Recursive Branching Simulated Annealing Algorithm
NASA Technical Reports Server (NTRS)
Bolcar, Matthew; Smith, J. Scott; Aronstein, David
2012-01-01
This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal
Stochastic search in structural optimization - Genetic algorithms and simulated annealing
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1993-01-01
An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.
List-Based Simulated Annealing Algorithm for Traveling Salesman Problem
Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun
2016-01-01
Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms. PMID:27034650
List-Based Simulated Annealing Algorithm for Traveling Salesman Problem.
Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun; Zhong, Yi-wen
2016-01-01
Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms. PMID:27034650
Evolutionary algorithms, simulated annealing, and Tabu search: a comparative study
NASA Astrophysics Data System (ADS)
Youssef, Habib; Sait, Sadiq M.; Adiche, Hakim
1998-10-01
Evolutionary algorithms, simulated annealing (SA), and Tabu Search (TS) are general iterative algorithms for combinatorial optimization. The term evolutionary algorithm is used to refer to any probabilistic algorithm whose design is inspired by evolutionary mechanisms found in biological species. Most widely known algorithms of this category are Genetic Algorithms (GA). GA, SA, and TS have been found to be very effective and robust in solving numerous problems from a wide range of application domains.Furthermore, they are even suitable for ill-posed problems where some of the parameters are not known before hand. These properties are lacking in all traditional optimization techniques. In this paper we perform a comparative study among GA, SA, and TS. These algorithms have many similarities, but they also possess distinctive features, mainly in their strategies for searching the solution state space. the three heuristics are applied on the same optimization problem and compared with respect to (1) quality of the best solution identified by each heuristic, (2) progress of the search from initial solution(s) until stopping criteria are met, (3) the progress of the cost of the best solution as a function of time, and (4) the number of solutions found at successive intervals of the cost function. The benchmark problem was is the floorplanning of very large scale integrated circuits. This is a hard multi-criteria optimization problem. Fuzzy logic is used to combine all objective criteria into a single fuzzy evaluation function, which is then used to rate competing solutions.
Application of Simulated Annealing and Related Algorithms to TWTA Design
NASA Technical Reports Server (NTRS)
Radke, Eric M.
2004-01-01
Simulated Annealing (SA) is a stochastic optimization algorithm used to search for global minima in complex design surfaces where exhaustive searches are not computationally feasible. The algorithm is derived by simulating the annealing process, whereby a solid is heated to a liquid state and then cooled slowly to reach thermodynamic equilibrium at each temperature. The idea is that atoms in the solid continually bond and re-bond at various quantum energy levels, and with sufficient cooling time they will rearrange at the minimum energy state to form a perfect crystal. The distribution of energy levels is given by the Boltzmann distribution: as temperature drops, the probability of the presence of high-energy bonds decreases. In searching for an optimal design, local minima and discontinuities are often present in a design surface. SA presents a distinct advantage over other optimization algorithms in its ability to escape from these local minima. Just as high-energy atomic configurations are visited in the actual annealing process in order to eventually reach the minimum energy state, in SA highly non-optimal configurations are visited in order to find otherwise inaccessible global minima. The SA algorithm produces a Markov chain of points in the design space at each temperature, with a monotonically decreasing temperature. A random point is started upon, and the objective function is evaluated at that point. A stochastic perturbation is then made to the parameters of the point to arrive at a proposed new point in the design space, at which the objection function is evaluated as well. If the change in objective function values (Delta)E is negative, the proposed new point is accepted. If (Delta)E is positive, the proposed new point is accepted according to the Metropolis criterion: rho((Delta)f) = exp((-Delta)E/T), where T is the temperature for the current Markov chain. The process then repeats for the remainder of the Markov chain, after which the temperature is
Simulated annealing versus quantum annealing
NASA Astrophysics Data System (ADS)
Troyer, Matthias
Based on simulated classical annealing and simulated quantum annealing using quantum Monte Carlo (QMC) simulations I will explore the question where physical or simulated quantum annealers may outperform classical optimization algorithms. Although the stochastic dynamics of QMC simulations is not the same as the unitary dynamics of a quantum system, I will first show that for the problem of quantum tunneling between two local minima both QMC simulations and a physical system exhibit the same scaling of tunneling times with barrier height. The scaling in both cases is O (Δ2) , where Δ is the tunneling splitting. An important consequence is that QMC simulations can be used to predict the performance of a quantum annealer for tunneling through a barrier. Furthermore, by using open instead of periodic boundary conditions in imaginary time, equivalent to a projector QMC algorithm, one obtains a quadratic speedup for QMC, and achieve linear scaling in Δ. I will then address the apparent contradiction between experiments on a D-Wave 2 system that failed to see evidence of quantum speedup and previous QMC results that indicated an advantage of quantum annealing over classical annealing for spin glasses. We find that this contradiction is resolved by taking the continuous time limit in the QMC simulations which then agree with the experimentally observed behavior and show no speedup for 2D spin glasses. However, QMC simulations with large time steps gain further advantage: they ``cheat'' by ignoring what happens during a (large) time step, and can thus outperform both simulated quantum annealers and classical annealers. I will then address the question how to optimally run a simulated or physical quantum annealer. Investigating the behavior of the tails of the distribution of runtimes for very hard instances we find that adiabatically slow annealing is far from optimal. On the contrary, many repeated relatively fast annealing runs can be orders of magnitude faster for
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm. PMID:24697395
Sheng, Zheng; Wang, Jun; Zhou, Bihua; Zhou, Shudao
2014-03-15
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
Aubry, Jean-Francois; Beaulieu, Frederic; Sevigny, Caroline; Beaulieu, Luc; Tremblay, Daniel
2006-12-15
Inverse planning in external beam radiotherapy often requires a scalar objective function that incorporates importance factors to mimic the planner's preferences between conflicting objectives. Defining those importance factors is not straightforward, and frequently leads to an iterative process in which the importance factors become variables of the optimization problem. In order to avoid this drawback of inverse planning, optimization using algorithms more suited to multiobjective optimization, such as evolutionary algorithms, has been suggested. However, much inverse planning software, including one based on simulated annealing developed at our institution, does not include multiobjective-oriented algorithms. This work investigates the performance of a modified simulated annealing algorithm used to drive aperture-based intensity-modulated radiotherapy inverse planning software in a multiobjective optimization framework. For a few test cases involving gastric cancer patients, the use of this new algorithm leads to an increase in optimization speed of a little more than a factor of 2 over a conventional simulated annealing algorithm, while giving a close approximation of the solutions produced by a standard simulated annealing. A simple graphical user interface designed to facilitate the decision-making process that follows an optimization is also presented.
Registration of range data using a hybrid simulated annealing and iterative closest point algorithm
LUCK,JASON; LITTLE,CHARLES Q.; HOFF,WILLIAM
2000-04-17
The need to register data is abundant in applications such as: world modeling, part inspection and manufacturing, object recognition, pose estimation, robotic navigation, and reverse engineering. Registration occurs by aligning the regions that are common to multiple images. The largest difficulty in performing this registration is dealing with outliers and local minima while remaining efficient. A commonly used technique, iterative closest point, is efficient but is unable to deal with outliers or avoid local minima. Another commonly used optimization algorithm, simulated annealing, is effective at dealing with local minima but is very slow. Therefore, the algorithm developed in this paper is a hybrid algorithm that combines the speed of iterative closest point with the robustness of simulated annealing. Additionally, a robust error function is incorporated to deal with outliers. This algorithm is incorporated into a complete modeling system that inputs two sets of range data, registers the sets, and outputs a composite model.
NASA Astrophysics Data System (ADS)
Zhu, Jiulong; Wang, Shijun
Presently water resource in most watersheds in China is distributed in terms of administrative instructions. This kind of allocation method has many disadvantages and hampers the instructional effect of market mechanism on water allocation. The paper studies South-to-North Water Transfer Project and discusses water allocation of the node lakes along the Project. Firstly, it advanced four assumptions. Secondly, it analyzed constraint conditions of water allocation in terms of present state of water allocation in China. Thirdly, it established a goal model of water allocation and set up a systematic model from the angle of comprehensive profits of water utilization and profits of the node lakes. Fourthly, it discussed calculation method of the model by means of Simulated Annealing Hybrid Genetic Algorithm (SHGA). Finally, it validated the rationality and validity of the model by a simulation testing.
Experiences with serial and parallel algorithms for channel routing using simulated annealing
NASA Technical Reports Server (NTRS)
Brouwer, Randall Jay
1988-01-01
Two algorithms for channel routing using simulated annealing are presented. Simulated annealing is an optimization methodology which allows the solution process to back up out of local minima that may be encountered by inappropriate selections. By properly controlling the annealing process, it is very likely that the optimal solution to an NP-complete problem such as channel routing may be found. The algorithm presented proposes very relaxed restrictions on the types of allowable transformations, including overlapping nets. By freeing that restriction and controlling overlap situations with an appropriate cost function, the algorithm becomes very flexible and can be applied to many extensions of channel routing. The selection of the transformation utilizes a number of heuristics, still retaining the pseudorandom nature of simulated annealing. The algorithm was implemented as a serial program for a workstation, and a parallel program designed for a hypercube computer. The details of the serial implementation are presented, including many of the heuristics used and some of the resulting solutions.
A parallel simulated annealing algorithm for standard cell placement on a hypercube computer
NASA Technical Reports Server (NTRS)
Jones, Mark Howard
1987-01-01
A parallel version of a simulated annealing algorithm is presented which is targeted to run on a hypercube computer. A strategy for mapping the cells in a two dimensional area of a chip onto processors in an n-dimensional hypercube is proposed such that both small and large distance moves can be applied. Two types of moves are allowed: cell exchanges and cell displacements. The computation of the cost function in parallel among all the processors in the hypercube is described along with a distributed data structure that needs to be stored in the hypercube to support parallel cost evaluation. A novel tree broadcasting strategy is used extensively in the algorithm for updating cell locations in the parallel environment. Studies on the performance of the algorithm on example industrial circuits show that it is faster and gives better final placement results than the uniprocessor simulated annealing algorithms. An improved uniprocessor algorithm is proposed which is based on the improved results obtained from parallelization of the simulated annealing algorithm.
A Simulated Annealing Algorithm for the Optimization of Multistage Depressed Collector Efficiency
NASA Technical Reports Server (NTRS)
Vaden, Karl R.; Wilson, Jeffrey D.; Bulson, Brian A.
2002-01-01
The microwave traveling wave tube amplifier (TWTA) is widely used as a high-power transmitting source for space and airborne communications. One critical factor in designing a TWTA is the overall efficiency. However, overall efficiency is highly dependent upon collector efficiency; so collector design is critical to the performance of a TWTA. Therefore, NASA Glenn Research Center has developed an optimization algorithm based on Simulated Annealing to quickly design highly efficient multi-stage depressed collectors (MDC).
NASA Astrophysics Data System (ADS)
Pereira, Ana I.; Lima, José; Costa, Paulo
2013-10-01
There are several approaches to create the Humanoid robot gait planning. This problem presents a large number of unknown parameters that should be found to make the humanoid robot to walk. Optimization in simulation models can be used to find the gait based on several criteria such as energy minimization, acceleration, step length among the others. The presented paper addresses a comparison between two optimization methods, the Stretched Simulated Annealing and the Genetic Algorithm, that runs in an accurate and stable simulation model. Final results show the comparative study and demonstrate that optimization is a valid gait planning technique.
The Research on Web-Based Testing Environment Using Simulated Annealing Algorithm
2014-01-01
The computerized evaluation is now one of the most important methods to diagnose learning; with the application of artificial intelligence techniques in the field of evaluation, the computerized adaptive testing gradually becomes one of the most important evaluation methods. In this test, the computer dynamic updates the learner's ability level and selects tailored items from the item pool. In order to meet the needs of the test it requires that the system has a relatively high efficiency of the implementation. To solve this problem, we proposed a novel method of web-based testing environment based on simulated annealing algorithm. In the development of the system, through a series of experiments, we compared the simulated annealing method and other methods of the efficiency and efficacy. The experimental results show that this method ensures choosing nearly optimal items from the item bank for learners, meeting a variety of assessment needs, being reliable, and having valid judgment in the ability of learners. In addition, using simulated annealing algorithm to solve the computing complexity of the system greatly improves the efficiency of select items from system and near-optimal solutions. PMID:24959600
Zhao, Yi; Cao, Xiangyu; Gao, Jun; Sun, Yu; Yang, Huanhuan; Liu, Xiao; Zhou, Yulong; Han, Tong; Chen, Wei
2016-01-01
We propose a new strategy to design broadband and wide angle diffusion metasurfaces. An anisotropic structure which has opposite phases under x- and y-polarized incidence is employed as the "0" and "1" elements base on the concept of coding metamaterial. To obtain a uniform backward scattering under normal incidence, Simulated Annealing algorithm is utilized in this paper to calculate the optimal layout. The proposed method provides an efficient way to design diffusion metasurface with a simple structure, which has been proved by both simulations and measurements. PMID:27034110
NASA Astrophysics Data System (ADS)
Zhao, Yi; Cao, Xiangyu; Gao, Jun; Sun, Yu; Yang, Huanhuan; Liu, Xiao; Zhou, Yulong; Han, Tong; Chen, Wei
2016-04-01
We propose a new strategy to design broadband and wide angle diffusion metasurfaces. An anisotropic structure which has opposite phases under x- and y-polarized incidence is employed as the “0” and “1” elements base on the concept of coding metamaterial. To obtain a uniform backward scattering under normal incidence, Simulated Annealing algorithm is utilized in this paper to calculate the optimal layout. The proposed method provides an efficient way to design diffusion metasurface with a simple structure, which has been proved by both simulations and measurements.
Zhao, Yi; Cao, Xiangyu; Gao, Jun; Sun, Yu; Yang, Huanhuan; Liu, Xiao; Zhou, Yulong; Han, Tong; Chen, Wei
2016-01-01
We propose a new strategy to design broadband and wide angle diffusion metasurfaces. An anisotropic structure which has opposite phases under x- and y-polarized incidence is employed as the “0” and “1” elements base on the concept of coding metamaterial. To obtain a uniform backward scattering under normal incidence, Simulated Annealing algorithm is utilized in this paper to calculate the optimal layout. The proposed method provides an efficient way to design diffusion metasurface with a simple structure, which has been proved by both simulations and measurements. PMID:27034110
A permutation based simulated annealing algorithm to predict pseudoknotted RNA secondary structures.
Tsang, Herbert H; Wiese, Kay C
2015-01-01
Pseudoknots are RNA tertiary structures which perform essential biological functions. This paper discusses SARNA-Predict-pk, a RNA pseudoknotted secondary structure prediction algorithm based on Simulated Annealing (SA). The research presented here extends previous work of SARNA-Predict and further examines the effect of the new algorithm to include prediction of RNA secondary structure with pseudoknots. An evaluation of the performance of SARNA-Predict-pk in terms of prediction accuracy is made via comparison with several state-of-the-art prediction algorithms using 20 individual known structures from seven RNA classes. We measured the sensitivity and specificity of nine prediction algorithms. Three of these are dynamic programming algorithms: Pseudoknot (pknotsRE), NUPACK, and pknotsRG-mfe. One is using the statistical clustering approach: Sfold and the other five are heuristic algorithms: SARNA-Predict-pk, ILM, STAR, IPknot and HotKnots algorithms. The results presented in this paper demonstrate that SARNA-Predict-pk can out-perform other state-of-the-art algorithms in terms of prediction accuracy. This supports the use of the proposed method on pseudoknotted RNA secondary structure prediction of other known structures. PMID:26558299
Nascimento, Moysés; Cruz, Cosme Damião; Peternelli, Luiz Alexandre; Campana, Ana Carolina Mota
2010-04-01
The efficiency of simulated annealing algorithms and rapid chain delineation in establishing the best linkage order, when constructing genetic maps, was evaluated. Linkage refers to the phenomenon by which two or more genes, or even more molecular markers, can be present in the same chromosome or linkage group. In order to evaluate the capacity of algorithms, four F(2) co-dominant populations, 50, 100, 200 and 1000 in size, were simulated. For each population, a genome with four linkage groups (100 cM) was generated. The linkage groups possessed 51, 21, 11 and 6 marks, respectively, and a corresponding distance of 2, 5, 10 and 20 cM between adjacent marks, thereby causing various degrees of saturation. For very saturated groups, with an adjacent distance between marks of 2 cM and in greater number, i.e., 51, the method based upon stochastic simulation by simulated annealing presented orders with distances equivalent to or lower than rapid chain delineation. Otherwise, the two methods were commensurate through presenting the same SARF distance. PMID:21637501
2010-01-01
The efficiency of simulated annealing algorithms and rapid chain delineation in establishing the best linkage order, when constructing genetic maps, was evaluated. Linkage refers to the phenomenon by which two or more genes, or even more molecular markers, can be present in the same chromosome or linkage group. In order to evaluate the capacity of algorithms, four F2 co-dominant populations, 50, 100, 200 and 1000 in size, were simulated. For each population, a genome with four linkage groups (100 cM) was generated. The linkage groups possessed 51, 21, 11 and 6 marks, respectively, and a corresponding distance of 2, 5, 10 and 20 cM between adjacent marks, thereby causing various degrees of saturation. For very saturated groups, with an adjacent distance between marks of 2 cM and in greater number, i.e., 51, the method based upon stochastic simulation by simulated annealing presented orders with distances equivalent to or lower than rapid chain delineation. Otherwise, the two methods were commensurate through presenting the same SARF distance. PMID:21637501
Simulated annealing algorithm for solving chambering student-case assignment problem
NASA Astrophysics Data System (ADS)
Ghazali, Saadiah; Abdul-Rahman, Syariza
2015-12-01
The problem related to project assignment problem is one of popular practical problem that appear nowadays. The challenge of solving the problem raise whenever the complexity related to preferences, the existence of real-world constraints and problem size increased. This study focuses on solving a chambering student-case assignment problem by using a simulated annealing algorithm where this problem is classified under project assignment problem. The project assignment problem is considered as hard combinatorial optimization problem and solving it using a metaheuristic approach is an advantage because it could return a good solution in a reasonable time. The problem of assigning chambering students to cases has never been addressed in the literature before. For the proposed problem, it is essential for law graduates to peruse in chambers before they are qualified to become legal counselor. Thus, assigning the chambering students to cases is a critically needed especially when involving many preferences. Hence, this study presents a preliminary study of the proposed project assignment problem. The objective of the study is to minimize the total completion time for all students in solving the given cases. This study employed a minimum cost greedy heuristic in order to construct a feasible initial solution. The search then is preceded with a simulated annealing algorithm for further improvement of solution quality. The analysis of the obtained result has shown that the proposed simulated annealing algorithm has greatly improved the solution constructed by the minimum cost greedy heuristic. Hence, this research has demonstrated the advantages of solving project assignment problem by using metaheuristic techniques.
Marsh, Rebeccah E; Riauka, Terence A; McQuarrie, Steve A
2007-01-01
Increasingly, fractals are being incorporated into pharmacokinetic models to describe transport and chemical kinetic processes occurring in confined and heterogeneous spaces. However, fractal compartmental models lead to differential equations with power-law time-dependent kinetic rate coefficients that currently are not accommodated by common commercial software programs. This paper describes a parameter optimization method for fitting individual pharmacokinetic curves based on a simulated annealing (SA) algorithm, which always converged towards the global minimum and was independent of the initial parameter values and parameter bounds. In a comparison using a classical compartmental model, similar fits by the Gauss-Newton and Nelder-Mead simplex algorithms required stringent initial estimates and ranges for the model parameters. The SA algorithm is ideal for fitting a wide variety of pharmacokinetic models to clinical data, especially those for which there is weak prior knowledge of the parameter values, such as the fractal models. PMID:17706176
NASA Astrophysics Data System (ADS)
Jiang, Chunhua; Yang, Guobin; Zhu, Peng; Nishioka, Michi; Yokoyama, Tatsuhiro; Zhou, Chen; Song, Huan; Lan, Ting; Zhao, Zhengyu; Zhang, Yuannong
2016-05-01
This paper presents a new method to reconstruct the vertical electron density profile based on vertical Total Electron Content (TEC) using the simulated annealing algorithm. The present technique used the Quasi-parabolic segments (QPS) to model the bottomside ionosphere. The initial parameters of the ionosphere model were determined from both International Reference Ionosphere (IRI) (Bilitza et al., 2014) and vertical TEC (vTEC). Then, the simulated annealing algorithm was used to search the best-fit parameters of the ionosphere model by comparing with the GPS-TEC. The performance and robust of this technique were verified by ionosonde data. The critical frequency (foF2) and peak height (hmF2) of the F2 layer obtained from ionograms recorded at different locations and on different days were compared with those calculated by the proposed method. The analysis of results shows that the present method is inspiring for obtaining foF2 from vTEC. However, the accuracy of hmF2 needs to be improved in the future work.
Prediction of Flood Warning in Taiwan Using Nonlinear SVM with Simulated Annealing Algorithm
NASA Astrophysics Data System (ADS)
Lee, C.
2013-12-01
The issue of the floods is important in Taiwan. It is because the narrow and high topography of the island make lots of rivers steep in Taiwan. The tropical depression likes typhoon always causes rivers to flood. Prediction of river flow under the extreme rainfall circumstances is important for government to announce the warning of flood. Every time typhoon passed through Taiwan, there were always floods along some rivers. The warning is classified to three levels according to the warning water levels in Taiwan. The propose of this study is to predict the level of floods warning from the information of precipitation, rainfall duration and slope of riverbed. To classify the level of floods warning by the above-mentioned information and modeling the problems, a machine learning model, nonlinear Support vector machine (SVM), is formulated to classify the level of floods warning. In addition, simulated annealing (SA), a probabilistic heuristic algorithm, is used to determine the optimal parameter of the SVM model. A case study of flooding-trend rivers of different gradients in Taiwan is conducted. The contribution of this SVM model with simulated annealing is capable of making efficient announcement for flood warning and keeping the danger of flood from residents along the rivers.
Douglas, Julie A.; Sandefur, Conner I.
2010-01-01
Summary In family-based genetic studies, it is often useful to identify a subset of unrelated individuals. When such studies are conducted in population isolates, however, most if not all individuals are often detectably related to each other. To identify a set of maximally unrelated (or equivalently, minimally related) individuals, we have implemented simulated annealing, a general-purpose algorithm for solving difficult combinatorial optimization problems. We illustrate our method on data from a genetic study in the Old Order Amish of Lancaster County, Pennsylvania, a population isolate derived from a modest number of founders. Given one or more pedigrees, our program automatically and rapidly extracts a fixed number of maximally unrelated individuals. PMID:18321883
[The utility boiler low NOx combustion optimization based on ANN and simulated annealing algorithm].
Zhou, Hao; Qian, Xinping; Zheng, Ligang; Weng, Anxin; Cen, Kefa
2003-11-01
With the developing restrict environmental protection demand, more attention was paid on the low NOx combustion optimizing technology for its cheap and easy property. In this work, field experiments on the NOx emissions characteristics of a 600 MW coal-fired boiler were carried out, on the base of the artificial neural network (ANN) modeling, the simulated annealing (SA) algorithm was employed to optimize the boiler combustion to achieve a low NOx emissions concentration, and the combustion scheme was obtained. Two sets of SA parameters were adopted to find a better SA scheme, the result show that the parameters of T0 = 50 K, alpha = 0.6 can lead to a better optimizing process. This work can give the foundation of the boiler low NOx combustion on-line control technology. PMID:14768567
A memory structure adapted simulated annealing algorithm for a green vehicle routing problem.
Küçükoğlu, İlker; Ene, Seval; Aksoy, Aslı; Öztürk, Nursel
2015-03-01
Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions. PMID:25056743
NASA Astrophysics Data System (ADS)
Xin-Ze, Lu; Gui-Fang, Shao; Liang-You, Xu; Tun-Dong, Liu; Yu-Hua, Wen
2016-05-01
Alloy nanoparticles exhibit higher catalytic activity than monometallic nanoparticles, and their stable structures are of importance to their applications. We employ the simulated annealing algorithm to systematically explore the stable structure and segregation behavior of tetrahexahedral Pt–Pd–Cu–Au quaternary alloy nanoparticles. Three alloy nanoparticles consisting of 443 atoms, 1417 atoms, and 3285 atoms are considered and compared. The preferred positions of atoms in the nanoparticles are analyzed. The simulation results reveal that Cu and Au atoms tend to occupy the surface, Pt atoms preferentially occupy the middle layers, and Pd atoms tend to segregate to the inner layers. Furthermore, Au atoms present stronger surface segregation than Cu ones. This study provides a fundamental understanding on the structural features and segregation phenomena of multi-metallic nanoparticles. Project supported by the National Natural Science Foundation of China (Grant Nos. 51271156, 11474234, and 61403318) and the Natural Science Foundation of Fujian Province of China (Grant Nos. 2013J01255 and 2013J06002).
Combined Simulated Annealing and Genetic Algorithm Approach to Bus Network Design
NASA Astrophysics Data System (ADS)
Liu, Li; Olszewski, Piotr; Goh, Pong-Chai
A new method - combined simulated annealing (SA) and genetic algorithm (GA) approach is proposed to solve the problem of bus route design and frequency setting for a given road network with fixed bus stop locations and fixed travel demand. The method involves two steps: a set of candidate routes is generated first and then the best subset of these routes is selected by the combined SA and GA procedure. SA is the main process to search for a better solution to minimize the total system cost, comprising user and operator costs. GA is used as a sub-process to generate new solutions. Bus demand assignment on two alternative paths is performed at the solution evaluation stage. The method was implemented on four theoretical grid networks of different size and a benchmark network. Several GA operators (crossover and mutation) were utilized and tested for their effectiveness. The results show that the proposed method can efficiently converge to the optimal solution on a small network but computation time increases significantly with network size. The method can also be used for other transport operation management problems.
NASA Astrophysics Data System (ADS)
Sulaiman, Salina; Bade, Abdullah; Lee, Rechard; Tanalol, Siti Hasnah
2014-07-01
Mass Spring Model (MSM) is a highly efficient model in terms of calculations and easy implementation. Mass, spring stiffness coefficient and damping constant are three major components of MSM. This paper focuses on identifying the coefficients of spring stiffness and damping constant using automated tuning method by optimization in generating human liver model capable of responding quickly. To achieve the objective two heuristic approaches are used, namely Simulated Annealing (SA) and Genetic Algorithm (GA) on the human liver model data set. The properties of the mechanical heart, which are taken into consideration, are anisotropy and viscoelasticity. Optimization results from SA and GA are then implemented into the MSM to model two human hearts, each with its SA or GA construction parameters. These techniques are implemented while making FEM construction parameters as benchmark. Step size response of both models are obtained after MSMs were solved using Fourth Order Runge-Kutta (RK4) to compare the elasticity response of both models. Remodelled time using manual calculation methods was compared against heuristic optimization methods of SA and GA in showing that model with automatic construction is more realistic in terms of realtime interaction response time. Liver models generated using SA and GA optimization techniques are compared with liver model from manual calculation. It shows that the reconstruction time required for 1000 repetitions of SA and GA is faster than the manual method. Meanwhile comparison between construction time of SA and GA model indicates that model SA is faster than GA with varying rates of time 0.110635 seconds/1000 repetitions. Real-time interaction of mechanical properties is dependent on rate of time and speed of remodelling process. Thus, the SA and GA have proven to be suitable in enhancing realism of simulated real-time interaction in liver remodelling.
The fast simulated annealing algorithm applied to the search problem in LEED
NASA Astrophysics Data System (ADS)
Nascimento, V. B.; de Carvalho, V. E.; de Castilho, C. M. C.; Costa, B. V.; Soares, E. A.
2001-07-01
In this work we present new results obtained from the application of the fast simulated algorithm (FSA) to the surface structure determination of the Ag(1 1 0) and CdTe(1 1 0) systems. The influence of a control parameter, the "initial temperature", on the FSA search process was investigated. A scaling behaviour, that measures the efficiency of a search method as a function of the number of parameters to be varied, was obtained for the FSA algorithm, and indicated a favourable linear scaling ( N1).
Simulation of Storm Occurrences Using Simulated Annealing.
NASA Astrophysics Data System (ADS)
Lokupitiya, Ravindra S.; Borgman, Leon E.; Anderson-Sprecher, Richard
2005-11-01
Modeling storm occurrences has become a vital part of hurricane prediction. In this paper, a method for simulating event occurrences using a simulated annealing algorithm is described. The method is illustrated using annual counts of hurricanes and of tropical storms in the Atlantic Ocean and Gulf of Mexico. Simulations closely match distributional properties, including possible correlations, in the historical data. For hurricanes, traditionally used Poisson and negative binomial processes also predict univariate properties well, but for tropical storms parametric methods are less successful. The authors determined that simulated annealing replicates properties of both series. Simulated annealing can be designed so that simulations mimic historical distributional properties to whatever degree is desired, including occurrence of extreme events and temporal patterning.
GenAnneal: Genetically modified Simulated Annealing
NASA Astrophysics Data System (ADS)
Tsoulos, Ioannis G.; Lagaris, Isaac E.
