metaheuristic harmony search algorithm. In addition to obtaining the estimation of the global minima accurately, these hybridized algorithms also offer more than one solution to a particular problem, since many possible solution vectors can be generated and stored in the harmony memory. To validate the robustness of the proposed WNNs, the real world problem of epileptic seizure detection was presented. The overall classification accuracy from the simulation showed that the hybridized metaheuristic algorithms outperformed the standard k-means and fuzzy c-means clustering algorithms.
NASA Astrophysics Data System (ADS)
Huan, Yanfu; Feng, Guodong; Wang, Bin; Ren, Yulin; Fei, Qiang
2013-05-01
In this paper, a novel chemometric method was developed for rapid, accurate, and quantitative analysis of cefalexin in samples. The experiments were carried out by using the short near-infrared spectroscopy coupled with artificial neural networks. In order to enhancing the predictive ability of artificial neural networks model, a modified genetic algorithm was used to select fixed number of wavelength.
Mandal, Sudip; Khan, Abhinandan; Saha, Goutam; Pal, Rajat K.
2016-01-01
The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process. PMID:26989410
Mandal, Sudip; Khan, Abhinandan; Saha, Goutam; Pal, Rajat K
2016-01-01
The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process. PMID:26989410
Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm
NASA Astrophysics Data System (ADS)
Kisi, Ozgur; Ozkan, Coskun; Akay, Bahriye
2012-03-01
SummaryEstimation of suspended sediment concentration carried by a river is very important for many water resources projects. The accuracy of artificial neural networks (ANN) with artificial bee colony (ABC) algorithm is investigated in this paper for modeling discharge-suspended sediment relationship. The ANN-ABC was compared with those of the neural differential evolution, adaptive neuro-fuzzy, neural networks and rating curve models. The daily stream flow and suspended sediment concentration data from two stations, Rio Valenciano Station and Quebrada Blanca Station, were used as case studies. For evaluating the ability of the models, mean square error and determination coefficient criteria were used. Comparison results showed that the ANN-ABC was able to produce better results than the neural differential evolution, neuro-fuzzy, neural networks and rating curve models. The logarithm transformed data were also used as input to the proposed ANN-ABC models. It was found that the logarithm transform significantly increased accuracy of the models in suspended sediment estimation.
A new backpropagation learning algorithm for layered neural networks with nondifferentiable units.
Oohori, Takahumi; Naganuma, Hidenori; Watanabe, Kazuhisa
2007-05-01
We propose a digital version of the backpropagation algorithm (DBP) for three-layered neural networks with nondifferentiable binary units. This approach feeds teacher signals to both the middle and output layers, whereas with a simple perceptron, they are given only to the output layer. The additional teacher signals enable the DBP to update the coupling weights not only between the middle and output layers but also between the input and middle layers. A neural network based on DBP learning is fast and easy to implement in hardware. Simulation results for several linearly nonseparable problems such as XOR demonstrate that the DBP performs favorably when compared to the conventional approaches. Furthermore, in large-scale networks, simulation results indicate that the DBP provides high performance. PMID:17381272
Efficient training algorithms for a class of shunting inhibitory convolutional neural networks.
Tivive, Fok Hing Chi; Bouzerdoum, Abdesselam
2005-05-01
This article presents some efficient training algorithms, based on first-order, second-order, and conjugate gradient optimization methods, for a class of convolutional neural networks (CoNNs), known as shunting inhibitory convolution neural networks. Furthermore, a new hybrid method is proposed, which is derived from the principles of Quickprop, Rprop, SuperSAB, and least squares (LS). Experimental results show that the new hybrid method can perform as well as the Levenberg-Marquardt (LM) algorithm, but at a much lower computational cost and less memory storage. For comparison sake, the visual pattern recognition task of face/nonface discrimination is chosen as a classification problem to evaluate the performance of the training algorithms. Sixteen training algorithms are implemented for the three different variants of the proposed CoNN architecture: binary-, Toeplitz- and fully connected architectures. All implemented algorithms can train the three network architectures successfully, but their convergence speed vary markedly. In particular, the combination of LS with the new hybrid method and LS with the LM method achieve the best convergence rates in terms of number of training epochs. In addition, the classification accuracies of all three architectures are assessed using ten-fold cross validation. The results show that the binary- and Toeplitz-connected architectures outperform slightly the fully connected architecture: the lowest error rates across all training algorithms are 1.95% for Toeplitz-connected, 2.10% for the binary-connected, and 2.20% for the fully connected network. In general, the modified Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods, the three variants of LM algorithm, and the new hybrid/LS method perform consistently well, achieving error rates of less than 3% averaged across all three architectures. PMID:15940985
Neural network and genetic algorithm technology in data mining of manufacturing quality information
NASA Astrophysics Data System (ADS)
Song, Limei; Qu, Xing-Hua; Ye, Shenghua
2002-03-01
Data Mining of Manufacturing Quality Information (MQI) is the key technology in Quality Lead Control. Of all the data mining methods, Neural Network and Genetic Algorithm is widely used for their strong advantages, such as non-linear, collateral, veracity etc. But if you singly use them, there will be some limitations preventing your research, such as convergence slowly, searching blindness etc. This paper combines their merits and use Genetic BP Algorithm in Data Mining of MQI. It has been successfully used in the key project of Natural Science Foundation of China (NSFC) - Quality Control and Zero-defect Engineering (Project No. 59735120).
Modeling of CMM dynamic error based on optimization of neural network using genetic algorithm
NASA Astrophysics Data System (ADS)
Ying, Qu; Zai, Luo; Yi, Lu
2010-08-01
By analyzing the dynamic error of CMM, a model is established using BP neural network for CMM .The most important 5 input parameters which affect the dynamic error of CMM are approximate rate, length of rod, diameter of probe, coordinate values of X and coordinate values of Y. But the training of BP neural network can be easily trapped in local minimums and its training speed is slow. In order to overcome these disadvantages, genetic algorithm (GA) is introduced for optimization. So the model of GA-BP network is built up. In order to verify the model, experiments are done on the CMM of type 9158. Experimental results indicate that the entire optimizing capability of genetic algorithm is perfect. Compared with traditional BP network, the GA-BP network has better accuracy and adaptability and the training time is halved using GA-BP network. The average dynamic error can be reduced from 3.5μm to 0.7μm. So the precision is improved by 76%.
Chiang, Kai-Wei; Chang, Hsiu-Wen
2010-01-01
Mobile mapping systems have been widely applied for acquiring spatial information in applications such as spatial information systems and 3D city models. Nowadays the most common technologies used for positioning and orientation of a mobile mapping system include a Global Positioning System (GPS) as the major positioning sensor and an Inertial Navigation System (INS) as the major orientation sensor. In the classical approach, the limitations of the Kalman Filter (KF) method and the overall price of multi-sensor systems have limited the popularization of most land-based mobile mapping applications. Although intelligent sensor positioning and orientation schemes consisting of Multi-layer Feed-forward Neural Networks (MFNNs), one of the most famous Artificial Neural Networks (ANNs), and KF/smoothers, have been proposed in order to enhance the performance of low cost Micro Electro Mechanical System (MEMS) INS/GPS integrated systems, the automation of the MFNN applied has not proven as easy as initially expected. Therefore, this study not only addresses the problems of insufficient automation in the conventional methodology that has been applied in MFNN-KF/smoother algorithms for INS/GPS integrated systems proposed in previous studies, but also exploits and analyzes the idea of developing alternative intelligent sensor positioning and orientation schemes that integrate various sensors in more automatic ways. The proposed schemes are implemented using one of the most famous constructive neural networks--the Cascade Correlation Neural Network (CCNNs)--to overcome the limitations of conventional techniques based on KF/smoother algorithms as well as previously developed MFNN-smoother schemes. The CCNNs applied also have the advantage of a more flexible topology compared to MFNNs. Based on the experimental data utilized the preliminary results presented in this article illustrate the effectiveness of the proposed schemes compared to smoother algorithms as well as the MFNN
NASA Astrophysics Data System (ADS)
Wang, H. B.; Li, J. W.; Zhou, B.; Yuan, Z. Q.; Chen, Y. P.
2013-03-01
In the last few decades, the development of Geographical Information Systems (GIS) technology has provided a method for the evaluation of landslide susceptibility and hazard. Slope units were found to be appropriate for the fundamental morphological elements in landslide susceptibility evaluation. Following the DEM construction in a loess area susceptible to landslides, the direct-reverse DEM technology was employed to generate 216 slope units in the studied area. After a detailed investigation, the landslide inventory was mapped in which 39 landslides, including paleo-landslides, old landslides and recent landslides, were present. Of the 216 slope units, 123 involved landslides. To analyze the mechanism of these landslides, six environmental factors were selected to evaluate landslide occurrence: slope angle, aspect, the height and shape of the slope, distance to river and human activities. These factors were extracted in terms of the slope unit within the ArcGIS software. The spatial analysis demonstrates that most of the landslides are located on convex slopes at an elevation of 100-150 m with slope angles from 135°-225° and 40°-60°. Landslide occurrence was then checked according to these environmental factors using an artificial neural network with back propagation, optimized by genetic algorithms. A dataset of 120 slope units was chosen for training the neural network model, i.e., 80 units with landslide presence and 40 units without landslide presence. The parameters of genetic algorithms and neural networks were then set: population size of 100, crossover probability of 0.65, mutation probability of 0.01, momentum factor of 0.60, learning rate of 0.7, max learning number of 10 000, and target error of 0.000001. After training on the datasets, the susceptibility of landslides was mapped for the land-use plan and hazard mitigation. Comparing the susceptibility map with landslide inventory, it was noted that the prediction accuracy of landslide occurrence
Comparison of neuron selection algorithms of wavelet-based neural network
NASA Astrophysics Data System (ADS)
Mei, Xiaodan; Sun, Sheng-He
2001-09-01
Wavelet networks have increasingly received considerable attention in various fields such as signal processing, pattern recognition, robotics and automatic control. Recently people are interested in employing wavelet functions as activation functions and have obtained some satisfying results in approximating and localizing signals. However, the function estimation will become more and more complex with the growth of the input dimension. The hidden neurons contribute to minimize the approximation error, so it is important to study suitable algorithms for neuron selection. It is obvious that exhaustive search procedure is not satisfying when the number of neurons is large. The study in this paper focus on what type of selection algorithm has faster convergence speed and less error for signal approximation. Therefore, the Genetic algorithm and the Tabu Search algorithm are studied and compared by some experiments. This paper first presents the structure of the wavelet-based neural network, then introduces these two selection algorithms and discusses their properties and learning processes, and analyzes the experiments and results. We used two wavelet functions to test these two algorithms. The experiments show that the Tabu Search selection algorithm's performance is better than the Genetic selection algorithm, TSA has faster convergence rate than GA under the same stopping criterion.
Ahmed, Afaz Uddin; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina
2014-01-01
An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation. PMID:25133214
Study on recognition algorithm for paper currency numbers based on neural network
NASA Astrophysics Data System (ADS)
Li, Xiuyan; Liu, Tiegen; Li, Yuanyao; Zhang, Zhongchuan; Deng, Shichao
2008-12-01
Based on the unique characteristic, the paper currency numbers can be put into record and the automatic identification equipment for paper currency numbers is supplied to currency circulation market in order to provide convenience for financial sectors to trace the fiduciary circulation socially and provide effective supervision on paper currency. Simultaneously it is favorable for identifying forged notes, blacklisting the forged notes numbers and solving the major social problems, such as armor cash carrier robbery, money laundering. For the purpose of recognizing the paper currency numbers, a recognition algorithm based on neural network is presented in the paper. Number lines in original paper currency images can be draw out through image processing, such as image de-noising, skew correction, segmentation, and image normalization. According to the different characteristics between digits and letters in serial number, two kinds of classifiers are designed. With the characteristics of associative memory, optimization-compute and rapid convergence, the Discrete Hopfield Neural Network (DHNN) is utilized to recognize the letters; with the characteristics of simple structure, quick learning and global optimum, the Radial-Basis Function Neural Network (RBFNN) is adopted to identify the digits. Then the final recognition results are obtained by combining the two kinds of recognition results in regular sequence. Through the simulation tests, it is confirmed by simulation results that the recognition algorithm of combination of two kinds of recognition methods has such advantages as high recognition rate and faster recognition simultaneously, which is worthy of broad application prospect.
Evolving spiking neural networks: a novel growth algorithm exhibits unintelligent design
NASA Astrophysics Data System (ADS)
Schaffer, J. David
2015-06-01
Spiking neural networks (SNNs) have drawn considerable excitement because of their computational properties, believed to be superior to conventional von Neumann machines, and sharing properties with living brains. Yet progress building these systems has been limited because we lack a design methodology. We present a gene-driven network growth algorithm that enables a genetic algorithm (evolutionary computation) to generate and test SNNs. The genome for this algorithm grows O(n) where n is the number of neurons; n is also evolved. The genome not only specifies the network topology, but all its parameters as well. Experiments show the algorithm producing SNNs that effectively produce a robust spike bursting behavior given tonic inputs, an application suitable for central pattern generators. Even though evolution did not include perturbations of the input spike trains, the evolved networks showed remarkable robustness to such perturbations. In addition, the output spike patterns retain evidence of the specific perturbation of the inputs, a feature that could be exploited by network additions that could use this information for refined decision making if required. On a second task, a sequence detector, a discriminating design was found that might be considered an example of "unintelligent design"; extra non-functional neurons were included that, while inefficient, did not hamper its proper functioning.
Single-Iteration Learning Algorithm for Feed-Forward Neural Networks
Barhen, J.; Cogswell, R.; Protopopescu, V.
1999-07-31
A new methodology for neural learning is presented, whereby only a single iteration is required to train a feed-forward network with near-optimal results. To this aim, a virtual input layer is added to the multi-layer architecture. The virtual input layer is connected to the nominal input layer by a specird nonlinear transfer function, and to the fwst hidden layer by regular (linear) synapses. A sequence of alternating direction singular vrdue decompositions is then used to determine precisely the inter-layer synaptic weights. This algorithm exploits the known separability of the linear (inter-layer propagation) and nonlinear (neuron activation) aspects of information &ansfer within a neural network.
Hybrid neural network and statistical classification algorithms in computer-assisted diagnosis
NASA Astrophysics Data System (ADS)
Stotzka, Rainer
2000-06-01
The development of computer assisted diagnosis systems for image-patterns is still in the early stages compared to the powerful image and object recognition capabilities of the human eye and visual cortex. Rules have to be defined and features have to be found manually in digital images to come to an automatic classification. The extraction of discriminating features is especially in medical applications a very time consuming process. The quality of the defined features influences directly the classification success. Artificial neural networks are in principle able to solve complex recognition and classification tasks, but their computational expenses restrict their use to small images. A new improved image object classification scheme consists of neural networks as feature extractors and common statistical discrimination algorithms. Applied to the recognition of different types of tumor nuclei images this system is able to find differences which are barely discernible by human eyes.
Wang, Jie-sheng; Li, Shu-xia; Gao, Jie
2014-01-01
For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective. PMID:25152929
Wang, Jie-sheng; Li, Shu-xia; Gao, Jie
2014-01-01
For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective. PMID:25152929
Smith, Patrick I.
2003-09-23
Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing
Vyas, Bhargav Y; Das, Biswarup; Maheshwari, Rudra Prakash
2016-08-01
This paper presents the Chebyshev neural network (ChNN) as an improved artificial intelligence technique for power system protection studies and examines the performances of two ChNN learning algorithms for fault classification of series compensated transmission line. The training algorithms are least-square Levenberg-Marquardt (LSLM) and recursive least-square algorithm with forgetting factor (RLSFF). The performances of these algorithms are assessed based on their generalization capability in relating the fault current parameters with an event of fault in the transmission line. The proposed algorithm is fast in response as it utilizes postfault samples of three phase currents measured at the relaying end corresponding to half-cycle duration only. After being trained with only a small part of the generated fault data, the algorithms have been tested over a large number of fault cases with wide variation of system and fault parameters. Based on the studies carried out in this paper, it has been found that although the RLSFF algorithm is faster for training the ChNN in the fault classification application for series compensated transmission lines, the LSLM algorithm has the best accuracy in testing. The results prove that the proposed ChNN-based method is accurate, fast, easy to design, and immune to the level of compensations. Thus, it is suitable for digital relaying applications. PMID:25314714
A neural network-based optimization algorithm for the weapon-target assignment problem
Wacholder, E.
1989-02-01
A neural network-based algorithm was developed for the Weapon-Target Assignment Problem (WTAP) in Ballistic Missile Defense (BMD). An optimal assignment policy is one which allocates targets to weapon platforms such that the total expected leakage value of targets surviving the defense is minimized. This involves the minimization of a non-linear objective function subject to inequality constraints specifying the maximum number of interceptors available to each platform and the maximum number of interceptors allowed to be fired at each target as imposed by the Battle Management/Command Control and Communications (BM/C/sup 3/) system. The algorithm consists of solving a system of ODEs trajectories and variables. Simulations of the algorithm on PC and VAX computers were carried out using a simple numerical scheme. In all the battle instances tested, the algorithm has proven to be stable and to converge to solutions very close to global optima. The time to achieve convergence was consistently less than the time constant of the network's processing elements (neurons). This implies that fast solutions can be realized if the algorithm is implemented in hardware circuits. Three series of battle scenarios are analyzed and discussed in this report. Input data and results are presented in detail. The main advantage of this algorithm is that it can be adapted to either a special-purpose hardware circuit or a general-purpose concurrent machine to yield fast and accurate solutions to difficult decision problems. 40 refs., 8 figs., 8 tabs.
Prediction of road traffic death rate using neural networks optimised by genetic algorithm.
