Glen R. Longhurst
2008-12-01
The TMAP Code was written at the Idaho National Engineering and Environmental Laboratory by Brad Merrill and James Jones in the late 1980s as a tool for safety analysis of systems involving tritium. Since then it was upgraded to TMAP4 and has been used in numerous applications including experiments supporting fusion safety, predictions for advanced systems such as the International Thermonuclear Experimental Reactor (ITER), and estimates involving tritium production technologies. Its further upgrade to TMAP2000 and now to TMAP7 was accomplished in response to several needs. TMAP and TMAP4 had the capacity to deal with only a single trap for diffusing gaseous species in solid structures. TMAP7 includes up to three separate traps and up to 10 diffusing species. The original code had difficulty dealing with heteronuclear molecule formation such as HD and DT under solution-law dependent diffusion boundary conditions. That difficulty has been overcome. TMAP7 automatically generates heteronuclear molecular partial pressures when solubilities and partial pressures of the homonuclear molecular species are provided for law-dependent diffusion boundary conditions. A further sophistication is the addition of non-diffusing surface species. Atoms such as oxygen or nitrogen or formation and decay or combination of hydroxyl radicals on metal surfaces are sometimes important in reactions with diffusing hydrogen isotopes but do not themselves diffuse appreciably in the material. TMAP7 will accommodate up to 30 such surface species, allowing the user to specify relationships between those surface concentrations and partial pressures of gaseous species above the surfaces or to form them dynamically by combining diffusion species or other surface species. Additionally, TMAP7 allows the user to include a surface binding energy and an adsorption barrier energy. The code includes asymmetrical diffusion between the surface sites and regular diffusion sites in the bulk. All of the
Longhurst, G.R.; Merrill, B.J.; Jones, J.L.
2000-10-31
The TMAP Code was written in the late 1980s as a tool for safety analysis of systems involving tritium. Since then it was upgraded to TMAP4 and used in numerous applications including experiments supporting fusion safety predictions for advanced systems such as the International Thermonuclear Experimental Reactor (ITER), and estimates involving tritium production technologies. Its further upgrade to TMAP2000 was accomplished in response to several needs. TMAP and TMAP4 had the capacity to deal with only a single trap for diffusing gaseous species in solid structures. TMAP2000 has been revised to include up to three separate traps and to keep track separately of each of up to 10 diffusing species in each of the traps. A difficulty in the original code dealing with heteronuclear molecule formation such as HD and DT has been removed. Under equilibrium boundary conditions such as Sieverts' law, TMAP2000 generates heteronuclear molecular partial pressures when solubilities and partial pressures of the homonuclear molecular species and the equilibrium stoichiometry are provided. A further sophistication is the addition of non-diffusing surface species and surface binding energy dynamics options. Atoms such as oxygen or nitrogen on metal surfaces are sometimes important in molecule formation with diffusing hydrogen isotopes but do not themselves diffuse appreciably in the material. TMAP2000 will accommodate up to 30 such surface species, allowing the user to specify relationships between those surface concentrations and populations of gaseous species above the surfaces. Additionally, TMAP2000 allows the user to include a surface binding energy and an adsorption barrier energy and includes asymmetrical diffusion between the surface sites and regular diffusion sites in the bulk. All of the previously existing features for heat transfer, flows between enclosures, and chemical reactions within the enclosures have been retained, but the allowed problem size and complexity have
Longhurst, Glen Reed; Merrill, Brad Johnson; Jones, James Litton
2000-10-01
The TMAP Code was written in the late 1980s as a tool for safety analysis of systems involving tritium. Since then it was upgraded to TMAP4 and used in numerous applications including experiments supporting fusion safety predictions for advanced systems such as the International Thermonuclear Experimental Reactor (ITER), and estimates involving tritium production technologies. Its further upgrade to TMAP2000 was accomplished in response to several needs. TMAP and TMAP4 had the capacity to deal with only a single trap for diffusing gaseous species in solid structures. TMAP2000 has been revised to include up to three separate traps and to keep track separately of each of up to 10 diffusing species in each of the traps. A difficulty in the original code dealing with heteronuclear molecule formation such as HD and DT has been removed. Under equilibrium boundary conditions such as Sieverts' law, TMAP2000 generates heteronuclear molecular partial pressures when solubilities and partial pressures of the homonuclear molecular species and the equilibrium stoichiometry are provided. A further sophistication is the addition of non-diffusing surface species and surface binding energy dynamics options. Atoms such as oxygen or nitrogen on metal surfaces are sometimes important in molecule formation with diffusing hydrogen isotopes but do not themselves diffuse appreciably in the material. TMAP2000 will accommodate up to 30 such surface species, allowing the user to specify relationships between those surface concentrations and populations of gaseous species above the surfaces. Additionally, TMAP2000 allows the user to include a surface binding energy and an adsorption barrier energy and includes asymmetrical diffusion between the surface sites and regular diffusion sites in the bulk. All of the previously existing features for heat transfer, flows between enclosures, and chemical reactions within the enclosures have been retained, but the allowed problem size and complexity have
Glen R. Longhurst
2006-09-01
The TMAP Code was written at the Idaho National Engineering and Environmental Laboratory by Brad Merrill and James Jones in the late 1980s as a tool for safety analysis of systems involving tritium. Since then it has been upgraded to TMAP4 and has been used in numerous applications including experiments supporting fusion safety, predictions for advanced systems such as the International Thermonuclear Experimental Reactor (ITER), and estimates involving tritium production technologies. Its further upgrade to TMAP2000 and now to TMAP7 was accomplished in response to several needs. TMAP and TMAP4 had the capacity to deal with only a single trap for diffusing gaseous species in solid structures. TMAP7 includes up to three separate traps and up to 10 diffusing species. The original code had difficulty dealing with heteronuclear molecule formation such as HD and DT. That has been removed. Under pre-specified boundary enclosure conditions and solution-law dependent diffusion boundary conditions, such as Sieverts' law, TMAP7 automatically generates heteronuclear molecular partial pressures when solubilities and partial pressures of the homonuclear molecular species are provided for law-dependent diffusion boundary conditions. A further sophistication is the addition of non-diffusing surface species. Atoms such as oxygen or nitrogen or formation and decay or combination of hydroxyl radicals on metal surfaces are sometimes important in reactions with diffusing hydrogen isotopes but do not themselves diffuse appreciably in the material. TMAP7 will accommodate up to 30 such surface species, allowing the user to specify relationships between those surface concentrations and partial pressures of gaseous species above the surfaces or to form them dynamically by combining diffusion species or other surface species. Additionally, TMAP7 allows the user to include a surface binding energy and an adsorption barrier energy. The code includes asymmetrical diffusion between the surface
Longhurst, G.R.; Holland, D.F.; Jones, J.L.; Merrill, B.J.
1992-06-12
The Tritium Migration Analysis Program, Version 4 (TMAP4) has been developed by the Fusion Safety Program at the Idaho National Engineering Laboratory (INEL) as a safety analysis code, mainly to analyze tritium retention and loss in fusion reactor structures and systems during normal operation and accident conditions. TMAP4 incorporates one-dimensional thermal- and mass-diffusive transport and trapping calculations through structures and zero dimensional fluid transport between enclosures and across the interface between enclosures and structures. A key feature is the ability to input problem definition parameters as constants, interpolation tables, or FORTRAN equations. The code is specifically intended for use under a DOS operating system on PC-type mini-computers, but it has also been run successfully on workstations and mainframe computer systems. Use of the equation-input feature requires access to a FORTRAN-77 compiler and a linker program.
Verification and Validation of TMAP7
James Ambrosek; James Ambrosek
2008-12-01
The Tritium Migration Analysis Program, Version 7 (TMAP7) code is an update of TMAP4, an earlier version that was verified and validated in support of the International Thermonuclear Experimental Reactor (ITER) program and of the intermediate version TMAP2000. It has undergone several revisions. The current one includes radioactive decay, multiple trap capability, more realistic treatment of heteronuclear molecular formation at surfaces, processes that involve surface-only species, and a number of other improvements. Prior to code utilization, it needed to be verified and validated to ensure that the code is performing as it was intended and that its predictions are consistent with physical reality. To that end, the demonstration and comparison problems cited here show that the code results agree with analytical solutions for select problems where analytical solutions are straightforward or with results from other verified and validated codes, and that actual experimental results can be accurately replicated using reasonable models with this code. These results and their documentation in this report are necessary steps in the qualification of TMAP7 for its intended service.
Verification and Validation of TMAP7
James Ambrosek; James Ambrosek
2005-12-01
The Tritium Migration Analysis Program, Version 7 (TMAP7) code is an update of TMAP4, an earlier version that was verified and validated in support of the International Thermonuclear Experimental Reactor (ITER) program and of the intermediate version TMAP2000. It has undergone several revisions. The current one includes radioactive decay, multiple trap capability, more realistic treatment of heteronuclear molecular formation at surfaces, processes that involve surface-only species, and a number of other improvements. Prior to code utilization, it needed to be verified and validated to ensure that the code is performing as it was intended and that its predictions are consistent with physical reality. To that end, the demonstration and comparison problems cited here show that the code results agree with analytical solutions for select problems where analytical solutions are straightforward or with results from other verified and validated codes, and that actual experimental results can be accurately replicated using reasonable models with this code. These results and their documentation in this report are necessary steps in the qualification of TMAP7 for its intended service.
Longhurst, G.R.; Holland, D.F.; Jones, J.L.; Merrill, B.J.
1992-06-12
The Tritium Migration Analysis Program, Version 4 (TMAP4) has been developed by the Fusion Safety Program at the Idaho National Engineering Laboratory (INEL) as a safety analysis code, mainly to analyze tritium retention and loss in fusion reactor structures and systems during normal operation and accident conditions. TMAP4 incorporates one-dimensional thermal- and mass-diffusive transport and trapping calculations through structures and zero dimensional fluid transport between enclosures and across the interface between enclosures and structures. A key feature is the ability to input problem definition parameters as constants, interpolation tables, or FORTRAN equations. The code is specifically intended for use under a DOS operating system on PC-type mini-computers, but it has also been run successfully on workstations and mainframe computer systems. Use of the equation-input feature requires access to a FORTRAN-77 compiler and a linker program.
Verification and validation of TMAP4
Longhurst, G.R.; Harms, S.L.; Marwil, E.S.; Miller, B.G.
1992-07-08
The Tritium Migration Analysis Program MODl/CY04 (TMAP4) was written to be used in analyzing experiments and for safety calculations that involve the injection, solution, diffusion, trapping, release, and other related processes experienced by hydrogen isotopes in materials. Because of the desire to make it suitable for analyzing safety issues, it is important that TMAP4 be certified (verified and validated) at Quality Assurance Level A. This report documents the work done to achieve that certification. The process includes assuring that the developed code meets the software requirements specified in the Software Quality Assurance Plan, verifying that the code functions in accordance with the written description and that it is self-consistent and internally correct, and validating that its computed results are in agreement with experimental data and/or known analytical solutions. Quality Level A certification for TMAP4 is specifically for implementation on an IBM PS/2 Model 70 operating under DOS 5.0. Certification for any other environment will require demonstration that all of the verification and validation tests documented here give the same results in the new environment.
Project resource reallocation algorithm
NASA Technical Reports Server (NTRS)
Myers, J. E.
1981-01-01
A methodology for adjusting baseline cost estimates according to project schedule changes is described. An algorithm which performs a linear expansion or contraction of the baseline project resource distribution in proportion to the project schedule expansion or contraction is presented. Input to the algorithm consists of the deck of cards (PACE input data) prepared for the baseline project schedule as well as a specification of the nature of the baseline schedule change. Output of the algorithm is a new deck of cards with all work breakdown structure block and element of cost estimates redistributed for the new project schedule. This new deck can be processed through PACE to produce a detailed cost estimate for the new schedule.
Cascade Error Projection Learning Algorithm
NASA Technical Reports Server (NTRS)
Duong, T. A.; Stubberud, A. R.; Daud, T.
1995-01-01
A detailed mathematical analysis is presented for a new learning algorithm termed cascade error projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters.
Projection Classification Based Iterative Algorithm
NASA Astrophysics Data System (ADS)
Zhang, Ruiqiu; Li, Chen; Gao, Wenhua
2015-05-01
Iterative algorithm has good performance as it does not need complete projection data in 3D image reconstruction area. It is possible to be applied in BGA based solder joints inspection but with low convergence speed which usually acts with x-ray Laminography that has a worse reconstruction image compared to the former one. This paper explores to apply one projection classification based method which tries to separate the object to three parts, i.e. solute, solution and air, and suppose that the reconstruction speed decrease from solution to two other parts on both side lineally. And then SART and CAV algorithms are improved under the proposed idea. Simulation experiment result with incomplete projection images indicates the fast convergence speed of the improved iterative algorithms and the effectiveness of the proposed method. Less the projection images, more the superiority is also founded.
TMAP: Tübingen NLTE Model-Atmosphere Package
NASA Astrophysics Data System (ADS)
Werner, Klaus; Dreizler, Stefan; Rauch, Thomas
2012-12-01
The Tübingen NLTE Model-Atmosphere Package (TMAP) is a tool to calculate stellar atmospheres in spherical or plane-parallel geometry in hydrostatic and radiative equilibrium allowing departures from local thermodynamic equilibrium (LTE) for the population of atomic levels. It is based on the Accelerated Lambda Iteration (ALI) method and is able to account for line blanketing by metals. All elements from hydrogen to nickel may be included in the calculation with model atoms which are tailored for the aims of the user.
HEATR project: ATR algorithm parallelization
NASA Astrophysics Data System (ADS)
Deardorf, Catherine E.
1998-09-01
High Performance Computing (HPC) Embedded Application for Target Recognition (HEATR) is a project funded by the High Performance Computing Modernization Office through the Common HPC Software Support Initiative (CHSSI). The goal of CHSSI is to produce portable, parallel, multi-purpose, freely distributable, support software to exploit emerging parallel computing technologies and enable application of scalable HPC's for various critical DoD applications. Specifically, the CHSSI goal for HEATR is to provide portable, parallel versions of several existing ATR detection and classification algorithms to the ATR-user community to achieve near real-time capability. The HEATR project will create parallel versions of existing automatic target recognition (ATR) detection and classification algorithms and generate reusable code that will support porting and software development process for ATR HPC software. The HEATR Team has selected detection/classification algorithms from both the model- based and training-based (template-based) arena in order to consider the parallelization requirements for detection/classification algorithms across ATR technology. This would allow the Team to assess the impact that parallelization would have on detection/classification performance across ATR technology. A field demo is included in this project. Finally, any parallel tools produced to support the project will be refined and returned to the ATR user community along with the parallel ATR algorithms. This paper will review: (1) HPCMP structure as it relates to HEATR, (2) Overall structure of the HEATR project, (3) Preliminary results for the first algorithm Alpha Test, (4) CHSSI requirements for HEATR, and (5) Project management issues and lessons learned.
Reimold, Matthias; Slifstein, Mark; Heinz, Andreas; Mueller-Schauenburg, Wolfgang; Bares, Roland
2006-06-01
Voxelwise statistical analysis has become popular in explorative functional brain mapping with fMRI or PET. Usually, results are presented as voxelwise levels of significance (t-maps), and for clusters that survive correction for multiple testing the coordinates of the maximum t-value are reported. Before calculating a voxelwise statistical test, spatial smoothing is required to achieve a reasonable statistical power. Little attention is being given to the fact that smoothing has a nonlinear effect on the voxel variances and thus the local characteristics of a t-map, which becomes most evident after smoothing over different types of tissue. We investigated the related artifacts, for example, white matter peaks whose position depend on the relative variance (variance over contrast) of the surrounding regions, and suggest improving spatial precision with 'masked contrast images': color-codes are attributed to the voxelwise contrast, and significant clusters (e.g., detected with statistical parametric mapping, SPM) are enlarged by including contiguous pixels with a contrast above the mean contrast in the original cluster, provided they satisfy P < 0.05. The potential benefit is demonstrated with simulations and data from a [11C]Carfentanil PET study. We conclude that spatial smoothing may lead to critical, sometimes-counterintuitive artifacts in t-maps, especially in subcortical brain regions. If significant clusters are detected, for example, with SPM, the suggested method is one way to improve spatial precision and may give the investigator a more direct sense of the underlying data. Its simplicity and the fact that no further assumptions are needed make it a useful complement for standard methods of statistical mapping. PMID:16208316
Cascade Error Projection: A New Learning Algorithm
NASA Technical Reports Server (NTRS)
Duong, T. A.; Stubberud, A. R.; Daud, T.; Thakoor, A. P.
1995-01-01
A new neural network architecture and a hardware implementable learning algorithm is proposed. The algorithm, called cascade error projection (CEP), handles lack of precision and circuit noise better than existing algorithms.
TMAP [Teleoperated Mobile Antiarmor Platform]: The Army`s near term entree to battlefield robotics
Simmons, R.K.
1988-05-01
TMAP is a remotely operated battlefield system consisting of a 750-pound all terrain vehicle, remotely operated by a solider over a fiber optic communication link 4 km long. Using state-of-the-art automation and robotic technology, Martin Marietta Aero and Naval Systems is developing a modular prototype system under contract to Sandia National Laboratories. The Army Material developer is the Missile Command (MICOM) at Huntsville, Alabama; the Combat Developer is the Infantry School (USAIS) at Ft. Benning, Georgia. With the weapons removed by Congress in December 1987, the O & O is being rewritten for a ``Tactical Multipurpose Automated Platform`` (TMAP) instead of the original Teleoperated Mobile Antiarmor Platform. With minimal modification the modular TMAP system can be used in many applications (eg., antiarmor or antiair weapons, mine detection, medical support). System acceptance and Army evaluation testing is scheduled for summer and fall of 1988. 9 figs., 2 tabs.
[Orthogonal Vector Projection Algorithm for Spectral Unmixing].
Song, Mei-ping; Xu, Xing-wei; Chang, Chein-I; An, Ju-bai; Yao, Li
2015-12-01
Spectrum unmixing is an important part of hyperspectral technologies, which is essential for material quantity analysis in hyperspectral imagery. Most linear unmixing algorithms require computations of matrix multiplication and matrix inversion or matrix determination. These are difficult for programming, especially hard for realization on hardware. At the same time, the computation costs of the algorithms increase significantly as the number of endmembers grows. Here, based on the traditional algorithm Orthogonal Subspace Projection, a new method called. Orthogonal Vector Projection is prompted using orthogonal principle. It simplifies this process by avoiding matrix multiplication and inversion. It firstly computes the final orthogonal vector via Gram-Schmidt process for each endmember spectrum. And then, these orthogonal vectors are used as projection vector for the pixel signature. The unconstrained abundance can be obtained directly by projecting the signature to the projection vectors, and computing the ratio of projected vector length and orthogonal vector length. Compared to the Orthogonal Subspace Projection and Least Squares Error algorithms, this method does not need matrix inversion, which is much computation costing and hard to implement on hardware. It just completes the orthogonalization process by repeated vector operations, easy for application on both parallel computation and hardware. The reasonability of the algorithm is proved by its relationship with Orthogonal Sub-space Projection and Least Squares Error algorithms. And its computational complexity is also compared with the other two algorithms', which is the lowest one. At last, the experimental results on synthetic image and real image are also provided, giving another evidence for effectiveness of the method. PMID:26964231
Jeon, Sang-Min; Choi, Bongkun; Hong, Kyung Uk; Kim, Eunhee; Seong, Yeon-Sun; Bae, Chang-Dae; Park, Joobae . E-mail: jbpark@med.skku.ac.kr
2006-09-15
Previously, we reported the cloning of a cytoskeleton-associated protein, TMAP/CKAP2, which was up-regulated in primary human gastric cancers. Although TMAP/CKAP2 has been found to be expressed in most cancer cell lines examined, the function of CKAP2 is not known. In this study, we found that TMAP/CKAP2 was not expressed in G0/G1 arrested HFFs, but that it was expressed in actively dividing cells. After initiating the cell cycle, TMAP/CKAP2 levels remained low throughout most of the G1 phase, but gradually increased between late G1 and G2/M. Knockdown of TMAP/CKAP2 reduced pRB phosphorylation and increased p27 expression, and consequently reduced HFF proliferation, whereas constitutive TMAP/CKAP2 expression increased pRB phosphorylation and enhanced proliferation. Our results show that this novel cytoskeleton-associated protein is expressed cell cycle dependently and that it is involved in cell proliferation.
Density equalizing map projections: A new algorithm
Merrill, D.W.; Selvin, S.; Mohr, M.S.
1992-02-01
In the study of geographic disease clusters, an alternative to traditional methods based on rates is to analyze case locations on a transformed map in which population density is everywhere equal. Although the analyst`s task is thereby simplified, the specification of the density equalizing map projection (DEMP) itself is not simple and continues to be the subject of considerable research. Here a new DEMP algorithm is described, which avoids some of the difficulties of earlier approaches. The new algorithm (a) avoids illegal overlapping of transformed polygons; (b) finds the unique solution that minimizes map distortion; (c) provides constant magnification over each map polygon; (d) defines a continuous transformation over the entire map domain; (e) defines an inverse transformation; (f) can accept optional constraints such as fixed boundaries; and (g) can use commercially supported minimization software. Work is continuing to improve computing efficiency and improve the algorithm.
Density equalizing map projections: A new algorithm
Merrill, D.W.; Selvin, S.; Mohr, M.S.
1992-02-01
In the study of geographic disease clusters, an alternative to traditional methods based on rates is to analyze case locations on a transformed map in which population density is everywhere equal. Although the analyst's task is thereby simplified, the specification of the density equalizing map projection (DEMP) itself is not simple and continues to be the subject of considerable research. Here a new DEMP algorithm is described, which avoids some of the difficulties of earlier approaches. The new algorithm (a) avoids illegal overlapping of transformed polygons; (b) finds the unique solution that minimizes map distortion; (c) provides constant magnification over each map polygon; (d) defines a continuous transformation over the entire map domain; (e) defines an inverse transformation; (f) can accept optional constraints such as fixed boundaries; and (g) can use commercially supported minimization software. Work is continuing to improve computing efficiency and improve the algorithm.
Sliding Window Generalized Kernel Affine Projection Algorithm Using Projection Mappings
NASA Astrophysics Data System (ADS)
Slavakis, Konstantinos; Theodoridis, Sergios
2008-12-01
Very recently, a solution to the kernel-based online classification problem has been given by the adaptive projected subgradient method (APSM). The developed algorithm can be considered as a generalization of a kernel affine projection algorithm (APA) and the kernel normalized least mean squares (NLMS). Furthermore, sparsification of the resulting kernel series expansion was achieved by imposing a closed ball (convex set) constraint on the norm of the classifiers. This paper presents another sparsification method for the APSM approach to the online classification task by generating a sequence of linear subspaces in a reproducing kernel Hilbert space (RKHS). To cope with the inherent memory limitations of online systems and to embed tracking capabilities to the design, an upper bound on the dimension of the linear subspaces is imposed. The underlying principle of the design is the notion of projection mappings. Classification is performed by metric projection mappings, sparsification is achieved by orthogonal projections, while the online system's memory requirements and tracking are attained by oblique projections. The resulting sparsification scheme shows strong similarities with the classical sliding window adaptive schemes. The proposed design is validated by the adaptive equalization problem of a nonlinear communication channel, and is compared with classical and recent stochastic gradient descent techniques, as well as with the APSM's solution where sparsification is performed by a closed ball constraint on the norm of the classifiers.
Cascade Error Projection: An Efficient Hardware Learning Algorithm
NASA Technical Reports Server (NTRS)
Duong, T. A.
1995-01-01
A new learning algorithm termed cascade error projection (CEP) is presented. CEP is an adaption of a constructive architecture from cascade correlation and the dynamical stepsize of A/D conversion from the cascade back propagation algorithm.
Fast image matching algorithm based on projection characteristics
NASA Astrophysics Data System (ADS)
Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun
2011-06-01
Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.
An affine projection algorithm using grouping selection of input vectors
NASA Astrophysics Data System (ADS)
Shin, JaeWook; Kong, NamWoong; Park, PooGyeon
2011-10-01
This paper present an affine projection algorithm (APA) using grouping selection of input vectors. To improve the performance of conventional APA, the proposed algorithm adjusts the number of the input vectors using two procedures: grouping procedure and selection procedure. In grouping procedure, the some input vectors that have overlapping information for update is grouped using normalized inner product. Then, few input vectors that have enough information for for coefficient update is selected using steady-state mean square error (MSE) in selection procedure. Finally, the filter coefficients update using selected input vectors. The experimental results show that the proposed algorithm has small steady-state estimation errors comparing with the existing algorithms.
Preconditioned Alternating Projection Algorithms for Maximum a Posteriori ECT Reconstruction.
Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng
2012-11-01
We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constrain involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the preconditioned alternating projection algorithm. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality. PMID:23271835
Preconditioned Alternating Projection Algorithms for Maximum a Posteriori ECT Reconstruction
Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng
2012-01-01
We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constrain involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the preconditioned alternating projection algorithm. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality. PMID:23271835
The Coastcolour project regional algorithm round robin exercise
NASA Astrophysics Data System (ADS)
Ruddick, K.; Brockmann, C.; Doerffer, R.; Lee, Z.; Brotas, V.; Fomferra, N.; Groom, S.; Krasemann, H.; Martinez-Vicente, V.; Sa, C.; Santer, R.; Sathyendranath, S.; Stelzer, K.; Pinnock, S.
2010-10-01
The MERIS instrument delivers a unique dataset of ocean colour measurements of the coastal zone, at 300m resolution and with a unique spectral band set. The motivation for the Coastcolour project is to fully exploit the potential of the MERIS instrument for remote sensing of the coastal zone. The general objective of the project is to develop, demonstrate, validate and intercompare different processing algorithms for MERIS over a global range of coastal water types in order to identify best practices. In this paper the Coastcolour project is presented in general and the Regional Algorithm Round Robin (RARR) exercise is described in detail. The RARR has the objective of determining the best approach to retrieval of chlorophyll a and other marine products (e.g. Inherent Optical Properties) for each of the Coastcolour coastal water test sites. Benchmark datasets of reflectances at MERIS bands will be distributed to algorithm provider participants for testing of both global (Coastcolour and other) algorithms and site-specific local algorithms. Results from all algorithms will be analysed and compared according to a uniform methodology. Participation of algorithm providers from outside the Coastcolour consortium is encouraged.
A unified evaluation of iterative projection algorithms for phase retrieval
Marchesini, S
2006-03-08
Iterative projection algorithms are successfully being used as a substitute of lenses to recombine, numerically rather than optically, light scattered by illuminated objects. Images obtained computationally allow aberration-free diffraction-limited imaging and allow new types of imaging using radiation for which no lenses exist. The challenge of this imaging technique is transferred from the lenses to the algorithms. We evaluate these new computational ''instruments'' developed for the phase retrieval problem, and discuss acceleration strategies.
OTG-snpcaller: An Optimized Pipeline Based on TMAP and GATK for SNP Calling from Ion Torrent Data
Huang, Wenpan; Xi, Feng; Lin, Lin; Zhi, Qihuan; Zhang, Wenwei; Tang, Y. Tom; Geng, Chunyu; Lu, Zhiyuan; Xu, Xun
2014-01-01
Because the new Proton platform from Life Technologies produced markedly different data from those of the Illumina platform, the conventional Illumina data analysis pipeline could not be used directly. We developed an optimized SNP calling method using TMAP and GATK (OTG-snpcaller). This method combined our own optimized processes, Remove Duplicates According to AS Tag (RDAST) and Alignment Optimize Structure (AOS), together with TMAP and GATK, to call SNPs from Proton data. We sequenced four sets of exomes captured by Agilent SureSelect and NimbleGen SeqCap EZ Kit, using Life Technology’s Ion Proton sequencer. Then we applied OTG-snpcaller and compared our results with the results from Torrent Variants Caller. The results indicated that OTG-snpcaller can reduce both false positive and false negative rates. Moreover, we compared our results with Illumina results generated by GATK best practices, and we found that the results of these two platforms were comparable. The good performance in variant calling using GATK best practices can be primarily attributed to the high quality of the Illumina sequences. PMID:24824529
An improved back projection algorithm of ultrasound tomography
NASA Astrophysics Data System (ADS)
Xiaozhen, Chen; Mingxu, Su; Xiaoshu, Cai
2014-04-01
Binary logic back projection algorithm is improved in this work for the development of fast ultrasound tomography system with a better effect of image reconstruction. The new algorithm is characterized by an extra logical value `2' and dual-threshold processing of collected raw data. To compare with the original algorithm, a numerical simulation was conducted by the verification of COMSOL simulations formerly, and then a set of ultrasonic tomography system is established to perform the experiments of one, two and three cylindrical objects. The object images are reconstructed through the inversion of signals matrix acquired by the transducer array after a preconditioning, while the corresponding spatial imaging errors can obviously indicate that the improved back projection method can achieve modified inversion effect.