2006-05-01
A modification of the standard Simulated Annealing (SA) algorithm is presented for finding the global minimum of a continuous multidimensional, multimodal function. We report results of computational experiments with a set of test functions and we compare to methods of similar structure. The accompanying software accepts objective functions coded both in Fortran 77 and C++. Program summaryTitle of program:GenAnneal Catalogue identifier:ADXI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXI_v1_0 Program available from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: The tool is designed to be portable in all systems running the GNU C++ compiler Installation: University of Ioannina, Greece on Linux based machines Programming language used:GNU-C++, GNU-C, GNU Fortran 77 Memory required to execute with typical data: 200 KB No. of bits in a word: 32 No. of processors used: 1 Has the code been vectorized or parallelized?: No No. of bytes in distributed program, including test data, etc.:84 885 No. of lines in distributed program, including test data, etc.:14 896 Distribution format: tar.gz Nature of physical problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a non-linear system of equations via optimization, employing a "least squares" type of objective, one may encounter many local minima that do not correspond to solutions (i.e. they are far from zero). Typical running time: Depending on the objective function. Method of solution: We modified the process of step selection that the traditional Simulated
Martin, Andre-Guy; Roy, Jean; Beaulieu, Luc; Pouliot, Jean; Harel, Francois; Vigneault, Eric . E-mail: Eric.Vigneault@chuq.qc.ca
2007-02-01
Purpose: To report outcomes and toxicity of the first Canadian permanent prostate implant program. Methods and Materials: 396 consecutive patients (Gleason {<=}6, initial prostate specific antigen (PSA) {<=}10 and stage T1-T2a disease) were implanted between June 1994 and December 2001. The median follow-up is of 60 months (maximum, 136 months). All patients were planned with fast-simulated annealing inverse planning algorithm with high activity seeds ([gt] 0.76 U). Acute and late toxicity is reported for the first 213 patients using a modified RTOG toxicity scale. The Kaplan-Meier biochemical failure-free survival (bFFS) is reported according to the ASTRO and Houston definitions. Results: The bFFS at 60 months was of 88.5% (90.5%) according to the ASTRO (Houston) definition and, of 91.4% (94.6%) in the low risk group (initial PSA {<=}10 and Gleason {<=}6 and Stage {<=}T2a). Risk factors statistically associated with bFFS were: initial PSA >10, a Gleason score of 7-8, and stage T2b-T3. The mean D90 was of 151 {+-} 36.1 Gy. The mean V100 was of 85.4 {+-} 8.5% with a mean V150 of 60.1 {+-} 12.3%. Overall, the implants were well tolerated. In the first 6 months, 31.5% of the patients were free of genitourinary symptoms (GUs), 12.7% had Grade 3 GUs; 91.6% were free of gastrointestinal symptoms (GIs). After 6 months, 54.0% were GUs free, 1.4% had Grade 3 GUs; 95.8% were GIs free. Conclusion: The inverse planning with fast simulated annealing and high activity seeds gives a 5-year bFFS, which is comparable with the best published series with a low toxicity profile.
Annealed Importance Sampling Reversible Jump MCMC algorithms
Karagiannis, Georgios; Andrieu, Christophe
2013-03-20
It will soon be 20 years since reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithms have been proposed. They have significantly extended the scope of Markov chain Monte Carlo simulation methods, offering the promise to be able to routinely tackle transdimensional sampling problems, as encountered in Bayesian model selection problems for example, in a principled and flexible fashion. Their practical efficient implementation, however, still remains a challenge. A particular difficulty encountered in practice is in the choice of the dimension matching variables (both their nature and their distribution) and the reversible transformations which allow one to define the one-to-one mappings underpinning the design of these algorithms. Indeed, even seemingly sensible choices can lead to algorithms with very poor performance. The focus of this paper is the development and performance evaluation of a method, annealed importance sampling RJ-MCMC (aisRJ), which addresses this problem by mitigating the sensitivity of RJ-MCMC algorithms to the aforementioned poor design. As we shall see the algorithm can be understood as being an “exact approximation” of an idealized MCMC algorithm that would sample from the model probabilities directly in a model selection set-up. Such an idealized algorithm may have good theoretical convergence properties, but typically cannot be implemented, and our algorithms can approximate the performance of such idealized algorithms to an arbitrary degree while not introducing any bias for any degree of approximation. Our approach combines the dimension matching ideas of RJ-MCMC with annealed importance sampling and its Markov chain Monte Carlo implementation. We illustrate the performance of the algorithm with numerical simulations which indicate that, although the approach may at first appear computationally involved, it is in fact competitive.
NASA Astrophysics Data System (ADS)
Rajan, C. Christober Asir
2010-10-01
The objective of this paper is to find the generation scheduling such that the total operating cost can be minimized, when subjected to a variety of constraints. This also means that it is desirable to find the optimal generating unit commitment in the power system for the next H hours. Genetic Algorithms (GA's) are general-purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms such as neural section, genetic recombination and survival of the fittest. In this, the unit commitment schedule is coded as a string of symbols. An initial population of parent solutions is generated at random. Here, each schedule is formed by committing all the units according to their initial status ("flat start"). Here the parents are obtained from a pre-defined set of solution's i.e. each and every solution is adjusted to meet the requirements. Then, a random recommitment is carried out with respect to the unit's minimum down times. And SA improves the status. A 66-bus utility power system with twelve generating units in India demonstrates the effectiveness of the proposed approach. Numerical results are shown comparing the cost solutions and computation time obtained by using the Genetic Algorithm method and other conventional methods.
NASA Astrophysics Data System (ADS)
Deng, Shuang; Xiang, Wenting; Tian, Yangge
2009-10-01
Map coloring is a hard task even to the experienced map experts. In the GIS project, usually need to color map according to the customer, which make the work more complex. With the development of GIS, more and more programmers join the project team, which lack the training of cartology, their coloring map are harder to meet the requirements of customer. From the experience, customers with similar background usually have similar tastes for coloring map. So, we developed a GIS color scheme decision-making system which can select color schemes of similar customers from case base for customers to select and adjust. The system is a BS/CS mixed system, the client side use JSP and make it possible for the system developers to go on remote calling of the colors scheme cases in the database server and communicate with customers. Different with general case-based reasoning, even the customers are very similar, their selection may have difference, it is hard to provide a "best" option. So, we select the Simulated Annealing Algorithm (SAA) to arrange the emergence order of different color schemes. Customers can also dynamically adjust certain features colors based on existing case. The result shows that the system can facilitate the communication between the designers and the customers and improve the quality and efficiency of coloring map.
Chang, Yin-Jung; Chen, Yu-Ting
2011-07-01
Broadband omnidirectional antireflection (AR) coatings for solar cells optimized using simulated annealing (SA) algorithm incorporated with the solar (irradiance) spectrum at Earth's surface (AM1.57 radiation) are described. Material dispersions and reflections from the planar backside metal are considered in the rigorous electromagnetic calculations. Optimized AR coatings for bulk crystalline Si and thin-film CuIn(1-x)GaxSe(2) (CIGS) solar cells as two representative cases are presented and the effect of solar spectrum in the AR coating designs is investigated. In general, the angle-averaged reflectance of a solar-spectrum-incorporated AR design is shown to be smaller and more uniform in the spectral range with relatively stronger solar irradiance. By incorporating the transparent conductive and buffer layers as part of the AR coating in CIGS solar cells (2μm-thick CIGS layer), a single MgF(2) layer could provide an average reflectance of 8.46% for wavelengths ranging from 350 nm to 1200 nm and incident angles from 0° to 80°. PMID:21747557
Simulated annealing based algorithm for identifying mutated driver pathways in cancer.
Li, Hai-Tao; Zhang, Yu-Lang; Zheng, Chun-Hou; Wang, Hong-Qiang
2014-01-01
With the development of next-generation DNA sequencing technologies, large-scale cancer genomics projects can be implemented to help researchers to identify driver genes, driver mutations, and driver pathways, which promote cancer proliferation in large numbers of cancer patients. Hence, one of the remaining challenges is to distinguish functional mutations vital for cancer development, and filter out the unfunctional and random "passenger mutations." In this study, we introduce a modified method to solve the so-called maximum weight submatrix problem which is used to identify mutated driver pathways in cancer. The problem is based on two combinatorial properties, that is, coverage and exclusivity. Particularly, we enhance an integrative model which combines gene mutation and expression data. The experimental results on simulated data show that, compared with the other methods, our method is more efficient. Finally, we apply the proposed method on two real biological datasets. The results show that our proposed method is also applicable in real practice. PMID:24982873
ERIC Educational Resources Information Center
Ceulemans, Eva; Van Mechelen, Iven; Leenen, Iwin
2007-01-01
Hierarchical classes models are quasi-order retaining Boolean decomposition models for N-way N-mode binary data. To fit these models to data, rationally started alternating least squares (or, equivalently, alternating least absolute deviations) algorithms have been proposed. Extensive simulation studies showed that these algorithms succeed quite…
The annealing robust backpropagation (ARBP) learning algorithm.
Chuang, C C; Su, S F; Hsiao, C C
2000-01-01
Multilayer feedforward neural networks are often referred to as universal approximators. Nevertheless, if the used training data are corrupted by large noise, such as outliers, traditional backpropagation learning schemes may not always come up with acceptable performance. Even though various robust learning algorithms have been proposed in the literature, those approaches still suffer from the initialization problem. In those robust learning algorithms, the so-called M-estimator is employed. For the M-estimation type of learning algorithms, the loss function is used to play the role in discriminating against outliers from the majority by degrading the effects of those outliers in learning. However, the loss function used in those algorithms may not correctly discriminate against those outliers. In this paper, the annealing robust backpropagation learning algorithm (ARBP) that adopts the annealing concept into the robust learning algorithms is proposed to deal with the problem of modeling under the existence of outliers. The proposed algorithm has been employed in various examples. Those results all demonstrated the superiority over other robust learning algorithms independent of outliers. In the paper, not only is the annealing concept adopted into the robust learning algorithms but also the annealing schedule k/t was found experimentally to achieve the best performance among other annealing schedules, where k is a constant and is the epoch number. PMID:18249835
Thin-film designs by simulated annealing
NASA Astrophysics Data System (ADS)
Boudet, T.; Chaton, P.; Herault, L.; Gonon, G.; Jouanet, L.; Keller, P.
1996-11-01
With the increasing power of computers, new methods in synthesis of optical multilayer systems have appeared. Among these, the simulated-annealing algorithm has proved its efficiency in several fields of physics. We propose to show its performances in the field of optical multilayer systems through different filter designs.
An Introduction to Simulated Annealing
ERIC Educational Resources Information Center
Albright, Brian
2007-01-01
An attempt to model the physical process of annealing lead to the development of a type of combinatorial optimization algorithm that takes on the problem of getting trapped in a local minimum. The author presents a Microsoft Excel spreadsheet that illustrates how this works.
Guo, Hao; Fu, Jing
2013-01-01
Facility location, inventory control, and vehicle routes scheduling are critical and highly related problems in the design of logistics system for e-business. Meanwhile, the return ratio in Internet sales was significantly higher than in the traditional business. Many of returned merchandise have no quality defects, which can reenter sales channels just after a simple repackaging process. Focusing on the existing problem in e-commerce logistics system, we formulate a location-inventory-routing problem model with no quality defects returns. To solve this NP-hard problem, an effective hybrid genetic simulated annealing algorithm (HGSAA) is proposed. Results of numerical examples show that HGSAA outperforms GA on computing time, optimal solution, and computing stability. The proposed model is very useful to help managers make the right decisions under e-supply chain environment. PMID:24489489
Li, Yanhui; Guo, Hao; Wang, Lin; Fu, Jing
2013-01-01
Facility location, inventory control, and vehicle routes scheduling are critical and highly related problems in the design of logistics system for e-business. Meanwhile, the return ratio in Internet sales was significantly higher than in the traditional business. Many of returned merchandise have no quality defects, which can reenter sales channels just after a simple repackaging process. Focusing on the existing problem in e-commerce logistics system, we formulate a location-inventory-routing problem model with no quality defects returns. To solve this NP-hard problem, an effective hybrid genetic simulated annealing algorithm (HGSAA) is proposed. Results of numerical examples show that HGSAA outperforms GA on computing time, optimal solution, and computing stability. The proposed model is very useful to help managers make the right decisions under e-supply chain environment. PMID:24489489
NASA Astrophysics Data System (ADS)
Kaplan, Sezgin; Rabadi, Ghaith
2013-01-01
This article addresses the aerial refuelling scheduling problem (ARSP), where a set of fighter jets (jobs) with certain ready times must be refuelled from tankers (machines) by their due dates; otherwise, they reach a low fuel level (deadline) incurring a high cost. ARSP is an identical parallel machine scheduling problem with release times and due date-to-deadline windows to minimize the total weighted tardiness. A simulated annealing (SA) and metaheuristic for randomized priority search (Meta-RaPS) with the newly introduced composite dispatching rule, apparent piecewise tardiness cost with ready times (APTCR), are applied to the problem. Computational experiments compared the algorithms' solutions to optimal solutions for small problems and to each other for larger problems. To obtain optimal solutions, a mixed integer program with a piecewise weighted tardiness objective function was solved for up to 12 jobs. The results show that Meta-RaPS performs better in terms of average relative error but SA is more efficient.
A guided simulated annealing method for crystallography.
Chou, C I; Lee, T K
2002-01-01
A new optimization algorithm, the guided simulated annealing method, for use in X-ray crystallographic studies is presented. In the traditional simulated annealing method, the search for the global minimum of a cost function is only determined by the ratio of energy change to the temperature. This method designs a new quality function to guide the search for a minimum. Using a multiresolution process, the method is much more efficient in finding the global minimum than the traditional method. Results for two large molecules, isoleucinomycin (C(60)H(102)N(6)O(18)) and an alkyl calix (C(72)H(112)O(8). 4C(2)H(6)O), with different space groups are reported. PMID:11752762
Simulated annealing model of acupuncture
NASA Astrophysics Data System (ADS)
Shang, Charles; Szu, Harold
2015-05-01
The growth control singularity model suggests that acupuncture points (acupoints) originate from organizers in embryogenesis. Organizers are singular points in growth control. Acupuncture can cause perturbation of a system with effects similar to simulated annealing. In clinical trial, the goal of a treatment is to relieve certain disorder which corresponds to reaching certain local optimum in simulated annealing. The self-organizing effect of the system is limited and related to the person's general health and age. Perturbation at acupoints can lead a stronger local excitation (analogous to higher annealing temperature) compared to perturbation at non-singular points (placebo control points). Such difference diminishes as the number of perturbed points increases due to the wider distribution of the limited self-organizing activity. This model explains the following facts from systematic reviews of acupuncture trials: 1. Properly chosen single acupoint treatment for certain disorder can lead to highly repeatable efficacy above placebo 2. When multiple acupoints are used, the result can be highly repeatable if the patients are relatively healthy and young but are usually mixed if the patients are old, frail and have multiple disorders at the same time as the number of local optima or comorbidities increases. 3. As number of acupoints used increases, the efficacy difference between sham and real acupuncture often diminishes. It predicted that the efficacy of acupuncture is negatively correlated to the disease chronicity, severity and patient's age. This is the first biological - physical model of acupuncture which can predict and guide clinical acupuncture research.
NASA Astrophysics Data System (ADS)
Ghaderi, F.; Pahlavani, P.
2015-12-01
A multimodal multi-criteria route planning (MMRP) system provides an optimal multimodal route from an origin point to a destination point considering two or more criteria in a way this route can be a combination of public and private transportation modes. In this paper, the simulate annealing (SA) and the fuzzy analytical hierarchy process (fuzzy AHP) were combined in order to find this route. In this regard, firstly, the effective criteria that are significant for users in their trip were determined. Then the weight of each criterion was calculated using the fuzzy AHP weighting method. The most important characteristic of this weighting method is the use of fuzzy numbers that aids the users to consider their uncertainty in pairwise comparison of criteria. After determining the criteria weights, the proposed SA algorithm were used for determining an optimal route from an origin to a destination. One of the most important problems in a meta-heuristic algorithm is trapping in local minima. In this study, five transportation modes, including subway, bus rapid transit (BRT), taxi, walking, and bus were considered for moving between nodes. Also, the fare, the time, the user's bother, and the length of the path were considered as effective criteria for solving the problem. The proposed model was implemented in an area in centre of Tehran in a GUI MATLAB programming language. The results showed a high efficiency and speed of the proposed algorithm that support our analyses.
Tycko, Robert; Hu, Kan-Nian
2010-01-01
We describe a computational approach to sequential resonance assignment in solid state NMR studies of uniformly 15N,13C-labeled proteins with magic-angle spinning. As input, the algorithm uses only the protein sequence and lists of 15N/13Cα crosspeaks from 2D NCACX and NCOCX spectra that include possible residue-type assignments of each crosspeak. Assignment of crosspeaks to specific residues is carried out by a Monte Carlo/simulated annealing algorithm, implemented in the program MC_ASSIGN1. The algorithm tolerates substantial ambiguity in residue-type assignments and coexistence of visible and invisible segments in the protein sequence. We use MC_ASSIGN1 and our own 2D spectra to replicate and extend the sequential assignments for uniformly labeled HET-s(218-289) fibrils previously determined manually by Siemer et al. (J. Biomolec. NMR, vol. 34, pp. 75-87, 2006) from a more extensive set of 2D and 3D spectra. Accurate assignments by MC_ASSIGN1 do not require data that are of exceptionally high quality. Use of MC_ASSIGN1 (and its extensions to other types of 2D and 3D data) is likely to alleviate many of the difficulties and uncertainties associated with manual resonance assignments in solid state NMR studies of uniformly labeled proteins, where spectral resolution and signal-to-noise are often sub-optimal. PMID:20547467
NASA Astrophysics Data System (ADS)
Luangpaiboon, P.
2009-10-01
Many entrepreneurs face to extreme conditions for instances; costs, quality, sales and services. Moreover, technology has always been intertwined with our demands. Then almost manufacturers or assembling lines adopt it and come out with more complicated process inevitably. At this stage, products and service improvement need to be shifted from competitors with sustainability. So, a simulated process optimisation is an alternative way for solving huge and complex problems. Metaheuristics are sequential processes that perform exploration and exploitation in the solution space aiming to efficiently find near optimal solutions with natural intelligence as a source of inspiration. One of the most well-known metaheuristics is called Ant Colony Optimisation, ACO. This paper is conducted to give an aid in complicatedness of using ACO in terms of its parameters: number of iterations, ants and moves. Proper levels of these parameters are analysed on eight noisy continuous non-linear continuous response surfaces. Considering the solution space in a specified region, some surfaces contain global optimum and multiple local optimums and some are with a curved ridge. ACO parameters are determined through hybridisations of Modified Simplex and Simulated Annealing methods on the path of Steepest Ascent, SAM. SAM was introduced to recommend preferable levels of ACO parameters via statistically significant regression analysis and Taguchi's signal to noise ratio. Other performance achievements include minimax and mean squared error measures. A series of computational experiments using each algorithm were conducted. Experimental results were analysed in terms of mean, design points and best so far solutions. It was found that results obtained from a hybridisation with stochastic procedures of Simulated Annealing method were better than that using Modified Simplex algorithm. However, the average execution time of experimental runs and number of design points using hybridisations were
Simulated quantum annealing of double-well and multiwell potentials.
Inack, E M; Pilati, S
2015-11-01
We analyze the performance of quantum annealing as a heuristic optimization method to find the absolute minimum of various continuous models, including landscapes with only two wells and also models with many competing minima and with disorder. The simulations performed using a projective quantum Monte Carlo (QMC) algorithm are compared with those based on the finite-temperature path-integral QMC technique and with classical annealing. We show that the projective QMC algorithm is more efficient than the finite-temperature QMC technique, and that both are inferior to classical annealing if this is performed with appropriate long-range moves. However, as the difficulty of the optimization problem increases, classical annealing loses efficiency, while the projective QMC algorithm keeps stable performance and is finally the most effective optimization tool. We discuss the implications of our results for the outstanding problem of testing the efficiency of adiabatic quantum computers using stochastic simulations performed on classical computers. PMID:26651813
Genetic-Annealing Algorithm in Grid Environment for Scheduling Problems
NASA Astrophysics Data System (ADS)
Cruz-Chávez, Marco Antonio; Rodríguez-León, Abelardo; Ávila-Melgar, Erika Yesenia; Juárez-Pérez, Fredy; Cruz-Rosales, Martín H.; Rivera-López, Rafael
This paper presents a parallel hybrid evolutionary algorithm executed in a grid environment. The algorithm executes local searches using simulated annealing within a Genetic Algorithm to solve the job shop scheduling problem. Experimental results of the algorithm obtained in the "Tarantula MiniGrid" are shown. Tarantula was implemented by linking two clusters from different geographic locations in Mexico (Morelos-Veracruz). The technique used to link the two clusters and configure the Tarantula MiniGrid is described. The effects of latency in communication between the two clusters are discussed. It is shown that the evolutionary algorithm presented is more efficient working in Grid environments because it can carry out major exploration and exploitation of the solution space.
Applications of an MPI Enhanced Simulated Annealing Algorithm on nuSTORM and 6D Muon Cooling
Liu, A.
2015-06-01
The nuSTORM decay ring is a compact racetrack storage ring with a circumference ~480 m using large aperture ($\\phi$ = 60 cm) magnets. The design goal of the ring is to achieve a momentum acceptance of 3.8 $\\pm$10% GeV/c and a phase space acceptance of 2000 $\\mu$m·rad. The design has many challenges because the acceptance will be affected by many nonlinearity terms with large particle emittance and/or large momentum offset. In this paper, we present the application of a meta-heuristic optimization algorithm to the sextupole correction in the ring. The algorithm is capable of finding a balanced compromise among corrections of the nonlinearity terms, and finding the largest acceptance. This technique can be applied to the design of similar storage rings that store beams with wide transverse phase space and momentum spectra. We also present the recent study on the application of this algorithm to a part of the 6D muon cooling channel. The technique and the cooling concept will be applied to design a cooling channel for the extracted muon beam at nuSTORM in the future study.
Multiresolution simulated annealing for brain image analysis
NASA Astrophysics Data System (ADS)
Loncaric, Sven; Majcenic, Zoran
1999-05-01
Analysis of biomedical images is an important step in quantification of various diseases such as human spontaneous intracerebral brain hemorrhage (ICH). In particular, the study of outcome in patients having ICH requires measurements of various ICH parameters such as hemorrhage volume and their change over time. A multiresolution probabilistic approach for segmentation of CT head images is presented in this work. This method views the segmentation problem as a pixel labeling problem. In this application the labels are: background, skull, brain tissue, and ICH. The proposed method is based on the Maximum A-Posteriori (MAP) estimation of the unknown pixel labels. The MAP method maximizes the a-posterior probability of segmented image given the observed (input) image. Markov random field (MRF) model has been used for the posterior distribution. The MAP estimation of the segmented image has been determined using the simulated annealing (SA) algorithm. The SA algorithm is used to minimize the energy function associated with MRF posterior distribution function. A multiresolution SA (MSA) has been developed to speed up the annealing process. MSA is presented in detail in this work. A knowledge-based classification based on the brightness, size, shape and relative position toward other regions is performed at the end of the procedure. The regions are identified as background, skull, brain, ICH and calcifications.
Quantum annealing speedup over simulated annealing on random Ising chains
NASA Astrophysics Data System (ADS)
Zanca, Tommaso; Santoro, Giuseppe E.
2016-06-01
We show clear evidence of a quadratic speedup of a quantum annealing (QA) Schrödinger dynamics over a Glauber master equation simulated annealing (SA) for a random Ising model in one dimension, via an equal-footing exact deterministic dynamics of the Jordan-Wigner fermionized problems. This is remarkable, in view of the arguments of H. G. Katzgraber et al. [Phys. Rev. X 4, 021008 (2014), 10.1103/PhysRevX.4.021008], since SA does not encounter any phase transition, while QA does. We also find a second remarkable result: that a "quantum-inspired" imaginary-time Schrödinger QA provides a further exponential speedup, i.e., an asymptotic residual error decreasing as a power law τ-μ of the annealing time τ .
Remediation tradeoffs addressed with simulated annealing optimization
Rogers, L. L., LLNL
1998-02-01
Escalation of groundwater remediation costs has encouraged both advances in optimization techniques to balance remediation objectives and economics and development of innovative technologies to expedite source region clean-ups. We present an optimization application building on a pump-and-treat model, yet assuming a prior removal of different portions of the source area to address the evolving management issue of more aggressive source remediation. Separate economic estimates of in-situ thermal remediation are combined with the economic estimates of the subsequent optimal pump-and-treat remediation to observe tradeoff relationships of cost vs. highest remaining contamination levels (hot spot). The simulated annealing algorithm calls the flow and transport model to evaluate the success of a proposed remediation scenario at a U.S.A. Superfund site contaminated with volatile organic compounds (VOCs).
NASA Astrophysics Data System (ADS)
Bahrami, Saeed; Doulati Ardejani, Faramarz; Baafi, Ernest
2016-05-01
In this study, hybrid models are designed to predict groundwater inflow to an advancing open pit mine and the hydraulic head (HH) in observation wells at different distances from the centre of the pit during its advance. Hybrid methods coupling artificial neural network (ANN) with genetic algorithm (GA) methods (ANN-GA), and simulated annealing (SA) methods (ANN-SA), were utilised. Ratios of depth of pit penetration in aquifer to aquifer thickness, pit bottom radius to its top radius, inverse of pit advance time and the HH in the observation wells to the distance of observation wells from the centre of the pit were used as inputs to the networks. To achieve the objective two hybrid models consisting of ANN-GA and ANN-SA with 4-5-3-1 arrangement were designed. In addition, by switching the last argument of the input layer with the argument of the output layer of two earlier models, two new models were developed to predict the HH in the observation wells for the period of the mining process. The accuracy and reliability of models are verified by field data, results of a numerical finite element model using SEEP/W, outputs of simple ANNs and some well-known analytical solutions. Predicted results obtained by the hybrid methods are closer to the field data compared to the outputs of analytical and simple ANN models. Results show that despite the use of fewer and simpler parameters by the hybrid models, the ANN-GA and to some extent the ANN-SA have the ability to compete with the numerical models.
Classical Simulated Annealing Using Quantum Analogues
NASA Astrophysics Data System (ADS)
La Cour, Brian R.; Troupe, James E.; Mark, Hans M.
2016-08-01
In this paper we consider the use of certain classical analogues to quantum tunneling behavior to improve the performance of simulated annealing on a discrete spin system of the general Ising form. Specifically, we consider the use of multiple simultaneous spin flips at each annealing step as an analogue to quantum spin coherence as well as modifications of the Boltzmann acceptance probability to mimic quantum tunneling. We find that the use of multiple spin flips can indeed be advantageous under certain annealing schedules, but only for long anneal times.
Classical Simulated Annealing Using Quantum Analogues
NASA Astrophysics Data System (ADS)
La Cour, Brian R.; Troupe, James E.; Mark, Hans M.
2016-06-01
In this paper we consider the use of certain classical analogues to quantum tunneling behavior to improve the performance of simulated annealing on a discrete spin system of the general Ising form. Specifically, we consider the use of multiple simultaneous spin flips at each annealing step as an analogue to quantum spin coherence as well as modifications of the Boltzmann acceptance probability to mimic quantum tunneling. We find that the use of multiple spin flips can indeed be advantageous under certain annealing schedules, but only for long anneal times.
Application of Simulated Annealing to Clustering Tuples in Databases.
ERIC Educational Resources Information Center
Bell, D. A.; And Others
1990-01-01
Investigates the value of applying principles derived from simulated annealing to clustering tuples in database design, and compares this technique with a graph-collapsing clustering method. It is concluded that, while the new method does give superior results, the expense involved in algorithm run time is prohibitive. (24 references) (CLB)
On simulated annealing phase transitions in phylogeny reconstruction.
Strobl, Maximilian A R; Barker, Daniel
2016-08-01
Phylogeny reconstruction with global criteria is NP-complete or NP-hard, hence in general requires a heuristic search. We investigate the powerful, physically inspired, general-purpose heuristic simulated annealing, applied to phylogeny reconstruction. Simulated annealing mimics the physical process of annealing, where a liquid is gently cooled to form a crystal. During the search, periods of elevated specific heat occur, analogous to physical phase transitions. These simulated annealing phase transitions play a crucial role in the outcome of the search. Nevertheless, they have received comparably little attention, for phylogeny or other optimisation problems. We analyse simulated annealing phase transitions during searches for the optimal phylogenetic tree for 34 real-world multiple alignments. In the same way in which melting temperatures differ between materials, we observe distinct specific heat profiles for each input file. We propose this reflects differences in the search landscape and can serve as a measure for problem difficulty and for suitability of the algorithm's parameters. We discuss application in algorithmic optimisation and as a diagnostic to assess parameterisation before computationally costly, large phylogeny reconstructions are launched. Whilst the focus here lies on phylogeny reconstruction under maximum parsimony, it is plausible that our results are more widely applicable to optimisation procedures in science and industry. PMID:27150349
Modeling of protein loops by simulated annealing.
Collura, V.; Higo, J.; Garnier, J.