Jafari, Seyed Ali; Jahandideh, Sepideh; Jahandideh, Mina; Asadabadi, Ebrahim Barzegari
2015-01-01
Road traffic injuries (RTIs) are realised as a main cause of public health problems at global, regional and national levels. Therefore, prediction of road traffic death rate will be helpful in its management. Based on this fact, we used an artificial neural network model optimised through Genetic algorithm to predict mortality. In this study, a five-fold cross-validation procedure on a data set containing total of 178 countries was used to verify the performance of models. The best-fit model was selected according to the root mean square errors (RMSE). Genetic algorithm, as a powerful model which has not been introduced in prediction of mortality to this extent in previous studies, showed high performance. The lowest RMSE obtained was 0.0808. Such satisfactory results could be attributed to the use of Genetic algorithm as a powerful optimiser which selects the best input feature set to be fed into the neural networks. Seven factors have been known as the most effective factors on the road traffic mortality rate by high accuracy. The gained results displayed that our model is very promising and may play a useful role in developing a better method for assessing the influence of road traffic mortality risk factors. PMID:24304230
Anisotropic optical flow algorithm based on self-adaptive cellular neural network
NASA Astrophysics Data System (ADS)
Zhang, Congxuan; Chen, Zhen; Li, Ming; Sun, Kaiqiong
2013-01-01
An anisotropic optical flow estimation method based on self-adaptive cellular neural networks (CNN) is proposed. First, a novel optical flow energy function which contains a robust data term and an anisotropic smoothing term is projected. Next, the CNN model which has the self-adaptive feedback operator and threshold is presented according to the Euler-Lagrange partial differential equations of the proposed optical flow energy function. Finally, the elaborate evaluation experiments indicate the significant effects of the various proposed strategies for optical flow estimation, and the comparison results with the other methods show that the proposed algorithm has better performance in computing accuracy and efficiency.
Supervised feature ranking using a genetic algorithm optimized artificial neural network.
Lin, Thy-Hou; Chiu, Shih-Hau; Tsai, Keng-Chang
2006-01-01
A genetic algorithm optimized artificial neural network GNW has been designed to rank features for two diversified multivariate data sets. The dimensions of these data sets are 85x24 and 62x25 for 24 or 25 molecular descriptors being computed for 85 matrix metalloproteinase-1 inhibitors or 62 hepatitis C virus NS3 protease inhibitors, respectively. Each molecular descriptor computed is treated as a feature and input into an input layer node of the artificial neural network. To optimize the artificial neural network by the genetic algorithm, each interconnected weight between input and hidden or between hidden and output layer nodes is binary encoded as a 16 bits string in a chromosome, and the chromosome is evolved by crossover and mutation operations. Each input layer node and its associated weights of the trained GNW are systematically omitted once (the self-depleted weights), and the corresponding weight adjustments due to the omission are computed to keep the overall network behavior unchanged. The primary feature ranking index defined as the sum of self-depleted weights and the corresponding weight adjustments computed is found capable of separating good from bad features for some artificial data sets of known feature rankings tested. The final feature indexes used to rank the data sets are computed as a sum of the weighted frequency of each feature being ranked in a particular rank for each data set being partitioned into numerous clusters. The two data sets are also clustered by a standard K-means method and trained by a support vector machine (SVM) for feature ranking using the computed F-scores as feature ranking index. It is found that GNW outperforms the SVM method on three artificial as well as the matrix metalloproteinase-1 inhibitor data sets studied. A clear-cut separation of good from bad features is offered by the GNW but not by the SVM method for a feature pool of known feature ranking. PMID:16859292
Nguyen, Lien B; Nguyen, Anh V; Ling, Sai Ho; Nguyen, Hung T
2013-01-01
Hypoglycemia is the most common but highly feared complication induced by the intensive insulin therapy in patients with type 1 diabetes mellitus (T1DM). Nocturnal hypoglycemia is dangerous because sleep obscures early symptoms and potentially leads to severe episodes which can cause seizure, coma, or even death. It is shown that the hypoglycemia onset induces early changes in electroencephalography (EEG) signals which can be detected non-invasively. In our research, EEG signals from five T1DM patients during an overnight clamp study were measured and analyzed. By applying a method of feature extraction using Fast Fourier Transform (FFT) and classification using neural networks, we establish that hypoglycemia can be detected efficiently using EEG signals from only two channels. This paper demonstrates that by implementing a training process of combining genetic algorithm and Levenberg-Marquardt algorithm, the classification results are improved markedly up to 75% sensitivity and 60% specificity on a separate testing set. PMID:24110953
NASA Astrophysics Data System (ADS)
Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad
2016-01-01
In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.
Malik, Bilal H.; Jabbour, Joey M.; Maitland, Kristen C.
2015-01-01
Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard. PMID:25816131
A novel learning algorithm which improves the partial fault tolerance of multilayer neural networks.
Cavalieri, Salvatore; Mirabella, Orazio
1999-01-01
The paper deals with the problem of fault tolerance in a multilayer perceptron network. Although it already possesses a reasonable fault tolerance capability, it may be insufficient in particularly critical applications. Studies carried out by the authors have shown that the traditional backpropagation learning algorithm may entail the presence of a certain number of weights with a much higher absolute value than the others. Further studies have shown that faults in these weights is the main cause of deterioration in the performance of the neural network. In other words, the main cause of incorrect network functioning on the occurrence of a fault is the non-uniform distribution of absolute values of weights in each layer. The paper proposes a learning algorithm which updates the weights, distributing their absolute values as uniformly as possible in each layer. Tests performed on benchmark test sets have shown the considerable increase in fault tolerance obtainable with the proposed approach as compared with the traditional backpropagation algorithm and with some of the most efficient fault tolerance approaches to be found in literature. PMID:12662719
NASA Astrophysics Data System (ADS)
Karabiber, Fethullah; Vecchio, Pietro; Grassi, Giuseppe
2011-12-01
The Bio-inspired (Bi-i) Cellular Vision System is a computing platform consisting of sensing, array sensing-processing, and digital signal processing. The platform is based on the Cellular Neural/Nonlinear Network (CNN) paradigm. This article presents the implementation of a novel CNN-based segmentation algorithm onto the Bi-i system. Each part of the algorithm, along with the corresponding implementation on the hardware platform, is carefully described through the article. The experimental results, carried out for Foreman and Car-phone video sequences, highlight the feasibility of the approach, which provides a frame rate of about 26 frames/s. Comparisons with existing CNN-based methods show that the conceived approach is more accurate, thus representing a good trade-off between real-time requirements and accuracy.
Performance comparison of neural network training algorithms in modeling of bimodal drug delivery.
Ghaffari, A; Abdollahi, H; Khoshayand, M R; Bozchalooi, I Soltani; Dadgar, A; Rafiee-Tehrani, M
2006-12-11
The major aim of this study was to model the effect of two causal factors, i.e. coating weight gain and amount of pectin-chitosan in the coating solution on the in vitro release profile of theophylline for bimodal drug delivery. Artificial neural network (ANN) as a multilayer perceptron feedforward network was incorporated for developing a predictive model of the formulations. Five different training algorithms belonging to three classes: gradient descent, quasi-Newton (Levenberg-Marquardt, LM) and genetic algorithm (GA) were used to train ANN containing a single hidden layer of four nodes. The next objective of the current study was to compare the performance of aforementioned algorithms with regard to predicting ability. The ANNs were trained with those algorithms using the available experimental data as the training set. The divergence of the RMSE between the output and target values of test set was monitored and used as a criterion to stop training. Two versions of gradient descent backpropagation algorithms, i.e. incremental backpropagation (IBP) and batch backpropagation (BBP) outperformed the others. No significant differences were found between the predictive abilities of IBP and BBP, although, the convergence speed of BBP is three- to four-fold higher than IBP. Although, both gradient descent backpropagation and LM methodologies gave comparable results for the data modeling, training of ANNs with genetic algorithm was erratic. The precision of predictive ability was measured for each training algorithm and their performances were in the order of: IBP, BBP>LM>QP (quick propagation)>GA. According to BBP-ANN implementation, an increase in coating levels and a decrease in the amount of pectin-chitosan generally retarded the drug release. Moreover, the latter causal factor namely the amount of pectin-chitosan played slightly more dominant role in determination of the dissolution profiles. PMID:16959449
Optimal groundwater remediation using artificial neural networks and the genetic algorithm
Rogers, L.L.
1992-08-01
An innovative computational approach for the optimization of groundwater remediation is presented which uses artificial neural networks (ANNs) and the genetic algorithm (GA). In this approach, the ANN is trained to predict an aspect of the outcome of a flow and transport simulation. Then the GA searches through realizations or patterns of pumping and uses the trained network to predict the outcome of the realizations. This approach has advantages of parallel processing of the groundwater simulations and the ability to ``recycle`` or reuse the base of knowledge formed by these simulations. These advantages offer reduction of computational burden of the groundwater simulations relative to a more conventional approach which uses nonlinear programming (NLP) with a quasi-newtonian search. Also the modular nature of this approach facilitates substitution of different groundwater simulation models.
NASA Astrophysics Data System (ADS)
Sahoo, G. B.
2007-12-01
In recent years, artificial neural networks (ANNs) appear to be viable alternative to models that use phenomenological hypotheses (i.e. knowledge based models) for cases (1) the available data are not detailed and sufficient for using a process based model and (2) the detailed complex physics of the system is partially understood. ANNs have been widely used in many fields such as chemical and environmental engineering, hydrology, and water resources applications for optimum prediction of system parameters and variables. However, in most cases, parameters and system variables were forecasted employing suboptimal ANNs. The geometry and modeling parameters of an artificial neural network (ANN) and the training dataset have significant effects on its predictive performance efficiency. The combination of ANN modeling parameter and geometry arranged in the modeling domain (i.e. lower and upper bounds of each modeling parameter and geometry) is large enough (i.e. greater than 100000) that it is difficult to examine all cases using trial and error approach for the selection of an optimum set. Thus, one could easily end up with finding a set of suboptimal values. This study presents the use of genetic algorithms (GAs) to search for the optimal geometry and values of modeling parameters of a multilayer feedforward backpropagation neural network (BPNN) and a radial basis function network (RBFN). The predictive performance efficiency of the GA and ANN combination is examined using two datasets derived from the same population for training. It is illustrated that (1) the GA optimized ANN outperforms to the ANN using a trial and error approach, and (2) ANN predictive performance and geometry depend on the number of samples and the characteristics of samples included in the training dataset.
An Imperialist Competitive Algorithm Artificial Neural Network Method to Predict Runoff
NASA Astrophysics Data System (ADS)
Ashraf Vaghefi, S.; Mousavi, S. J.; Abbaspour, K. C.; Yang, H.
2012-04-01
Modeling of rainfall-runoff relationship is important in view of many uses of water resources. Artificial Neural Networks (ANNs) are able to extract the relation between the rainfall and runoff without addressing the physics behind the process. Using back propagation (BP) method to train weights of ANNs may lead to problems in predicting low flows. This paper provides a procedure for application of artificial neural networks trained by Imperialist Competitive Algorithm (ICA) to flow forecasting in Karkheh watershed in southwest of Iran. The monthly hydrometric and climatic data in ANN existed for the period of 1982 to 2002. The results of this study indicated that ANNs rainfall-runoff models trained by ICA predicted daily flow more accurately than those trained by BP. Coefficient of determination for predicted runoffs in training and validating phases in ICA method were 0.97 and 0.93, respectively, while 0.93 and 0.91 were obtained in BP method. The mean squared error of the networks (MSE) for both ICA and BP methods were measured for training and testing data. The accuracy of the model performance was acceptable in both methods, although ICA's results were slightly more accurate.
Application of neural networks and other machine learning algorithms to DNA sequence analysis
Lapedes, A.; Barnes, C.; Burks, C.; Farber, R.; Sirotkin, K.
1988-01-01
In this article we report initial, quantitative results on application of simple neutral networks, and simple machine learning methods, to two problems in DNA sequence analysis. The two problems we consider are: (1) determination of whether procaryotic and eucaryotic DNA sequences segments are translated to protein. An accuracy of 99.4% is reported for procaryotic DNA (E. coli) and 98.4% for eucaryotic DNA (H. Sapiens genes known to be expressed in liver); (2) determination of whether eucaryotic DNA sequence segments containing the dinucleotides ''AG'' or ''GT'' are transcribed to RNA splice junctions. Accuracy of 91.2% was achieved on intron/exon splice junctions (acceptor sites) and 92.8% on exon/intron splice junctions (donor sites). The solution of these two problems, by use of information processing algorithms operating on unannotated base sequences and without recourse to biological laboratory work, is relevant to the Human Genome Project. A variety of neural network, machine learning, and information theoretic algorithms are used. The accuracies obtained exceed those of previous investigations for which quantitative results are available in the literature. They result from an ongoing program of research that applies machine learning algorithms to the problem of determining biological function of DNA sequences. Some predictions of possible new genes using these methods are listed -- although a complete survey of the H. sapiens and E. coli sections of GenBank will be given elsewhere. 36 refs., 6 figs., 6 tabs.
NASA Astrophysics Data System (ADS)
Tang, Shihua; Li, Feida; Liu, Yintao; Lan, Lan; Zhou, Conglin; Huang, Qing
2015-12-01
With the advantage of high speed, big transport capacity, low energy consumption, good economic benefits and so on, high-speed railway is becoming more and more popular all over the world. It can reach 350 kilometers per hour, which requires high security performances. So research on the prediction of high-speed railway settlement that as one of the important factors affecting the safety of high-speed railway becomes particularly important. This paper takes advantage of genetic algorithms to seek all the data in order to calculate the best result and combines the advantage of strong learning ability and high accuracy of wavelet neural network, then build the model of genetic wavelet neural network for the prediction of high-speed railway settlement. By the experiment of back propagation neural network, wavelet neural network and genetic wavelet neural network, it shows that the absolute value of residual errors in the prediction of high-speed railway settlement based on genetic algorithm is the smallest, which proves that genetic wavelet neural network is better than the other two methods. The correlation coefficient of predicted and observed value is 99.9%. Furthermore, the maximum absolute value of residual error, minimum absolute value of residual error-mean value of relative error and value of root mean squared error(RMSE) that predicted by genetic wavelet neural network are all smaller than the other two methods'. The genetic wavelet neural network in the prediction of high-speed railway settlement is more stable in terms of stability and more accurate in the perspective of accuracy.
A new adaptive merging and growing algorithm for designing artificial neural networks.
Islam, Md Monirul; Sattar, Md Abdus; Amin, Md Faijul; Yao, Xin; Murase, Kazuyuki
2009-06-01
This paper presents a new algorithm, called adaptive merging and growing algorithm (AMGA), in designing artificial neural networks (ANNs). This algorithm merges and adds hidden neurons during the training process of ANNs. The merge operation introduced in AMGA is a kind of a mixed mode operation, which is equivalent to pruning two neurons and adding one neuron. Unlike most previous studies, AMGA puts emphasis on autonomous functioning in the design process of ANNs. This is the main reason why AMGA uses an adaptive not a predefined fixed strategy in designing ANNs. The adaptive strategy merges or adds hidden neurons based on the learning ability of hidden neurons or the training progress of ANNs. In order to reduce the amount of retraining after modifying ANN architectures, AMGA prunes hidden neurons by merging correlated hidden neurons and adds hidden neurons by splitting existing hidden neurons. The proposed AMGA has been tested on a number of benchmark problems in machine learning and ANNs, including breast cancer, Australian credit card assessment, and diabetes, gene, glass, heart, iris, and thyroid problems. The experimental results show that AMGA can design compact ANN architectures with good generalization ability compared to other algorithms. PMID:19203888
NASA Astrophysics Data System (ADS)
Srivatsan, V.; Balasubramaniam, Krishnan; Nair, N. V.
2003-03-01
Damages like cracks, delaminations, etc., in composite parts have traditionally been evaluated using manual methods like acoustic impact (using measurements in the audio frequencies). This technique is currently used during manufacturing for product quality testing and later for maintenance and assurance of structural integrity. The automation of this technique will significantly improve the reliability of inspection. The signals obtained from the composites are analyzed using signal-processing techniques in the time-frequency domain to build a robust algorithm for detection and identification of defects. A feature vector is constructed using these techniques and then applied to a neural network for defect identification. Comparative studies are conducted to search for the best and most comprehensive feature vector. Results using different signal processing techniques are presented. Similarly comparative results are presented between two different kinds of neural networks (namely Radial Basis functions and MLP) and various architectures in each kind. A low cost data acquisition system has also been developed for acquiring audio signals using the sound card and the microphone in a multi-media PC.
Program Helps Simulate Neural Networks
NASA Technical Reports Server (NTRS)
Villarreal, James; Mcintire, Gary
1993-01-01
Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.
Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour
2012-09-01
In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance. PMID:22738782
Cold header machine process monitoring using a genetic algorithm designed neural network approach
NASA Astrophysics Data System (ADS)
dos Reis, Henrique L. M.; Voegele, Aaron C.; Cook, David B.
1999-12-01
In cold heading manufacturing processes, complete or partial fracture of the punch-pin leads to production of out-of-tolerance parts. A process monitoring system has been developed to assure that out-of-tolerance parts do not contaminate the batch of acceptable parts. A four-channel data acquisition system was assembled to collect and store the acoustic signal generated during the manufacturing process. A genetic algorithm was designed to select the smallest subset of waveform features necessary to develop a robust artificial neural network that could differentiate among the various cold head machine conditions, including complete or partial failure of the punch pin. The developed monitoring system is able to terminate production within seconds of punch pin failure using only four waveform features.
NASA Astrophysics Data System (ADS)
Dwivedi, Suneet; Pandey, Avinash C.
2011-08-01
The correct and timely forecast of the Indian summer monsoon Intraseasonal Oscillations (ISOs) is very important. It has great impact on the agriculture and economy of the Indian subcontinent region. The applicability of Genetic Algorithm (GA) is demonstrated for nonlinear curve fitting of the inherently chaotic and noisy Lorenz time series and the ISO data. A robust method is developed for the very long-range prediction of the ISO using a feed-forward time delay backpropagation Artificial Neural Network (ANN). Using an iterative one-step-ahead prediction strategy, five years (120 pentads) of advanced prediction is made for the ISO data with good forecast skill. It is shown that a hybrid GA-ANN model may be used as an early forecast model followed by ANN only model as a more reliable model.