A Turn-Projected State-Based Conflict Resolution Algorithm
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Lewis, Timothy A.
2013-01-01
State-based conflict detection and resolution (CD&R) algorithms detect conflicts and resolve them on the basis on current state information without the use of additional intent information from aircraft flight plans. Therefore, the prediction of the trajectory of aircraft is based solely upon the position and velocity vectors of the traffic aircraft. Most CD&R algorithms project the traffic state using only the current state vectors. However, the past state vectors can be used to make a better prediction of the future trajectory of the traffic aircraft. This paper explores the idea of using past state vectors to detect traffic turns and resolve conflicts caused by these turns using a non-linear projection of the traffic state. A new algorithm based on this idea is presented and validated using a fast-time simulator developed for this study.
An improved back projection algorithm of ultrasound tomography
Xiaozhen, Chen; Mingxu, Su; Xiaoshu, Cai
2014-04-11
Binary logic back projection algorithm is improved in this work for the development of fast ultrasound tomography system with a better effect of image reconstruction. The new algorithm is characterized by an extra logical value ‘2’ and dual-threshold processing of collected raw data. To compare with the original algorithm, a numerical simulation was conducted by the verification of COMSOL simulations formerly, and then a set of ultrasonic tomography system is established to perform the experiments of one, two and three cylindrical objects. The object images are reconstructed through the inversion of signals matrix acquired by the transducer array after a preconditioning, while the corresponding spatial imaging errors can obviously indicate that the improved back projection method can achieve modified inversion effect.
The PRISM project: Infrastructure and algorithms for parallel eigensolvers
Bischof, C.; Sun, X.; Huss-Lederman, S.; Tsao, A.
1993-12-31
The goal of the PRISM project is the development of infrastructure and algorithms for the parallel solution of eigenvalue problems. We are currently investigating a complete eigensolver based on the Invariant Subspace Decomposition Algorithm for dense symmetric matrices (SYISDA). After briefly reviewing the SYISDA approach, we discuss the algorithmic highlights of a distributed-memory implementation of an eigensolver based on this approach. These include a fast matrix-matrix multiplication algorithm, a new approach to parallel band reduction and tridiagonalization, and a harness for coordinating the divide-and-conquer parallelism in the problem. We also present performance results of these kernels as well as the overall SYISDA implementation on the Intel Touchstone Delta prototype and the IBM SP/1.
Secure 3D watermarking algorithm based on point set projection
NASA Astrophysics Data System (ADS)
Liu, Quan; Zhang, Xiaomei
2007-11-01
3D digital models greatly facilitate the distribution and storage of information. While its copyright protection problems attract more and more research interests. A novel secure digital watermarking algorithm for 3D models is proposed in this paper. In order to survive most attacks like rotation, cropping, smoothing, adding noise, etc, the projection of the model's point set is chosen as the carrier of the watermark in the presented algorithm, in which contains the copyright information as logos, text, and so on. Then projection of the model's point set onto x, y and z plane are calculated respectively. Before watermark embedding process, the original watermark is scrambled by a key. Each projection is singular value decomposed, and the scrambled watermark is embedded into the SVD(singular value decomposed) domain of the above x, y and z plane respectively. After that we use the watermarked x, y and z plane to recover the vertices of the model and the watermarked model is attained. Only the legal user can remove the watermark from the watermarked models using the private key. Experiments are presented in the paper to show that the proposed algorithm has good performance on various malicious attacks.
NASA Astrophysics Data System (ADS)
Liu, Jianming; Grant, Steven L.; Benesty, Jacob
2015-12-01
A new reweighted proportionate affine projection algorithm (RPAPA) with memory and row action projection (MRAP) is proposed in this paper. The reweighted PAPA is derived from a family of sparseness measures, which demonstrate performance similar to mu-law and the l 0 norm PAPA but with lower computational complexity. The sparseness of the channel is taken into account to improve the performance for dispersive system identification. Meanwhile, the memory of the filter's coefficients is combined with row action projections (RAP) to significantly reduce computational complexity. Simulation results demonstrate that the proposed RPAPA MRAP algorithm outperforms both the affine projection algorithm (APA) and PAPA, and has performance similar to l 0 PAPA and mu-law PAPA, in terms of convergence speed and tracking ability. Meanwhile, the proposed RPAPA MRAP has much lower computational complexity than PAPA, mu-law PAPA, and l 0 PAPA, etc., which makes it very appealing for real-time implementation.
Abejuela, Harmony Raylen; Osser, David N
2016-01-01
This revision of previous algorithms for the pharmacotherapy of generalized anxiety disorder was developed by the Psychopharmacology Algorithm Project at the Harvard South Shore Program. Algorithms from 1999 and 2010 and associated references were reevaluated. Newer studies and reviews published from 2008-14 were obtained from PubMed and analyzed with a focus on their potential to justify changes in the recommendations. Exceptions to the main algorithm for special patient populations, such as women of childbearing potential, pregnant women, the elderly, and those with common medical and psychiatric comorbidities, were considered. Selective serotonin reuptake inhibitors (SSRIs) are still the basic first-line medication. Early alternatives include duloxetine, buspirone, hydroxyzine, pregabalin, or bupropion, in that order. If response is inadequate, then the second recommendation is to try a different SSRI. Additional alternatives now include benzodiazepines, venlafaxine, kava, and agomelatine. If the response to the second SSRI is unsatisfactory, then the recommendation is to try a serotonin-norepinephrine reuptake inhibitor (SNRI). Other alternatives to SSRIs and SNRIs for treatment-resistant or treatment-intolerant patients include tricyclic antidepressants, second-generation antipsychotics, and valproate. This revision of the GAD algorithm responds to issues raised by new treatments under development (such as pregabalin) and organizes the evidence systematically for practical clinical application. PMID:27384395
Mohammad, Othman; Osser, David N
2014-01-01
This new algorithm for the pharmacotherapy of acute mania was developed by the Psychopharmacology Algorithm Project at the Harvard South Shore Program. The authors conducted a literature search in PubMed and reviewed key studies, other algorithms and guidelines, and their references. Treatments were prioritized considering three main considerations: (1) effectiveness in treating the current episode, (2) preventing potential relapses to depression, and (3) minimizing side effects over the short and long term. The algorithm presupposes that clinicians have made an accurate diagnosis, decided how to manage contributing medical causes (including substance misuse), discontinued antidepressants, and considered the patient's childbearing potential. We propose different algorithms for mixed and nonmixed mania. Patients with mixed mania may be treated first with a second-generation antipsychotic, of which the first choice is quetiapine because of its greater efficacy for depressive symptoms and episodes in bipolar disorder. Valproate and then either lithium or carbamazepine may be added. For nonmixed mania, lithium is the first-line recommendation. A second-generation antipsychotic can be added. Again, quetiapine is favored, but if quetiapine is unacceptable, risperidone is the next choice. Olanzapine is not considered a first-line treatment due to its long-term side effects, but it could be second-line. If the patient, whether mixed or nonmixed, is still refractory to the above medications, then depending on what has already been tried, consider carbamazepine, haloperidol, olanzapine, risperidone, and valproate first tier; aripiprazole, asenapine, and ziprasidone second tier; and clozapine third tier (because of its weaker evidence base and greater side effects). Electroconvulsive therapy may be considered at any point in the algorithm if the patient has a history of positive response or is intolerant of medications. PMID:25188733
An Overview of the JPSS Ground Project Algorithm Integration Process
NASA Astrophysics Data System (ADS)
Vicente, G. A.; Williams, R.; Dorman, T. J.; Williamson, R. C.; Shaw, F. J.; Thomas, W. M.; Hung, L.; Griffin, A.; Meade, P.; Steadley, R. S.; Cember, R. P.
2015-12-01
The smooth transition, implementation and operationalization of scientific software's from the National Oceanic and Atmospheric Administration (NOAA) development teams to the Join Polar Satellite System (JPSS) Ground Segment requires a variety of experiences and expertise. This task has been accomplished by a dedicated group of scientist and engineers working in close collaboration with the NOAA Satellite and Information Services (NESDIS) Center for Satellite Applications and Research (STAR) science teams for the JPSS/Suomi-NPOES Preparatory Project (S-NPP) Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS), Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) instruments. The presentation purpose is to describe the JPSS project process for algorithm implementation from the very early delivering stages by the science teams to the full operationalization into the Interface Processing Segment (IDPS), the processing system that provides Environmental Data Records (EDR's) to NOAA. Special focus is given to the NASA Data Products Engineering and Services (DPES) Algorithm Integration Team (AIT) functional and regression test activities. In the functional testing phase, the AIT uses one or a few specific chunks of data (granules) selected by the NOAA STAR Calibration and Validation (cal/val) Teams to demonstrate that a small change in the code performs properly and does not disrupt the rest of the algorithm chain. In the regression testing phase, the modified code is placed into to the Government Resources for Algorithm Verification, Integration, Test and Evaluation (GRAVITE) Algorithm Development Area (ADA), a simulated and smaller version of the operational IDPS. Baseline files are swapped out, not edited and the whole code package runs in one full orbit of Science Data Records (SDR's) using Calibration Look Up Tables (Cal LUT's) for the time of the orbit. The purpose of the regression test is to
Staff line detection and revision algorithm based on subsection projection and correlation algorithm
NASA Astrophysics Data System (ADS)
Yang, Yin-xian; Yang, Ding-li
2013-03-01
Staff line detection plays a key role in OMR technology, and is the precon-ditions of subsequent segmentation 1& recognition of music sheets. For the phenomena of horizontal inclination & curvature of staff lines and vertical inclination of image, which often occur in music scores, an improved approach based on subsection projection is put forward to realize the detection of original staff lines and revision in an effect to implement staff line detection more successfully. Experimental results show the presented algorithm can detect and revise staff lines fast and effectively.
Cascade Error Projection: A Learning Algorithm for Hardware Implementation
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Daud, Taher
1996-01-01
In this paper, we workout a detailed mathematical analysis for a new learning algorithm termed Cascade Error Projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters. Furthermore, CEP learning algorithm is operated only on one layer, whereas the other set of weights can be calculated deterministically. In association with the dynamical stepsize change concept to convert the weight update from infinite space into a finite space, the relation between the current stepsize and the previous energy level is also given and the estimation procedure for optimal stepsize is used for validation of our proposed technique. The weight values of zero are used for starting the learning for every layer, and a single hidden unit is applied instead of using a pool of candidate hidden units similar to cascade correlation scheme. Therefore, simplicity in hardware implementation is also obtained. Furthermore, this analysis allows us to select from other methods (such as the conjugate gradient descent or the Newton's second order) one of which will be a good candidate for the learning technique. The choice of learning technique depends on the constraints of the problem (e.g., speed, performance, and hardware implementation); one technique may be more suitable than others. Moreover, for a discrete weight space, the theoretical analysis presents the capability of learning with limited weight quantization. Finally, 5- to 8-bit parity and chaotic time series prediction problems are investigated; the simulation results demonstrate that 4-bit or more weight quantization is sufficient for learning neural network using CEP. In addition, it is demonstrated that this technique is able to compensate for less bit weight resolution by incorporating additional hidden units. However, generation result may suffer somewhat with lower bit weight quantization.
An Algorithm for Projecting Points onto a Patched CAD Model
Henshaw, W D
2001-05-29
We are interested in building structured overlapping grids for geometries defined by computer-aided-design (CAD) packages. Geometric information defining the boundary surfaces of a computation domain is often provided in the form of a collection of possibly hundreds of trimmed patches. The first step in building an overlapping volume grid on such a geometry is to build overlapping surface grids. A surface grid is typically built using hyperbolic grid generation; starting from a curve on the surface, a grid is grown by marching over the surface. A given hyperbolic grid will typically cover many of the underlying CAD surface patches. The fundamental operation needed for building surface grids is that of projecting a point in space onto the closest point on the CAD surface. We describe an fast algorithm for performing this projection, it will make use of a fairly coarse global triangulation of the CAD geometry. We describe how to build this global triangulation by first determining the connectivity of the CAD surface patches. This step is necessary since it often the case that the CAD description will contain no information specifying how a given patch connects to other neighboring patches. Determining the connectivity is difficult since the surface patches may contain mistakes such as gaps or overlaps between neighboring patches.
Korean Medication Algorithm Project for Bipolar Disorder: third revision
Woo, Young Sup; Lee, Jung Goo; Jeong, Jong-Hyun; Kim, Moon-Doo; Sohn, Inki; Shim, Se-Hoon; Jon, Duk-In; Seo, Jeong Seok; Shin, Young-Chul; Min, Kyung Joon; Yoon, Bo-Hyun; Bahk, Won-Myong
2015-01-01
Objective To constitute the third revision of the guidelines for the treatment of bipolar disorder issued by the Korean Medication Algorithm Project for Bipolar Disorder (KMAP-BP 2014). Methods A 56-item questionnaire was used to obtain the consensus of experts regarding pharmacological treatment strategies for the various phases of bipolar disorder and for special populations. The review committee included 110 Korean psychiatrists and 38 experts for child and adolescent psychiatry. Of the committee members, 64 general psychiatrists and 23 child and adolescent psychiatrists responded to the survey. Results The treatment of choice (TOC) for euphoric, mixed, and psychotic mania was the combination of a mood stabilizer (MS) and an atypical antipsychotic (AAP); the TOC for acute mild depression was monotherapy with MS or AAP; and the TOC for moderate or severe depression was MS plus AAP/antidepressant. The first-line maintenance treatment following mania or depression was MS monotherapy or MS plus AAP; the first-line treatment after mania was AAP monotherapy; and the first-line treatment after depression was lamotrigine (LTG) monotherapy, LTG plus MS/AAP, or MS plus AAP plus LTG. The first-line treatment strategy for mania in children and adolescents was MS plus AAP or AAP monotherapy. For geriatric bipolar patients, the TOC for mania was AAP/MS monotherapy, and the TOC for depression was AAP plus MS or AAP monotherapy. Conclusion The expert consensus in the KMAP-BP 2014 differed from that in previous publications; most notably, the preference for AAP was increased in the treatment of acute mania, depression, and maintenance treatment. There was increased expert preference for the use of AAP and LTG. The major limitation of the present study is that it was based on the consensus of Korean experts rather than on experimental evidence. PMID:25750530
Riemannian mean and space-time adaptive processing using projection and inversion algorithms
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam; Barbaresco, Frédéric
2013-05-01
The estimation of the covariance matrix from real data is required in the application of space-time adaptive processing (STAP) to an airborne ground moving target indication (GMTI) radar. A natural approach to estimation of the covariance matrix that is based on the information geometry has been proposed. In this paper, the output of the Riemannian mean is used in inversion and projection algorithms. It is found that the projection class of algorithms can yield very significant gains, even when the gains due to inversion-based algorithms are marginal over standard algorithms. The performance of the projection class of algorithms does not appear to be overly sensitive to the projected subspace dimension.
Saad, Y.
1980-12-01
Many powerful methods for solving systems of equations can be regarded as projection methods. Most of the projection methods known for solving linear systems are orthogonal projection methods: but little attention has been given to the class of nonorthogonal (or oblique) projection methods, which is particularly attractive for large nonsymmetric systems. Some methods in the general setting of oblique projection methods are presented, and some theoretical results are given. Some experiments comparing the various algorithms are reported. 5 figures.
Affine Projection Algorithm with Improved Data-Selective Method Using the Condition Number
NASA Astrophysics Data System (ADS)
Ban, Sung Jun; Lee, Chang Woo; Kim, Sang Woo
Recently, a data-selective method has been proposed to achieve low misalignment in affine projection algorithm (APA) by keeping the condition number of an input data matrix small. We present an improved method, and a complexity reduction algorithm for the APA with the data-selective method. Experimental results show that the proposed algorithm has lower misalignment and a lower condition number for an input data matrix than both the conventional APA and the APA with the previous data-selective method.
ERIC Educational Resources Information Center
Emslie, Graham J.; Hughes, Carroll W.; Crismon, M. Lynn; Lopez, Molly; Pliszka, Steve; Toprac, Marcia G.; Boemer, Christine
2004-01-01
Objective: To evaluate the feasibility and impact on clinical response and function associated with the use of an algorithm-driven disease management program (ALGO) for children and adolescents treated for depression with or without attention-deficit/hyperactivity disorder (ADHD) in community mental health centers. Method: Interventions included…
Volkov transform generalized projection algorithm for attosecond pulse characterization
NASA Astrophysics Data System (ADS)
Keathley, P. D.; Bhardwaj, S.; Moses, J.; Laurent, G.; Kärtner, F. X.
2016-07-01
An algorithm for characterizing attosecond extreme ultraviolet pulses that is not bandwidth-limited, requires no interpolation of the experimental data, and makes no approximations beyond the strong-field approximation is introduced. This approach fully incorporates the dipole transition matrix element into the retrieval process. Unlike attosecond retrieval methods such as phase retrieval by omega oscillation filtering (PROOF), or improved PROOF, it simultaneously retrieves both the attosecond and infrared (IR) pulses, without placing fundamental restrictions on the IR pulse duration, intensity or bandwidth. The new algorithm is validated both numerically and experimentally, and is also found to have practical advantages. These include an increased robustness to noise, and relaxed requirements for the size of the experimental dataset and the intensity of the streaking pulse.
Filtered back-projection algorithm for Compton telescopes
Gunter, Donald L.
2008-03-18
A method for the conversion of Compton camera data into a 2D image of the incident-radiation flux on the celestial sphere includes detecting coincident gamma radiation flux arriving from various directions of a 2-sphere. These events are mapped by back-projection onto the 2-sphere to produce a convolution integral that is subsequently stereographically projected onto a 2-plane to produce a second convolution integral which is deconvolved by the Fourier method to produce an image that is then projected onto the 2-sphere.
Rios, A. B.; Valda, A.; Somacal, H.
2007-10-26
Usually tomographic procedure requires a set of projections around the object under study and a mathematical processing of such projections through reconstruction algorithms. An accurate reconstruction requires a proper number of projections (angular sampling) and a proper number of elements in each projection (linear sampling). However in several practical cases it is not possible to fulfill these conditions leading to the so-called problem of few projections. In this case, iterative reconstruction algorithms are more suitable than analytic ones. In this work we present a program written in C++ that provides an environment for two iterative algorithm implementations, one algebraic and the other statistical. The software allows the user a full definition of the acquisition and reconstruction geometries used for the reconstruction algorithms but also to perform projection and backprojection operations. A set of analysis tools was implemented for the characterization of the convergence process. We analyze the performance of the algorithms on numerical phantoms and present the reconstruction of experimental data with few projections coming from transmission X-ray and micro PIXE (Particle-Induced X-Ray Emission) images.
NASA Astrophysics Data System (ADS)
Muralidhar, Karthik; Li, Kwok Hung; George, Sapna
To attain good performance in an acoustic echo cancellation system, it is important to have a variable step size (VSS) algorithm as part of an adaptive filter. In this paper, we are concerned with the development of a VSS algorithm for a recently proposed subband affine projection (SAP) adaptive filter. Two popular VSS algorithms in the literature are the methods of delayed coefficients (DC) and variable regularization (VR). However, the merits and demerits of them are mutually exclusive. We propose a VSS algorithm* that is a hybrid of both methods and combines their advantages. An extensive study of the new algorithm in different scenarios like the presence double-talk (DT) during the transient phase of the adaptive filter, DT during steady state, and varying DT power is conducted and reasoning is given to support the observed behavior. The importance of the method of VR as part of a VSS algorithm is emphasized.
Zhang, Jinkai; Rivard, Benoit; Rogge, D.M.
2008-01-01
Spectral mixing is a problem inherent to remote sensing data and results in few image pixel spectra representing ″pure″ targets. Linear spectral mixture analysis is designed to address this problem and it assumes that the pixel-to-pixel variability in a scene results from varying proportions of spectral endmembers. In this paper we present a different endmember-search algorithm called the Successive Projection Algorithm (SPA). SPA builds on convex geometry and orthogonal projection common to other endmember search algorithms by including a constraint on the spatial adjacency of endmember candidate pixels. Consequently it can reduce the susceptibility to outlier pixels and generates realistic endmembers.This is demonstrated using two case studies (AVIRIS Cuprite cube and Probe-1 imagery for Baffin Island) where image endmembers can be validated with ground truth data. The SPA algorithm extracts endmembers from hyperspectral data without having to reduce the data dimensionality. It uses the spectral angle (alike IEA) and the spatial adjacency of pixels in the image to constrain the selection of candidate pixels representing an endmember. We designed SPA based on the observation that many targets have spatial continuity (e.g. bedrock lithologies) in imagery and thus a spatial constraint would be beneficial in the endmember search. An additional product of the SPA is data describing the change of the simplex volume ratio between successive iterations during the endmember extraction. It illustrates the influence of a new endmember on the data structure, and provides information on the convergence of the algorithm. It can provide a general guideline to constrain the total number of endmembers in a search.
WIDE-FIELD WIDE-BAND INTERFEROMETRIC IMAGING: THE WB A-PROJECTION AND HYBRID ALGORITHMS
Bhatnagar, S.; Rau, U.; Golap, K. E-mail: rurvashi@nrao.edu
2013-06-20
Variations of the antenna primary beam (PB) pattern as a function of time, frequency, and polarization form one of the dominant direction-dependent effects at most radio frequency bands. These gains may also vary from antenna to antenna. The A-Projection algorithm, published earlier, accounts for the effects of the narrow-band antenna PB in full polarization. In this paper, we present the wide-band A-Projection algorithm (WB A-Projection) to include the effects of wide bandwidth in the A-term itself and show that the resulting algorithm simultaneously corrects for the time, frequency, and polarization dependence of the PB. We discuss the combination of the WB A-Projection and the multi-term multi-frequency synthesis (MT-MFS) algorithm for simultaneous mapping of the sky brightness distribution and the spectral index distribution across a wide field of view. We also discuss the use of the narrow-band A-Projection algorithm in hybrid imaging schemes that account for the frequency dependence of the PB in the image domain.
Wide-field wide-band Interferometric Imaging: The WB A-Projection and Hybrid Algorithms
NASA Astrophysics Data System (ADS)
Bhatnagar, S.; Rau, U.; Golap, K.
2013-06-01
Variations of the antenna primary beam (PB) pattern as a function of time, frequency, and polarization form one of the dominant direction-dependent effects at most radio frequency bands. These gains may also vary from antenna to antenna. The A-Projection algorithm, published earlier, accounts for the effects of the narrow-band antenna PB in full polarization. In this paper, we present the wide-band A-Projection algorithm (WB A-Projection) to include the effects of wide bandwidth in the A-term itself and show that the resulting algorithm simultaneously corrects for the time, frequency, and polarization dependence of the PB. We discuss the combination of the WB A-Projection and the multi-term multi-frequency synthesis (MT-MFS) algorithm for simultaneous mapping of the sky brightness distribution and the spectral index distribution across a wide field of view. We also discuss the use of the narrow-band A-Projection algorithm in hybrid imaging schemes that account for the frequency dependence of the PB in the image domain.
NASA Astrophysics Data System (ADS)
Sekihara, Kensuke; Kawabata, Yuya; Ushio, Shuta; Sumiya, Satoshi; Kawabata, Shigenori; Adachi, Yoshiaki; Nagarajan, Srikantan S.
2016-06-01
Objective. In functional electrophysiological imaging, signals are often contaminated by interference that can be of considerable magnitude compared to the signals of interest. This paper proposes a novel algorithm for removing such interferences that does not require separate noise measurements. Approach. The algorithm is based on a dual definition of the signal subspace in the spatial- and time-domains. Since the algorithm makes use of this duality, it is named the dual signal subspace projection (DSSP). The DSSP algorithm first projects the columns of the measured data matrix onto the inside and outside of the spatial-domain signal subspace, creating a set of two preprocessed data matrices. The intersection of the row spans of these two matrices is estimated as the time-domain interference subspace. The original data matrix is projected onto the subspace that is orthogonal to this interference subspace. Main results. The DSSP algorithm is validated by using the computer simulation, and using two sets of real biomagnetic data: spinal cord evoked field data measured from a healthy volunteer and magnetoencephalography data from a patient with a vagus nerve stimulator. Significance. The proposed DSSP algorithm is effective for removing overlapped interference in a wide variety of biomagnetic measurements.
Sanz, J.L.; Dinstein, I.
1987-01-01
In this paper, some image transforms and features such as projections along linear patterns, convex hull approximations, Hough transform for line detection, diameter, moments, and principal components will be considered. Specifically, we present algorithms for computing these features which are suitable for implementation in image analysis pipeline architectures. In particular, random access memories and other dedicated hardware components which may be found in the implementation of classical techniques are not longer needed in our algorithms. The effectiveness of our approach is demonstrated by running some of the new algorithms in conventional short-pipelines for image analysis.
A penalty-projection algorithm for a monolithic fluid-structure interaction solver
NASA Astrophysics Data System (ADS)
Cerroni, D.; Manservisi, S.
2016-05-01
In this paper we propose a new iterative penalty-projection algorithm for a monolithic fluid-structure interaction solver. Projection methods, that split the computation of the velocity from the pressure, are very popular in fluid dynamics since the boundary errors generated by the projection method are localized mainly near the boundary layers where the incorrect pressure boundary conditions are imposed. However, when solid regions are taken into account, the pressure projected field cannot satisfy fully coupled boundary constraints imposed on external solid surfaces such as stress-free conditions, and, due to the rigidity of the medium, the boundary errors propagate deeply in the interior. In order to reduce the projection errors we propose a one-step penalty-projection method in the fluid domain and an iterative penalty-projection method in the solid region. This technique decouples the pressure-velocity degrees of freedom and, as a consequence, the computational cost. In order to verify the accuracy and robustness of the proposed method we compare the results between this splitting velocity-pressure algorithm and the coupled one. These numerical results show stability and robustness of the proposed algorithm with a strong reduction of the computational effort.
Designing of an environmental assessment algorithm for surface mining projects.
Mirmohammadi, Mirsaleh; Gholamnejad, Javad; Fattahpour, Vahidoddin; Seyedsadri, Pejman; Ghorbani, Yousef
2009-06-01
This paper depicts the method used to quantify the environmental impact of mining activities in surface mine projects. The affected environment was broken down into thirteen components, such as Human health and immunity, Surface water, Air quality, etc. The effect of twenty impacting factors from the mining and milling activities was then calculated for each Environmental Component. Environmental assessments are often performed by using matrix methods in which one dimension of the matrix is the "Impacting Factor" and the other one is the "Environmental Components". For the presented matrix method, each Impacting Factor was first given a magnitude between -10 and 10. These factors are used to set up a matrix named Impacting Factor Matrix, whose elements represent the Impacting Factor values. The effects of each Impacting Factor on each Environmental Component were then quantified by multiplying the Impacting Factor Matrix by Weighting Factor Matrix. The elements of the weighting factors matrix reflect the effects of each Impacting Factor on each Environmental Component. The outlined method was originally developed for a mining and milling operation in Iran, but it can successfully be used for mining ventures and more general industrial activities in other countries in accordance to their environmental regulations and laws. PMID:19286301
Improvement of wavelet threshold filtered back-projection image reconstruction algorithm
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Huang, Zhen
2014-11-01
Image reconstruction technique has been applied into many fields including some medical imaging, such as X ray computer tomography (X-CT), positron emission tomography (PET) and nuclear magnetic resonance imaging (MRI) etc, but the reconstructed effects are still not satisfied because original projection data are inevitably polluted by noises in process of image reconstruction. Although some traditional filters e.g., Shepp-Logan (SL) and Ram-Lak (RL) filter have the ability to filter some noises, Gibbs oscillation phenomenon are generated and artifacts leaded by back-projection are not greatly improved. Wavelet threshold denoising can overcome the noises interference to image reconstruction. Since some inherent defects exist in the traditional soft and hard threshold functions, an improved wavelet threshold function combined with filtered back-projection (FBP) algorithm was proposed in this paper. Four different reconstruction algorithms were compared in simulated experiments. Experimental results demonstrated that this improved algorithm greatly eliminated the shortcomings of un-continuity and large distortion of traditional threshold functions and the Gibbs oscillation. Finally, the availability of this improved algorithm was verified from the comparison of two evaluation criterions, i.e. mean square error (MSE), peak signal to noise ratio (PSNR) among four different algorithms, and the optimum dual threshold values of improved wavelet threshold function was gotten.