1993-01-01
A method is presented to model loops of protein to be used in homology modeling of proteins. This method employs the ESAP program of Higo et al. (Higo, J., Collura, V., & Garnier, J., 1992, Biopolymers 32, 33-43) and is based on a fast Monte Carlo simulation and a simulated annealing algorithm. The method is tested on different loops or peptide segments from immunoglobulin, bovine pancreatic trypsin inhibitor, and bovine trypsin. The predicted structure is obtained from the ensemble average of the coordinates of the Monte Carlo simulation at 300 K, which exhibits the lowest internal energy. The starting conformation of the loop prior to modeling is chosen to be completely extended, and a closing harmonic potential is applied to N, CA, C, and O atoms of the terminal residues. A rigid geometry potential of Robson and Platt (1986, J. Mol. Biol. 188, 259-281) with a united atom representation is used. This we demonstrate to yield a loop structure with good hydrogen bonding and torsion angles in the allowed regions of the Ramachandran map. The average accuracy of the modeling evaluated on the eight modeled loops is 1 A root mean square deviation (rmsd) for the backbone atoms and 2.3 A rmsd for all heavy atoms. PMID:8401234
Stochastic annealing simulation of cascades in metals
Heinisch, H.L.
1996-04-01
The stochastic annealing simulation code ALSOME is used to investigate quantitatively the differential production of mobile vacancy and SIA defects as a function of temperature for isolated 25 KeV cascades in copper generated by MD simulations. The ALSOME code and cascade annealing simulations are described. The annealing simulations indicate that the above Stage V, where the cascade vacancy clusters are unstable,m nearly 80% of the post-quench vacancies escape the cascade volume, while about half of the post-quench SIAs remain in clusters. The results are sensitive to the relative fractions of SIAs that occur in small, highly mobile clusters and large stable clusters, respectively, which may be dependent on the cascade energy.
Estimation of the parameters of ETAS models by Simulated Annealing
Lombardi, Anna Maria
2015-01-01
This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is more significant. These results give new insights into the ETAS model and the efficiency of the maximum-likelihood method within this context. PMID:25673036
Sparse approximation problem: how rapid simulated annealing succeeds and fails
NASA Astrophysics Data System (ADS)
Obuchi, Tomoyuki; Kabashima, Yoshiyuki
2016-03-01
Information processing techniques based on sparseness have been actively studied in several disciplines. Among them, a mathematical framework to approximately express a given dataset by a combination of a small number of basis vectors of an overcomplete basis is termed the sparse approximation. In this paper, we apply simulated annealing, a metaheuristic algorithm for general optimization problems, to sparse approximation in the situation where the given data have a planted sparse representation and noise is present. The result in the noiseless case shows that our simulated annealing works well in a reasonable parameter region: the planted solution is found fairly rapidly. This is true even in the case where a common relaxation of the sparse approximation problem, the G-relaxation, is ineffective. On the other hand, when the dimensionality of the data is close to the number of non-zero components, another metastable state emerges, and our algorithm fails to find the planted solution. This phenomenon is associated with a first-order phase transition. In the case of very strong noise, it is no longer meaningful to search for the planted solution. In this situation, our algorithm determines a solution with close-to-minimum distortion fairly quickly.
Liang, Faming; Cheng, Yichen; Lin, Guang
2014-06-13
Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to have such a long CPU time. This paper proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation Markov chain Monte Carlo, it is shown that the new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, e.g., a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors.
Model based matching using simulated annealing and a minimum representation size criterion
NASA Technical Reports Server (NTRS)
Ravichandran, B.; Sanderson, A. C.
1992-01-01
We define the model based matching problem in terms of the correspondence and transformation that relate the model and scene, and the search and evaluation measures needed to find the best correspondence and transformation. Simulated annealing is proposed as a method for search and optimization, and the minimum representation size criterion is used as the evaluation measure in an algorithm that finds the best correspondence. An algorithm based on simulated annealing is presented and evaluated. This algorithm is viewed as a part of an adaptive, hierarchical approach which provides robust results for a variety of model based matching problems.
Bernal, Javier; Torres-Jimenez, Jose
2015-01-01
SAGRAD (Simulated Annealing GRADient), a Fortran 77 program for computing neural networks for classification using batch learning, is discussed. Neural network training in SAGRAD is based on a combination of simulated annealing and Møller's scaled conjugate gradient algorithm, the latter a variation of the traditional conjugate gradient method, better suited for the nonquadratic nature of neural networks. Different aspects of the implementation of the training process in SAGRAD are discussed, such as the efficient computation of gradients and multiplication of vectors by Hessian matrices that are required by Møller's algorithm; the (re)initialization of weights with simulated annealing required to (re)start Møller's algorithm the first time and each time thereafter that it shows insufficient progress in reaching a possibly local minimum; and the use of simulated annealing when Møller's algorithm, after possibly making considerable progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the scaled conjugate gradient algorithm, the simulated annealing procedure and the training process used in SAGRAD are presented together with results from running SAGRAD on two examples of training data. PMID:26958442
Bernal, Javier; Torres-Jimenez, Jose
2015-01-01
SAGRAD (Simulated Annealing GRADient), a Fortran 77 program for computing neural networks for classification using batch learning, is discussed. Neural network training in SAGRAD is based on a combination of simulated annealing and Møller’s scaled conjugate gradient algorithm, the latter a variation of the traditional conjugate gradient method, better suited for the nonquadratic nature of neural networks. Different aspects of the implementation of the training process in SAGRAD are discussed, such as the efficient computation of gradients and multiplication of vectors by Hessian matrices that are required by Møller’s algorithm; the (re)initialization of weights with simulated annealing required to (re)start Møller’s algorithm the first time and each time thereafter that it shows insufficient progress in reaching a possibly local minimum; and the use of simulated annealing when Møller’s algorithm, after possibly making considerable progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the scaled conjugate gradient algorithm, the simulated annealing procedure and the training process used in SAGRAD are presented together with results from running SAGRAD on two examples of training data. PMID:26958442
NASA Astrophysics Data System (ADS)
Borovský, Michal; Weigel, Martin; Barash, Lev Yu.; Žukovič, Milan
2016-02-01
The population annealing algorithm is a novel approach to study systems with rough free-energy landscapes, such as spin glasses. It combines the power of simulated annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo process to bring the population of replicas to the equilibrium even in the low-temperature region. Moreover, it provides a very good estimate of the free energy. The fact that population annealing algorithm is performed over a large number of replicas with many spin updates, makes it a good candidate for massive parallelism. We chose the GPU programming using a CUDA implementation to create a highly optimized simulation. It has been previously shown for the frustrated Ising antiferromagnet on the stacked triangular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freezing of the ferromagnetically ordered chains. We applied the population annealing to study the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = -1). The reached ground states correspond to non-magnetic degenerate states, where chains are antiferromagnetically ordered, but there is no long-range ordering between them, which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.
Optimization of a Stochastically Simulated Gene Network Model via Simulated Annealing
Tomshine, Jonathan; Kaznessis, Yiannis N.
2006-01-01
By rearranging naturally occurring genetic components, gene networks can be created that display novel functions. When designing these networks, the kinetic parameters describing DNA/protein binding are of great importance, as these parameters strongly influence the behavior of the resulting gene network. This article presents an optimization method based on simulated annealing to locate combinations of kinetic parameters that produce a desired behavior in a genetic network. Since gene expression is an inherently stochastic process, the simulation component of simulated annealing optimization is conducted using an accurate multiscale simulation algorithm to calculate an ensemble of network trajectories at each iteration of the simulated annealing algorithm. Using the three-gene repressilator of Elowitz and Leibler as an example, we show that gene network optimizations can be conducted using a mechanistically realistic model integrated stochastically. The repressilator is optimized to give oscillations of an arbitrary specified period. These optimized designs may then provide a starting-point for the selection of genetic components needed to realize an in vivo system. PMID:16920827
Simulated annealing with probabilistic analysis for solving traveling salesman problems
NASA Astrophysics Data System (ADS)
Hong, Pei-Yee; Lim, Yai-Fung; Ramli, Razamin; Khalid, Ruzelan
2013-09-01
Simulated Annealing (SA) is a widely used meta-heuristic that was inspired from the annealing process of recrystallization of metals. Therefore, the efficiency of SA is highly affected by the annealing schedule. As a result, in this paper, we presented an empirical work to provide a comparable annealing schedule to solve symmetric traveling salesman problems (TSP). Randomized complete block design is also used in this study. The results show that different parameters do affect the efficiency of SA and thus, we propose the best found annealing schedule based on the Post Hoc test. SA was tested on seven selected benchmarked problems of symmetric TSP with the proposed annealing schedule. The performance of SA was evaluated empirically alongside with benchmark solutions and simple analysis to validate the quality of solutions. Computational results show that the proposed annealing schedule provides a good quality of solution.
Improving Simulated Annealing by Replacing Its Variables with Game-Theoretic Utility Maximizers
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Bandari, Esfandiar; Tumer, Kagan
2001-01-01
The game-theory field of Collective INtelligence (COIN) concerns the design of computer-based players engaged in a non-cooperative game so that as those players pursue their self-interests, a pre-specified global goal for the collective computational system is achieved as a side-effect. Previous implementations of COIN algorithms have outperformed conventional techniques by up to several orders of magnitude, on domains ranging from telecommunications control to optimization in congestion problems. Recent mathematical developments have revealed that these previously developed algorithms were based on only two of the three factors determining performance. Consideration of only the third factor would instead lead to conventional optimization techniques like simulated annealing that have little to do with non-cooperative games. In this paper we present an algorithm based on all three terms at once. This algorithm can be viewed as a way to modify simulated annealing by recasting it as a non-cooperative game, with each variable replaced by a player. This recasting allows us to leverage the intelligent behavior of the individual players to substantially improve the exploration step of the simulated annealing. Experiments are presented demonstrating that this recasting significantly improves simulated annealing for a model of an economic process run over an underlying small-worlds topology. Furthermore, these experiments reveal novel small-worlds phenomena, and highlight the shortcomings of conventional mechanism design in bounded rationality domains.
Improving Simulated Annealing by Recasting it as a Non-Cooperative Game
NASA Technical Reports Server (NTRS)
Wolpert, David; Bandari, Esfandiar; Tumer, Kagan
2001-01-01
The game-theoretic field of COllective INtelligence (COIN) concerns the design of computer-based players engaged in a non-cooperative game so that as those players pursue their self-interests, a pre-specified global goal for the collective computational system is achieved "as a side-effect". Previous implementations of COIN algorithms have outperformed conventional techniques by up to several orders of magnitude, on domains ranging from telecommunications control to optimization in congestion problems. Recent mathematical developments have revealed that these previously developed game-theory-motivated algorithms were based on only two of the three factors determining performance. Consideration of only the third factor would instead lead to conventional optimization techniques like simulated annealing that have little to do with non-cooperative games. In this paper we present an algorithm based on all three terms at once. This algorithm can be viewed as a way to modify simulated annealing by recasting it as a non-cooperative game, with each variable replaced by a player. This recasting allows us to leverage the intelligent behavior of the individual players to substantially improve the exploration step of the simulated annealing. Experiments are presented demonstrating that this recasting improves simulated annealing by several orders of magnitude for spin glass relaxation and bin-packing.
Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing
Abubaker, Ahmad; Baharum, Adam; Alrefaei, Mahmoud
2015-01-01
This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, “MOPSOSA”. The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets. PMID:26132309
spsann - optimization of sample patterns using spatial simulated annealing
NASA Astrophysics Data System (ADS)
Samuel-Rosa, Alessandro; Heuvelink, Gerard; Vasques, Gustavo; Anjos, Lúcia
2015-04-01
There are many algorithms and computer programs to optimize sample patterns, some private and others publicly available. A few have only been presented in scientific articles and text books. This dispersion and somewhat poor availability is holds back to their wider adoption and further development. We introduce spsann, a new R-package for the optimization of sample patterns using spatial simulated annealing. R is the most popular environment for data processing and analysis. Spatial simulated annealing is a well known method with widespread use to solve optimization problems in the soil and geo-sciences. This is mainly due to its robustness against local optima and easiness of implementation. spsann offers many optimizing criteria for sampling for variogram estimation (number of points or point-pairs per lag distance class - PPL), trend estimation (association/correlation and marginal distribution of the covariates - ACDC), and spatial interpolation (mean squared shortest distance - MSSD). spsann also includes the mean or maximum universal kriging variance (MUKV) as an optimizing criterion, which is used when the model of spatial variation is known. PPL, ACDC and MSSD were combined (PAN) for sampling when we are ignorant about the model of spatial variation. spsann solves this multi-objective optimization problem scaling the objective function values using their maximum absolute value or the mean value computed over 1000 random samples. Scaled values are aggregated using the weighted sum method. A graphical display allows to follow how the sample pattern is being perturbed during the optimization, as well as the evolution of its energy state. It is possible to start perturbing many points and exponentially reduce the number of perturbed points. The maximum perturbation distance reduces linearly with the number of iterations. The acceptance probability also reduces exponentially with the number of iterations. R is memory hungry and spatial simulated annealing is a
A Annealing Algorithm for Designing Ligands from Receptor Structures.
NASA Astrophysics Data System (ADS)
Zielinski, Peter J.
DEenspace NOVO, a simulated annealing method for designing ligands is described. At a given temperature, ligand fragments are randomly selected and randomly placed within the given receptor cavity, often replacing existing ligand fragments. For each new ligand fragment combination, bonded, nonbonded, polarization and solvation energies of the new ligand-receptor system are compared to the previous system. Acceptance or rejection of the new system is decided using the Boltzmann distribution. Thus, energetically unfavorable fragment switches are sometimes accepted, sacrificing immediate energy gains in the interest of finding the system with the globally minimum energy. By lowering the temperature, the rate of unfavorable switches decreases and energetically favorable combinations become difficult to change. The process is halted when the frequency of switches becomes too small. As a test of the method, DEenspace NOVO predicted the positions of important ligand fragments for neuraminidase that are in accord with the natural ligand, sialic acid.
Instantons in Quantum Annealing: Thermally Assisted Tunneling Vs Quantum Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Jiang, Zhang; Smelyanskiy, Vadim N.; Boixo, Sergio; Isakov, Sergei V.; Neven, Hartmut; Mazzola, Guglielmo; Troyer, Matthias
2015-01-01
Recent numerical result (arXiv:1512.02206) from Google suggested that the D-Wave quantum annealer may have an asymptotic speed-up than simulated annealing, however, the asymptotic advantage disappears when it is compared to quantum Monte Carlo (a classical algorithm despite its name). We show analytically that the asymptotic scaling of quantum tunneling is exactly the same as the escape rate in quantum Monte Carlo for a class of problems. Thus, the Google result might be explained in our framework. We also found that the transition state in quantum Monte Carlo corresponds to the instanton solution in quantum tunneling problems, which is observed in numerical simulations.
Menin, O H; Martinez, A S; Costa, A M
2016-05-01
A generalized simulated annealing algorithm, combined with a suitable smoothing regularization function is used to solve the inverse problem of X-ray spectrum reconstruction from attenuation data. The approach is to set the initial acceptance and visitation temperatures and to standardize the terms of objective function to automate the algorithm to accommodate different spectra ranges. Experiments with both numerical and measured attenuation data are presented. Results show that the algorithm reconstructs spectra shapes accurately. It should be noted that in this algorithm, the regularization function was formulated to guarantee a smooth spectrum, thus, the presented technique does not apply to X-ray spectrum where characteristic radiation are present. PMID:26943902
Sampling design for classifying contaminant level using annealing search algorithms
NASA Astrophysics Data System (ADS)
Christakos, George; Killam, Bart R.
1993-12-01
A stochastic method for sampling spatially distributed contaminant level is presented. The purpose of sampling is to partition the contaminated region into zones of high and low pollutant concentration levels. In particular, given an initial set of observations of a contaminant within a site, it is desired to find a set of additional sampling locations in a way that takes into consideration the spatial variability characteristics of the site and optimizes certain objective functions emerging from the physical, regulatory and monetary considerations of the specific site cleanup process. Since the interest is in classifying the domain into zones above and below a pollutant threshold level, a natural criterion is the cost of misclassification. The resulting objective function is the expected value of a spatial loss function associated with sampling. Stochastic expectation involves the joint probability distribution of the pollutant level and its estimate, where the latter is calculated by means of spatial estimation techniques. Actual computation requires the discretization of the contaminated domain. As a consequence, any reasonably sized problem results in combinatorics precluding an exhaustive search. The use of an annealing algorithm, although suboptimal, can find a good set of future sampling locations quickly and efficiently. In order to obtain insight about the parameters and the computational requirements of the method, an example is discussed in detail. The implementation of spatial sampling design in practice will provide the model inputs necessary for waste site remediation, groundwater management, and environmental decision making.
Birefringence simulation of annealed ingot of calcium fluoride single crystal
NASA Astrophysics Data System (ADS)
Ogino, H.; Miyazaki, N.; Mabuchi, T.; Nawata, T.
2008-01-01
We developed a method for simulating birefringence of an annealed ingot of calcium fluoride single crystal caused by the residual stress after annealing process. The method comprises the heat conduction analysis that provides the temperature distribution during the ingot annealing, the elastic thermal stress analysis using the assumption of the stress-free temperature that provides the residual stress after annealing, and the birefringence analysis of an annealed ingot induced by the residual stress. The finite element method was applied to the heat conduction analysis and the elastic thermal stress analysis. In these analyses, the temperature dependence of material properties and the crystal anisotropy were taken into account. In the birefringence analysis, the photoelastic effect gives the change of refractive indices, from which the optical path difference in the annealed ingot is calculated by the Jones calculus. The relation between the Jones calculus and the approximate method using the stress components averaged along the optical path is discussed theoretically. It is found that the result of the approximate method agrees very well with that of the Jones calculus in birefringence analysis. The distribution pattern of the optical path difference in the annealed ingot obtained from the present birefringence calculation methods agrees reasonably well with that of the experiment. The calculated values also agree reasonably well with those of the experiment, when a stress-free temperature is adequately selected.
Neutronic optimization in high conversion Th-{sup 233}U fuel assembly with simulated annealing
Kotlyar, D.; Shwageraus, E.
2012-07-01
This paper reports on fuel design optimization of a PWR operating in a self sustainable Th-{sup 233}U fuel cycle. Monte Carlo simulated annealing method was used in order to identify the fuel assembly configuration with the most attractive breeding performance. In previous studies, it was shown that breeding may be achieved by employing heterogeneous Seed-Blanket fuel geometry. The arrangement of seed and blanket pins within the assemblies may be determined by varying the designed parameters based on basic reactor physics phenomena which affect breeding. However, the amount of free parameters may still prove to be prohibitively large in order to systematically explore the design space for optimal solution. Therefore, the Monte Carlo annealing algorithm for neutronic optimization is applied in order to identify the most favorable design. The objective of simulated annealing optimization is to find a set of design parameters, which maximizes some given performance function (such as relative period of net breeding) under specified constraints (such as fuel cycle length). The first objective of the study was to demonstrate that the simulated annealing optimization algorithm will lead to the same fuel pins arrangement as was obtained in the previous studies which used only basic physics phenomena as guidance for optimization. In the second part of this work, the simulated annealing method was used to optimize fuel pins arrangement in much larger fuel assembly, where the basic physics intuition does not yield clearly optimal configuration. The simulated annealing method was found to be very efficient in selecting the optimal design in both cases. In the future, this method will be used for optimization of fuel assembly design with larger number of free parameters in order to determine the most favorable trade-off between the breeding performance and core average power density. (authors)
Quantum versus simulated annealing in wireless interference network optimization
Wang, Chi; Chen, Huo; Jonckheere, Edmond
2016-01-01
Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking—more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed. PMID:27181056
Quantum versus simulated annealing in wireless interference network optimization
NASA Astrophysics Data System (ADS)
Wang, Chi; Chen, Huo; Jonckheere, Edmond
2016-05-01
Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking—more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed.
Quantum versus simulated annealing in wireless interference network optimization.
Wang, Chi; Chen, Huo; Jonckheere, Edmond
2016-01-01
Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking-more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed. PMID:27181056
Molecular dynamic simulation of non-melt laser annealing process
NASA Astrophysics Data System (ADS)
Liren, Yan; Dai, Li; Wei, Zhang; Zhihong, Liu; Wei, Zhou; Quan, Wang
2016-03-01
Molecular dynamic simulation is performed to study the process of material annealing caused by a 266 nm pulsed laser. A micro-mechanism describing behaviors of silicon and impurity atoms during the laser annealing at a non-melt regime is proposed. After ion implantation, the surface of the Si wafer is acted by a high energy laser pulse, which loosens the material and partially frees both Si and impurity atoms. While the residual laser energy is absorbed by valence electrons, these atoms are recoiled and relocated to finally form a crystal. Energy-related movement behavior is observed by using the molecular dynamic method. The non-melt laser anneal appears to be quite sensitive to the energy density of the laser, as a small excess energy may causes a significant impurity diffusion. Such a result is also supported by our laser anneal experiment.
Sensitivity study on hydraulic well testing inversion using simulated annealing
Nakao, Shinsuke; Najita, J.; Karasaki, Kenzi
1999-10-01
Cluster variable aperture (CVA) simulated annealing has been used as an inversion technique to construct fluid flow models of fractured formations based on transient pressure data from hydraulic tests. A two-dimensional fracture network system is represented as a filled regular lattice of fracture elements. The algorithm iteratively changes element apertures for a cluster of fracture elements in order to improve the match to observed pressure transients. Aperture size is chosen randomly from a list of discrete apertures. The cluster size is held constant through the iterations. Since hydraulic inversion is inherently nonunique, it is important to use additional information. The authors investigated the relationship between the scale of heterogeneity and the optimal cluster size and shape to enhance convergence of the inversion and improve the results. In a spatially correlated transmissivity field, a cluster size corresponding to about 20% to 40% of the practical range of the spatial correlation is optimal. Inversion results of the Raymond test site data are also presented and based on an optimal cluster size; the practical range of the spatial correlation is estimated to be 5 to 10 m.
Sensitivity study on hydraulic well testing inversion using simulated annealing.
Nakao, S; Najita, J; Karasaki, K
1999-01-01
Cluster variable aperture (CVA) simulated annealing has been used as an inversion technique to construct fluid flow models of fractured formations based on transient pressure data from hydraulic tests. A two-dimensional fracture network system is represented as a filled regular lattice of fracture elements. The algorithm iteratively changes element apertures for a cluster of fracture elements in order to improve the match to observed pressure transients. Aperture size is chosen randomly from a list of discrete apertures. The cluster size is held constant throughout the iterations. Since hydraulic inversion is inherently nonunique, it is important to use additional information. We investigated the relationship between the scale of heterogeneity and the optimal cluster size and shape to enhance convergence of the inversion and improve the results. In a spatially correlated transmissivity field, a cluster size corresponding to about 20 % to 40 % of the practical range of the spatial correlation is optimal. Inversion results of the Raymond test site data are also presented and based on an optimal cluster size; the practical range of the spatial correlation is estimated to be 5 to 10 m. PMID:19125927
Metric optimisation for analogue forecasting by simulated annealing
NASA Astrophysics Data System (ADS)
Bliefernicht, J.; Bárdossy, A.
2009-04-01
It is well known that weather patterns tend to recur from time to time. This property of the atmosphere is used by analogue forecasting techniques. They have a long history in weather forecasting and there are many applications predicting hydrological variables at the local scale for different lead times. The basic idea of the technique is to identify past weather situations which are similar (analogue) to the predicted one and to take the local conditions of the analogues as forecast. But the forecast performance of the analogue method depends on user-defined criteria like the choice of the distance function and the size of the predictor domain. In this study we propose a new methodology of optimising both criteria by minimising the forecast error with simulated annealing. The performance of the methodology is demonstrated for the probability forecast of daily areal precipitation. It is compared with a traditional analogue forecasting algorithm, which is used operational as an element of a hydrological forecasting system. The study is performed for several meso-scale catchments located in the Rhine basin in Germany. The methodology is validated by a jack-knife method in a perfect prognosis framework for a period of 48 years (1958-2005). The predictor variables are derived from the NCEP/NCAR reanalysis data set. The Brier skill score and the economic value are determined to evaluate the forecast skill and value of the technique. In this presentation we will present the concept of the optimisation algorithm and the outcome of the comparison. It will be also demonstrated how a decision maker should apply a probability forecast to maximise the economic benefit from it.
An Improved Simulated Annealing Technique for Enhanced Mobility in Smart Cities.
Amer, Hayder; Salman, Naveed; Hawes, Matthew; Chaqfeh, Moumena; Mihaylova, Lyudmila; Mayfield, Martin
2016-01-01
Vehicular traffic congestion is a significant problem that arises in many cities. This is due to the increasing number of vehicles that are driving on city roads of limited capacity. The vehicular congestion significantly impacts travel distance, travel time, fuel consumption and air pollution. Avoidance of traffic congestion and providing drivers with optimal paths are not trivial tasks. The key contribution of this work consists of the developed approach for dynamic calculation of optimal traffic routes. Two attributes (the average travel speed of the traffic and the roads' length) are utilized by the proposed method to find the optimal paths. The average travel speed values can be obtained from the sensors deployed in smart cities and communicated to vehicles via the Internet of Vehicles and roadside communication units. The performance of the proposed algorithm is compared to three other algorithms: the simulated annealing weighted sum, the simulated annealing technique for order preference by similarity to the ideal solution and the Dijkstra algorithm. The weighted sum and technique for order preference by similarity to the ideal solution methods are used to formulate different attributes in the simulated annealing cost function. According to the Sheffield scenario, simulation results show that the improved simulated annealing technique for order preference by similarity to the ideal solution method improves the traffic performance in the presence of congestion by an overall average of 19.22% in terms of travel time, fuel consumption and CO₂ emissions as compared to other algorithms; also, similar performance patterns were achieved for the Birmingham test scenario. PMID:27376289
An Improved Simulated Annealing Technique for Enhanced Mobility in Smart Cities
Amer, Hayder; Salman, Naveed; Hawes, Matthew; Chaqfeh, Moumena; Mihaylova, Lyudmila; Mayfield, Martin
2016-01-01
Vehicular traffic congestion is a significant problem that arises in many cities. This is due to the increasing number of vehicles that are driving on city roads of limited capacity. The vehicular congestion significantly impacts travel distance, travel time, fuel consumption and air pollution. Avoidance of traffic congestion and providing drivers with optimal paths are not trivial tasks. The key contribution of this work consists of the developed approach for dynamic calculation of optimal traffic routes. Two attributes (the average travel speed of the traffic and the roads’ length) are utilized by the proposed method to find the optimal paths. The average travel speed values can be obtained from the sensors deployed in smart cities and communicated to vehicles via the Internet of Vehicles and roadside communication units. The performance of the proposed algorithm is compared to three other algorithms: the simulated annealing weighted sum, the simulated annealing technique for order preference by similarity to the ideal solution and the Dijkstra algorithm. The weighted sum and technique for order preference by similarity to the ideal solution methods are used to formulate different attributes in the simulated annealing cost function. According to the Sheffield scenario, simulation results show that the improved simulated annealing technique for order preference by similarity to the ideal solution method improves the traffic performance in the presence of congestion by an overall average of 19.22% in terms of travel time, fuel consumption and CO2 emissions as compared to other algorithms; also, similar performance patterns were achieved for the Birmingham test scenario. PMID:27376289
Coordination Hydrothermal Interconnection Java-Bali Using Simulated Annealing
NASA Astrophysics Data System (ADS)
Wicaksono, B.; Abdullah, A. G.; Saputra, W. S.
2016-04-01
Hydrothermal power plant coordination aims to minimize the total cost of operating system that is represented by fuel costand constraints during optimization. To perform the optimization, there are several methods that can be used. Simulated Annealing (SA) is a method that can be used to solve the optimization problems. This method was inspired by annealing or cooling process in the manufacture of materials composed of crystals. The basic principle of hydrothermal power plant coordination includes the use of hydro power plants to support basic load while thermal power plants were used to support the remaining load. This study used two hydro power plant units and six thermal power plant units with 25 buses by calculating transmission losses and considering power limits in each power plant unit aided by MATLAB software during the process. Hydrothermal power plant coordination using simulated annealing plants showed that a total cost of generation for 24 hours is 13,288,508.01.
Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J. Javier; González-Flores, Carlos
2016-01-01
A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA. PMID:27413369
NASA Astrophysics Data System (ADS)
Tsoukalas, Ioannis; Kossieris, Panagiotis; Efstratiadis, Andreas; Makropoulos, Christos
2015-04-01
In water resources optimization problems, the calculation of the objective function usually presumes to first run a simulation model and then evaluate its outputs. In several cases, however, long simulation times may pose significant barriers to the optimization procedure. Often, to obtain a solution within a reasonable time, the user has to substantially restrict the allowable number of function evaluations, thus terminating the search much earlier than required by the problem's complexity. A promising novel strategy to address these shortcomings is the use of surrogate modelling techniques within global optimization algorithms. Here we introduce the Surrogate-Enhanced Evolutionary Annealing-Simplex (SE-EAS) algorithm that couples the strengths of surrogate modelling with the effectiveness and efficiency of the EAS method. The algorithm combines three different optimization approaches (evolutionary search, simulated annealing and the downhill simplex search scheme), in which key decisions are partially guided by numerical approximations of the objective function. The performance of the proposed algorithm is benchmarked against other surrogate-assisted algorithms, in both theoretical and practical applications (i.e. test functions and hydrological calibration problems, respectively), within a limited budget of trials (from 100 to 1000). Results reveal the significant potential of using SE-EAS in challenging optimization problems, involving time-consuming simulations.
A retrodictive stochastic simulation algorithm
Vaughan, T.G. Drummond, P.D.; Drummond, A.J.
