Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms
Hu, Zhongyi; Xiong, Tao
2013-01-01
Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature. PMID:24459425
[Rule induction algorithm for brain glioma using support vector machine].
Li, Guozheng; Yang, Jie; Wang, Jiaju; Geng, Daoying
2006-04-01
A new proposed data mining technique, support vector machine (SVM), is used to predict the degree of malignancy in brain glioma. Based on statistical learning theory, SVM realizes the principle of data dependent structure risk minimization, so it can depress the overfitting with better generalization performance, since the prediction in medical diagnosis often deals with a small sample. SVM based rule induction algorithm is implemented in comparison with other data mining techniques such as artificial neural networks, rule induction algorithm and fuzzy rule extraction algorithm based on fuzzy max-min neural networks (FRE-FMMNN) proposed recently. Computation results by 10 fold cross validation method show that SVM can get higher prediction accuracy than artificial neural networks and FRE-FMMNN, which implies SVM can get higher accuracy and more reliability. On the whole data sets, SVM gets one rule with the classification accuracy of 89.29%, while FRE-FMMNN gets two rules of 84. 64%, in which the rule got by SVM is of quantity relation and contains more information than the two rules by FRE-FMMNN. All the above show SVM is a potential algorithm for the medical diagnosis such as the prediction of the degree of malignancy in brain glioma. PMID:16706378
A Support Vector Machine Blind Equalization Algorithm Based on Immune Clone Algorithm
NASA Astrophysics Data System (ADS)
Yecai, Guo; Rui, Ding
Aiming at affecting of the parameter selection method of support vector machine(SVM) on its application in blind equalization algorithm, a SVM constant modulus blind equalization algorithm based on immune clone selection algorithm(CSA-SVM-CMA) is proposed. In this proposed algorithm, the immune clone algorithm is used to optimize the parameters of the SVM on the basis advantages of its preventing evolutionary precocious, avoiding local optimum, and fast convergence. The proposed algorithm can improve the parameter selection efficiency of SVM constant modulus blind equalization algorithm(SVM-CMA) and overcome the defect of the artificial setting parameters. Accordingly, the CSA-SVM-CMA has faster convergence rate and smaller mean square error than the SVM-CMA. Computer simulations in underwater acoustic channels have proved the validity of the algorithm.
Support Vector Machine algorithm for regression and classification
Yu, Chenggang; Zavaljevski, Nela
2001-08-01
The software is an implementation of the Support Vector Machine (SVM) algorithm that was invented and developed by Vladimir Vapnik and his co-workers at AT&T Bell Laboratories. The specific implementation reported here is an Active Set method for solving a quadratic optimization problem that forms the major part of any SVM program. The implementation is tuned to specific constraints generated in the SVM learning. Thus, it is more efficient than general-purpose quadratic optimization programs. A decomposition method has been implemented in the software that enables processing large data sets. The size of the learning data is virtually unlimited by the capacity of the computer physical memory. The software is flexible and extensible. Two upper bounds are implemented to regulate the SVM learning for classification, which allow users to adjust the false positive and false negative rates. The software can be used either as a standalone, general-purpose SVM regression or classification program, or be embedded into a larger software system.
Support Vector Machine algorithm for regression and classification
Energy Science and Technology Software Center (ESTSC)
2001-08-01
The software is an implementation of the Support Vector Machine (SVM) algorithm that was invented and developed by Vladimir Vapnik and his co-workers at AT&T Bell Laboratories. The specific implementation reported here is an Active Set method for solving a quadratic optimization problem that forms the major part of any SVM program. The implementation is tuned to specific constraints generated in the SVM learning. Thus, it is more efficient than general-purpose quadratic optimization programs. Amore » decomposition method has been implemented in the software that enables processing large data sets. The size of the learning data is virtually unlimited by the capacity of the computer physical memory. The software is flexible and extensible. Two upper bounds are implemented to regulate the SVM learning for classification, which allow users to adjust the false positive and false negative rates. The software can be used either as a standalone, general-purpose SVM regression or classification program, or be embedded into a larger software system.« less
Design of Clinical Support Systems Using Integrated Genetic Algorithm and Support Vector Machine
NASA Astrophysics Data System (ADS)
Chen, Yung-Fu; Huang, Yung-Fa; Jiang, Xiaoyi; Hsu, Yuan-Nian; Lin, Hsuan-Hung
Clinical decision support system (CDSS) provides knowledge and specific information for clinicians to enhance diagnostic efficiency and improving healthcare quality. An appropriate CDSS can highly elevate patient safety, improve healthcare quality, and increase cost-effectiveness. Support vector machine (SVM) is believed to be superior to traditional statistical and neural network classifiers. However, it is critical to determine suitable combination of SVM parameters regarding classification performance. Genetic algorithm (GA) can find optimal solution within an acceptable time, and is faster than greedy algorithm with exhaustive searching strategy. By taking the advantage of GA in quickly selecting the salient features and adjusting SVM parameters, a method using integrated GA and SVM (IGS), which is different from the traditional method with GA used for feature selection and SVM for classification, was used to design CDSSs for prediction of successful ventilation weaning, diagnosis of patients with severe obstructive sleep apnea, and discrimination of different cell types form Pap smear. The results show that IGS is better than methods using SVM alone or linear discriminator.
NASA Astrophysics Data System (ADS)
Ortiz-García, E. G.; Salcedo-Sanz, S.; Pérez-Bellido, A. M.; Gascón-Moreno, J.; Portilla-Figueras, A.
In this paper we present the application of a support vector regression algorithm to a real problem of maximum daily tropospheric ozone forecast. The support vector regression approach proposed is hybridized with an heuristic for optimal selection of hyper-parameters. The prediction of maximum daily ozone is carried out in all the station of the air quality monitoring network of Madrid. In the paper we analyze how the ozone prediction depends on meteorological variables such as solar radiation and temperature, and also we perform a comparison against the results obtained using a multi-layer perceptron neural network in the same prediction problem.
Qi, Bin; Zhao, Chunhui; Yin, Guisheng
2014-05-01
The support vector machine (SVM) is a widely used approach for high-dimensional data classification. Traditionally, SVMs use features from the spectral bands of hyperspectral images with each feature contributing equally to the classification. In practical applications, although affected by noise, slight contributions can also be obtained from deteriorated bands. Thus, compared with feature reduction or equal assignment of weights to all the features, feature weighting is a trade-off choice. In this study, we examined two approaches to assigning weights to SVM features to increase the overall classification accuracy: (1) "CSC-SVM" refers to a support vector machine with compactness and a separation coefficient feature weighting algorithm, and (2) "SE-SVM" refers to a support vector machine with a similarity entropy feature weighting algorithm. Analyses were conducted on a public data set with nine selected land-cover classes. In comparison with traditional SVMs and other classical feature weighting algorithms, the proposed weighting algorithms increase the overall classification accuracy, and even better results could be obtained with few training samples. PMID:24921869
NASA Astrophysics Data System (ADS)
Luo, Wei-Ping; Li, Hong-Qi; Shi, Ning
2016-06-01
At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semisupervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area.
NASA Astrophysics Data System (ADS)
Zhou, Mandi; Shu, Jiong; Chen, Zhigang; Ji, Minhe
2012-11-01
Hyperspectral imagery has been widely used in terrain classification for its high resolution. Urban vegetation, known as an essential part of the urban ecosystem, can be difficult to discern due to high similarity of spectral signatures among some land-cover classes. In this paper, we investigate a hybrid approach of the genetic-algorithm tuned fuzzy support vector machine (GA-FSVM) technique and apply it to urban vegetation classification from aerial hyperspectral urban imagery. The approach adopts the genetic algorithm to optimize parameters of support vector machine, and employs the K-nearest neighbor algorithm to calculate the membership function for each fuzzy parameter, aiming to reduce the effects of the isolated and noisy samples. Test data come from push-broom hyperspectral imager (PHI) hyperspectral remote sensing image which partially covers a corner of the Shanghai World Exposition Park, while PHI is a hyper-spectral sensor developed by Shanghai Institute of Technical Physics. Experimental results show the GA-FSVM model generates overall accuracy of 71.2%, outperforming the maximum likelihood classifier with 49.4% accuracy and the artificial neural network method with 60.8% accuracy. It indicates GA-FSVM is a promising model for vegetation classification from hyperspectral urban data, and has good advantage in the application of classification involving abundant mixed pixels and small samples problem.
NASA Astrophysics Data System (ADS)
Zhang, XiaoLi; Liang, DaKai; Zeng, Jie; Asundi, Anand
2012-02-01
Structural Health Monitoring (SHM) based on fiber Bragg grating (FBG) sensor network has attracted considerable attention in recent years. However, FBG sensor network is embedded or glued in the structure simply with series or parallel. In this case, if optic fiber sensors or fiber nodes fail, the fiber sensors cannot be sensed behind the failure point. Therefore, for improving the survivability of the FBG-based sensor system in the SHM, it is necessary to build high reliability FBG sensor network for the SHM engineering application. In this study, a model reconstruction soft computing recognition algorithm based on genetic algorithm-support vector regression (GA-SVR) is proposed to achieve the reliability of the FBG-based sensor system. Furthermore, an 8-point FBG sensor system is experimented in an aircraft wing box. The external loading damage position prediction is an important subject for SHM system; as an example, different failure modes are selected to demonstrate the SHM system's survivability of the FBG-based sensor network. Simultaneously, the results are compared with the non-reconstruct model based on GA-SVR in each failure mode. Results show that the proposed model reconstruction algorithm based on GA-SVR can still keep the predicting precision when partial sensors failure in the SHM system; thus a highly reliable sensor network for the SHM system is facilitated without introducing extra component and noise.
A Novel Classification Algorithm Based on Incremental Semi-Supervised Support Vector Machine
Gao, Fei; Mei, Jingyuan; Sun, Jinping; Wang, Jun; Yang, Erfu; Hussain, Amir
2015-01-01
For current computational intelligence techniques, a major challenge is how to learn new concepts in changing environment. Traditional learning schemes could not adequately address this problem due to a lack of dynamic data selection mechanism. In this paper, inspired by human learning process, a novel classification algorithm based on incremental semi-supervised support vector machine (SVM) is proposed. Through the analysis of prediction confidence of samples and data distribution in a changing environment, a “soft-start” approach, a data selection mechanism and a data cleaning mechanism are designed, which complete the construction of our incremental semi-supervised learning system. Noticeably, with the ingenious design procedure of our proposed algorithm, the computation complexity is reduced effectively. In addition, for the possible appearance of some new labeled samples in the learning process, a detailed analysis is also carried out. The results show that our algorithm does not rely on the model of sample distribution, has an extremely low rate of introducing wrong semi-labeled samples and can effectively make use of the unlabeled samples to enrich the knowledge system of classifier and improve the accuracy rate. Moreover, our method also has outstanding generalization performance and the ability to overcome the concept drift in a changing environment. PMID:26275294
A digital architecture for support vector machines: theory, algorithm, and FPGA implementation.