Calibration of neural networks using genetic algorithms, with application to optimal path planning
NASA Technical Reports Server (NTRS)
Smith, Terence R.; Pitney, Gilbert A.; Greenwood, Daniel
1987-01-01
Genetic algorithms (GA) are used to search the synaptic weight space of artificial neural systems (ANS) for weight vectors that optimize some network performance function. GAs do not suffer from some of the architectural constraints involved with other techniques and it is straightforward to incorporate terms into the performance function concerning the metastructure of the ANS. Hence GAs offer a remarkably general approach to calibrating ANS. GAs are applied to the problem of calibrating an ANS that finds optimal paths over a given surface. This problem involves training an ANS on a relatively small set of paths and then examining whether the calibrated ANS is able to find good paths between arbitrary start and end points on the surface.
NASA Astrophysics Data System (ADS)
Quintanilla-Domínguez, Joel; Ojeda-Magaña, Benjamín; Marcano-Cedeño, Alexis; Cortina-Januchs, María G.; Vega-Corona, Antonio; Andina, Diego
2011-12-01
A new method for detecting microcalcifications in regions of interest (ROIs) extracted from digitized mammograms is proposed. The top-hat transform is a technique based on mathematical morphology operations and, in this paper, is used to perform contrast enhancement of the mi-crocalcifications. To improve microcalcification detection, a novel image sub-segmentation approach based on the possibilistic fuzzy c-means algorithm is used. From the original ROIs, window-based features, such as the mean and standard deviation, were extracted; these features were used as an input vector in a classifier. The classifier is based on an artificial neural network to identify patterns belonging to microcalcifications and healthy tissue. Our results show that the proposed method is a good alternative for automatically detecting microcalcifications, because this stage is an important part of early breast cancer detection.
Architecture for High Speed Learning of Neural Network using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Yoshikawa, Masaya; Terai, Hidekazu
This paper discusses the architecture for high speed learning of Neural Network (NN) using Genetic Algorithm (GA). The proposed architecture prevents local minimum by using the GA characteristic of holding several individual populations for a population-based search and achieves high speed processing adopting dedicated hardware. To keep general purpose equal software processing, the proposed architecture can be flexible genetic operations on GA and is introduced both Sigmoid function and Heaviside function on NN. Furthermore, the proposed architecture is not optimized only the pipeline at evaluation phase on NN, but also optimized hierarchic pipelines on the whole at evolutionary phase. We have done the simulation, verification and logic synthesis using library of 0.35μm CMOS standard cell. Simulation results evaluating the proposed architecture show to achieve 22 times speed on average compared with software processing.
A Modified Hopfield Neural Network Algorithm (MHNNA) Using ALOS Image for Water Quality Mapping
Kzar, Ahmed Asal; Mat Jafri, Mohd Zubir; Mutter, Kussay N.; Syahreza, Saumi
2015-01-01
Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA) was used with remote sensing imagery to classify the total suspended solids (TSS) concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS) image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS). The TSS concentration measurements were conducted in a lab and used for validation (real data), classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R) and root mean square error (RMSE) were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977) and lower RMSE (2.887). In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis). Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the adopted
A Modified Hopfield Neural Network Algorithm (MHNNA) Using ALOS Image for Water Quality Mapping.
Kzar, Ahmed Asal; Mat Jafri, Mohd Zubir; Mutter, Kussay N; Syahreza, Saumi
2016-01-01
Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA) was used with remote sensing imagery to classify the total suspended solids (TSS) concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS) image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS). The TSS concentration measurements were conducted in a lab and used for validation (real data), classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R) and root mean square error (RMSE) were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977) and lower RMSE (2.887). In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis). Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the adopted
NASA Astrophysics Data System (ADS)
Zhang, Liqiang; Li, Luoxing; Wang, Shiuping; Zhu, Biwu
2012-04-01
In this article, the low-pressure die-cast (LPDC) process parameters of aluminum alloy thin-walled component with permanent mold are optimized using a combining artificial neural network and genetic algorithm (ANN/GA) method. In this method, an ANN model combining learning vector quantization (LVQ) and back-propagation (BP) algorithm is proposed to map the complex relationship between process conditions and quality indexes of LPDC. The genetic algorithm is employed to optimize the process parameters with the fitness function based on the trained ANN model. Then, by applying the optimized parameters, a thin-walled component with 300 mm in length, 100 mm in width, and 1.5 mm in thickness is successfully prepared and no obvious defects such as shrinkage, gas porosity, distortion, and crack were found in the component. The results indicate that the combining ANN/GA method is an effective tool for the process optimization of LPDC, and they also provide valuable reference on choosing the right process parameters for LPDC thin-walled aluminum alloy casting.
Using neural networks and Dyna algorithm for integrated planning, reacting and learning in systems
NASA Technical Reports Server (NTRS)
Lima, Pedro; Beard, Randal
1992-01-01
The traditional AI answer to the decision making problem for a robot is planning. However, planning is usually CPU-time consuming, depending on the availability and accuracy of a world model. The Dyna system generally described in earlier work, uses trial and error to learn a world model which is simultaneously used to plan reactions resulting in optimal action sequences. It is an attempt to integrate planning, reactive, and learning systems. The architecture of Dyna is presented. The different blocks are described. There are three main components of the system. The first is the world model used by the robot for internal world representation. The input of the world model is the current state and the action taken in the current state. The output is the corresponding reward and resulting state. The second module in the system is the policy. The policy observes the current state and outputs the action to be executed by the robot. At the beginning of program execution, the policy is stochastic and through learning progressively becomes deterministic. The policy decides upon an action according to the output of an evaluation function, which is the third module of the system. The evaluation function takes the following as input: the current state of the system, the action taken in that state, the resulting state, and a reward generated by the world which is proportional to the current distance from the goal state. Originally, the work proposed was as follows: (1) to implement a simple 2-D world where a 'robot' is navigating around obstacles, to learn the path to a goal, by using lookup tables; (2) to substitute the world model and Q estimate function Q by neural networks; and (3) to apply the algorithm to a more complex world where the use of a neural network would be fully justified. In this paper, the system design and achieved results will be described. First we implement the world model with a neural network and leave Q implemented as a look up table. Next, we use a
NASA Technical Reports Server (NTRS)
Lary, David J.; Mussa, Yussuf
2004-01-01
In this study a new extended Kalman filter (EKF) learning algorithm for feed-forward neural networks (FFN) is used. With the EKF approach, the training of the FFN can be seen as state estimation for a non-linear stationary process. The EKF method gives excellent convergence performances provided that there is enough computer core memory and that the machine precision is high. Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). The neural network was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9997. The neural network Fortran code used is available for download.
ERIC Educational Resources Information Center
Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.
2003-01-01
Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…
Using Hybrid Algorithm to Improve Intrusion Detection in Multi Layer Feed Forward Neural Networks
ERIC Educational Resources Information Center
Ray, Loye Lynn
2014-01-01
The need for detecting malicious behavior on a computer networks continued to be important to maintaining a safe and secure environment. The purpose of this study was to determine the relationship of multilayer feed forward neural network architecture to the ability of detecting abnormal behavior in networks. This involved building, training, and…
Xu, Lei; Jeavons, Peter
2015-11-01
Leader election in anonymous rings and complete networks is a very practical problem in distributed computing. Previous algorithms for this problem are generally designed for a classical message passing model where complex messages are exchanged. However, the need to send and receive complex messages makes such algorithms less practical for some real applications. We present some simple synchronous algorithms for distributed leader election in anonymous rings and complete networks that are inspired by the development of the neural system of the fruit fly. Our leader election algorithms all assume that only one-bit messages are broadcast by nodes in the network and processors are only able to distinguish between silence and the arrival of one or more messages. These restrictions allow implementations to use a simpler message-passing architecture. Even with these harsh restrictions our algorithms are shown to achieve good time and message complexity both analytically and experimentally. PMID:26173905
Optimal groundwater remediation using artificial neural networks and the genetic algorithm
Rogers, L.L.
1992-01-01
An innovative computational approach for the optimization of groundwater remediation is presented which uses artificial neural networks (ANNs) and the genetic algorithm (GA). In this approach, the ANN is trained to predict an aspect of the outcome of a flow and transport simulation. Then the trained network searches through realizations or patterns of pumping selected by the GA, predicting the outcome. This approach has advantages of parallel processing of the groundwater simulations and the ability to [open quotes]recycle[close quotes] or reuse the base of knowledge formed by these simulations. These advantages offer reduction of computational burden of the groundwater simulations relative to a more conventional approach which uses nonlinear programming (NLP) with a quasi-newtonian search. Also the modular nature of this approach facilitates substitution of different groundwater simulation models. The ANN technology, inspired by neurobiological theories of massive interconnection and parallelism, has been applied to a variety of optimization problems. In the ANN groundwater management approach presented here, the behavior of complex groundwater scenarios with spatially-variable transport parameters and multiple contaminant plumes are simulated with 2-D flow and transport codes. An ANN is trained upon a set of examples developed from groundwater simulations. The input of the ANN characterizes the different realizations of pumping. The output characterizes the objectives and constraints of the optimization, such as whether regulatory goals have been met, value of cost functions or cleanup time, and mass of contaminant removal. The supervised learning algorithm of backpropagation is used to train the network. The conjugate gradient method and weight-elimination procedures are used to speed convergence and improve performance, respectively. Then a search is made through possible pumping realizations to find optimal realizations.
Pile-up correction by Genetic Algorithm and Artificial Neural Network
NASA Astrophysics Data System (ADS)
Kafaee, M.; Saramad, S.
2009-08-01
Pile-up distortion is a common problem for high counting rates radiation spectroscopy in many fields such as industrial, nuclear and medical applications. It is possible to reduce pulse pile-up using hardware-based pile-up rejections. However, this phenomenon may not be eliminated completely by this approach and the spectrum distortion caused by pile-up rejection can be increased as well. In addition, inaccurate correction or rejection of pile-up artifacts in applications such as energy dispersive X-ray (EDX) spectrometers can lead to losses of counts, will give poor quantitative results and even false element identification. Therefore, it is highly desirable to use software-based models to predict and correct any recognized pile-up signals in data acquisition systems. The present paper describes two new intelligent approaches for pile-up correction; the Genetic Algorithm (GA) and Artificial Neural Networks (ANNs). The validation and testing results of these new methods have been compared, which shows excellent agreement with the measured data with 60Co source and NaI detector. The Monte Carlo simulation of these new intelligent algorithms also shows their advantages over hardware-based pulse pile-up rejection methods.
Johnson, V.M.; Rogers, L.L.
1994-09-01
A goal common to both the environmental and petroleum industries is the reduction of costs and/or enhancement of profits by the optimal placement of extraction/production and injection wells. Formal optimization techniques facilitate this goal by searching among the potentially infinite number of possible well patterns for ones that best meet engineering and economic objectives. However, if a flow and transport model or reservoir simulator is being used to evaluate the effectiveness of each network of wells, the computational resources required to apply most optimization techniques to real field problems become prohibitively expensive. This paper describes a new approach to field-scale, nonlinear optimization of well patterns that is intended to make such searches tractable on conventional computer equipment. Artificial neural networks (ANNs) are trained to predict selected information that would normally be calculated by the simulator. The ANNs are then embedded in a variant of the genetic algorithm (GA), which drives the search for increasingly effective well patterns and uses the ANNs, rather than the original simulator, to evaluate the effectiveness of each pattern. Once the search is complete, the ANNs are reused in sensitivity studies to give additional information on the performance of individual or clusters of wells.
Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang
2015-01-01
To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data. PMID:25807466
NASA Astrophysics Data System (ADS)
Asal Kzar, Ahmed; Mat Jafri, M. Z.; Hwee San, Lim; Al-Zuky, Ali A.; Mutter, Kussay N.; Hassan Al-Saleh, Anwar
2016-06-01
There are many techniques that have been given for water quality problem, but the remote sensing techniques have proven their success, especially when the artificial neural networks are used as mathematical models with these techniques. Hopfield neural network is one type of artificial neural networks which is common, fast, simple, and efficient, but it when it deals with images that have more than two colours such as remote sensing images. This work has attempted to solve this problem via modifying the network that deals with colour remote sensing images for water quality mapping. A Feed-forward Hopfield Neural Network Algorithm (FHNNA) was modified and used with a satellite colour image from type of Thailand earth observation system (THEOS) for TSS mapping in the Penang strait, Malaysia, through the classification of TSS concentrations. The new algorithm is based essentially on three modifications: using HNN as feed-forward network, considering the weights of bitplanes, and non-self-architecture or zero diagonal of weight matrix, in addition, it depends on a validation data. The achieved map was colour-coded for visual interpretation. The efficiency of the new algorithm has found out by the higher correlation coefficient (R=0.979) and the lower root mean square error (RMSE=4.301) between the validation data that were divided into two groups. One used for the algorithm and the other used for validating the results. The comparison was with the minimum distance classifier. Therefore, TSS mapping of polluted water in Penang strait, Malaysia, can be performed using FHNNA with remote sensing technique (THEOS). It is a new and useful application of HNN, so it is a new model with remote sensing techniques for water quality mapping which is considered important environmental problem.
2014-01-01
Background Extracting relevant information from microarray data is a very complex task due to the characteristics of the data sets, as they comprise a large number of features while few samples are generally available. In this sense, feature selection is a very important aspect of the analysis helping in the tasks of identifying relevant genes and also for maximizing predictive information. Methods Due to its simplicity and speed, Stepwise Forward Selection (SFS) is a widely used feature selection technique. In this work, we carry a comparative study of SFS and Genetic Algorithms (GA) as general frameworks for the analysis of microarray data with the aim of identifying group of genes with high predictive capability and biological relevance. Six standard and machine learning-based techniques (Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), Naive Bayes (NB), C-MANTEC Constructive Neural Network, K-Nearest Neighbors (kNN) and Multilayer perceptron (MLP)) are used within both frameworks using six free-public datasets for the task of predicting cancer outcome. Results Better cancer outcome prediction results were obtained using the GA framework noting that this approach, in comparison to the SFS one, leads to a larger selection set, uses a large number of comparison between genetic profiles and thus it is computationally more intensive. Also the GA framework permitted to obtain a set of genes that can be considered to be more biologically relevant. Regarding the different classifiers used standard feedforward neural networks (MLP), LDA and SVM lead to similar and best results, while C-MANTEC and k-NN followed closely but with a lower accuracy. Further, C-MANTEC, MLP and LDA permitted to obtain a more limited set of genes in comparison to SVM, NB and kNN, and in particular C-MANTEC resulted in the most robust classifier in terms of changes in the parameter settings. Conclusions This study shows that if prediction accuracy is the objective, the GA
Hunting for seamounts using neural networks: learning algorithms for geomorphic studies
NASA Astrophysics Data System (ADS)
Valentine, A. P.; Kalnins, L. M.; Trampert, J.
2012-04-01
Many geophysical studies rely on finding and analysing particular topographic features: the various landforms associated with glaciation, for example, or those that characterise regional tectonics. Typically, these can readily be identified from visual inspection of datasets, but this is a tedious and time-consuming process. However, the development of techniques to perform this assessment automatically is often difficult, since a mathematical description of the feature of interest is required. To identify characteristics of a feature, such as its spatial extent, each characteristic must also have a mathematical description. Where features exhibit significant natural variations, or where their signature in data is marred by noise, performance of conventional algorithms may be poor. One potential avenue lies in the use of neural networks, or other learning algorithms, ideal for complex pattern recognition tasks. Rather than formulating a description of the feature, the user simply provides the algorithm with a training set of hand-classified examples: the problem then becomes one of assessing whether some new example shares the characteristics of this training data. In seismology, this approach is being developed for the identification of high-quality seismic waveforms amidst noisy datasets (e.g. Valentine & Woodhouse, 2010; Valentine & Trampert, in review): can it also be applied to topographic data? To explore this, we attempt to identify the locations of seamounts from gridded bathymetric data (e.g. Smith & Sandwell, 1997). Our approach involves assessing small 'patches' of ocean floor to determine whether they might plausibly contain a seamount, and if so, its location. Since seamounts have been extensively studied, this problem provides an ideal testing ground: in particular, various catalogues exist, compiled using 'traditional' approaches (e.g. Kim & Wessel, 2011). This allows us to straightforwardly generate training datasets, and compare algorithmic
A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation
Tahmasebi, Pejman; Hezarkhani, Ardeshir
2012-01-01
The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called “Coactive Neuro-Fuzzy Inference System” (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) – as a well-known technique to solve the complex optimization problems – is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS–GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS–GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems. PMID:25540468
A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation
NASA Astrophysics Data System (ADS)
Tahmasebi, Pejman; Hezarkhani, Ardeshir
2012-05-01
The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.