2010-05-20
In this paper we describe a simple method for inferring the initial states of systems evolving stochastically according to master equations, given knowledge of the final states. This is achieved through the use of a retrodictive stochastic simulation algorithm which complements the usual predictive stochastic simulation approach. We demonstrate the utility of this new algorithm by applying it to example problems, including the derivation of likely ancestral states of a gene sequence given a Markovian model of genetic mutation.
Molecular dynamics simulation of annealed ZnO surfaces
Min, Tjun Kit; Yoon, Tiem Leong; Lim, Thong Leng
2015-04-24
The effect of thermally annealing a slab of wurtzite ZnO, terminated by two surfaces, (0001) (which is oxygen-terminated) and (0001{sup ¯}) (which is Zn-terminated), is investigated via molecular dynamics simulation by using reactive force field (ReaxFF). We found that upon heating beyond a threshold temperature of ∼700 K, surface oxygen atoms begin to sublimate from the (0001) surface. The ratio of oxygen leaving the surface at a given temperature increases as the heating temperature increases. A range of phenomena occurring at the atomic level on the (0001) surface has also been explored, such as formation of oxygen dimers on the surface and evolution of partial charge distribution in the slab during the annealing process. It was found that the partial charge distribution as a function of the depth from the surface undergoes a qualitative change when the annealing temperature is above the threshold temperature.
NASA Astrophysics Data System (ADS)
Szu, Harold H.
1993-09-01
Classical artificial neural networks (ANN) and neurocomputing are reviewed for implementing a real time medical image diagnosis. An algorithm known as the self-reference matched filter that emulates the spatio-temporal integration ability of the human visual system might be utilized for multi-frame processing of medical imaging data. A Cauchy machine, implementing a fast simulated annealing schedule, can determine the degree of abnormality by the degree of orthogonality between the patient imagery and the class of features of healthy persons. An automatic inspection process based on multiple modality image sequences is simulated by incorporating the following new developments: (1) 1-D space-filling Peano curves to preserve the 2-D neighborhood pixels' relationship; (2) fast simulated Cauchy annealing for the global optimization of self-feature extraction; and (3) a mini-max energy function for the intra-inter cluster-segregation respectively useful for top-down ANN designs.
Dynamically optimizing experiment schedules of a laboratory robot system with simulated annealing.
Cabrera, Cristina; Fine-Morris, Morgan; Pokross, Matthew; Kish, Kevin; Michalczyk, Stephen; Cahn, Matthew; Klei, Herbert; Russo, Mark F
2014-12-01
A scheduler has been developed for an integrated laboratory robot system that operates in an always-on mode. The integrated system is designed for imaging plates containing protein crystallization experiments, and it allows crystallographers to enter plates at any time and request that they be imaged at multiple time points in the future. The scheduler must rearrange tasks within the time it takes to image one plate, trading off the quality of the schedule for the speed of the computation. For this reason, the scheduler was based on a simulated annealing algorithm with an objective function that makes use of a linear programming solver. To optimize the scheduler, extensive computational simulations were performed involving a difficult but representative scheduling problem. The simulations explore multiple configurations of the simulated annealing algorithm, including both geometric and adaptive annealing schedules, 3 neighborhood functions, and 20 neighborhood diameters. An optimal configuration was found that produced the best results in less than 60 seconds, well within the window necessary to dynamically reschedule imaging tasks as new plates are entered into the system. PMID:25117530
Sensitivity study on hydraulic well testing inversion using simulated annealing
Nakao, Shinsuke; Najita, J.; Karasaki, Kenzi
1997-11-01
For environmental remediation, management of nuclear waste disposal, or geothermal reservoir engineering, it is very important to evaluate the permeabilities, spacing, and sizes of the subsurface fractures which control ground water flow. Cluster variable aperture (CVA) simulated annealing has been used as an inversion technique to construct fluid flow models of fractured formations based on transient pressure data from hydraulic tests. A two-dimensional fracture network system is represented as a filled regular lattice of fracture elements. The algorithm iteratively changes an aperture of cluster of fracture elements, which are chosen randomly from a list of discrete apertures, to improve the match to observed pressure transients. The size of the clusters is held constant throughout the iterations. Sensitivity studies using simple fracture models with eight wells show that, in general, it is necessary to conduct interference tests using at least three different wells as pumping well in order to reconstruct the fracture network with a transmissivity contrast of one order of magnitude, particularly when the cluster size is not known a priori. Because hydraulic inversion is inherently non-unique, it is important to utilize additional information. The authors investigated the relationship between the scale of heterogeneity and the optimum cluster size (and its shape) to enhance the reliability and convergence of the inversion. It appears that the cluster size corresponding to about 20--40 % of the practical range of the spatial correlation is optimal. Inversion results of the Raymond test site data are also presented and the practical range of spatial correlation is evaluated to be about 5--10 m from the optimal cluster size in the inversion.
Resorting the NIST undulator using simulated annealing for field error reduction
NASA Astrophysics Data System (ADS)
Denbeaux, Greg; Johnson, Lewis E.; Madey, John M. J.
2000-06-01
We have used a simulated annealing algorithm to sort the samarium cobalt blocks and vanadium permendur poles in the hybrid NIST undulator to optimize the spectrum of the emitted light. While simulated annealing has proven highly effective in sorting of the SmCo blocks in pure REC undulators [1-5], the reliance on magnetically "soft" poles operating near saturation to concentrate the flux in hybrid undulators introduces a pair of additional variables—the permeability and saturation induction of the poles—which limit the utility of the assumption of superposition on which most simulated annealing codes rely. Detailed magnetic measurements clearly demonstrated the failure of the superposition principle due to random variations in the permeability in the "unsorted" NIST undulator. To deal with the issue, we measured both the magnetization of the REC blocks and the permeability of the NIST's integrated vanadium permendur poles, and implemented a sorting criteria which minimized the pole-to-pole variations in permeability to satisfy the criteria for realization of superposition on a nearest-neighbor basis. Though still imperfect, the computed spectrum of the radiation from the re-sorted and annealed NIST undulator is significantly superior to that of the original, unsorted device.
Huang, Feng-zhen; Yuan, Yan; Zhang, Xiu-bao; Wang, Qian; Zhou, Zhi-liang
2011-07-01
Phase correction is one of the key technologies in the spectrum recovery of the Fourier transform imaging spectrometer. The present paper proposes a correction method based on simulated annealing algorithm to calculate phase error, which overcomes the disadvantage of the existing methods that can not correct the interferogram with noise. The method determines the phase optimum solution by controlling the phase decrease function, attaining objective function value by correcting interferogram data with random phase value generated in the phase range, and determining the objective function increment in accordance with the Metropolis criterion. The simulation result of the algorithm indicates that the optimized phase error is less than 0.5%, and both the error accuracy and stability of the spectrum-recovered relative spectrum is less than 1%, which is a great improvement compared with the existing algorithm. PMID:21942072
Mauldon, A.D.; Karasaki, K.; Martel, S.J.; Long, J.C.S.; Landsfield, M.; Mensch, A. ); Vomvoris, S. )
1993-11-01
One of the characteristics of flow and transport in fractured rock is that the flow may be largely confined to a poorly connected network of fractures. In order to represent this condition, Lawrence Berkeley Laboratory has been developing a new type of fracture hydrology model called an equivalent discontinuum model. In this model we represent the discontinuous nature of the problem through flow on a partially filled lattice. This is done through a statistical inverse technique called [open quotes]simulated annealing.[close quotes] The fracture network model is [open quotes]annealed[close quotes] by continually modifying a base model, or [open quotes]template,[close quotes] so that with each modification, the model behaves more and more like the observed system. This template is constructed using geological and geophysical data to identify the regions that possibly conduct fluid an the probable orientations of channels that conduct fluid. In order to see how the simulated annealing algorithm works, we have developed a synthetic case. In this case, the geometry of the fracture network is completely known, so that the results of annealing to steady state data can be evaluated absolutely. We also analyze field data from the Migration Experiment at the Grimsel Rock Laboratory in Switzerland. 28 refs., 14 figs., 3 tabs.
Multigrid hierarchical simulated annealing method for reconstructing heterogeneous media.
Pant, Lalit M; Mitra, Sushanta K; Secanell, Marc
2015-12-01
A reconstruction methodology based on different-phase-neighbor (DPN) pixel swapping and multigrid hierarchical annealing is presented. The method performs reconstructions by starting at a coarse image and successively refining it. The DPN information is used at each refinement stage to freeze interior pixels of preformed structures. This preserves the large-scale structures in refined images and also reduces the number of pixels to be swapped, thereby resulting in a decrease in the necessary computational time to reach a solution. Compared to conventional single-grid simulated annealing, this method was found to reduce the required computation time to achieve a reconstruction by around a factor of 70-90, with the potential of even higher speedups for larger reconstructions. The method is able to perform medium sized (up to 300(3) voxels) three-dimensional reconstructions with multiple correlation functions in 36-47 h. PMID:26764849
Discrete-State Simulated Annealing For Traveling-Wave Tube Slow-Wave Circuit Optimization
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.; Bulson, Brian A.; Kory, Carol L.; Williams, W. Dan (Technical Monitor)
2001-01-01
Algorithms based on the global optimization technique of simulated annealing (SA) have proven useful in designing traveling-wave tube (TWT) slow-wave circuits for high RF power efficiency. The characteristic of SA that enables it to determine a globally optimized solution is its ability to accept non-improving moves in a controlled manner. In the initial stages of the optimization, the algorithm moves freely through configuration space, accepting most of the proposed designs. This freedom of movement allows non-intuitive designs to be explored rather than restricting the optimization to local improvement upon the initial configuration. As the optimization proceeds, the rate of acceptance of non-improving moves is gradually reduced until the algorithm converges to the optimized solution. The rate at which the freedom of movement is decreased is known as the annealing or cooling schedule of the SA algorithm. The main disadvantage of SA is that there is not a rigorous theoretical foundation for determining the parameters of the cooling schedule. The choice of these parameters is highly problem dependent and the designer needs to experiment in order to determine values that will provide a good optimization in a reasonable amount of computational time. This experimentation can absorb a large amount of time especially when the algorithm is being applied to a new type of design. In order to eliminate this disadvantage, a variation of SA known as discrete-state simulated annealing (DSSA), was recently developed. DSSA provides the theoretical foundation for a generic cooling schedule which is problem independent, Results of similar quality to SA can be obtained, but without the extra computational time required to tune the cooling parameters. Two algorithm variations based on DSSA were developed and programmed into a Microsoft Excel spreadsheet graphical user interface (GUI) to the two-dimensional nonlinear multisignal helix traveling-wave amplifier analysis program TWA3
Stochastic annealing simulations of defect interactions among subcascades
Heinisch, H.L.; Singh, B.N.
1997-04-01
The effects of the subcascade structure of high energy cascades on the temperature dependencies of annihilation, clustering and free defect production are investigated. The subcascade structure is simulated by closely spaced groups of lower energy MD cascades. The simulation results illustrate the strong influence of the defect configuration existing in the primary damage state on subsequent intracascade evolution. Other significant factors affecting the evolution of the defect distribution are the large differences in mobility and stability of vacancy and interstitial defects and the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. Annealing simulations are also performed on high-energy, subcascade-producing cascades generated with the binary collision approximation and calibrated to MD results.
NASA Astrophysics Data System (ADS)
Deist, T. M.; Gorissen, B. L.
2016-02-01
High-dose-rate brachytherapy is a tumor treatment method where a highly radioactive source is brought in close proximity to the tumor. In this paper we develop a simulated annealing algorithm to optimize the dwell times at preselected dwell positions to maximize tumor coverage under dose-volume constraints on the organs at risk. Compared to existing algorithms, our algorithm has advantages in terms of speed and objective value and does not require an expensive general purpose solver. Its success mainly depends on exploiting the efficiency of matrix multiplication and a careful selection of the neighboring states. In this paper we outline its details and make an in-depth comparison with existing methods using real patient data.
Deist, T M; Gorissen, B L
2016-02-01
High-dose-rate brachytherapy is a tumor treatment method where a highly radioactive source is brought in close proximity to the tumor. In this paper we develop a simulated annealing algorithm to optimize the dwell times at preselected dwell positions to maximize tumor coverage under dose-volume constraints on the organs at risk. Compared to existing algorithms, our algorithm has advantages in terms of speed and objective value and does not require an expensive general purpose solver. Its success mainly depends on exploiting the efficiency of matrix multiplication and a careful selection of the neighboring states. In this paper we outline its details and make an in-depth comparison with existing methods using real patient data. PMID:26760757
Simulated annealing and entanglement of formation for (n ⊗m ) -dimensional mixed states
NASA Astrophysics Data System (ADS)
Allende, S.; Altbir, D.; Retamal, J. C.
2015-08-01
The simulated annealing algorithm, a method commonly used to calculate properties of condensed-matter systems, is used to calculate entanglement of formation for higher-dimensional mixed states. The method relies on representing a mixed state as a pure state in an enlarged Hilbert space, and on the search for the extension minimizing the convex roof of entanglement of formation. Exact results are found, and predictions for system reservoir dynamics in higher dimensions are confirmed. These findings open the way for new applications of the method in quantum information.
Solving the dynamic berth allocation problem by simulated annealing
NASA Astrophysics Data System (ADS)
Lin, Shih-Wei; Ting, Ching-Jung
2014-03-01
Berth allocation, the first operation when vessels arrive at a port, is one of the major container port optimization problems. From both the port operator's and the ocean carriers' perspective, minimization of the time a ship spends at berth is a key goal of port operations. This article focuses on two versions of the dynamic berth allocation problem (DBAP): discrete and continuous cases. The first case assigns ships to a given set of berth positions; the second one permits them to be moored anywhere along the berth. Simulated annealing (SA) approaches are proposed to solve the DBAP. The proposed SAs are tested with numerical instances for different sizes from the literature. Experimental results show that the proposed SA can obtain the optimal solutions in all instances of discrete cases and update 27 best known solutions in the continuous case.
Hussain, Faraz; Jha, Sumit K; Jha, Susmit; Langmead, Christopher J
2014-01-01
Stochastic models are increasingly used to study the behaviour of biochemical systems. While the structure of such models is often readily available from first principles, unknown quantitative features of the model are incorporated into the model as parameters. Algorithmic discovery of parameter values from experimentally observed facts remains a challenge for the computational systems biology community. We present a new parameter discovery algorithm that uses simulated annealing, sequential hypothesis testing, and statistical model checking to learn the parameters in a stochastic model. We apply our technique to a model of glucose and insulin metabolism used for in-silico validation of artificial pancreata and demonstrate its effectiveness by developing parallel CUDA-based implementation for parameter synthesis in this model. PMID:24989866
Formation Algorithms and Simulation Testbed
NASA Technical Reports Server (NTRS)
Wette, Matthew; Sohl, Garett; Scharf, Daniel; Benowitz, Edward
2004-01-01
Formation flying for spacecraft is a rapidly developing field that will enable a new era of space science. For one of its missions, the Terrestrial Planet Finder (TPF) project has selected a formation flying interferometer design to detect earth-like planets orbiting distant stars. In order to advance technology needed for the TPF formation flying interferometer, the TPF project has been developing a distributed real-time testbed to demonstrate end-to-end operation of formation flying with TPF-like functionality and precision. This is the Formation Algorithms and Simulation Testbed (FAST) . This FAST was conceived to bring out issues in timing, data fusion, inter-spacecraft communication, inter-spacecraft sensing and system-wide formation robustness. In this paper we describe the FAST and show results from a two-spacecraft formation scenario. The two-spacecraft simulation is the first time that precision end-to-end formation flying operation has been demonstrated in a distributed real-time simulation environment.
Design of SLM-constrained MACE filters using simulated annealing optimization
NASA Astrophysics Data System (ADS)
Khan, Ajmal; Rajan, P. Karivaratha
1993-10-01
Among the available filters for pattern recognition, the MACE filter produces the sharpest peak with very small sidelobes. However, when these filters are implemented using practical spatial light modulators (SLMs), because of the constrained nature of the amplitude and phase modulation characteristics of the SLM, the implementation is no longer optimal. The resulting filter response does not produce high accuracy in the recognition of the test images. In this paper, this deterioration in response is overcome by designing constrained MACE filters such that the filter is allowed to have only those values of phase-amplitude combination that can be implemented on a specified SLM. The design is carried out using simulated annealing optimization technique. The algorithm developed and the results obtained on computer simulations of the designed filters are presented.
Freitez, Juan A.; Sanchez, Morella; Ruette, Fernando
2009-08-13
Application of simulated annealing (SA) and simplified GSA (SGSA) techniques for parameter optimization of parametric quantum chemistry method (CATIVIC) was performed. A set of organic molecules were selected for test these techniques. Comparison of the algorithms was carried out for error function minimization with respect to experimental values. Results show that SGSA is more efficient than SA with respect to computer time. Accuracy is similar in both methods; however, there are important differences in the final set of parameters.
Retrieval of Surface and Subsurface Moisture of Bare Soil Using Simulated Annealing
NASA Astrophysics Data System (ADS)
Tabatabaeenejad, A.; Moghaddam, M.
2009-12-01
Soil moisture is of fundamental importance to many hydrological and biological processes. Soil moisture information is vital to understanding the cycling of water, energy, and carbon in the Earth system. Knowledge of soil moisture is critical to agencies concerned with weather and climate, runoff potential and flood control, soil erosion, reservoir management, water quality, agricultural productivity, drought monitoring, and human health. The need to monitor the soil moisture on a global scale has motivated missions such as Soil Moisture Active and Passive (SMAP) [1]. Rough surface scattering models and remote sensing retrieval algorithms are essential in study of the soil moisture, because soil can be represented as a rough surface structure. Effects of soil moisture on the backscattered field have been studied since the 1960s, but soil moisture estimation remains a challenging problem and there is still a need for more accurate and more efficient inversion algorithms. It has been shown that the simulated annealing method is a powerful tool for inversion of the model parameters of rough surface structures [2]. The sensitivity of this method to measurement noise has also been investigated assuming a two-layer structure characterized by the layers dielectric constants, layer thickness, and statistical properties of the rough interfaces [2]. However, since the moisture profile varies with depth, it is sometimes necessary to model the rough surface as a layered structure with a rough interface on top and a stratified structure below where each layer is assumed to have a constant volumetric moisture content. In this work, we discretize the soil structure into several layers of constant moisture content to examine the effect of subsurface profile on the backscattering coefficient. We will show that while the moisture profile could vary in deeper layers, these layers do not affect the scattered electromagnetic field significantly. Therefore, we can use just a few layers
Redesigning rain gauges network in Johor using geostatistics and simulated annealing
NASA Astrophysics Data System (ADS)
Aziz, Mohd Khairul Bazli Mohd; Yusof, Fadhilah; Daud, Zalina Mohd; Yusop, Zulkifli; Kasno, Mohammad Afif
2015-02-01
Recently, many rainfall network design techniques have been developed, discussed and compared by many researchers. Present day hydrological studies require higher levels of accuracy from collected data. In numerous basins, the rain gauge stations are located without clear scientific understanding. In this study, an attempt is made to redesign rain gauge network for Johor, Malaysia in order to meet the required level of accuracy preset by rainfall data users. The existing network of 84 rain gauges in Johor is optimized and redesigned into a new locations by using rainfall, humidity, solar radiation, temperature and wind speed data collected during the monsoon season (November - February) of 1975 until 2008. This study used the combination of geostatistics method (variance-reduction method) and simulated annealing as the algorithm of optimization during the redesigned proses. The result shows that the new rain gauge location provides minimum value of estimated variance. This shows that the combination of geostatistics method (variance-reduction method) and simulated annealing is successful in the development of the new optimum rain gauge system.
Redesigning rain gauges network in Johor using geostatistics and simulated annealing
Aziz, Mohd Khairul Bazli Mohd; Yusof, Fadhilah; Daud, Zalina Mohd; Yusop, Zulkifli; Kasno, Mohammad Afif
2015-02-03
Recently, many rainfall network design techniques have been developed, discussed and compared by many researchers. Present day hydrological studies require higher levels of accuracy from collected data. In numerous basins, the rain gauge stations are located without clear scientific understanding. In this study, an attempt is made to redesign rain gauge network for Johor, Malaysia in order to meet the required level of accuracy preset by rainfall data users. The existing network of 84 rain gauges in Johor is optimized and redesigned into a new locations by using rainfall, humidity, solar radiation, temperature and wind speed data collected during the monsoon season (November - February) of 1975 until 2008. This study used the combination of geostatistics method (variance-reduction method) and simulated annealing as the algorithm of optimization during the redesigned proses. The result shows that the new rain gauge location provides minimum value of estimated variance. This shows that the combination of geostatistics method (variance-reduction method) and simulated annealing is successful in the development of the new optimum rain gauge system.
An archived multi-objective simulated annealing for a dynamic cellular manufacturing system
NASA Astrophysics Data System (ADS)
Shirazi, Hossein; Kia, Reza; Javadian, Nikbakhsh; Tavakkoli-Moghaddam, Reza
2014-05-01
To design a group layout of a cellular manufacturing system (CMS) in a dynamic environment, a multi-objective mixed-integer non-linear programming model is developed. The model integrates cell formation, group layout and production planning (PP) as three interrelated decisions involved in the design of a CMS. This paper provides an extensive coverage of important manufacturing features used in the design of CMSs and enhances the flexibility of an existing model in handling the fluctuations of part demands more economically by adding machine depot and PP decisions. Two conflicting objectives to be minimized are the total costs and the imbalance of workload among cells. As the considered objectives in this model are in conflict with each other, an archived multi-objective simulated annealing (AMOSA) algorithm is designed to find Pareto-optimal solutions. Matrix-based solution representation, a heuristic procedure generating an initial and feasible solution and efficient mutation operators are the advantages of the designed AMOSA. To demonstrate the efficiency of the proposed algorithm, the performance of AMOSA is compared with an exact algorithm (i.e., ∈-constraint method) solved by the GAMS software and a well-known evolutionary algorithm, namely NSGA-II for some randomly generated problems based on some comparison metrics. The obtained results show that the designed AMOSA can obtain satisfactory solutions for the multi-objective model.
Solving an one-dimensional cutting stock problem by simulated annealing and tabu search
NASA Astrophysics Data System (ADS)
Jahromi, Meghdad HMA; Tavakkoli-Moghaddam, Reza; Makui, Ahmad; Shamsi, Abbas
2012-10-01
A cutting stock problem is one of the main and classical problems in operations research that is modeled as LP problem. Because of its NP-hard nature, finding an optimal solution in reasonable time is extremely difficult and at least non-economical. In this paper, two meta-heuristic algorithms, namely simulated annealing (SA) and tabu search (TS), are proposed and developed for this type of the complex and large-sized problem. To evaluate the efficiency of these proposed approaches, several problems are solved using SA and TS, and then the related results are compared. The results show that the proposed SA gives good results in terms of objective function values rather than TS.
Shape optimization of road tunnel cross-section by simulated annealing
NASA Astrophysics Data System (ADS)
Sobótka, Maciej; Pachnicz, Michał
2016-06-01
The paper concerns shape optimization of a tunnel excavation cross-section. The study incorporates optimization procedure of the simulated annealing (SA). The form of a cost function derives from the energetic optimality condition, formulated in the authors' previous papers. The utilized algorithm takes advantage of the optimization procedure already published by the authors. Unlike other approaches presented in literature, the one introduced in this paper takes into consideration a practical requirement of preserving fixed clearance gauge. Itasca Flac software is utilized in numerical examples. The optimal excavation shapes are determined for five different in situ stress ratios. This factor significantly affects the optimal topology of excavation. The resulting shapes are elongated in the direction of a principal stress greater value. Moreover, the obtained optimal shapes have smooth contours circumscribing the gauge.
OBJECT KINETIC MONTE CARLO SIMULATIONS OF CASCADE ANNEALING IN TUNGSTEN
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.
2014-03-31
The objective of this work is to study the annealing of primary cascade damage created by primary knock-on atoms (PKAs) of various energies, at various temperatures in bulk tungsten using the object kinetic Monte Carlo (OKMC) method.
NASA Astrophysics Data System (ADS)
White, Ronald P.; Mayne, Howard R.
2000-05-01
An annealing schedule, T(t), is the temperature as function of time whose goal is to bring a system from some initial low-order state to a final high-order state. We use the probability in the lowest energy level as the order parameter, so that an ideally annealed system would have all its population in its ground-state. We consider a model system comprised of discrete energy levels separated by activation barriers. We have carried out annealing calculations on this system for a range of system parameters. In particular, we considered the schedule as a function of the energy level spacing, of the height of the activation barriers, and, in some cases, as a function of degeneracies of the levels. For a given set of physical parameters, and maximum available time, tm, we were able to obtain the optimal schedule by using a genetic algorithm (GA) approach. For the two-level system, analytic solutions are available, and were compared with the GA-optimized results. The agreement was essentially exact. We were able to identify systematic behaviors of the schedules and trends in final probabilities as a function of parameters. We have also carried out Metropolis Monte Carlo (MMC) calculations on simple potential energy functions using the optimal schedules available from the model calculations. Agreement between the model and MMC calculations was excellent.
A deterministic annealing algorithm for approximating a solution of the min-bisection problem.
Dang, Chuangyin; Ma, Wei; Liang, Jiye
2009-01-01
The min-bisection problem is an NP-hard combinatorial optimization problem. In this paper an equivalent linearly constrained continuous optimization problem is formulated and an algorithm is proposed for approximating its solution. The algorithm is derived from the introduction of a logarithmic-cosine barrier function, where the barrier parameter behaves as temperature in an annealing procedure and decreases from a sufficiently large positive number to zero. The algorithm searches for a better solution in a feasible descent direction, which has a desired property that lower and upper bounds are always satisfied automatically if the step length is a number between zero and one. We prove that the algorithm converges to at least a local minimum point of the problem if a local minimum point of the barrier problem is generated for a sequence of descending values of the barrier parameter with a limit of zero. Numerical results show that the algorithm is much more efficient than two of the best existing heuristic methods for the min-bisection problem, Kernighan-Lin method with multiple starting points (MSKL) and multilevel graph partitioning scheme (MLGP). PMID:18995985
NASA Astrophysics Data System (ADS)
Chen, Zheng; Mi, Chunting Chris; Xia, Bing; You, Chenwen
2014-12-01
In this paper, an energy management method is proposed for a power-split plug-in hybrid electric vehicle (PHEV). Through analyzing the PHEV powertrain, a series of quadratic equations are employed to approximate the vehicle's fuel-rate, using battery current as the input. Pontryagin's Minimum Principle (PMP) is introduced to find the battery current commands by solving the Hamiltonian function. Simulated Annealing (SA) algorithm is applied to calculate the engine-on power and the maximum current coefficient. Moreover, the battery state of health (SOH) is introduced to extend the application of the proposed algorithm. Simulation results verified that the proposed algorithm can reduce fuel-consumption compared to charge-depleting (CD) and charge-sustaining (CS) mode.
Fractal Landscape Algorithms for Environmental Simulations
NASA Astrophysics Data System (ADS)
Mao, H.; Moran, S.
2014-12-01
Natural science and geographical research are now able to take advantage of environmental simulations that more accurately test experimental hypotheses, resulting in deeper understanding. Experiments affected by the natural environment can benefit from 3D landscape simulations capable of simulating a variety of terrains and environmental phenomena. Such simulations can employ random terrain generation algorithms that dynamically simulate environments to test specific models against a variety of factors. Through the use of noise functions such as Perlin noise, Simplex noise, and diamond square algorithms, computers can generate simulations that model a variety of landscapes and ecosystems. This study shows how these algorithms work together to create realistic landscapes. By seeding values into the diamond square algorithm, one can control the shape of landscape. Perlin noise and Simplex noise are also used to simulate moisture and temperature. The smooth gradient created by coherent noise allows more realistic landscapes to be simulated. Terrain generation algorithms can be used in environmental studies and physics simulations. Potential studies that would benefit from simulations include the geophysical impact of flash floods or drought on a particular region and regional impacts on low lying area due to global warming and rising sea levels. Furthermore, terrain generation algorithms also serve as aesthetic tools to display landscapes (Google Earth), and simulate planetary landscapes. Hence, it can be used as a tool to assist science education. Algorithms used to generate these natural phenomena provide scientists a different approach in analyzing our world. The random algorithms used in terrain generation not only contribute to the generating the terrains themselves, but are also capable of simulating weather patterns.
NASA Astrophysics Data System (ADS)
Theodorakos, I.; Zergioti, I.; Vamvakas, V.; Tsoukalas, D.; Raptis, Y. S.
2014-01-01
In this work, a picosecond diode pumped solid state laser and a nanosecond Nd:YAG laser have been used for the annealing and the partial nano-crystallization of an amorphous silicon layer. These experiments were conducted as an alternative/complementary to plasma-enhanced chemical vapor deposition method for fabrication of micromorph tandem solar cell. The laser experimental work was combined with simulations of the annealing process, in terms of temperature distribution evolution, in order to predetermine the optimum annealing conditions. The annealed material was studied, as a function of several annealing parameters (wavelength, pulse duration, fluence), as far as it concerns its structural properties, by X-ray diffraction, SEM, and micro-Raman techniques.
NASA Astrophysics Data System (ADS)
Gaillot, P.; Bardaine, T.; Lyon-Caen, H.