Anguita, D; Boni, A; Ridella, S
2003-01-01
In this paper, we propose a digital architecture for support vector machine (SVM) learning and discuss its implementation on a field programmable gate array (FPGA). We analyze briefly the quantization effects on the performance of the SVM in classification problems to show its robustness, in the feedforward phase, respect to fixed-point math implementations; then, we address the problem of SVM learning. The architecture described here makes use of a new algorithm for SVM learning which is less sensitive to quantization errors respect to the solution appeared so far in the literature. The algorithm is composed of two parts: the first one exploits a recurrent network for finding the parameters of the SVM; the second one uses a bisection process for computing the threshold. The architecture implementing the algorithm is described in detail and mapped on a real current-generation FPGA (Xilinx Virtex II). Its effectiveness is then tested on a channel equalization problem, where real-time performances are of paramount importance. PMID:18244555
SNPs selection using support vector regression and genetic algorithms in GWAS
2014-01-01
Introduction This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic algorithm. The proposed methodology is multi-attribute towards considering several markers simultaneously to explain the phenotype and is based jointly on statistical tools, machine learning and computational intelligence. Results The suggested method has shown potential in the simulated database 1, with additive effects only, and real database. In this simulated database, with a total of 1,000 markers, and 7 with major effect on the phenotype and the other 993 SNPs representing the noise, the method identified 21 markers. Of this total, 5 are relevant SNPs between the 7 but 16 are false positives. In real database, initially with 50,752 SNPs, we have reduced to 3,073 markers, increasing the accuracy of the model. In the simulated database 2, with additive effects and interactions (epistasis), the proposed method matched to the methodology most commonly used in GWAS. Conclusions The method suggested in this paper demonstrates the effectiveness in explaining the real phenotype (PTA for milk), because with the application of the wrapper based on genetic algorithm and Support Vector Regression with Pearson Universal, many redundant markers were eliminated, increasing the prediction and accuracy of the model on the real database without quality control filters. The PUK demonstrated that it can replicate the performance of linear and RBF kernels. PMID:25573332
NASA Technical Reports Server (NTRS)
Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri
2004-01-01
Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.
Zhang, Daqing; Xiao, Jianfeng; Zhou, Nannan; Zheng, Mingyue; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian
2015-01-01
Blood-brain barrier (BBB) is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM) is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA) to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA)/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration. PMID:26504797
Automatic ultrasonic breast lesions detection using support vector machine based algorithm
NASA Astrophysics Data System (ADS)
Yeh, Chih-Kuang; Miao, Shan-Jung; Fan, Wei-Che; Chen, Yung-Sheng
2007-03-01
It is difficult to automatically detect tumors and extract lesion boundaries in ultrasound images due to the variance in shape, the interference from speckle noise, and the low contrast between objects and background. The enhancement of ultrasonic image becomes a significant task before performing lesion classification, which was usually done with manual delineation of the tumor boundaries in the previous works. In this study, a linear support vector machine (SVM) based algorithm is proposed for ultrasound breast image training and classification. Then a disk expansion algorithm is applied for automatically detecting lesions boundary. A set of sub-images including smooth and irregular boundaries in tumor objects and those in speckle-noised background are trained by the SVM algorithm to produce an optimal classification function. Based on this classification model, each pixel within an ultrasound image is classified into either object or background oriented pixel. This enhanced binary image can highlight the object and suppress the speckle noise; and it can be regarded as degraded paint character (DPC) image containing closure noise, which is well known in perceptual organization of psychology. An effective scheme of removing closure noise using iterative disk expansion method has been successfully demonstrated in our previous works. The boundary detection of ultrasonic breast lesions can be further equivalent to the removal of speckle noise. By applying the disk expansion method to the binary image, we can obtain a significant radius-based image where the radius for each pixel represents the corresponding disk covering the specific object information. Finally, a signal transmission process is used for searching the complete breast lesion region and thus the desired lesion boundary can be effectively and automatically determined. Our algorithm can be performed iteratively until all desired objects are detected. Simulations and clinical images were introduced to
Prediction of hourly O 3 concentrations using support vector regression algorithms
NASA Astrophysics Data System (ADS)
Ortiz-García, E. G.; Salcedo-Sanz, S.; Pérez-Bellido, Á. M.; Portilla-Figueras, J. A.; Prieto, L.
2010-11-01
In this paper we present an application of the Support Vector Regression algorithm (SVMr) to the prediction of hourly ozone values in Madrid urban area. In order to improve the training capacity of SVMrs, we have used a recently proposed approach, based on reductions of the SVMr hyper-parameters search space. Using the modified SVMr, we study different influences which may modify the ozone prediction, such as previous ozone measurements in a given station, measurements in neighbors stations, and the influence of meteorologic variables. We use statistical tests to verify the significance of incorporating different variables into the SVMr. A comparison with the results obtained using a neural network (multi-layer perceptron) is also carried out. This study has been carried out in 5 different stations of the air pollution monitoring network of Madrid, so the conclusions raised are backed by real data. The final result of the work is a robust and powerful software for tropospheric ozone prediction in Madrid. Also, the prediction tool based on SVMr is flexible enough to incorporate any other prediction variable, such as city models, or traffic patters, which may improve the prediction obtained with the SVMr.
The construction of support vector machine classifier using the firefly algorithm.
Chao, Chih-Feng; Horng, Ming-Huwi
2015-01-01
The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy. PMID:25802511
Retrieve the evaporation duct height by least-squares support vector machine algorithm
NASA Astrophysics Data System (ADS)
Douvenot, Remi; Fabbro, Vincent; Bourlier, Christophe; Saillard, Joseph; Fuchs, Hans-Hellmuth; Essen, Helmut; Foerster, Joerg
2009-01-01
The detection and tracking of naval targets, including low Radar Cross Section (RCS) objects like inflatable boats or sea skimming missiles requires a thorough knowledge of the propagation properties of the maritime boundary layer. Models are in existence, which allow a prediction of the propagation factor using the parabolic equation algorithm. As a necessary input, the refractive index has to be known. This index, however, is strongly influenced by the actual atmospheric conditions, characterized mainly by temperature, humidity and air pressure. An approach is initiated to retrieve the vertical profile of the refractive index from the propagation factor measured on an onboard target. The method is based on the LS-SVM (Least-Squares Support Vector Machines) theory. The inversion method is here used to determine refractive index from data measured during the VAMPIRA campaign (Validation Measurement for Propagation in the Infrared and RAdar) conducted as a multinational approach over a transmission path across the Baltic Sea. As a propagation factor has been measured on two reference reflectors mounted onboard a naval vessel at different heights, the inversion method can be tested on both heights. The paper describes the experimental campaign and validates the LS-SVM inversion method for refractivity from propagation factor on simple measured data.
The Construction of Support Vector Machine Classifier Using the Firefly Algorithm
Chao, Chih-Feng; Horng, Ming-Huwi
2015-01-01
The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy. PMID:25802511
Automated beam placement for breast radiotherapy using a support vector machine based algorithm
Zhao Xuan; Kong, Dewen; Jozsef, Gabor; Chang, Jenghwa; Wong, Edward K.; Formenti, Silvia C.; Wang Yao
2012-05-15
Purpose: To develop an automated beam placement technique for whole breast radiotherapy using tangential beams. We seek to find optimal parameters for tangential beams to cover the whole ipsilateral breast (WB) and minimize the dose to the organs at risk (OARs). Methods: A support vector machine (SVM) based method is proposed to determine the optimal posterior plane of the tangential beams. Relative significances of including/avoiding the volumes of interests are incorporated into the cost function of the SVM. After finding the optimal 3-D plane that separates the whole breast (WB) and the included clinical target volumes (CTVs) from the OARs, the gantry angle, collimator angle, and posterior jaw size of the tangential beams are derived from the separating plane equation. Dosimetric measures of the treatment plans determined by the automated method are compared with those obtained by applying manual beam placement by the physicians. The method can be further extended to use multileaf collimator (MLC) blocking by optimizing posterior MLC positions. Results: The plans for 36 patients (23 prone- and 13 supine-treated) with left breast cancer were analyzed. Our algorithm reduced the volume of the heart that receives >500 cGy dose (V5) from 2.7 to 1.7 cm{sup 3} (p = 0.058) on average and the volume of the ipsilateral lung that receives >1000 cGy dose (V10) from 55.2 to 40.7 cm{sup 3} (p = 0.0013). The dose coverage as measured by volume receiving >95% of the prescription dose (V95%) of the WB without a 5 mm superficial layer decreases by only 0.74% (p = 0.0002) and the V95% for the tumor bed with 1.5 cm margin remains unchanged. Conclusions: This study has demonstrated the feasibility of using a SVM-based algorithm to determine optimal beam placement without a physician's intervention. The proposed method reduced the dose to OARs, especially for supine treated patients, without any relevant degradation of dose homogeneity and coverage in general.
NASA Astrophysics Data System (ADS)
Wang, Tiebing; Zhou, Yiyu; Xu, Shenda; Cheng, Chuxiong
2015-11-01
A new classification algorithm based on multi-kernel support vector machine (SVM) was proposed for classification problems on infrared cloud background image. The experimental results show that the method integrates the advantages of polynomial kernel functions, Gaussian radial kernel functions and multilayer perception kernel functions. Compared with the traditional single-kernel SVM classification method, the proposed method has better performance both in local interpolation and global extrapolation, and is more suitable for SVM classification problems when the training sample size is small. Experimental results show the superiority of the proposed algorithm..
NASA Astrophysics Data System (ADS)
He, Tao; Sun, Yu-Jun; Xu, Ji-De; Wang, Xue-Jun; Hu, Chang-Ru
2014-01-01
Land use/cover (LUC) classification plays an important role in remote sensing and land change science. Because of the complexity of ground covers, LUC classification is still regarded as a difficult task. This study proposed a fusion algorithm, which uses support vector machines (SVM) and fuzzy k-means (FKM) clustering algorithms. The main scheme was divided into two steps. First, a clustering map was obtained from the original remote sensing image using FKM; simultaneously, a normalized difference vegetation index layer was extracted from the original image. Then, the classification map was generated by using an SVM classifier. Three different classification algorithms were compared, tested, and verified-parametric (maximum likelihood), nonparametric (SVM), and hybrid (unsupervised-supervised, fusion of SVM and FKM) classifiers, respectively. The proposed algorithm obtained the highest overall accuracy in our experiments.
A Nonlinear Adaptive Beamforming Algorithm Based on Least Squares Support Vector Regression
Wang, Lutao; Jin, Gang; Li, Zhengzhou; Xu, Hongbin
2012-01-01
To overcome the performance degradation in the presence of steering vector mismatches, strict restrictions on the number of available snapshots, and numerous interferences, a novel beamforming approach based on nonlinear least-square support vector regression machine (LS-SVR) is derived in this paper. In this approach, the conventional linearly constrained minimum variance cost function used by minimum variance distortionless response (MVDR) beamformer is replaced by a squared-loss function to increase robustness in complex scenarios and provide additional control over the sidelobe level. Gaussian kernels are also used to obtain better generalization capacity. This novel approach has two highlights, one is a recursive regression procedure to estimate the weight vectors on real-time, the other is a sparse model with novelty criterion to reduce the final size of the beamformer. The analysis and simulation tests show that the proposed approach offers better noise suppression capability and achieve near optimal signal-to-interference-and-noise ratio (SINR) with a low computational burden, as compared to other recently proposed robust beamforming techniques.