García-Pedrajas, Nicolás; Ortiz-Boyer, Domingo; Hervás-Martínez, César
2006-05-01
In this work we present a new approach to crossover operator in the genetic evolution of neural networks. The most widely used evolutionary computation paradigm for neural network evolution is evolutionary programming. This paradigm is usually preferred due to the problems caused by the application of crossover to neural network evolution. However, crossover is the most innovative operator within the field of evolutionary computation. One of the most notorious problems with the application of crossover to neural networks is known as the permutation problem. This problem occurs due to the fact that the same network can be represented in a genetic coding by many different codifications. Our approach modifies the standard crossover operator taking into account the special features of the individuals to be mated. We present a new model for mating individuals that considers the structure of the hidden layer and redefines the crossover operator. As each hidden node represents a non-linear projection of the input variables, we approach the crossover as a problem on combinatorial optimization. We can formulate the problem as the extraction of a subset of near-optimal projections to create the hidden layer of the new network. This new approach is compared to a classical crossover in 25 real-world problems with an excellent performance. Moreover, the networks obtained are much smaller than those obtained with classical crossover operator. PMID:16343847
Zhang, Yan-jun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong
2015-10-01
According to the high precision extracting characteristics of scattering spectrum in Brillouin optical time domain reflection optical fiber sensing system, this paper proposes a new algorithm based on flies optimization algorithm with adaptive mutation and generalized regression neural network. The method takes advantages of the generalized regression neural network which has the ability of the approximation ability, learning speed and generalization of the model. Moreover, by using the strong search ability of flies optimization algorithm with adaptive mutation, it can enhance the learning ability of the neural network. Thus the fitting degree of Brillouin scattering spectrum and the extraction accuracy of frequency shift is improved. Model of actual Brillouin spectrum are constructed by Gaussian white noise on theoretical spectrum, whose center frequency is 11.213 GHz and the linewidths are 40-50, 30-60 and 20-70 MHz, respectively. Comparing the algorithm with the Levenberg-Marquardt fitting method based on finite element analysis, hybrid algorithm particle swarm optimization, Levenberg-Marquardt and the least square method, the maximum frequency shift error of the new algorithm is 0.4 MHz, the fitting degree is 0.991 2 and the root mean square error is 0.024 1. The simulation results show that the proposed algorithm has good fitting degree and minimum absolute error. Therefore, the algorithm can be used on distributed optical fiber sensing system based on Brillouin optical time domain reflection, which can improve the fitting of Brillouin scattering spectrum and the precision of frequency shift extraction effectively. PMID:26904844
Moghri, Mehdi; Omidi, Mostafa; Farahnakian, Masoud
2014-01-01
During the past decade, polymer nanocomposites attracted considerable investment in research and development worldwide. One of the key factors that affect the quality of polymer nanocomposite products in machining is surface roughness. To obtain high quality products and reduce machining costs it is very important to determine the optimal machining conditions so as to achieve enhanced machining performance. The objective of this paper is to develop a predictive model using a combined design of experiments and artificial intelligence approach for optimization of surface roughness in milling of polyamide-6 (PA-6) nanocomposites. A surface roughness predictive model was developed in terms of milling parameters (spindle speed and feed rate) and nanoclay (NC) content using artificial neural network (ANN). As the present study deals with relatively small number of data obtained from full factorial design, application of genetic algorithm (GA) for ANN training is thought to be an appropriate approach for the purpose of developing accurate and robust ANN model. In the optimization phase, a GA is considered in conjunction with the explicit nonlinear function derived from the ANN to determine the optimal milling parameters for minimization of surface roughness for each PA-6 nanocomposite. PMID:24578636
Production of Engineered Fabrics Using Artificial Neural Network-Genetic Algorithm Hybrid Model
NASA Astrophysics Data System (ADS)
Mitra, Ashis; Majumdar, Prabal Kumar; Banerjee, Debamalya
2015-10-01
The process of fabric engineering which is generally practised in most of the textile mills is very complicated, repetitive, tedious and time consuming. To eliminate this trial and error approach, a new approach of fabric engineering has been attempted in this work. Data sets of construction parameters [comprising of ends per inch, picks per inch, warp count and weft count] and three fabric properties (namely drape coefficient, air permeability and thermal resistance) of 25 handloom cotton fabrics have been used. The weights and biases of three artificial neural network (ANN) models developed for the prediction of drape coefficient, air permeability and thermal resistance were used to formulate the fitness or objective function and constraints of the optimization problem. The optimization problem was solved using genetic algorithm (GA). In both the fabrics which were attempted for engineering, the target and simulated fabric properties were very close. The GA was able to search the optimum set of fabric construction parameters with reasonably good accuracy except in case of EPI. However, the overall result is encouraging and can be improved further by using larger data sets of handloom fabrics by hybrid ANN-GA model.
Neural network-based inversion algorithms in magnetic flux leakage nondestructive evaluation
NASA Astrophysics Data System (ADS)
Ramuhalli, Pradeep; Udpa, Lalita; Udpa, Satish S.
2003-05-01
Magnetic flux leakage (MFL) methods are commonly used in the nondestructive evaluation (NDE) of ferromagnetic materials. An important problem in MFL NDE is the determination of flaw parameters such as the flaw length, depth, and shape (profile) from the measured values of the flux density B. Commonly used methods use a forward model in a loop to determine B for a given set of flaw parameters. This approach iteratively adjusts the flaw parameters to minimize the error between the measured and predicted values of B. This article proposes the use of neural networks as forward models. The proposed approach uses two neural networks in feedback configuration—a forward network and an inverse network. The second network is used to predict the profile given the measured value of B, and acts to constrain the solution space. Results of applying these methods to MFL data obtained from a two-dimensional finite-element model, with rectangular flaws of various dimensions, are presented.
Neural network temperature and moisture retrieval algorithm validation for AIRS/AMSU and CrIS/ATMS
NASA Astrophysics Data System (ADS)
Milstein, Adam B.; Blackwell, William J.
2016-02-01
We present comprehensive validation results for the recently introduced neural network technique for retrieving vertical profiles of atmospheric temperature and water vapor from spaceborne microwave and hyperspectral infrared sounding instruments. This technique is currently in operational use as the first guess for the NASA Atmospheric Infrared Sounder (AIRS) Science Team Version 6 retrieval algorithm. The validation incorporates a variety of data sources, independent from the algorithm training set, as ground truth, including global numerical weather analyses generated by the European Center for Medium-Range Weather Forecasts, synoptic radiosonde measurements, and radiosondes dedicated for validation. The results demonstrate significant performance improvements over the previous AIRS/advanced microwave sounding unit (AMSU) operational sounding retrievals in both retrieval error and also show comparable vertical resolution. We also present initial neural network retrieval results using measurements from the Cross-Track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) currently flying on the Suomi National Polar-orbiting Partnership satellite.
Yoo, Sung-Hoon; Oh, Sung-Kwun; Pedrycz, Witold
2015-09-01
In this study, we propose a hybrid method of face recognition by using face region information extracted from the detected face region. In the preprocessing part, we develop a hybrid approach based on the Active Shape Model (ASM) and the Principal Component Analysis (PCA) algorithm. At this step, we use a CCD (Charge Coupled Device) camera to acquire a facial image by using AdaBoost and then Histogram Equalization (HE) is employed to improve the quality of the image. ASM extracts the face contour and image shape to produce a personal profile. Then we use a PCA method to reduce dimensionality of face images. In the recognition part, we consider the improved Radial Basis Function Neural Networks (RBF NNs) to identify a unique pattern associated with each person. The proposed RBF NN architecture consists of three functional modules realizing the condition phase, the conclusion phase, and the inference phase completed with the help of fuzzy rules coming in the standard 'if-then' format. In the formation of the condition part of the fuzzy rules, the input space is partitioned with the use of Fuzzy C-Means (FCM) clustering. In the conclusion part of the fuzzy rules, the connections (weights) of the RBF NNs are represented by four kinds of polynomials such as constant, linear, quadratic, and reduced quadratic. The values of the coefficients are determined by running a gradient descent method. The output of the RBF NNs model is obtained by running a fuzzy inference method. The essential design parameters of the network (including learning rate, momentum coefficient and fuzzification coefficient used by the FCM) are optimized by means of Differential Evolution (DE). The proposed P-RBF NNs (Polynomial based RBF NNs) are applied to facial recognition and its performance is quantified from the viewpoint of the output performance and recognition rate. PMID:26163042
NASA Astrophysics Data System (ADS)
Wu, Zhishen; Xu, Bin
2003-07-01
A structural parametric identification strategy based on neural networks algorithms using dynamic macro-strain measurements in time domain from a long-gage strain sensor by fiber optic sensing technique such as Fiber Bragg Grating (FBG) sensor is developed. An array of long-gage sensors is bounded on the structure to measure reliably and accurately macro-strains. By the proposed methodology, the structural parameter of stiffness can be identified. A beam model with known mass distribution is considered as an object structure. Without any eigenvalue analysis or optimization computation, the structural parameter of stiffness can be identified. First an emulator neural network is presented to identify the beam structure in current state. Free vibration macro-strain responses of the beam structure are used to train the emulator neural network. The trained emulator neural network can be used to forecast the free vibration macro-strain response of the beam structure with enough precision and decide the difference between the free vibration macro-strain responses of other assumed structure with different structural parameters and those of the original beam structure. The root mean square (RMS) error vector is presented to evaluate the difference. Subsequently, corresponding to each assumed structure with different structural parameters, the RMS error vector can be calculated. By using the training data set composed of the structural parameters and RMS error vector, a parametric evaluation neural network is trained. A beam structure is considered as an existing structure, based on the trained parametric evaluation neural network, the stiffness of the beam structure can be forecast. It is shown that the parametric identification strategy using macro-strain measurement from long-gage sensors has the potential of being a practical tool for a health monitoring methodology applied to civil engineering structures.
Howell, J.A.; Whiteson, R.
1992-08-01
Detection of anomalies in nuclear safeguards and computer security systems is a tedious and time-consuming task. It typically requires the examination of large amounts of data for unusual patterns of activity. Neural networks provide a flexible pattern-recognition capability that can easily be adapted for these purposes. In this paper, we discuss architectures for accomplishing this task.
Howell, J.A.; Whiteson, R.
1992-01-01
Detection of anomalies in nuclear safeguards and computer security systems is a tedious and time-consuming task. It typically requires the examination of large amounts of data for unusual patterns of activity. Neural networks provide a flexible pattern-recognition capability that can easily be adapted for these purposes. In this paper, we discuss architectures for accomplishing this task.
ERIC Educational Resources Information Center
Chen, Hsinchun
1995-01-01
Presents an overview of artificial-intelligence-based inductive learning techniques and their use in information science research. Three methods are discussed: the connectionist Hopfield network; the symbolic ID3/ID5R; evolution-based genetic algorithms. The knowledge representations and algorithms of these methods are examined in the context of…
NASA Technical Reports Server (NTRS)
Baram, Yoram
1992-01-01
Report presents analysis of nested neural networks, consisting of interconnected subnetworks. Analysis based on simplified mathematical models more appropriate for artificial electronic neural networks, partly applicable to biological neural networks. Nested structure allows for retrieval of individual subpatterns. Requires fewer wires and connection devices than fully connected networks, and allows for local reconstruction of damaged subnetworks without rewiring entire network.
A flexible and robust neural network IASI-NH3 retrieval algorithm
NASA Astrophysics Data System (ADS)
Whitburn, S.; Van Damme, M.; Clarisse, L.; Bauduin, S.; Heald, C. L.; Hadji-Lazaro, J.; Hurtmans, D.; Zondlo, M. A.; Clerbaux, C.; Coheur, P.-F.
2016-06-01
In this paper, we describe a new flexible and robust NH3 retrieval algorithm from measurements of the Infrared Atmospheric Sounding Interferometer (IASI). The method is based on the calculation of a spectral hyperspectral range index (HRI) and subsequent conversion to NH3 columns via a neural network. It is an extension of the method presented in Van Damme et al. (2014a) who used lookup tables (LUT) for the radiance-concentration conversion. The new method inherits the advantages of the LUT-based method while providing several significant improvements. These include the following: (1) Complete temperature and humidity vertical profiles can be accounted for. (2) Third-party NH3 vertical profile information can be used. (3) Reported positive biases of LUT retrieval are reduced, and finally (4) a full measurement uncertainty characterization is provided. A running theme in this study, related to item (2), is the importance of the assumed vertical NH3 profile. We demonstrate the advantages of allowing variable profile shapes in the retrieval. As an example, we analyze how the retrievals change when all NH3 is assumed to be confined to the boundary layer. We analyze different averaging procedures in use for NH3 in the literature, introduced to cope with the variable measurement sensitivity and derive global averaged distributions for the year 2013. A comparison with a GEOS-Chem modeled global distribution is also presented, showing a general good correspondence (within ±3 × 1015 molecules.cm-2) over most of the Northern Hemisphere. However, IASI finds mean columns about 1-1.5 × 1016 molecules.cm-2 (˜50-60%) lower than GEOS-Chem for India and the North China plain.
Fuzzy-Kohonen-clustering neural network trained by genetic algorithm and fuzzy competition learning
NASA Astrophysics Data System (ADS)
Xie, Weixing; Li, Wenhua; Gao, Xinbo
1995-08-01
Kohonen networks are well known for clustering analysis. Classical Kohonen networks for hard c-means clustering (trained by winner-take-all learning) have some severe drawbacks. Fuzzy Kohonen networks (FKCNN) for fuzzy c-means clustering are trained by fuzzy competition learning, and can get better clustering results than the classical Kohonen networks. However, both winner-take-all and fuzzy competition learning algorithms are in essence local search techniques that search for the optimum by using a hill-climbing technique. Thus, they often fail in the search for the global optimum. In this paper we combine genetic algorithms (GAs) with fuzzy competition learning to train the FKCNN. Our experimental results show that the proposed GA/FC learning algorithm has much higher probabilities of finding the global optimal solutions than either the winner-take-all or the fuzzy competition learning.
Neural Networks and Micromechanics
NASA Astrophysics Data System (ADS)
Kussul, Ernst; Baidyk, Tatiana; Wunsch, Donald C.
The title of the book, "Neural Networks and Micromechanics," seems artificial. However, the scientific and technological developments in recent decades demonstrate a very close connection between the two different areas of neural networks and micromechanics. The purpose of this book is to demonstrate this connection. Some artificial intelligence (AI) methods, including neural networks, could be used to improve automation system performance in manufacturing processes. However, the implementation of these AI methods within industry is rather slow because of the high cost of conducting experiments using conventional manufacturing and AI systems. To lower the cost, we have developed special micromechanical equipment that is similar to conventional mechanical equipment but of much smaller size and therefore of lower cost. This equipment could be used to evaluate different AI methods in an easy and inexpensive way. The proved methods could be transferred to industry through appropriate scaling. In this book, we describe the prototypes of low cost microequipment for manufacturing processes and the implementation of some AI methods to increase precision, such as computer vision systems based on neural networks for microdevice assembly and genetic algorithms for microequipment characterization and the increase of microequipment precision.
Edupuganti, Sirisha; Sathish, Thadikamala
2014-01-01
Alpha-galactosidase production in submerged fermentation by Acinetobacter sp. was optimized using feed forward neural networks and genetic algorithm (FFNN-GA). Six different parameters, pH, temperature, agitation speed, carbon source (raffinose), nitrogen source (tryptone), and K2HPO4, were chosen and used to construct 6-10-1 topology of feed forward neural network to study interactions between fermentation parameters and enzyme yield. The predicted values were further optimized by genetic algorithm (GA). The predictability of neural networks was further analysed by using mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and R2-value for training and testing data. Using hybrid neural networks and genetic algorithm, alpha-galactosidase production was improved from 7.5 U/mL to 10.2 U/mL. PMID:25254205
Deinterlacing using modular neural network
NASA Astrophysics Data System (ADS)
Woo, Dong H.; Eom, Il K.; Kim, Yoo S.
2004-05-01
Deinterlacing is the conversion process from the interlaced scan to progressive one. While many previous algorithms that are based on weighted-sum cause blurring in edge region, deinterlacing using neural network can reduce the blurring through recovering of high frequency component by learning process, and is found robust to noise. In proposed algorithm, input image is divided into edge and smooth region, and then, to each region, one neural network is assigned. Through this process, each neural network learns only patterns that are similar, therefore it makes learning more effective and estimation more accurate. But even within each region, there are various patterns such as long edge and texture in edge region. To solve this problem, modular neural network is proposed. In proposed modular neural network, two modules are combined in output node. One is for low frequency feature of local area of input image, and the other is for high frequency feature. With this structure, each modular neural network can learn different patterns with compensating for drawback of counterpart. Therefore it can adapt to various patterns within each region effectively. In simulation, the proposed algorithm shows better performance compared with conventional deinterlacing methods and single neural network method.
NASA Astrophysics Data System (ADS)
Ganapol, B. D.; Furfaro, R.; Johnson, L. F.; Herwitz, S. R.
2003-12-01
Over the past two years, NASA has had great interest in exploring the economic potential of deploying UAVs (Unmanned Aerial Vehicles) as long-duration platforms equipped with high resolution imaging systems for commercial agricultural applications. In October 2002, a team in the Ecosystem Science and Technology Branch at NASA/Ames Research Center prepared and successfully flew a UAV, equipped with off-the-shelf camera systems, over coffee plantations at Kauai (Hawaii). The idea is to help growers to find the best possible harvesting strategy. The most important information that needs to be conveyed to the growers is the percentage of ripe, unripe and overripe cherries in the field. It is of vital importance to devise a robust and reliable "intelligent "algorithm capable of predicting the amount of ripe cherries present in any digital image coming from the onboard cameras. During the campaign, the two UAV camera systems produced digital images that contain information about the down-looking plantation field. These images need to be processed to extract information concerning the percentage of ripe (yellow) cherries. To date, no robust automated algorithm has been developed to perform this task. Currently, every image is viewed by human eyes on a case by case basis. We propose a neural network algorithm that can automate the process in an intelligent way. Biologically inspired Neural Networks are made of elements called "neurons" that can simulate the brain activity during a learning process. The idea is to design an appropriate neural network that learns the relation between the reflectance coming from an image and the percentage of cherries present in a coffee field. We envision a situation in which reflectance from digital images at different wavebands is processed by a trained neural network and the percentage of the different cherries estimated. The key factor is training the network to recognize the reflectance/cherry percentage relation. Over the past few
Ritter, G.X.; Sussner, P.
1996-12-31
The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.
Neural-Network-Development Program
NASA Technical Reports Server (NTRS)
Phillips, Todd A.
1993-01-01
NETS, software tool for development and evaluation of neural networks, provides simulation of neural-network algorithms plus computing environment for development of such algorithms. Uses back-propagation learning method for all of networks it creates. Enables user to customize patterns of connections between layers of network. Also provides features for saving, during learning process, values of weights, providing more-precise control over learning process. Written in ANSI standard C language. Machine-independent version (MSC-21588) includes only code for command-line-interface version of NETS 3.0.