2004-12-01
Since recent years, various automatic phase pickers based on the wavelet transform have been developed. The main motivation for using wavelet transform is that they are excellent at finding the characteristics of transient signals, they have good time resolution at all periods, and they are easy to program for fast execution. Thus, the time-scale properties and flexibility of the wavelets allow detection of P and S phases in a broad frequency range making their utilization possible in various context. However, the direct application of an automatic picking program in a different context/network than the one for which it has been initially developed is quickly tedious. In fact, independently of the strategy involved in automatic picking algorithms (window average, autoregressive, beamforming, optimization filtering, neuronal network), all developed algorithms use different parameters that depend on the objective of the seismological study, the region and the seismological network. Classically, these parameters are manually defined by trial-error or calibrated learning stage. In order to facilitate this laborious process, we have developed an automated method that provide optimal parameters for the picking programs. The set of parameters can be explored using simulated annealing which is a generic name for a family of optimization algorithms based on the principle of stochastic relaxation. The optimization process amounts to systematically modifying an initial realization so as to decrease the value of the objective function, getting the realization acceptably close to the target statistics. Different formulations of the optimization problem (objective function) are discussed using (1) world seismicity data recorded by the French national seismic monitoring network (ReNass), (2) regional seismicity data recorded in the framework of the Corinth Rift Laboratory (CRL) experiment, (3) induced seismicity data from the gas field of Lacq (Western Pyrenees), and (4) micro
Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra
Ryden, N.; Park, C.B.
2006-01-01
The conventional inversion of surface waves depends on modal identification of measured dispersion curves, which can be ambiguous. It is possible to avoid mode-number identification and extraction by inverting the complete phase-velocity spectrum obtained from a multichannel record. We use the fast simulated annealing (FSA) global search algorithm to minimize the difference between the measured phase-velocity spectrum and that calculated from a theoretical layer model, including the field setup geometry. Results show that this algorithm can help one avoid getting trapped in local minima while searching for the best-matching layer model. The entire procedure is demonstrated on synthetic and field data for asphalt pavement. The viscoelastic properties of the top asphalt layer are taken into account, and the inverted asphalt stiffness as a function of frequency compares well with laboratory tests on core samples. The thickness and shear-wave velocity of the deeper embedded layers are resolved within 10% deviation from those values measured separately during pavement construction. The proposed method may be equally applicable to normal soil site investigation and in the field of ultrasonic testing of materials. ?? 2006 Society of Exploration Geophysicists.
Dynamical SCFT Simulations of Solvent Annealed Thin Films
NASA Astrophysics Data System (ADS)
Paradiso, Sean; Delaney, Kris; Ceniceros, Hector; Garcia-Cervera, Carlos; Fredrickson, Glenn
2014-03-01
Block copolymer thin films are ideal candidates for a broad range of technologies including rejection layers for ultrafiltration membranes, proton-exchange membranes in solar cells, optically active coatings, and lithographic masks for bit patterning storage media. Optimizing the performance of these materials often hinges on tuning the orientation and long-range order of the film's internal nanostructure. In response, solvent annealing techniques have been developed for their promise to afford additional flexibility in tuning thin film morphology, but pronounced processing history dependence and a dizzying parameter space have resulted in slow progress towards developing clear design rules for solvent annealing systems. In this talk, we will report recent theoretical progress in understanding the self assembly dynamics relevant to solvent-annealed and solution-cast block copolymer films. Emphasis will be placed on evaporation-induced ordering trends in both the slow and fast drying regimes for cylinder-forming block copolymers from initially ordered and disordered films, along with the role solvent selectivity plays in the ordering dynamics.
Empirical study of parallel LRU simulation algorithms
NASA Technical Reports Server (NTRS)
Carr, Eric; Nicol, David M.
1994-01-01
This paper reports on the performance of five parallel algorithms for simulating a fully associative cache operating under the LRU (Least-Recently-Used) replacement policy. Three of the algorithms are SIMD, and are implemented on the MasPar MP-2 architecture. Two other algorithms are parallelizations of an efficient serial algorithm on the Intel Paragon. One SIMD algorithm is quite simple, but its cost is linear in the cache size. The two other SIMD algorithm are more complex, but have costs that are independent on the cache size. Both the second and third SIMD algorithms compute all stack distances; the second SIMD algorithm is completely general, whereas the third SIMD algorithm presumes and takes advantage of bounds on the range of reference tags. Both MIMD algorithm implemented on the Paragon are general and compute all stack distances; they differ in one step that may affect their respective scalability. We assess the strengths and weaknesses of these algorithms as a function of problem size and characteristics, and compare their performance on traces derived from execution of three SPEC benchmark programs.
Identifying fracture-zone geometry using simulated annealing and hydraulic-connection data
Day-Lewis, F. D.; Hsieh, P.A.; Gorelick, S.M.
2000-01-01
A new approach is presented to condition geostatistical simulation of high-permeability zones in fractured rock to hydraulic-connection data. A simulated-annealing algorithm generates three-dimensional (3-D) realizations conditioned to borehole data, inferred hydraulic connections between packer-isolated borehole intervals, and an indicator (fracture zone or background-K bedrock) variogram model of spatial variability. We apply the method to data from the U.S. Geological Survey Mirror Lake Site in New Hampshire, where connected high-permeability fracture zones exert a strong control on fluid flow at the hundred-meter scale. Single-well hydraulic-packer tests indicate where permeable fracture zones intersect boreholes, and multiple-well pumping tests indicate the degree of hydraulic connection between boreholes. Borehole intervals connected by a fracture zone exhibit similar hydraulic responses, whereas intervals not connected by a fracture zone exhibit different responses. Our approach yields valuable insights into the 3-D geometry of fracture zones at Mirror Lake. Statistical analysis of the realizations yields maps of the probabilities of intersecting specific fracture zones with additional wells. Inverse flow modeling based on the assumption of equivalent porous media is used to estimate hydraulic conductivity and specific storage and to identify those fracture-zone geometries that are consistent with hydraulic test data.
Laser annealing and simulation of amorphous silicon thin films for solar cell applications
NASA Astrophysics Data System (ADS)
Theodorakos, I.; Raptis, Y. S.; Vamvakas, V.; Tsoukalas, D.; Zergioti, I.
2014-03-01
In this work, a picosecond DPSS and a nanosecond Nd:YAG laser have been used for the annealing and the partial nanocrystallization of an amorphous silicon layer. These experiments were conducted in order to improve the characteristics of a micromorph tandem solar cell. The laser annealing was attempted at 1064nm in order to obtain the desired crystallization's depth and ratios. Preliminary annealing-processes, with different annealing parameters, have been tested, such as fluence, repetition rate and number of pulses. Irradiations were applied in the sub-melt regime, in order to prevent significant diffusion of p- and n-dopants to take place within the structure. The laser experimental work was combined with simulations of the laser annealing process, in terms of temperature distribution evolution, using the Synopsys Sentaurus Process TCAD software. The optimum annealing conditions for the two different pulse durations were determined. Experimentally determined optical properties of our samples, such as the absorption coefficient and reflectivity, were used for a more realistic simulation. From the simulations results, a temperature profile, appropriate to yield the desired recrystallization was obtained for the case of ps pulses, which was verified from the experimental results described below. The annealed material was studied, as far as it concerns its structural properties, by XRD, SEM and micro-Raman techniques, providing consistent information on the characteristics of the nanocrystalline material produced by the laser annealing experiments. It was found that, with the use of ps pulses, the resultant polycrystalline region shows crystallization's ratios similar to a PECVD developed poly-Silicon layer, with slightly larger nanocrystallite's size.
Phase unwrapping algorithms in laser propagation simulation
NASA Astrophysics Data System (ADS)
Du, Rui; Yang, Lijia
2013-08-01
Currently simulating on laser propagation in atmosphere usually need to deal with beam in strong turbulence, which may lose a part of information via Fourier Transform to simulate the transmission, makes the phase of beam as a 2-D array wrap by 2π . An effective unwrapping algorithm is needed for continuing result and faster calculation. The unwrapping algorithms in atmospheric propagation are similar to the unwrapping algorithm in radar or 3-D surface rebuilding, but not the same. In this article, three classic unwrapping algorithms: the block least squares (BLS), mask-cut (MCUT), and the Flynn's minimal discontinuity algorithm (FMD) are tried in wave-front reconstruction simulation. Each of those algorithms are tested 100 times in 6 same conditions, including low(64x64), medium(128x128), and high(256x256) resolution phase array, with and without noises. Compared the results, the conclusions are delivered as follows. The BLS-based algorithm is the fastest, and the result is acceptable in low resolution environment without noise. The MCUT are higher in accuracy, though they are slower with the array resolution increased, and it is sensitive to noise, resulted in large area errors. Flynn's algorithm has the better accuracy, and it occupies large memory in calculation. After all, the article delivered a new algorithm that based on Active on Vertex (AOV) Network, to build a logical graph to cut the search space then find minimal discontinuity solution. The AOV is faster than MCUT in dealing with high resolution phase arrays, and better accuracy as FMD that has been tested.
An exact accelerated stochastic simulation algorithm
Mjolsness, Eric; Orendorff, David; Chatelain, Philippe; Koumoutsakos, Petros
2009-01-01
An exact method for stochastic simulation of chemical reaction networks, which accelerates the stochastic simulation algorithm (SSA), is proposed. The present “ER-leap” algorithm is derived from analytic upper and lower bounds on the multireaction probabilities sampled by SSA, together with rejection sampling and an adaptive multiplicity for reactions. The algorithm is tested on a number of well-quantified reaction networks and is found experimentally to be very accurate on test problems including a chaotic reaction network. At the same time ER-leap offers a substantial speedup over SSA with a simulation time proportional to the 2∕3 power of the number of reaction events in a Galton–Watson process. PMID:19368432
Optimization of pressurized water reactor shuffling by simulated annealing with heuristics
Stevens, J.G.; Smith, K.S.; Rempe, K.R.; Downar, T.J.
1995-09-01
Simulated-annealing optimization of reactor core loading patterns is implemented with support for design heuristics during candidate pattern generation. The SIMAN optimization module uses the advanced nodal method of SIMULATE-3 and the full cross-section detail of CASMO-3 to evaluate accurately the neutronic performance of each candidate, resulting in high-quality patterns. The use of heuristics within simulated annealing is explored. Heuristics improve the consistency of optimization results for both fast- and slow-annealing runs with no penalty from the exclusion of unusual candidates. Thus, the heuristic application of designer judgment during automated pattern generation is shown to be effective. The capability of the SIMAN module to find and evaluate families of loading patterns that satisfy design constraints and have good objective performance within practical run times is demonstrated. The use of automated evaluations of successive cycles to explore multicycle effects of design decisions is discussed.
NASA Technical Reports Server (NTRS)
Sohn, Andrew; Biswas, Rupak
1996-01-01
Solving the hard Satisfiability Problem is time consuming even for modest-sized problem instances. Solving the Random L-SAT Problem is especially difficult due to the ratio of clauses to variables. This report presents a parallel synchronous simulated annealing method for solving the Random L-SAT Problem on a large-scale distributed-memory multiprocessor. In particular, we use a parallel synchronous simulated annealing procedure, called Generalized Speculative Computation, which guarantees the same decision sequence as sequential simulated annealing. To demonstrate the performance of the parallel method, we have selected problem instances varying in size from 100-variables/425-clauses to 5000-variables/21,250-clauses. Experimental results on the AP1000 multiprocessor indicate that our approach can satisfy 99.9 percent of the clauses while giving almost a 70-fold speedup on 500 processors.
Genetic Algorithms for Digital Quantum Simulations
NASA Astrophysics Data System (ADS)
Las Heras, U.; Alvarez-Rodriguez, U.; Solano, E.; Sanz, M.
2016-06-01
We propose genetic algorithms, which are robust optimization techniques inspired by natural selection, to enhance the versatility of digital quantum simulations. In this sense, we show that genetic algorithms can be employed to increase the fidelity and optimize the resource requirements of digital quantum simulation protocols while adapting naturally to the experimental constraints. Furthermore, this method allows us to reduce not only digital errors but also experimental errors in quantum gates. Indeed, by adding ancillary qubits, we design a modular gate made out of imperfect gates, whose fidelity is larger than the fidelity of any of the constituent gates. Finally, we prove that the proposed modular gates are resilient against different gate errors.
Inversion of sonobuoy data from shallow-water sites with simulated annealing.
Lindwall, Dennis; Brozena, John
2005-02-01
An enhanced simulated annealing algorithm is used to invert sparsely sampled seismic data collected with sonobuoys to obtain seafloor geoacoustic properties at two littoral marine environments as well as for a synthetic data set. Inversion of field data from a 750-m water-depth site using a water-gun sound source found a good solution which included a pronounced subbottom reflector after 6483 iterations over seven variables. Field data from a 250-m water-depth site using an air-gun source required 35,421 iterations for a good inversion solution because 30 variables had to be solved for, including the shot-to-receiver offsets. The sonobuoy derived compressional wave velocity-depth (Vp-Z) models compare favorably with Vp-Z models derived from nearby, high-quality, multichannel seismic data. There are, however, substantial differences between seafloor reflection coefficients calculated from field models and seafloor reflection coefficients based on commonly used Vp regression curves (gradients). Reflection loss is higher at one field site and lower at the other than predicted from commonly used Vp gradients for terrigenous sediments. In addition, there are strong effects on reflection loss due to the subseafloor interfaces that are also not predicted by Vp gradients. PMID:15759701
Inversion of sonobuoy data from shallow-water sites with simulated annealing
NASA Astrophysics Data System (ADS)
Lindwall, Dennis; Brozena, John
2005-02-01
An enhanced simulated annealing algorithm is used to invert sparsely sampled seismic data collected with sonobuoys to obtain seafloor geoacoustic properties at two littoral marine environments as well as for a synthetic data set. Inversion of field data from a 750-m water-depth site using a water-gun sound source found a good solution which included a pronounced subbottom reflector after 6483 iterations over seven variables. Field data from a 250-m water-depth site using an air-gun source required 35 421 iterations for a good inversion solution because 30 variables had to be solved for, including the shot-to-receiver offsets. The sonobuoy derived compressional wave velocity-depth (Vp-Z) models compare favorably with Vp-Z models derived from nearby, high-quality, multichannel seismic data. There are, however, substantial differences between seafloor reflection coefficients calculated from field models and seafloor reflection coefficients based on commonly used Vp regression curves (gradients). Reflection loss is higher at one field site and lower at the other than predicted from commonly used Vp gradients for terrigenous sediments. In addition, there are strong effects on reflection loss due to the subseafloor interfaces that are also not predicted by Vp gradients.
Xiang, Hui; Ye, Yong; Ni, Linglin
2015-01-01
A stochastic multiproduct capacitated facility location problem involving a single supplier and multiple customers is investigated. Due to the stochastic demands, a reasonable amount of safety stock must be kept in the facilities to achieve suitable service levels, which results in increased inventory cost. Based on the assumption of normal distributed for all the stochastic demands, a nonlinear mixed-integer programming model is proposed, whose objective is to minimize the total cost, including transportation cost, inventory cost, operation cost, and setup cost. A combined simulated annealing (CSA) algorithm is presented to solve the model, in which the outer layer subalgorithm optimizes the facility location decision and the inner layer subalgorithm optimizes the demand allocation based on the determined facility location decision. The results obtained with this approach shown that the CSA is a robust and practical approach for solving a multiple product problem, which generates the suboptimal facility location decision and inventory policies. Meanwhile, we also found that the transportation cost and the demand deviation have the strongest influence on the optimal decision compared to the others. PMID:25834839
A hierarchical exact accelerated stochastic simulation algorithm
Orendorff, David; Mjolsness, Eric
2012-01-01
A new algorithm, “HiER-leap” (hierarchical exact reaction-leaping), is derived which improves on the computational properties of the ER-leap algorithm for exact accelerated simulation of stochastic chemical kinetics. Unlike ER-leap, HiER-leap utilizes a hierarchical or divide-and-conquer organization of reaction channels into tightly coupled “blocks” and is thereby able to speed up systems with many reaction channels. Like ER-leap, HiER-leap is based on the use of upper and lower bounds on the reaction propensities to define a rejection sampling algorithm with inexpensive early rejection and acceptance steps. But in HiER-leap, large portions of intra-block sampling may be done in parallel. An accept/reject step is used to synchronize across blocks. This method scales well when many reaction channels are present and has desirable asymptotic properties. The algorithm is exact, parallelizable and achieves a significant speedup over the stochastic simulation algorithm and ER-leap on certain problems. This algorithm offers a potentially important step towards efficient in silico modeling of entire organisms. PMID:23231214
Acoustic simulation in architecture with parallel algorithm
NASA Astrophysics Data System (ADS)
Li, Xiaohong; Zhang, Xinrong; Li, Dan
2004-03-01
In allusion to complexity of architecture environment and Real-time simulation of architecture acoustics, a parallel radiosity algorithm was developed. The distribution of sound energy in scene is solved with this method. And then the impulse response between sources and receivers at frequency segment, which are calculated with multi-process, are combined into whole frequency response. The numerical experiment shows that parallel arithmetic can improve the acoustic simulating efficiency of complex scene.
Stochastic annealing simulation of copper under neutron irradiation
Heinisch, H.L.; Singh, B.N.
1998-03-01
This report is a summary of a presentation made at ICFRM-8 on computer simulations of defect accumulation during irradiation of copper to low doses at room temperature. The simulation results are in good agreement with experimental data on defect cluster densities in copper irradiated in RTNS-II.
The systems biology simulation core algorithm
2013-01-01
Background With the increasing availability of high dimensional time course data for metabolites, genes, and fluxes, the mathematical description of dynamical systems has become an essential aspect of research in systems biology. Models are often encoded in formats such as SBML, whose structure is very complex and difficult to evaluate due to many special cases. Results This article describes an efficient algorithm to solve SBML models that are interpreted in terms of ordinary differential equations. We begin our consideration with a formal representation of the mathematical form of the models and explain all parts of the algorithm in detail, including several preprocessing steps. We provide a flexible reference implementation as part of the Systems Biology Simulation Core Library, a community-driven project providing a large collection of numerical solvers and a sophisticated interface hierarchy for the definition of custom differential equation systems. To demonstrate the capabilities of the new algorithm, it has been tested with the entire SBML Test Suite and all models of BioModels Database. Conclusions The formal description of the mathematics behind the SBML format facilitates the implementation of the algorithm within specifically tailored programs. The reference implementation can be used as a simulation backend for Java™-based programs. Source code, binaries, and documentation can be freely obtained under the terms of the LGPL version 3 from http://simulation-core.sourceforge.net. Feature requests, bug reports, contributions, or any further discussion can be directed to the mailing list simulation-core-development@lists.sourceforge.net. PMID:23826941
Obstacle Bypassing in Optimal Ship Routing Using Simulated Annealing
Kosmas, O. T.; Vlachos, D. S.; Simos, T. E.
2008-11-06
In this paper we are going to discuss a variation on the problem of finding the shortest path between two points in optimal ship routing problems consisting of obstacles that are not allowed to be crossed by the path. Our main goal are going to be the construction of an appropriate algorithm, based in an earlier work by computing the shortest path between two points in the plane that avoids a set of polygonal obstacles.
Obstacle Bypassing in Optimal Ship Routing Using Simulated Annealing
NASA Astrophysics Data System (ADS)
Kosmas, O. T.; Vlachos, D. S.; Simos, T. E.
2008-11-01
In this paper we are going to discuss a variation on the problem of finding the shortest path between two points in optimal ship routing problems consisting of obstacles that are not allowed to be crossed by the path. Our main goal are going to be the construction of an appropriate algorithm, based in an earlier work [16] by computing the shortest path between two points in the plane that avoids a set of polygonal obstacles.
Fast and robust microseismic event detection using very fast simulated annealing
NASA Astrophysics Data System (ADS)
Velis, Danilo R.; Sabbione, Juan I.; Sacchi, Mauricio D.
2013-04-01
The study of microseismic data has become an essential tool in many geoscience fields, including oil reservoir geophysics, mining and CO2 sequestration. In hydraulic fracturing, microseismicity studies permit the characterization and monitoring of the reservoir dynamics in order to optimize the production and the fluid injection process itself. As the number of events is usually large and the signal-to-noise ratio is in general very low, fast, automated, and robust detection algorithms are required for most applications. Also, real-time functionality is commonly needed to control the fluid injection in the field. Generally, events are located by means of grid search algorithms that rely on some approximate velocity model. These techniques are very effective and accurate, but computationally intensive when dealing with large three or four-dimensional grids. Here, we present a fast and robust method that allows to automatically detect and pick an event in 3C microseismic data without any input information about the velocity model. The detection is carried out by means of a very fast simulated annealing (VFSA) algorithm. To this end, we define an objective function that measures the energy of a potential microseismic event along the multichannel signal. This objective function is based on the stacked energy of the envelope of the signals calculated within a predefined narrow time window that depends on the source position, receivers geometry and velocity. Once an event has been detected, the source location can be estimated, in a second stage, by inverting the corresponding traveltimes using a standard technique, which would naturally require some knowledge of the velocity model. Since the proposed technique focuses on the detection of the microseismic events only, the velocity model is not required, leading to a fast algorithm that carries out the detection in real-time. Besides, the strategy is applicable to data with very low signal-to-noise ratios, for it relies
NASA Astrophysics Data System (ADS)
Mori, Takaharu; Okamoto, Yuko
2009-10-01
Gramicidin A is a linear hydrophobic 15-residue peptide which consists of alternating D- and L-amino acids and forms a unique tertiary structure, called the β6.3-helix, to act as a cation-selective ion channel in the natural conditions. In order to investigate the intrinsic ability of the gramicidin A monomer to form secondary structures, we performed the folding simulation of gramicidin A using a simulated annealing molecular dynamics (MD) method in vacuum mimicking the low-dielectric, homogeneous membrane environment. The initial conformation was a fully extended one. From the 200 different MD runs, we obtained a right-handed β4.4-helix as the lowest-potential-energy structure, and left-handed β4.4-helix, right-handed and left-handed β6.3-helix as local-minimum energy states. These results are in accord with those of the experiments of gramicidin A in homogeneous organic solvent. Our simulations showed a slight right-hand sense in the lower-energy conformations and a quite β-sheet-forming tendency throughout almost the entire sequence. In order to examine the stability of the obtained right-handed β6.3-helix and β4.4-helix structures in more realistic membrane environment, we have also performed all-atom MD simulations in explicit water, ion, and lipid molecules, starting from these β-helix structures. The results suggested that β6.3-helix is more stable than β4.4-helix in the inhomogeneous, explicit membrane environment, where the pore water and the hydrogen bonds between Trp side-chains and lipid-head groups have a role to further stabilize the β6.3-helix conformation.
Mori, Takaharu; Okamoto, Yuko
2009-10-28
Gramicidin A is a linear hydrophobic 15-residue peptide which consists of alternating D- and L-amino acids and forms a unique tertiary structure, called the beta(6.3)-helix, to act as a cation-selective ion channel in the natural conditions. In order to investigate the intrinsic ability of the gramicidin A monomer to form secondary structures, we performed the folding simulation of gramicidin A using a simulated annealing molecular dynamics (MD) method in vacuum mimicking the low-dielectric, homogeneous membrane environment. The initial conformation was a fully extended one. From the 200 different MD runs, we obtained a right-handed beta(4.4)-helix as the lowest-potential-energy structure, and left-handed beta(4.4)-helix, right-handed and left-handed beta(6.3)-helix as local-minimum energy states. These results are in accord with those of the experiments of gramicidin A in homogeneous organic solvent. Our simulations showed a slight right-hand sense in the lower-energy conformations and a quite beta-sheet-forming tendency throughout almost the entire sequence. In order to examine the stability of the obtained right-handed beta(6.3)-helix and beta(4.4)-helix structures in more realistic membrane environment, we have also performed all-atom MD simulations in explicit water, ion, and lipid molecules, starting from these beta-helix structures. The results suggested that beta(6.3)-helix is more stable than beta(4.4)-helix in the inhomogeneous, explicit membrane environment, where the pore water and the hydrogen bonds between Trp side-chains and lipid-head groups have a role to further stabilize the beta(6.3)-helix conformation. PMID:19894978
Machine Protection System algorithm compiler and simulator
White, G.R.; Sherwin, G.
1993-04-01
The Machine Protection System (MPS) component of the SLC`s beam selection system, in which integrated current is continuously monitored and limited to safe levels through careful selection and feedback of the beam repetition rate, is described elsewhere in these proceedings. The novel decision making mechanism by which that system can evaluate ``safe levels,`` and choose an appropriate repetition rate in real-time, is described here. The algorithm that this mechanism uses to make its decision is written in text files and expressed in states of the accelerator and its devices, one file per accelerator region. Before being used, a file is ``compiled`` to a binary format which can be easily processed as a forward-chaining decision tree. It is processed by distributed microcomputers local to the accelerator regions. A parent algorithm evaluates all results, and reports directly to the beam control microprocessor. Operators can test new algorithms, or changes they make to them, with an online graphical NPS simulator.
NASA Astrophysics Data System (ADS)
Louie, J. N.; Basler-Reeder, K.; Kent, G. M.; Pullammanappallil, S. K.
2015-12-01
Simultaneous joint seismic-gravity optimization improves P-wave velocity models in areas with sharp lateral velocity contrasts. Optimization is achieved using simulated annealing, a metaheuristic global optimization algorithm that does not require an accurate initial model. Balancing the seismic-gravity objective function is accomplished by a novel approach based on analysis of Pareto charts. Gravity modeling uses a newly developed convolution algorithm, while seismic modeling utilizes the highly efficient Vidale eikonal equation traveltime generation technique. Synthetic tests show that joint optimization improves velocity model accuracy and provides velocity control below the deepest headwave raypath. Detailed first arrival picking followed by trial velocity modeling remediates inconsistent data. We use a set of highly refined first arrival picks to compare results of a convergent joint seismic-gravity optimization to the Plotrefa™ and SeisOpt® Pro™ velocity modeling packages. Plotrefa™ uses a nonlinear least squares approach that is initial model dependent and produces shallow velocity artifacts. SeisOpt® Pro™ utilizes the simulated annealing algorithm and is limited to depths above the deepest raypath. Joint optimization increases the depth of constrained velocities, improving reflector coherency at depth. Kirchoff prestack depth migrations reveal that joint optimization ameliorates shallow velocity artifacts caused by limitations in refraction ray coverage. Seismic and gravity data from the San Emidio Geothermal field of the northwest Basin and Range province demonstrate that joint optimization changes interpretation outcomes. The prior shallow-valley interpretation gives way to a deep valley model, while shallow antiformal reflectors that could have been interpreted as antiformal folds are flattened. Furthermore, joint optimization provides a clearer image of the rangefront fault. This technique can readily be applied to existing datasets and could
Genetic Algorithms for Digital Quantum Simulations.
Las Heras, U; Alvarez-Rodriguez, U; Solano, E; Sanz, M
2016-06-10
We propose genetic algorithms, which are robust optimization techniques inspired by natural selection, to enhance the versatility of digital quantum simulations. In this sense, we show that genetic algorithms can be employed to increase the fidelity and optimize the resource requirements of digital quantum simulation protocols while adapting naturally to the experimental constraints. Furthermore, this method allows us to reduce not only digital errors but also experimental errors in quantum gates. Indeed, by adding ancillary qubits, we design a modular gate made out of imperfect gates, whose fidelity is larger than the fidelity of any of the constituent gates. Finally, we prove that the proposed modular gates are resilient against different gate errors. PMID:27341220
Computational algorithms for simulations in atmospheric optics.
Konyaev, P A; Lukin, V P
2016-04-20
A computer simulation technique for atmospheric and adaptive optics based on parallel programing is discussed. A parallel propagation algorithm is designed and a modified spectral-phase method for computer generation of 2D time-variant random fields is developed. Temporal power spectra of Laguerre-Gaussian beam fluctuations are considered as an example to illustrate the applications discussed. Implementation of the proposed algorithms using Intel MKL and IPP libraries and NVIDIA CUDA technology is shown to be very fast and accurate. The hardware system for the computer simulation is an off-the-shelf desktop with an Intel Core i7-4790K CPU operating at a turbo-speed frequency up to 5 GHz and an NVIDIA GeForce GTX-960 graphics accelerator with 1024 1.5 GHz processors. PMID:27140113
Hybrid General Pattern Search and Simulated Annealing for Industrail Production Planning Problems
NASA Astrophysics Data System (ADS)
Vasant, P.; Barsoum, N.
2010-06-01
In this paper, the hybridization of GPS (General Pattern Search) method and SA (Simulated Annealing) incorporated in the optimization process in order to look for the global optimal solution for the fitness function and decision variables as well as minimum computational CPU time. The real strength of SA approach been tested in this case study problem of industrial production planning. This is due to the great advantage of SA for being easily escaping from trapped in local minima by accepting up-hill move through a probabilistic procedure in the final stages of optimization process. Vasant [1] in his Ph. D thesis has provided 16 different techniques of heuristic and meta-heuristic in solving industrial production problems with non-linear cubic objective functions, eight decision variables and 29 constraints. In this paper, fuzzy technological problems have been solved using hybrid techniques of general pattern search and simulated annealing. The simulated and computational results are compared to other various evolutionary techniques.
Delay Times From Clustered Multi-Channel Cross Correlation and Simulated Annealing
NASA Astrophysics Data System (ADS)
Creager, K. C.; Sambridge, M. S.