Ju, Zhe; Gu, Hong
2016-08-15
As one important post-translational modification of prokaryotic proteins, pupylation plays a key role in regulating various biological processes. The accurate identification of pupylation sites is crucial for understanding the underlying mechanisms of pupylation. Although several computational methods have been developed for the identification of pupylation sites, the prediction accuracy of them is still unsatisfactory. Here, a novel bioinformatics tool named IMP-PUP is proposed to improve the prediction of pupylation sites. IMP-PUP is constructed on the composition of k-spaced amino acid pairs and trained with a modified semi-supervised self-training support vector machine (SVM) algorithm. The proposed algorithm iteratively trains a series of support vector machine classifiers on both annotated and non-annotated pupylated proteins. Computational results show that IMP-PUP achieves the area under receiver operating characteristic curves of 0.91, 0.73, and 0.75 on our training set, Tung's testing set, and our testing set, respectively, which are better than those of the different error costs SVM algorithm and the original self-training SVM algorithm. Independent tests also show that IMP-PUP significantly outperforms three other existing pupylation site predictors: GPS-PUP, iPUP, and pbPUP. Therefore, IMP-PUP can be a useful tool for accurate prediction of pupylation sites. A MATLAB software package for IMP-PUP is available at https://juzhe1120.github.io/. PMID:27197054
A neural support vector machine.
Jändel, Magnus
2010-06-01
Support vector machines are state-of-the-art pattern recognition algorithms that are well founded in optimization and generalization theory but not obviously applicable to the brain. This paper presents Bio-SVM, a biologically feasible support vector machine. An unstable associative memory oscillates between support vectors and interacts with a feed-forward classification pathway. Kernel neurons blend support vectors and sensory input. Downstream temporal integration generates the classification. Instant learning of surprising events and off-line tuning of support vector weights trains the system. Emotion-based learning, forgetting trivia, sleep and brain oscillations are phenomena that agree with the Bio-SVM model. A mapping to the olfactory system is suggested. PMID:20092978
Saberkari, Hamidreza; Shamsi, Mousa; Joroughi, Mahsa; Golabi, Faegheh; Sedaaghi, Mohammad Hossein
2014-10-01
Microarray data have an important role in identification and classification of the cancer tissues. Having a few samples of microarrays in cancer researches is always one of the most concerns which lead to some problems in designing the classifiers. For this matter, preprocessing gene selection techniques should be utilized before classification to remove the noninformative genes from the microarray data. An appropriate gene selection method can significantly improve the performance of cancer classification. In this paper, we use selective independent component analysis (SICA) for decreasing the dimension of microarray data. Using this selective algorithm, we can solve the instability problem occurred in the case of employing conventional independent component analysis (ICA) methods. First, the reconstruction error and selective set are analyzed as independent components of each gene, which have a small part in making error in order to reconstruct new sample. Then, some of the modified support vector machine (υ-SVM) algorithm sub-classifiers are trained, simultaneously. Eventually, the best sub-classifier with the highest recognition rate is selected. The proposed algorithm is applied on three cancer datasets (leukemia, breast cancer and lung cancer datasets), and its results are compared with other existing methods. The results illustrate that the proposed algorithm (SICA + υ-SVM) has higher accuracy and validity in order to increase the classification accuracy. Such that, our proposed algorithm exhibits relative improvements of 3.3% in correctness rate over ICA + SVM and SVM algorithms in lung cancer dataset. PMID:25426433
Chen, Zhiru; Hong, Wenxue
2016-02-01
Considering the low accuracy of prediction in the positive samples and poor overall classification effects caused by unbalanced sample data of MicroRNA (miRNA) target, we proposes a support vector machine (SVM)-integration of under-sampling and weight (IUSM) algorithm in this paper, an under-sampling based on the ensemble learning algorithm. The algorithm adopts SVM as learning algorithm and AdaBoost as integration framework, and embeds clustering-based under-sampling into the iterative process, aiming at reducing the degree of unbalanced distribution of positive and negative samples. Meanwhile, in the process of adaptive weight adjustment of the samples, the SVM-IUSM algorithm eliminates the abnormal ones in negative samples with robust sample weights smoothing mechanism so as to avoid over-learning. Finally, the prediction of miRNA target integrated classifier is achieved with the combination of multiple weak classifiers through the voting mechanism. The experiment revealed that the SVM-IUSW, compared with other algorithms on unbalanced dataset collection, could not only improve the accuracy of positive targets and the overall effect of classification, but also enhance the generalization ability of miRNA target classifier. PMID:27382743
Shahrudin, Shahriza
2015-01-01
This study concerns an attempt to establish a new method for predicting antimicrobial peptides (AMPs) which are important to the immune system. Recently, researchers are interested in designing alternative drugs based on AMPs because they have found that a large number of bacterial strains have become resistant to available antibiotics. However, researchers have encountered obstacles in the AMPs designing process as experiments to extract AMPs from protein sequences are costly and require a long set-up time. Therefore, a computational tool for AMPs prediction is needed to resolve this problem. In this study, an integrated algorithm is newly introduced to predict AMPs by integrating sequence alignment and support vector machine- (SVM-) LZ complexity pairwise algorithm. It was observed that, when all sequences in the training set are used, the sensitivity of the proposed algorithm is 95.28% in jackknife test and 87.59% in independent test, while the sensitivity obtained for jackknife test and independent test is 88.74% and 78.70%, respectively, when only the sequences that has less than 70% similarity are used. Applying the proposed algorithm may allow researchers to effectively predict AMPs from unknown protein peptide sequences with higher sensitivity. PMID:25802839
Nakayama, Chikao; Fujiwara, Koichi; Matsuo, Masahiro; Kano, Manabu; Kadotani, Hiroshi
2015-08-01
Although sleep apnea syndrome (SAS) is a common sleep disorder, most patients with sleep apnea are undiagnosed and untreated because it is difficult for patients themselves to notice SAS in daily living. Polysomnography (PSG) is a gold standard test for sleep disorder diagnosis, however PSG cannot be performed in many hospitals. This fact motivates us to develop an SAS screening system that can be used easily at home. The autonomic nervous function of a patient changes during apnea. Since changes in the autonomic nervous function affect fluctuation of the R-R interval (RRI) of an electrocardiogram (ECG), called heart rate variability (HRV), SAS can be detected through monitoring HRV. The present work proposes a new HRV-based SAS screening algorithm by utilizing support vector machine (SVM), which is a well-known pattern recognition method. In the proposed algorithm, various HRV features are derived from RRI data in both apnea and normal respiration periods of patients and healthy people, and an apnea/normal respiration (A/N) discriminant model is built from the derived HRV features by SVM. The result of applying the proposed SAS screening algorithm to clinical data demonstrates that it can discriminate patients with sleep apnea and healthy people appropriately. The sensitivity and the specificity of the proposed algorithm were 100% and 86%, respectively. PMID:26738189
Martins, Maria; Costa, Lino; Frizera, Anselmo; Ceres, Ramón; Santos, Cristina
2014-03-01
Walker devices are often prescribed incorrectly to patients, leading to the increase of dissatisfaction and occurrence of several problems, such as, discomfort and pain. Thus, it is necessary to objectively evaluate the effects that assisted gait can have on the gait patterns of walker users, comparatively to a non-assisted gait. A gait analysis, focusing on spatiotemporal and kinematics parameters, will be issued for this purpose. However, gait analysis yields redundant information that often is difficult to interpret. This study addresses the problem of selecting the most relevant gait features required to differentiate between assisted and non-assisted gait. For that purpose, it is presented an efficient approach that combines evolutionary techniques, based on genetic algorithms, and support vector machine algorithms, to discriminate differences between assisted and non-assisted gait with a walker with forearm supports. For comparison purposes, other classification algorithms are verified. Results with healthy subjects show that the main differences are characterized by balance and joints excursion in the sagittal plane. These results, confirmed by clinical evidence, allow concluding that this technique is an efficient feature selection approach. PMID:24444751
Ebtehaj, Isa; Bonakdari, Hossein
2016-01-01
Sediment transport without deposition is an essential consideration in the optimum design of sewer pipes. In this study, a novel method based on a combination of support vector regression (SVR) and the firefly algorithm (FFA) is proposed to predict the minimum velocity required to avoid sediment settling in pipe channels, which is expressed as the densimetric Froude number (Fr). The efficiency of support vector machine (SVM) models depends on the suitable selection of SVM parameters. In this particular study, FFA is used by determining these SVM parameters. The actual effective parameters on Fr calculation are generally identified by employing dimensional analysis. The different dimensionless variables along with the models are introduced. The best performance is attributed to the model that employs the sediment volumetric concentration (C(V)), ratio of relative median diameter of particles to hydraulic radius (d/R), dimensionless particle number (D(gr)) and overall sediment friction factor (λ(s)) parameters to estimate Fr. The performance of the SVR-FFA model is compared with genetic programming, artificial neural network and existing regression-based equations. The results indicate the superior performance of SVR-FFA (mean absolute percentage error = 2.123%; root mean square error =0.116) compared with other methods. PMID:27148727
Yang, Jun; Liang, Bin; Zhang, Tao; Song, Jingyan
2011-01-01
The star centroid estimation is the most important operation, which directly affects the precision of attitude determination for star sensors. This paper presents a theoretical study of the systematic error introduced by the star centroid estimation algorithm. The systematic error is analyzed through a frequency domain approach and numerical simulations. It is shown that the systematic error consists of the approximation error and truncation error which resulted from the discretization approximation and sampling window limitations, respectively. A criterion for choosing the size of the sampling window to reduce the truncation error is given in this paper. The systematic error can be evaluated as a function of the actual star centroid positions under different Gaussian widths of star intensity distribution. In order to eliminate the systematic error, a novel compensation algorithm based on the least squares support vector regression (LSSVR) with Radial Basis Function (RBF) kernel is proposed. Simulation results show that when the compensation algorithm is applied to the 5-pixel star sampling window, the accuracy of star centroid estimation is improved from 0.06 to 6 × 10−5 pixels. PMID:22164021
Yilmaz, Nihat; Inan, Onur
2013-01-01
This paper offers a hybrid approach that uses the artificial bee colony (ABC) algorithm for feature selection and support vector machines for classification. The purpose of this paper is to test the effect of elimination of the unimportant and obsolete features of the datasets on the success of the classification, using the SVM classifier. The developed approach conventionally used in liver diseases and diabetes diagnostics, which are commonly observed and reduce the quality of life, is developed. For the diagnosis of these diseases, hepatitis, liver disorders and diabetes datasets from the UCI database were used, and the proposed system reached a classification accuracies of 94.92%, 74.81%, and 79.29%, respectively. For these datasets, the classification accuracies were obtained by the help of the 10-fold cross-validation method. The results show that the performance of the method is highly successful compared to other results attained and seems very promising for pattern recognition applications. PMID:23983632
Wang, Wei; Chen, Xiyuan
2016-08-10
Modeling and compensation of temperature drift is an important method for improving the precision of fiber-optic gyroscopes (FOGs). In this paper, a new method of modeling and compensation for FOGs based on improved particle swarm optimization (PSO) and support vector machine (SVM) algorithms is proposed. The convergence speed and reliability of PSO are improved by introducing a dynamic inertia factor. The regression accuracy of SVM is improved by introducing a combined kernel function with four parameters and piecewise regression with fixed steps. The steps are as follows. First, the parameters of the combined kernel functions are optimized by the improved PSO algorithm. Second, the proposed kernel function of SVM is used to carry out piecewise regression, and the regression model is also obtained. Third, the temperature drift is compensated for by the regression data. The regression accuracy of the proposed method (in the case of mean square percentage error indicators) increased by 83.81% compared to the traditional SVM. PMID:27534465
NASA Astrophysics Data System (ADS)
Zhuo, Li; Zheng, Jing; Li, Xia; Wang, Fang; Ai, Bin; Qian, Junping
2008-10-01
The high-dimensional feature vectors of hyper spectral data often impose a high computational cost as well as the risk of "over fitting" when classification is performed. Therefore it is necessary to reduce the dimensionality through ways like feature selection. Currently, there are two kinds of feature selection methods: filter methods and wrapper methods. The former kind requires no feedback from classifiers and estimates the classification performance indirectly. The latter kind evaluates the "goodness" of selected feature subset directly based on the classification accuracy. Many experimental results have proved that the wrapper methods can yield better performance, although they have the disadvantage of high computational cost. In this paper, we present a Genetic Algorithm (GA) based wrapper method for classification of hyper spectral data using Support Vector Machine (SVM), a state-of-art classifier that has found success in a variety of areas. The genetic algorithm (GA), which seeks to solve optimization problems using the methods of evolution, specifically survival of the fittest, was used to optimize both the feature subset, i.e. band subset, of hyper spectral data and SVM kernel parameters simultaneously. A special strategy was adopted to reduce computation cost caused by the high-dimensional feature vectors of hyper spectral data when the feature subset part of chromosome was designed. The GA-SVM method was realized using the ENVI/IDL language, and was then tested by applying to a HYPERION hyper spectral image. Comparison of the optimized results and the un-optimized results showed that the GA-SVM method could significantly reduce the computation cost while improving the classification accuracy. The number of bands used for classification was reduced from 198 to 13, while the classification accuracy increased from 88.81% to 92.51%. The optimized values of the two SVM kernel parameters were 95.0297 and 0.2021, respectively, which were different from the
GAPS IN SUPPORT VECTOR OPTIMIZATION
STEINWART, INGO; HUSH, DON; SCOVEL, CLINT; LIST, NICOLAS
2007-01-29
We show that the stopping criteria used in many support vector machine (SVM) algorithms working on the dual can be interpreted as primal optimality bounds which in turn are known to be important for the statistical analysis of SVMs. To this end we revisit the duality theory underlying the derivation of the dual and show that in many interesting cases primal optimality bounds are the same as known dual optimality bounds.