Neural networks and MIMD-multiprocessors
NASA Technical Reports Server (NTRS)
Vanhala, Jukka; Kaski, Kimmo
1990-01-01
Two artificial neural network models are compared. They are the Hopfield Neural Network Model and the Sparse Distributed Memory model. Distributed algorithms for both of them are designed and implemented. The run time characteristics of the algorithms are analyzed theoretically and tested in practice. The storage capacities of the networks are compared. Implementations are done using a distributed multiprocessor system.
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.; Meyer, Claudia M.
1991-01-01
A genetic algorithm is used to select the inputs to a neural network function approximator. In the application considered, modeling critical parameters of the space shuttle main engine (SSME), the functional relationship between measured parameters is unknown and complex. Furthermore, the number of possible input parameters is quite large. Many approaches have been used for input selection, but they are either subjective or do not consider the complex multivariate relationships between parameters. Due to the optimization and space searching capabilities of genetic algorithms they were employed to systematize the input selection process. The results suggest that the genetic algorithm can generate parameter lists of high quality without the explicit use of problem domain knowledge. Suggestions for improving the performance of the input selection process are also provided.
Fu, Xingang; Li, Shuhui; Fairbank, Michael; Wunsch, Donald C; Alonso, Eduardo
2015-09-01
This paper investigates how to train a recurrent neural network (RNN) using the Levenberg-Marquardt (LM) algorithm as well as how to implement optimal control of a grid-connected converter (GCC) using an RNN. To successfully and efficiently train an RNN using the LM algorithm, a new forward accumulation through time (FATT) algorithm is proposed to calculate the Jacobian matrix required by the LM algorithm. This paper explores how to incorporate FATT into the LM algorithm. The results show that the combination of the LM and FATT algorithms trains RNNs better than the conventional backpropagation through time algorithm. This paper presents an analytical study on the optimal control of GCCs, including theoretically ideal optimal and suboptimal controllers. To overcome the inapplicability of the optimal GCC controller under practical conditions, a new RNN controller with an improved input structure is proposed to approximate the ideal optimal controller. The performance of an ideal optimal controller and a well-trained RNN controller was compared in close to real-life power converter switching environments, demonstrating that the proposed RNN controller can achieve close to ideal optimal control performance even under low sampling rate conditions. The excellent performance of the proposed RNN controller under challenging and distorted system conditions further indicates the feasibility of using an RNN to approximate optimal control in practical applications. PMID:25330496
Jiang, Xiaoming; Van den Broek, Wouter; Koch, Christoph T
2016-04-01
Inverse dynamical photon scattering (IDPS), an artificial neural network based algorithm for three-dimensional quantitative imaging in optical microscopy, is introduced. Because the inverse problem entails numerical minimization of an explicit error metric, it becomes possible to freely choose a more robust metric, to introduce regularization of the solution, and to retrieve unknown experimental settings or microscope values, while the starting guess is simply set to zero. The regularization is accomplished through an alternate directions augmented Lagrangian approach, implemented on a graphics processing unit. These improvements are demonstrated on open source experimental data, retrieving three-dimensional amplitude and phase for a thick specimen. PMID:27136994
Knowledge Discovery in Medical Mining by using Genetic Algorithms and Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Srivathsa, P. K.
2011-12-01
Medical Data mining could be thought of as the search for relationships and patterns within the medical data, which facilitates the acquisition of useful knowledge for effective medical diagnosis. Consequently, the predictability of disease will become more effective and the early detection of disease certainly facilitates an increased exposure to required patient care with focused treatment, economic feasibility and improved cure rates. So, the present investigation is carried on medical data(PIMA) using DM and GA based Neural Network technique and the results predict that the methodology is not only reliable but also helps in furthering the scope of the subject.
NASA Astrophysics Data System (ADS)
Morillot, Olivier; Likforman-Sulem, Laurence; Grosicki, Emmanuèle
2013-04-01
Many preprocessing techniques have been proposed for isolated word recognition. However, recently, recognition systems have dealt with text blocks and their compound text lines. In this paper, we propose a new preprocessing approach to efficiently correct baseline skew and fluctuations. Our approach is based on a sliding window within which the vertical position of the baseline is estimated. Segmentation of text lines into subparts is, thus, avoided. Experiments conducted on a large publicly available database (Rimes), with a BLSTM (bidirectional long short-term memory) recurrent neural network recognition system, show that our baseline correction approach highly improves performance.
NASA Astrophysics Data System (ADS)
Huang, Ying; Jin, Long
2013-08-01
A western North Pacific tropical cyclone (TC) intensity prediction scheme has been developed based on climatology and persistence (CLIPER) factors as potential predictors and using genetic neural network (GNN) model. TC samples during June-October spanning 2001-2010 are used for model development. The GNN model input is constructed from potential predictors by employing both a stepwise regression method and an Isometric Mapping (Isomap) algorithm. The Isomap algorithm is capable of finding meaningful low-dimensional architectures hidden in their nonlinear high-dimensional data space and separating the underlying factors. In this scheme, the new developed model, which is termed the GNN-Isomap model, is used for monthly TC intensity prediction at 24- and 48-h lead times. Using identical modeling samples and independent samples, predictions of the GNN-Isomap model are compared with the widely used CLIPER method. By adopting different numbers of nearest neighbors, results of sensitivity experiments show that the mean absolute prediction errors of the independent samples using GNN-Isomap model at 24- and 48-h forecasts are smaller than those using CLIPER method. Positive skills are obtained as compared to the CLIPER method with being above 12 % at 24 h and above 14 % at 48 h. Analyses of the new scheme suggest that the useful linear and nonlinear prediction information of the full pool of potential predictors is excavated in terms of the stepwise regression method and the Isomap algorithm. Moreover, the GNN is built by integrating multiple individual neural networks with the same expected output and network architecture is optimized by an evolutionary genetic algorithm, so the generalization capacity of the GNN-Isomap model is significantly enhanced, indicating a potentially better operational weather prediction.
NASA Astrophysics Data System (ADS)
Riha, Stefan; Krawczyk, Harald
2011-11-01
Water quality monitoring in the Baltic Sea is of high ecological importance for all its neighbouring countries. They are highly interested in a regular monitoring of water quality parameters of their regional zones. A special attention is paid to the occurrence and dissemination of algae blooms. Among the appearing blooms the possibly toxicological or harmful cyanobacteria cultures are a special case of investigation, due to their specific optical properties and due to the negative influence on the ecological state of the aquatic system. Satellite remote sensing, with its high temporal and spatial resolution opportunities, allows the frequent observations of large areas of the Baltic Sea with special focus on its two seasonal algae blooms. For a better monitoring of the cyanobacteria dominated summer blooms, adapted algorithms are needed which take into account the special optical properties of blue-green algae. Chlorophyll-a standard algorithms typically fail in a correct recognition of these occurrences. To significantly improve the opportunities of observation and propagation of the cyanobacteria blooms, the Marine Remote Sensing group of DLR has started the development of a model based inversion algorithm that includes a four component bio-optical water model for Case2 waters, which extends the commonly calculated parameter set chlorophyll, Suspended Matter and CDOM with an additional parameter for the estimation of phycocyanin absorption. It was necessary to carry out detailed optical laboratory measurements with different cyanobacteria cultures, occurring in the Baltic Sea, for the generation of a specific bio-optical model. The inversion of satellite remote sensing data is based on an artificial Neural Network technique. This is a model based multivariate non-linear inversion approach. The specifically designed Neural Network is trained with a comprehensive dataset of simulated reflectance values taking into account the laboratory obtained specific optical
Metzler, R; Kinzel, W; Kanter, I
2000-08-01
Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random. PMID:11088736
Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy
2014-01-01
Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the
NASA Astrophysics Data System (ADS)
Abbasi Hoseini, Afshin; Zavareh, Zahra; Lundell, Fredrik; Anderson, Helge I.
2014-04-01
A matching algorithm based on self-organizing map (SOM) neural network is proposed for tracking rod-like particles in 2D optical measurements of dispersed two-phase flows. It is verified by both synthetic images of elongated particles mimicking 2D suspension flows and direct numerical simulations-based results of prolate particles dispersed in a turbulent channel flow. Furthermore, the potential benefit of this algorithm is evaluated by applying it to the experimental data of rod-like fibers tracking in wall turbulence. The study of the behavior of elongated particles suspended in turbulent flows has a practical importance and covers a wide range of applications in engineering and science. In experimental approach, particle tracking velocimetry of the dispersed phase has a key role together with particle image velocimetry of the carrier phase to obtain the velocities of both phases. The essential parts of particle tracking are to identify and match corresponding particles correctly in consecutive images. The present study is focused on the development of an algorithm for pairing non-spherical particles that have one major symmetry axis. The novel idea in the algorithm is to take the orientation of the particles into account for matching in addition to their positions. The method used is based on the SOM neural network that finds the most likely matching link in images on the basis of feature extraction and clustering. The fundamental concept is finding corresponding particles in the images with the nearest characteristics: position and orientation. The most effective aspect of this two-frame matching algorithm is that it does not require any preliminary knowledge of neither the flow field nor the particle behavior. Furthermore, using one additional characteristic of the non-spherical particles, namely their orientation, in addition to its coordinate vector, the pairing is improved both for more reliable matching at higher concentrations of dispersed particles and
Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy
2014-01-01
Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the
Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang
2009-01-01
The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China's first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products. PMID:22346714
Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang
2009-01-01
The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China’s first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3–11.3 μm; IR2, 11.5–12.5 μm and WV 6.3–7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products. PMID:22346714
Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun
2014-01-01
In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (<5%) when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness. PMID:24772025
Kepler, T.B.
1989-01-01
After a brief introduction to the techniques and philosophy of neural network modeling by spin glass inspired system, the author investigates several properties of these discrete models for autoassociative memory. Memories are represented as patterns of neural activity; their traces are stored in a distributed manner in the matrix of synaptic coupling strengths. Recall is dynamic, an initial state containing partial information about one of the memories evolves toward that memory. Activity in each neuron creates fields at every other neuron, the sum total of which determines its activity. By averaging over the space of interaction matrices with memory constraints enforced by the choice of measure, we show that the exist universality classes defined by families of field distributions and the associated network capacities. He demonstrates the dominant role played by the field distribution in determining the size of the domains of attraction and present, in two independent ways, an expression for this size. He presents a class of convergent learning algorithms which improve upon known algorithms for producing such interaction matrices. He demonstrates that spurious states, or unexperienced memories, may be practically suppressed by the inducement of n-cycles and chaos. He investigates aspects of chaos in these systems, and then leave discrete modeling to implement the analysis of chaotic behavior on a continuous valued network realized in electronic hardware. In each section he combine analytical calculation and computer simulations.
NASA Technical Reports Server (NTRS)
Benediktsson, J. A.; Ersoy, O. K.; Swain, P. H.
1991-01-01
A neural network architecture called a consensual neural network (CNN) is proposed for the classification of data from multiple sources. Its relation to hierarchical and ensemble neural networks is discussed. CNN is based on the statistical consensus theory and uses nonlinearly transformed input data. The input data are transformed several times, and the different transformed data are applied as if they were independent inputs. The independent inputs are classified using stage neural networks and outputs from the stage networks are then weighted and combined to make a decision. Experimental results based on remote-sensing data and geographic data are given.
Keshavarz, M; Mojra, A
2015-05-01
Geometrical features of a cancerous tumor embedded in biological soft tissue, including tumor size and depth, are a necessity in the follow-up procedure and making suitable therapeutic decisions. In this paper, a new socio-politically motivated global search strategy which is called imperialist competitive algorithm (ICA) is implemented to train a feed forward neural network (FFNN) to estimate the tumor's geometrical characteristics (FFNNICA). First, a viscoelastic model of liver tissue is constructed by using a series of in vitro uniaxial and relaxation test data. Then, 163 samples of the tissue including a tumor with different depths and diameters are generated by making use of PYTHON programming to link the ABAQUS and MATLAB together. Next, the samples are divided into 123 samples as training dataset and 40 samples as testing dataset. Training inputs of the network are mechanical parameters extracted from palpation of the tissue through a developing noninvasive technology called artificial tactile sensing (ATS). Last, to evaluate the FFNNICA performance, outputs of the network including tumor's depth and diameter are compared with desired values for both training and testing datasets. Deviations of the outputs from desired values are calculated by a regression analysis. Statistical analysis is also performed by measuring Root Mean Square Error (RMSE) and Efficiency (E). RMSE in diameter and depth estimations are 0.50 mm and 1.49, respectively, for the testing dataset. Results affirm that the proposed optimization algorithm for training neural network can be useful to characterize soft tissue tumors accurately by employing an artificial palpation approach. PMID:25645966
NASA Astrophysics Data System (ADS)
Le, Hieu The
This thesis develops a new method to detect delaminations in composite laminates using a combination of finite element method, artificial neural networks, and genetic algorithms. Next, this newly developed method is applied to successfully solve delamination detection problems. Delaminations in a composite laminate with various sizes and locations are considered in the present studies. The improved layerwise shear deformation theory is implemented into the finite element method and used to calculate responses of laminates with single and multiple delaminations. Mappings between the natural frequencies and delamination characteristics are first determined from the developed models. These data are then used to train artificial neural networks of multiplayer perceptron using back-propagation. These trained artificial neural networks are in turn used as an approximate tool to calculate the responses of the delaminated laminates and to feed the data to the delamination detection process. Two different approaches for handling the neural network models are applied in the work and are presented for comparison. The delamination detection problem is formulated as an optimization problem with mixed type design variables. A genetic algorithm, which is a guided probabilistic search technique based on the simulation of Darwin's principle of evolution and natural selection, is developed to solve this optimization problem. Single through-the-width delamination, single internal delamination, and multiple through-the-width delaminations are separately considered for detection study. At last, the application is extended to the most challenging problem, which is the detection of general delamination. Various factors affecting the detection process such as the finite element convergence factor and the laminate geometry factor are also examined. Case studies are made and the findings are summarized in detail in each chapter of the dissertation. It is found that the newly developed
Wang, Jie-sheng; Han, Shuang; Shen, Na-na; Li, Shu-xia
2014-01-01
For meeting the forecasting target of key technology indicators in the flotation process, a BP neural network soft-sensor model based on features extraction of flotation froth images and optimized by shuffled cuckoo search algorithm is proposed. Based on the digital image processing technique, the color features in HSI color space, the visual features based on the gray level cooccurrence matrix, and the shape characteristics based on the geometric theory of flotation froth images are extracted, respectively, as the input variables of the proposed soft-sensor model. Then the isometric mapping method is used to reduce the input dimension, the network size, and learning time of BP neural network. Finally, a shuffled cuckoo search algorithm is adopted to optimize the BP neural network soft-sensor model. Simulation results show that the model has better generalization results and prediction accuracy. PMID:25133210
Wang, Jie-sheng; Han, Shuang; Shen, Na-na; Li, Shu-xia
2014-01-01
For meeting the forecasting target of key technology indicators in the flotation process, a BP neural network soft-sensor model based on features extraction of flotation froth images and optimized by shuffled cuckoo search algorithm is proposed. Based on the digital image processing technique, the color features in HSI color space, the visual features based on the gray level cooccurrence matrix, and the shape characteristics based on the geometric theory of flotation froth images are extracted, respectively, as the input variables of the proposed soft-sensor model. Then the isometric mapping method is used to reduce the input dimension, the network size, and learning time of BP neural network. Finally, a shuffled cuckoo search algorithm is adopted to optimize the BP neural network soft-sensor model. Simulation results show that the model has better generalization results and prediction accuracy. PMID:25133210
Cheng, Jie; Xiao, Qing; Li, Xiao-Wen; Liu, Qin-Huo; Du, Yong-Ming
2008-04-01
The present paper firstly points out the defect of typical temperature and emissivity separation algorithms when dealing with hyperspectral FTIR data: the conventional temperature and emissivity algorithms can not reproduce correct emissivity value when the difference between the ground-leaving radiance and object's blackbody radiation at its true temperature and the instrument random noise are on the same order, and this phenomenon is very prone to occur rence near 714 and 1 250 cm(-1) in the field measurements. In order to settle this defect, a three-layer perceptron neural network has been introduced into the simultaneous inversion of temperature and emissivity from hyperspectral FTIR data. The soil emissivity spectra from the ASTER spectral library were used to produce the training data, the soil emissivity spectra from the MODIS spectral library were used to produce the test data, and the result of network test shows the MLP is robust. Meanwhile, the ISSTES algorithm was used to retrieve the temperature and emissivity form the test data. By comparing the results of MLP and ISSTES, we found the MLP can overcome the disadvantage of typical temperature and emisivity separation, although the rmse of derived emissivity using MLP is lower than the ISSTES as a whole. Hence, the MLP can be regarded as a beneficial complementarity of the typical temperature and emissivity separation. PMID:18619297
Exploring neural network technology
Naser, J.; Maulbetsch, J.
1992-12-01
EPRI is funding several projects to explore neural network technology, a form of artificial intelligence that some believe may mimic the way the human brain processes information. This research seeks to provide a better understanding of fundamental neural network characteristics and to identify promising utility industry applications. Results to date indicate that the unique attributes of neural networks could lead to improved monitoring, diagnostic, and control capabilities for a variety of complex utility operations. 2 figs.
NASA Astrophysics Data System (ADS)
Arnaout, A.; Fruhwirth, R.; Winter, M.; Esmael, B.; Thonhauser, G.