2004-12-01
Several techniques exist to estimate relative delay times of seismic phases based on the assumption that the waveforms observed at several stations can be expressed as a common waveform that has been time shifted and distorted by random uncorrelated noise. We explore the more general problem of estimating the relative delay times for regional or even global distributions of seismometers in cases where waveforms vary systematically across the array. The estimation of relative delay times is formulated as a global optimization of the weighted sum of squares of cross correlations of each seismogram pair evaluated at the corresponding difference in their relative delay times. As there are many local minima in this penalty function, a simulated annealing algorithm is used to obtain a solution. The weights depend strongly on the separation distance among seismogram pairs as well as a measure of the similarity of waveforms. Thus, seismograph pairs that are physically close to each other and have similar waveforms are expected to be well aligned while those with dissimilar waveforms or large separation distances are severely down-weighted and thus need not be well aligned. As a result noisy seismograms, which are not similar to other seismograms, are down-weighted so they do not adversely effect the relative delay times of other seismograms. Finally, natural clusters of seismograms are determined from the weight matrix. Examples of aligning a few hundred P and PKP waveforms from a broadband global array and from a mixed broadband and short-period continental-scale array will be shown. While this method has applications in many situations, it may be especially useful for arrays such as the EarthScope Bigfoot Array.
NASA Astrophysics Data System (ADS)
Wrożyna, Andrzej; Pernach, Monika; Kuziak, Roman; Pietrzyk, Maciej
2016-04-01
Due to their exceptional strength properties combined with good workability the Advanced High-Strength Steels (AHSS) are commonly used in automotive industry. Manufacturing of these steels is a complex process which requires precise control of technological parameters during thermo-mechanical treatment. Design of these processes can be significantly improved by the numerical models of phase transformations. Evaluation of predictive capabilities of models, as far as their applicability in simulation of thermal cycles thermal cycles for AHSS is considered, was the objective of the paper. Two models were considered. The former was upgrade of the JMAK equation while the latter was an upgrade of the Leblond model. The models can be applied to any AHSS though the examples quoted in the paper refer to the Dual Phase (DP) steel. Three series of experimental simulations were performed. The first included various thermal cycles going beyond limitations of the continuous annealing lines. The objective was to validate models behavior in more complex cooling conditions. The second set of tests included experimental simulations of the thermal cycle characteristic for the continuous annealing lines. Capability of the models to describe properly phase transformations in this process was evaluated. The third set included data from the industrial continuous annealing line. Validation and verification of models confirmed their good predictive capabilities. Since it does not require application of the additivity rule, the upgrade of the Leblond model was selected as the better one for simulation of industrial processes in AHSS production.
NASA Astrophysics Data System (ADS)
Afanasiev, M.; Pratt, R. G.; Kamei, R.; McDowell, G.
2012-12-01
Crosshole seismic tomography has been used by Vale to provide geophysical images of mineralized massive sulfides in the Eastern Deeps deposit at Voisey's Bay, Labrador, Canada. To date, these data have been processed using traveltime tomography, and we seek to improve the resolution of these images by applying acoustic Waveform Tomography. Due to the computational cost of acoustic waveform modelling, local descent algorithms are employed in Waveform Tomography; due to non-linearity an initial model is required which predicts first-arrival traveltimes to within a half-cycle of the lowest frequency used. Because seismic velocity anisotropy can be significant in hardrock settings, the initial model must quantify the anisotropy in order to meet the half-cycle criterion. In our case study, significant velocity contrasts between the target massive sulfides and the surrounding country rock led to difficulties in generating an accurate anisotropy model through traveltime tomography, and our starting model for Waveform Tomography failed the half-cycle criterion at large offsets. We formulate a new, semi-global approach for finding the best-fit 1-D elliptical anisotropy model using simulated annealing. Through random perturbations to Thompson's ɛ parameter, we explore the L2 norm of the frequency-domain phase residuals in the space of potential anisotropy models: If a perturbation decreases the residuals, it is always accepted, but if a perturbation increases the residuals, it is accepted with the probability P = exp(-(Ei-E)/T). This is the Metropolis criterion, where Ei is the value of the residuals at the current iteration, E is the value of the residuals for the previously accepted model, and T is a probability control parameter, which is decreased over the course of the simulation via a preselected cooling schedule. Convergence to the global minimum of the residuals is guaranteed only for infinitely slow cooling, but in practice good results are obtained from a variety
Fast computation algorithms for speckle pattern simulation
Nascov, Victor; Samoilă, Cornel; Ursuţiu, Doru
2013-11-13
We present our development of a series of efficient computation algorithms, generally usable to calculate light diffraction and particularly for speckle pattern simulation. We use mainly the scalar diffraction theory in the form of Rayleigh-Sommerfeld diffraction formula and its Fresnel approximation. Our algorithms are based on a special form of the convolution theorem and the Fast Fourier Transform. They are able to evaluate the diffraction formula much faster than by direct computation and we have circumvented the restrictions regarding the relative sizes of the input and output domains, met on commonly used procedures. Moreover, the input and output planes can be tilted each to other and the output domain can be off-axis shifted.
Optimizing the natural connectivity of scale-free networks using simulated annealing
NASA Astrophysics Data System (ADS)
Duan, Boping; Liu, Jing; Tang, Xianglong
2016-09-01
In real-world networks, the path between two nodes always plays a significant role in the fields of communication or transportation. In some cases, when one path fails, the two nodes cannot communicate any more. Thus, it is necessary to increase alternative paths between nodes. In the recent work (Wu et al., 2011), Wu et al. proposed the natural connectivity as a novel robustness measure of complex networks. The natural connectivity considers the redundancy of alternative paths in a network by computing the number of closed paths of all lengths. To enhance the robustness of networks in terms of the natural connectivity, in this paper, we propose a simulated annealing method to optimize the natural connectivity of scale-free networks without changing the degree distribution. The experimental results show that the simulated annealing method clearly outperforms other local search methods.
Proposal of a checking parameter in the simulated annealing method applied to the spin glass model
NASA Astrophysics Data System (ADS)
Yamaguchi, Chiaki
2016-02-01
We propose a checking parameter utilizing the breaking of the Jarzynski equality in the simulated annealing method using the Monte Carlo method. This parameter is based on the Jarzynski equality. By using this parameter, to detect that the system is in global minima of the free energy under gradual temperature reduction is possible. Thus, by using this parameter, one is able to investigate the efficiency of annealing schedules. We apply this parameter to the ± J Ising spin glass model. The application to the Gaussian Ising spin glass model is also mentioned. We discuss that the breaking of the Jarzynski equality is induced by the system being trapped in local minima of the free energy. By performing Monte Carlo simulations of the ± J Ising spin glass model and a glassy spin model proposed by Newman and Moore, we show the efficiency of the use of this parameter.
Multiperiod cellular network design via price-influenced simulated annealing (PISA).
Menon, Syam; Amiri, Ali
2006-06-01
Cellular telecommunications systems tend to be more flexible than traditional ones. As a result, traditional approaches to telecommunications network design are often inappropriate for the design of cellular networks, and approaches that explicitly incorporate the increased flexibility into the design process need to be developed. This paper presents one such multiperiod cellular network design problem and solves it via a hybrid heuristic that incorporates ideas from linear programming (LP) and simulated annealing (SA). Extensive computational results comparing the performance of the heuristic with the lower bound obtained from the LP relaxation are presented. These results indicate that this price-influenced simulated annealing (PISA) procedure is extremely efficient, consistently providing solutions with average gaps of 0.30% or less in fewer than 30 s. PMID:16761813
Minimizing distortion and internal forces in truss structures by simulated annealing
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.; Padula, Sharon L.
1990-01-01
Inaccuracies in the length of members and the diameters of joints of large space structures may produce unacceptable levels of surface distortion and internal forces. Here, two discrete optimization problems are formulated, one to minimize surface distortion (DSQRMS) and the other to minimize internal forces (FSQRMS). Both of these problems are based on the influence matrices generated by a small-deformation linear analysis. Good solutions are obtained for DSQRMS and FSQRMS through the use of a simulated annealing heuristic.
Application of fast simulated annealing to optimization of conformal radiation treatments.
Mageras, G S; Mohan, R
1993-01-01
Applications of simulated annealing to the optimization of radiation treatment plans, in which a set of beam weights are iteratively adjusted so as to minimize a cost function, have been motivated by its potential for finding the global or near-global minimum among multiple minima. However, the method has been found to be slow, requiring several tens of thousands of iterations to optimize 50 to 100 variables. A technique to improve the efficiency for finding a solution is reported, which is generally applicable to the optimization of continuous variables. In previous applications of simulated annealing to treatment planning optimization, only one or two weights are varied each iteration. This approach is to change all weights simultaneously, using random changes that are initially large to coarsely sample the cost function, then are reduced with iteration to probe finer structure. The performance of different methods are compared in optimizing a plan for treatment of the prostate, in which the search space consists of 54 noncoplanar beams and the cost function is based on tumor control and normal tissue complication probabilities. The proposed method yields solutions with similar values of the cost function in only a fraction of the iterations compared either to a fixed single weight adjustment technique, or to a method which combines the Nelder and Mead downhill simplex simulated annealing. PMID:8350815
NASA Astrophysics Data System (ADS)
Ry, Rexha Verdhora; Nugraha, Andri Dian
2015-04-01
Observation of earthquakes is routinely used widely in tectonic activity observation, and also in local scale such as volcano tectonic and geothermal activity observation. It is necessary for determining the location of precise hypocenter which the process involves finding a hypocenter location that has minimum error between the observed and the calculated travel times. When solving this nonlinear inverse problem, simulated annealing inversion method can be applied to such global optimization problems, which the convergence of its solution is independent of the initial model. In this study, we developed own program codeby applying adaptive simulated annealing inversion in Matlab environment. We applied this method to determine earthquake hypocenter using several data cases which are regional tectonic, volcano tectonic, and geothermal field. The travel times were calculated using ray tracing shooting method. We then compared its results with the results using Geiger's method to analyze its reliability. Our results show hypocenter location has smaller RMS error compared to the Geiger's result that can be statistically associated with better solution. The hypocenter of earthquakes also well correlated with geological structure in the study area. Werecommend using adaptive simulated annealing inversion to relocate hypocenter location in purpose to get precise and accurate earthquake location.
Validation of Sensor-Directed Spatial Simulated Annealing Soil Sampling Strategy.
Scudiero, Elia; Lesch, Scott M; Corwin, Dennis L
2016-07-01
Soil spatial variability has a profound influence on most agronomic and environmental processes at field and landscape scales, including site-specific management, vadose zone hydrology and transport, and soil quality. Mobile sensors are a practical means of mapping spatial variability because their measurements serve as a proxy for many soil properties, provided a sensor-soil calibration is conducted. A viable means of calibrating sensor measurements over soil properties is through linear regression modeling of sensor and target property data. In the present study, two sensor-directed, model-based, sampling scheme delineation methods were compared to validate recent applications of soil apparent electrical conductivity (EC)-directed spatial simulated annealing against the more established EC-directed response surface sampling design (RSSD) approach. A 6.8-ha study area near San Jacinto, CA, was surveyed for EC, and 30 soil sampling locations per sampling strategy were selected. Spatial simulated annealing and RSSD were compared for sensor calibration to a target soil property (i.e., salinity) and for evenness of spatial coverage of the study area, which is beneficial for mapping nontarget soil properties (i.e., those not correlated with EC). The results indicate that the linear modeling EC-salinity calibrations obtained from the two sampling schemes provided salinity maps characterized by similar errors. The maps of nontarget soil properties show similar errors across sampling strategies. The Spatial Simulated Annealing methodology is, therefore, validated, and its use in agronomic and environmental soil science applications is justified. PMID:27380070
Ry, Rexha Verdhora; Nugraha, Andri Dian
2015-04-24
Observation of earthquakes is routinely used widely in tectonic activity observation, and also in local scale such as volcano tectonic and geothermal activity observation. It is necessary for determining the location of precise hypocenter which the process involves finding a hypocenter location that has minimum error between the observed and the calculated travel times. When solving this nonlinear inverse problem, simulated annealing inversion method can be applied to such global optimization problems, which the convergence of its solution is independent of the initial model. In this study, we developed own program codeby applying adaptive simulated annealing inversion in Matlab environment. We applied this method to determine earthquake hypocenter using several data cases which are regional tectonic, volcano tectonic, and geothermal field. The travel times were calculated using ray tracing shooting method. We then compared its results with the results using Geiger’s method to analyze its reliability. Our results show hypocenter location has smaller RMS error compared to the Geiger’s result that can be statistically associated with better solution. The hypocenter of earthquakes also well correlated with geological structure in the study area. Werecommend using adaptive simulated annealing inversion to relocate hypocenter location in purpose to get precise and accurate earthquake location.
Parallel algorithm strategies for circuit simulation.
Thornquist, Heidi K.; Schiek, Richard Louis; Keiter, Eric Richard
2010-01-01
Circuit simulation tools (e.g., SPICE) have become invaluable in the development and design of electronic circuits. However, they have been pushed to their performance limits in addressing circuit design challenges that come from the technology drivers of smaller feature scales and higher integration. Improving the performance of circuit simulation tools through exploiting new opportunities in widely-available multi-processor architectures is a logical next step. Unfortunately, not all traditional simulation applications are inherently parallel, and quickly adapting mature application codes (even codes designed to parallel applications) to new parallel paradigms can be prohibitively difficult. In general, performance is influenced by many choices: hardware platform, runtime environment, languages and compilers used, algorithm choice and implementation, and more. In this complicated environment, the use of mini-applications small self-contained proxies for real applications is an excellent approach for rapidly exploring the parameter space of all these choices. In this report we present a multi-core performance study of Xyce, a transistor-level circuit simulation tool, and describe the future development of a mini-application for circuit simulation.
Assessment of a fuzzy based flood forecasting system optimized by simulated annealing
NASA Astrophysics Data System (ADS)
Reyhani Masouleh, Aida; Pakosch, Sabine; Disse, Markus
2010-05-01
Flood forecasting is an important tool to mitigate harmful effects of floods. Among the many different approaches for forecasting, Fuzzy Logic (FL) is one that has been increasingly applied over the last decade. This method is principally based on the linguistic description of Rule Systems (RS). A RS is a specific combination of membership functions of input and output variables. Setting up the RS can be implemented either automatically or manually, the choice of which can strongly influence the resulting rule systems. It is therefore the objective of this study to assess the influence that the parameters of an automated rule generation based on Simulated Annealing (SA) have on the resulting RS. The study area is the upper Main River area, located in the northern part of Bavaria, Germany. The data of Mainleus gauge with area of 1165 km2 was investigated in the whole period of 1984 and 2004. The highest observed discharge of 357 m3/s was recorded in 1995. The input arguments of the FL model were daily precipitation, forecasted precipitation, antecedent precipitation index, temperature and melting rate. The FL model of this study has one output variable, daily discharge and was independently set up for three different forecast lead times, namely one-, two- and three-days ahead. In total, each RS comprised 55 rules and all input and output variables were represented by five sets of trapezoidal and triangular fuzzy numbers. Simulated Annealing, which is a converging optimum solution algorithm, was applied for optimizing the RSs in this study. In order to assess the influence of its parameters (number of iterations, temperature decrease rate, initial value for generating random numbers, initial temperature and two other parameters), they were individually varied while keeping the others fixed. With each of the resulting parameter sets, a full-automatic SA was applied to gain optimized fuzzy rule systems for flood forecasting. Evaluation of the performance of the
Efficient algorithms for wildland fire simulation
NASA Astrophysics Data System (ADS)
Kondratenko, Volodymyr Y.
In this dissertation, we develop the multiple-source shortest path algorithms and examine their application importance in real world problems, such as wildfire modeling. The theoretical basis and its implementation in the Weather Research Forecasting (WRF) model coupled with the fire spread code SFIRE (WRF-SFIRE model) are described. We present a data assimilation method that gives the fire spread model the ability to start the fire simulation from an observed fire perimeter instead of an ignition point. While the model is running, the fire state in the model changes in accordance with the new arriving data by data assimilation. As the fire state changes, the atmospheric state (which is strongly effected by heat flux) does not stay consistent with the fire state. The main difficulty of this methodology occurs in coupled fire-atmosphere models, because once the fire state is modified to match a given starting perimeter, the atmospheric circulation is no longer in sync with it. One of the possible solutions to this problem is a formation of the artificial time of ignition history from an earlier fire state, which is later used to replay the fire progression to the new perimeter with the proper heat fluxes fed into the atmosphere, so that the fire induced circulation is established. In this work, we develop efficient algorithms that start from the fire arrival times given at the set of points (called a perimeter) and create the artificial fire time of ignition and fire spread rate history. Different algorithms were developed in order to suit possible demands of the user, such as implementation in parallel programming, minimization of the required amount of iterations and memory use, and use of the rate of spread as a time dependent variable. For the algorithms that deal with the homogeneous rate of spread, it was proven that the values of fire arrival times they produce are optimal. It was also shown that starting from arbitrary initial state the algorithms have
Guijarro, María; Pajares, Gonzalo; Herrera, P. Javier
2009-01-01
The increasing technology of high-resolution image airborne sensors, including those on board Unmanned Aerial Vehicles, demands automatic solutions for processing, either on-line or off-line, the huge amountds of image data sensed during the flights. The classification of natural spectral signatures in images is one potential application. The actual tendency in classification is oriented towards the combination of simple classifiers. In this paper we propose a combined strategy based on the Deterministic Simulated Annealing (DSA) framework. The simple classifiers used are the well tested supervised parametric Bayesian estimator and the Fuzzy Clustering. The DSA is an optimization approach, which minimizes an energy function. The main contribution of DSA is its ability to avoid local minima during the optimization process thanks to the annealing scheme. It outperforms simple classifiers used for the combination and some combined strategies, including a scheme based on the fuzzy cognitive maps and an optimization approach based on the Hopfield neural network paradigm. PMID:22399989
Computer simulations of randomly branching polymers: annealed versus quenched branching structures
NASA Astrophysics Data System (ADS)
Rosa, Angelo; Everaers, Ralf
2016-08-01
We present computer simulations of three systems of randomly branching polymers in d = 3 dimensions: ideal trees and self-avoiding trees with annealed and quenched connectivities. In all cases, we performed a detailed analysis of trees connectivities, spatial conformations and statistical properties of linear paths on trees, and compare the results to the corresponding predictions of Flory theory. We confirm that, overall, the theory predicts correctly that trees with quenched ideal connectivity exhibit less overall swelling in good solvent than corresponding trees with annealed connectivity even though they are more strongly stretched on the path level. At the same time, we emphasize the inadequacy of the Flory theory in predicting the behaviour of other, and equally relevant, observables like contact probabilities between tree nodes. We show, then, that contact probabilities can be aptly characterized by introducing a novel critical exponent, {θ }{path}, which accounts for how they decay as a function of the node-to-node path distance on the tree.
Clutter discrimination algorithm simulation in pulse laser radar imaging
NASA Astrophysics Data System (ADS)
Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Su, Xuan; Zhu, Fule
2015-10-01
Pulse laser radar imaging performance is greatly influenced by different kinds of clutter. Various algorithms are developed to mitigate clutter. However, estimating performance of a new algorithm is difficult. Here, a simulation model for estimating clutter discrimination algorithms is presented. This model consists of laser pulse emission, clutter jamming, laser pulse reception and target image producing. Additionally, a hardware platform is set up gathering clutter data reflected by ground and trees. The data logging is as clutter jamming input in the simulation model. The hardware platform includes a laser diode, a laser detector and a high sample rate data logging circuit. The laser diode transmits short laser pulses (40ns FWHM) at 12.5 kilohertz pulse rate and at 905nm wavelength. An analog-to-digital converter chip integrated in the sample circuit works at 250 mega samples per second. The simulation model and the hardware platform contribute to a clutter discrimination algorithm simulation system. Using this system, after analyzing clutter data logging, a new compound pulse detection algorithm is developed. This new algorithm combines matched filter algorithm and constant fraction discrimination (CFD) algorithm. Firstly, laser echo pulse signal is processed by matched filter algorithm. After the first step, CFD algorithm comes next. Finally, clutter jamming from ground and trees is discriminated and target image is produced. Laser radar images are simulated using CFD algorithm, matched filter algorithm and the new algorithm respectively. Simulation result demonstrates that the new algorithm achieves the best target imaging effect of mitigating clutter reflected by ground and trees.
An advanced dispatch simulator with advanced dispatch algorithm
Kafka, R.J. ); Fink, L.H. ); Balu, N.J. ); Crim, H.G. )
1989-01-01
This paper reports on an interactive automatic generation control (AGC) simulator. Improved and timely information regarding fossil fired plant performance is potentially useful in the economic dispatch of system generating units. Commonly used economic dispatch algorithms are not able to take full advantage of this information. The dispatch simulator was developed to test and compare economic dispatch algorithms which might be able to show improvement over standard economic dispatch algorithms if accurate unit information were available. This dispatch simulator offers substantial improvements over previously available simulators. In addition, it contains an advanced dispatch algorithm which shows control and performance advantages over traditional dispatch algorithms for both plants and electric systems.
Feedback algorithm for simulation of multi-segmented cracks
Chady, T.; Napierala, L.
2011-06-23
In this paper, a method for obtaining a three dimensional crack model from a radiographic image is discussed. A genetic algorithm aiming at close simulation of crack's shape is presented. Results obtained with genetic algorithm are compared to those achieved in authors' previous work. The described algorithm has been tested on both simulated and real-life cracks.
Efficient algorithms for distributed simulation and related problems
Kumar, D.
1987-01-01
This thesis presents efficient algorithms for distributed simulation, and for the related problems of termination detection and sequential simulation. Distributed simulation algorithms applicable to the simulation of special classes of systems, such that almost no overhead messages are required are presented. By contrast, previous distributed simulation algorithms, although applicable to the general class of any discrete-event system, usually require too many overhead messages. First, a simple distributed simulation algorithm is defined with nearly zero overhead messages for simulating feedforward systems. An approximate method is developed to predict its performance in simulating a class of feedforward-queuing networks. Performance of the scheme is evaluated in simulating specific subclasses of these queuing networks. It is shown that the scheme offers a high performance for serial-parallel networks. Next, another distributed simulation scheme is defined for a class of distributed systems whose topologies may have cycles. One important problem in devising distributed simulation algorithms is that of efficient detection of termination. With this in mind, a class of termination-detection algorithms using markers is devised. Finally, a new sequential simulation algorithm is developed, based on a distributed one. This algorithm often reduces the event-list manipulations of traditional-event list-driven simulation.
Simulation results for the Viterbi decoding algorithm
NASA Technical Reports Server (NTRS)
Batson, B. H.; Moorehead, R. W.; Taqvi, S. Z. H.
1972-01-01
Concepts involved in determining the performance of coded digital communications systems are introduced. The basic concepts of convolutional encoding and decoding are summarized, and hardware implementations of sequential and maximum likelihood decoders are described briefly. Results of parametric studies of the Viterbi decoding algorithm are summarized. Bit error probability is chosen as the measure of performance and is calculated, by using digital computer simulations, for various encoder and decoder parameters. Results are presented for code rates of one-half and one-third, for constraint lengths of 4 to 8, for both hard-decision and soft-decision bit detectors, and for several important systematic and nonsystematic codes. The effect of decoder block length on bit error rate also is considered, so that a more complete estimate of the relationship between performance and decoder complexity can be made.
NASA Astrophysics Data System (ADS)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.
2015-07-01
The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibits an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described.
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.
2015-07-01
The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibits an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described.
NASA Astrophysics Data System (ADS)
Kumar, Pushpendra; Huber, Patrick
2016-04-01
Discovery of porous silicon formation in silicon substrate in 1956 while electro-polishing crystalline Si in hydrofluoric acid (HF), has triggered large scale investigations of porous silicon formation and their changes in physical and chemical properties with thermal and chemical treatment. A nitrogen sorption study is used to investigate the effect of thermal annealing on electrochemically etched mesoporous silicon (PS). The PS was thermally annealed from 200˚C to 800˚C for 1 hr in the presence of air. It was shown that the pore diameter and porosity of PS vary with annealing temperature. The experimentally obtained adsorption / desorption isotherms show hysteresis typical for capillary condensation in porous materials. A simulation study based on Saam and Cole model was performed and compared with experimentally observed sorption isotherms to study the physics behind of hysteresis formation. We discuss the shape of the hysteresis loops in the framework of the morphology of the layers. The different behavior of adsorption and desorption of nitrogen in PS with pore diameter was discussed in terms of concave menisci formation inside the pore space, which was shown to related with the induced pressure in varying the pore diameter from 7.2 nm to 3.4 nm.
Application of genetic algorithms to autopiloting in aerial combat simulation
NASA Astrophysics Data System (ADS)
Kim, Dai Hyun; Erwin, Daniel A.; Kostrzewski, Andrew A.; Kim, Jeongdal; Savant, Gajendra D.
1998-10-01
An autopilot algorithm that controls a fighter aircraft in simulated aerial combat is presented. A fitness function, whose arguments are the control settings of the simulated fighter, is continuously maximized by a fuzzied genetic algorithm. Results are presented for one-to-one combat simulated on a personal computer. Generalization to many-to-many combat is discussed.
A parallel algorithm for implicit depletant simulations
NASA Astrophysics Data System (ADS)
Glaser, Jens; Karas, Andrew S.; Glotzer, Sharon C.
2015-11-01
We present an algorithm to simulate the many-body depletion interaction between anisotropic colloids in an implicit way, integrating out the degrees of freedom of the depletants, which we treat as an ideal gas. Because the depletant particles are statistically independent and the depletion interaction is short-ranged, depletants are randomly inserted in parallel into the excluded volume surrounding a single translated and/or rotated colloid. A configurational bias scheme is used to enhance the acceptance rate. The method is validated and benchmarked both on multi-core processors and graphics processing units for the case of hard spheres, hemispheres, and discoids. With depletants, we report novel cluster phases in which hemispheres first assemble into spheres, which then form ordered hcp/fcc lattices. The method is significantly faster than any method without cluster moves and that tracks depletants explicitly, for systems of colloid packing fraction ϕc < 0.50, and additionally enables simulation of the fluid-solid transition.
Barakat, M T; Dean, P M
1990-09-01
This paper considers some of the landscape problems encountered in matching molecules by simulated annealing. Although the method is in theory ergodic, the global minimum in the objective function is not always encountered. Factors inherent in the molecular data that lead the trajectory of the minimization away from its optimal route are analysed. Segments comprised of the C alpha atoms of dihydrofolate reductase are used as test data. The evolution of a reverse ordering landscape problem is examined in detail. Where such patterns in the data could lead to incorrect matches, the problem can in part be circumvented by assigning an initial random ordering to the molecules. PMID:2280267
Neighbourhood generation mechanism applied in simulated annealing to job shop scheduling problems
NASA Astrophysics Data System (ADS)
Cruz-Chávez, Marco Antonio
2015-11-01
This paper presents a neighbourhood generation mechanism for the job shop scheduling problems (JSSPs). In order to obtain a feasible neighbour with the generation mechanism, it is only necessary to generate a permutation of an adjacent pair of operations in a scheduling of the JSSP. If there is no slack time between the adjacent pair of operations that is permuted, then it is proven, through theory and experimentation, that the new neighbour (schedule) generated is feasible. It is demonstrated that the neighbourhood generation mechanism is very efficient and effective in a simulated annealing.
NASA Astrophysics Data System (ADS)
Piazolo, Sandra; Montagnat, Maurine; Prakash, Abhishek; Borthwick, Verity; Evans, Lynn; Griera, Albert; Bons, Paul D.; Svahnberg, Henrik; Prior, David J.
2015-04-01
Understanding the influence of the pre-existing microstructure on subsequent microstructural development is pivotal for the correct interpretation of rocks and ice that stayed at high homologous temperatures over a significant period of time. The microstructural behaviour of these materials through time has an important bearing on the interpretation of characteristics such as grain size, for example, using grain size statistics to detect former high strain zones that remain at high temperatures but low stress. We present a coupled experimental and modelling approach to better understand the evolution of recrystallization characteristics as a function of deformation-annealing time paths in a material with a high viscoplastic anisotropy e.g. polycrystalline ice and magnesium alloys. Deformation microstructures such as crystal bending, subgrain boundaries, grain size variation significantly influence the deformation and annealing behaviour of crystalline material. For numerical simulations we utilize the microdynamic modelling platform, Elle (www.elle.ws), taking local microstructural evolution into account to simulate the following processes: recovery within grains, rotational recrystallization, grain boundary migration and nucleation. We first test the validity of the numerical simulations against experiments, and then use the model to interpret microstructural features in natural examples. In-situ experiments are performed on laboratory grown and deformed ice and magnesium alloy. Our natural example is a deformed then recrystallized anorthosite from SW Greenland. The presented approach can be applied to many other minerals and crystalline materials.
NASA Astrophysics Data System (ADS)
Mori, Takaharu; Okamoto, Yuko
2008-03-01
Gramicidin A is a hydrophobic 15-residue peptide with alternating D- and L-amino acids, and it forms various conformations depending on its environment. For example, gramicidin A adopts a random coil or helical conformations, such as &4.4circ;-helix, &6.3circ;-helix, and double-stranded helix in organic solvents. To investigate the structural and dynamical properties of gramicidin A in water and the hydrophobic environment, we performed molecular dynamics simulated annealing simulations with implicit solvent based on a generalized Born model. From the simulations, it was found that gramicidin A has a strong tendency to form a random-coil structure in water, while in the hydrophobic environment it becomes compact and can fold into right- and left-handed conformations of β-helix structures. We discuss the folding mechanism of the β-helix conformation of gramicidin A.