Mortaheb, Parinaz; Rezaeian, Mehdi
2016-01-01
Segmentation and three-dimensional (3D) visualization of teeth in dental computerized tomography (CT) images are of dentists’ requirements for both abnormalities diagnosis and the treatments such as dental implant and orthodontic planning. On the other hand, dental CT image segmentation is a difficult process because of the specific characteristics of the tooth's structure. This paper presents a method for automatic segmentation of dental CT images. We present a multi-step method, which starts with a preprocessing phase to reduce the metal artifact using the least square support vector machine. Integral intensity profile is then applied to detect each tooth's region candidates. Finally, the mean shift algorithm is used to partition the region of each tooth, and all these segmented slices are then applied for 3D visualization of teeth. Examining the performance of our proposed approach, a set of reliable assessment metrics is utilized. We applied the segmentation method on 14 cone-beam CT datasets. Functionality analysis of the proposed method demonstrated precise segmentation results on different sample slices. Accuracy analysis of the proposed method indicates that we can increase the sensitivity, specificity, precision, and accuracy of the segmentation results by 83.24%, 98.35%, 72.77%, and 97.62% and decrease the error rate by 2.34%. The experimental results show that the proposed approach performs well on different types of CT images and has better performance than all existing approaches. Moreover, segmentation results can be more accurate by using the proposed algorithm of metal artifact reduction in the preprocessing phase. PMID:27014607
2010-01-01
Background Because a priori knowledge about function of G protein-coupled receptors (GPCRs) can provide useful information to pharmaceutical research, the determination of their function is a quite meaningful topic in protein science. However, with the rapid increase of GPCRs sequences entering into databanks, the gap between the number of known sequence and the number of known function is widening rapidly, and it is both time-consuming and expensive to determine their function based only on experimental techniques. Therefore, it is vitally significant to develop a computational method for quick and accurate classification of GPCRs. Results In this study, a novel three-layer predictor based on support vector machine (SVM) and feature selection is developed for predicting and classifying GPCRs directly from amino acid sequence data. The maximum relevance minimum redundancy (mRMR) is applied to pre-evaluate features with discriminative information while genetic algorithm (GA) is utilized to find the optimized feature subsets. SVM is used for the construction of classification models. The overall accuracy with three-layer predictor at levels of superfamily, family and subfamily are obtained by cross-validation test on two non-redundant dataset. The results are about 0.5% to 16% higher than those of GPCR-CA and GPCRPred. Conclusion The results with high success rates indicate that the proposed predictor is a useful automated tool in predicting GPCRs. GPCR-SVMFS, a corresponding executable program for GPCRs prediction and classification, can be acquired freely on request from the authors. PMID:20550715
ERIC Educational Resources Information Center
Araya, Roberto; Plana, Francisco; Dartnell, Pablo; Soto-Andrade, Jorge; Luci, Gina; Salinas, Elena; Araya, Marylen
2012-01-01
Teacher practice is normally assessed by observers who watch classes or videos of classes. Here, we analyse an alternative strategy that uses text transcripts and a support vector machine classifier. For each one of the 710 videos of mathematics classes from the 2005 Chilean National Teacher Assessment Programme, a single 4-minute slice was…
Isomap based supporting vector machine
NASA Astrophysics Data System (ADS)
Liang, W. N.
2015-12-01
This research presents a new isomap based supporting vector machine method. Isomap is a dimension reduction method which is able to analyze nonlinear relationship of data on manifolds. Accordingly, support vector machine is established on the isomap manifold to classify given and predict unknown data. A case study of the isomap based supporting vector machine for environmental planning problems is conducted.
Hlihor, Raluca Maria; Diaconu, Mariana; Leon, Florin; Curteanu, Silvia; Tavares, Teresa; Gavrilescu, Maria
2015-05-25
We investigated the bioremoval of Cd(II) in batch mode, using dead and living biomass of Trichoderma viride. Kinetic studies revealed three distinct stages of the biosorption process. The pseudo-second order model and the Langmuir model described well the kinetics and equilibrium of the biosorption process, with a determination coefficient, R(2)>0.99. The value of the mean free energy of adsorption, E, is less than 16 kJ/mol at 25 °C, suggesting that, at low temperature, the dominant process involved in Cd(II) biosorption by dead T. viride is the chemical ion-exchange. With the temperature increasing to 40-50 °C, E values are above 16 kJ/mol, showing that the particle diffusion mechanism could play an important role in Cd(II) biosorption. The studies on T. viride growth in Cd(II) solutions and its bioaccumulation performance showed that the living biomass was able to bioaccumulate 100% Cd(II) from a 50 mg/L solution at pH 6.0. The influence of pH, biomass dosage, metal concentration, contact time and temperature on the bioremoval efficiency was evaluated to further assess the biosorption capability of the dead biosorbent. These complex influences were correlated by means of a modeling procedure consisting in data driven approach in which the principles of artificial intelligence were applied with the help of support vector machines (SVM), combined with genetic algorithms (GA). According to our data, the optimal working conditions for the removal of 98.91% Cd(II) by T. viride were found for an aqueous solution containing 26.11 mg/L Cd(II) as follows: pH 6.0, contact time of 3833 min, 8 g/L biosorbent, temperature 46.5 °C. The complete characterization of bioremoval parameters indicates that T. viride is an excellent material to treat wastewater containing low concentrations of metal. PMID:25224921
Lin, Wei-Qi; Jiang, Jian-Hui; Zhou, Yan-Ping; Wu, Hai-Long; Shen, Guo-Li; Yu, Ru-Qin
2007-01-30
Multilayer feedforward neural networks (MLFNNs) are important modeling techniques widely used in QSAR studies for their ability to represent nonlinear relationships between descriptors and activity. However, the problems of overfitting and premature convergence to local optima still pose great challenges in the practice of MLFNNs. To circumvent these problems, a support vector machine (SVM) based training algorithm for MLFNNs has been developed with the incorporation of particle swarm optimization (PSO). The introduction of the SVM based training mechanism imparts the developed algorithm with inherent capacity for combating the overfitting problem. Moreover, with the implementation of PSO for searching the optimal network weights, the SVM based learning algorithm shows relatively high efficiency in converging to the optima. The proposed algorithm has been evaluated using the Hansch data set. Application to QSAR studies of the activity of COX-2 inhibitors is also demonstrated. The results reveal that this technique provides superior performance to backpropagation (BP) and PSO training neural networks. PMID:17186488
Ocak, Hasan
2013-04-01
A new scheme was presented in this study for the evaluation of fetal well-being from the cardiotocogram (CTG) recordings using support vector machines (SVM) and the genetic algorithm (GA). CTG recordings consist of fetal heart rate (FHR) and the uterine contraction (UC) signals and are widely used by obstetricians for assessing fetal well-being. Features extracted from normal and pathological FHR and UC signals were used to construct an SVM based classifier. The GA was then used to find the optimal feature subset that maximizes the classification performance of the SVM based normal and pathological CTG classifier. An extensive clinical CTG data, classified by three expert obstetricians, was used to test the performance of the new scheme. It was demonstrated that the new scheme was able to predict the fetal state as normal or pathological with 99.3 % and 100 % accuracy, respectively. The results reveal that, the GA can be used to determine the critical features to be used in evaluating fetal well-being and consequently increase the classification performance. When compared to widely used ANN and ANFIS based methods, the proposed scheme performed considerably better. PMID:23321973
Multiscale hierarchical support vector clustering
NASA Astrophysics Data System (ADS)
Hansen, Michael Saas; Holm, David Alberg; Sjöstrand, Karl; Ley, Carsten Dan; Rowland, Ian John; Larsen, Rasmus
2008-03-01
Clustering is the preferred choice of method in many applications, and support vector clustering (SVC) has proven efficient for clustering noisy and high-dimensional data sets. A method for multiscale support vector clustering is demonstrated, using the recently emerged method for fast calculation of the entire regularization path of the support vector domain description. The method is illustrated on artificially generated examples, and applied for detecting blood vessels from high resolution time series of magnetic resonance imaging data. The obtained results are robust while the need for parameter estimation is reduced, compared to support vector clustering.
NASA Astrophysics Data System (ADS)
Harwati; Ikha Virdyanawaty, Riezky; Mansur, Agus
2016-01-01
Industrial Engineering is one of the departments in Faculty of Industrial Technology. It has more than 200 reshmen in every academic year. However, many students are dropped out because they couldn't complete their study in appropriate time. Variables that influence the drop out case are not yet studied. The objective of this paper is discovering the highest accuracy level between the two methods used, i.e. Naïve Bayesand Support Vector Machines algorithms. The method with the highest accuracy will be discovered from the patterns forms and parameters of every attribute which most influence the students’ length of study period. The result shows that the highest accuracy method is Naïve Bayes Algorithm with accuracy degree of 80.67%. Discussion of this paper emphasizes on the variables that influence the students’ study period.