Quantum Algorithm for Universal Implementation of the Projective Measurement of Energy
NASA Astrophysics Data System (ADS)
Nakayama, Shojun; Soeda, Akihito; Murao, Mio
2015-05-01
A projective measurement of energy (PME) on a quantum system is a quantum measurement determined by the Hamiltonian of the system. PME protocols exist when the Hamiltonian is given in advance. Unknown Hamiltonians can be identified by quantum tomography, but the time cost to achieve a given accuracy increases exponentially with the size of the quantum system. In this Letter, we improve the time cost by adapting quantum phase estimation, an algorithm designed for computational problems, to measurements on physical systems. We present a PME protocol without quantum tomography for Hamiltonians whose dimension and energy scale are given but which are otherwise unknown. Our protocol implements a PME to arbitrary accuracy without any dimension dependence on its time cost. We also show that another computational quantum algorithm may be used for efficient estimation of the energy scale. These algorithms show that computational quantum algorithms, with suitable modifications, have applications beyond their original context.
Rush, A J; Rago, W V; Crismon, M L; Toprac, M G; Shon, S P; Suppes, T; Miller, A L; Trivedi, M H; Swann, A C; Biggs, M M; Shores-Wilson, K; Kashner, T M; Pigott, T; Chiles, J A; Gilbert, D A; Altshuler, K Z
1999-05-01
This article provides an overview of the issues involved in developing, using, and evaluating specific medication guidelines for patients with psychiatric disorders. The potential advantages and disadvantages, as well as the essential elements in the structure of algorithms, are illustrated by experience to date with the Texas Medication Algorithm Project, a public-academic collaboration. Phase 1 entailed assembling research findings on the efficacy of medications for schizophrenic, bipolar, and major depressive disorders. This knowledge was evaluated for its quality and relevance, integrated with expert clinical judgment as well as input by practicing clinicians, family advocates, and patients. Phase 1 (the design and development of the algorithms) was followed by a feasibility test (Phase 2). Phase 3 is an ongoing evaluation comparing the clinical and economic effects of using specific medication guidelines (algorithms) versus treatment as usual in public sector patients with severe and persistent mental illnesses. PMID:10362434
A selective-update affine projection algorithm with selective input vectors
NASA Astrophysics Data System (ADS)
Kong, NamWoong; Shin, JaeWook; Park, PooGyeon
2011-10-01
This paper proposes an affine projection algorithm (APA) with selective input vectors, which based on the concept of selective-update in order to reduce estimation errors and computations. The algorithm consists of two procedures: input- vector-selection and state-decision. The input-vector-selection procedure determines the number of input vectors by checking with mean square error (MSE) whether the input vectors have enough information for update. The state-decision procedure determines the current state of the adaptive filter by using the state-decision criterion. As the adaptive filter is in transient state, the algorithm updates the filter coefficients with the selected input vectors. On the other hand, as soon as the adaptive filter reaches the steady state, the update procedure is not performed. Through these two procedures, the proposed algorithm achieves small steady-state estimation errors, low computational complexity and low update complexity for colored input signals.
An accelerated threshold-based back-projection algorithm for Compton camera image reconstruction
Mundy, Daniel W.; Herman, Michael G.
2011-01-15
Purpose: Compton camera imaging (CCI) systems are currently under investigation for radiotherapy dose reconstruction and verification. The ability of such a system to provide real-time images during dose delivery will be limited by the computational speed of the image reconstruction algorithm. In this work, the authors present a fast and simple method by which to generate an initial back-projected image from acquired CCI data, suitable for use in a filtered back-projection algorithm or as a starting point for iterative reconstruction algorithms, and compare its performance to the current state of the art. Methods: Each detector event in a CCI system describes a conical surface that includes the true point of origin of the detected photon. Numerical image reconstruction algorithms require, as a first step, the back-projection of each of these conical surfaces into an image space. The algorithm presented here first generates a solution matrix for each slice of the image space by solving the intersection of the conical surface with the image plane. Each element of the solution matrix is proportional to the distance of the corresponding voxel from the true intersection curve. A threshold function was developed to extract those pixels sufficiently close to the true intersection to generate a binary intersection curve. This process is repeated for each image plane for each CCI detector event, resulting in a three-dimensional back-projection image. The performance of this algorithm was tested against a marching algorithm known for speed and accuracy. Results: The threshold-based algorithm was found to be approximately four times faster than the current state of the art with minimal deficit to image quality, arising from the fact that a generically applicable threshold function cannot provide perfect results in all situations. The algorithm fails to extract a complete intersection curve in image slices near the detector surface for detector event cones having axes nearly
Feature selection and back-projection algorithms for nonline-of-sight laser-gated viewing
NASA Astrophysics Data System (ADS)
Laurenzis, Martin; Velten, Andreas
2014-11-01
We discuss new approaches to analyze laser-gated viewing data for nonline-of-sight vision with a frame-to-frame back-projection as well as feature selection algorithms. Although first back-projection approaches use time transients for each pixel, our method has the ability to calculate the projection of imaging data on the voxel space for each frame. Further, different data analysis algorithms and their sequential application were studied with the aim of identifying and selecting signals from different target positions. A slight modification of commonly used filters leads to a powerful selection of local maximum values. It is demonstrated that the choice of the filter has an impact on the selectivity i.e., multiple target detection as well as on the localization precision.
Developing a synergy algorithm for land surface temperature: the SEN4LST project
NASA Astrophysics Data System (ADS)
Sobrino, Jose A.; Jimenez, Juan C.; Ghent, Darren J.
2013-04-01
Land surface Temperature (LST) is one of the key parameters in the physics of land-surface processes on regional and global scales, combining the results of all surface-atmosphere interactions and energy fluxes between the surface and the atmosphere. An adequate characterization of LST distribution and its temporal evolution requires measurements with detailed spatial and temporal frequencies. With the advent of the Sentinel 2 (S2) and 3 (S3) series of satellites a unique opportunity exists to go beyond the current state of the art of single instrument algorithms. The Synergistic Use of The Sentinel Missions For Estimating And Monitoring Land Surface Temperature (SEN4LST) project aims at developing techniques to fully utilize synergy between S2 and S3 instruments in order to improve LST retrievals. In the framework of the SEN4LST project, three LST retrieval algorithms were proposed using the thermal infrared bands of the Sea and Land Surface Temperature Retrieval (SLSTR) instrument on board the S3 platform: split-window (SW), dual-angle (DA) and a combined algorithm using both split-window and dual-angle techniques (SW-DA). One of the objectives of the project is to select the best algorithm to generate LST products from the synergy between S2/S3 instruments. In this sense, validation is a critical step in the selection process for the best performing candidate algorithm. A unique match-up database constructed at University of Leicester (UoL) of in situ observations from over twenty ground stations and corresponding brightness temperature (BT) and LST match-ups from multi-sensor overpasses is utilised for validating the candidate algorithms. Furthermore, their performance is also evaluated against the standard ESA LST product and the enhanced offline UoL LST product. In addition, a simulation dataset is constructed using 17 synthetic images of LST and the radiative transfer model MODTRAN carried under 66 different atmospheric conditions. Each candidate LST
softMip: a novel projection algorithm for ultra-low-dose computed tomography.
Meyer, Henning; Juran, Ralf; Rogalla, Patrik
2008-01-01
Two projection algorithms are currently available for viewing computed tomography (CT) data sets: average projection (AVG) and maximum intensity projection (MIP). Although AVG images feature good suppression of image noise but reduced edge sharpness, MIP images are characterized by good edge sharpness but also amplify image noise. Ultra-low-dose (ULD) CT has very low radiation exposure but has high image noise. Maximum intensity projection images of ULDCT data sets amplify image noise and are therefore unsuitable for image interpretation in the routine clinical setting. We developed a synthesis of both algorithms that tries to unite the respective advantages. The resulting softMip algorithm was implemented in C++ and installed on a workstation. Depending on the settings used, softMip images can represent any graduation between MIP and AVG. The new softMip algorithm was evaluated and compared with MIP and AVG in terms of image noise and edge sharpness in a series of phantom experiments performed on 7 different CT scanners. Furthermore, image quality of the transition from AVG to MIP by means of softMip was compared with the image quality of simply blending AVG and MIP. Images generated with softMip showed less image noise than MIP images (P < 0.0005) and higher edge sharpness than AVG images (P< 0.0005). The softMip transition from AVG to MIP had a better ratio of edge sharpness and image noise than blending (P < 0.0005). Our results suggest that softMip is a very promising projection procedure for postprocessing cross-sectional image data, especially ULDCT data sets. PMID:18520560
Non-iterative conductivity reconstruction algorithm using projected current density in MREIT
NASA Astrophysics Data System (ADS)
Nam, Hyun Soo; Park, Chunjae; In Kwon, Oh
2008-12-01
Magnetic resonance electrical impedance tomography (MREIT) is to visualize the current density and the conductivity distribution in an electrical object Ω using the measured magnetic flux data by an MRI scanner. MREIT uses only one component Bz of the magnetic flux density B = (Bx, By, Bz) generated by an injected electrical current into the object. In this paper, we propose a fast and direct non-iterative algorithm to reconstruct the internal conductivity distribution in Ω with the measured Bz data. To develop the algorithm, we investigate the relation between the projected current density JP, a uniquely determined component of J by the map from current J to measured Bz data and the isotropic conductivity. Three-dimensional numerical simulations and phantom experiments are studied to show the feasibility of the proposed method by comparing with those using the conventional iterative harmonic Bz algorithm.
NASA Astrophysics Data System (ADS)
Pokhrel, Damodar
Interstitial and intracavitary brachytherapy plays an essential role in management of several malignancies. However, the achievable accuracy of brachytherapy treatment for prostate and cervical cancer is limited due to the lack of intraoperative planning and adaptive replanning. A major problem in implementing TRUS-based intraoperative planning is an inability of TRUS to accurately localize individual seed poses (positions and orientations) relative to the prostate volume during or after the implantation. For the locally advanced cervical cancer patient, manual drawing of the source positions on orthogonal films can not localize the full 3D intracavitary brachytherapy (ICB) applicator geometry. A new iterative forward projection matching (IFPM) algorithm can explicitly localize each individual seed/applicator by iteratively matching computed projections of the post-implant patient with the measured projections. This thesis describes adaptation and implementation of a novel IFPM algorithm that addresses hitherto unsolved problems in localization of brachytherapy seeds and applicators. The prototype implementation of 3-parameter point-seed IFPM algorithm was experimentally validated using a set of a few cone-beam CT (CBCT) projections of both the phantom and post-implant patient's datasets. Geometric uncertainty due to gantry angle inaccuracy was incorporated. After this, IFPM algorithm was extended to 5-parameter elongated line-seed model which automatically reconstructs individual seed orientation as well as position. The accuracy of this algorithm was tested using both the synthetic-measured projections of clinically-realistic Model-6711 125I seed arrangements and measured projections of an in-house precision-machined prostate implant phantom that allows the orientations and locations of up to 100 seeds to be set to known values. The seed reconstruction error for simulation was less than 0.6 mm/3o. For the physical phantom experiments, IFPM absolute accuracy for
Multiple R&D Projects Scheduling Optimization with Improved Particle Swarm Algorithm
Liu, Mengqi; Shan, Miyuan; Wu, Juan
2014-01-01
For most enterprises, in order to win the initiative in the fierce competition of market, a key step is to improve their R&D ability to meet the various demands of customers more timely and less costly. This paper discusses the features of multiple R&D environments in large make-to-order enterprises under constrained human resource and budget, and puts forward a multi-project scheduling model during a certain period. Furthermore, we make some improvements to existed particle swarm algorithm and apply the one developed here to the resource-constrained multi-project scheduling model for a simulation experiment. Simultaneously, the feasibility of model and the validity of algorithm are proved in the experiment. PMID:25032232
Sun, Pengfei; Sun, Changku; Li, Wenqiang; Wang, Peng
2015-01-01
Pose estimation aims at measuring the position and orientation of a calibrated camera using known image features. The pinhole model is the dominant camera model in this field. However, the imaging precision of this model is not accurate enough for an advanced pose estimation algorithm. In this paper, a new camera model, called incident ray tracking model, is introduced. More importantly, an advanced pose estimation algorithm based on the perspective ray in the new camera model, is proposed. The perspective ray, determined by two positioning points, is an abstract mathematical equivalent of the incident ray. In the proposed pose estimation algorithm, called perspective-ray-based scaled orthographic projection with iteration (PRSOI), an approximate ray-based projection is calculated by a linear system and refined by iteration. Experiments on the PRSOI have been conducted, and the results demonstrate that it is of high accuracy in the six degrees of freedom (DOF) motion. And it outperforms three other state-of-the-art algorithms in terms of accuracy during the contrast experiment. PMID:26197272
The finite state projection algorithm for the solution of the chemical master equation.
Munsky, Brian; Khammash, Mustafa
2006-01-28
This article introduces the finite state projection (FSP) method for use in the stochastic analysis of chemically reacting systems. One can describe the chemical populations of such systems with probability density vectors that evolve according to a set of linear ordinary differential equations known as the chemical master equation (CME). Unlike Monte Carlo methods such as the stochastic simulation algorithm (SSA) or tau leaping, the FSP directly solves or approximates the solution of the CME. If the CME describes a system that has a finite number of distinct population vectors, the FSP method provides an exact analytical solution. When an infinite or extremely large number of population variations is possible, the state space can be truncated, and the FSP method provides a certificate of accuracy for how closely the truncated space approximation matches the true solution. The proposed FSP algorithm systematically increases the projection space in order to meet prespecified tolerance in the total probability density error. For any system in which a sufficiently accurate FSP exists, the FSP algorithm is shown to converge in a finite number of steps. The FSP is utilized to solve two examples taken from the field of systems biology, and comparisons are made between the FSP, the SSA, and tau leaping algorithms. In both examples, the FSP outperforms the SSA in terms of accuracy as well as computational efficiency. Furthermore, due to very small molecular counts in these particular examples, the FSP also performs far more effectively than tau leaping methods. PMID:16460146
A homotopy algorithm for digital optimal projection control GASD-HADOC
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; Richter, Stephen; Davis, Lawrence D.
1993-01-01
The linear-quadratic-gaussian (LQG) compensator was developed to facilitate the design of control laws for multi-input, multi-output (MIMO) systems. The compensator is computed by solving two algebraic equations for which standard closed-loop solutions exist. Unfortunately, the minimal dimension of an LQG compensator is almost always equal to the dimension of the plant and can thus often violate practical implementation constraints on controller order. This deficiency is especially highlighted when considering control-design for high-order systems such as flexible space structures. This deficiency motivated the development of techniques that enable the design of optimal controllers whose dimension is less than that of the design plant. A homotopy approach based on the optimal projection equations that characterize the necessary conditions for optimal reduced-order control. Homotopy algorithms have global convergence properties and hence do not require that the initializing reduced-order controller be close to the optimal reduced-order controller to guarantee convergence. However, the homotopy algorithm previously developed for solving the optimal projection equations has sublinear convergence properties and the convergence slows at higher authority levels and may fail. A new homotopy algorithm for synthesizing optimal reduced-order controllers for discrete-time systems is described. Unlike the previous homotopy approach, the new algorithm is a gradient-based, parameter optimization formulation and was implemented in MATLAB. The results reported may offer the foundation for a reliable approach to optimal, reduced-order controller design.
Zdunek, Rafal; Cichocki, Andrzej
2008-01-01
Recently, a considerable growth of interest in projected gradient (PG) methods has been observed due to their high efficiency in solving large-scale convex minimization problems subject to linear constraints. Since the minimization problems underlying nonnegative matrix factorization (NMF) of large matrices well matches this class of minimization problems, we investigate and test some recent PG methods in the context of their applicability to NMF. In particular, the paper focuses on the following modified methods: projected Landweber, Barzilai-Borwein gradient projection, projected sequential subspace optimization (PSESOP), interior-point Newton (IPN), and sequential coordinate-wise. The proposed and implemented NMF PG algorithms are compared with respect to their performance in terms of signal-to-interference ratio (SIR) and elapsed time, using a simple benchmark of mixed partially dependent nonnegative signals. PMID:18628948
NASA Astrophysics Data System (ADS)
Kochanek, Anna
2015-12-01
The process of area development and planning in compliance with conditions outlined in the Zoning Scheme is significant because of the current rapid development of rural and urban areas. The verification of project documentation in terms of observing constant and nationally binding norms, legislation and local laws is based on certain standards. In order to streamline the process of verification undertaken by the relevant public authorities, it is necessary to create formal algorithms that will automate the existing method of control of architecture-building documentation. The objective of this article is algorithmisation of the project documentation verification allowing further streamlining and automation of the process.
NASA Astrophysics Data System (ADS)
Zhang, Xing; Wen, Gongjian
2015-10-01
Anomaly detection (AD) becomes increasingly important in hyperspectral imagery analysis with many practical applications. Local orthogonal subspace projection (LOSP) detector is a popular anomaly detector which exploits local endmembers/eigenvectors around the pixel under test (PUT) to construct background subspace. However, this subspace only takes advantage of the spectral information, but the spatial correlat ion of the background clutter is neglected, which leads to the anomaly detection result sensitive to the accuracy of the estimated subspace. In this paper, a local three dimensional orthogonal subspace projection (3D-LOSP) algorithm is proposed. Firstly, under the jointly use of both spectral and spatial information, three directional background subspaces are created along the image height direction, the image width direction and the spectral direction, respectively. Then, the three corresponding orthogonal subspaces are calculated. After that, each vector along three direction of the local cube is projected onto the corresponding orthogonal subspace. Finally, a composite score is given through the three direction operators. In 3D-LOSP, the anomalies are redefined as the target not only spectrally different to the background, but also spatially distinct. Thanks to the addition of the spatial information, the robustness of the anomaly detection result has been improved greatly by the proposed 3D-LOSP algorithm. It is noteworthy that the proposed algorithm is an expansion of LOSP and this ideology can inspire many other spectral-based anomaly detection methods. Experiments with real hyperspectral images have proved the stability of the detection result.
ERIC Educational Resources Information Center
Pliszka, Steven R.; Crismon, M. Lynn; Hughes, Carroll W.; Corners, C. Keith; Emslie, Graham J.; Jensen, Peter S.; McCracken, James T.; Swanson, James M.; Lopez, Molly
2006-01-01
Objective: In 1998, the Texas Department of Mental Health and Mental Retardation developed algorithms for medication treatment of attention-deficit/hyperactivity disorder (ADHD). Advances in the psychopharmacology of ADHD and results of a feasibility study of algorithm use in community mental health centers caused the algorithm to be modified and…
Evaluation of observation-driven evaporation algorithms: results of the WACMOS-ET project
NASA Astrophysics Data System (ADS)
Miralles, Diego G.; Jimenez, Carlos; Ershadi, Ali; McCabe, Matthew F.; Michel, Dominik; Hirschi, Martin; Seneviratne, Sonia I.; Jung, Martin; Wood, Eric F.; (Bob) Su, Z.; Timmermans, Joris; Chen, Xuelong; Fisher, Joshua B.; Mu, Quiaozen; Fernandez, Diego
2015-04-01
Terrestrial evaporation (ET) links the continental water, energy and carbon cycles. Understanding the magnitude and variability of ET at the global scale is an essential step towards reducing uncertainties in our projections of climatic conditions and water availability for the future. However, the requirement of global observational data of ET can neither be satisfied with our sparse global in-situ networks, nor with the existing satellite sensors (which cannot measure evaporation directly from space). This situation has led to the recent rise of several algorithms dedicated to deriving ET fields from satellite data indirectly, based on the combination of ET-drivers that can be observed from space (e.g. radiation, temperature, phenological variability, water content, etc.). These algorithms can either be based on physics (e.g. Priestley and Taylor or Penman-Monteith approaches) or be purely statistical (e.g., machine learning). However, and despite the efforts from different initiatives like GEWEX LandFlux (Jimenez et al., 2011; Mueller et al., 2013), the uncertainties inherent in the resulting global ET datasets remain largely unexplored, partly due to a lack of inter-product consistency in forcing data. In response to this need, the ESA WACMOS-ET project started in 2012 with the main objectives of (a) developing a Reference Input Data Set to derive and validate ET estimates, and (b) performing a cross-comparison, error characterization and validation exercise of a group of selected ET algorithms driven by this Reference Input Data Set and by in-situ forcing data. The algorithms tested are SEBS (Su et al., 2002), the Penman- Monteith approach from MODIS (Mu et al., 2011), the Priestley and Taylor JPL model (Fisher et al., 2008), the MPI-MTE model (Jung et al., 2010) and GLEAM (Miralles et al., 2011). In this presentation we will show the first results from the ESA WACMOS-ET project. The performance of the different algorithms at multiple spatial and temporal
A scalable projective scaling algorithm for l(p) loss with convex penalizations.
Zhou, Hongbo; Cheng, Qiang
2015-02-01
This paper presents an accurate, efficient, and scalable algorithm for minimizing a special family of convex functions, which have a lp loss function as an additive component. For this problem, well-known learning algorithms often have well-established results on accuracy and efficiency, but there exists rarely any report on explicit linear scalability with respect to the problem size. The proposed approach starts with developing a second-order learning procedure with iterative descent for general convex penalization functions, and then builds efficient algorithms for a restricted family of functions, which satisfy the Karmarkar's projective scaling condition. Under this condition, a light weight, scalable message passing algorithm (MPA) is further developed by constructing a series of simpler equivalent problems. The proposed MPA is intrinsically scalable because it only involves matrix-vector multiplication and avoids matrix inversion operations. The MPA is proven to be globally convergent for convex formulations; for nonconvex situations, it converges to a stationary point. The accuracy, efficiency, scalability, and applicability of the proposed method are verified through extensive experiments on sparse signal recovery, face image classification, and over-complete dictionary learning problems. PMID:25608289
NASA Astrophysics Data System (ADS)
Arevalillo-Herráez, Miguel; Gdeisat, Munther; Lilley, Francis; Burton, David R.
2016-07-01
In this paper, we present a novel algorithm to reduce the number of phase wraps in two dimensional signals in fringe projection profilometry. The technique operates in the spatial domain, and achieves a significant computational saving with regard to existing methods based on frequency shifting. The method works by estimating the modes of the first differences distribution in each axial direction. These are used to generate a tilted plane, which is subtracted from the entire phase map. Finally, the result is re-wrapped to obtain a phase map with fewer wraps. The method may be able to completely eliminate the phase wraps in many cases, or can achieve a significant phase wrap reduction that helps the subsequent unwrapping of the signal. The algorithm has been exhaustively tested across a large number of real and simulated signals, showing similar results compared to approaches operating in the frequency domain, but at significantly lower running times.
Position algorithm for monolithic scintillation crystals based on charge projection readout
NASA Astrophysics Data System (ADS)
Pani, R.; Bettiol, M.; Preziosi, E.; Cinti, M. N.; Borrazzo, C.; Pellegrini, R.; Di Castro, E.; Fabbri, A.
2016-01-01
Nuclear medicine imaging devices commonly use multi-element photo detection systems, composed of an array of N × N elements, each one providing an individual signal. Many strategies have been developed to reduce the number of readout channels, one of the main approaches is the Rows and Columns (R/C) projection logic. In this paper we proposed a modified version of Raised To the Power (RTP) algorithm adapted to R/C logic. In order to validate its efficiency a linear scanning irradiation on two 49× 49 mm2 LaBr3:Ce (0.5%) crystals with different thickness (4 mm and 10 mm) was carried out. Imaging performance analysis was made in terms of position linearity, Field-of-View (FoV) enlargement and spatial resolution. Imaging results from Anger Logic, RTP algorithm based on single element readout and RTP algorithm based on R/C readout were compared. A notable advantage of using RTP algorithms instead of Anger Logic was found: the FoV widens from about 30% to more than 70% of the detector area whereas the spatial resolution is highly improved, especially for off-center interactions, both for 4 mm-thick and 10 mm-thick crystals. Furthermore, imaging performance with the R/C readout is just slightly different from the single element one (FoV reduction less than 7% and SR worsening less than 10%). The R/C adapted RTP algorithm opens doors to high imaging performance with a substantial reduction of complexity and cost in the readout electronics.
Webb-Robertson, Bobbie-Jo M.; Jarman, Kristin H.; Harvey, Scott D.; Posse, Christian; Wright, Bob W.
2005-05-28
A fundamental problem in analysis of highly multivariate spectral or chromatographic data is reduction of dimensionality. Principal components analysis (PCA), concerned with explaining the variance-covariance structure of the data, is a commonly used approach to dimension reduction. Recently an attractive alternative to PCA, sequential projection pursuit (SPP), has been introduced. Designed to elicit clustering tendencies in the data, SPP may be more appropriate when performing clustering or classification analysis. However, the existing genetic algorithm (GA) implementation of SPP has two shortcomings, computation time and inability to determine the number of factors necessary to explain the majority of the structure in the data. We address both these shortcomings. First, we introduce a new SPP algorithm, a random scan sampling algorithm (RSSA), that significantly reduces computation time. We compare the computational burden of the RSS and GA implementation for SPP on a dataset containing Raman spectra of twelve organic compounds. Second, we propose a Bayes factor criterion, BFC, as an effective measure for selecting the number of factors needed to explain the majority of the structure in the data. We compare SPP to PCA on two datasets varying in type, size, and difficulty; in both cases SPP achieves a higher accuracy with a lower number of latent variables.
High-Resolution Snow Projections for Alaska: Regionally and seasonally specific algorithms
NASA Astrophysics Data System (ADS)
McAfee, S. A.; Walsh, J. E.; Rupp, S. T.
2012-12-01
The fate of Alaska's snow in a warmer world is of both scientific and practical concern. Snow projections are critical for understanding glacier mass balance, forest demographic changes, and for natural resource planning and decision making - such as hydropower facilities in southern and southeastern portions of the state and winter road construction and use in the northern portions. To meet this need, we have developed a set of regionally and seasonally specific statistical models relating long-term average snow-day fraction from average monthly temperature in Alaska. The algorithms were based on temperature data and on daily precipitation and snowfall occurrence for 104 stations from the Global Historical Climatology Network. Although numerous models exist for estimating snow fraction from temperature, the algorithms we present here provide substantial improvements for Alaska. There are fundamental differences in the synoptic conditions across the state, and specific algorithms can accommodate this variability in the relationship between average monthly temperature and typical conditions during snowfall, rainfall, and dry spells. In addition, this set of simple algorithms, unlike more complex physically based models, can be easily and efficiently applied to a large number of future temperature trajectories, facilitating scenario-based planning approaches. Model fits are quite good, with mean errors of the snow-day fractions at most stations within 0.1 of the observed values, which range from 0 to 1, although larger average errors do occur at some sites during the transition seasons. Errors at specific stations are often stable in terms of sign and magnitude across the snowy season, suggesting that site-specific conditions can drive consistent deviations from mean regional conditions. Applying these algorithms to the gridded temperature projections downscaled by the Scenarios Network for Alaska and Arctic Planning, allows us to provide decadal estimates of changes
NASA Astrophysics Data System (ADS)
Fang, Yi-Chin; Liu, Tung-Kuan; Wu, Bo-Wen; Chou, Jyh-Horng; MacDonald, John
2008-05-01
Following the development of a digitalized image optics system, chromatic aberration has become increasingly important especially in lateral color aberration. For rear projection television L-type lens, chromatic aberration plays the significant role because it is easily seen when facing bright screen. Basically, the elimination of axial chromatic and lateral color aberration for an optical lens depends on the choice of optical glass. DLS (damped least squares), a Ray-tracing-based method, is limited, owing to its inability to identify an enhanced optical system configuration. Genetic algorithms were applied to so-called global optimization but unfortunately so far the results show little success. Additionally, L-type optics with aspherical surface might complicate optimization due to being nonlinear response during optimization. As an alternative, this research proposes a new feasible chromatic aberration optimization process by using algorithms involving theories of geometric optics in a lens, real encoding, multiple dynamic crossover and random gene mutation techniques. In this research, rear projection television lens with aspherical surface and L-type lens are mainly discussed. Results and conclusions show that attempts to eliminate difficult axial and lateral color aberration are successful.
Optimal well locations using genetic algorithm for Tushki Project, Western Desert, Egypt
NASA Astrophysics Data System (ADS)
Khalaf, S.; Gad, M. I.
2014-10-01
Groundwater depletion is one of the most important problems threaten the national projects in Egypt. The optimal distribution of well locations and pumping rates mitigate this problem. In this paper, a trial to mitigate this problem in Tushki National Project, south western desert, Egypt was carried out via delineating the optimal well locations and optimal pumping rates. The methodology of combination between simulation and optimization techniques was applied. A linked simulation-optimization model for obtaining the optimum management of groundwater flow is used in this research. MODFLOW packages are used to simulate the groundwater flow system. This model is integrated with an optimization model OLGA (Optimal well Location using Genetic Algorithm technique) which is based on the genetic algorithm (GA). Two management cases were considered by running the model in Abu Simbel-Tushki area with adopted steady and transit calibrated parameters. The first case (fixed well location) is found that the optimum value of the objective function (maximum pumping rate). In the second case (flexible well location with the moving well option) locations of wells are to be decided by the OLGA model itself within a user defined region of the model grid until the optimal location is reached. Also, the prediction of the future changes in both head and flow were made in steady and transient states.