NASA Astrophysics Data System (ADS)
Afanasiev, Michael V.; Pratt, R. Gerhard; Kamei, Rie; McDowell, Glenn
2014-12-01
We successfully apply the semi-global inverse method of simulated annealing to determine the best-fitting 1-D anisotropy model for use in acoustic frequency domain waveform tomography. Our forward problem is based on a numerical solution of the frequency domain acoustic wave equation, and we minimize wavefield phase residuals through random perturbations to a 1-D vertically varying anisotropy profile. Both real and synthetic examples are presented in order to demonstrate and validate the approach. For the real data example, we processed and inverted a cross-borehole data set acquired by Vale Technology Development (Canada) Ltd. in the Eastern Deeps deposit, located in Voisey's Bay, Labrador, Canada. The inversion workflow comprises the full suite of acquisition, data processing, starting model building through traveltime tomography, simulated annealing and finally waveform tomography. Waveform tomography is a high resolution method that requires an accurate starting model. A cycle-skipping issue observed in our initial starting model was hypothesized to be due to an erroneous anisotropy model from traveltime tomography. This motivated the use of simulated annealing as a semi-global method for anisotropy estimation. We initially tested the simulated annealing approach on a synthetic data set based on the Voisey's Bay environment; these tests were successful and led to the application of the simulated annealing approach to the real data set. Similar behaviour was observed in the anisotropy models obtained through traveltime tomography in both the real and synthetic data sets, where simulated annealing produced an anisotropy model which solved the cycle-skipping issue. In the real data example, simulated annealing led to a final model that compares well with the velocities independently estimated from borehole logs. By comparing the calculated ray paths and wave paths, we attributed the failure of anisotropic traveltime tomography to the breakdown of the ray
NASA Astrophysics Data System (ADS)
Florakis, A.; Vandervorst, W.; Janssens, T.; Rosseel, E.; Douhard, B.; Delmotte, J.; Cornagliotti, E.; Baert, K.; Posthuma, N.; Poortmans, J.
2012-11-01
The use of ion implantation to form local doping profiles in solar cells has regained interest, as it simplifies the manufacturing process, is litho-free, and high efficiency levels can be obtained [1]. However, residual damage after post annealing can lead to increased saturation current values (J0e), so optimization of the annealing process is required. A full simulation of the anneal treatment and its impact on profile and oxide formation was developed, based on the Synopsys Process TCAD software, for the boron doping case. The validity of the models and parameter set was experimentally verified through SIMS (Secondary Ion Mass Spectroscopy) profiles, sheet resistance and ellipsometry measurements.
The Use of Simulated Annealing in Chromosome Reconstruction Experiments Based on Binary Scoring
Cuticchia, A. J.; Arnold, J.; Timberlake, W. E.
1992-01-01
We present a method of combinatorial optimization, simulated annealing, to order clones in a library with respect to their position along a chromosome. This ordering method relies on scoring each clone for the presence or absence of specific target sequences, thereby assigning a digital signature to each clone. Specifically, we consider the hybridization of oligonucleotide probes to a clone to constitute the signature. In that the degree of clonal overlap is reflected in the similarity of their signatures, it is possible to construct maps based on the minimization of the differences in signatures across a reconstructed chromosome. Our simulations show that with as few as 30 probes and a clonal density of 4.5 genome equivalents, it is possible to assemble a small eukaryotic chromosome into 33 contiguous blocks of clones (contigs). With higher clonal densities and more probes, this number can be reduced to less than 5 contigs per chromosome. PMID:1427046
A simulation algorithm for ultrasound liver backscattered signals.
Zatari, D; Botros, N; Dunn, F
1995-11-01
In this study, we present a simulation algorithm for the backscattered ultrasound signal from liver tissue. The algorithm simulates backscattered signals from normal liver and three different liver abnormalities. The performance of the algorithm has been tested by statistically comparing the simulated signals with corresponding signals obtained from a previous in vivo study. To verify that the simulated signals can be classified correctly we have applied a classification technique based on an artificial neural network. The acoustic features extracted from the spectrum over a 2.5 MHz bandwidth are the attenuation coefficient and the change of speed of sound with frequency (dispersion). Our results show that the algorithm performs satisfactorily. Further testing of the algorithm is conducted by the use of a data acquisition and analysis system designed by the authors, where several simulated signals are stored in memory chips and classified according to their abnormalities. PMID:8560631
A simulated annealing approach to schedule optimization for the SES facility
NASA Technical Reports Server (NTRS)
Mcmahon, Mary Beth; Dean, Jack
1992-01-01
The Shuttle Engineering Simulator (SES) is a facility which houses the software and hardware for a variety of simulation systems. The simulators include the Autonomous Remote Manipulator, the Manned Maneuvering Unit, Orbiter/Space Station docking, and shuttle entry and landing. The SES simulators are used by various groups throughout NASA. For example, astronauts use the SES to practice maneuvers with the shuttle equipment; programmers use the SES to test flight software; and engineers use the SES for design and analysis studies. Due to its high demand, the SES is busy twenty-four hours a day and seven days a week. Scheduling the facility is a problem that is constantly growing and changing with the addition of new equipment. Currently a number of small independent programs have been developed to help solve the problem, but the long-term answer lies in finding a flexible, integrated system that provides the user with the ability to create, optimize, and edit the schedule. COMPASS is an interactive and highly flexible scheduling system. However, until recently COMPASS did not provide any optimization features. This paper describes the simulated annealing extension to COMPASS. It now allows the user to interweave schedule creation, revision, and optimization. This practical approach was necessary in order to satisfy the operational requirements of the SES.
Atmospheric channel for bistatic optical communication: simulation algorithms
NASA Astrophysics Data System (ADS)
Belov, V. V.; Tarasenkov, M. V.
2015-11-01
Three algorithms of statistical simulation of the impulse response (IR) for the atmospheric optical communication channel are considered, including algorithms of local estimate and double local estimate and the algorithm suggested by us. On the example of a homogeneous molecular atmosphere it is demonstrated that algorithms of double local estimate and the suggested algorithm are more efficient than the algorithm of local estimate. For small optical path length, the proposed algorithm is more efficient, and for large optical path length, the algorithm of double local estimate is more efficient. Using the proposed algorithm, the communication quality is estimated for a particular case of the atmospheric channel under conditions of intermediate turbidity. The communication quality is characterized by the maximum IR, time of maximum IR, integral IR, and bandwidth of the communication channel. Calculations of these criteria demonstrated that communication is most efficient when the point of intersection of the directions toward the source and the receiver is most close to the source point.
Pharmacokinetic modeling of dynamic MR images using a simulated annealing-based optimization
NASA Astrophysics Data System (ADS)
Sawant, Amit R.; Reece, John H.; Reddick, Wilburn E.
2000-04-01
The aim of this work was to use dynamic contrast enhanced MR image (DEMRI) data to generate 'parameter images' which provide functional information about contrast agent access, in bone sarcoma. A simulated annealing based technique was applied to optimize the parameters of a pharmacokinetic model used to describe the kinetics of the tissue response during and after intravenous infusion of a paramagnetic contrast medium, Gd-DTPA. Optimization was performed on a pixel by pixel basis so as to minimize the sum of square deviations of the calculated values from the values obtained experimentally during dynamic contrast enhanced MR imaging. A cost function based on a priori information was introduced during the annealing procedure to ensure that the values obtained were within the expected ranges. The optimized parameters were used in the model to generate parameter images, which reveal functional information that is normally not visible in conventional Gd-DTPA enhanced MR images. This functional information, during and upon completion of pre-operative chemotherapy, is useful in predicting the probability of disease free survival.
Simulated annealing in networks for computing possible arrangements for red and green cones
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.
1987-01-01
Attention is given to network models in which each of the cones of the retina is given a provisional color at random, and then the cones are allowed to determine the colors of their neighbors through an iterative process. A symmetric-structure spin-glass model has allowed arrays to be generated from completely random arrangements of red and green to arrays with approximately as much disorder as the parafoveal cones. Simulated annealing has also been added to the process in an attempt to generate color arrangements with greater regularity and hence more revealing moirepatterns than than the arrangements yielded by quenched spin-glass processes. Attention is given to the perceptual implications of these results.
Song, Jingwei; He, Jiaying; Zhu, Menghua; Tan, Debao; Zhang, Yu; Ye, Song; Shen, Dingtao; Zou, Pengfei
2014-01-01
A simulated annealing (SA) based variable weighted forecast model is proposed to combine and weigh local chaotic model, artificial neural network (ANN), and partial least square support vector machine (PLS-SVM) to build a more accurate forecast model. The hybrid model was built and multistep ahead prediction ability was tested based on daily MSW generation data from Seattle, Washington, the United States. The hybrid forecast model was proved to produce more accurate and reliable results and to degrade less in longer predictions than three individual models. The average one-week step ahead prediction has been raised from 11.21% (chaotic model), 12.93% (ANN), and 12.94% (PLS-SVM) to 9.38%. Five-week average has been raised from 13.02% (chaotic model), 15.69% (ANN), and 15.92% (PLS-SVM) to 11.27%. PMID:25301508
Prediction of cutting force in turning of UD-GFRP using mathematical model and simulated annealing
NASA Astrophysics Data System (ADS)
Gupta, Meenu; Gill, Surinder Kumar
2012-12-01
Glass fiber reinforced plastics (GFRPs) composite is considered to be an alternative to heavy exortic materials. According to the need for accurate machining of composites has increased enormously. During machining, the obtaining cutting force is an important aspect. The present investigation deals with the study and development of a cutting force prediction model for the machining of unidirectional glass fiber reinforced plastics (UD-GFRP) composite using regression modeling and optimization by simulated annealing. The process parameters considered include cutting speed, feed rate and depth of cut. The predicted values radial cutting force model is compared with the experimental values. The results of prediction are quite close with the experimental values. The influences of different parameters in machining of UD-GFRP composite have been analyzed.
On combining support vector machines and simulated annealing in stereovision matching.
Pajares, Gonzalo; de la Cruz, Jesús M
2004-08-01
This paper outlines a method for solving the stereovision matching problem using edge segments as the primitives. In stereovision matching, the following constraints are commonly used: epipolar, similarity, smoothness, ordering, and uniqueness. We propose a new strategy in which such constraints are sequentially combined. The goal is to achieve high performance in terms of correct matches by combining several strategies. The contributions of this paper are reflected in the development of a similarity measure through a support vector machines classification approach; the transformation of the smoothness, ordering and epipolar constraints into the form of an energy function, through an optimization simulated annealing approach, whose minimum value corresponds to a good matching solution and by introducing specific conditions to overcome the violation of the smoothness and ordering constraints. The performance of the proposed method is illustrated by comparative analysis against some recent global matching methods. PMID:15462432
Application of simulated annealing to solve multi-objectives for aggregate production planning
NASA Astrophysics Data System (ADS)
Atiya, Bayda; Bakheet, Abdul Jabbar Khudhur; Abbas, Iraq Tereq; Bakar, Mohd. Rizam Abu; Soon, Lee Lai; Monsi, Mansor Bin
2016-06-01
Aggregate production planning (APP) is one of the most significant and complicated problems in production planning and aim to set overall production levels for each product category to meet fluctuating or uncertain demand in future. and to set decision concerning hiring, firing, overtime, subcontract, carrying inventory level. In this paper, we present a simulated annealing (SA) for multi-objective linear programming to solve APP. SA is considered to be a good tool for imprecise optimization problems. The proposed model minimizes total production and workforce costs. In this study, the proposed SA is compared with particle swarm optimization (PSO). The results show that the proposed SA is effective in reducing total production costs and requires minimal time.
Song, Jingwei; He, Jiaying; Zhu, Menghua; Tan, Debao; Zhang, Yu; Ye, Song; Shen, Dingtao; Zou, Pengfei
2014-01-01
A simulated annealing (SA) based variable weighted forecast model is proposed to combine and weigh local chaotic model, artificial neural network (ANN), and partial least square support vector machine (PLS-SVM) to build a more accurate forecast model. The hybrid model was built and multistep ahead prediction ability was tested based on daily MSW generation data from Seattle, Washington, the United States. The hybrid forecast model was proved to produce more accurate and reliable results and to degrade less in longer predictions than three individual models. The average one-week step ahead prediction has been raised from 11.21% (chaotic model), 12.93% (ANN), and 12.94% (PLS-SVM) to 9.38%. Five-week average has been raised from 13.02% (chaotic model), 15.69% (ANN), and 15.92% (PLS-SVM) to 11.27%. PMID:25301508
Simulated annealing approach to vascular structure with application to the coronary arteries
Keelan, Jonathan; Chung, Emma M. L.; Hague, James P.
2016-01-01
Do the complex processes of angiogenesis during organism development ultimately lead to a near optimal coronary vasculature in the organs of adult mammals? We examine this hypothesis using a powerful and universal method, built on physical and physiological principles, for the determination of globally energetically optimal arterial trees. The method is based on simulated annealing, and can be used to examine arteries in hollow organs with arbitrary tissue geometries. We demonstrate that the approach can generate in silico vasculatures which closely match porcine anatomical data for the coronary arteries on all length scales, and that the optimized arterial trees improve systematically as computational time increases. The method presented here is general, and could in principle be used to examine the arteries of other organs. Potential applications include improvement of medical imaging analysis and the design of vascular trees for artificial organs. PMID:26998317
A splitting algorithm for Vlasov simulation with filamentation filtration
NASA Technical Reports Server (NTRS)
Klimas, A. J.; Farrell, W. M.
1994-01-01
A Fourier-Fourier transformed version of the splitting algorithm for simulating solutions of the Vlasov-Poisson system of equations is introduced. It is shown that with the inclusion of filamentation filtration in this transformed algorithm it is both faster and more stable than the standard splitting algorithm. It is further shown that in a scalar computer environment this new algorithm is approximately equal in speed and far less noisy than its particle-in-cell counterpart. It is conjectured that in a multiprocessor environment the filtered splitting algorithm would be faster while producing more precise results.
Heavy Tails in the Distribution of Time to Solution for Classical and Quantum Annealing.
Steiger, Damian S; Rønnow, Troels F; Troyer, Matthias
2015-12-01
For many optimization algorithms the time to solution depends not only on the problem size but also on the specific problem instance and may vary by many orders of magnitude. It is then necessary to investigate the full distribution and especially its tail. Here, we analyze the distributions of annealing times for simulated annealing and simulated quantum annealing (by path integral quantum Monte Carlo simulation) for random Ising spin glass instances. We find power-law distributions with very heavy tails, corresponding to extremely hard instances, but far broader distributions-and thus worse performance for hard instances-for simulated quantum annealing than for simulated annealing. Fast, nonadiabatic, annealing schedules can improve the performance of simulated quantum annealing for very hard instances by many orders of magnitude. PMID:26684103
Adaptive mesh and algorithm refinement using direct simulation Monte Carlo
Garcia, A.L.; Bell, J.B.; Crutchfield, W.Y.; Alder, B.J.
1999-09-01
Adaptive mesh and algorithm refinement (AMAR) embeds a particle method within a continuum method at the finest level of an adaptive mesh refinement (AMR) hierarchy. The coupling between the particle region and the overlaying continuum grid is algorithmically equivalent to that between the fine and coarse levels of AMR. Direct simulation Monte Carlo (DSMC) is used as the particle algorithm embedded within a Godunov-type compressible Navier-Stokes solver. Several examples are presented and compared with purely continuum calculations.
Duality quantum algorithm efficiently simulates open quantum systems
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855
Duality quantum algorithm efficiently simulates open quantum systems
NASA Astrophysics Data System (ADS)
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-07-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.
Duality quantum algorithm efficiently simulates open quantum systems.
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d(3)) in contrast to O(d(4)) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855
Architecture and algorithm of a circuit simulator
NASA Astrophysics Data System (ADS)
Marranghello, Norian; Damiani, Furio
1990-11-01
Software-based circuit simulators had a ten-fold speed improvement in the last 15 years. Despite this they are not fast enough to cost- effectively deal with current VLSI circuits. In this paper we describe the current status of the ABACUS circuit simulator project, which takes advantage of both a dedicated hardware to speed up circuit simulation and a new methodology, where each parallel processor behaves like a circuit element.
A fast recursive algorithm for molecular dynamics simulation
NASA Technical Reports Server (NTRS)
Jain, A.; Vaidehi, N.; Rodriguez, G.
1993-01-01
The present recursive algorithm for solving molecular systems' dynamical equations of motion employs internal variable models that reduce such simulations' computation time by an order of magnitude, relative to Cartesian models. Extensive use is made of spatial operator methods recently developed for analysis and simulation of the dynamics of multibody systems. A factor-of-450 speedup over the conventional O(N-cubed) algorithm is demonstrated for the case of a polypeptide molecule with 400 residues.
3D face recognition using simulated annealing and the surface interpenetration measure.
Queirolo, Chauã C; Silva, Luciano; Bellon, Olga R P; Segundo, Maurício Pamplona
2010-02-01
This paper presents a novel automatic framework to perform 3D face recognition. The proposed method uses a Simulated Annealing-based approach (SA) for range image registration with the Surface Interpenetration Measure (SIM), as similarity measure, in order to match two face images. The authentication score is obtained by combining the SIM values corresponding to the matching of four different face regions: circular and elliptical areas around the nose, forehead, and the entire face region. Then, a modified SA approach is proposed taking advantage of invariant face regions to better handle facial expressions. Comprehensive experiments were performed on the FRGC v2 database, the largest available database of 3D face images composed of 4,007 images with different facial expressions. The experiments simulated both verification and identification systems and the results compared to those reported by state-of-the-art works. By using all of the images in the database, a verification rate of 96.5 percent was achieved at a False Acceptance Rate (FAR) of 0.1 percent. In the identification scenario, a rank-one accuracy of 98.4 percent was achieved. To the best of our knowledge, this is the highest rank-one score ever achieved for the FRGC v2 database when compared to results published in the literature. PMID:20075453
Radar simulation program upgrade and algorithm development
NASA Technical Reports Server (NTRS)
Britt, Charles L.
1991-01-01
The NASA Radar Simulation Program is a comprehensive calculation of the expected output of an airborne coherent pulse Doppler radar system viewing a low level microburst along or near the approach path. Inputs to the program include the radar system parameters and data files that contain the characteristics of the microbursts to be simulated, the ground clutter map, and the discrete target data base which provides a simulation of the moving ground clutter. For each range bin, the simulation calculates the received signal amplitude level by integrating the product of the antenna gain pattern and the scattering source amplitude and phase of a spherical shell volume segment defined by the pulse width, radar range, and ground plane intersection. A series of in-phase and quadrature pulses are generated and stored for further processing if desired. In addition, various signal processing techniques are used to derive the simulated velocity and hazard measurements, and store them for use in plotting and display programs.
An assessment of 'shuffle algorithm' collision mechanics for particle simulations
NASA Technical Reports Server (NTRS)
Feiereisen, William J.; Boyd, Iain D.
1991-01-01
Among the algorithms for collision mechanics used at present, the 'shuffle algorithm' of Baganoff (McDonald and Baganoff, 1988; Baganoff and McDonald, 1990) not only allows efficient vectorization, but also discretizes the possible outcomes of a collision. To assess the applicability of the shuffle algorithm, a simulation was performed of flows in monoatomic gases and the calculated characteristics of shock waves was compared with those obtained using a commonly employed isotropic scattering law. It is shown that, in general, the shuffle algorithm adequately represents the collision mechanics in cases when the goal of calculations are mean profiles of density and temperature.
Fully explicit algorithms for fluid simulation
NASA Astrophysics Data System (ADS)
Clausen, Jonathan
2011-11-01
Computing hardware is trending towards distributed, massively parallel architectures in order to achieve high computational throughput. For example, Intrepid at Argonne uses 163,840 cores, and next generation machines, such as Sequoia at Lawrence Livermore, will use over one million cores. Harnessing the increasingly parallel nature of computational resources will require algorithms that scale efficiently on these architectures. The advent of GPU-based computation will serve to accelerate this behavior, as a single GPU contains hundreds of processor ``cores.'' Explicit algorithms avoid the communication associated with a linear solve, thus parallel scalability of these algorithms is typically high. This work will explore the efficiency and accuracy of three explicit solution methodologies for the Navier-Stokes equations: traditional artificial compressibility schemes, the lattice-Boltzmann method, and the recently proposed kinetically reduced local Navier-Stokes equations [Borok, Ansumali, and Karlin (2007)]. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Extrapolated gradientlike algorithms for molecular dynamics and celestial mechanics simulations.
Omelyan, I P
2006-09-01
A class of symplectic algorithms is introduced to integrate the equations of motion in many-body systems. The algorithms are derived on the basis of an advanced gradientlike decomposition approach. Its main advantage over the standard gradient scheme is the avoidance of time-consuming evaluations of force gradients by force extrapolation without any loss of precision. As a result, the efficiency of the integration improves significantly. The algorithms obtained are analyzed and optimized using an error-function theory. The best among them are tested in actual molecular dynamics and celestial mechanics simulations for comparison with well-known nongradient and gradient algorithms such as the Störmer-Verlet, Runge-Kutta, Cowell-Numerov, Forest-Ruth, Suzuki-Chin, and others. It is demonstrated that for moderate and high accuracy, the extrapolated algorithms should be considered as the most efficient for the integration of motion in molecular dynamics simulations. PMID:17025782
Barca, E; Castrignanò, A; Buttafuoco, G; De Benedetto, D; Passarella, G
2015-07-01
Soil survey is generally time-consuming, labor-intensive, and costly. Optimization of sampling scheme allows one to reduce the number of sampling points without decreasing or even increasing the accuracy of investigated attribute. Maps of bulk soil electrical conductivity (EC a ) recorded with electromagnetic induction (EMI) sensors could be effectively used to direct soil sampling design for assessing spatial variability of soil moisture. A protocol, using a field-scale bulk EC a survey, has been applied in an agricultural field in Apulia region (southeastern Italy). Spatial simulated annealing was used as a method to optimize spatial soil sampling scheme taking into account sampling constraints, field boundaries, and preliminary observations. Three optimization criteria were used. the first criterion (minimization of mean of the shortest distances, MMSD) optimizes the spreading of the point observations over the entire field by minimizing the expectation of the distance between an arbitrarily chosen point and its nearest observation; the second criterion (minimization of weighted mean of the shortest distances, MWMSD) is a weighted version of the MMSD, which uses the digital gradient of the grid EC a data as weighting function; and the third criterion (mean of average ordinary kriging variance, MAOKV) minimizes mean kriging estimation variance of the target variable. The last criterion utilizes the variogram model of soil water content estimated in a previous trial. The procedures, or a combination of them, were tested and compared in a real case. Simulated annealing was implemented by the software MSANOS able to define or redesign any sampling scheme by increasing or decreasing the original sampling locations. The output consists of the computed sampling scheme, the convergence time, and the cooling law, which can be an invaluable support to the process of sampling design. The proposed approach has found the optimal solution in a reasonable computation time. The
Mathematical foundation of quantum annealing
Morita, Satoshi; Nishimori, Hidetoshi
2008-12-15
Quantum annealing is a generic name of quantum algorithms that use quantum-mechanical fluctuations to search for the solution of an optimization problem. It shares the basic idea with quantum adiabatic evolution studied actively in quantum computation. The present paper reviews the mathematical and theoretical foundations of quantum annealing. In particular, theorems are presented for convergence conditions of quantum annealing to the target optimal state after an infinite-time evolution following the Schroedinger or stochastic (Monte Carlo) dynamics. It is proved that the same asymptotic behavior of the control parameter guarantees convergence for both the Schroedinger dynamics and the stochastic dynamics in spite of the essential difference of these two types of dynamics. Also described are the prescriptions to reduce errors in the final approximate solution obtained after a long but finite dynamical evolution of quantum annealing. It is shown there that we can reduce errors significantly by an ingenious choice of annealing schedule (time dependence of the control parameter) without compromising computational complexity qualitatively. A review is given on the derivation of the convergence condition for classical simulated annealing from the view point of quantum adiabaticity using a classical-quantum mapping.
Performance of a parallel algorithm for standard cell placement on the Intel Hypercube
NASA Technical Reports Server (NTRS)
Jones, Mark; Banerjee, Prithviraj
1987-01-01
A parallel simulated annealing algorithm for standard cell placement on the Intel Hypercube is presented. A novel tree broadcasting strategy is used extensively for updating cell locations in the parallel environment. Studies on the performance of the algorithm on example industrial circuits show that it is faster and gives better final placement results than uniprocessor simulated annealing algorithms.
Selecting Magnet Laminations Recipes Using the Meth-od of Sim-u-la-ted Annealing
NASA Astrophysics Data System (ADS)
Russell, A. D.; Baiod, R.; Brown, B. C.; Harding, D. J.; Martin, P. S.
1997-05-01
The Fermilab Main Injector project is building 344 dipoles using more than 7000 tons of steel. Budget and logistical constraints required that steel production, lamination stamping and magnet fabrication proceed in parallel. There were significant run-to-run variations in the magnetic properties of the steel (Martin, P.S., et al., Variations in the Steel Properties and the Excitation Characteristics of FMI Dipoles, this conference). The large lamination size (>0.5 m coil opening) resulted in variations of gap height due to differences in stress relief in the steel after stamping. To minimize magnet-to-magnet strength and field shape variations the laminations were shuffled based on the available magnetic and mechanical data and assigned to magnets using a computer program based on the method of simulated annealing. The lamination sets selected by the program have produced magnets which easily satisfy the design requirements. Variations of the average magnet gap are an order of magnitude smaller than the variations in lamination gaps. This paper discusses observed gap variations, the program structure and the strength uniformity results.
An interactive system for creating object models from range data based on simulated annealing
Hoff, W.A.; Hood, F.W.; King, R.H.
1997-05-01
In hazardous applications such as remediation of buried waste and dismantlement of radioactive facilities, robots are an attractive solution. Sensing to recognize and locate objects is a critical need for robotic operations in unstructured environments. An accurate 3-D model of objects in the scene is necessary for efficient high level control of robots. Drawing upon concepts from supervisory control, the authors have developed an interactive system for creating object models from range data, based on simulated annealing. Site modeling is a task that is typically performed using purely manual or autonomous techniques, each of which has inherent strengths and weaknesses. However, an interactive modeling system combines the advantages of both manual and autonomous methods, to create a system that has high operator productivity as well as high flexibility and robustness. The system is unique in that it can work with very sparse range data, tolerate occlusions, and tolerate cluttered scenes. The authors have performed an informal evaluation with four operators on 16 different scenes, and have shown that the interactive system is superior to either manual or automatic methods in terms of task time and accuracy.
Equilibrium properties of transition-metal ion-argon clusters via simulated annealing
NASA Technical Reports Server (NTRS)
Asher, Robert L.; Micha, David A.; Brucat, Philip J.
1992-01-01
The geometrical structures of M(+) (Ar)n ions, with n = 1-14, have been studied by the minimization of a many-body potential surface with a simulated annealing procedure. The minimization method is justified for finite systems through the use of an information theory approach. It is carried out for eight potential-energy surfaces constructed with two- and three-body terms parametrized from experimental data and ab initio results. The potentials should be representative of clusters of argon atoms with first-row transition-metal monocations of varying size. The calculated geometries for M(+) = Co(+) and V(+) possess radial shells with small (ca. 4-8) first-shell coordination number. The inclusion of an ion-induced-dipole-ion-induced-dipole interaction between argon atoms raises the energy and generally lowers the symmetry of the cluster by promoting incomplete shell closure. Rotational constants as well as electric dipole and quadrupole moments are quoted for the Co(+) (Ar)n and V(+) (Ar)n predicted structures.
Optimal pumping from Palmela water supply wells (Portugal) using simulated annealing
NASA Astrophysics Data System (ADS)
Fragoso, Teresa; Cunha, Maria Da Conceição; Lobo-Ferreira, João P.
2009-12-01
Aquifer systems are an important part of an integrated water resources management plan as foreseen in the European Union’s Water Framework Directive (2000). The sustainable development of these systems demands the use of all available techniques capable of handling the multidisciplinary features of the problems involved. The formulation and resolution of an optimization model is described for a planning and management problem based on the Palmela aquifer (Portugal), developed to supply a given number of demand centres. This problem is solved using one of the latest optimization techniques, the simulated annealing heuristic method, designed to find the optimal solutions while avoiding falling into local optimums. The solution obtained, providing the wells location and the corresponding pumped flows to supply each centre, are analysed taking into account the objective function components and the constraints. It was found that the operation cost is the biggest share of the final cost, and the choice of wells is greatly affected by this fact. Another conclusion is that the solution takes advantage of the economies of scale, that is, it points toward drilling a large capacity well even if this increases the investment cost, rather than drilling several wells, which together will increase the operation costs.
Daylighting simulation: methods, algorithms, and resources
Carroll, William L.