NASA Astrophysics Data System (ADS)
Lenhardt, L.; Zeković, I.; Dramićanin, T.; Tešić, Ž.; Milojković-Opsenica, D.; Dramićanin, M. D.
2014-09-01
In recent years, the potential of Fourier-transform infrared spectroscopy coupled with different chemometric tools in food analysis has been established. This technique is rapid, low cost, and reliable and requires little sample preparation. In this work, 130 Serbian unifloral honey samples (linden, acacia, and sunflower types) were analyzed using attenuated total reflectance infrared spectroscopy (ATR-IR). For each spectrum, 64 scans were recorded in wavenumbers between 4000 and 500 cm-1 and at a spectral resolution of 4 cm-1. These spectra were analyzed using principal component analysis (PCA), and calculated principal components were then used for support vector machine (SVM) training. In this way, the pattern-recognition tool is obtained for building a classification model for determining the botanical origin of honey. The PCA was used to analyze results and to see if the separation between groups of different types of honeys exists. Using the SVM, the classification model was built and classification errors were acquired. It has been observed that this technique is adequate for determining the botanical origin of honey with a success rate of 98.6%. Based on these results, it can be concluded that this technique offers many possibilities for future rapid qualitative analysis of honey.
Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Liu, Ze; Xu, Jing
2016-01-01
Shearers play an important role in fully mechanized coal mining face and accurately identifying their cutting pattern is very helpful for improving the automation level of shearers and ensuring the safety of coal mining. The least squares support vector machine (LSSVM) has been proven to offer strong potential in prediction and classification issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. In this paper, an improved fly optimization algorithm (IFOA) to optimize the parameters of LSSVM was presented and the LSSVM coupled with IFOA (IFOA-LSSVM) was used to identify the shearer cutting pattern. The vibration acceleration signals of five cutting patterns were collected and the special state features were extracted based on the ensemble empirical mode decomposition (EEMD) and the kernel function. Some examples on the IFOA-LSSVM model were further presented and the results were compared with LSSVM, PSO-LSSVM, GA-LSSVM and FOA-LSSVM models in detail. The comparison results indicate that the proposed approach was feasible, efficient and outperformed the others. Finally, an industrial application example at the coal mining face was demonstrated to specify the effect of the proposed system. PMID:26771615
NASA Astrophysics Data System (ADS)
Chen, Xia; Hu, Hong-li; Liu, Fei; Gao, Xiang Xiang
2011-10-01
The task of image reconstruction for an electrical capacitance tomography (ECT) system is to determine the permittivity distribution and hence the phase distribution in a pipeline by measuring the electrical capacitances between sets of electrodes placed around its periphery. In view of the nonlinear relationship between the permittivity distribution and capacitances and the limited number of independent capacitance measurements, image reconstruction for ECT is a nonlinear and ill-posed inverse problem. To solve this problem, a new image reconstruction method for ECT based on a least-squares support vector machine (LS-SVM) combined with a self-adaptive particle swarm optimization (PSO) algorithm is presented. Regarded as a special small sample theory, the SVM avoids the issues appearing in artificial neural network methods such as difficult determination of a network structure, over-learning and under-learning. However, the SVM performs differently with different parameters. As a relatively new population-based evolutionary optimization technique, PSO is adopted to realize parameters' effective selection with the advantages of global optimization and rapid convergence. This paper builds up a 12-electrode ECT system and a pneumatic conveying platform to verify this image reconstruction algorithm. Experimental results indicate that the algorithm has good generalization ability and high-image reconstruction quality.
Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Liu, Ze; Xu, Jing
2016-01-01
Shearers play an important role in fully mechanized coal mining face and accurately identifying their cutting pattern is very helpful for improving the automation level of shearers and ensuring the safety of coal mining. The least squares support vector machine (LSSVM) has been proven to offer strong potential in prediction and classification issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. In this paper, an improved fly optimization algorithm (IFOA) to optimize the parameters of LSSVM was presented and the LSSVM coupled with IFOA (IFOA-LSSVM) was used to identify the shearer cutting pattern. The vibration acceleration signals of five cutting patterns were collected and the special state features were extracted based on the ensemble empirical mode decomposition (EEMD) and the kernel function. Some examples on the IFOA-LSSVM model were further presented and the results were compared with LSSVM, PSO-LSSVM, GA-LSSVM and FOA-LSSVM models in detail. The comparison results indicate that the proposed approach was feasible, efficient and outperformed the others. Finally, an industrial application example at the coal mining face was demonstrated to specify the effect of the proposed system. PMID:26771615
Yang, Qin; Zou, Hong-Yan; Zhang, Yan; Tang, Li-Juan; Shen, Guo-Li; Jiang, Jian-Hui; Yu, Ru-Qin
2016-01-15
Most of the proteins locate more than one organelle in a cell. Unmixing the localization patterns of proteins is critical for understanding the protein functions and other vital cellular processes. Herein, non-linear machine learning technique is proposed for the first time upon protein pattern unmixing. Variable-weighted support vector machine (VW-SVM) is a demonstrated robust modeling technique with flexible and rational variable selection. As optimized by a global stochastic optimization technique, particle swarm optimization (PSO) algorithm, it makes VW-SVM to be an adaptive parameter-free method for automated unmixing of protein subcellular patterns. Results obtained by pattern unmixing of a set of fluorescence microscope images of cells indicate VW-SVM as optimized by PSO is able to extract useful pattern features by optimally rescaling each variable for non-linear SVM modeling, consequently leading to improved performances in multiplex protein pattern unmixing compared with conventional SVM and other exiting pattern unmixing methods. PMID:26592652
Progressive Classification Using Support Vector Machines
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri; Kocurek, Michael
2009-01-01
An algorithm for progressive classification of data, analogous to progressive rendering of images, makes it possible to compromise between speed and accuracy. This algorithm uses support vector machines (SVMs) to classify data. An SVM is a machine learning algorithm that builds a mathematical model of the desired classification concept by identifying the critical data points, called support vectors. Coarse approximations to the concept require only a few support vectors, while precise, highly accurate models require far more support vectors. Once the model has been constructed, the SVM can be applied to new observations. The cost of classifying a new observation is proportional to the number of support vectors in the model. When computational resources are limited, an SVM of the appropriate complexity can be produced. However, if the constraints are not known when the model is constructed, or if they can change over time, a method for adaptively responding to the current resource constraints is required. This capability is particularly relevant for spacecraft (or any other real-time systems) that perform onboard data analysis. The new algorithm enables the fast, interactive application of an SVM classifier to a new set of data. The classification process achieved by this algorithm is characterized as progressive because a coarse approximation to the true classification is generated rapidly and thereafter iteratively refined. The algorithm uses two SVMs: (1) a fast, approximate one and (2) slow, highly accurate one. New data are initially classified by the fast SVM, producing a baseline approximate classification. For each classified data point, the algorithm calculates a confidence index that indicates the likelihood that it was classified correctly in the first pass. Next, the data points are sorted by their confidence indices and progressively reclassified by the slower, more accurate SVM, starting with the items most likely to be incorrectly classified. The user
Vector Quantization Algorithm Based on Associative Memories
NASA Astrophysics Data System (ADS)
Guzmán, Enrique; Pogrebnyak, Oleksiy; Yáñez, Cornelio; Manrique, Pablo
This paper presents a vector quantization algorithm for image compression based on extended associative memories. The proposed algorithm is divided in two stages. First, an associative network is generated applying the learning phase of the extended associative memories between a codebook generated by the LBG algorithm and a training set. This associative network is named EAM-codebook and represents a new codebook which is used in the next stage. The EAM-codebook establishes a relation between training set and the LBG codebook. Second, the vector quantization process is performed by means of the recalling stage of EAM using as associative memory the EAM-codebook. This process generates a set of the class indices to which each input vector belongs. With respect to the LBG algorithm, the main advantages offered by the proposed algorithm is high processing speed and low demand of resources (system memory); results of image compression and quality are presented.
Support vector machines for spam categorization.
Drucker, H; Wu, D; Vapnik, V N
1999-01-01
We study the use of support vector machines (SVM's) in classifying e-mail as spam or nonspam by comparing it to three other classification algorithms: Ripper, Rocchio, and boosting decision trees. These four algorithms were tested on two different data sets: one data set where the number of features were constrained to the 1000 best features and another data set where the dimensionality was over 7000. SVM's performed best when using binary features. For both data sets, boosting trees and SVM's had acceptable test performance in terms of accuracy and speed. However, SVM's had significantly less training time. PMID:18252607
[Orthogonal Vector Projection Algorithm for Spectral Unmixing].
Song, Mei-ping; Xu, Xing-wei; Chang, Chein-I; An, Ju-bai; Yao, Li
2015-12-01
Spectrum unmixing is an important part of hyperspectral technologies, which is essential for material quantity analysis in hyperspectral imagery. Most linear unmixing algorithms require computations of matrix multiplication and matrix inversion or matrix determination. These are difficult for programming, especially hard for realization on hardware. At the same time, the computation costs of the algorithms increase significantly as the number of endmembers grows. Here, based on the traditional algorithm Orthogonal Subspace Projection, a new method called. Orthogonal Vector Projection is prompted using orthogonal principle. It simplifies this process by avoiding matrix multiplication and inversion. It firstly computes the final orthogonal vector via Gram-Schmidt process for each endmember spectrum. And then, these orthogonal vectors are used as projection vector for the pixel signature. The unconstrained abundance can be obtained directly by projecting the signature to the projection vectors, and computing the ratio of projected vector length and orthogonal vector length. Compared to the Orthogonal Subspace Projection and Least Squares Error algorithms, this method does not need matrix inversion, which is much computation costing and hard to implement on hardware. It just completes the orthogonalization process by repeated vector operations, easy for application on both parallel computation and hardware. The reasonability of the algorithm is proved by its relationship with Orthogonal Sub-space Projection and Least Squares Error algorithms. And its computational complexity is also compared with the other two algorithms', which is the lowest one. At last, the experimental results on synthetic image and real image are also provided, giving another evidence for effectiveness of the method. PMID:26964231
Support vector machine (SVM) was applied for land-cover characterization using MODIS time-series data. Classification performance was examined with respect to training sample size, sample variability, and landscape homogeneity (purity). The results were compared to two convention...
Automated image segmentation using support vector machines
NASA Astrophysics Data System (ADS)
Powell, Stephanie; Magnotta, Vincent A.; Andreasen, Nancy C.