Field depth extension of 2D barcode scanner based on wavefront coding and projection algorithm
NASA Astrophysics Data System (ADS)
Zhao, Tingyu; Ye, Zi; Zhang, Wenzi; Huang, Weiwei; Yu, Feihong
2008-03-01
Wavefront coding (WFC) used in 2D barcode scanners can extend the depth of field into a great extent with simpler structure compared to the autofocus microscope system. With a cubic phase mask (CPM) employed in the STOP, blurred images will be obtained in charge coupled device (CCD), which can be restored by digital filters. Direct methods are used widely in real-time restoration with good computational efficiency but with details smoothed. Here, the results of direct method are firstly filtered by hard-threshold function. The positions of the steps can be detected by simple differential operators. With the positions corrected by projection algorithm, the exact barcode information is restored. A wavefront coding system with 7mm effective focal length and 6 F-number is designed as an example. Although with the different magnification, images of different object distances can be restored by one point spread function (PSF) with 200mm object distance. A QR code (Quickly Response Code) of 31mm X 27mm is used as a target object. The simulation results showed that the sharp imaging objective distance is from 80mm to 355mm. The 2D barcode scanner with wavefront coding extends field depth with simple structure, low cost and large manufacture tolerance. This combination of the direct filter and projection algorithm proposed here could get the exact 2D barcode information with good computational efficiency.
Gomes, Adriano de Araújo; Alcaraz, Mirta Raquel; Goicoechea, Hector C; Araújo, Mario Cesar U
2014-02-01
In this work the Successive Projection Algorithm is presented for intervals selection in N-PLS for three-way data modeling. The proposed algorithm combines noise-reduction properties of PLS with the possibility of discarding uninformative variables in SPA. In addition, second-order advantage can be achieved by the residual bilinearization (RBL) procedure when an unexpected constituent is present in a test sample. For this purpose, SPA was modified in order to select intervals for use in trilinear PLS. The ability of the proposed algorithm, namely iSPA-N-PLS, was evaluated on one simulated and two experimental data sets, comparing the results to those obtained by N-PLS. In the simulated system, two analytes were quantitated in two test sets, with and without unexpected constituent. In the first experimental system, the determination of the four fluorophores (l-phenylalanine; l-3,4-dihydroxyphenylalanine; 1,4-dihydroxybenzene and l-tryptophan) was conducted with excitation-emission data matrices. In the second experimental system, quantitation of ofloxacin was performed in water samples containing two other uncalibrated quinolones (ciprofloxacin and danofloxacin) by high performance liquid chromatography with UV-vis diode array detector. For comparison purpose, a GA algorithm coupled with N-PLS/RBL was also used in this work. In most of the studied cases iSPA-N-PLS proved to be a promising tool for selection of variables in second-order calibration, generating models with smaller RMSEP, when compared to both the global model using all of the sensors in two dimensions and GA-NPLS/RBL. PMID:24456589
NASA Astrophysics Data System (ADS)
Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar
2011-12-01
This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.
Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.; Weiss, Elisabeth; Williamson, Jeffrey F.
2010-09-15
Purpose: To experimentally validate a new algorithm for reconstructing the 3D positions of implanted brachytherapy seeds from postoperatively acquired 2D conebeam-CT (CBCT) projection images. Methods: The iterative forward projection matching (IFPM) algorithm finds the 3D seed geometry that minimizes the sum of the squared intensity differences between computed projections of an initial estimate of the seed configuration and radiographic projections of the implant. In-house machined phantoms, containing arrays of 12 and 72 seeds, respectively, are used to validate this method. Also, four {sup 103}Pd postimplant patients are scanned using an ACUITY digital simulator. Three to ten x-ray images are selected from the CBCT projection set and processed to create binary seed-only images. To quantify IFPM accuracy, the reconstructed seed positions are forward projected and overlaid on the measured seed images to find the nearest-neighbor distance between measured and computed seed positions for each image pair. Also, the estimated 3D seed coordinates are compared to known seed positions in the phantom and clinically obtained VariSeed planning coordinates for the patient data. Results: For the phantom study, seed localization error is (0.58{+-}0.33) mm. For all four patient cases, the mean registration error is better than 1 mm while compared against the measured seed projections. IFPM converges in 20-28 iterations, with a computation time of about 1.9-2.8 min/iteration on a 1 GHz processor. Conclusions: The IFPM algorithm avoids the need to match corresponding seeds in each projection as required by standard back-projection methods. The authors' results demonstrate {approx}1 mm accuracy in reconstructing the 3D positions of brachytherapy seeds from the measured 2D projections. This algorithm also successfully localizes overlapping clustered and highly migrated seeds in the implant.
MERIS burned area algorithm in the framework of the ESA Fire CCI Project
NASA Astrophysics Data System (ADS)
Oliva, P.; Calado, T.; Gonzalez, F.
2012-04-01
The Fire-CCI project aims at generating long and reliable time series of burned area (BA) maps based on existing information provided by European satellite sensors. In this context, a BA algorithm is currently being developed using the Medium Resolution Imaging Spectrometer (MERIS) sensor. The algorithm is being tested over a series of ten study sites with a area of 500x500 km2 each, for the period of 2003 to 2009. The study sites are located in Canada, Colombia, Brazil, Portugal, Angola, South Africa, Kazakhstan, Borneo, Russia and Australia and include a variety of vegetation types characterized by different fire regimes. The algorithm has to take into account several limiting aspects that range from the MERIS sensor characteristics (e.g. the lack of SWIR bands) to the noise presented in the data. In addition the lack of data in some areas caused either because of cloud contamination or because the sensor does not acquire full resolution data over the study area, provokes a limitation difficult to overcome. In order to overcome these drawbacks, the design of the BA algorithm is based on the analysis of maximum composites of spectral indices characterized by low values of temporal standard deviation in space and associated to MODIS hot spots. Accordingly, for each study site and year, composites of maximum values of BAI are computed and the corresponding Julian day of the maximum value and number of observations in the period are registered by pixel . Then we computed the temporal standard deviation for pixels with a number of observations greater than 10 using spatial matrices of 3x3 pixels. To classify the BAI values as burned or non-burned we extract statistics using the MODIS hot spots. A pixel is finally classified as burned if it satisfies the following conditions: i) it is associated to hot spots; ii) BAI maximum is higher than a certain threshold and iii) the standard deviation of the Julian day is less than a given number of days.
Quantum Monte Carlo algorithms for electronic structure at the petascale; the endstation project.
Kim, J; Ceperley, D M; Purwanto, W; Walter, E J; Krakauer, H; Zhang, S W; Kent, P.R. C; Hennig, R G; Umrigar, C; Bajdich, M; Kolorenc, J; Mitas, L; Srinivasan, A
2008-10-01
Over the past two decades, continuum quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting of the properties of matter from fundamental principles. By solving the Schrodinger equation through a stochastic projection, it achieves the greatest accuracy and reliability of methods available for physical systems containing more than a few quantum particles. QMC enjoys scaling favorable to quantum chemical methods, with a computational effort which grows with the second or third power of system size. This accuracy and scalability has enabled scientific discovery across a broad spectrum of disciplines. The current methods perform very efficiently at the terascale. The quantum Monte Carlo Endstation project is a collaborative effort among researchers in the field to develop a new generation of algorithms, and their efficient implementations, which will take advantage of the upcoming petaflop architectures. Some aspects of these developments are discussed here. These tools will expand the accuracy, efficiency and range of QMC applicability and enable us to tackle challenges which are currently out of reach. The methods will be applied to several important problems including electronic and structural properties of water, transition metal oxides, nanosystems and ultracold atoms.
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steven E.
1991-01-01
Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.
AsteroidZoo: A New Zooniverse project to detect asteroids and improve asteroid detection algorithms
NASA Astrophysics Data System (ADS)
Beasley, M.; Lewicki, C. A.; Smith, A.; Lintott, C.; Christensen, E.
2013-12-01
We present a new citizen science project: AsteroidZoo. A collaboration between Planetary Resources, Inc., the Zooniverse Team, and the Catalina Sky Survey, we will bring the science of asteroid identification to the citizen scientist. Volunteer astronomers have proved to be a critical asset in identification and characterization of asteroids, especially potentially hazardous objects. These contributions, to date, have required that the volunteer possess a moderate telescope and the ability and willingness to be responsive to observing requests. Our new project will use data collected by the Catalina Sky Survey (CSS), currently the most productive asteroid survey, to be used by anyone with sufficient interest and an internet connection. As previous work by the Zooniverse has demonstrated, the capability of the citizen scientist is superb at classification of objects. Even the best automated searches require human intervention to identify new objects. These searches are optimized to reduce false positive rates and to prevent a single operator from being overloaded with requests. With access to the large number of people in Zooniverse, we will be able to avoid that problem and instead work to produce a complete detection list. Each frame from CSS will be searched in detail, generating a large number of new detections. We will be able to evaluate the completeness of the CSS data set and potentially provide improvements to the automated pipeline. The data corpus produced by AsteroidZoo will be used as a training environment for machine learning challenges in the future. Our goals include a more complete asteroid detection algorithm and a minimum computation program that skims the cream of the data suitable for implemention on small spacecraft. Our goal is to have the site become live in the Fall 2013.
NASA Astrophysics Data System (ADS)
Santos, Eugene, Jr.; Zhao, Qunhua; Pratto, Felicia; Pearson, Adam R.; McQueary, Bruce; Breeden, Andy; Krause, Lee
2007-04-01
Nowadays, there is an increasing demand for the military to conduct operations that are beyond traditional warfare. In these operations, analyzing and understanding those who are involved in the situation, how they are going to behave, and why they behave in certain ways is critical for success. The challenge lies in that behavior does not simply follow universal/fixed doctrines; it is significantly influenced by soft factors (i.e. cultural factors, societal norms, etc.). In addition, there is rarely just one isolated enemy; the behaviors and responses of all groups in the region, and the dynamics of the interaction among them composes an important part of the whole picture. The Dynamic Adversarial Gaming Algorithm (DAGA) project aims to provide a wargaming environment for automation of simulating dynamics of geopolitical crisis and eventually be applied to military simulation and training domain, and/or commercial gaming arena. The focus of DAGA is on modeling communities of interest (COIs), where various individuals, groups, and organizations as well as their interactions are captured. The framework should provide a context for COIs to interact with each other and influence others' behaviors. These behaviors must incorporate soft factors by modeling cultural knowledge. We do so by representing cultural variables and their influence on behavior using probabilistic networks. In this paper, we describe our COI modeling, the development of cultural networks, the interaction architecture, and a prototype of DAGA.
An Ensemble Successive Project Algorithm for Liquor Detection Using Near Infrared Sensor.
Qu, Fangfang; Ren, Dong; Wang, Jihua; Zhang, Zhong; Lu, Na; Meng, Lei
2016-01-01
Spectral analysis technique based on near infrared (NIR) sensor is a powerful tool for complex information processing and high precision recognition, and it has been widely applied to quality analysis and online inspection of agricultural products. This paper proposes a new method to address the instability of small sample sizes in the successive projections algorithm (SPA) as well as the lack of association between selected variables and the analyte. The proposed method is an evaluated bootstrap ensemble SPA method (EBSPA) based on a variable evaluation index (EI) for variable selection, and is applied to the quantitative prediction of alcohol concentrations in liquor using NIR sensor. In the experiment, the proposed EBSPA with three kinds of modeling methods are established to test their performance. In addition, the proposed EBSPA combined with partial least square is compared with other state-of-the-art variable selection methods. The results show that the proposed method can solve the defects of SPA and it has the best generalization performance and stability. Furthermore, the physical meaning of the selected variables from the near infrared sensor data is clear, which can effectively reduce the variables and improve their prediction accuracy. PMID:26761015
An Ensemble Successive Project Algorithm for Liquor Detection Using Near Infrared Sensor
Qu, Fangfang; Ren, Dong; Wang, Jihua; Zhang, Zhong; Lu, Na; Meng, Lei
2016-01-01
Spectral analysis technique based on near infrared (NIR) sensor is a powerful tool for complex information processing and high precision recognition, and it has been widely applied to quality analysis and online inspection of agricultural products. This paper proposes a new method to address the instability of small sample sizes in the successive projections algorithm (SPA) as well as the lack of association between selected variables and the analyte. The proposed method is an evaluated bootstrap ensemble SPA method (EBSPA) based on a variable evaluation index (EI) for variable selection, and is applied to the quantitative prediction of alcohol concentrations in liquor using NIR sensor. In the experiment, the proposed EBSPA with three kinds of modeling methods are established to test their performance. In addition, the proposed EBSPA combined with partial least square is compared with other state-of-the-art variable selection methods. The results show that the proposed method can solve the defects of SPA and it has the best generalization performance and stability. Furthermore, the physical meaning of the selected variables from the near infrared sensor data is clear, which can effectively reduce the variables and improve their prediction accuracy. PMID:26761015
Vecharynski, Eugene; Yang, Chao; Pask, John E.
2015-06-01
We present an iterative algorithm for computing an invariant subspace associated with the algebraically smallest eigenvalues of a large sparse or structured Hermitian matrix A. We are interested in the case in which the dimension of the invariant subspace is large (e.g., over several hundreds or thousands) even though it may still be small relative to the dimension of A. These problems arise from, for example, density functional theory (DFT) based electronic structure calculations for complex materials. The key feature of our algorithm is that it performs fewer Rayleigh–Ritz calculations compared to existing algorithms such as the locally optimal block preconditioned conjugate gradient or the Davidson algorithm. It is a block algorithm, and hence can take advantage of efficient BLAS3 operations and be implemented with multiple levels of concurrency. We discuss a number of practical issues that must be addressed in order to implement the algorithm efficiently on a high performance computer.
Workshop on algorithms for macromolecular modeling. Final project report, June 1, 1994--May 31, 1995
Leimkuhler, B.; Hermans, J.; Skeel, R.D.
1995-07-01
A workshop was held on algorithms and parallel implementations for macromolecular dynamics, protein folding, and structural refinement. This document contains abstracts and brief reports from that workshop.
NASA Astrophysics Data System (ADS)
Timofeew, Sergey; Eliseev, Vladimir; Tcherkassov, Oleg; Birukow, Valentin; Orbachevskyi, Leonid; Shamsutdinov, Uriy
1998-04-01
Some problems of creation of medical expert systems and the ways of their overcoming using artificial neural networks are discussed. The instrumental system for projecting neural network algorithms `Neural Architector', developed by the authors, is described. It allows to perform effective modeling of artificial neural networks and to analyze their work. The example of the application of the `Neural Architector' system in composing an expert system for diagnostics of pulmonological diseases is shown.
Cheng, Jun-Hu; Sun, Da-Wen; Pu, Hongbin
2016-04-15
The potential use of feature wavelengths for predicting drip loss in grass carp fish, as affected by being frozen at -20°C for 24 h and thawed at 4°C for 1, 2, 4, and 6 days, was investigated. Hyperspectral images of frozen-thawed fish were obtained and their corresponding spectra were extracted. Least-squares support vector machine and multiple linear regression (MLR) models were established using five key wavelengths, selected by combining a genetic algorithm and successive projections algorithm, and this showed satisfactory performance in drip loss prediction. The MLR model with a determination coefficient of prediction (R(2)P) of 0.9258, and lower root mean square error estimated by a prediction (RMSEP) of 1.12%, was applied to transfer each pixel of the image and generate the distribution maps of exudation changes. The results confirmed that it is feasible to identify the feature wavelengths using variable selection methods and chemometric analysis for developing on-line multispectral imaging. PMID:26617027
Xu, Wei-Heng; Feng, Zhong-Ke; Su, Zhi-Fang; Xu, Hui; Jiao, You-Quan; Deng, Ou
2014-02-01
Tree crown projection area and crown volume are the important parameters for the estimation of biomass, tridimensional green biomass and other forestry science applications. Using conventional measurements of tree crown projection area and crown volume will produce a large area of errors in the view of practical situations referring to complicated tree crown structures or different morphological characteristics. However, it is difficult to measure and validate their accuracy through conventional measurement methods. In view of practical problems which include complicated tree crown structure, different morphological characteristics, so as to implement the objective that tree crown projection and crown volume can be extracted by computer program automatically. This paper proposes an automatic untouched measurement based on terrestrial three-dimensional laser scanner named FARO Photon120 using plane scattered data point convex hull algorithm and slice segmentation and accumulation algorithm to calculate the tree crown projection area. It is exploited on VC+6.0 and Matlab7.0. The experiments are exploited on 22 common tree species of Beijing, China. The results show that the correlation coefficient of the crown projection between Av calculated by new method and conventional method A4 reaches 0.964 (p<0.01); and the correlation coefficient of tree crown volume between V(VC) derived from new method and V(C) by the formula of a regular body is 0.960 (p<0.001). The results also show that the average of V(C) is smaller than that of V(VC) at the rate of 8.03%, and the average of A4 is larger than that of A(V) at the rate of 25.5%. Assumed Av and V(VC) as ture values, the deviations of the new method could be attributed to irregularity of the crowns' silhouettes. Different morphological characteristics of tree crown led to measurement error in forest simple plot survey. Based on the results, the paper proposes that: (1) the use of eight-point or sixteen-point projection with
Implementation of a new algorithm for Density Equalizing Map Projections (DEMP)
Close, E.R.; Merrill, D.W.; Holmes, H.H.
1995-07-01
The purpose of the PAREP (Populations at Risk to Environmental Pollution) Project at Lawrence Berkeley National Laboratory (LBNL), an ongoing Department of Energy (DOE) project since 1978, is to develop resources (data, computing techniques, and biostatistical methodology) applicable to DOE`s needs. Specifically, the PAREP project has developed techniques for statistically analyzing disease distributions in the vicinity of supposed environmental hazards. Such techniques can be applied to assess the health risks in populations residing near DOE installations, provided adequate small-area health data are available. The FY 1994 task descriptions for the PAREP project were determined in discussions at LBNL on 11/2/93. The FY94 PAREP Work Authorization specified three major tasks: a prototype small area study, a feasibility study for obtaining small-area data, and preservation of the PAREP data archive. The complete FY94 work plan, and the subtasks accomplished to date, were included in the Cumulative FY94 progress report.
Soares, Sófacles Figueredo Carreiro; Galvão, Roberto Kawakami Harrop; Araújo, Mário César Ugulino; da Silva, Edvan Cirino; Pereira, Claudete Fernandes; de Andrade, Stéfani Iury Evangelista; Leite, Flaviano Carvalho
2011-03-01
This work proposes a modification to the successive projections algorithm (SPA) aimed at selecting spectral variables for multiple linear regression (MLR) in the presence of unknown interferents not included in the calibration data set. The modified algorithm favours the selection of variables in which the effect of the interferent is less pronounced. The proposed procedure can be regarded as an adaptive modelling technique, because the spectral features of the samples to be analyzed are considered in the variable selection process. The advantages of this new approach are demonstrated in two analytical problems, namely (1) ultraviolet-visible spectrometric determination of tartrazine, allure red and sunset yellow in aqueous solutions under the interference of erythrosine, and (2) near-infrared spectrometric determination of ethanol in gasoline under the interference of toluene. In these case studies, the performance of conventional MLR-SPA models is substantially degraded by the presence of the interferent. This problem is circumvented by applying the proposed Adaptive MLR-SPA approach, which results in prediction errors smaller than those obtained by three other multivariate calibration techniques, namely stepwise regression, full-spectrum partial-least-squares (PLS) and PLS with variables selected by a genetic algorithm. An inspection of the variable selection results reveals that the Adaptive approach successfully avoids spectral regions in which the interference is more intense. PMID:21338751
NASA Astrophysics Data System (ADS)
Huang, Q.; Zeng, G. L.; You, J.; Gullberg, G. T.
2005-05-01
In this paper, Novikov's inversion formula of the attenuated two-dimensional (2D) Radon transform is applied to the reconstruction of attenuated fan-beam projections acquired with equal detector spacing and of attenuated cone-beam projections acquired with a flat planar detector and circular trajectory. The derivation of the fan-beam algorithm is obtained by transformation from parallel-beam coordinates to fan-beam coordinates. The cone-beam reconstruction algorithm is an extension of the fan-beam reconstruction algorithm using Feldkamp-Davis-Kress's (FDK) method. Computer simulations indicate that the algorithm is efficient and is accurate in reconstructing slices close to the central slice of the cone-beam orbit plane. When the attenuation map is set to zero the implementation is equivalent to the FDK method. Reconstructed images are also shown for noise corrupted projections.
NASA Astrophysics Data System (ADS)
Michel, D.; Jiménez, C.; Miralles, D. G.; Jung, M.; Hirschi, M.; Ershadi, A.; Martens, B.; McCabe, M. F.; Fisher, J. B.; Mu, Q.; Seneviratne, S. I.; Wood, E. F.; Fernández-Prieto, D.
2015-10-01
The WACMOS-ET project has compiled a forcing data set covering the period 2005-2007 that aims to maximize the exploitation of European Earth Observations data sets for evapotranspiration (ET) estimation. The data set was used to run 4 established ET algorithms: the Priestley-Taylor Jet Propulsion Laboratory model (PT-JPL), the Penman-Monteith algorithm from the MODIS evaporation product (PM-MOD), the Surface Energy Balance System (SEBS) and the Global Land Evaporation Amsterdam Model (GLEAM). In addition, in-situ meteorological data from 24 FLUXNET towers was used to force the models, with results from both forcing sets compared to tower-based flux observations. Model performance was assessed across several time scales using both sub-daily and daily forcings. The PT-JPL model and GLEAM provide the best performance for both satellite- and tower-based forcing as well as for the considered temporal resolutions. Simulations using the PM-MOD were mostly underestimated, while the SEBS performance was characterized by a systematic overestimation. In general, all four algorithms produce the best results in wet and moderately wet climate regimes. In dry regimes, the correlation and the absolute agreement to the reference tower ET observations were consistently lower. While ET derived with in situ forcing data agrees best with the tower measurements (R2 = 0.67), the agreement of the satellite-based ET estimates is only marginally lower (R2 = 0.58). Results also show similar model performance at daily and sub-daily (3-hourly) resolutions. Overall, our validation experiments against in situ measurements indicate that there is no single best-performing algorithm across all biome and forcing types. An extension of the evaluation to a larger selection of 85 towers (model inputs re-sampled to a common grid to facilitate global estimates) confirmed the original findings.
NASA Astrophysics Data System (ADS)
Michel, D.; Jiménez, C.; Miralles, D. G.; Jung, M.; Hirschi, M.; Ershadi, A.; Martens, B.; McCabe, M. F.; Fisher, J. B.; Mu, Q.; Seneviratne, S. I.; Wood, E. F.; Fernández-Prieto, D.
2016-02-01
The WAter Cycle Multi-mission Observation Strategy - EvapoTranspiration (WACMOS-ET) project has compiled a forcing data set covering the period 2005-2007 that aims to maximize the exploitation of European Earth Observations data sets for evapotranspiration (ET) estimation. The data set was used to run four established ET algorithms: the Priestley-Taylor Jet Propulsion Laboratory model (PT-JPL), the Penman-Monteith algorithm from the MODerate resolution Imaging Spectroradiometer (MODIS) evaporation product (PM-MOD), the Surface Energy Balance System (SEBS) and the Global Land Evaporation Amsterdam Model (GLEAM). In addition, in situ meteorological data from 24 FLUXNET towers were used to force the models, with results from both forcing sets compared to tower-based flux observations. Model performance was assessed on several timescales using both sub-daily and daily forcings. The PT-JPL model and GLEAM provide the best performance for both satellite- and tower-based forcing as well as for the considered temporal resolutions. Simulations using the PM-MOD were mostly underestimated, while the SEBS performance was characterized by a systematic overestimation. In general, all four algorithms produce the best results in wet and moderately wet climate regimes. In dry regimes, the correlation and the absolute agreement with the reference tower ET observations were consistently lower. While ET derived with in situ forcing data agrees best with the tower measurements (R2 = 0.67), the agreement of the satellite-based ET estimates is only marginally lower (R2 = 0.58). Results also show similar model performance at daily and sub-daily (3-hourly) resolutions. Overall, our validation experiments against in situ measurements indicate that there is no single best-performing algorithm across all biome and forcing types. An extension of the evaluation to a larger selection of 85 towers (model inputs resampled to a common grid to facilitate global estimates) confirmed the original
Fox, Andrew; Williams, Mathew; Richardson, Andrew D.; Cameron, David; Gove, Jeffrey H.; Quaife, Tristan; Ricciuto, Daniel M; Reichstein, Markus; Tomelleri, Enrico; Trudinger, Cathy; Van Wijk, Mark T.
2009-10-01
We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) ofCO2 and leaf area index (LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration,were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving>80% success rate and mean NEE confidence intervals <110 gCm-2 year-1 for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence
Sidje, R B; Vo, H D
2015-11-01
The mathematical framework of the chemical master equation (CME) uses a Markov chain to model the biochemical reactions that are taking place within a biological cell. Computing the transient probability distribution of this Markov chain allows us to track the composition of molecules inside the cell over time, with important practical applications in a number of areas such as molecular biology or medicine. However the CME is typically difficult to solve, since the state space involved can be very large or even countably infinite. We present a novel way of using the stochastic simulation algorithm (SSA) to reduce the size of the finite state projection (FSP) method. Numerical experiments that demonstrate the effectiveness of the reduction are included. PMID:26319118
Han, Wenhua; Shen, Xiaohui; Xu, Jun; Wang, Ping; Tian, Guiyun; Wu, Zhengyang
2014-01-01
Magnetic flux leakage (MFL) inspection is one of the most important and sensitive nondestructive testing approaches. For online MFL inspection of a long-range railway track or oil pipeline, a fast and effective defect profile estimating method based on a multi-power affine projection algorithm (MAPA) is proposed, where the depth of a sampling point is related with not only the MFL signals before it, but also the ones after it, and all of the sampling points related to one point appear as serials or multi-power. Defect profile estimation has two steps: regulating a weight vector in an MAPA filter and estimating a defect profile with the MAPA filter. Both simulation and experimental data are used to test the performance of the proposed method. The results demonstrate that the proposed method exhibits high speed while maintaining the estimated profiles clearly close to the desired ones in a noisy environment, thereby meeting the demand of accurate online inspection. PMID:25192314
Han, Wenhua; Shen, Xiaohui; Xu, Jun; Wang, Ping; Tian, Guiyun; Wu, Zhengyang
2014-01-01
Magnetic flux leakage (MFL) inspection is one of the most important and sensitive nondestructive testing approaches. For online MFL inspection of a long-range railway track or oil pipeline, a fast and effective defect profile estimating method based on a multi-power affine projection algorithm (MAPA) is proposed, where the depth of a sampling point is related with not only the MFL signals before it, but also the ones after it, and all of the sampling points related to one point appear as serials or multi-power. Defect profile estimation has two steps: regulating a weight vector in an MAPA filter and estimating a defect profile with the MAPA filter. Both simulation and experimental data are used to test the performance of the proposed method. The results demonstrate that the proposed method exhibits high speed while maintaining the estimated profiles clearly close to the desired ones in a noisy environment, thereby meeting the demand of accurate online inspection. PMID:25192314
An iterative algorithm for soft tissue reconstruction from truncated flat panel projections
NASA Astrophysics Data System (ADS)
Langan, D.; Claus, B.; Edic, P.; Vaillant, R.; De Man, B.; Basu, S.; Iatrou, M.
2006-03-01
The capabilities of flat panel interventional x-ray systems continue to expand, enabling a broader array of medical applications to be performed in a minimally invasive manner. Although CT is providing pre-operative 3D information, there is a need for 3D imaging of low contrast soft tissue during interventions in a number of areas including neurology, cardiac electro-physiology, and oncology. Unlike CT systems, interventional angiographic x-ray systems provide real-time large field of view 2D imaging, patient access, and flexible gantry positioning enabling interventional procedures. However, relative to CT, these C-arm flat panel systems have additional technical challenges in 3D soft tissue imaging including slower rotation speed, gantry vibration, reduced lateral patient field of view (FOV), and increased scatter. The reduced patient FOV often results in significant data truncation. Reconstruction of truncated (incomplete) data is known an "interior problem", and it is mathematically impossible to obtain an exact reconstruction. Nevertheless, it is an important problem in 3D imaging on a C-arm to address the need to generate a 3D reconstruction representative of the object being imaged with minimal artifacts. In this work we investigate the application of an iterative Maximum Likelihood Transmission (MLTR) algorithm to truncated data. We also consider truncated data with limited views for cardiac imaging where the views are gated by the electrocardiogram(ECG) to combat motion artifacts.