1999-12-01
This document presents work conducted as part of Subtask C, ''Daylighting Design Tools'', Subgroup C2, ''New Daylight Algorithms'', of the IEA SHC Task 21 and the ECBCS Program Annex 29 ''Daylight in Buildings''. The search for and collection of daylighting analysis methods and algorithms led to two important observations. First, there is a wide range of needs for different types of methods to produce a complete analysis tool. These include: Geometry; Light modeling; Characterization of the natural illumination resource; Materials and components properties, representations; and Usability issues (interfaces, interoperability, representation of analysis results, etc). Second, very advantageously, there have been rapid advances in many basic methods in these areas, due to other forces. They are in part driven by: The commercial computer graphics community (commerce, entertainment); The lighting industry; Architectural rendering and visualization for projects; and Academia: Course materials, research. This has led to a very rich set of information resources that have direct applicability to the small daylighting analysis community. Furthermore, much of this information is in fact available online. Because much of the information about methods and algorithms is now online, an innovative reporting strategy was used: the core formats are electronic, and used to produce a printed form only secondarily. The electronic forms include both online WWW pages and a downloadable .PDF file with the same appearance and content. Both electronic forms include live primary and indirect links to actual information sources on the WWW. In most cases, little additional commentary is provided regarding the information links or citations that are provided. This in turn allows the report to be very concise. The links are expected speak for themselves. The report consists of only about 10+ pages, with about 100+ primary links, but with potentially thousands of indirect links. For purposes of
Huang Jinfan; Bartell, Lawrence S.
2012-01-15
Molecular dynamics simulations of solid state recrystallization and grain growth in iron nanoparticles containing 1436 atoms were carried out. During the period of relaxation of supercooled liquid drops and during thermal annealing of the solids they froze to, changes in disorder were followed by monitoring changes in energy and the migration of grain boundaries. All 27 polycrystalline nanoparticles, which were generated with different grain boundaries, were observed to recystallize into single crystals during annealing. Larger grains consumed the smaller ones. In particular, two sets of solid particles, designated as A and B, each with two grains, were treated to generate 18 members of each set with different thermal histories. This provided small ensembles (of 18 members each) from which rates at which the larger grain engulfed the smaller one, could be determined. The rate was higher, the smaller the degree of misorientation between the grains, a result contrary to the general rule based on published experiments, but the reason was clear. Crystal A, which happened to have a somewhat lower angle of misorientation, also had a higher population of defects, as confirmed by its higher energy. Accordingly, its driving force to recrystallize was greater. Although the mechanism of recrystallization is commonly called nucleation, our results, which probe the system on an atomic scale, were not able to identify nuclei unequivocally. By contrast, our technique can and does reveal nuclei in the freezing of liquids and in transformations from one solid phase to another. An alternative rationale for a nucleation-like process in our results is proposed. - Graphical Abstract: Time dependence of energy per atom in the quenching of liquid nanoparticles A-C of iron. Nanoparticle C freezes directly into a single crystal but A and B freeze to solids with two grains. A and B eventually recrystallize into single crystals. Highlights: Black-Right-Pointing-Pointer Solid state material
Piloted simulation of an on-board trajectory optimization algorithm
NASA Technical Reports Server (NTRS)
Price, D. B.; Calise, A. J.; Moerder, D. D.
1981-01-01
This paper will describe a real time piloted simulation of algorithms designed for on-board computation of time-optimal intercept trajectories for an F-8 aircraft. The algorithms, which were derived using singular perturbation theory, generate commands that are displayed to the pilot on flight director needles on the 8-ball. By flying the airplane so as to zero the horizontal and vertical needles, the pilot flies an approximation to a time-optimal intercept trajectory. The various display and computation modes that are available will be described and results will be presented illustrating the performance of the algorithms with a pilot in the loop.
Concluding Report: Quantitative Tomography Simulations and Reconstruction Algorithms
Aufderheide, M B; Martz, H E; Slone, D M; Jackson, J A; Schach von Wittenau, A E; Goodman, D M; Logan, C M; Hall, J M
2002-02-01
In this report we describe the original goals and final achievements of this Laboratory Directed Research and Development project. The Quantitative was Tomography Simulations and Reconstruction Algorithms project (99-ERD-015) funded as a multi-directorate, three-year effort to advance the state of the art in radiographic simulation and tomographic reconstruction by improving simulation and including this simulation in the tomographic reconstruction process. Goals were to improve the accuracy of radiographic simulation, and to couple advanced radiographic simulation tools with a robust, many-variable optimization algorithm. In this project, we were able to demonstrate accuracy in X-Ray simulation at the 2% level, which is an improvement of roughly a factor of 5 in accuracy, and we have successfully coupled our simulation tools with the CCG (Constrained Conjugate Gradient) optimization algorithm, allowing reconstructions that include spectral effects and blurring in the reconstructions. Another result of the project was the assembly of a low-scatter X-Ray imaging facility for use in nondestructive evaluation applications. We conclude with a discussion of future work.
Searching for quantum speedup in quasistatic quantum annealers
NASA Astrophysics Data System (ADS)
Amin, Mohammad H.
2015-11-01
We argue that a quantum annealer at very long annealing times is likely to experience a quasistatic evolution, returning a final population that is close to a Boltzmann distribution of the Hamiltonian at a single (freeze-out) point during the annealing. Such a system is expected to correlate with classical algorithms that return the same equilibrium distribution. These correlations do not mean that the evolution of the system is classical or can be simulated by these algorithms. The computation time extracted from such a distribution reflects the equilibrium behavior with no information about the underlying quantum dynamics. This makes the search for quantum speedup problematic.
Automated integration of genomic physical mapping data via parallel simulated annealing
Slezak, T.
1994-06-01
The Human Genome Center at the Lawrence Livermore National Laboratory (LLNL) is nearing closure on a high-resolution physical map of human chromosome 19. We have build automated tools to assemble 15,000 fingerprinted cosmid clones into 800 contigs with minimal spanning paths identified. These islands are being ordered, oriented, and spanned by a variety of other techniques including: Fluorescence Insitu Hybridization (FISH) at 3 levels of resolution, ECO restriction fragment mapping across all contigs, and a multitude of different hybridization and PCR techniques to link cosmid, YAC, AC, PAC, and Pl clones. The FISH data provide us with partial order and distance data as well as orientation. We made the observation that map builders need a much rougher presentation of data than do map readers; the former wish to see raw data since these can expose errors or interesting biology. We further noted that by ignoring our length and distance data we could simplify our problem into one that could be readily attacked with optimization techniques. The data integration problem could then be seen as an M x N ordering of our N cosmid clones which ``intersect`` M larger objects by defining ``intersection`` to mean either contig/map membership or hybridization results. Clearly, the goal of making an integrated map is now to rearrange the N cosmid clone ``columns`` such that the number of gaps on the object ``rows`` are minimized. Our FISH partially-ordered cosmid clones provide us with a set of constraints that cannot be violated by the rearrangement process. We solved the optimization problem via simulated annealing performed on a network of 40+ Unix machines in parallel, using a server/client model built on explicit socket calls. For current maps we can create a map in about 4 hours on the parallel net versus 4+ days on a single workstation. Our biologists are now using this software on a daily basis to guide their efforts toward final closure.
NASA Astrophysics Data System (ADS)
Rucker, Dale F.; Ferré, Ty P. A.
2005-07-01
The automated inversion of water content profiles from first arrival travel time data collected with zero-offset borehole ground penetrating radar is discussed. The inversion algorithm sets out to find the water content profile that minimizes a least-squares objective function representing the difference between the modeled and measured first arrival travel time. Ray-tracing analysis is used to determine the travel time for direct and critically refracted paths to identify the first arrival travel time. This automated method offers improvement over a previously presented graphical solution that considers both direct and critical refractions. Specifically, this approach can identify thinner layers and allow for the incorporation of uncertainty in the travel time measurements to determine the depth-specific uncertainty of the inferred water content profile through multiple simulations using a stochastic approach.
Energy conserving continuum algorithms for kinetic & gyrokinetic simulations of plasmas
NASA Astrophysics Data System (ADS)
Hakim, A.; Hammett, G. W.; Shi, E.; Stoltzfus-Dueck, T.
2015-11-01
We present high-order, energy conserving, continuum algorithms for the solution of gyrokinetic equations for use in edge turbulence simulations. The distribution function is evolved with a discontinuous Galerkin scheme, while the fields are evolved with a continuous finite-element method. These algorithms work for a general, possibly non-canonical, Poisson bracket operator and conserve energy exactly. Benchmark simulations with ETG turbulence in 3X/2V are shown, as well as initial applications of the algorithms to turbulence in a simplified SOL geometry. Sheath boundary conditions with recycling and secondary electron emission are implemented, and a Lenard-Bernstein collision operator is included. Extension of these algorithms to full Vlasov-Maxwell equations are presented. It is shown that with a particular choice of numerical fluxes the total (particle+field) energy is conserved. Algorithms are implemented in a flexible and open-source framework, Gkeyll, which also includes fluid models, allowing potential hybrid simulations of various plasma problems. Supported by the Max-Planck/Princeton Center for Plasma Physics, and DOE Contract DE-AC02-09CH11466.
Final Technical Report "Multiscale Simulation Algorithms for Biochemical Systems"
Petzold, Linda R.
2012-10-25
Biochemical systems are inherently multiscale and stochastic. In microscopic systems formed by living cells, the small numbers of reactant molecules can result in dynamical behavior that is discrete and stochastic rather than continuous and deterministic. An analysis tool that respects these dynamical characteristics is the stochastic simulation algorithm (SSA, Gillespie, 1976), a numerical simulation procedure that is essentially exact for chemical systems that are spatially homogeneous or well stirred. Despite recent improvements, as a procedure that simulates every reaction event, the SSA is necessarily inefficient for most realistic problems. There are two main reasons for this, both arising from the multiscale nature of the underlying problem: (1) stiffness, i.e. the presence of multiple timescales, the fastest of which are stable; and (2) the need to include in the simulation both species that are present in relatively small quantities and should be modeled by a discrete stochastic process, and species that are present in larger quantities and are more efficiently modeled by a deterministic differential equation (or at some scale in between). This project has focused on the development of fast and adaptive algorithms, and the fun- damental theory upon which they must be based, for the multiscale simulation of biochemical systems. Areas addressed by this project include: (1) Theoretical and practical foundations for ac- celerated discrete stochastic simulation (tau-leaping); (2) Dealing with stiffness (fast reactions) in an efficient and well-justified manner in discrete stochastic simulation; (3) Development of adaptive multiscale algorithms for spatially homogeneous discrete stochastic simulation; (4) Development of high-performance SSA algorithms.
Analysis of a simulation algorithm for direct brain drug delivery
Rosenbluth, Kathryn Hammond; Eschermann, Jan Felix; Mittermeyer, Gabriele; Thomson, Rowena; Mittermeyer, Stephan; Bankiewicz, Krystof S.
2011-01-01
Convection enhanced delivery (CED) achieves targeted delivery of drugs with a pressure-driven infusion through a cannula placed stereotactically in the brain. This technique bypasses the blood brain barrier and gives precise distributions of drugs, minimizing off-target effects of compounds such as viral vectors for gene therapy or toxic chemotherapy agents. The exact distribution is affected by the cannula positioning, flow rate and underlying tissue structure. This study presents an analysis of a simulation algorithm for predicting the distribution using baseline MRI images acquired prior to inserting the cannula. The MRI images included diffusion tensor imaging (DTI) to estimate the tissue properties. The algorithm was adapted for the devices and protocols identified for upcoming trials and validated with direct MRI visualization of Gadolinium in 20 infusions in non-human primates. We found strong agreement between the size and location of the simulated and gadolinium volumes, demonstrating the clinical utility of this surgical planning algorithm. PMID:21945468
Parallel conjugate gradient algorithms for manipulator dynamic simulation
NASA Technical Reports Server (NTRS)
Fijany, Amir; Scheld, Robert E.
1989-01-01
Parallel conjugate gradient algorithms for the computation of multibody dynamics are developed for the specialized case of a robot manipulator. For an n-dimensional positive-definite linear system, the Classical Conjugate Gradient (CCG) algorithms are guaranteed to converge in n iterations, each with a computation cost of O(n); this leads to a total computational cost of O(n sq) on a serial processor. A conjugate gradient algorithms is presented that provide greater efficiency using a preconditioner, which reduces the number of iterations required, and by exploiting parallelism, which reduces the cost of each iteration. Two Preconditioned Conjugate Gradient (PCG) algorithms are proposed which respectively use a diagonal and a tridiagonal matrix, composed of the diagonal and tridiagonal elements of the mass matrix, as preconditioners. Parallel algorithms are developed to compute the preconditioners and their inversions in O(log sub 2 n) steps using n processors. A parallel algorithm is also presented which, on the same architecture, achieves the computational time of O(log sub 2 n) for each iteration. Simulation results for a seven degree-of-freedom manipulator are presented. Variants of the proposed algorithms are also developed which can be efficiently implemented on the Robot Mathematics Processor (RMP).
Simulating and Synthesizing Substructures Using Neural Network and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Liu, Youhua; Kapania, Rakesh K.; VanLandingham, Hugh F.
1997-01-01
The feasibility of simulating and synthesizing substructures by computational neural network models is illustrated by investigating a statically indeterminate beam, using both a 1-D and a 2-D plane stress modelling. The beam can be decomposed into two cantilevers with free-end loads. By training neural networks to simulate the cantilever responses to different loads, the original beam problem can be solved as a match-up between two subsystems under compatible interface conditions. The genetic algorithms are successfully used to solve the match-up problem. Simulated results are found in good agreement with the analytical or FEM solutions.
Recycling random numbers in the stochastic simulation algorithm.
Yates, Christian A; Klingbeil, Guido
2013-03-01
The stochastic simulation algorithm (SSA) was introduced by Gillespie and in a different form by Kurtz. Since its original formulation there have been several attempts at improving the efficiency and hence the speed of the algorithm. We briefly discuss some of these methods before outlining our own simple improvement, the recycling direct method (RDM), and demonstrating that it is capable of increasing the speed of most stochastic simulations. The RDM involves the statistically acceptable recycling of random numbers in order to reduce the computational cost associated with their generation and is compatible with several of the pre-existing improvements on the original SSA. Our improvement is also sufficiently simple (one additional line of code) that we hope will be adopted by both trained mathematical modelers and experimentalists wishing to simulate their model systems. PMID:23485273
A spectral unaveraged algorithm for free electron laser simulations
Andriyash, I.A.; Lehe, R.; Malka, V.
2015-02-01
We propose and discuss a numerical method to model electromagnetic emission from the oscillating relativistic charged particles and its coherent amplification. The developed technique is well suited for free electron laser simulations, but it may also be useful for a wider range of physical problems involving resonant field–particles interactions. The algorithm integrates the unaveraged coupled equations for the particles and the electromagnetic fields in a discrete spectral domain. Using this algorithm, it is possible to perform full three-dimensional or axisymmetric simulations of short-wavelength amplification. In this paper we describe the method, its implementation, and we present examples of free electron laser simulations comparing the results with the ones provided by commonly known free electron laser codes.
NASA Astrophysics Data System (ADS)
Zhang, Pengpeng
The Leksell Gamma KnifeRTM (LGK) is a tool for providing accurate stereotactic radiosurgical treatment of brain lesions, especially tumors. Currently, the treatment planning team "forward" plans radiation treatment parameters while viewing a series of 2D MR scans. This primarily manual process is cumbersome and time consuming because the difficulty in visualizing the large search space for the radiation parameters (i.e., shot overlap, number, location, size, and weight). I hypothesize that a computer-aided "inverse" planning procedure that utilizes tumor geometry and treatment goals could significantly improve the planning process and therapeutic outcome of LGK radiosurgery. My basic observation is that the treatment team is best at identification of the location of the lesion and prescribing a lethal, yet safe, radiation dose. The treatment planning computer is best at determining both the 3D tumor geometry and optimal LGK shot parameters necessary to deliver a desirable dose pattern to the tumor while sparing adjacent normal tissue. My treatment planning procedure asks the neurosurgeon to identify the tumor and critical structures in MR images and the oncologist to prescribe a tumoricidal radiation dose. Computer-assistance begins with geometric modeling of the 3D tumor's medial axis properties. This begins with a new algorithm, a Gradient-Phase Plot (G-P Plot) decomposition of the tumor object's medial axis. I have found that medial axis seeding, while insufficient in most cases to produce an acceptable treatment plan, greatly reduces the solution space for Guided Evolutionary Simulated Annealing (GESA) treatment plan optimization by specifying an initial estimate for shot number, size, and location, but not weight. They are used to generate multiple initial plans which become initial seed plans for GESA. The shot location and weight parameters evolve and compete in the GESA procedure. The GESA objective function optimizes tumor irradiation (i.e., as close to
Hao, Ge-Fei; Xu, Wei-Fang; Yang, Sheng-Gang; Yang, Guang-Fu
2015-01-01
Protein and peptide structure predictions are of paramount importance for understanding their functions, as well as the interactions with other molecules. However, the use of molecular simulation techniques to directly predict the peptide structure from the primary amino acid sequence is always hindered by the rough topology of the conformational space and the limited simulation time scale. We developed here a new strategy, named Multiple Simulated Annealing-Molecular Dynamics (MSA-MD) to identify the native states of a peptide and miniprotein. A cluster of near native structures could be obtained by using the MSA-MD method, which turned out to be significantly more efficient in reaching the native structure compared to continuous MD and conventional SA-MD simulation. PMID:26492886
Sobel, E.; Lange, K.; O`Connell, J.R.
1996-12-31
Haplotyping is the logical process of inferring gene flow in a pedigree based on phenotyping results at a small number of genetic loci. This paper formalizes the haplotyping problem and suggests four algorithms for haplotype reconstruction. These algorithms range from exhaustive enumeration of all haplotype vectors to combinatorial optimization by simulated annealing. Application of the algorithms to published genetic analyses shows that manual haplotyping is often erroneous. Haplotyping is employed in screening pedigrees for phenotyping errors and in positional cloning of disease genes from conserved haplotypes in population isolates. 26 refs., 6 figs., 3 tabs.
Coalescent simulation in continuous space: algorithms for large neighbourhood size.
Kelleher, J; Etheridge, A M; Barton, N H
2014-08-01
Many species have an essentially continuous distribution in space, in which there are no natural divisions between randomly mating subpopulations. Yet, the standard approach to modelling these populations is to impose an arbitrary grid of demes, adjusting deme sizes and migration rates in an attempt to capture the important features of the population. Such indirect methods are required because of the failure of the classical models of isolation by distance, which have been shown to have major technical flaws. A recently introduced model of extinction and recolonisation in two dimensions solves these technical problems, and provides a rigorous technical foundation for the study of populations evolving in a spatial continuum. The coalescent process for this model is simply stated, but direct simulation is very inefficient for large neighbourhood sizes. We present efficient and exact algorithms to simulate this coalescent process for arbitrary sample sizes and numbers of loci, and analyse these algorithms in detail. PMID:24910324
SMMR Simulator radiative transfer calibration model. 2: Algorithm development
NASA Technical Reports Server (NTRS)
Link, S.; Calhoon, C.; Krupp, B.
1980-01-01
Passive microwave measurements performed from Earth orbit can be used to provide global data on a wide range of geophysical and meteorological phenomena. A Scanning Multichannel Microwave Radiometer (SMMR) is being flown on the Nimbus-G satellite. The SMMR Simulator duplicates the frequency bands utilized in the spacecraft instruments through an amalgamate of radiometer systems. The algorithm developed utilizes data from the fall 1978 NASA CV-990 Nimbus-G underflight test series and subsequent laboratory testing.
Sampling of general correlators in worm-algorithm based simulations
NASA Astrophysics Data System (ADS)
Rindlisbacher, Tobias; Åkerlund, Oscar; de Forcrand, Philippe
2016-08-01
Using the complex ϕ4-model as a prototype for a system which is simulated by a worm algorithm, we show that not only the charged correlator <ϕ* (x) ϕ (y) >, but also more general correlators such as < | ϕ (x) | | ϕ (y) | > or < arg (ϕ (x)) arg (ϕ (y)) >, as well as condensates like < | ϕ | >, can be measured at every step of the Monte Carlo evolution of the worm instead of on closed-worm configurations only. The method generalizes straightforwardly to other systems simulated by worms, such as spin or sigma models.
Large Eddy Simulations using Lattice Boltzmann algorithms. Final report
Serling, J.D.
1993-09-28
This report contains the results of a study performed to implement eddy-viscosity models for Large-Eddy-Simulations (LES) into Lattice Boltzmann (LB) algorithms for simulating fluid flows. This implementation requires modification of the LB method of simulating the incompressible Navier-Stokes equations to allow simulation of the filtered Navier-Stokes equations with some subgrid model for the Reynolds stress term. We demonstrate that the LB method can indeed be used for LES by simply locally adjusting the value of the BGK relaxation time to obtain the desired eddy-viscosity. Thus, many forms of eddy-viscosity models including the standard Smagorinsky model or the Dynamic model may be implemented using LB algorithms. Since underresolved LB simulations often lead to instability, the LES model actually serves to stabilize the method. An alternative method of ensuring stability is presented which requires that entropy increase during the collision step of the LB method. Thus, an alternative collision operator is locally applied if the entropy becomes too low. This stable LB method then acts as an LES scheme that effectively introduces its own eddy viscosity to damp short wavelength oscillations.
An improved sink particle algorithm for SPH simulations
NASA Astrophysics Data System (ADS)
Hubber, D. A.; Walch, S.; Whitworth, A. P.
2013-04-01
Numerical simulations of star formation frequently rely on the implementation of sink particles: (a) to avoid expending computational resource on the detailed internal physics of individual collapsing protostars, (b) to derive mass functions, binary statistics and clustering kinematics (and hence to make comparisons with observation), and (c) to model radiative and mechanical feedback; sink particles are also used in other contexts, for example to represent accreting black holes in galactic nuclei. We present a new algorithm for creating and evolving sink particles in smoothed particle hydrodynamic (SPH) simulations, which appears to represent a significant improvement over existing algorithms - particularly in situations where sinks are introduced after the gas has become optically thick to its own cooling radiation and started to heat up by adiabatic compression. (i) It avoids spurious creation of sinks. (ii) It regulates the accretion of matter on to a sink so as to mitigate non-physical perturbations in the vicinity of the sink. (iii) Sinks accrete matter, but the associated angular momentum is transferred back to the surrounding medium. With the new algorithm - and modulo the need to invoke sufficient resolution to capture the physics preceding sink formation - the properties of sinks formed in simulations are essentially independent of the user-defined parameters of sink creation, or the number of SPH particles used.
Motion Cueing Algorithm Modification for Improved Turbulence Simulation
NASA Technical Reports Server (NTRS)
Ercole, Anthony V.; Cardullo, Frank M.; Zaychik, Kirill; Kelly, Lon C.; Houck, Jacob
2009-01-01
Atmospheric turbulence cueing produced by flight simulator motion systems has been less than satisfactory because the turbulence profiles have been attenuated by the motion cueing algorithms. Cardullo and Ellor initially addressed this problem by directly porting the turbulence model output to the motion system. Reid and Robinson addressed the problem by employing a parallel aircraft model, which is only stimulated by the turbulence inputs and adding a filter specially designed to pass the higher turbulence frequencies. There have been advances in motion cueing algorithm development at the Man-Machine Systems Laboratory, at SUNY Binghamton. In particular, the system used to generate turbulence cues has been studied. The Reid approach, implemented by Telban and Cardullo, was employed to augment the optimal motion cueing algorithm installed at the NASA LaRC Simulation Laboratory, driving the Visual Motion Simulator. In this implementation, the output of the primary flight channel was added to the output of the turbulence channel and then sent through a non-linear cueing filter. The cueing filter is an adaptive filter; therefore, it is not desirable for the output of the turbulence channel to be augmented by this type of filter. The likelihood of the signal becoming divergent was also an issue in this design. After testing on-site it became apparent that the architecture of the turbulence algorithm was generating unacceptable cues. As mentioned above, this cueing algorithm comprised a filter that was designed to operate at low bandwidth. Therefore, the turbulence was also filtered, augmenting the cues generated by the model. If any filtering is to be done to the turbulence, it will utilize a filter with a much higher bandwidth, above the frequencies produced by the aircraft response to turbulence. The authors have developed an implementation wherein only the signal from the primary flight channel passes through the nonlinear cueing filter. This paper discusses three
Massively parallel algorithms for trace-driven cache simulations
NASA Technical Reports Server (NTRS)
Nicol, David M.; Greenberg, Albert G.; Lubachevsky, Boris D.
1991-01-01
Trace driven cache simulation is central to computer design. A trace is a very long sequence of reference lines from main memory. At the t(exp th) instant, reference x sub t is hashed into a set of cache locations, the contents of which are then compared with x sub t. If at the t sup th instant x sub t is not present in the cache, then it is said to be a miss, and is loaded into the cache set, possibly forcing the replacement of some other memory line, and making x sub t present for the (t+1) sup st instant. The problem of parallel simulation of a subtrace of N references directed to a C line cache set is considered, with the aim of determining which references are misses and related statistics. A simulation method is presented for the Least Recently Used (LRU) policy, which regradless of the set size C runs in time O(log N) using N processors on the exclusive read, exclusive write (EREW) parallel model. A simpler LRU simulation algorithm is given that runs in O(C log N) time using N/log N processors. Timings are presented of the second algorithm's implementation on the MasPar MP-1, a machine with 16384 processors. A broad class of reference based line replacement policies are considered, which includes LRU as well as the Least Frequently Used and Random replacement policies. A simulation method is presented for any such policy that on any trace of length N directed to a C line set runs in the O(C log N) time with high probability using N processors on the EREW model. The algorithms are simple, have very little space overhead, and are well suited for SIMD implementation.
Okamoto, Y
1994-04-01
Monte Carlo simulated annealing is applied to the tertiary structure prediction of a 17-residue synthetic peptide, which is known by experiment to exhibit high helical content at low pH. Two dielectric models are considered: sigmoidal distance-dependent dielectric function and a constant dielectric function (epsilon = 2). Starting from completely random initial conformations, our simulations for both dielectric models at low pH gave many helical conformations. The obtained low-energy conformations are compared with the nuclear Overhauser effect spectroscopy cross-peak data for both main chain and side chains, and it is shown that the results for the sigmoidal dielectric function are in remarkable agreement with the experimental data. The results predict the existence of two disjoint helices around residues 5-9 and 11-16, while nmr experiments imply significant alpha-helix content between residues 5 and 14. Simulations with high pH, on the other hand, hardly gave a helical conformation, which is also in accord with the experiment. These findings indicate that when side chains are charged, electrostatic interactions due to these changes play a major role in the helix stability. Our results are compared with the previous 500 ps molecular dynamics simulations of the same peptide. It is argued that simulated annealing is superior to molecular dynamics in two respects: (1) direct folding of alpha-helix from completely random initial conformations is possible for the former, whereas only unfolding of an alpha-helix can be studied by the latter; (2) while both methods predict high helix content for low pH, the results for high pH agree with experiment (low helix content) only for the former method. PMID:8186363
An Initial Examination for Verifying Separation Algorithms by Simulation
NASA Technical Reports Server (NTRS)
White, Allan L.; Neogi, Natasha; Herencia-Zapana, Heber
2012-01-01
An open question in algorithms for aircraft is what can be validated by simulation where the simulation shows that the probability of undesirable events is below some given level at some confidence level. The problem is including enough realism to be convincing while retaining enough efficiency to run the large number of trials needed for high confidence. The paper first proposes a goal based on the number of flights per year in several regions. The paper examines the probabilistic interpretation of this goal and computes the number of trials needed to establish it at an equivalent confidence level. Since any simulation is likely to consider the algorithms for only one type of event and there are several types of events, the paper examines under what conditions this separate consideration is valid. This paper is an initial effort, and as such, it considers separation maneuvers, which are elementary but include numerous aspects of aircraft behavior. The scenario includes decisions under uncertainty since the position of each aircraft is only known to the other by broadcasting where GPS believes each aircraft to be (ADS-B). Each aircraft operates under feedback control with perturbations. It is shown that a scenario three or four orders of magnitude more complex is feasible. The question of what can be validated by simulation remains open, but there is reason to be optimistic.
Algorithm for Simulating Atmospheric Turbulence and Aeroelastic Effects on Simulator Motion Systems
NASA Technical Reports Server (NTRS)
Ercole, Anthony V.; Cardullo, Frank M.; Kelly, Lon C.; Houck, Jacob A.
2012-01-01
Atmospheric turbulence produces high frequency accelerations in aircraft, typically greater than the response to pilot input. Motion system equipped flight simulators must present cues representative of the aircraft response to turbulence in order to maintain the integrity of the simulation. Currently, turbulence motion cueing produced by flight simulator motion systems has been less than satisfactory because the turbulence profiles have been attenuated by the motion cueing algorithms. This report presents a new turbulence motion cueing algorithm, referred to as the augmented turbulence channel. Like the previous turbulence algorithms, the output of the channel only augments the vertical degree of freedom of motion. This algorithm employs a parallel aircraft model and an optional high bandwidth cueing filter. Simulation of aeroelastic effects is also an area where frequency content must be preserved by the cueing algorithm. The current aeroelastic implementation uses a similar secondary channel that supplements the primary motion cue. Two studies were conducted using the NASA Langley Visual Motion Simulator and Cockpit Motion Facility to evaluate the effect of the turbulence channel and aeroelastic model on pilot control input. Results indicate that the pilot is better correlated with the aircraft response, when the augmented channel is in place.