2007-03-01
Neurodegenerative and neurodevelopmental diseases demonstrate problems associated with brain maturation and aging. Automated methods to delineate brain structures of interest are required to analyze large amounts of imaging data like that being collected in several on going multi-center studies. We have previously reported on using artificial neural networks (ANN) to define subcortical brain structures including the thalamus (0.88), caudate (0.85) and the putamen (0.81). In this work, apriori probability information was generated using Thirion's demons registration algorithm. The input vector consisted of apriori probability, spherical coordinates, and an iris of surrounding signal intensity values. We have applied the support vector machine (SVM) machine learning algorithm to automatically segment subcortical and cerebellar regions using the same input vector information. SVM architecture was derived from the ANN framework. Training was completed using a radial-basis function kernel with gamma equal to 5.5. Training was performed using 15,000 vectors collected from 15 training images in approximately 10 minutes. The resulting support vectors were applied to delineate 10 images not part of the training set. Relative overlap calculated for the subcortical structures was 0.87 for the thalamus, 0.84 for the caudate, 0.84 for the putamen, and 0.72 for the hippocampus. Relative overlap for the cerebellar lobes ranged from 0.76 to 0.86. The reliability of the SVM based algorithm was similar to the inter-rater reliability between manual raters and can be achieved without rater intervention.
Ghaedi, M; Dashtian, K; Ghaedi, A M; Dehghanian, N
2016-05-11
The aim of this work is the study of the predictive ability of a hybrid model of support vector regression with genetic algorithm optimization (GA-SVR) for the adsorption of malachite green (MG) onto multi-walled carbon nanotubes (MWCNTs). Various factors were investigated by central composite design and optimum conditions was set as: pH 8, 0.018 g MWCNTs, 8 mg L(-1) dye mixed with 50 mL solution thoroughly for 10 min. The Langmuir, Freundlich, Temkin and D-R isothermal models are applied to fitting the experimental data, and the data was well explained by the Langmuir model with a maximum adsorption capacity of 62.11-80.64 mg g(-1) in a short time at 25 °C. Kinetic studies at various adsorbent dosages and the initial MG concentration show that maximum MG removal was achieved within 10 min of the start of every experiment under most conditions. The adsorption obeys the pseudo-second-order rate equation in addition to the intraparticle diffusion model. The optimal parameters (C of 0.2509, σ(2) of 0.1288 and ε of 0.2018) for the SVR model were obtained based on the GA. For the testing data set, MSE values of 0.0034 and the coefficient of determination (R(2)) values of 0.9195 were achieved. PMID:27119755
Support Vector Machine-Based Endmember Extraction
Filippi, Anthony M; Archibald, Richard K
2009-01-01
Introduced in this paper is the utilization of Support Vector Machines (SVMs) to automatically perform endmember extraction from hyperspectral data. The strengths of SVM are exploited to provide a fast and accurate calculated representation of high-dimensional data sets that may consist of multiple distributions. Once this representation is computed, the number of distributions can be determined without prior knowledge. For each distribution, an optimal transform can be determined that preserves informational content while reducing the data dimensionality, and hence, the computational cost. Finally, endmember extraction for the whole data set is accomplished. Results indicate that this Support Vector Machine-Based Endmember Extraction (SVM-BEE) algorithm has the capability of autonomously determining endmembers from multiple clusters with computational speed and accuracy, while maintaining a robust tolerance to noise.
Kandaswamy, Krishna Kumar; Pugalenthi, Ganesan; Möller, Steffen; Hartmann, Enno; Kalies, Kai-Uwe; Suganthan, P N; Martinetz, Thomas
2010-12-01
Apoptosis is an essential process for controlling tissue homeostasis by regulating a physiological balance between cell proliferation and cell death. The subcellular locations of proteins performing the cell death are determined by mostly independent cellular mechanisms. The regular bioinformatics tools to predict the subcellular locations of such apoptotic proteins do often fail. This work proposes a model for the sorting of proteins that are involved in apoptosis, allowing us to both the prediction of their subcellular locations as well as the molecular properties that contributed to it. We report a novel hybrid Genetic Algorithm (GA)/Support Vector Machine (SVM) approach to predict apoptotic protein sequences using 119 sequence derived properties like frequency of amino acid groups, secondary structure, and physicochemical properties. GA is used for selecting a near-optimal subset of informative features that is most relevant for the classification. Jackknife cross-validation is applied to test the predictive capability of the proposed method on 317 apoptosis proteins. Our method achieved 85.80% accuracy using all 119 features and 89.91% accuracy for 25 features selected by GA. Our models were examined by a test dataset of 98 apoptosis proteins and obtained an overall accuracy of 90.34%. The results show that the proposed approach is promising; it is able to select small subsets of features and still improves the classification accuracy. Our model can contribute to the understanding of programmed cell death and drug discovery. The software and dataset are available at http://www.inb.uni-luebeck.de/tools-demos/apoptosis/GASVM. PMID:20666727
Vector processor algorithms for transonic flow calculations
NASA Technical Reports Server (NTRS)
South, J. C., Jr.; Keller, J. D.; Hafez, M. M.
1979-01-01
This paper discusses a number of algorithms for solving the transonic full-potential equation in conservative form on a vector computer, such as the CDC STAR-100 or the CRAY-1. Recent research with the 'artificial density' method for transonics has led to development of some new iteration schemes which take advantage of vector-computer architecture without suffering significant loss of convergence rate. Several of these more promising schemes are described and 2-D and 3-D results are shown comparing the computational rates on the STAR and CRAY vector computers, and the CYBER-175 serial computer. Schemes included are: (1) Checkerboard SOR, (2) Checkerboard Leapfrog, (3) odd-even vertical line SOR, and (4) odd-even horizontal line SOR.
Automated Vectorization of Decision-Based Algorithms
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
Virtually all existing vectorization algorithms are designed to only analyze the numeric properties of an algorithm and distribute those elements across multiple processors. This advances the state of the practice because it is the only known system, at the time of this reporting, that takes high-level statements and analyzes them for their decision properties and converts them to a form that allows them to automatically be executed in parallel. The software takes a high-level source program that describes a complex decision- based condition and rewrites it as a disjunctive set of component Boolean relations that can then be executed in parallel. This is important because parallel architectures are becoming more commonplace in conventional systems and they have always been present in NASA flight systems. This technology allows one to take existing condition-based code and automatically vectorize it so it naturally decomposes across parallel architectures.
Quantum optimization for training support vector machines.
Anguita, Davide; Ridella, Sandro; Rivieccio, Fabio; Zunino, Rodolfo
2003-01-01
Refined concepts, such as Rademacher estimates of model complexity and nonlinear criteria for weighting empirical classification errors, represent recent and promising approaches to characterize the generalization ability of Support Vector Machines (SVMs). The advantages of those techniques lie in both improving the SVM representation ability and yielding tighter generalization bounds. On the other hand, they often make Quadratic-Programming algorithms no longer applicable, and SVM training cannot benefit from efficient, specialized optimization techniques. The paper considers the application of Quantum Computing to solve the problem of effective SVM training, especially in the case of digital implementations. The presented research compares the behavioral aspects of conventional and enhanced SVMs; experiments in both a synthetic and real-world problems support the theoretical analysis. At the same time, the related differences between Quadratic-Programming and Quantum-based optimization techniques are considered. PMID:12850032
Distributed semi-supervised support vector machines.
Scardapane, Simone; Fierimonte, Roberto; Di Lorenzo, Paolo; Panella, Massimo; Uncini, Aurelio
2016-08-01
The semi-supervised support vector machine (S(3)VM) is a well-known algorithm for performing semi-supervised inference under the large margin principle. In this paper, we are interested in the problem of training a S(3)VM when the labeled and unlabeled samples are distributed over a network of interconnected agents. In particular, the aim is to design a distributed training protocol over networks, where communication is restricted only to neighboring agents and no coordinating authority is present. Using a standard relaxation of the original S(3)VM, we formulate the training problem as the distributed minimization of a non-convex social cost function. To find a (stationary) solution in a distributed manner, we employ two different strategies: (i) a distributed gradient descent algorithm; (ii) a recently developed framework for In-Network Nonconvex Optimization (NEXT), which is based on successive convexifications of the original problem, interleaved by state diffusion steps. Our experimental results show that the proposed distributed algorithms have comparable performance with respect to a centralized implementation, while highlighting the pros and cons of the proposed solutions. To the date, this is the first work that paves the way toward the broad field of distributed semi-supervised learning over networks. PMID:27179615
When do support vector machines work fast?
Steinwart, I.; Scovel, James C.
2004-01-01
The authors establish learning rates to the Bayes risk for support vector machines (SVM's) with hinge loss. Since a theorem of Devroyte states that no learning algorithm can learn with a uniform rate to the Bayes risk for all probability distributions they have to restrict the class of considered distributions: in order to obtain fast rates they assume a noise condition recently proposed by Tsybakov and an approximation condition in terms of the distribution and the reproducing kernel Hilbert space used by the SVM. for Gaussian RBF kernels with varying widths they propose a geometric noise assumption on the distribution which ensures the approximation condition. This geometric assumption is not in terms of smoothness but describes the concentration of the marginal distribution near the decision boundary. In particular they are able to describe nontrivial classes of distributions for which SVM's using a Gaussian kernel can learn with almost linear rate.
Support Vector Training of Protein Alignment Models
Joachims, Thorsten; Elber, Ron; Pillardy, Jaroslaw
2008-01-01
Abstract Sequence to structure alignment is an important step in homology modeling of protein structures. Incorporation of features such as secondary structure, solvent accessibility, or evolutionary information improve sequence to structure alignment accuracy, but conventional generative estimation techniques for alignment models impose independence assumptions that make these features difficult to include in a principled way. In this paper, we overcome this problem using a Support Vector Machine (SVM) method that provides a well-founded way of estimating complex alignment models with hundred of thousands of parameters. Furthermore, we show that the method can be trained using a variety of loss functions. In a rigorous empirical evaluation, the SVM algorithm outperforms the generative alignment method SSALN, a highly accurate generative alignment model that incorporates structural information. The alignment model learned by the SVM aligns 50% of the residues correctly and aligns over 70% of the residues within a shift of four positions. PMID:18707536
Natural evolution of neural support vector machines.
Jändel, Magnus
2011-01-01
Two different neural implementations of support vector machines are described and applied to one-shot trainable pattern recognition. The first model is based on oscillating associative memory and is mapped to the olfactory system. The second model is founded on competitive queuing memory originally employed for generating motor action sequences in the brain. Both models include forward pathways where a stream of support vectors is evoked from memory and merges with sensory input to produce support vector machine classifications. Misclassified events are imprinted as new support vector candidates. Support vector machine weights are tuned by virtual experimentation in sleep. Recalled training examples masquerade as sensor input and feedback from the classification process drives a learning process where support vector weights are optimized. For both support vector machine models it is demonstrated that there is a plausible evolutionary path from a simple hard-wired pattern recognizer to a full implementation of a biological kernel machine. Simple and individually beneficial modifications are accumulated in each step along this path. Neural support vector machines can apparently emerge by natural processes. PMID:21744220
An affine projection algorithm using grouping selection of input vectors
NASA Astrophysics Data System (ADS)
Shin, JaeWook; Kong, NamWoong; Park, PooGyeon
2011-10-01
This paper present an affine projection algorithm (APA) using grouping selection of input vectors. To improve the performance of conventional APA, the proposed algorithm adjusts the number of the input vectors using two procedures: grouping procedure and selection procedure. In grouping procedure, the some input vectors that have overlapping information for update is grouped using normalized inner product. Then, few input vectors that have enough information for for coefficient update is selected using steady-state mean square error (MSE) in selection procedure. Finally, the filter coefficients update using selected input vectors. The experimental results show that the proposed algorithm has small steady-state estimation errors comparing with the existing algorithms.