NASA Astrophysics Data System (ADS)
Michel, Dominik; Miralles, Diego; Jimenez, Carlos; Ershadi, Ali; McCabe, Matthew F.; Hirschi, Martin; Seneviratne, Sonia I.; Jung, Martin; Wood, Eric F.; (Bob) Su, Z.; Timmermans, Joris; Chen, Xuelong; Fisher, Joshua B.; Mu, Quiaozen; Fernandez, Diego
2015-04-01
Research on climate variations and the development of predictive capabilities largely rely on globally available reference data series of the different components of the energy and water cycles. Several efforts have recently aimed at producing large-scale and long-term reference data sets of these components, e.g. based on in situ observations and remote sensing, in order to allow for diagnostic analyses of the drivers of temporal variations in the climate system. Evapotranspiration (ET) is an essential component of the energy and water cycle, which cannot be monitored directly on a global scale by remote sensing techniques. In recent years, several global multi-year ET data sets have been derived from remote sensing-based estimates, observation-driven land surface model simulations or atmospheric reanalyses. The LandFlux-EVAL initiative presented an ensemble-evaluation of these data sets over the time periods 1989-1995 and 1989-2005 (Mueller et al. 2013). The WACMOS-ET project (http://wacmoset.estellus.eu) started in the year 2012 and constitutes an ESA contribution to the GEWEX initiative LandFlux. It focuses on advancing the development of ET estimates at global, regional and tower scales. WACMOS-ET aims at developing a Reference Input Data Set exploiting European Earth Observations assets and deriving ET estimates produced by a set of four ET algorithms covering the period 2005-2007. The algorithms used are the SEBS (Su et al., 2002), Penman-Monteith from MODIS (Mu et al., 2011), the Priestley and Taylor JPL model (Fisher et al., 2008) and GLEAM (Miralles et al., 2011). The algorithms are run with Fluxnet tower observations, reanalysis data (ERA-Interim), and satellite forcings. They are cross-compared and validated against in-situ data. In this presentation the performance of the different ET algorithms with respect to different temporal resolutions, hydrological regimes, land cover types (including grassland, cropland, shrubland, vegetation mosaic, savanna
Tests of a simple data merging algorithm for the GONG project
NASA Technical Reports Server (NTRS)
Williams, W. E.; Hill, F.
1992-01-01
The GONG (Global Oscillation Network Group) project proposes to reduce the impact of diurnal variations on helioseismic measurements by making long-term observations of solar images from six sites placed around the globe. The sun will be observed nearly constantly for three years, resulting in the acquisition of l+ terabyte of image data. To use the solar network to maximum advantage, the images from the sites must be combined into a single time series to determine mode frequencies, amplitudes, and line widths. Initial versions of combined, i.e., merged, time series were made using a simple weighted average of data from different sites taken simultaneously. In order to accurately assess the impact of the data merge on the helioseismic measurements, a set of artificial solar disk images was made using a standard solar model and containing a well known set of oscillation modes and frequencies. This undegraded data set and data products computed from it were used to judge the relative merits of various data merging schemes. The artificial solar disk images were subjected to various instrumental and atmospheric degradations, dependent on site and time, in order to create a set of images simulating those likely to be taken at the site. The degraded artificial solar disk images for the six observing sites were combined in various ways to form merged time series of images and mode coefficients. Various forms of a weighted average were used, including an equally-weighted average, an average with weights dependent upon air mass and averages with weights dependent on various quality assurance parameters. Both the undegraded solar disk image time series and several time series made up of various combinations of the degraded solar disk images from the six sites were subjected to standard helioseismic measurement processing. This processing consisted of coordinate remapping, detrending, spherical harmonic transformation, computation of power series for the oscillation mode
Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Kuncic, Zdenka; Keall, Paul J.
2014-01-01
Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets with various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR
Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Keall, Paul J.; Kuncic, Zdenka
2014-04-15
Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets with various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR
Algorithms and Algorithmic Languages.
ERIC Educational Resources Information Center
Veselov, V. M.; Koprov, V. M.
This paper is intended as an introduction to a number of problems connected with the description of algorithms and algorithmic languages, particularly the syntaxes and semantics of algorithmic languages. The terms "letter, word, alphabet" are defined and described. The concept of the algorithm is defined and the relation between the algorithm and…
NASA Astrophysics Data System (ADS)
Yigit, Enes; Demirci, Sevket; Özdemir, Caner; Tekbaş, Mustafa
2013-01-01
Two popular synthetic aperture radar (SAR) reconstruction algorithms, namely the back-projection (BP) and the frequency wavenumber (ω-k) algorithms, were tested and compared against each other, especially for their use in ground-based (GB) SAR applications directed to foreign object debris removal. For this purpose, an experimental setup in a semi-anechoic chamber room was accomplished to obtain near-field SAR images of objects on the ground. Then, the 90 to 95 GHz scattering data were acquired by using a stepped frequency continuous-wave radar operation. The performances of the setup and the imaging algorithms were then assessed by exploiting various metrics including point spread function, signal-to-clutter ratio, integrated side-lobe ratio, and computational complexity. Results demonstrate that although both algorithms produce almost accurate images of targets, the BP algorithm is shown to be superior to the ω-k algorithm due to its some inherent advantages specifically suited for short-range GB-SAR applications.
NASA Astrophysics Data System (ADS)
Kuttig, Jan; Steiding, Christian; Hupfer, Martin; Karolczak, Marek; Kolditz, Daniel
2015-09-01
In this study we compared various defect pixel correction methods for reducing artifact appearance within projection images used for computed tomography (CT) reconstructions. Defect pixel correction algorithms were examined with respect to their artifact behaviour within planar projection images as well as in volumetric CT reconstructions. We investigated four algorithms: nearest neighbour, linear and adaptive linear interpolation, and a frequency-selective spectral-domain approach. To characterise the quality of each algorithm in planar image data, we inserted line defects of varying widths and orientations into images. The structure preservation of each algorithm was analysed by corrupting and correcting the image of a slit phantom pattern and by evaluating its line spread function (LSF). The noise preservation was assessed by interpolating corrupted flat images and estimating the noise power spectrum (NPS) of the interpolated region. For the volumetric investigations, we examined the structure and noise preservation within a structured aluminium foam, a mid-contrast cone-beam phantom and a homogeneous Polyurethane (PUR) cylinder. The frequency-selective algorithm showed the best structure and noise preservation for planar data of the correction methods tested. For volumetric data it still showed the best noise preservation, whereas the structure preservation was outperformed by the linear interpolation. The frequency-selective spectral-domain approach in the correction of line defects is recommended for planar image data, but its abilities within high-contrast volumes are restricted. In that case, the application of a simple linear interpolation might be the better choice to correct line defects within projection images used for CT.
NASA Astrophysics Data System (ADS)
Duclos, D.; Lonnoy, J.; Guillerm, Q.; Jurie, F.; Herbin, S.; D'Angelo, E.
2008-04-01
The last five years have seen a renewal of Automatic Target Recognition applications, mainly because of the latest advances in machine learning techniques. In this context, large collections of image datasets are essential for training algorithms as well as for their evaluation. Indeed, the recent proliferation of recognition algorithms, generally applied to slightly different problems, make their comparisons through clean evaluation campaigns necessary. The ROBIN project tries to fulfil these two needs by putting unclassified datasets, ground truths, competitions and metrics for the evaluation of ATR algorithms at the disposition of the scientific community. The scope of this project includes single and multi-class generic target detection and generic target recognition, in military and security contexts. From our knowledge, it is the first time that a database of this importance (several hundred thousands of visible and infrared hand annotated images) has been publicly released. Funded by the French Ministry of Defence (DGA) and by the French Ministry of Research, ROBIN is one of the ten Techno-vision projects. Techno-vision is a large and ambitious government initiative for building evaluation means for computer vision technologies, for various application contexts. ROBIN's consortium includes major companies and research centres involved in Computer Vision R&D in the field of defence: Bertin Technologies, CNES, ECA, DGA, EADS, INRIA, ONERA, MBDA, SAGEM, THALES. This paper, which first gives an overview of the whole project, is focused on one of ROBIN's key competitions, the SAGEM Defence Security database. This dataset contains more than eight hundred ground and aerial infrared images of six different vehicles in cluttered scenes including distracters. Two different sets of data are available for each target. The first set includes different views of each vehicle at close range in a "simple" background, and can be used to train algorithms. The second set
NASA Astrophysics Data System (ADS)
Pawlowski, Jason M.; Ding, George X.
2014-04-01
A new model-based dose calculation algorithm is presented for kilovoltage x-rays and is tested for the cases of calculating the radiation dose from kilovoltage cone-beam CT (kV-CBCT) and 2D planar projected radiographs. This algorithm calculates the radiation dose to water-like media as the sum of primary and scattered dose components. The scatter dose is calculated by convolution of a newly introduced, empirically parameterized scatter dose kernel with the primary photon fluence. Several approximations are introduced to increase the scatter dose calculation efficiency: (1) the photon energy spectrum is approximated as monoenergetic; (2) density inhomogeneities are accounted for by implementing a global distance scaling factor in the scatter kernel; (3) kernel tilting is ignored. These approximations allow for efficient calculation of the scatter dose convolution with the fast Fourier transform. Monte Carlo simulations were used to obtain the model parameters. The accuracy of using this model-based algorithm was validated by comparing with the Monte Carlo method for calculating dose distributions for real patients resulting from radiotherapy image guidance procedures including volumetric kV-CBCT scans and 2D planar projected radiographs. For all patients studied, mean dose-to-water errors for kV-CBCT are within 0.3% with a maximum standard deviation error of 4.1%. Using a medium-dependent correction method to account for the effects of photoabsorption in bone on the dose distribution, mean dose-to-medium errors for kV-CBCT are within 3.6% for bone and 2.4% for soft tissues. This algorithm offers acceptable accuracy and has the potential to extend the applicability of model-based dose calculation algorithms from megavoltage to kilovoltage photon beams.
ERIC Educational Resources Information Center
Hughes, Carroll W.; Emslie, Graham J.; Crismon, M. Lynn; Posner, Kelly; Birmaher, Boris; Ryan, Neal; Jensen, Peter; Curry, John; Vitiello, Benedetto; Lopez, Molly; Shon, Steve P.; Pliszka, Steven R.; Trivedi, Madhukar H.
2007-01-01
Objective: To revise and update consensus guidelines for medication treatment algorithms for childhood major depressive disorder based on new scientific evidence and expert clinical consensus when evidence is lacking. Method: A consensus conference was held January 13-14, 2005, that included academic clinicians and researchers, practicing…
NASA Astrophysics Data System (ADS)
Thériault Lauzier, Pascal; Tang, Jie; Chen, Guang-Hong
2012-05-01
C-arm cone-beam CT could replace preoperative multi-detector CT scans in the cardiac interventional setting. However, cardiac gating results in view angle undersampling and the small size of the detector results in projection data truncation. These problems are incompatible with conventional tomographic reconstruction algorithms. In this paper, the prior image constrained compressed sensing (PICCS) reconstruction method was adapted to solve these issues. The performance of the proposed method was compared to that of FDK, FDK with extrapolated projection data (E-FDK), and total variation-based compressed sensing. A canine projection dataset acquired using a clinical C-arm imaging system supplied realistic cardiac motion and anatomy for this evaluation. Three different levels of truncation were simulated. The relative root mean squared error and the universal image quality index were used to quantify the reconstruction accuracy. Three main conclusions were reached. (1) The adapted version of the PICCS algorithm offered the highest image quality and reconstruction accuracy. (2) No meaningful variation in performance was observed when the amount of truncation was changed. (3) This study showed evidence that accurate interior tomography with an undersampled acquisition is possible for realistic objects if a prior image with minimal artifacts is available.
Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design
Chiu, Y.-C.; Nishikawa, T.; Martin, P.
2012-01-01
Hi-Desert Water District (HDWD), the primary water-management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic-tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive-use strategy. HDWD wishes to identify the least-cost conjunctive-use strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed-integer nonlinear programming (MINLP) groundwater-management problem seeks to minimize water-delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater-level constraints, water-supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid-optimization algorithm, which couples a genetic algorithm and successive-linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater-management problem. The results indicate that the hybrid-optimization algorithm can identify the global optimum. The hybrid-optimization algorithm is then applied to solve a complex groundwater-management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources. ?? 2011, National Ground Water Association.
Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design
Chiu, Yung-Chia; Nishikawa, Tracy; Martin, Peter
2012-01-01
Hi-Desert Water District (HDWD), the primary water-management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic-tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive-use strategy. HDWD wishes to identify the least-cost conjunctiveuse strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed-integer nonlinear programming (MINLP) groundwater-management problem seeks to minimize water delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater-level constraints, water-supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid-optimization algorithm, which couples a genetic algorithm and successive-linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater-management problem. The results indicate that the hybrid-optimization algorithm can identify the global optimum. The hybrid-optimization algorithm is then applied to solve a complex groundwater-management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources.
NASA Astrophysics Data System (ADS)
Sakaguchi, Toshimasa; Fujigaki, Motoharu; Murata, Yorinobu
2015-03-01
Accurate and wide-range shape measurement method is required in industrial field. The same technique is possible to be used for a shape measurement of a human body for the garment industry. Compact 3D shape measurement equipment is also required for embedding in the inspection system. A shape measurement by a phase shifting method can measure the shape with high spatial resolution because the coordinates can be obtained pixel by pixel. A key-device to develop compact equipment is a grating projector. Authors developed a linear LED projector and proposed a light source stepping method (LSSM) using the linear LED projector. The shape measurement euipment can be produced with low-cost and compact without any phase-shifting mechanical systems by using this method. Also it enables us to measure 3D shape in very short time by switching the light sources quickly. A phase unwrapping method is necessary to widen the measurement range with constant accuracy for phase shifting method. A general phase unwrapping method with difference grating pitches is often used. It is one of a simple phase unwrapping method. It is, however, difficult to apply the conventional phase unwrapping algorithm to the LSSM. Authors, therefore, developed an expansion unwrapping algorithm for the LSSM. In this paper, an expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with the LSSM was evaluated.
NASA Technical Reports Server (NTRS)
Wehrbein, W. M.; Leovy, C. B.
1981-01-01
A Curtis matrix is used to compute cooling by the 15 micron and 10 micron bands of carbon dioxide. Escape of radiation to space and exchange the lower boundary are used for the 9.6 micron band of ozone. Voigt line shape, vibrational relaxation, line overlap, and the temperature dependence of line strength distributions and transmission functions are incorporated into the Curtis matrices. The distributions of the atmospheric constituents included in the algorithm, and the method used to compute the Curtis matrices are discussed as well as cooling or heating by the 9.6 micron band of ozone. The FORTRAN programs and subroutines that were developed are described and listed.
Mobashsher, Ahmed Toaha; Mahmoud, A; Abbosh, A M
2016-01-01
Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials. PMID:26842761
NASA Astrophysics Data System (ADS)
Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.
2016-02-01
Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials.
Goodarzi, Mohammad; Saeys, Wouter; de Araujo, Mario Cesar Ugulino; Galvão, Roberto Kawakami Harrop; Vander Heyden, Yvan
2014-01-23
Chalcones are naturally occurring aromatic ketones, which consist of an α-, β-unsaturated carbonyl system joining two aryl rings. These compounds are reported to exhibit several pharmacological activities, including antiparasitic, antibacterial, antifungal, anticancer, immunomodulatory, nitric oxide inhibition and anti-inflammatory effects. In the present work, a Quantitative Structure-Activity Relationship (QSAR) study is carried out to classify chalcone derivatives with respect to their antileishmanial activity (active/inactive) on the basis of molecular descriptors. For this purpose, two techniques to select descriptors are employed, the Successive Projections Algorithm (SPA) and the Genetic Algorithm (GA). The selected descriptors are initially employed to build Linear Discriminant Analysis (LDA) models. An additional investigation is then carried out to determine whether the results can be improved by using a non-parametric classification technique (One Nearest Neighbour, 1NN). In a case study involving 100 chalcone derivatives, the 1NN models were found to provide better rates of correct classification than LDA, both in the training and test sets. The best result was achieved by a SPA-1NN model with six molecular descriptors, which provided correct classification rates of 97% and 84% for the training and test sets, respectively. PMID:24090733
Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.
2016-01-01
Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials. PMID:26842761
NASA Astrophysics Data System (ADS)
Tavakoli, Reza; Srinivasan, Sanjay; Wheeler, Mary
2015-04-01
The application of ensemble-based algorithms for history matching reservoir models has been steadily increasing over the past decade. However, the majority of implementations in the reservoir engineering have dealt only with production history matching. During geologic sequestration, the injection of large quantities of CO2 into the subsurface may alter the stress/strain field which in turn can lead to surface uplift or subsidence. Therefore, it is essential to couple multiphase flow and geomechanical response in order to predict and quantify the uncertainty of CO2 plume movement for long-term, large-scale CO2 sequestration projects. In this work, we simulate and estimate the properties of a reservoir that is being used to store CO2 as part of the In Salah Capture and Storage project in Algeria. The CO2 is separated from produced natural gas and is re-injected into downdip aquifer portion of the field from three long horizontal wells. The field observation data includes ground surface deformations (uplift) measured using satellite-based radar (InSAR), injection well locations and CO2 injection rate histories provided by the operators. We implement variations of ensemble Kalman filter and ensemble smoother algorithms for assimilating both injection rate data as well as geomechanical observations (surface uplift) into reservoir model. The preliminary estimation results of horizontal permeability and material properties such as Young Modulus and Poisson Ratio are consistent with available measurements and previous studies in this field. Moreover, the existence of high-permeability channels (fractures) within the reservoir; especially in the regions around the injection wells are confirmed. This estimation results can be used to accurately and efficiently predict and quantify the uncertainty in the movement of CO2 plume.
NASA Astrophysics Data System (ADS)
Barnard, L.; Scott, C. J.; Owens, M.; Lockwood, M.; Crothers, S. R.; Davies, J. A.; Harrison, R. A.
2015-10-01
Observations from the Heliospheric Imager (HI) instruments aboard the twin STEREO spacecraft have enabled the compilation of several catalogues of coronal mass ejections (CMEs), each characterizing the propagation of CMEs through the inner heliosphere. Three such catalogues are the Rutherford Appleton Laboratory (RAL)-HI event list, the Solar Stormwatch CME catalogue, and, presented here, the J-tracker catalogue. Each catalogue uses a different method to characterize the location of CME fronts in the HI images: manual identification by an expert, the statistical reduction of the manual identifications of many citizen scientists, and an automated algorithm. We provide a quantitative comparison of the differences between these catalogues and techniques, using 51 CMEs common to each catalogue. The time-elongation profiles of these CME fronts are compared, as are the estimates of the CME kinematics derived from application of three widely used single-spacecraft-fitting techniques. The J-tracker and RAL-HI profiles are most similar, while the Solar Stormwatch profiles display a small systematic offset. Evidence is presented that these differences arise because the RAL-HI and J-tracker profiles follow the sunward edge of CME density enhancements, while Solar Stormwatch profiles track closer to the antisunward (leading) edge. We demonstrate that the method used to produce the time-elongation profile typically introduces more variability into the kinematic estimates than differences between the various single-spacecraft-fitting techniques. This has implications for the repeatability and robustness of these types of analyses, arguably especially so in the context of space weather forecasting, where it could make the results strongly dependent on the methods used by the forecaster.
Michel, D.; Jimenez, C.; Miralles, D. G.; Jung, M.; Hirschi, M.; Ershadi, A.; Martens, B.; McCabe, M. F.; Fisher, J. B.; Mu, Q.; et al
2016-02-23
The WAter Cycle Multi-mission Observation Strategy – EvapoTranspiration (WACMOS-ET) project has compiled a forcing data set covering the period 2005–2007 that aims to maximize the exploitation of European Earth Observations data sets for evapotranspiration (ET) estimation. The data set was used to run four established ET algorithms: the Priestley–Taylor Jet Propulsion Laboratory model (PT-JPL), the Penman–Monteith algorithm from the MODerate resolution Imaging Spectroradiometer (MODIS) evaporation product (PM-MOD), the Surface Energy Balance System (SEBS) and the Global Land Evaporation Amsterdam Model (GLEAM). In addition, in situ meteorological data from 24 FLUXNET towers were used to force the models, with results from both forcing sets compared tomore » tower-based flux observations. Model performance was assessed on several timescales using both sub-daily and daily forcings. The PT-JPL model and GLEAM provide the best performance for both satellite- and tower-based forcing as well as for the considered temporal resolutions. Simulations using the PM-MOD were mostly underestimated, while the SEBS performance was characterized by a systematic overestimation. In general, all four algorithms produce the best results in wet and moderately wet climate regimes. In dry regimes, the correlation and the absolute agreement with the reference tower ET observations were consistently lower. While ET derived with in situ forcing data agrees best with the tower measurements (R2 = 0.67), the agreement of the satellite-based ET estimates is only marginally lower (R2 = 0.58). Results also show similar model performance at daily and sub-daily (3-hourly) resolutions. Overall, our validation experiments against in situ measurements indicate that there is no single best-performing algorithm across all biome and forcing types. In conclusion, an extension of the evaluation to a larger selection of 85 towers (model inputs resampled to a common grid to facilitate global
Calzado, A; Geleijns, J; Joemai, R M S; Veldkamp, W J H
2014-01-01
Objective: To compare low-contrast detectability (LCDet) performance between a model [non–pre-whitening matched filter with an eye filter (NPWE)] and human observers in CT images reconstructed with filtered back projection (FBP) and iterative [adaptive iterative dose reduction three-dimensional (AIDR 3D; Toshiba Medical Systems, Zoetermeer, Netherlands)] algorithms. Methods: Images of the Catphan® phantom (Phantom Laboratories, New York, NY) were acquired with Aquilion ONE™ 320-detector row CT (Toshiba Medical Systems, Tokyo, Japan) at five tube current levels (20–500 mA range) and reconstructed with FBP and AIDR 3D. Samples containing either low-contrast objects (diameters, 2–15 mm) or background were extracted and analysed by the NPWE model and four human observers in a two-alternative forced choice detection task study. Proportion correct (PC) values were obtained for each analysed object and used to compare human and model observer performances. An efficiency factor (η) was calculated to normalize NPWE to human results. Results: Human and NPWE model PC values (normalized by the efficiency, η = 0.44) were highly correlated for the whole dose range. The Pearson's product-moment correlation coefficients (95% confidence interval) between human and NPWE were 0.984 (0.972–0.991) for AIDR 3D and 0.984 (0.971–0.991) for FBP, respectively. Bland–Altman plots based on PC results showed excellent agreement between human and NPWE [mean absolute difference 0.5 ± 0.4%; range of differences (−4.7%, 5.6%)]. Conclusion: The NPWE model observer can predict human performance in LCDet tasks in phantom CT images reconstructed with FBP and AIDR 3D algorithms at different dose levels. Advances in knowledge: Quantitative assessment of LCDet in CT can accurately be performed using software based on a model observer. PMID:24837275
An algorithm for segmenting range imagery
Roberts, R.S.
1997-03-01
This report describes the technical accomplishments of the FY96 Cross Cutting and Advanced Technology (CC&AT) project at Los Alamos National Laboratory. The project focused on developing algorithms for segmenting range images. The image segmentation algorithm developed during the project is described here. In addition to segmenting range images, the algorithm can fuse multiple range images thereby providing true 3D scene models. The algorithm has been incorporated into the Rapid World Modelling System at Sandia National Laboratory.
NASA Astrophysics Data System (ADS)
Reale, M.; Lionello, P.
2012-04-01
This study considers the Mediterranean storm track and its link with severe precipitation events in the Mediterranean region as reproduced by different tracking algorithms. Data for tracking cyclones are provided by the IMILAST project ( http://www.proclim.ch/imilast/index.html ). Data for the analysis of precipitation are provided by ECA&D dataset (http://eca.knmi.nl/ hosted at the Netherland Royal meteorological institute). Most of methods identify the "Mediterranean storm track" characterized in all the cases by a prevailing southeastward direction, extending through Italy, down to the Albanian and Greek coasts. They also agree on locating the main cyclogenetic areas in the gulf of Genoa, North-West Africa and Iberia peninsula (in the Western Mediterranean), Cyprus and Black Sea areas (in the Eastern Mediterranean.) However, differences in patterns and in intensity of track features are large and related mainly to: i) how efficiently the schemes identify heat lows generated in summer and spring over Iberian peninsula , North-East Africa and Black Sea; ii) how the schemes locate the cyclogenesis occurring over Northern Italy and Cyprus areas (mainly in winter). A case of severe precipitations over Larnaca (Cyprus) has been analyzed in detail . Most of methods agree to identify a minimum close to Larnaca at the peak of the precipitation event, but differ in the reconstruction of the initial and final portions of the cyclone tracks. The differences observed in the tracks affect important descriptors of the cyclone life cycle, as it is shown by the different estimates of the speed at which cyclones move and their initial deepening rate.
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey; Mohammed, Priscilla; De Amici, Giovanni; Kim, Edward; Peng, Jinzheng; Ruf, Christopher; Hanna, Maher; Yueh, Simon; Entekhabi, Dara
2016-01-01
The purpose of the Soil Moisture Active Passive (SMAP) radiometer calibration algorithm is to convert Level 0 (L0) radiometer digital counts data into calibrated estimates of brightness temperatures referenced to the Earth's surface within the main beam. The algorithm theory in most respects is similar to what has been developed and implemented for decades for other satellite radiometers; however, SMAP includes two key features heretofore absent from most satellite borne radiometers: radio frequency interference (RFI) detection and mitigation, and measurement of the third and fourth Stokes parameters using digital correlation. The purpose of this document is to describe the SMAP radiometer and forward model, explain the SMAP calibration algorithm, including approximations, errors, and biases, provide all necessary equations for implementing the calibration algorithm and detail the RFI detection and mitigation process. Section 2 provides a summary of algorithm objectives and driving requirements. Section 3 is a description of the instrument and Section 4 covers the forward models, upon which the algorithm is based. Section 5 gives the retrieval algorithm and theory. Section 6 describes the orbit simulator, which implements the forward model and is the key for deriving antenna pattern correction coefficients and testing the overall algorithm.
The Xmath Integration Algorithm
ERIC Educational Resources Information Center
Bringslid, Odd
2009-01-01
The projects Xmath (Bringslid and Canessa, 2002) and dMath (Bringslid, de la Villa and Rodriguez, 2007) were supported by the European Commission in the so called Minerva Action (Xmath) and The Leonardo da Vinci programme (dMath). The Xmath eBook (Bringslid, 2006) includes algorithms into a wide range of undergraduate mathematical issues embedded…
NASA Astrophysics Data System (ADS)
Abrams, Daniel S.
This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases (commonly found in ab initio physics and chemistry problems) for which all known classical algorithms require exponential time. Fast algorithms for simulating many body Fermi systems are also provided in both first and second quantized descriptions. An efficient quantum algorithm for anti-symmetrization is given as well as a detailed discussion of a simulation of the Hubbard model. In addition, quantum algorithms that calculate numerical integrals and various characteristics of stochastic processes are described. Two techniques are given, both of which obtain an exponential speed increase in comparison to the fastest known classical deterministic algorithms and a quadratic speed increase in comparison to classical Monte Carlo (probabilistic) methods. I derive a simpler and slightly faster version of Grover's mean algorithm, show how to apply quantum counting to the problem, develop some variations of these algorithms, and show how both (apparently distinct) approaches can be understood from the same unified framework. Finally, the relationship between physics and computation is explored in some more depth, and it is shown that computational complexity theory depends very sensitively on physical laws. In particular, it is shown that nonlinear quantum mechanics allows for the polynomial time solution of NP-complete and #P oracle problems. Using the Weinberg model as a simple example, the explicit construction of the necessary gates is derived from the underlying physics. Nonlinear quantum algorithms are also presented using Polchinski type nonlinearities which do not allow for superluminal communication. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Sobel, E.; Lange, K.; O`Connell, J.R.
1996-12-31
Haplotyping is the logical process of inferring gene flow in a pedigree based on phenotyping results at a small number of genetic loci. This paper formalizes the haplotyping problem and suggests four algorithms for haplotype reconstruction. These algorithms range from exhaustive enumeration of all haplotype vectors to combinatorial optimization by simulated annealing. Application of the algorithms to published genetic analyses shows that manual haplotyping is often erroneous. Haplotyping is employed in screening pedigrees for phenotyping errors and in positional cloning of disease genes from conserved haplotypes in population isolates. 26 refs., 6 figs., 3 tabs.