2012-04-01
The use of neural networks and advanced machine learning techniques in the oil & gas industry is a growing trend in the market. Especially in drilling oil & gas wells, prediction and monitoring different drilling parameters is an essential task to prevent serious problems like "Kick", "Lost Circulation" or "Stuck Pipe" among others. The hookload represents the weight load of the drill string at the crane hook. It is one of the most important parameters. During drilling the parameter "Weight on Bit" is controlled by the driller whereby the hookload is the only measure to monitor how much weight on bit is applied to the bit to generate the hole. Any changes in weight on bit will be directly reflected at the hookload. Furthermore any unwanted contact between the drill string and the wellbore - potentially leading to stuck pipe problem - will appear directly in the measurements of the hookload. Therefore comparison of the measured to the predicted hookload will not only give a clear idea on what is happening down-hole, it also enables the prediction of a number of important events that may cause problems in the borehole and yield in some - fortunately rare - cases in catastrophes like blow-outs. Heuristic models using highly sophisticated neural networks were designed for the hookload prediction; the training data sets were prepared in cooperation with drilling experts. Sensor measurements as well as a set of derived feature channels were used as input to the models. The contents of the final data set can be separated into (1) features based on rig operation states, (2) real-time sensors features and (3) features based on physics. A combination of novel neural network architecture - the Completely Connected Perceptron and parallel learning techniques which avoid trapping into local error minima - was used for building the models. In addition automatic network growing algorithms and highly sophisticated stopping criterions offer robust and efficient estimation of the
Data-based system modeling using a type-2 fuzzy neural network with a hybrid learning algorithm.
Yeh, Chi-Yuan; Jeng, Wen-Hau Roger; Lee, Shie-Jue
2011-12-01
We propose a novel approach for building a type-2 neural-fuzzy system from a given set of input-output training data. A self-constructing fuzzy clustering method is used to partition the training dataset into clusters through input-similarity and output-similarity tests. The membership function associated with each cluster is defined with the mean and deviation of the data points included in the cluster. Then a type-2 fuzzy Takagi-Sugeno-Kang IF-THEN rule is derived from each cluster to form a fuzzy rule base. A fuzzy neural network is constructed accordingly and the associated parameters are refined by a hybrid learning algorithm which incorporates particle swarm optimization and a least squares estimation. For a new input, a corresponding crisp output of the system is obtained by combining the inferred results of all the rules into a type-2 fuzzy set, which is then defuzzified by applying a refined type reduction algorithm. Experimental results are presented to demonstrate the effectiveness of our proposed approach. PMID:22010148
Moteghaed, Niloofar Yousefi; Maghooli, Keivan; Pirhadi, Shiva; Garshasbi, Masoud
2015-01-01
The improvement of high-through-put gene profiling based microarrays technology has provided monitoring the expression value of thousands of genes simultaneously. Detailed examination of changes in expression levels of genes can help physicians to have efficient diagnosing, classification of tumors and cancer's types as well as effective treatments. Finding genes that can classify the group of cancers correctly based on hybrid optimization algorithms is the main purpose of this paper. In this paper, a hybrid particle swarm optimization and genetic algorithm method are used for gene selection and also artificial neural network (ANN) is adopted as the classifier. In this work, we have improved the ability of the algorithm for the classification problem by finding small group of biomarkers and also best parameters of the classifier. The proposed approach is tested on three benchmark gene expression data sets: Blood (acute myeloid leukemia, acute lymphoblastic leukemia), colon and breast datasets. We used 10-fold cross-validation to achieve accuracy and also decision tree algorithm to find the relation between the biomarkers for biological point of view. To test the ability of the trained ANN models to categorize the cancers, we analyzed additional blinded samples that were not previously used for the training procedure. Experimental results show that the proposed method can reduce the dimension of the data set and confirm the most informative gene subset and improve classification accuracy with best parameters based on datasets. PMID:26120567
Moteghaed, Niloofar Yousefi; Maghooli, Keivan; Pirhadi, Shiva; Garshasbi, Masoud
2015-01-01
The improvement of high-through-put gene profiling based microarrays technology has provided monitoring the expression value of thousands of genes simultaneously. Detailed examination of changes in expression levels of genes can help physicians to have efficient diagnosing, classification of tumors and cancer's types as well as effective treatments. Finding genes that can classify the group of cancers correctly based on hybrid optimization algorithms is the main purpose of this paper. In this paper, a hybrid particle swarm optimization and genetic algorithm method are used for gene selection and also artificial neural network (ANN) is adopted as the classifier. In this work, we have improved the ability of the algorithm for the classification problem by finding small group of biomarkers and also best parameters of the classifier. The proposed approach is tested on three benchmark gene expression data sets: Blood (acute myeloid leukemia, acute lymphoblastic leukemia), colon and breast datasets. We used 10-fold cross-validation to achieve accuracy and also decision tree algorithm to find the relation between the biomarkers for biological point of view. To test the ability of the trained ANN models to categorize the cancers, we analyzed additional blinded samples that were not previously used for the training procedure. Experimental results show that the proposed method can reduce the dimension of the data set and confirm the most informative gene subset and improve classification accuracy with best parameters based on datasets. PMID:26120567
NASA Astrophysics Data System (ADS)
Yadav, Deepti; Arora, M. K.; Tiwari, K. C.; Ghosh, J. K.
2016-04-01
Hyperspectral imaging is a powerful tool in the field of remote sensing and has been used for many applications like mineral detection, detection of landmines, target detection etc. Major issues in target detection using HSI are spectral variability, noise, small size of the target, huge data dimensions, high computation cost, complex backgrounds etc. Many of the popular detection algorithms do not work for difficult targets like small, camouflaged etc. and may result in high false alarms. Thus, target/background discrimination is a key issue and therefore analyzing target's behaviour in realistic environments is crucial for the accurate interpretation of hyperspectral imagery. Use of standard libraries for studying target's spectral behaviour has limitation that targets are measured in different environmental conditions than application. This study uses the spectral data of the same target which is used during collection of the HSI image. This paper analyze spectrums of targets in a way that each target can be spectrally distinguished from a mixture of spectral data. Artificial neural network (ANN) has been used to identify the spectral range for reducing data and further its efficacy for improving target detection is verified. The results of ANN proposes discriminating band range for targets; these ranges were further used to perform target detection using four popular spectral matching target detection algorithm. Further, the results of algorithms were analyzed using ROC curves to evaluate the effectiveness of the ranges suggested by ANN over full spectrum for detection of desired targets. In addition, comparative assessment of algorithms is also performed using ROC.
Lin, Wei-Qi; Jiang, Jian-Hui; Zhou, Yan-Ping; Wu, Hai-Long; Shen, Guo-Li; Yu, Ru-Qin
2007-01-30
Multilayer feedforward neural networks (MLFNNs) are important modeling techniques widely used in QSAR studies for their ability to represent nonlinear relationships between descriptors and activity. However, the problems of overfitting and premature convergence to local optima still pose great challenges in the practice of MLFNNs. To circumvent these problems, a support vector machine (SVM) based training algorithm for MLFNNs has been developed with the incorporation of particle swarm optimization (PSO). The introduction of the SVM based training mechanism imparts the developed algorithm with inherent capacity for combating the overfitting problem. Moreover, with the implementation of PSO for searching the optimal network weights, the SVM based learning algorithm shows relatively high efficiency in converging to the optima. The proposed algorithm has been evaluated using the Hansch data set. Application to QSAR studies of the activity of COX-2 inhibitors is also demonstrated. The results reveal that this technique provides superior performance to backpropagation (BP) and PSO training neural networks. PMID:17186488
Optimization of the Blank Holder Force Using the Neural Network Algorithm
NASA Astrophysics Data System (ADS)
Albut, A.; Ciubotaru, V.; Radu, C.; Olaru, I.
2011-08-01
In case of sheet metal forming the main dimensional errors are caused by the springback phenomena. The present work deals with numerical simulation related to draw bending and springback of U-shaped parts. The current paper is trying to prove out the important role of the blank holder force variation during the forming process. The Dynaform 5.6 software was used to simulate the forming process, in which the blank holder force varies linearly in four steps between 20 and 50 kN. The factorial simulations test plan was made using the Design Experts 7.0 software and 72 simulations were necessarily to cover completely the variation domain. The part obtained after each simulation is analyzed and measured to quantify the errors caused by springback. Parameters as: angle between flange and sidewall, angle between sidewall and part bottom, chamfer radius between part bottom and sidewall or chamfer radius between sidewall and flange are recorded in a data base. The initial simulations plan together with the generated data base is loaded in a neural network software called NeuroSolution 5. The presented optimization method is a good method to reduce the springback effect. The inconvenient of this method is the large number of simulations tests that must be done and the large amount of data necessarily as input for the NeuroSolution software.
NASA Astrophysics Data System (ADS)
Fang, Ming-chung; Lee, Zi-yi
2013-08-01
This paper develops a nonlinear mathematical model to simulate the dynamic motion behavior of the barge equipped with the portable outboard Dynamic Positioning (DP) system in short-crested waves. The self-tuning Proportional-Derivative (PD) controller based on the neural network algorithm is applied to control the thrusters for optimal adjustment of the barge position in waves. In addition to the wave, the current, the wind and the nonlinear drift force are also considered in the calculations. The time domain simulations for the six-degree-of-freedom motions of the barge with the DP system are solved by the 4th order Runge-Kutta method which can compromise the efficiency and the accuracy of the simulations. The technique of the portable alternative DP system developed here can serve as a practical tool to assist those ships without being equipped with the DP facility while the dynamic positioning missions are needed.
Zaki, Mohammad Reza; Varshosaz, Jaleh; Fathi, Milad
2015-05-20
Multivariate nature of drug loaded nanospheres manufacturing in term of multiplicity of involved factors makes it a time consuming and expensive process. In this study genetic algorithm (GA) and artificial neural network (ANN), two tools inspired by natural process, were employed to optimize and simulate the manufacturing process of agar nanospheres. The efficiency of GA was evaluated against the response surface methodology (RSM). The studied responses included particle size, poly dispersity index, zeta potential, drug loading and release efficiency. GA predicted greater extremum values for response factors compared to RSM. However, real values showed some deviations from predicted data. Appropriate agreement was found between ANN model predicted and real values for all five response factors with high correlation coefficients. GA was more successful than RSM in optimization and along with ANN were efficient tools in optimizing and modeling the fabrication process of drug loaded in agar nanospheres. PMID:25817674
Filho, Faete J; Tolbert, Leon M; Ozpineci, Burak
2012-01-01
The work developed here proposes a methodology for calculating switching angles for varying DC sources in a multilevel cascaded H-bridges converter. In this approach the required fundamental is achieved, the lower harmonics are minimized, and the system can be implemented in real time with low memory requirements. Genetic algorithm (GA) is the stochastic search method to find the solution for the set of equations where the input voltages are the known variables and the switching angles are the unknown variables. With the dataset generated by GA, an artificial neural network (ANN) is trained to store the solutions without excessive memory storage requirements. This trained ANN then senses the voltage of each cell and produces the switching angles in order to regulate the fundamental at 120 V and eliminate or minimize the low order harmonics while operating in real time.
NASA Astrophysics Data System (ADS)
Karabiber, Fethullah; Grassi, Giuseppe; Vecchio, Pietro; Arik, Sabri; Yalcin, M. Erhan
2011-01-01
Based on the cellular neural network (CNN) paradigm, the bio-inspired (bi-i) cellular vision system is a computing platform consisting of state-of-the-art sensing, cellular sensing-processing and digital signal processing. This paper presents the implementation of a novel CNN-based segmentation algorithm onto the bi-i system. The experimental results, carried out for different benchmark video sequences, highlight the feasibility of the approach, which provides a frame rate of about 26 frame/sec. Comparisons with existing CNN-based methods show that, even though these methods are from two to six times faster than the proposed one, the conceived approach is more accurate and, consequently, represents a satisfying trade-off between real-time requirements and accuracy.
NASA Astrophysics Data System (ADS)
Bagheri, H.; Sadjadi, S. Y.; Sadeghian, S.
2013-09-01
One of the most significant tools to study many engineering projects is three-dimensional modelling of the Earth that has many applications in the Geospatial Information System (GIS), e.g. creating Digital Train Modelling (DTM). DTM has numerous applications in the fields of sciences, engineering, design and various project administrations. One of the most significant events in DTM technique is the interpolation of elevation to create a continuous surface. There are several methods for interpolation, which have shown many results due to the environmental conditions and input data. The usual methods of interpolation used in this study along with Genetic Algorithms (GA) have been optimised and consisting of polynomials and the Inverse Distance Weighting (IDW) method. In this paper, the Artificial Intelligent (AI) techniques such as GA and Neural Networks (NN) are used on the samples to optimise the interpolation methods and production of Digital Elevation Model (DEM). The aim of entire interpolation methods is to evaluate the accuracy of interpolation methods. Universal interpolation occurs in the entire neighbouring regions can be suggested for larger regions, which can be divided into smaller regions. The results obtained from applying GA and ANN individually, will be compared with the typical method of interpolation for creation of elevations. The resulting had performed that AI methods have a high potential in the interpolation of elevations. Using artificial networks algorithms for the interpolation and optimisation based on the IDW method with GA could be estimated the high precise elevations.
Neural algorithms on VLSI concurrent architectures
Caviglia, D.D.; Bisio, G.M.; Parodi, G.
1988-09-01
The research concerns the study of neural algorithms for developing CAD tools with A.I. features in VLSI design activities. In this paper the focus is on optimization problems such as partitioning, placement and routing. These problems require massive computational power to be solved (NP-complete problems) and the standard approach is usually based on euristic techniques. Neural algorithms can be represented by a circuital model. This kind of representation can be easily mapped in a real circuit, which, however, features limited flexibility with respect to the variety of problems. In this sense the simulation of the neural circuit, by mapping it on a digital VLSI concurrent architecture seems to be preferrable; in addition this solution offers a wider choice with regard to algorithms characteristics (e.g. transfer curve of neural elements, reconfigurability of interconnections, etc.). The implementation with programmable components, such as transputers, allows an indirect mapping of the algorithm (one transputer for N neurons) accordingly to the dimension and the characteristics of the problem. In this way the neural algorithm described by the circuit is reduced to the algorithm that simulates the network behavior. The convergence properties of that formulation are studied with respect to the characteristics of the neural element transfer curve.
Self-organization of neural networks
NASA Astrophysics Data System (ADS)
Clark, John W.; Winston, Jeffrey V.; Rafelski, Johann
1984-05-01
The plastic development of a neural-network model operating autonomously in discrete time is described by the temporal modification of interneuronal coupling strengths according to momentary neural activity. A simple algorithm (“brainwashing”) is found which, applied to nets with initially quasirandom connectivity, leads to model networks with properties conductive to the simulation of memory and learning phenomena.
NASA Astrophysics Data System (ADS)
Arevalo, J. C.; Hamilton, N.; Ghedira, H.
2004-12-01
Snow coverage and depth are two key parameters that are essential to be estimated and applied in a wide range of hydrological applications. However, the traditional field sampling methods and the ground-based data collection are often very sparse, time consuming, and expensive compared to the coverage provided by remote sensing techniques. Passive microwave remote sensing data have been investigated by numerous researchers and have been demonstrated to be effective for monitoring snow pack parameters. Those researches have resulted that the microwave brightness temperature are related to the snow cover structure with different correlation degrees. The primary objective of this research is to produce a spatial estimation of snow water equivalent with sufficient spatial and temporal resolution using passive microwave data. The final product of this project will be an additional tool for flood warning and water resource forecasts, which can be an additional input to the actual hydrological models. The focus of this paper is to investigate the performance of filtering algorithm (developed by NESDIS NOAA) and Neural Network algorithm for snow cover identification in the Northern Midwest States. Artificial neural networks have been successfully applied to image processing, and have shown a great potential in the classification of a wide range of remote sensing data. The study area is located in the Northern Midwest of the United States within 109° 30'W - 100° 50'W and 48° 40'N - 41° 00'N. A total of 180 ground stations covering the study area have been identified for this experiment. The passive microwave data from the current SSM/I (Special Sensor Microwave Imager) sensors on board the DMSP F13 and F14 satellites are used in both ascending and descending orbits. These images provide (twice-a-day) measurements of the brightness temperature in seven channels with different frequencies and polarizations (19 V, 19 H, 22 V, 37V, 37 H, 85 V, and 85 H). All the seven
Li, Zhongwei; Sun, Beibei; Xin, Yuezhen; Wang, Xun
2016-01-01
Flavones, the secondary metabolites of Phellinus igniarius fungus, have the properties of antioxidation and anticancer. Because of the great medicinal value, there are large demands on flavones for medical use and research. Flavones abstracted from natural Phellinus can not meet the medical and research need, since Phellinus in the natural environment is very rare and is hard to be cultivated artificially. The production of flavones is mainly related to the fermentation culture of Phellinus, which made the optimization of culture conditions an important problem. Some researches were made to optimize the fermentation culture conditions, such as the method of response surface methodology, which claimed the optimal flavones production was 1532.83 μg/mL. In order to further optimize the fermentation culture conditions for flavones, in this work a hybrid intelligent algorithm with genetic algorithm and BP neural network is proposed. Our method has the intelligent learning ability and can overcome the limitation of large-scale biotic experiments. Through simulations, the optimal culture conditions are obtained and the flavones production is increased to 2200 μg/mL. PMID:27595102
Wu, Huai-Ning; Luo, Biao
2012-12-01
It is well known that the nonlinear H∞ state feedback control problem relies on the solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which is a nonlinear partial differential equation that has proven to be impossible to solve analytically. In this paper, a neural network (NN)-based online simultaneous policy update algorithm (SPUA) is developed to solve the HJI equation, in which knowledge of internal system dynamics is not required. First, we propose an online SPUA which can be viewed as a reinforcement learning technique for two players to learn their optimal actions in an unknown environment. The proposed online SPUA updates control and disturbance policies simultaneously; thus, only one iterative loop is needed. Second, the convergence of the online SPUA is established by proving that it is mathematically equivalent to Newton's method for finding a fixed point in a Banach space. Third, we develop an actor-critic structure for the implementation of the online SPUA, in which only one critic NN is needed for approximating the cost function, and a least-square method is given for estimating the NN weight parameters. Finally, simulation studies are provided to demonstrate the effectiveness of the proposed algorithm. PMID:24808144
NASA Astrophysics Data System (ADS)
Li, L.; Riaño, D.; Patricio, M.; Cheng, Y.; Ustin, S.