Classification SAR targets with support vector machine
NASA Astrophysics Data System (ADS)
Cao, Lanying
2007-02-01
With the development of Synthetic Aperture Radar (SAR) technology, automatic target recognition (ATR) is becoming increasingly important. In this paper, we proposed a 3-class target classification system in SAR images. The system is based on invariant wavelet moments and support vector machine (SVM) algorithm. It is a two-stage approach. The first stage is to extract and select a small set of wavelet invariant moment features to indicate target images. The wavelet invariant moments take both advantages of the wavelet inherent property of multi-resolution analysis and moment invariants quality of invariant to translation, scaling changes and rotation. The second stage is classification of targets with SVM algorithm. SVM is based on the principle of structural risk minimization (SRM), which has been shown better than the principle of empirical risk minimization (ERM) which is used by many conventional networks. To test the performance and efficiency of the proposed method, we performed experiments on invariant wavelet moments, different kernel functions, 2-class identification, and 3-class identification. Test results show that wavelet invariant moments indicate the target effectively; linear kernel function achieves better results than other kernel functions, and SVM classification approach performs better than conventional nearest distance approach.
NASA Astrophysics Data System (ADS)
Imani, Moslem; You, Rey-Jer; Kuo, Chung-Yen
2014-10-01
Sea level forecasting at various time intervals is of great importance in water supply management. Evolutionary artificial intelligence (AI) approaches have been accepted as an appropriate tool for modeling complex nonlinear phenomena in water bodies. In the study, we investigated the ability of two AI techniques: support vector machine (SVM), which is mathematically well-founded and provides new insights into function approximation, and gene expression programming (GEP), which is used to forecast Caspian Sea level anomalies using satellite altimetry observations from June 1992 to December 2013. SVM demonstrates the best performance in predicting Caspian Sea level anomalies, given the minimum root mean square error (RMSE = 0.035) and maximum coefficient of determination (R2 = 0.96) during the prediction periods. A comparison between the proposed AI approaches and the cascade correlation neural network (CCNN) model also shows the superiority of the GEP and SVM models over the CCNN.
Support Vector Machines: Relevance Feedback and Information Retrieval.
ERIC Educational Resources Information Center
Drucker, Harris; Shahrary, Behzad; Gibbon, David C.
2002-01-01
Compares support vector machines (SVMs) to Rocchio, Ide regular and Ide dec-hi algorithms in information retrieval (IR) of text documents using relevancy feedback. If the preliminary search is so poor that one has to search through many documents to find at least one relevant document, then SVM is preferred. Includes nine tables. (Contains 24…
Using of support vector machines for link spam detection
NASA Astrophysics Data System (ADS)
Sharapov, Ruslan V.; Sharapova, Ekaterina V.
2011-10-01
In this article we described methods of link spam detection with using of machine learning. We analyzed main factors of link spam, which helps to find them. There is algorithm of link spam detection, based on support vector machines. The methods of link spam detection shows good results
Quantum Support Vector Machine for Big Data Classification
NASA Astrophysics Data System (ADS)
Rebentrost, Patrick; Mohseni, Masoud; Lloyd, Seth
2014-09-01
Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number of training examples. In cases where classical sampling algorithms require polynomial time, an exponential speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.
TWSVR: Regression via Twin Support Vector Machine.
Khemchandani, Reshma; Goyal, Keshav; Chandra, Suresh
2016-02-01
Taking motivation from Twin Support Vector Machine (TWSVM) formulation, Peng (2010) attempted to propose Twin Support Vector Regression (TSVR) where the regressor is obtained via solving a pair of quadratic programming problems (QPPs). In this paper we argue that TSVR formulation is not in the true spirit of TWSVM. Further, taking motivation from Bi and Bennett (2003), we propose an alternative approach to find a formulation for Twin Support Vector Regression (TWSVR) which is in the true spirit of TWSVM. We show that our proposed TWSVR can be derived from TWSVM for an appropriately constructed classification problem. To check the efficacy of our proposed TWSVR we compare its performance with TSVR and classical Support Vector Regression(SVR) on various regression datasets. PMID:26624223
Zawadzki, Robert J.; Fuller, Alfred R.; Wiley, David F.; Hamann, Bernd; Choi, Stacey S.; Werner, John S.
2008-01-01
Recent developments in Fourier domain—optical coherence tomography (Fd-OCT) have increased the acquisition speed of current ophthalmic Fd-OCT instruments sufficiently to allow the acquisition of volumetric data sets of human retinas in a clinical setting. The large size and three-dimensional (3D) nature of these data sets require that intelligent data processing, visualization, and analysis tools are used to take full advantage of the available information. Therefore, we have combined methods from volume visualization, and data analysis in support of better visualization and diagnosis of Fd-OCT retinal volumes. Custom-designed 3D visualization and analysis software is used to view retinal volumes reconstructed from registered B-scans. We use a support vector machine (SVM) to perform semiautomatic segmentation of retinal layers and structures for subsequent analysis including a comparison of measured layer thicknesses. We have modified the SVM to gracefully handle OCT speckle noise by treating it as a characteristic of the volumetric data. Our software has been tested successfully in clinical settings for its efficacy in assessing 3D retinal structures in healthy as well as diseased cases. Our tool facilitates diagnosis and treatment monitoring of retinal diseases. PMID:17867795
Optimized support vector regression for drilling rate of penetration estimation
NASA Astrophysics Data System (ADS)
Bodaghi, Asadollah; Ansari, Hamid Reza; Gholami, Mahsa
2015-12-01
In the petroleum industry, drilling optimization involves the selection of operating conditions for achieving the desired depth with the minimum expenditure while requirements of personal safety, environment protection, adequate information of penetrated formations and productivity are fulfilled. Since drilling optimization is highly dependent on the rate of penetration (ROP), estimation of this parameter is of great importance during well planning. In this research, a novel approach called `optimized support vector regression' is employed for making a formulation between input variables and ROP. Algorithms used for optimizing the support vector regression are the genetic algorithm (GA) and the cuckoo search algorithm (CS). Optimization implementation improved the support vector regression performance by virtue of selecting proper values for its parameters. In order to evaluate the ability of optimization algorithms in enhancing SVR performance, their results were compared to the hybrid of pattern search and grid search (HPG) which is conventionally employed for optimizing SVR. The results demonstrated that the CS algorithm achieved further improvement on prediction accuracy of SVR compared to the GA and HPG as well. Moreover, the predictive model derived from back propagation neural network (BPNN), which is the traditional approach for estimating ROP, is selected for comparisons with CSSVR. The comparative results revealed the superiority of CSSVR. This study inferred that CSSVR is a viable option for precise estimation of ROP.
Support Vector Machine with Ensemble Tree Kernel for Relation Extraction.
Liu, Xiaoyong; Fu, Hui; Du, Zhiguo
2016-01-01
Relation extraction is one of the important research topics in the field of information extraction research. To solve the problem of semantic variation in traditional semisupervised relation extraction algorithm, this paper proposes a novel semisupervised relation extraction algorithm based on ensemble learning (LXRE). The new algorithm mainly uses two kinds of support vector machine classifiers based on tree kernel for integration and integrates the strategy of constrained extension seed set. The new algorithm can weaken the inaccuracy of relation extraction, which is caused by the phenomenon of semantic variation. The numerical experimental research based on two benchmark data sets (PropBank and AIMed) shows that the LXRE algorithm proposed in the paper is superior to other two common relation extraction methods in four evaluation indexes (Precision, Recall, F-measure, and Accuracy). It indicates that the new algorithm has good relation extraction ability compared with others. PMID:27118966
Support Vector Machine with Ensemble Tree Kernel for Relation Extraction
Fu, Hui; Du, Zhiguo
2016-01-01
Relation extraction is one of the important research topics in the field of information extraction research. To solve the problem of semantic variation in traditional semisupervised relation extraction algorithm, this paper proposes a novel semisupervised relation extraction algorithm based on ensemble learning (LXRE). The new algorithm mainly uses two kinds of support vector machine classifiers based on tree kernel for integration and integrates the strategy of constrained extension seed set. The new algorithm can weaken the inaccuracy of relation extraction, which is caused by the phenomenon of semantic variation. The numerical experimental research based on two benchmark data sets (PropBank and AIMed) shows that the LXRE algorithm proposed in the paper is superior to other two common relation extraction methods in four evaluation indexes (Precision, Recall, F-measure, and Accuracy). It indicates that the new algorithm has good relation extraction ability compared with others. PMID:27118966
Support Vector Machine Implementations for Classification & Clustering
Winters-Hilt, Stephen; Yelundur, Anil; McChesney, Charlie; Landry, Matthew
2006-01-01
Background We describe Support Vector Machine (SVM) applications to classification and clustering of channel current data. SVMs are variational-calculus based methods that are constrained to have structural risk minimization (SRM), i.e., they provide noise tolerant solutions for pattern recognition. The SVM approach encapsulates a significant amount of model-fitting information in the choice of its kernel. In work thus far, novel, information-theoretic, kernels have been successfully employed for notably better performance over standard kernels. Currently there are two approaches for implementing multiclass SVMs. One is called external multi-class that arranges several binary classifiers as a decision tree such that they perform a single-class decision making function, with each leaf corresponding to a unique class. The second approach, namely internal-multiclass, involves solving a single optimization problem corresponding to the entire data set (with multiple hyperplanes). Results Each SVM approach encapsulates a significant amount of model-fitting information in its choice of kernel. In work thus far, novel, information-theoretic, kernels were successfully employed for notably better performance over standard kernels. Two SVM approaches to multiclass discrimination are described: (1) internal multiclass (with a single optimization), and (2) external multiclass (using an optimized decision tree). We describe benefits of the internal-SVM approach, along with further refinements to the internal-multiclass SVM algorithms that offer significant improvement in training time without sacrificing accuracy. In situations where the data isn't clearly separable, making for poor discrimination, signal clustering is used to provide robust and useful information – to this end, novel, SVM-based clustering methods are also described. As with the classification, there are Internal and External SVM Clustering algorithms, both of which are briefly described. PMID:17118147
Thrust vector control algorithm design for the Cassini spacecraft
NASA Technical Reports Server (NTRS)
Enright, Paul J.
1993-01-01
This paper describes a preliminary design of the thrust vector control algorithm for the interplanetary spacecraft, Cassini. Topics of discussion include flight software architecture, modeling of sensors, actuators, and vehicle dynamics, and controller design and analysis via classical methods. Special attention is paid to potential interactions with structural flexibilities and propellant dynamics. Controller performance is evaluated in a simulation environment built around a multi-body dynamics model, which contains nonlinear models of the relevant hardware and preliminary versions of supporting attitude determination and control functions.