NASA Astrophysics Data System (ADS)
Shahriari, Mohammadreza
2016-03-01
The time-cost tradeoff problem is one of the most important and applicable problems in project scheduling area. There are many factors that force the mangers to crash the time. This factor could be early utilization, early commissioning and operation, improving the project cash flow, avoiding unfavorable weather conditions, compensating the delays, and so on. Since there is a need to allocate extra resources to short the finishing time of project and the project managers are intended to spend the lowest possible amount of money and achieve the maximum crashing time, as a result, both direct and indirect costs will be influenced in the project, and here, we are facing into the time value of money. It means that when we crash the starting activities in a project, the extra investment will be tied in until the end date of the project; however, when we crash the final activities, the extra investment will be tied in for a much shorter period. This study is presenting a two-objective mathematical model for balancing compressing the project time with activities delay to prepare a suitable tool for decision makers caught in available facilities and due to the time of projects. Also drawing the scheduling problem to real world conditions by considering nonlinear objective function and the time value of money are considered. The presented problem was solved using NSGA-II, and the effect of time compressing reports on the non-dominant set.
NOSS altimeter algorithm specifications
NASA Technical Reports Server (NTRS)
Hancock, D. W.; Forsythe, R. G.; Mcmillan, J. D.
1982-01-01
A description of all algorithms required for altimeter processing is given. Each description includes title, description, inputs/outputs, general algebraic sequences and data volume. All required input/output data files are described and the computer resources required for the entire altimeter processing system were estimated. The majority of the data processing requirements for any radar altimeter of the Seasat-1 type are scoped. Additions and deletions could be made for the specific altimeter products required by other projects.
Optical Sensor Based Corn Algorithm Evaluation
Technology Transfer Automated Retrieval System (TEKTRAN)
Optical sensor based algorithms for corn fertilization have developed by researchers in several states. The goal of this international research project was to evaluate these different algorithms and determine their robustness over a large geographic area. Concurrently the goal of this project was to...
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Lomax, Harvard
1987-01-01
The past decade has seen considerable activity in algorithm development for the Navier-Stokes equations. This has resulted in a wide variety of useful new techniques. Some examples for the numerical solution of the Navier-Stokes equations are presented, divided into two parts. One is devoted to the incompressible Navier-Stokes equations, and the other to the compressible form.
Anglada-Escude, Guillem; Butler, R. Paul
2012-06-01
Doppler spectroscopy has uncovered or confirmed all the known planets orbiting nearby stars. Two main techniques are used to obtain precision Doppler measurements at optical wavelengths. The first approach is the gas cell method, which consists of least-squares matching of the spectrum of iodine imprinted on the spectrum of the star. The second method relies on the construction of a stabilized spectrograph externally calibrated in wavelength. The most precise stabilized spectrometer in operation is the High Accuracy Radial velocity Planet Searcher (HARPS), operated by the European Southern Observatory in La Silla Observatory, Chile. The Doppler measurements obtained with HARPS are typically obtained using the cross-correlation function (CCF) technique. This technique consists of multiplying the stellar spectrum by a weighted binary mask and finding the minimum of the product as a function of the Doppler shift. It is known that CCF is suboptimal in exploiting the Doppler information in the stellar spectrum. Here we describe an algorithm to obtain precision radial velocity measurements using least-squares matching of each observed spectrum to a high signal-to-noise ratio template derived from the same observations. This algorithm is implemented in our software HARPS-TERRA (Template-Enhanced Radial velocity Re-analysis Application). New radial velocity measurements on a representative sample of stars observed by HARPS are used to illustrate the benefits of the proposed method. We show that, compared with CCF, template matching provides a significant improvement in accuracy, especially when applied to M dwarfs.
Research on Routing Selection Algorithm Based on Genetic Algorithm
NASA Astrophysics Data System (ADS)
Gao, Guohong; Zhang, Baojian; Li, Xueyong; Lv, Jinna
The hereditary algorithm is a kind of random searching and method of optimizing based on living beings natural selection and hereditary mechanism. In recent years, because of the potentiality in solving complicate problems and the successful application in the fields of industrial project, hereditary algorithm has been widely concerned by the domestic and international scholar. Routing Selection communication has been defined a standard communication model of IP version 6.This paper proposes a service model of Routing Selection communication, and designs and implements a new Routing Selection algorithm based on genetic algorithm.The experimental simulation results show that this algorithm can get more resolution at less time and more balanced network load, which enhances search ratio and the availability of network resource, and improves the quality of service.
Evaluating super resolution algorithms
NASA Astrophysics Data System (ADS)
Kim, Youn Jin; Park, Jong Hyun; Shin, Gun Shik; Lee, Hyun-Seung; Kim, Dong-Hyun; Park, Se Hyeok; Kim, Jaehyun
2011-01-01
This study intends to establish a sound testing and evaluation methodology based upon the human visual characteristics for appreciating the image restoration accuracy; in addition to comparing the subjective results with predictions by some objective evaluation methods. In total, six different super resolution (SR) algorithms - such as iterative back-projection (IBP), robust SR, maximum a posteriori (MAP), projections onto convex sets (POCS), a non-uniform interpolation, and frequency domain approach - were selected. The performance comparison between the SR algorithms in terms of their restoration accuracy was carried out through both subjectively and objectively. The former methodology relies upon the paired comparison method that involves the simultaneous scaling of two stimuli with respect to image restoration accuracy. For the latter, both conventional image quality metrics and color difference methods are implemented. Consequently, POCS and a non-uniform interpolation outperformed the others for an ideal situation, while restoration based methods appear more accurate to the HR image in a real world case where any prior information about the blur kernel is remained unknown. However, the noise-added-image could not be restored successfully by any of those methods. The latest International Commission on Illumination (CIE) standard color difference equation CIEDE2000 was found to predict the subjective results accurately and outperformed conventional methods for evaluating the restoration accuracy of those SR algorithms.
Fast algorithms for transport models
Manteuffel, T.A.
1992-12-01
The objective of this project is the development of numerical solution techniques for deterministic models of the transport of neutral and charged particles and the demonstration of their effectiveness in both a production environment and on advanced architecture computers. The primary focus is on various versions of the linear Boltzman equation. These equations are fundamental in many important applications. This project is an attempt to integrate the development of numerical algorithms with the process of developing production software. A major thrust of this reject will be the implementation of these algorithms on advanced architecture machines that reside at the Advanced Computing Laboratory (ACL) at Los Alamos National Laboratories (LANL).
NASA Astrophysics Data System (ADS)
di Paola, Francesco; Casella, Daniele; Dietrich, Stefano; Formenton, Marco; Mugnai, Alberto; Sanò, Paolo
2010-05-01
Within the EU FLASH project, instantaneous precipitation maps are generated also from MW images taken by cross-track scanners on operational satellites in sun-synchronous orbits, for each satellite pass. Before undertaking retrieval, the AMSU-A data are regridded at AMSU-B/MHS resolution using bilinear interpolation. The retrieval algorithm is based on a neural network trained by a pre-computed cloud-radiation database built from meteorological situations simulated by a cloud resolving model followed by a radiative transfer model. To fill the large temporal gaps between consecutive MW snapshots several combined microwave-infrared (MW-IR) algorithms have been proposed in the past. Their aim is the generation of High Resolution Precipitation Products (HRPP) using the IR measurements from geostationary satellites to enhance the spatial resolution and the temporal sampling of the intermittent rain fields estimated from passive MW sensors aboard low earth orbiting (LEO) satellites. The Precipitation Evolving Technique (PET) produces a quasi real time HRPP. PET drives the evolution (shape and intensity) of the last available MW-estimated rain field using iterative and statistical multi-scale pattern recognition procedure computed over two consecutives IR images. This allows effectively recognizing homogeneous cloud structures and their movements in the system by combining together the displacements occurring at each spatial scale. Since such an approach is spatially limited by the extension of the last MW swath coverage and it does not solve extinction and/or generation of precipitating cloud structures, so ad hoc calibration procedure completes the algorithm. In this paper, we show the results of the application of our latest version of PET to the analysis of some European severe storms.
ERIC Educational Resources Information Center
Grayson, Katherine
2007-01-01
In November 2006, the editors of "Campus Technology" launched their first-ever High-Resolution Projection Study, to find out if the latest in projector technology could really make a significant difference in teaching, learning, and educational innovation on US campuses. The author and her colleagues asked campus educators, technologists, and…
NASA Technical Reports Server (NTRS)
Gregory, Kyle J.; Hill, Joanne E. (Editor); Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith
2016-01-01
A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photoelectron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.
NASA Astrophysics Data System (ADS)
Gregory, Kyle J.; Hill, Joanne E.; Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith
2016-05-01
A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photo- electron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.
Problem solving with genetic algorithms and Splicer
NASA Technical Reports Server (NTRS)
Bayer, Steven E.; Wang, Lui
1991-01-01
Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.
NASA Astrophysics Data System (ADS)
Tamrat, Yalew; Hatleberg, Clancy
2007-04-01
In this paper, we present a Multi-Frequency Space-Time Orthogonal (MF-STOP) adaptive filtering approach for detection and discrimination of targets based on a two stage orthogonal projection whereby target parameters can be extracted in the presence of heavy clutter and noise. The proposed technique detects targets within heavy clutter tracked by a radar system. After targets are detected, motion information is extracted that can be used to discriminate threats such as reentry vehicles from other targets. Target detection is generated in stage one by a combination of Windowed Short Time Fast Fourier Transform (WSTFFT) processing and Principal Component Analysis (PCA). Target discrimination is done in a second stage via Partial Least Squares (PLS) using a training filter constructed from the stage one detection. The target is discriminated explicitly by metric criteria such as size or precession. These discriminate features do not have to be known a priori.
Kuo, Yu; Lin, Yi-Yang; Lee, Rheun-Chuan; Lin, Chung-Jung; Chiou, Yi-You; Guo, Wan-Yuo
2016-01-01
Abstract The purpose of this study was to compare the image noise-reducing abilities of iterative model reconstruction (IMR) with those of traditional filtered back projection (FBP) and statistical iterative reconstruction (IR) in abdominal computed tomography (CT) images This institutional review board-approved retrospective study enrolled 103 patients; informed consent was waived. Urinary bladder (n = 83) and renal cysts (n = 44) were used as targets for evaluating imaging quality. Raw data were retrospectively reconstructed using FBP, statistical IR, and IMR. Objective image noise and signal-to-noise ratio (SNR) were calculated and analyzed using one-way analysis of variance. Subjective image quality was evaluated and analyzed using Wilcoxon signed-rank test with Bonferroni correction. Objective analysis revealed a reduction in image noise for statistical IR compared with that for FBP, with no significant differences in SNR. In the urinary bladder group, IMR achieved up to 53.7% noise reduction, demonstrating a superior performance to that of statistical IR. IMR also yielded a significantly superior SNR to that of statistical IR. Similar results were obtained in the cyst group. Subjective analysis revealed reduced image noise for IMR, without inferior margin delineation or diagnostic confidence. IMR reduced noise and increased SNR to greater degrees than did FBP and statistical IR. Applying the IMR technique to abdominal CT imaging has potential for reducing the radiation dose without sacrificing imaging quality. PMID:27495078
Understanding Algorithms in Different Presentations
ERIC Educational Resources Information Center
Csernoch, Mária; Biró, Piroska; Abari, Kálmán; Máth, János
2015-01-01
Within the framework of the Testing Algorithmic and Application Skills project we tested first year students of Informatics at the beginning of their tertiary education. We were focusing on the students' level of understanding in different programming environments. In the present paper we provide the results from the University of Debrecen, the…
Fontana, W.
1990-12-13
In this paper complex adaptive systems are defined by a self- referential loop in which objects encode functions that act back on these objects. A model for this loop is presented. It uses a simple recursive formal language, derived from the lambda-calculus, to provide a semantics that maps character strings into functions that manipulate symbols on strings. The interaction between two functions, or algorithms, is defined naturally within the language through function composition, and results in the production of a new function. An iterated map acting on sets of functions and a corresponding graph representation are defined. Their properties are useful to discuss the behavior of a fixed size ensemble of randomly interacting functions. This function gas'', or Turning gas'', is studied under various conditions, and evolves cooperative interaction patterns of considerable intricacy. These patterns adapt under the influence of perturbations consisting in the addition of new random functions to the system. Different organizations emerge depending on the availability of self-replicators.
Genetic algorithms at UC Davis/LLNL
Vemuri, V.R.
1993-12-31
A tutorial introduction to genetic algorithms is given. This brief tutorial should serve the purpose of introducing the subject to the novice. The tutorial is followed by a brief commentary on the term project reports that follow.
Advanced CHP Control Algorithms: Scope Specification
Katipamula, Srinivas; Brambley, Michael R.
2006-04-28
The primary objective of this multiyear project is to develop algorithms for combined heat and power systems to ensure optimal performance, increase reliability, and lead to the goal of clean, efficient, reliable and affordable next generation energy systems.
Schmidtlein, CR; Beattie, B; Humm, J; Li, S; Wu, Z; Xu, Y; Zhang, J; Shen, L; Vogelsang, L; Feiglin, D; Krol, A
2014-06-15
Purpose: To investigate the performance of a new penalized-likelihood PET image reconstruction algorithm using the 1{sub 1}-norm total-variation (TV) sum of the 1st through 4th-order gradients as the penalty. Simulated and brain patient data sets were analyzed. Methods: This work represents an extension of the preconditioned alternating projection algorithm (PAPA) for emission-computed tomography. In this new generalized algorithm (GPAPA), the penalty term is expanded to allow multiple components, in this case the sum of the 1st to 4th order gradients, to reduce artificial piece-wise constant regions (“staircase” artifacts typical for TV) seen in PAPA images penalized with only the 1st order gradient. Simulated data were used to test for “staircase” artifacts and to optimize the penalty hyper-parameter in the root-mean-squared error (RMSE) sense. Patient FDG brain scans were acquired on a GE D690 PET/CT (370 MBq at 1-hour post-injection for 10 minutes) in time-of-flight mode and in all cases were reconstructed using resolution recovery projectors. GPAPA images were compared PAPA and RMSE-optimally filtered OSEM (fully converged) in simulations and to clinical OSEM reconstructions (3 iterations, 32 subsets) with 2.6 mm XYGaussian and standard 3-point axial smoothing post-filters. Results: The results from the simulated data show a significant reduction in the 'staircase' artifact for GPAPA compared to PAPA and lower RMSE (up to 35%) compared to optimally filtered OSEM. A simple power-law relationship between the RMSE-optimal hyper-parameters and the noise equivalent counts (NEC) per voxel is revealed. Qualitatively, the patient images appear much sharper and with less noise than standard clinical images. The convergence rate is similar to OSEM. Conclusions: GPAPA reconstructions using the 1{sub 1}-norm total-variation sum of the 1st through 4th-order gradients as the penalty show great promise for the improvement of image quality over that currently achieved
Spectral Representations of Uncertainty: Algorithms and Applications
George Em Karniadakis
2005-04-24
The objectives of this project were: (1) Develop a general algorithmic framework for stochastic ordinary and partial differential equations. (2) Set polynomial chaos method and its generalization on firm theoretical ground. (3) Quantify uncertainty in large-scale simulations involving CFD, MHD and microflows. The overall goal of this project was to provide DOE with an algorithmic capability that is more accurate and three to five orders of magnitude more efficient than the Monte Carlo simulation.
NYU Ultracomputer project. Final project summary, 1979-1993
Gottlieb, A.
1994-10-01
This report discusses the following on the Ultracomputer project: simulation studies; network analysis; prototype hardware; VSLI design; coordination algorithms; systems software; application software; and compiler development.
Comparison of cone beam artifacts reduction: two pass algorithm vs TV-based CS algorithm
NASA Astrophysics Data System (ADS)
Choi, Shinkook; Baek, Jongduk
2015-03-01
In a cone beam computed tomography (CBCT), the severity of the cone beam artifacts is increased as the cone angle increases. To reduce the cone beam artifacts, several modified FDK algorithms and compressed sensing based iterative algorithms have been proposed. In this paper, we used two pass algorithm and Gradient-Projection-Barzilai-Borwein (GPBB) algorithm to reduce the cone beam artifacts, and compared their performance using structural similarity (SSIM) index. In two pass algorithm, it is assumed that the cone beam artifacts are mainly caused by extreme-density(ED) objects, and therefore the algorithm reproduces the cone beam artifacts(i.e., error image) produced by ED objects, and then subtract it from the original image. GPBB algorithm is a compressed sensing based iterative algorithm which minimizes an energy function for calculating the gradient projection with the step size determined by the Barzilai- Borwein formulation, therefore it can estimate missing data caused by the cone beam artifacts. To evaluate the performance of two algorithms, we used testing objects consisting of 7 ellipsoids separated along the z direction and cone beam artifacts were generated using 30 degree cone angle. Even though the FDK algorithm produced severe cone beam artifacts with a large cone angle, two pass algorithm reduced the cone beam artifacts with small residual errors caused by inaccuracy of ED objects. In contrast, GPBB algorithm completely removed the cone beam artifacts and restored the original shape of the objects.
Pistonesi, Marcelo F; Di Nezio, María S; Centurión, María E; Lista, Adriana G; Fragoso, Wallace D; Pontes, Márcio J C; Araújo, Mário C U; Band, Beatriz S Fernández
2010-12-15
In this study, a novel, simple, and efficient spectrofluorimetric method to determine directly and simultaneously five phenolic compounds (hydroquinone, resorcinol, phenol, m-cresol and p-cresol) in air samples is presented. For this purpose, variable selection by the successive projections algorithm (SPA) is used in order to obtain simple multiple linear regression (MLR) models based on a small subset of wavelengths. For comparison, partial least square (PLS) regression is also employed in full-spectrum. The concentrations of the calibration matrix ranged from 0.02 to 0.2 mg L(-1) for hydroquinone, from 0.05 to 0.6 mg L(-1) for resorcinol, and from 0.05 to 0.4 mg L(-1) for phenol, m-cresol and p-cresol; incidentally, such ranges are in accordance with the Argentinean environmental legislation. To verify the accuracy of the proposed method a recovery study on real air samples of smoking environment was carried out with satisfactory results (94-104%). The advantage of the proposed method is that it requires only spectrofluorimetric measurements of samples and chemometric modeling for simultaneous determination of five phenols. With it, air is simply sampled and no pre-treatment sample is needed (i.e., separation steps and derivatization reagents are avoided) that means a great saving of time. PMID:21111140
Stability of Bareiss algorithm
NASA Astrophysics Data System (ADS)
Bojanczyk, Adam W.; Brent, Richard P.; de Hoog, F. R.
1991-12-01
In this paper, we present a numerical stability analysis of Bareiss algorithm for solving a symmetric positive definite Toeplitz system of linear equations. We also compare Bareiss algorithm with Levinson algorithm and conclude that the former has superior numerical properties.
Hogan, Robin
2008-01-15
Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.
Library of Continuation Algorithms
Energy Science and Technology Software Center (ESTSC)
2005-03-01
LOCA (Library of Continuation Algorithms) is scientific software written in C++ that provides advanced analysis tools for nonlinear systems. In particular, it provides parameter continuation algorithms. bifurcation tracking algorithms, and drivers for linear stability analysis. The algorithms are aimed at large-scale applications that use Newtons method for their nonlinear solve.
Conflict-Aware Scheduling Algorithm
NASA Technical Reports Server (NTRS)
Wang, Yeou-Fang; Borden, Chester
2006-01-01
conflict-aware scheduling algorithm is being developed to help automate the allocation of NASA s Deep Space Network (DSN) antennas and equipment that are used to communicate with interplanetary scientific spacecraft. The current approach for scheduling DSN ground resources seeks to provide an equitable distribution of tracking services among the multiple scientific missions and is very labor intensive. Due to the large (and increasing) number of mission requests for DSN services, combined with technical and geometric constraints, the DSN is highly oversubscribed. To help automate the process, and reduce the DSN and spaceflight project labor effort required for initiating, maintaining, and negotiating schedules, a new scheduling algorithm is being developed. The scheduling algorithm generates a "conflict-aware" schedule, where all requests are scheduled based on a dynamic priority scheme. The conflict-aware scheduling algorithm allocates all requests for DSN tracking services while identifying and maintaining the conflicts to facilitate collaboration and negotiation between spaceflight missions. These contrast with traditional "conflict-free" scheduling algorithms that assign tracks that are not in conflict and mark the remainder as unscheduled. In the case where full schedule automation is desired (based on mission/event priorities, fairness, allocation rules, geometric constraints, and ground system capabilities/ constraints), a conflict-free schedule can easily be created from the conflict-aware schedule by removing lower priority items that are in conflict.
Geist, G.A.; Howell, G.W.; Watkins, D.S.
1997-11-01
The BR algorithm, a new method for calculating the eigenvalues of an upper Hessenberg matrix, is introduced. It is a bulge-chasing algorithm like the QR algorithm, but, unlike the QR algorithm, it is well adapted to computing the eigenvalues of the narrowband, nearly tridiagonal matrices generated by the look-ahead Lanczos process. This paper describes the BR algorithm and gives numerical evidence that it works well in conjunction with the Lanczos process. On the biggest problems run so far, the BR algorithm beats the QR algorithm by a factor of 30--60 in computing time and a factor of over 100 in matrix storage space.
Improved autonomous star identification algorithm
NASA Astrophysics Data System (ADS)
Luo, Li-Yan; Xu, Lu-Ping; Zhang, Hua; Sun, Jing-Rong
2015-06-01
The log-polar transform (LPT) is introduced into the star identification because of its rotation invariance. An improved autonomous star identification algorithm is proposed in this paper to avoid the circular shift of the feature vector and to reduce the time consumed in the star identification algorithm using LPT. In the proposed algorithm, the star pattern of the same navigation star remains unchanged when the stellar image is rotated, which makes it able to reduce the star identification time. The logarithmic values of the plane distances between the navigation and its neighbor stars are adopted to structure the feature vector of the navigation star, which enhances the robustness of star identification. In addition, some efforts are made to make it able to find the identification result with fewer comparisons, instead of searching the whole feature database. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition rate and robustness by the proposed algorithm are better than those by the LPT algorithm and the modified grid algorithm. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172138 and 61401340), the Open Research Fund of the Academy of Satellite Application, China (Grant No. 2014_CXJJ-DH_12), the Fundamental Research Funds for the Central Universities, China (Grant Nos. JB141303 and 201413B), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2013JQ8040), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130203120004), and the Xi’an Science and Technology Plan, China (Grant. No CXY1350(4)).
Motion Cueing Algorithm Development: Initial Investigation and Redesign of the Algorithms
NASA Technical Reports Server (NTRS)
Telban, Robert J.; Wu, Weimin; Cardullo, Frank M.; Houck, Jacob A. (Technical Monitor)
2000-01-01
In this project four motion cueing algorithms were initially investigated. The classical algorithm generated results with large distortion and delay and low magnitude. The NASA adaptive algorithm proved to be well tuned with satisfactory performance, while the UTIAS adaptive algorithm produced less desirable results. Modifications were made to the adaptive algorithms to reduce the magnitude of undesirable spikes. The optimal algorithm was found to have the potential for improved performance with further redesign. The center of simulator rotation was redefined. More terms were added to the cost function to enable more tuning flexibility. A new design approach using a Fortran/Matlab/Simulink setup was employed. A new semicircular canals model was incorporated in the algorithm. With these changes results show the optimal algorithm has some advantages over the NASA adaptive algorithm. Two general problems observed in the initial investigation required solutions. A nonlinear gain algorithm was developed that scales the aircraft inputs by a third-order polynomial, maximizing the motion cues while remaining within the operational limits of the motion system. A braking algorithm was developed to bring the simulator to a full stop at its motion limit and later release the brake to follow the cueing algorithm output.
Reasoning about systolic algorithms
Purushothaman, S.
1986-01-01
Systolic algorithms are a class of parallel algorithms, with small grain concurrency, well suited for implementation in VLSI. They are intended to be implemented as high-performance, computation-bound back-end processors and are characterized by a tesselating interconnection of identical processing elements. This dissertation investigates the problem of providing correctness of systolic algorithms. The following are reported in this dissertation: (1) a methodology for verifying correctness of systolic algorithms based on solving the representation of an algorithm as recurrence equations. The methodology is demonstrated by proving the correctness of a systolic architecture for optimal parenthesization. (2) The implementation of mechanical proofs of correctness of two systolic algorithms, a convolution algorithm and an optimal parenthesization algorithm, using the Boyer-Moore theorem prover. (3) An induction principle for proving correctness of systolic arrays which are modular. Two attendant inference rules, weak equivalence and shift transformation, which capture equivalent behavior of systolic arrays, are also presented.
Algorithm-development activities
NASA Technical Reports Server (NTRS)
Carder, Kendall L.
1994-01-01
The task of algorithm-development activities at USF continues. The algorithm for determining chlorophyll alpha concentration, (Chl alpha) and gelbstoff absorption coefficient for SeaWiFS and MODIS-N radiance data is our current priority.
Accurate Finite Difference Algorithms
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1996-01-01
Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.
Birkhoffian symplectic algorithms derived from Hamiltonian symplectic algorithms
NASA Astrophysics Data System (ADS)
Xin-Lei, Kong; Hui-Bin, Wu; Feng-Xiang, Mei
2016-01-01
In this paper, we focus on the construction of structure preserving algorithms for Birkhoffian systems, based on existing symplectic schemes for the Hamiltonian equations. The key of the method is to seek an invertible transformation which drives the Birkhoffian equations reduce to the Hamiltonian equations. When there exists such a transformation, applying the corresponding inverse map to symplectic discretization of the Hamiltonian equations, then resulting difference schemes are verified to be Birkhoffian symplectic for the original Birkhoffian equations. To illustrate the operation process of the method, we construct several desirable algorithms for the linear damped oscillator and the single pendulum with linear dissipation respectively. All of them exhibit excellent numerical behavior, especially in preserving conserved quantities. Project supported by the National Natural Science Foundation of China (Grant No. 11272050), the Excellent Young Teachers Program of North China University of Technology (Grant No. XN132), and the Construction Plan for Innovative Research Team of North China University of Technology (Grant No. XN129).
Software Management Environment (SME): Components and algorithms
NASA Technical Reports Server (NTRS)
Hendrick, Robert; Kistler, David; Valett, Jon
1994-01-01
This document presents the components and algorithms of the Software Management Environment (SME), a management tool developed for the Software Engineering Branch (Code 552) of the Flight Dynamics Division (FDD) of the Goddard Space Flight Center (GSFC). The SME provides an integrated set of visually oriented experienced-based tools that can assist software development managers in managing and planning software development projects. This document describes and illustrates the analysis functions that underlie the SME's project monitoring, estimation, and planning tools. 'SME Components and Algorithms' is a companion reference to 'SME Concepts and Architecture' and 'Software Engineering Laboratory (SEL) Relationships, Models, and Management Rules.'
Berry, K.; Dayton, S.
1996-10-28
Citibank was using a data collection system to create a one-time-only mailing history on prospective credit card customers that was becoming dated in its time to market requirements and as such was in need of performance improvements. To compound problems with their existing system, the assurance of the quality of the data matching process was manpower intensive and needed to be automated. Analysis, design, and prototyping capabilities involving information technology were areas of expertise provided by DOE-LMES Data Systems Research and Development (DSRD) program. The goal of this project was for Data Systems Research and Development (DSRD) to analyze the current Citibank credit card offering system and suggest and prototype technology improvements that would result in faster processing with quality as good as the current system. Technologies investigated include: a high-speed network of reduced instruction set computing (RISC) processors for loosely coupled parallel processing, tightly coupled, high performance parallel processing, higher order computer languages such as `C`, fuzzy matching algorithms applied to very large data files, relational database management system, and advanced programming techniques.
Novel biomedical tetrahedral mesh methods: algorithms and applications
NASA Astrophysics Data System (ADS)
Yu, Xiao; Jin, Yanfeng; Chen, Weitao; Huang, Pengfei; Gu, Lixu
2007-12-01
Tetrahedral mesh generation algorithm, as a prerequisite of many soft tissue simulation methods, becomes very important in the virtual surgery programs because of the real-time requirement. Aiming to speed up the computation in the simulation, we propose a revised Delaunay algorithm which makes a good balance of quality of tetrahedra, boundary preservation and time complexity, with many improved methods. Another mesh algorithm named Space-Disassembling is also presented in this paper, and a comparison of Space-Disassembling, traditional Delaunay algorithm and the revised Delaunay algorithm is processed based on clinical soft-tissue simulation projects, including craniofacial plastic surgery and breast reconstruction plastic surgery.