Remote estimation of vegetation water content has important implications in agricultural management practices and forest fire monitoring Vegetation water content is also found useful in estimating leaf area index using optical remote sensing methods This study aims to investigate the performance of genetic algorithms coupled with partial least squares GA-PLS modeling of spectral reflectance in retrieving equivalent water thickness EWT at leaf and canopy level and to compare results from GA-PLS modeling with those from using artificial neural networks ANN The genetic algorithm is used to identify a subset of spectral bands sensitive to the variation in EWT and PLS is then applied to relate the reflectance of the identified bands to ETW values The advantage of using ANN is to model nonlinear transfer functions at a higher accuracy than regression analysis GA-PLS and ANN were applied to LOPEX dataset datasets simulated by a leaf radiative transfer model PROSPECT and a canopy radiative transfer model SAILH and to remotely sensed AVIRIS and MODIS imagery The results indicate that GA-PLS and ANN both have capability of retrieving EWT from measured and simulated leaf reflectance and achieved very good prediction r 2 0 90 The retrieval of using real and simulated canopy data indicates that both GA-PLS and ANN have degraded performances due to the effects of soil background and leaf dry matter on the reflectance but the retrieving accuracies were still highly valuable The result also shows that although nonlinear transfer functions
2016-01-01
Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN), which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the “ground truth.” Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively. PMID:27597960
Senthil Kumar, A R; Goyal, Manish Kumar; Ojha, C S P; Singh, R D; Swamee, P K
2013-01-01
The prediction of streamflow is required in many activities associated with the planning and operation of the components of a water resources system. Soft computing techniques have proven to be an efficient alternative to traditional methods for modelling qualitative and quantitative water resource variables such as streamflow, etc. The focus of this paper is to present the development of models using multiple linear regression (MLR), artificial neural network (ANN), fuzzy logic and decision tree algorithms such as M5 and REPTree for predicting the streamflow at Kasol located at the upstream of Bhakra reservoir in Sutlej basin in northern India. The input vector to the various models using different algorithms was derived considering statistical properties such as auto-correlation function, partial auto-correlation and cross-correlation function of the time series. It was found that REPtree model performed well compared to other soft computing techniques such as MLR, ANN, fuzzy logic, and M5P investigated in this study and the results of the REPTree model indicate that the entire range of streamflow values were simulated fairly well. The performance of the naïve persistence model was compared with other models and the requirement of the development of the naïve persistence model was also analysed by persistence index. PMID:24355836
Li, Zhongwei; Sun, Beibei; Xin, Yuezhen; Wang, Xun; Zhu, Hu
2016-01-01
Flavones, the secondary metabolites of Phellinus igniarius fungus, have the properties of antioxidation and anticancer. Because of the great medicinal value, there are large demands on flavones for medical use and research. Flavones abstracted from natural Phellinus can not meet the medical and research need, since Phellinus in the natural environment is very rare and is hard to be cultivated artificially. The production of flavones is mainly related to the fermentation culture of Phellinus, which made the optimization of culture conditions an important problem. Some researches were made to optimize the fermentation culture conditions, such as the method of response surface methodology, which claimed the optimal flavones production was 1532.83 μg/mL. In order to further optimize the fermentation culture conditions for flavones, in this work a hybrid intelligent algorithm with genetic algorithm and BP neural network is proposed. Our method has the intelligent learning ability and can overcome the limitation of large-scale biotic experiments. Through simulations, the optimal culture conditions are obtained and the flavones production is increased to 2200 μg/mL. PMID:27595102
Le, Trong-Ngoc; Bao, Pham The; Huynh, Hieu Trung
2016-01-01
Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN), which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the "ground truth." Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively. PMID:27597960
Neural networks for aircraft control
NASA Technical Reports Server (NTRS)
Linse, Dennis
1990-01-01
Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.
Critical Branching Neural Networks
ERIC Educational Resources Information Center
Kello, Christopher T.
2013-01-01
It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…
Satellite image analysis using neural networks
NASA Technical Reports Server (NTRS)
Sheldon, Roger A.
1990-01-01
The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.
NASA Technical Reports Server (NTRS)
Padgett, Mary L.; Desai, Utpal; Roppel, T.A.; White, Charles R.
1993-01-01
A design procedure is suggested for neural networks which accommodates the inclusion of such knowledge-based systems techniques as fuzzy logic and pairwise comparisons. The use of these procedures in the design of applications combines qualitative and quantitative factors with empirical data to yield a model with justifiable design and parameter selection procedures. The procedure is especially relevant to areas of back-propagation neural network design which are highly responsive to the use of precisely recorded expert knowledge.
NASA Astrophysics Data System (ADS)
Belchansky, G.; Alpatsky, I.; Mordvintsev, I.; Douglas, D.
Investigating new methods to estimate sea-ice geophysical parameters using multisensor satellite data is critical for global change studies. The most widely used and consistent data to study sea ice at global scale are SMMR and SSM/I passive microwave measurements available since 1978. However, comparisons with LANDSAT, AVHRR and ERS-1 SAR have demonstrated substantial seasonal and regional differences in SSM/I ice parameter estimates (Belchansky and Douglas, 2000, 2002). This report presents investigating methods of improving SSM/I and OKEAN sea ice inversion parameters using MLP neural networks, and compare the sea ice classification results from different neural networks and linear mixture model. Efficiency of four sea ice type inversion (classification) algorithms utilizing SSM/I, OKEAN-01, ERS and RADARSAT satellite data were compared and investigated. The first one applied different linear mixture models (NASA Team, Bootstrap, and OKEAN). The second, third and fourth algorithms applied the modified MLP neural networks with different learning algorithms based, respectively, on 1) error back propagation and simulated annealing (Kirkpatrick, 1983); 2) dynamic learning and polynomial basis function (Chen et al., 1996); and 3) dynamic learning and two-step optimization. Both last algorithms used the Kalman filtering technique. Our studies demonstrated that both modified MLP neural networks with dynamic learning were more efficient (in terms of learning time, accuracy, and ability to generalize the selected learning data) than modified MLP neural network with learning algorithms based on the error back propagation and simulated annealing for simple approximation problems. MY sea ice and albedo inversion from SSM/I brightness temperatures and respective OKEAN learning data sets demonstrated that these algorithms caused over-fitting in comparison with the MLP neural network with the error back propagation and simulated annealing. Therefore, for MY sea ice inversion
NASA Astrophysics Data System (ADS)
Moreau, Emmanuel; Mallet, Cecile; Casagrande, Luc; Klapisz, Claude
1998-08-01
A new algorithms is developed whereby the cloud liquid water path (LWP) and the total precipitable water (TPW) may be determined from microwave radiometric data. A large meteorological database obtained from the European Centre for Medium-Range Weather Forecasts forecast model is used to simulate, with a radiative transfer model, brightness temperatures (TB) at the top of the atmosphere for the special sensor microwave imagery frequencies. A single- hidden-layer ANN was used. An error backpropagation training algorithm was applied to train the ANN. A first comparison with a log-linear regression algorithm, shows that the ANN can represent more accurately the underlying relationship between TB and, TPW and LWP. The ANN seems to be able to give a better fit at large values of LWP. Furthermore in the case of TPW, a validation is made with radiosonde data, with another new algorithm.
Nonlinear PLS modeling using neural networks
Qin, S.J.; McAvoy, T.J.
1994-12-31
This paper discusses the embedding of neural networks into the framework of the PLS (partial least squares) modeling method resulting in a neural net PLS modeling approach. By using the universal approximation property of neural networks, the PLS modeling method is genealized to a nonlinear framework. The resulting model uses neural networks to capture the nonlinearity and keeps the PLS projection to attain robust generalization property. In this paper, the standard PLS modeling method is briefly reviewed. Then a neural net PLS (NNPLS) modeling approach is proposed which incorporates feedforward networks into the PLS modeling. A multi-input-multi-output nonlinear modeling task is decomposed into linear outer relations and simple nonlinear inner relations which are performed by a number of single-input-single-output networks. Since only a small size network is trained at one time, the over-parametrized problem of the direct neural network approach is circumvented even when the training data are very sparse. A conjugate gradient learning method is employed to train the network. It is shown that, by analyzing the NNPLS algorithm, the global NNPLS model is equivalent to a multilayer feedforward network. Finally, applications of the proposed NNPLS method are presented with comparison to the standard linear PLS method and the direct neural network approach. The proposed neural net PLS method gives better prediction results than the PLS modeling method and the direct neural network approach.
Data compression using artificial neural networks
Watkins, B.E.
1991-09-01
This thesis investigates the application of artificial neural networks for the compression of image data. An algorithm is developed using the competitive learning paradigm which takes advantage of the parallel processing and classification capability of neural networks to produce an efficient implementation of vector quantization. Multi-Stage, tree searched, and classification vector quantization codebook design are adapted to the neural network design to reduce the computational cost and hardware requirements. The results show that the new algorithm provides a substantial reduction in computational costs and an improvement in performance.
Zandkarimi, Majid; Shafiei, Mohammad; Hadizadeh, Farzin; Darbandi, Mohammad Ali; Tabrizian, Kaveh
2014-03-01
An important goal for drug development within the pharmaceutical industry is the application of simple methods to determine human pharmacokinetic parameters. Effective computing tools are able to increase scientists' ability to make precise selections of chemical compounds in accordance with desired pharmacokinetic and safety profiles. This work presents a method for making predictions of the clearance, plasma protein binding, and volume of distribution for alkaloid drugs. The tools used in this method were genetic algorithms (GAs) combined with artificial neural networks (ANNs) and these were applied to select the most relevant molecular descriptors and to develop quantitative structure-pharmacokinetic relationship (QSPkR) models. Results showed that three-dimensional structural descriptors had more influence on QSPkR models. The models developed in this study were able to predict systemic clearance, volume of distribution, and plasma protein binding with normalized root mean square error (NRMSE) values of 0.151, 0.263, and 0.423, respectively. These results demonstrate an acceptable level of efficiency of the developed models for the prediction of pharmacokinetic parameters. PMID:24634842
Tripathi, C K M; Khan, Mahvish; Praveen, Vandana; Khan, Saif; Srivastava, Akanksha
2012-07-01
Antibiotic production with Streptomyces sindenensis MTCC 8122 was optimized under submerged fermentation conditions by artificial neural network (ANN) coupled with genetic algorithm (GA) and Nelder-Mead downhill simplex (NMDS). Feed forward back-propagation ANN was trained to establish the mathematical relationship among the medium components and length of incubation period for achieving maximum antibiotic yield. The optimization strategy involved growing the culture with varying concentrations of various medium components for different incubation periods. Under non-optimized condition, antibiotic production was found to be 95 microgram/ml, which nearly doubled (176 microgram/ml) with the ANN-GA optimization. ANN-NMDS optimization was found to be more efficacious, and maximum antibiotic production (197 microgram/ml) was obtained by cultivating the cells with (g/l) fructose 2.7602, MgSO4 1.2369, (NH4)2PO4 0.2742, DL-threonine 3.069%, and soyabean meal 1.952%, for 9.8531 days of incubation, which was roughly 12% higher than the yield obtained by ANN coupled with GA under the same conditions. PMID:22580313
Li, Yongqiang; Abbaspour, Mohammadreza R; Grootendorst, Paul V; Rauth, Andrew M; Wu, Xiao Yu
2015-08-01
This study was performed to optimize the formulation of polymer-lipid hybrid nanoparticles (PLN) for the delivery of an ionic water-soluble drug, verapamil hydrochloride (VRP) and to investigate the roles of formulation factors. Modeling and optimization were conducted based on a spherical central composite design. Three formulation factors, i.e., weight ratio of drug to lipid (X1), and concentrations of Tween 80 (X2) and Pluronic F68 (X3), were chosen as independent variables. Drug loading efficiency (Y1) and mean particle size (Y2) of PLN were selected as dependent variables. The predictive performance of artificial neural networks (ANN) and the response surface methodology (RSM) were compared. As ANN was found to exhibit better recognition and generalization capability over RSM, multi-objective optimization of PLN was then conducted based upon the validated ANN models and continuous genetic algorithms (GA). The optimal PLN possess a high drug loading efficiency (92.4%, w/w) and a small mean particle size (∼100nm). The predicted response variables matched well with the observed results. The three formulation factors exhibited different effects on the properties of PLN. ANN in coordination with continuous GA represent an effective and efficient approach to optimize the PLN formulation of VRP with desired properties. PMID:25986587
NASA Astrophysics Data System (ADS)
Ayala, Helon Vicente Hultmann; Coelho, Leandro dos Santos
2016-02-01
The present work introduces a procedure for input selection and parameter estimation for system identification based on Radial Basis Functions Neural Networks (RBFNNs) models with an improved objective function based on the residuals and its correlation function coefficients. We show the results when the proposed methodology is applied to model a magnetorheological damper, with real acquired data, and other two well-known benchmarks. The canonical genetic and differential evolution algorithms are used in cascade to decompose the problem of defining the lags taken as the inputs of the model and its related parameters based on the simultaneous minimization of the residuals and higher orders correlation functions. The inner layer of the cascaded approach is composed of a population which represents the lags on the inputs and outputs of the system and an outer layer represents the corresponding parameters of the RBFNN. The approach is able to define both the inputs of the model and its parameters. This is interesting as it frees the designer of manual procedures, which are time consuming and prone to error, usually done to define the model inputs. We compare the proposed methodology with other works found in the literature, showing overall better results for the cascaded approach.
Marto, Aminaton; Hajihassani, Mohsen; Armaghani, Danial Jahed; Mohamad, Edy Tonnizam; Makhtar, Ahmad Mahir
2014-01-01
Flyrock is one of the major disturbances induced by blasting which may cause severe damage to nearby structures. This phenomenon has to be precisely predicted and subsequently controlled through the changing in the blast design to minimize potential risk of blasting. The scope of this study is to predict flyrock induced by blasting through a novel approach based on the combination of imperialist competitive algorithm (ICA) and artificial neural network (ANN). For this purpose, the parameters of 113 blasting operations were accurately recorded and flyrock distances were measured for each operation. By applying the sensitivity analysis, maximum charge per delay and powder factor were determined as the most influential parameters on flyrock. In the light of this analysis, two new empirical predictors were developed to predict flyrock distance. For a comparison purpose, a predeveloped backpropagation (BP) ANN was developed and the results were compared with those of the proposed ICA-ANN model and empirical predictors. The results clearly showed the superiority of the proposed ICA-ANN model in comparison with the proposed BP-ANN model and empirical approaches. PMID:25147856
Marto, Aminaton; Jahed Armaghani, Danial; Tonnizam Mohamad, Edy; Makhtar, Ahmad Mahir
2014-01-01
Flyrock is one of the major disturbances induced by blasting which may cause severe damage to nearby structures. This phenomenon has to be precisely predicted and subsequently controlled through the changing in the blast design to minimize potential risk of blasting. The scope of this study is to predict flyrock induced by blasting through a novel approach based on the combination of imperialist competitive algorithm (ICA) and artificial neural network (ANN). For this purpose, the parameters of 113 blasting operations were accurately recorded and flyrock distances were measured for each operation. By applying the sensitivity analysis, maximum charge per delay and powder factor were determined as the most influential parameters on flyrock. In the light of this analysis, two new empirical predictors were developed to predict flyrock distance. For a comparison purpose, a predeveloped backpropagation (BP) ANN was developed and the results were compared with those of the proposed ICA-ANN model and empirical predictors. The results clearly showed the superiority of the proposed ICA-ANN model in comparison with the proposed BP-ANN model and empirical approaches. PMID:25147856
NASA Astrophysics Data System (ADS)
Ahmed, M.; Gu, F.; Ball, A.
2011-07-01
Reciprocating compressors are widely used in industry for various purposes and faults occurring in them can degrade their performance, consume additional energy and even cause severe damage to the machine. Vibration monitoring techniques are often used for early fault detection and diagnosis, but it is difficult to prescribe a given set of effective diagnostic features because of the wide variety of operating conditions and the complexity of the vibration signals which originate from the many different vibrating and impact sources. This paper studies the use of genetic algorithms (GAs) and neural networks (NNs) to select effective diagnostic features for the fault diagnosis of a reciprocating compressor. A large number of common features are calculated from the time and frequency domains and envelope analysis. Applying GAs and NNs to these features found that envelope analysis has the most potential for differentiating three common faults: valve leakage, inter-cooler leakage and a loose drive belt. Simultaneously, the spread parameter of the probabilistic NN was also optimised. The selected subsets of features were examined based on vibration source characteristics. The approach developed and the trained NN are confirmed as possessing general characteristics for fault detection and diagnosis.
NASA Astrophysics Data System (ADS)
Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Yue, Chen
2015-11-01
The welded joints of dissimilar materials have been widely used in automotive, ship and space industries. The joint quality is often evaluated by weld seam geometry, microstructures and mechanical properties. To obtain the desired weld seam geometry and improve the quality of welded joints, this paper proposes a process modeling and parameter optimization method to obtain the weld seam with minimum width and desired depth of penetration for laser butt welding of dissimilar materials. During the process, Taguchi experiments are conducted on the laser welding of the low carbon steel (Q235) and stainless steel (SUS301L-HT). The experimental results are used to develop the radial basis function neural network model, and the process parameters are optimized by genetic algorithm. The proposed method is validated by a confirmation experiment. Simultaneously, the microstructures and mechanical properties of the weld seam generated from optimal process parameters are further studied by optical microscopy and tensile strength test. Compared with the unoptimized weld seam, the welding defects are eliminated in the optimized weld seam and the mechanical properties are improved. The results show that the proposed method is effective and reliable for improving the quality of welded joints in practical production.
Chiroma, Haruna; Abdul-kareem, Sameem; Khan, Abdullah; Nawi, Nazri Mohd.; Gital, Abdulsalam Ya’u; Shuib, Liyana; Abubakar, Adamu I.; Rahman, Muhammad Zubair; Herawan, Tutut
2015-01-01
Background Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC) CO2 emissions from petroleum consumption have motivated this research. Methods/Findings The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN) adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods. Conclusion An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks—hence, reducing global warming. The policy implications are discussed in the paper. PMID:26305483
Neural networks : iterative unlearning algorithm converging to the projector rule matrix
NASA Astrophysics Data System (ADS)
Plakhov, A. Yu.; Semenov, S. A.