Semioptimal practicable algorithmic cooling
Elias, Yuval; Mor, Tal; Weinstein, Yossi
2011-04-15
Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.
Reasoning about systolic algorithms
Purushothaman, S.; Subrahmanyam, P.A.
1988-12-01
The authors present a methodology for verifying correctness of systolic algorithms. The methodology is based on solving a set of Uniform Recurrence Equations obtained from a description of systolic algorithms as a set of recursive equations. They present an approach to mechanically verify correctness of systolic algorithms, using the Boyer-Moore theorem proven. A mechanical correctness proof of an example from the literature is also presented.
Exploration of new multivariate spectral calibration algorithms.
Van Benthem, Mark Hilary; Haaland, David Michael; Melgaard, David Kennett; Martin, Laura Elizabeth; Wehlburg, Christine Marie; Pell, Randy J.; Guenard, Robert D.
2004-03-01
A variety of multivariate calibration algorithms for quantitative spectral analyses were investigated and compared, and new algorithms were developed in the course of this Laboratory Directed Research and Development project. We were able to demonstrate the ability of the hybrid classical least squares/partial least squares (CLSIPLS) calibration algorithms to maintain calibrations in the presence of spectrometer drift and to transfer calibrations between spectrometers from the same or different manufacturers. These methods were found to be as good or better in prediction ability as the commonly used partial least squares (PLS) method. We also present the theory for an entirely new class of algorithms labeled augmented classical least squares (ACLS) methods. New factor selection methods are developed and described for the ACLS algorithms. These factor selection methods are demonstrated using near-infrared spectra collected from a system of dilute aqueous solutions. The ACLS algorithm is also shown to provide improved ease of use and better prediction ability than PLS when transferring calibrations between near-infrared calibrations from the same manufacturer. Finally, simulations incorporating either ideal or realistic errors in the spectra were used to compare the prediction abilities of the new ACLS algorithm with that of PLS. We found that in the presence of realistic errors with non-uniform spectral error variance across spectral channels or with spectral errors correlated between frequency channels, ACLS methods generally out-performed the more commonly used PLS method. These results demonstrate the need for realistic error structure in simulations when the prediction abilities of various algorithms are compared. The combination of equal or superior prediction ability and the ease of use of the ACLS algorithms make the new ACLS methods the preferred algorithms to use for multivariate spectral calibrations.
Competing Sudakov veto algorithms
NASA Astrophysics Data System (ADS)
Kleiss, Ronald; Verheyen, Rob
2016-07-01
We present a formalism to analyze the distribution produced by a Monte Carlo algorithm. We perform these analyses on several versions of the Sudakov veto algorithm, adding a cutoff, a second variable and competition between emission channels. The formal analysis allows us to prove that multiple, seemingly different competition algorithms, including those that are currently implemented in most parton showers, lead to the same result. Finally, we test their performance in a semi-realistic setting and show that there are significantly faster alternatives to the commonly used algorithms.
A new reconstruction algorithm for Radon data
NASA Astrophysics Data System (ADS)
Xu, Y.; Tischenko, O.; Hoeschen, C.
2006-03-01
A new reconstruction algorithm for Radon data is introduced. We call the new algorithm OPED as it is based on Orthogonal Polynomial Expansion on the Disk. OPED is fundamentally different from the filtered back projection (FBP) method. It allows one to use fan beam geometry directly without any additional procedures such as interpolation or rebinning. It reconstructs high degree polynomials exactly and works for smooth functions without the assumption that functions are band- limited. Our initial tests indicate that the algorithm is stable, provides high resolution images, and has a small global error. Working with the geometry specified by the algorithm and a new mask, OPED could also lead to a reconstruction method that works with reduced x-ray dose (see the paper by Tischenko et al in these proceedings).
Advancements to the planogram frequency–distance rebinning algorithm
Champley, Kyle M; Raylman, Raymond R; Kinahan, Paul E
2010-01-01
In this paper we consider the task of image reconstruction in positron emission tomography (PET) with the planogram frequency–distance rebinning (PFDR) algorithm. The PFDR algorithm is a rebinning algorithm for PET systems with panel detectors. The algorithm is derived in the planogram coordinate system which is a native data format for PET systems with panel detectors. A rebinning algorithm averages over the redundant four-dimensional set of PET data to produce a three-dimensional set of data. Images can be reconstructed from this rebinned three-dimensional set of data. This process enables one to reconstruct PET images more quickly than reconstructing directly from the four-dimensional PET data. The PFDR algorithm is an approximate rebinning algorithm. We show that implementing the PFDR algorithm followed by the (ramp) filtered backprojection (FBP) algorithm in linogram coordinates from multiple views reconstructs a filtered version of our image. We develop an explicit formula for this filter which can be used to achieve exact reconstruction by means of a modified FBP algorithm applied to the stack of rebinned linograms and can also be used to quantify the errors introduced by the PFDR algorithm. This filter is similar to the filter in the planogram filtered backprojection algorithm derived by Brasse et al. The planogram filtered backprojection and exact reconstruction with the PFDR algorithm require complete projections which can be completed with a reprojection algorithm. The PFDR algorithm is similar to the rebinning algorithm developed by Kao et al. By expressing the PFDR algorithm in detector coordinates, we provide a comparative analysis between the two algorithms. Numerical experiments using both simulated data and measured data from a positron emission mammography/tomography (PEM/PET) system are performed. Images are reconstructed by PFDR+FBP (PFDR followed by 2D FBP reconstruction), PFDRX (PFDR followed by the modified FBP algorithm for exact
LCD motion blur: modeling, analysis, and algorithm.
Chan, Stanley H; Nguyen, Truong Q
2011-08-01
Liquid crystal display (LCD) devices are well known for their slow responses due to the physical limitations of liquid crystals. Therefore, fast moving objects in a scene are often perceived as blurred. This effect is known as the LCD motion blur. In order to reduce LCD motion blur, an accurate LCD model and an efficient deblurring algorithm are needed. However, existing LCD motion blur models are insufficient to reflect the limitation of human-eye-tracking system. Also, the spatiotemporal equivalence in LCD motion blur models has not been proven directly in the discrete 2-D spatial domain, although it is widely used. There are three main contributions of this paper: modeling, analysis, and algorithm. First, a comprehensive LCD motion blur model is presented, in which human-eye-tracking limits are taken into consideration. Second, a complete analysis of spatiotemporal equivalence is provided and verified using real video sequences. Third, an LCD motion blur reduction algorithm is proposed. The proposed algorithm solves an l(1)-norm regularized least-squares minimization problem using a subgradient projection method. Numerical results show that the proposed algorithm gives higher peak SNR, lower temporal error, and lower spatial error than motion-compensated inverse filtering and Lucy-Richardson deconvolution algorithm, which are two state-of-the-art LCD deblurring algorithms. PMID:21292596
Algorithm That Synthesizes Other Algorithms for Hashing
NASA Technical Reports Server (NTRS)
James, Mark
2010-01-01
An algorithm that includes a collection of several subalgorithms has been devised as a means of synthesizing still other algorithms (which could include computer code) that utilize hashing to determine whether an element (typically, a number or other datum) is a member of a set (typically, a list of numbers). Each subalgorithm synthesizes an algorithm (e.g., a block of code) that maps a static set of key hashes to a somewhat linear monotonically increasing sequence of integers. The goal in formulating this mapping is to cause the length of the sequence thus generated to be as close as practicable to the original length of the set and thus to minimize gaps between the elements. The advantage of the approach embodied in this algorithm is that it completely avoids the traditional approach of hash-key look-ups that involve either secondary hash generation and look-up or further searching of a hash table for a desired key in the event of collisions. This algorithm guarantees that it will never be necessary to perform a search or to generate a secondary key in order to determine whether an element is a member of a set. This algorithm further guarantees that any algorithm that it synthesizes can be executed in constant time. To enforce these guarantees, the subalgorithms are formulated to employ a set of techniques, each of which works very effectively covering a certain class of hash-key values. These subalgorithms are of two types, summarized as follows: Given a list of numbers, try to find one or more solutions in which, if each number is shifted to the right by a constant number of bits and then masked with a rotating mask that isolates a set of bits, a unique number is thereby generated. In a variant of the foregoing procedure, omit the masking. Try various combinations of shifting, masking, and/or offsets until the solutions are found. From the set of solutions, select the one that provides the greatest compression for the representation and is executable in the
Total variation projection with first order schemes.
Fadili, Jalal M; Peyre, Gabriel
2011-03-01
This article proposes a new algorithm to compute the projection on the set of images whose total variation is bounded by a constant. The projection is computed through a dual formulation that is solved by first order non-smooth optimization methods. This yields an iterative algorithm that applies iterative soft thresholding to the dual vector field, and for which we establish convergence rate on the primal iterates. This projection algorithm can then be used as a building block in a variety of applications such as solving inverse problems under a total variation constraint, or for texture synthesis. Numerical results are reported to illustrate the usefulness and potential applicability of our TV projection algorithm on various examples including denoising, texture synthesis, inpainting, deconvolution and tomography problems. We also show that our projection algorithm competes favorably with state-of-the-art TV projection methods in terms of convergence speed. PMID:20876024
Parallel scheduling algorithms
Dekel, E.; Sahni, S.
1983-01-01
Parallel algorithms are given for scheduling problems such as scheduling to minimize the number of tardy jobs, job sequencing with deadlines, scheduling to minimize earliness and tardiness penalties, channel assignment, and minimizing the mean finish time. The shared memory model of parallel computers is used to obtain fast algorithms. 26 references.
Developmental Algorithms Have Meaning!
ERIC Educational Resources Information Center
Green, John
1997-01-01
Adapts Stanic and McKillip's ideas for the use of developmental algorithms to propose that the present emphasis on symbolic manipulation should be tempered with an emphasis on the conceptual understanding of the mathematics underlying the algorithm. Uses examples from the areas of numeric computation, algebraic manipulation, and equation solving…
Use of evolutionary algorithms for telescope scheduling
NASA Astrophysics Data System (ADS)
Grim, Ruud; Jansen, Mischa; Baan, Arno; van Hemert, Jano; de Wolf, Hans
2002-07-01
LOFAR, a new radio telescope, will be designed to observe with up to 8 independent beams, thus allowing several simultaneous observations. Scheduling of multiple observations parallel in time, each having their own constraints, requires a more intelligent and flexible scheduling function then operated before. In support of the LOFAR radio telescope project, and in co-operation with Leiden University, Fokker Space has started a study to investigate the suitability of the use of evolutionary algorithms applied to complex scheduling problems. After a positive familiarization phase, we now examine the potential use of evolutionary algorithms via a demonstration project. Results of the familiarization phase, and the first results of the demonstration project are presented in this paper.
BALL - biochemical algorithms library 1.3
2010-01-01
Background The Biochemical Algorithms Library (BALL) is a comprehensive rapid application development framework for structural bioinformatics. It provides an extensive C++ class library of data structures and algorithms for molecular modeling and structural bioinformatics. Using BALL as a programming toolbox does not only allow to greatly reduce application development times but also helps in ensuring stability and correctness by avoiding the error-prone reimplementation of complex algorithms and replacing them with calls into the library that has been well-tested by a large number of developers. In the ten years since its original publication, BALL has seen a substantial increase in functionality and numerous other improvements. Results Here, we discuss BALL's current functionality and highlight the key additions and improvements: support for additional file formats, molecular edit-functionality, new molecular mechanics force fields, novel energy minimization techniques, docking algorithms, and support for cheminformatics. Conclusions BALL is available for all major operating systems, including Linux, Windows, and MacOS X. It is available free of charge under the Lesser GNU Public License (LPGL). Parts of the code are distributed under the GNU Public License (GPL). BALL is available as source code and binary packages from the project web site at http://www.ball-project.org. Recently, it has been accepted into the debian project; integration into further distributions is currently pursued. PMID:20973958
NASA Astrophysics Data System (ADS)
Gandomi, A. H.; Yang, X.-S.; Talatahari, S.; Alavi, A. H.
2013-01-01
A recently developed metaheuristic optimization algorithm, firefly algorithm (FA), mimics the social behavior of fireflies based on the flashing and attraction characteristics of fireflies. In the present study, we will introduce chaos into FA so as to increase its global search mobility for robust global optimization. Detailed studies are carried out on benchmark problems with different chaotic maps. Here, 12 different chaotic maps are utilized to tune the attractive movement of the fireflies in the algorithm. The results show that some chaotic FAs can clearly outperform the standard FA.
Rempp, Florian; Mahler, Guenter; Michel, Mathias
2007-09-15
We introduce a scheme to perform the cooling algorithm, first presented by Boykin et al. in 2002, for an arbitrary number of times on the same set of qbits. We achieve this goal by adding an additional SWAP gate and a bath contact to the algorithm. This way one qbit may repeatedly be cooled without adding additional qbits to the system. By using a product Liouville space to model the bath contact we calculate the density matrix of the system after a given number of applications of the algorithm.
Parallel algorithms and architectures
Albrecht, A.; Jung, H.; Mehlhorn, K.
1987-01-01
Contents of this book are the following: Preparata: Deterministic simulation of idealized parallel computers on more realistic ones; Convex hull of randomly chosen points from a polytope; Dataflow computing; Parallel in sequence; Towards the architecture of an elementary cortical processor; Parallel algorithms and static analysis of parallel programs; Parallel processing of combinatorial search; Communications; An O(nlogn) cost parallel algorithms for the single function coarsest partition problem; Systolic algorithms for computing the visibility polygon and triangulation of a polygonal region; and RELACS - A recursive layout computing system. Parallel linear conflict-free subtree access.
The Algorithm Selection Problem
NASA Technical Reports Server (NTRS)
Minton, Steve; Allen, John; Deiss, Ron (Technical Monitor)
1994-01-01
Work on NP-hard problems has shown that many instances of these theoretically computationally difficult problems are quite easy. The field has also shown that choosing the right algorithm for the problem can have a profound effect on the time needed to find a solution. However, to date there has been little work showing how to select the right algorithm for solving any particular problem. The paper refers to this as the algorithm selection problem. It describes some of the aspects that make this problem difficult, as well as proposes a technique for addressing it.
Infrared algorithm development for ocean observations
NASA Technical Reports Server (NTRS)
Brown, Otis B.
1995-01-01
Efforts continue under this contract to develop algorithms for the computation of sea surface temperature (SST) from MODIS infrared retrievals. This effort includes radiative transfer modeling, comparison of in situ and satellite observations, development and evaluation of processing and networking methodologies for algorithm computation and data accession, evaluation of surface validation approaches for IR radiances, and participation in MODIS (project) related activities. Efforts in this contract period have focused on radiative transfer modeling, evaluation of atmospheric correction methodologies, involvement in field studies, production and evaluation of new computer networking strategies, and objective analysis approaches.
Graph algorithms in the titan toolkit.
McLendon, William Clarence, III; Wylie, Brian Neil
2009-10-01
Graph algorithms are a key component in a wide variety of intelligence analysis activities. The Graph-Based Informatics for Non-Proliferation and Counter-Terrorism project addresses the critical need of making these graph algorithms accessible to Sandia analysts in a manner that is both intuitive and effective. Specifically we describe the design and implementation of an open source toolkit for doing graph analysis, informatics, and visualization that provides Sandia with novel analysis capability for non-proliferation and counter-terrorism.
Thomas, Kamishia L
2016-01-01
Catheter-associated urinary tract infections (CAUTIs) are the most common hospital-acquired infections. The purpose of this quality improvement (QI) project was to successfully implement a nurse-led evidence-based practice change designed to reduce CAUTIs in a cardiac intensive care and step-down unit. The QI project was implemented using a convenience sample of patients admitted to the cardiac intensive care and step-down unit.Evaluation data were collected 3 months preimplementation and 9 months postimplementation. We used Wick's Check-Plan-Do-Check-Act model of continuous QI to guide the project. A statistically significant change in the number of CAUTIs (P = .009) and CAUTI occurrences (P = .005) was observed following the intervention. The number of indwelling catheter days and indwelling catheter utilization did not significantly differ following implementation of the intervention. Nurse compliance with the intervention was computed for each month; the average compliance rate was 91%. Findings from this project indicate that a nurse-led evidence-based practice project exerted a positive influence on CAUTI occurrences. PMID:26808302
Implementation and testing of algorithms for data fitting
NASA Astrophysics Data System (ADS)
Monahan, Alison; Engelhardt, Larry
2012-03-01
This poster will describe an undergraduate senior research project involving the creation and testing of a java class to implement the Nelder-Mead algorithm, which can be used for data fitting. The performance between the Nelder-Mead algorithm and the Levenberg-Marquardt algorithm will be compared using a variety of different data. The new class will be made available at http://www.compadre.org/osp/items/detail.cfm?ID=11593. At the time of the presentation, this project will be nearing completion; and I will discuss my progress, successes, and challenges.
A Simple Calculator Algorithm.
ERIC Educational Resources Information Center
Cook, Lyle; McWilliam, James
1983-01-01
The problem of finding cube roots when limited to a calculator with only square root capability is discussed. An algorithm is demonstrated and explained which should always produce a good approximation within a few iterations. (MP)
Zhou, Yongquan; Xie, Jian; Li, Liangliang; Ma, Mingzhi
2014-01-01
Bat algorithm (BA) is a novel stochastic global optimization algorithm. Cloud model is an effective tool in transforming between qualitative concepts and their quantitative representation. Based on the bat echolocation mechanism and excellent characteristics of cloud model on uncertainty knowledge representation, a new cloud model bat algorithm (CBA) is proposed. This paper focuses on remodeling echolocation model based on living and preying characteristics of bats, utilizing the transformation theory of cloud model to depict the qualitative concept: "bats approach their prey." Furthermore, Lévy flight mode and population information communication mechanism of bats are introduced to balance the advantage between exploration and exploitation. The simulation results show that the cloud model bat algorithm has good performance on functions optimization. PMID:24967425
NASA Astrophysics Data System (ADS)
Feigin, G.; Ben-Yosef, N.
1983-10-01
A thinning algorithm, of the banana-peel type, is presented. In each iteration pixels are attacked from all directions (there are no sub-iterations), and the deletion criteria depend on the 24 nearest neighbours.
Diagnostic Algorithm Benchmarking
NASA Technical Reports Server (NTRS)
Poll, Scott
2011-01-01
A poster for the NASA Aviation Safety Program Annual Technical Meeting. It describes empirical benchmarking on diagnostic algorithms using data from the ADAPT Electrical Power System testbed and a diagnostic software framework.
Algorithmically specialized parallel computers
Snyder, L.; Jamieson, L.H.; Gannon, D.B.; Siegel, H.J.
1985-01-01
This book is based on a workshop which dealt with array processors. Topics considered include algorithmic specialization using VLSI, innovative architectures, signal processing, speech recognition, image processing, specialized architectures for numerical computations, and general-purpose computers.
Energy Science and Technology Software Center (ESTSC)
2013-07-29
The OpenEIS Algorithm package seeks to provide a low-risk path for building owners, service providers and managers to explore analytical methods for improving building control and operational efficiency. Users of this software can analyze building data, and learn how commercial implementations would provide long-term value. The code also serves as a reference implementation for developers who wish to adapt the algorithms for use in commercial tools or service offerings.
The Superior Lambert Algorithm
NASA Astrophysics Data System (ADS)
der, G.
2011-09-01
Lambert algorithms are used extensively for initial orbit determination, mission planning, space debris correlation, and missile targeting, just to name a few applications. Due to the significance of the Lambert problem in Astrodynamics, Gauss, Battin, Godal, Lancaster, Gooding, Sun and many others (References 1 to 15) have provided numerous formulations leading to various analytic solutions and iterative methods. Most Lambert algorithms and their computer programs can only work within one revolution, break down or converge slowly when the transfer angle is near zero or 180 degrees, and their multi-revolution limitations are either ignored or barely addressed. Despite claims of robustness, many Lambert algorithms fail without notice, and the users seldom have a clue why. The DerAstrodynamics lambert2 algorithm, which is based on the analytic solution formulated by Sun, works for any number of revolutions and converges rapidly at any transfer angle. It provides significant capability enhancements over every other Lambert algorithm in use today. These include improved speed, accuracy, robustness, and multirevolution capabilities as well as implementation simplicity. Additionally, the lambert2 algorithm provides a powerful tool for solving the angles-only problem without artificial singularities (pointed out by Gooding in Reference 16), which involves 3 lines of sight captured by optical sensors, or systems such as the Air Force Space Surveillance System (AFSSS). The analytic solution is derived from the extended Godal’s time equation by Sun, while the iterative method of solution is that of Laguerre, modified for robustness. The Keplerian solution of a Lambert algorithm can be extended to include the non-Keplerian terms of the Vinti algorithm via a simple targeting technique (References 17 to 19). Accurate analytic non-Keplerian trajectories can be predicted for satellites and ballistic missiles, while performing at least 100 times faster in speed than most
Randomized Algorithms for Matrices and Data
NASA Astrophysics Data System (ADS)
Mahoney, Michael W.
2012-03-01
This chapter reviews recent work on randomized matrix algorithms. By “randomized matrix algorithms,” we refer to a class of recently developed random sampling and random projection algorithms for ubiquitous linear algebra problems such as least-squares (LS) regression and low-rank matrix approximation. These developments have been driven by applications in large-scale data analysis—applications which place very different demands on matrices than traditional scientific computing applications. Thus, in this review, we will focus on highlighting the simplicity and generality of several core ideas that underlie the usefulness of these randomized algorithms in scientific applications such as genetics (where these algorithms have already been applied) and astronomy (where, hopefully, in part due to this review they will soon be applied). The work we will review here had its origins within theoretical computer science (TCS). An important feature in the use of randomized algorithms in TCS more generally is that one must identify and then algorithmically deal with relevant “nonuniformity structure” in the data. For the randomized matrix algorithms to be reviewed here and that have proven useful recently in numerical linear algebra (NLA) and large-scale data analysis applications, the relevant nonuniformity structure is defined by the so-called statistical leverage scores. Defined more precisely below, these leverage scores are basically the diagonal elements of the projection matrix onto the dominant part of the spectrum of the input matrix. As such, they have a long history in statistical data analysis, where they have been used for outlier detection in regression diagnostics. More generally, these scores often have a very natural interpretation in terms of the data and processes generating the data. For example, they can be interpreted in terms of the leverage or influence that a given data point has on, say, the best low-rank matrix approximation; and this
NASA Astrophysics Data System (ADS)
Tom, C. N.; Davies, W. J.; Goycochea, J. F.
1993-09-01
The purpose of this project was to explore the use of polar processing techniques in SIGINT-related signal processing applications. An investigation of ways to apply the CORDIC arithmetic algorithm to signal processing problems, and an application of the TMC2330 Coordinate Transformer chip in a coprocessor or accelerator board for a Sun workstation are covered.
Sampling Within k-Means Algorithm to Cluster Large Datasets
Bejarano, Jeremy; Bose, Koushiki; Brannan, Tyler; Thomas, Anita; Adragni, Kofi; Neerchal, Nagaraj; Ostrouchov, George
2011-08-01
Due to current data collection technology, our ability to gather data has surpassed our ability to analyze it. In particular, k-means, one of the simplest and fastest clustering algorithms, is ill-equipped to handle extremely large datasets on even the most powerful machines. Our new algorithm uses a sample from a dataset to decrease runtime by reducing the amount of data analyzed. We perform a simulation study to compare our sampling based k-means to the standard k-means algorithm by analyzing both the speed and accuracy of the two methods. Results show that our algorithm is significantly more efficient than the existing algorithm with comparable accuracy. Further work on this project might include a more comprehensive study both on more varied test datasets as well as on real weather datasets. This is especially important considering that this preliminary study was performed on rather tame datasets. Also, these datasets should analyze the performance of the algorithm on varied values of k. Lastly, this paper showed that the algorithm was accurate for relatively low sample sizes. We would like to analyze this further to see how accurate the algorithm is for even lower sample sizes. We could find the lowest sample sizes, by manipulating width and confidence level, for which the algorithm would be acceptably accurate. In order for our algorithm to be a success, it needs to meet two benchmarks: match the accuracy of the standard k-means algorithm and significantly reduce runtime. Both goals are accomplished for all six datasets analyzed. However, on datasets of three and four dimension, as the data becomes more difficult to cluster, both algorithms fail to obtain the correct classifications on some trials. Nevertheless, our algorithm consistently matches the performance of the standard algorithm while becoming remarkably more efficient with time. Therefore, we conclude that analysts can use our algorithm, expecting accurate results in considerably less time.
Filtering algorithm for dotted interferences
NASA Astrophysics Data System (ADS)
Osterloh, K.; Bücherl, T.; Lierse von Gostomski, Ch.; Zscherpel, U.; Ewert, U.; Bock, S.
2011-09-01
An algorithm has been developed to remove reliably dotted interferences impairing the perceptibility of objects within a radiographic image. This particularly is a major challenge encountered with neutron radiographs collected at the NECTAR facility, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II): the resulting images are dominated by features resembling a snow flurry. These artefacts are caused by scattered neutrons, gamma radiation, cosmic radiation, etc. all hitting the detector CCD directly in spite of a sophisticated shielding. This makes such images rather useless for further direct evaluations. One approach to resolve this problem of these random effects would be to collect a vast number of single images, to combine them appropriately and to process them with common image filtering procedures. However, it has been shown that, e.g. median filtering, depending on the kernel size in the plane and/or the number of single shots to be combined, is either insufficient or tends to blur sharp lined structures. This inevitably makes a visually controlled processing image by image unavoidable. Particularly in tomographic studies, it would be by far too tedious to treat each single projection by this way. Alternatively, it would be not only more comfortable but also in many cases the only reasonable approach to filter a stack of images in a batch procedure to get rid of the disturbing interferences. The algorithm presented here meets all these requirements. It reliably frees the images from the snowy pattern described above without the loss of fine structures and without a general blurring of the image. It consists of an iterative, within a batch procedure parameter free filtering algorithm aiming to eliminate the often complex interfering artefacts while leaving the original information untouched as far as possible.
Improved Heat-Stress Algorithm
NASA Technical Reports Server (NTRS)
Teets, Edward H., Jr.; Fehn, Steven
2007-01-01
NASA Dryden presents an improved and automated site-specific algorithm for heat-stress approximation using standard atmospheric measurements routinely obtained from the Edwards Air Force Base weather detachment. Heat stress, which is the net heat load a worker may be exposed to, is officially measured using a thermal-environment monitoring system to calculate the wet-bulb globe temperature (WBGT). This instrument uses three independent thermometers to measure wet-bulb, dry-bulb, and the black-globe temperatures. By using these improvements, a more realistic WBGT estimation value can now be produced. This is extremely useful for researchers and other employees who are working on outdoor projects that are distant from the areas that the Web system monitors. Most importantly, the improved WBGT estimations will make outdoor work sites safer by reducing the likelihood of heat stress.
A digitally reconstructed radiograph algorithm calculated from first principles
Staub, David; Murphy, Martin J.
2013-01-15
Purpose: To develop an algorithm for computing realistic digitally reconstructed radiographs (DRRs) that match real cone-beam CT (CBCT) projections with no artificial adjustments. Methods: The authors used measured attenuation data from cone-beam CT projection radiographs of different materials to obtain a function to convert CT number to linear attenuation coefficient (LAC). The effects of scatter, beam hardening, and veiling glare were first removed from the attenuation data. Using this conversion function the authors calculated the line integral of LAC through a CT along rays connecting the radiation source and detector pixels with a ray-tracing algorithm, producing raw DRRs. The effects of scatter, beam hardening, and veiling glare were then included in the DRRs through postprocessing. Results: The authors compared actual CBCT projections to DRRs produced with all corrections (scatter, beam hardening, and veiling glare) and to uncorrected DRRs. Algorithm accuracy was assessed through visual comparison of projections and DRRs, pixel intensity comparisons, intensity histogram comparisons, and correlation plots of DRR-to-projection pixel intensities. In general, the fully corrected algorithm provided a small but nontrivial improvement in accuracy over the uncorrected algorithm. The authors also investigated both measurement- and computation-based methods for determining the beam hardening correction, and found the computation-based method to be superior, as it accounted for nonuniform bowtie filter thickness. The authors benchmarked the algorithm for speed and found that it produced DRRs in about 0.35 s for full detector and CT resolution at a ray step-size of 0.5 mm. Conclusions: The authors have demonstrated a DRR algorithm calculated from first principles that accounts for scatter, beam hardening, and veiling glare in order to produce accurate DRRs. The algorithm is computationally efficient, making it a good candidate for iterative CT reconstruction techniques
NASA Astrophysics Data System (ADS)
Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing
2015-08-01
Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).
A set-membership approach to blind channel equalization algorithm
NASA Astrophysics Data System (ADS)
Li, Yue-ming
2013-03-01
The constant modulus algorithm (CMA) has low computational complexity while presenting slow convergence and possible convergence to local minima, the CMA family of algorithms based on affine projection version (AP-CMA) alleviates the speed limitations of the CMA. However, the computational complexity has been a weak point in the implementation of AP-CMA. To reduce the computational complexity of the adaptive filtering algorithm, a new AP-CMA algorithm based on set membership (SM-AP-CMA) is proposed. The new algorithm combines a bounded error specification on the adaptive filter with the concept of data-reusing. Simulations confirmed that the convergence rate of the proposed algorithm is significantly faster; meanwhile, the excess mean square error can be maintained in a relatively low level and a substantial reduction in the number of updates when compared with its conventional counterpart.
Evaluating ACLS Algorithms for the International Space Station (ISS) - A Paradigm Revisited
NASA Technical Reports Server (NTRS)
Alexander, Dave; Brandt, Keith; Locke, James; Hurst, Victor, IV; Mack, Michael D.; Pettys, Marianne; Smart, Kieran
2007-01-01
The ISS may have communication gaps of up to 45 minutes during each orbit and therefore it is imperative to have medical protocols, including an effective ACLS algorithm, that can be reliably autonomously executed during flight. The aim of this project was to compare the effectiveness of the current ACLS algorithm with an improved algorithm having a new navigation format.
Parallel Implementation of Katsevich's FBP Algorithm
Guo, Xiaohu; Kong, Qiang; Zhou, Tie; Jiang, Ming
2006-01-01
For spiral cone-beam CT, parallel computing is an effective approach to resolving the problem of heavy computation burden. It is well known that the major computation time is spent in the backprojection step for either filtered-backprojection (FBP) or backprojected-filtration (BPF) algorithms. By the cone-beam cover method [1], the backprojection procedure is driven by cone-beam projections, and every cone-beam projection can be backprojected independently. Basing on this fact, we develop a parallel implementation of Katsevich's FBP algorithm. We do all the numerical experiments on a Linux cluster. In one typical experiment, the sequential reconstruction time is 781.3 seconds, while the parallel reconstruction time is 25.7 seconds with 32 processors. PMID:23165019
A Probabilistic Cell Tracking Algorithm
NASA Astrophysics Data System (ADS)
Steinacker, Reinhold; Mayer, Dieter; Leiding, Tina; Lexer, Annemarie; Umdasch, Sarah
2013-04-01
The research described below was carried out during the EU-Project Lolight - development of a low cost, novel and accurate lightning mapping and thunderstorm (supercell) tracking system. The Project aims to develop a small-scale tracking method to determine and nowcast characteristic trajectories and velocities of convective cells and cell complexes. The results of the algorithm will provide a higher accuracy than current locating systems distributed on a coarse scale. Input data for the developed algorithm are two temporally separated lightning density fields. Additionally a Monte Carlo method minimizing a cost function is utilizied which leads to a probabilistic forecast for the movement of thunderstorm cells. In the first step the correlation coefficients between the first and the second density field are computed. Hence, the first field is shifted by all shifting vectors which are physically allowed. The maximum length of each vector is determined by the maximum possible speed of thunderstorm cells and the difference in time for both density fields. To eliminate ambiguities in determination of directions and velocities, the so called Random Walker of the Monte Carlo process is used. Using this method a grid point is selected at random. Moreover, one vector out of all predefined shifting vectors is suggested - also at random but with a probability that is related to the correlation coefficient. If this exchange of shifting vectors reduces the cost function, the new direction and velocity are accepted. Otherwise it is discarded. This process is repeated until the change of cost functions falls below a defined threshold. The Monte Carlo run gives information about the percentage of accepted shifting vectors for all grid points. In the course of the forecast, amplifications of cell density are permitted. For this purpose, intensity changes between the investigated areas of both density fields are taken into account. Knowing the direction and speed of thunderstorm
Optical rate sensor algorithms
NASA Technical Reports Server (NTRS)
Uhde-Lacovara, Jo A.
1989-01-01
Optical sensors, in particular Charge Coupled Device (CCD) arrays, will be used on Space Station to track stars in order to provide inertial attitude reference. Algorithms are presented to derive attitude rate from the optical sensors. The first algorithm is a recursive differentiator. A variance reduction factor (VRF) of 0.0228 was achieved with a rise time of 10 samples. A VRF of 0.2522 gives a rise time of 4 samples. The second algorithm is based on the direct manipulation of the pixel intensity outputs of the sensor. In 1-dimensional simulations, the derived rate was with 0.07 percent of the actual rate in the presence of additive Gaussian noise with a signal to noise ratio of 60 dB.
Temperature Corrected Bootstrap Algorithm
NASA Technical Reports Server (NTRS)
Comiso, Joey C.; Zwally, H. Jay
1997-01-01
A temperature corrected Bootstrap Algorithm has been developed using Nimbus-7 Scanning Multichannel Microwave Radiometer data in preparation to the upcoming AMSR instrument aboard ADEOS and EOS-PM. The procedure first calculates the effective surface emissivity using emissivities of ice and water at 6 GHz and a mixing formulation that utilizes ice concentrations derived using the current Bootstrap algorithm but using brightness temperatures from 6 GHz and 37 GHz channels. These effective emissivities are then used to calculate surface ice which in turn are used to convert the 18 GHz and 37 GHz brightness temperatures to emissivities. Ice concentrations are then derived using the same technique as with the Bootstrap algorithm but using emissivities instead of brightness temperatures. The results show significant improvement in the area where ice temperature is expected to vary considerably such as near the continental areas in the Antarctic, where the ice temperature is colder than average, and in marginal ice zones.
Power spectral estimation algorithms
NASA Technical Reports Server (NTRS)
Bhatia, Manjit S.
1989-01-01
Algorithms to estimate the power spectrum using Maximum Entropy Methods were developed. These algorithms were coded in FORTRAN 77 and were implemented on the VAX 780. The important considerations in this analysis are: (1) resolution, i.e., how close in frequency two spectral components can be spaced and still be identified; (2) dynamic range, i.e., how small a spectral peak can be, relative to the largest, and still be observed in the spectra; and (3) variance, i.e., how accurate the estimate of the spectra is to the actual spectra. The application of the algorithms based on Maximum Entropy Methods to a variety of data shows that these criteria are met quite well. Additional work in this direction would help confirm the findings. All of the software developed was turned over to the technical monitor. A copy of a typical program is included. Some of the actual data and graphs used on this data are also included.
Algorithmic Techniques for Massive Data Sets
Moses Charikar
2006-04-03
This report describes the progress made during the Early Career Principal Investigator (ECPI) project on Algorithmic Techniques for Large Data Sets. Research was carried out in the areas of dimension reduction, clustering and finding structure in data, aggregating information from different sources and designing efficient methods for similarity search for high dimensional data. A total of nine different research results were obtained and published in leading conferences and journals.
Programming parallel vision algorithms
Shapiro, L.G.
1988-01-01
Computer vision requires the processing of large volumes of data and requires parallel architectures and algorithms to be useful in real-time, industrial applications. The INSIGHT dataflow language was designed to allow encoding of vision algorithms at all levels of the computer vision paradigm. INSIGHT programs, which are relational in nature, can be translated into a graph structure that represents an architecture for solving a particular vision problem or a configuration of a reconfigurable computational network. The authors consider here INSIGHT programs that produce a parallel net architecture for solving low-, mid-, and high-level vision tasks.
New Effective Multithreaded Matching Algorithms
Manne, Fredrik; Halappanavar, Mahantesh
2014-05-19
Matching is an important combinatorial problem with a number of applications in areas such as community detection, sparse linear algebra, and network alignment. Since computing optimal matchings can be very time consuming, several fast approximation algorithms, both sequential and parallel, have been suggested. Common to the algorithms giving the best solutions is that they tend to be sequential by nature, while algorithms more suitable for parallel computation give solutions of less quality. We present a new simple 1 2 -approximation algorithm for the weighted matching problem. This algorithm is both faster than any other suggested sequential 1 2 -approximation algorithm on almost all inputs and also scales better than previous multithreaded algorithms. We further extend this to a general scalable multithreaded algorithm that computes matchings of weight comparable with the best sequential algorithms. The performance of the suggested algorithms is documented through extensive experiments on different multithreaded architectures.
Parallel vision algorithms. Annual technical report No. 1, 1 October 1986-30 September 1987
Ibrahim, H.A.; Kender, J.R.; Brown, L.G.
1987-10-01
The objective of this project is to develop and implement, on highly parallel computers, vision algorithms that combine stereo, texture, and multi-resolution techniques for determining local surface orientation and depth. Such algorithms will immediately serve as front-ends for autonomous land vehicle navigation systems. During the first year of the project, efforts have concentrated on two fronts. First, developing and testing the parallel programming environment that will be used to develop, implement and test the parallel vision algorithms. Second, developing and testing multi-resolution stereo, and texture algorithms. This report describes the status and progress on these two fronts. The authors describe first the programming environment developed, and mapping scheme that allows efficient use of the connection machine for pyramid (multi-resolution) algorithms. Second, they present algorithms and test results for multi-resolution stereo, and texture algorithms. Also the initial results of the starting efforts of integrating stereo and texture algorithms are presented.
Advanced Algorithms and Automation Tools for Discrete Ordinates Methods in Parallel Environments
Alireza Haghighat
2003-05-07
This final report discusses major accomplishments of a 3-year project under the DOE's NEER Program. The project has developed innovative and automated algorithms, codes, and tools for solving the discrete ordinates particle transport method efficiently in parallel environments. Using a number of benchmark and real-life problems, the performance and accuracy of the new algorithms have been measured and analyzed.
Formation Algorithms and Simulation Testbed
NASA Technical Reports Server (NTRS)
Wette, Matthew; Sohl, Garett; Scharf, Daniel; Benowitz, Edward
2004-01-01
Formation flying for spacecraft is a rapidly developing field that will enable a new era of space science. For one of its missions, the Terrestrial Planet Finder (TPF) project has selected a formation flying interferometer design to detect earth-like planets orbiting distant stars. In order to advance technology needed for the TPF formation flying interferometer, the TPF project has been developing a distributed real-time testbed to demonstrate end-to-end operation of formation flying with TPF-like functionality and precision. This is the Formation Algorithms and Simulation Testbed (FAST) . This FAST was conceived to bring out issues in timing, data fusion, inter-spacecraft communication, inter-spacecraft sensing and system-wide formation robustness. In this paper we describe the FAST and show results from a two-spacecraft formation scenario. The two-spacecraft simulation is the first time that precision end-to-end formation flying operation has been demonstrated in a distributed real-time simulation environment.
Multivariate Spline Algorithms for CAGD
NASA Technical Reports Server (NTRS)
Boehm, W.
1985-01-01
Two special polyhedra present themselves for the definition of B-splines: a simplex S and a box or parallelepiped B, where the edges of S project into an irregular grid, while the edges of B project into the edges of a regular grid. More general splines may be found by forming linear combinations of these B-splines, where the three-dimensional coefficients are called the spline control points. Univariate splines are simplex splines, where s = 1, whereas splines over a regular triangular grid are box splines, where s = 2. Two simple facts render the development of the construction of B-splines: (1) any face of a simplex or a box is again a simplex or box but of lower dimension; and (2) any simplex or box can be easily subdivided into smaller simplices or boxes. The first fact gives a geometric approach to Mansfield-like recursion formulas that express a B-spline in B-splines of lower order, where the coefficients depend on x. By repeated recursion, the B-spline will be expressed as B-splines of order 1; i.e., piecewise constants. In the case of a simplex spline, the second fact gives a so-called insertion algorithm that constructs the new control points if an additional knot is inserted.
Advanced algorithms for information science
Argo, P.; Brislawn, C.; Fitzgerald, T.J.; Kelley, B.; Kim, W.H.; Mazieres, B.; Roeder, H.; Strottman, D.
1998-12-31
This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). In a modern information-controlled society the importance of fast computational algorithms facilitating data compression and image analysis cannot be overemphasized. Feature extraction and pattern recognition are key to many LANL projects and the same types of dimensionality reduction and compression used in source coding are also applicable to image understanding. The authors have begun developing wavelet coding which decomposes data into different length-scale and frequency bands. New transform-based source-coding techniques offer potential for achieving better, combined source-channel coding performance by using joint-optimization techniques. They initiated work on a system that compresses the video stream in real time, and which also takes the additional step of analyzing the video stream concurrently. By using object-based compression schemes (where an object is an identifiable feature of the video signal, repeatable in time or space), they believe that the analysis is directly related to the efficiency of the compression.
ANL CT Reconstruction Algorithm for Utilizing Digital X-ray
Energy Science and Technology Software Center (ESTSC)
2004-05-01
Reconstructs X-ray computed tomographic images from large data sets known as 16-bit binary sinograms when using a massively parallelized computer architecture such as a Beowuif cluster by parallelizing the X-ray CT reconstruction routine. The algorithm uses the concept of generation of an image from carefully obtained multiple 1-D or 2-D X-ray projections. The individual projections are filtered using a digital Fast Fourier Transform. The literature refers to this as filtered back projection.
NASA Astrophysics Data System (ADS)
Santer, Richard P.; Fell, Frank
2003-05-01
), combining satellite data, evaluation algorithms and value-adding ancillary digital information. This prevents the end user from investing funds into expensive equipment or to hire specialized personnel. The data processor shall be a generic tool, which may be applied to a large variety of operationally gathered satellite data. In the frame of SISCAL, the processor shall be applied to remotely sensed data of selected coastal areas and lakes in Central Europe and the Eastern Mediterranean, according to the needs of the end users within the SISCAL consortium. A number of measures are required to achieve the objective of the proposed project: (1) Identification and specification of the SISCAL end user needs for NRT water related data products accessible to EO techniques. (2) Selection of the most appropriate instruments, evaluation algorithms and ancillary data bases required to provide the identified data products. (3) Development of the actual Near-Real-Time data processor for the specified EO data products. (4) Development of the GIS processor adding ancillary digital information to the satellite images and providing the required geographical projections. (5) Development of a product retrieval and management system to handle ordering and distribution of data products between the SISCAL server and the end users, including payment and invoicing. (6) Evaluation of the derived data products in terms of accuracy and usefulness by comparison with available in-situ measurements and by making use of the local expertise of the end users. (7) Establishing an Internet server dedicated to internal communication between the consortium members as well as presenting the SISCAL project to a larger public. (8) Marketing activities, presentation of data processor to potential external customers, identification of their exact needs. The innovative aspect of the SISCAL project consists in the generation of NRT data products on water quality parameters from EO data. This article mainly deals
NASA Astrophysics Data System (ADS)
Santer, Richard P.; Fell, Frank
2003-05-01
), combining satellite data, evaluation algorithms and value-adding ancillary digital information. This prevents the end user from investing funds into expensive equipment or to hire specialized personnel. The data processor shall be a generic tool, which may be applied to a large variety of operationally gathered satellite data. In the frame of SISCAL, the processor shall be applied to remotely sensed data of selected coastal areas and lakes in Central Europe and the Eastern Mediterranean, according to the needs of the end users within the SISCAL consortium. A number of measures are required to achieve the objective of the proposed project: (1) Identification and specification of the SISCAL end user needs for NRT water related data products accessible to EO techniques. (2) Selection of the most appropriate instruments, evaluation algorithms and ancillary data bases required to provide the identified data products. (3) Development of the actual Near-Real-Time data processor for the specified EO data products. (4) Development of the GIS processor adding ancillary digital information to the satellite images and providing the required geographical projections. (5) Development of a product retrieval and management system to handle ordering and distribution of data products between the SISCAL server and the end users, including payment and invoicing. (6) Evaluation of the derived data products in terms of accuracy and usefulness by comparison with available in-situ measurements and by making use of the local expertise of the end users. (7) Establishing an Internet server dedicated to internal communication between the consortium members as well as presenting the SISCAL project to a larger public. (8) Marketing activities, presentation of data processor to potential external customers, identification of their exact needs. The innovative aspect of the SISCAL project consists in the generation of NRT data products on water quality parameters from EO data. This article mainly deals
Energy Science and Technology Software Center (ESTSC)
2005-03-30
The Robotic Follow Algorithm enables allows any robotic vehicle to follow a moving target while reactively choosing a route around nearby obstacles. The robotic follow behavior can be used with different camera systems and can be used with thermal or visual tracking as well as other tracking methods such as radio frequency tags.
Data Structures and Algorithms.
ERIC Educational Resources Information Center
Wirth, Niklaus
1984-01-01
Built-in data structures are the registers and memory words where binary values are stored; hard-wired algorithms are the fixed rules, embodied in electronic logic circuits, by which stored data are interpreted as instructions to be executed. Various topics related to these two basic elements of every computer program are discussed. (JN)
General cardinality genetic algorithms
Koehler; Bhattacharyya; Vose
1997-01-01
A complete generalization of the Vose genetic algorithm model from the binary to higher cardinality case is provided. Boolean AND and EXCLUSIVE-OR operators are replaced by multiplication and addition over rings of integers. Walsh matrices are generalized with finite Fourier transforms for higher cardinality usage. Comparison of results to the binary case are provided. PMID:10021767
ERIC Educational Resources Information Center
Drake, Michael
2011-01-01
One debate that periodically arises in mathematics education is the issue of how to teach calculation more effectively. "Modern" approaches seem to initially favour mental calculation, informal methods, and the development of understanding before introducing written forms, while traditionalists tend to champion particular algorithms. The debate is…
ERIC Educational Resources Information Center
Siegenthaler, David
For 37 states in the United States, Project Wild has become an officially sanctioned, distributed and funded "environemtnal and conservation education program." For those who are striving to implement focused, sequential, learning programs, as well as those who wish to promote harmony through a non-anthropocentric world view, Project Wild may…
Influence of DBT reconstruction algorithm on power law spectrum coefficient
NASA Astrophysics Data System (ADS)
Vancamberg, Laurence; Carton, Ann-Katherine; Abderrahmane, Ilyes H.; Palma, Giovanni; Milioni de Carvalho, Pablo; Iordache, Rǎzvan; Muller, Serge
2015-03-01
In breast X-ray images, texture has been characterized by a noise power spectrum (NPS) that has an inverse power-law shape described by its slope β in the log-log domain. It has been suggested that the magnitude of the power-law spectrum coefficient β is related to mass lesion detection performance. We assessed β in reconstructed digital breast tomosynthesis (DBT) images to evaluate its sensitivity to different typical reconstruction algorithms including simple back projection (SBP), filtered back projection (FBP) and a simultaneous iterative reconstruction algorithm (SIRT 30 iterations). Results were further compared to the β coefficient estimated from 2D central DBT projections. The calculations were performed on 31 unilateral clinical DBT data sets and simulated DBT images from 31 anthropomorphic software breast phantoms. Our results show that β highly depends on the reconstruction algorithm; the highest β values were found for SBP, followed by reconstruction with FBP, while the lowest β values were found for SIRT. In contrast to previous studies, we found that β is not always lower in reconstructed DBT slices, compared to 2D projections and this depends on the reconstruction algorithm. All β values estimated in DBT slices reconstructed with SBP were larger than β values from 2D central projections. Our study also shows that the reconstruction algorithm affects the symmetry of the breast texture NPS; the NPS of clinical cases reconstructed with SBP exhibit the highest symmetry, while the NPS of cases reconstructed with SIRT exhibit the highest asymmetry.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
1991-01-01
The dynamic and composite nature of propagation impairments that are incurred on Earth-space communications links at frequencies in and above 30/20 GHz Ka band, i.e., rain attenuation, cloud and/or clear air scintillation, etc., combined with the need to counter such degradations after the small link margins have been exceeded, necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) Project by the implementation of optimal processing schemes derived through the use of the Rain Attenuation Prediction Model and nonlinear Markov filtering theory.
Genetic Algorithms and Local Search
NASA Technical Reports Server (NTRS)
Whitley, Darrell
1996-01-01
The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.
Reactive Collision Avoidance Algorithm
NASA Technical Reports Server (NTRS)
Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred
2010-01-01
The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on
Fast algorithms for transport models. Final report
Manteuffel, T.A.
1994-10-01
This project has developed a multigrid in space algorithm for the solution of the S{sub N} equations with isotropic scattering in slab geometry. The algorithm was developed for the Modified Linear Discontinuous (MLD) discretization in space which is accurate in the thick diffusion limit. It uses a red/black two-cell {mu}-line relaxation. This relaxation solves for all angles on two adjacent spatial cells simultaneously. It takes advantage of the rank-one property of the coupling between angles and can perform this inversion in O(N) operations. A version of the multigrid in space algorithm was programmed on the Thinking Machines Inc. CM-200 located at LANL. It was discovered that on the CM-200 a block Jacobi type iteration was more efficient than the block red/black iteration. Given sufficient processors all two-cell block inversions can be carried out simultaneously with a small number of parallel steps. The bottleneck is the need for sums of N values, where N is the number of discrete angles, each from a different processor. These are carried out by machine intrinsic functions and are well optimized. The overall algorithm has computational complexity O(log(M)), where M is the number of spatial cells. The algorithm is very efficient and represents the state-of-the-art for isotropic problems in slab geometry. For anisotropic scattering in slab geometry, a multilevel in angle algorithm was developed. A parallel version of the multilevel in angle algorithm has also been developed. Upon first glance, the shifted transport sweep has limited parallelism. Once the right-hand-side has been computed, the sweep is completely parallel in angle, becoming N uncoupled initial value ODE`s. The author has developed a cyclic reduction algorithm that renders it parallel with complexity O(log(M)). The multilevel in angle algorithm visits log(N) levels, where shifted transport sweeps are performed. The overall complexity is O(log(N)log(M)).
A limited-memory algorithm for bound-constrained optimization
Byrd, R.H.; Peihuang, L.; Nocedal, J. |
1996-03-01
An algorithm for solving large nonlinear optimization problems with simple bounds is described. It is based on the gradient projection method and uses a limited-memory BFGS matrix to approximate the Hessian of the objective function. We show how to take advantage of the form of the limited-memory approximation to implement the algorithm efficiently. The results of numerical tests on a set of large problems are reported.
Tomasz Plawski, J. Hovater
2010-09-01
A digital low level radio frequency (RF) system typically incorporates either a heterodyne or direct sampling technique, followed by fast ADCs, then an FPGA, and finally a transmitting DAC. This universal platform opens up the possibilities for a variety of control algorithm implementations. The foremost concern for an RF control system is cavity field stability, and to meet the required quality of regulation, the chosen control system needs to have sufficient feedback gain. In this paper we will investigate the effectiveness of the regulation for three basic control system algorithms: I&Q (In-phase and Quadrature), Amplitude & Phase and digital SEL (Self Exciting Loop) along with the example of the Jefferson Lab 12 GeV cavity field control system.
NASA Technical Reports Server (NTRS)
Arenstorf, Norbert S.; Jordan, Harry F.
1987-01-01
A barrier is a method for synchronizing a large number of concurrent computer processes. After considering some basic synchronization mechanisms, a collection of barrier algorithms with either linear or logarithmic depth are presented. A graphical model is described that profiles the execution of the barriers and other parallel programming constructs. This model shows how the interaction between the barrier algorithms and the work that they synchronize can impact their performance. One result is that logarithmic tree structured barriers show good performance when synchronizing fixed length work, while linear self-scheduled barriers show better performance when synchronizing fixed length work with an imbedded critical section. The linear barriers are better able to exploit the process skew associated with critical sections. Timing experiments, performed on an eighteen processor Flex/32 shared memory multiprocessor, that support these conclusions are detailed.
Algorithms, games, and evolution
Chastain, Erick; Livnat, Adi; Papadimitriou, Christos; Vazirani, Umesh
2014-01-01
Even the most seasoned students of evolution, starting with Darwin himself, have occasionally expressed amazement that the mechanism of natural selection has produced the whole of Life as we see it around us. There is a computational way to articulate the same amazement: “What algorithm could possibly achieve all this in a mere three and a half billion years?” In this paper we propose an answer: We demonstrate that in the regime of weak selection, the standard equations of population genetics describing natural selection in the presence of sex become identical to those of a repeated game between genes played according to multiplicative weight updates (MWUA), an algorithm known in computer science to be surprisingly powerful and versatile. MWUA maximizes a tradeoff between cumulative performance and entropy, which suggests a new view on the maintenance of diversity in evolution. PMID:24979793
NASA Technical Reports Server (NTRS)
Arenstorf, Norbert S.; Jordan, Harry F.
1989-01-01
A barrier is a method for synchronizing a large number of concurrent computer processes. After considering some basic synchronization mechanisms, a collection of barrier algorithms with either linear or logarithmic depth are presented. A graphical model is described that profiles the execution of the barriers and other parallel programming constructs. This model shows how the interaction between the barrier algorithms and the work that they synchronize can impact their performance. One result is that logarithmic tree structured barriers show good performance when synchronizing fixed length work, while linear self-scheduled barriers show better performance when synchronizing fixed length work with an imbedded critical section. The linear barriers are better able to exploit the process skew associated with critical sections. Timing experiments, performed on an eighteen processor Flex/32 shared memory multiprocessor that support these conclusions, are detailed.
NASA Astrophysics Data System (ADS)
Deprit, André; Palacián, Jesúus; Deprit, Etienne
2001-03-01
The relegation algorithm extends the method of normalization by Lie transformations. Given a Hamiltonian that is a power series ℋ = ℋ0+ ɛℋ1+ ... of a small parameter ɛ, normalization constructs a map which converts the principal part ℋ0into an integral of the transformed system — relegation does the same for an arbitrary function ℋ[G]. If the Lie derivative induced by ℋ[G] is semi-simple, a double recursion produces the generator of the relegating transformation. The relegation algorithm is illustrated with an elementary example borrowed from galactic dynamics; the exercise serves as a standard against which to test software implementations. Relegation is also applied to the more substantial example of a Keplerian system perturbed by radiation pressure emanating from a rotating source.
Genetic Algorithm for Optimization: Preprocessor and Algorithm
NASA Technical Reports Server (NTRS)
Sen, S. K.; Shaykhian, Gholam A.
2006-01-01
Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.
An efficient algorithm for function optimization: modified stem cells algorithm
NASA Astrophysics Data System (ADS)
Taherdangkoo, Mohammad; Paziresh, Mahsa; Yazdi, Mehran; Bagheri, Mohammad
2013-03-01
In this paper, we propose an optimization algorithm based on the intelligent behavior of stem cell swarms in reproduction and self-organization. Optimization algorithms, such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Artificial Bee Colony (ABC) algorithm, can give solutions to linear and non-linear problems near to the optimum for many applications; however, in some case, they can suffer from becoming trapped in local optima. The Stem Cells Algorithm (SCA) is an optimization algorithm inspired by the natural behavior of stem cells in evolving themselves into new and improved cells. The SCA avoids the local optima problem successfully. In this paper, we have made small changes in the implementation of this algorithm to obtain improved performance over previous versions. Using a series of benchmark functions, we assess the performance of the proposed algorithm and compare it with that of the other aforementioned optimization algorithms. The obtained results prove the superiority of the Modified Stem Cells Algorithm (MSCA).
Algorithm Visualization System for Teaching Spatial Data Algorithms
ERIC Educational Resources Information Center
Nikander, Jussi; Helminen, Juha; Korhonen, Ari
2010-01-01
TRAKLA2 is a web-based learning environment for data structures and algorithms. The system delivers automatically assessed algorithm simulation exercises that are solved using a graphical user interface. In this work, we introduce a novel learning environment for spatial data algorithms, SDA-TRAKLA2, which has been implemented on top of the…
NASA Astrophysics Data System (ADS)
Yedidia, Jonathan S.
2011-11-01
Message-passing algorithms can solve a wide variety of optimization, inference, and constraint satisfaction problems. The algorithms operate on factor graphs that visually represent and specify the structure of the problems. After describing some of their applications, I survey the family of belief propagation (BP) algorithms, beginning with a detailed description of the min-sum algorithm and its exactness on tree factor graphs, and then turning to a variety of more sophisticated BP algorithms, including free-energy based BP algorithms, "splitting" BP algorithms that generalize "tree-reweighted" BP, and the various BP algorithms that have been proposed to deal with problems with continuous variables. The Divide and Concur (DC) algorithm is a projection-based constraint satisfaction algorithm that deals naturally with continuous variables, and converges to exact answers for problems where the solution sets of the constraints are convex. I show how it exploits the "difference-map" dynamics to avoid traps that cause more naive alternating projection algorithms to fail for non-convex problems, and explain that it is a message-passing algorithm that can also be applied to optimization problems. The BP and DC algorithms are compared, both in terms of their fundamental justifications and their strengths and weaknesses.