1994-02-01
The iterative unlearning algorithm for connectivity self-correction is proposed. No presentation of patterns during the iteration process is required. Starting from the Hebbian connectivity, the convergence of the (rescaled) iterated connection matrix to the projector rule one is proven, for arbitrary set of p < N binary patterns.
Speech Emotion Feature Selection Method Based on Contribution Analysis Algorithm of Neural Network
Wang Xiaojia; Mao Qirong; Zhan Yongzhao
2008-11-06
There are many emotion features. If all these features are employed to recognize emotions, redundant features may be existed. Furthermore, recognition result is unsatisfying and the cost of feature extraction is high. In this paper, a method to select speech emotion features based on contribution analysis algorithm of NN is presented. The emotion features are selected by using contribution analysis algorithm of NN from the 95 extracted features. Cluster analysis is applied to analyze the effectiveness for the features selected, and the time of feature extraction is evaluated. Finally, 24 emotion features selected are used to recognize six speech emotions. The experiments show that this method can improve the recognition rate and the time of feature extraction.
Neural Networks for Flight Control
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1996-01-01
Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.
VLSI Cells Placement Using the Neural Networks
Azizi, Hacene; Zouaoui, Lamri; Mokhnache, Salah
2008-06-12
The artificial neural networks have been studied for several years. Their effectiveness makes it possible to expect high performances. The privileged fields of these techniques remain the recognition and classification. Various applications of optimization are also studied under the angle of the artificial neural networks. They make it possible to apply distributed heuristic algorithms. In this article, a solution to placement problem of the various cells at the time of the realization of an integrated circuit is proposed by using the KOHONEN network.
Wang, Jie-Sheng; Han, Shuang
2015-01-01
For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, a feed-forward neural network (FNN) based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO) algorithm and gravitational search algorithm (GSA) is proposed. Although GSA has better optimization capability, it has slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed hybrid algorithm is adopted to optimize the parameters of FNN soft-sensor model. Simulation results show that the model has better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:26583034
Hyperbolic Hopfield neural networks.
Kobayashi, M
2013-02-01
In recent years, several neural networks using Clifford algebra have been studied. Clifford algebra is also called geometric algebra. Complex-valued Hopfield neural networks (CHNNs) are the most popular neural networks using Clifford algebra. The aim of this brief is to construct hyperbolic HNNs (HHNNs) as an analog of CHNNs. Hyperbolic algebra is a Clifford algebra based on Lorentzian geometry. In this brief, a hyperbolic neuron is defined in a manner analogous to a phasor neuron, which is a typical complex-valued neuron model. HHNNs share common concepts with CHNNs, such as the angle and energy. However, HHNNs and CHNNs are different in several aspects. The states of hyperbolic neurons do not form a circle, and, therefore, the start and end states are not identical. In the quantized version, unlike complex-valued neurons, hyperbolic neurons have an infinite number of states. PMID:24808287
Patil, R.B.
1995-05-01
Traditional neural networks like multi-layered perceptrons (MLP) use example patterns, i.e., pairs of real-valued observation vectors, ({rvec x},{rvec y}), to approximate function {cflx f}({rvec x}) = {rvec y}. To determine the parameters of the approximation, a special version of the gradient descent method called back-propagation is widely used. In many situations, observations of the input and output variables are not precise; instead, we usually have intervals of possible values. The imprecision could be due to the limited accuracy of the measuring instrument or could reflect genuine uncertainty in the observed variables. In such situation input and output data consist of mixed data types; intervals and precise numbers. Function approximation in interval domains is considered in this paper. We discuss a modification of the classical backpropagation learning algorithm to interval domains. Results are presented with simple examples demonstrating few properties of nonlinear interval mapping as noise resistance and finding set of solutions to the function approximation problem.
Neural networks and applications tutorial
NASA Astrophysics Data System (ADS)
Guyon, I.
1991-09-01
The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.
Rangraz, Parisa; Behnam, Hamid; Shakhssalim, Naser; Tavakkoli, Jahan
2012-01-01
Non-invasive ultrasound surgeries such as high intensity focused ultrasound have been developed to treat tumors or to stop bleeding. In this technique, incorporation of a suitable imaging modality to monitor and control the treatments is essential so several imaging methods such as X-ray, Magnetic resonance imaging and ultrasound imaging have been proposed to monitor the induced thermal lesions. Currently, the only ultrasound imaging technique that is clinically used for monitoring this treatment is standard pulse-echo B-mode ultrasound imaging. This paper describes a novel method for detecting high intensity focused ultrasound-induced thermal lesions using a feed forward neural-network. This study was carried on in vitro animal tissue samples. Backscattered radio frequency signals were acquired in real-time during treatment in order to detect induced thermal lesions. Changes in various tissue properties including tissue's attenuation coefficient, integrated backscatter, scaling parameter of Nakagami distribution, frequency dependent scatterer amplitudes and tissue vibration derived from the backscattered radio frequency data acquired 10 minutes after treatment regarding to before treatment were used in this study. These estimated parameters were used as features of the neural network. Estimated parameters of two sample tissues including two thermal lesions and their segmented B-mode images were used along with the pathological results as training data for the neural network. The results of the study shows that the trained feed forward neural network could effectively detect thermal lesions in vitro. Comparing the estimated size of the thermal lesion (9.6 mm × 8.5 mm) using neural network with the actual size of that from physical examination (10.1 mm × 9 mm) shows that we could detect high intensity focused ultrasound thermal lesions with the difference of 0.5 mm × 0.5 mm. PMID:23724369
McDonnell, Mark D.; Tissera, Migel D.; Vladusich, Tony; van Schaik, André; Tapson, Jonathan
2015-01-01
Recent advances in training deep (multi-layer) architectures have inspired a renaissance in neural network use. For example, deep convolutional networks are becoming the default option for difficult tasks on large datasets, such as image and speech recognition. However, here we show that error rates below 1% on the MNIST handwritten digit benchmark can be replicated with shallow non-convolutional neural networks. This is achieved by training such networks using the ‘Extreme Learning Machine’ (ELM) approach, which also enables a very rapid training time (∼ 10 minutes). Adding distortions, as is common practise for MNIST, reduces error rates even further. Our methods are also shown to be capable of achieving less than 5.5% error rates on the NORB image database. To achieve these results, we introduce several enhancements to the standard ELM algorithm, which individually and in combination can significantly improve performance. The main innovation is to ensure each hidden-unit operates only on a randomly sized and positioned patch of each image. This form of random ‘receptive field’ sampling of the input ensures the input weight matrix is sparse, with about 90% of weights equal to zero. Furthermore, combining our methods with a small number of iterations of a single-batch backpropagation method can significantly reduce the number of hidden-units required to achieve a particular performance. Our close to state-of-the-art results for MNIST and NORB suggest that the ease of use and accuracy of the ELM algorithm for designing a single-hidden-layer neural network classifier should cause it to be given greater consideration either as a standalone method for simpler problems, or as the final classification stage in deep neural networks applied to more difficult problems. PMID:26262687
NASA Technical Reports Server (NTRS)
Baram, Yoram
1988-01-01
Nested neural networks, consisting of small interconnected subnetworks, allow for the storage and retrieval of neural state patterns of different sizes. The subnetworks are naturally categorized by layers of corresponding to spatial frequencies in the pattern field. The storage capacity and the error correction capability of the subnetworks generally increase with the degree of connectivity between layers (the nesting degree). Storage of only few subpatterns in each subnetworks results in a vast storage capacity of patterns and subpatterns in the nested network, maintaining high stability and error correction capability.
Radar and infrared data fusion algorithm based on fuzzy-neural network
NASA Astrophysics Data System (ADS)
Han, Feng; Yang, Wan Hai
2007-12-01
In modern war, the war field environment is complex and interfere is heavy, single mode weapon can not meet the military need. Multi-mode guiding weapon has some advantages for its multi-sensor data fusion. Radar and Infrared data fusion has been widely studied due to its implementation of complementary information, improvement of target tracking and enhancement of system viability. During fusing radar and infrared data under the condition of radar-infrared dual mode guidance, there is a problem that radar data is asynchronous with infrared data. The infrared measurement data is fused first to keep synchronous with the radar measurement data. The processed data is transmitted to the central Fuzzy-neutral network (FNN) data fusion central, which is employed to decrease the influence of the uncertainty of sensor state on fusion performance. A fused estimation of target is formed. Simulation result demonstrates that this method can improve the stability and reliability of fusion.
A Neural-Network Clustering-Based Algorithm for Privacy Preserving Data Mining
NASA Astrophysics Data System (ADS)
Tsiafoulis, S.; Zorkadis, V. C.; Karras, D. A.
The increasing use of fast and efficient data mining algorithms in huge collections of personal data, facilitated through the exponential growth of technology, in particular in the field of electronic data storage media and processing power, has raised serious ethical, philosophical and legal issues related to privacy protection. To cope with these concerns, several privacy preserving methodologies have been proposed, classified in two categories, methodologies that aim at protecting the sensitive data and those that aim at protecting the mining results. In our work, we focus on sensitive data protection and compare existing techniques according to their anonymity degree achieved, the information loss suffered and their performance characteristics. The ℓ-diversity principle is combined with k-anonymity concepts, so that background information can not be exploited to successfully attack the privacy of data subjects data refer to. Based on Kohonen Self Organizing Feature Maps (SOMs), we firstly organize data sets in subspaces according to their information theoretical distance to each other, then create the most relevant classes paying special attention to rare sensitive attribute values, and finally generalize attribute values to the minimum extend required so that both the data disclosure probability and the information loss are possibly kept negligible. Furthermore, we propose information theoretical measures for assessing the anonymity degree achieved and empirical tests to demonstrate it.
Kalderstam, Jonas; Edén, Patrik; Ohlsson, Mattias
2015-01-01
We investigate a new method to place patients into risk groups in censored survival data. Properties such as median survival time, and end survival rate, are implicitly improved by optimizing the area under the survival curve. Artificial neural networks (ANN) are trained to either maximize or minimize this area using a genetic algorithm, and combined into an ensemble to predict one of low, intermediate, or high risk groups. Estimated patient risk can influence treatment choices, and is important for study stratification. A common approach is to sort the patients according to a prognostic index and then group them along the quartile limits. The Cox proportional hazards model (Cox) is one example of this approach. Another method of doing risk grouping is recursive partitioning (Rpart), which constructs a decision tree where each branch point maximizes the statistical separation between the groups. ANN, Cox, and Rpart are compared on five publicly available data sets with varying properties. Cross-validation, as well as separate test sets, are used to validate the models. Results on the test sets show comparable performance, except for the smallest data set where Rpart’s predicted risk groups turn out to be inverted, an example of crossing survival curves. Cross-validation shows that all three models exhibit crossing of some survival curves on this small data set but that the ANN model manages the best separation of groups in terms of median survival time before such crossings. The conclusion is that optimizing the area under the survival curve is a viable approach to identify risk groups. Training ANNs to optimize this area combines two key strengths from both prognostic indices and Rpart. First, a desired minimum group size can be specified, as for a prognostic index. Second, the ability to utilize non-linear effects among the covariates, which Rpart is also able to do. PMID:26352405
NASA Astrophysics Data System (ADS)
Aleardi, Mattia
2015-06-01
Predicting missing log data is a useful capability for geophysicists. Geophysical measurements in boreholes are frequently affected by gaps in the recording of one or more logs. In particular, sonic and shear sonic logs are often recorded over limited intervals along the well path, but the information these logs contain is crucial for many geophysical applications. Estimating missing log intervals from a set of recorded logs is therefore of great interest. In this work, I propose to estimate the data in missing parts of velocity logs using a genetic algorithm (GA) optimisation and I demonstrate that this method is capable of extracting linear or exponential relations that link the velocity to other available logs. The technique was tested on different sets of logs (gamma ray, resistivity, density, neutron, sonic and shear sonic) from three wells drilled in different geological settings and through different lithologies (sedimentary and intrusive rocks). The effectiveness of this methodology is demonstrated by a series of blind tests and by evaluating the correlation coefficients between the true versus predicted velocity values. The combination of GA optimisation with a Gibbs sampler (GS) and subsequent Monte Carlo simulations allows the uncertainties in the final predicted velocities to be reliably quantified. The GA method is also compared with the neural networks (NN) approach and classical multilinear regression. The comparisons show that the GA, NN and multilinear methods provide velocity estimates with the same predictive capability when the relation between the input logs and the seismic velocity is approximately linear. The GA and NN approaches are more robust when the relations are non-linear. However, in all cases, the main advantages of the GA optimisation procedure over the NN approach is that it directly provides an interpretable and simple equation that relates the input and predicted logs. Moreover, the GA method is not affected by the disadvantages
Advances in Artificial Neural Networks - Methodological Development and Application
Technology Transfer Automated Retrieval System (TEKTRAN)
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...
Generalized Adaptive Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1993-01-01
Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.
NASA Astrophysics Data System (ADS)
Gupta, R. K.; Prasad, T. S.; Vijayan, D.; Balamanikavelu, P. M.
Due to mix-up of contributions from varied features on the ground surface, getting back of individual feature in remote sensing data using pattern recognition techniques is an ill-defined inverse problem. By placing maximum likelihood (ML) constraint, the available operational softwares classify the image. Without placing any parametric constraint, the image could also be classified using artificial neural networks (ANN). As GIS overlay, developed professionally by forest officials, was available for Antilova reserve forest in Andhra Pradesh, India (170 50^' to 170 56^' N, 810 45^' to 810 54^' E), the IRS-1C LISS-III image of February 11, 1999 was used for assessing the limits of classification accuracy attainable from ML and ANN classifiers. In ML classifier, full GIS overlay was used to give training sets over whole of the image (approach `a') and in approach `b', a priori probability (normally taken equal for all the classes in operational softwares) was assigned (in addition to full spectral signature) based on the fraction areas under each class in GIS overlay. Under such ideal situation of inputs, the achieved accuracy, i.e. Kappa coefficients were 0.709 and 0.735 for approaches `a' and `b' , respectively (called iteration `0'). Using fraction area under each class in the classified output to assign a priori probability for the next iteration, the convergence (within 2% variation) was achieved for 2nd and 3rd iterations with Kappa coefficient values of 0.773 and 0.797 for approaches `a' and `b', respectively. The non-attaining of 100% classification accuracy under ideal inputs situation could be due to assumption of guassian distribution in spectral signatures. In back propagation technique based ANN classifier, spectral signatures for training were identified from GIS overlay. The number of learning iterations were 20,000 with momentum and learning rate of 0.7 and 0.25, respectively. With one hidden layer the Kappa coefficient for ANN classifier was 0
Improved Autoassociative Neural Networks
NASA Technical Reports Server (NTRS)
Hand, Charles
2003-01-01
Improved autoassociative neural networks, denoted nexi, have been proposed for use in controlling autonomous robots, including mobile exploratory robots of the biomorphic type. In comparison with conventional autoassociative neural networks, nexi would be more complex but more capable in that they could be trained to do more complex tasks. A nexus would use bit weights and simple arithmetic in a manner that would enable training and operation without a central processing unit, programs, weight registers, or large amounts of memory. Only a relatively small amount of memory (to hold the bit weights) and a simple logic application- specific integrated circuit would be needed. A description of autoassociative neural networks is prerequisite to a meaningful description of a nexus. An autoassociative network is a set of neurons that are completely connected in the sense that each neuron receives input from, and sends output to, all the other neurons. (In some instantiations, a neuron could also send output back to its own input terminal.) The state of a neuron is completely determined by the inner product of its inputs with weights associated with its input channel. Setting the weights sets the behavior of the network. The neurons of an autoassociative network are usually regarded as comprising a row or vector. Time is a quantized phenomenon for most autoassociative networks in the sense that time proceeds in discrete steps. At each time step, the row of neurons forms a pattern: some neurons are firing, some are not. Hence, the current state of an autoassociative network can be described with a single binary vector. As time goes by, the network changes the vector. Autoassociative networks move vectors over hyperspace landscapes of possibilities.
Medical image analysis with artificial neural networks.
Jiang, J; Trundle, P; Ren, J
2010-12-01
Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. PMID:20713305
Neural network with formed dynamics of activity
Dunin-Barkovskii, V.L.; Osovets, N.B.
1995-03-01
The problem of developing a neural network with a given pattern of the state sequence is considered. A neural network structure and an algorithm, of forming its bond matrix which lead to an approximate but robust solution of the problem are proposed and discussed. Limiting characteristics of the serviceability of the proposed structure are studied. Various methods of visualizing dynamic processes in a neural network are compared. Possible applications of the results obtained for interpretation of neurophysiological data and in neuroinformatics systems are discussed.
A new formulation for feedforward neural networks.
Razavi, Saman; Tolson, Bryan A
2011-10-01
Feedforward neural network is one of the most commonly used function approximation techniques and has been applied to a wide variety of problems arising from various disciplines. However, neural networks are black-box models having multiple challenges/difficulties associated with training and generalization. This paper initially looks into the internal behavior of neural networks and develops a detailed interpretation of the neural network functional geometry. Based on this geometrical interpretation, a new set of variables describing neural networks is proposed as a more effective and geometrically interpretable alternative to the traditional set of network weights and biases. Then, this paper develops a new formulation for neural networks with respect to the newly defined variables; this reformulated neural network (ReNN) is equivalent to the common feedforward neural network but has a less complex error response surface. To demonstrate the learning ability of ReNN, in this paper, two training methods involving a derivative-based (a variation of backpropagation) and a derivative-free optimization algorithms are employed. Moreover, a new measure of regularization on the basis of the developed geometrical interpretation is proposed to evaluate and improve the generalization ability of neural networks. The value of the proposed geometrical interpretation, the ReNN approach, and the new regularization measure are demonstrated across multiple test problems. Results show that ReNN can be trained more effectively and efficiently compared to the common neural networks and the proposed regularization measure is an effective indicator of how a network would perform in terms of generalization. PMID:21859600