Surrogate-based Reliability Analysis Using Support Vector Machine
NASA Astrophysics Data System (ADS)
Li, Gang; Liu, Zhiqiang
2010-05-01
An approach of surrogate-based reliability analysis by support vector machine with Monte-Carlo simulation is proposed. The efficient sampling techniques, such as uniform design and Latin Hypercube sampling, are used, and the SVM is trained with the sample pairs of input and output data obtained by the finite element analysis. The trained SVM model, as a solver-surrogate model, is intended to approximate the real performance function. Considering the selection of parameters for SVM affects the learning performance of SVM strongly, the Genetic Algorithm (GA) is integrated to the construction of the SVM, by optimizing the relevant parameters. The influence of the parameters on SVM is discussed and a methodology is proposed for selecting the SVM model. Support Vector Classification (SVC) based and Support Vector Regression (SVR) based reliability analyses are studied. Some numerical examples demonstrate the efficiency and applicability of the proposed method.
Multiclass Reduced-Set Support Vector Machines
NASA Technical Reports Server (NTRS)
Tang, Benyang; Mazzoni, Dominic
2006-01-01
There are well-established methods for reducing the number of support vectors in a trained binary support vector machine, often with minimal impact on accuracy. We show how reduced-set methods can be applied to multiclass SVMs made up of several binary SVMs, with significantly better results than reducing each binary SVM independently. Our approach is based on Burges' approach that constructs each reduced-set vector as the pre-image of a vector in kernel space, but we extend this by recomputing the SVM weights and bias optimally using the original SVM objective function. This leads to greater accuracy for a binary reduced-set SVM, and also allows vectors to be 'shared' between multiple binary SVMs for greater multiclass accuracy with fewer reduced-set vectors. We also propose computing pre-images using differential evolution, which we have found to be more robust than gradient descent alone. We show experimental results on a variety of problems and find that this new approach is consistently better than previous multiclass reduced-set methods, sometimes with a dramatic difference.
Evolutionary Support Vector Machines for Transient Stability Monitoring
NASA Astrophysics Data System (ADS)
Dora Arul Selvi, B.; Kamaraj, N.
2012-03-01
Currently, power systems are in the need of fast and reliable contingency monitoring systems for the purpose of maintaining stability in the presence of deregulated and open market environment. In this paper, a quick and unfailing transient stability monitoring algorithm that considers both the symmetrical and unsymmetrical faults is presented. support vector machines (SVMs) are employed as pattern classifiers so as to construct fast relation mappings between the transient stability results and the selected input attributes using mutual information. The type of fault is recognized by a SVM classifier and the critical clearing time of the fault is estimated by a support vector regression machine. The SVM parameters are tuned by an elitist multi-objective non-dominated sorting genetic algorithm in such a manner that the best classification and regression performance are accomplished. To demonstrate the good potential of the scheme, IEEE 3 generator system and a South Indian Grid are utilized.
Support vector machines for automated gait classification.
Begg, Rezaul K; Palaniswami, Marimuthu; Owen, Brendan
2005-05-01
Ageing influences gait patterns causing constant threats to control of locomotor balance. Automated recognition of gait changes has many advantages including, early identification of at-risk gait and monitoring the progress of treatment outcomes. In this paper, we apply an artificial intelligence technique [support vector machines (SVM)] for the automatic recognition of young-old gait types from their respective gait-patterns. Minimum foot clearance (MFC) data of 30 young and 28 elderly participants were analyzed using a PEAK-2D motion analysis system during a 20-min continuous walk on a treadmill at self-selected walking speed. Gait features extracted from individual MFC histogram-plot and Poincaré-plot images were used to train the SVM. Cross-validation test results indicate that the generalization performance of the SVM was on average 83.3% (+/-2.9) to recognize young and elderly gait patterns, compared to a neural network's accuracy of 75.0+/-5.0%. A "hill-climbing" feature selection algorithm demonstrated that a small subset (3-5) of gait features extracted from MFC plots could differentiate the gait patterns with 90% accuracy. Performance of the gait classifier was evaluated using areas under the receiver operating characteristic plots. Improved performance of the classifier was evident when trained with reduced number of selected good features and with radial basis function kernel. These results suggest that SVMs can function as an efficient gait classifier for recognition of young and elderly gait patterns, and has the potential for wider applications in gait identification for falls-risk minimization in the elderly. PMID:15887532
Feed-forward support vector machine without multipliers.
Anguita, Davide; Pischiutta, Stefano; Ridella, Sandro; Sterpi, Dario
2006-09-01
In this letter, we propose a coordinate rotation digital computer (CORDIC)-like algorithm for computing the feed-forward phase of a support vector machine (SVM) in fixed-point arithmetic, using only shift and add operations and avoiding resource-consuming multiplications. This result is obtained thanks to a hardware-friendly kernel, which greatly simplifies the SVM feed-forward phase computation and, at the same time, maintains good classification performance respect to the conventional Gaussian kernel. PMID:17001991
Flood Classification Using Support Vector Machines
NASA Astrophysics Data System (ADS)
Melsen, Lieke A.; Torfs, Paul J. J.; Brauer, Claudia C.
2013-04-01
Lowland floods are in general considered to be less extreme than mountainous floods. In order to investigate this, seven lowland floods in the Netherlands were selected and compared to mountainous floods from the study of Marchi et al. (2010). Both a 2D and 3D approach of the statistical two-group classification method support vector machines (Cortes and Vapnik, 1995) were used to find a statistical difference between the two flood types. Support vector machines were able to draw a decision plane between the two flood types, misclassifying one out of seven lowland floods, and one out of 67 mountainous floods. The main difference between the two flood types can be found in the runoff coefficient (with lowland floods having a lower runoff coefficient than mountainous floods), the cumulative precipitation causing the flood (which was lower for lowland floods), and, obviously, the relief ratio. Support vector machines have proved to be useful for flood classification and might be applicable in future classification studies. References Cortes, C., and V. Vapnik. "Support-Vector Networks." Machine Learning 20: (1995) 273-297. Marchi, L., M. Borga, E. Preciso, and E. Gaume. "Characterisation of selected extreme flash floods in Europe and implications for flood risk management." Journal of Hydrology 394: (2010) 118-133.
Vector algorithms for geometrically nonlinear 3D finite element analysis
NASA Technical Reports Server (NTRS)
Whitcomb, John D.
1989-01-01
Algorithms for geometrically nonlinear finite element analysis are presented which exploit the vector processing capability of the VPS-32, which is closely related to the CYBER 205. By manipulating vectors (which are long lists of numbers) rather than individual numbers, very high processing speeds are obtained. Long vector lengths are obtained without extensive replication or reordering by storage of intermediate results in strategic patterns at all stages of the computations. Comparisons of execution times with those from programs using either scalar or other vector programming techniques indicate that the algorithms presented are quite efficient.
Optimization of Support Vector Machine (SVM) for Object Classification
NASA Technical Reports Server (NTRS)
Scholten, Matthew; Dhingra, Neil; Lu, Thomas T.; Chao, Tien-Hsin
2012-01-01
The Support Vector Machine (SVM) is a powerful algorithm, useful in classifying data into species. The SVMs implemented in this research were used as classifiers for the final stage in a Multistage Automatic Target Recognition (ATR) system. A single kernel SVM known as SVMlight, and a modified version known as a SVM with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SVM as a method for classification. From trial to trial, SVM produces consistent results.
Reinforced adaboost face detector using support vector machine
NASA Astrophysics Data System (ADS)
Jang, Jaeyoon; Yunkoo, C.; Jaehong, K.; Yoon, Hosub
2014-08-01
We propose a novel face detection algorithm in order to improve higher detection rate of face-detector than conventional haar - adaboost face detector. Our purposed method not only improves detection rate of a face but decreases the number of false-positive component. In order to get improved detection ability, we merged two classifiers: adaboost and support vector machine. Because SVM and Adaboost use different feature, they are complementary each other. We can get 2~4% improved performance using proposed method than previous our detector that is not applied proposed method. This method makes improved detector that shows better performance without algorithm replacement.
Neural cell image segmentation method based on support vector machine
NASA Astrophysics Data System (ADS)
Niu, Shiwei; Ren, Kan
2015-10-01
In the analysis of neural cell images gained by optical microscope, accurate and rapid segmentation is the foundation of nerve cell detection system. In this paper, a modified image segmentation method based on Support Vector Machine (SVM) is proposed to reduce the adverse impact caused by low contrast ratio between objects and background, adherent and clustered cells' interference etc. Firstly, Morphological Filtering and OTSU Method are applied to preprocess images for extracting the neural cells roughly. Secondly, the Stellate Vector, Circularity and Histogram of Oriented Gradient (HOG) features are computed to train SVM model. Finally, the incremental learning SVM classifier is used to classify the preprocessed images, and the initial recognition areas identified by the SVM classifier are added to the library as the positive samples for training SVM model. Experiment results show that the proposed algorithm can achieve much better segmented results than the classic segmentation algorithms.
Support vector machine for automatic pain recognition
NASA Astrophysics Data System (ADS)
Monwar, Md Maruf; Rezaei, Siamak
2009-02-01
Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.
Modeling and performance analysis of GPS vector tracking algorithms
NASA Astrophysics Data System (ADS)
Lashley, Matthew
This dissertation provides a detailed analysis of GPS vector tracking algorithms and the advantages they have over traditional receiver architectures. Standard GPS receivers use a decentralized architecture that separates the tasks of signal tracking and position/velocity estimation. Vector tracking algorithms combine the two tasks into a single algorithm. The signals from the various satellites are processed collectively through a Kalman filter. The advantages of vector tracking over traditional, scalar tracking methods are thoroughly investigated. A method for making a valid comparison between vector and scalar tracking loops is developed. This technique avoids the ambiguities encountered when attempting to make a valid comparison between tracking loops (which are characterized by noise bandwidths and loop order) and the Kalman filters (which are characterized by process and measurement noise covariance matrices) that are used by vector tracking algorithms. The improvement in performance offered by vector tracking is calculated in multiple different scenarios. Rule of thumb analysis techniques for scalar Frequency Lock Loops (FLL) are extended to the vector tracking case. The analysis tools provide a simple method for analyzing the performance of vector tracking loops. The analysis tools are verified using Monte Carlo simulations. Monte Carlo simulations are also used to study the effects of carrier to noise power density (C/N0) ratio estimation and the advantage offered by vector tracking over scalar tracking. The improvement from vector tracking ranges from 2.4 to 6.2 dB in various scenarios. The difference in the performance of the three vector tracking architectures is analyzed. The effects of using a federated architecture with and without information sharing between the receiver's channels are studied. A combination of covariance analysis and Monte Carlo simulation is used to analyze the performance of the three algorithms. The federated algorithm without
Vectorization of algorithms for solving systems of difference equations
Buzbee, B.L.
1981-01-01
Today's fastest computers achieve their highest level of performance when processing vectors. Consequently, considerable effort has been spent in the past decade developing algorithms that can be expressed as operations on vectors. In this paper two types of vector architecture are defined. A discussion is presented on the variation of performance that can occur on a vector processor as a function of algorithm and implementation, the consequences of this variation, and the performance of some basic operators on the two classes of vector architecture. Also discussed is the performance of higher-level operators, including some that should be used with caution. With both types of operators, the implementation of techniques for solving systems of difference equations is discussed. Included are fast Poisson solvers and point, line, and conjugate-gradient techniques. 1 figure.
Feature clustering in direct eigen-vector data reduction using support vector machines
NASA Astrophysics Data System (ADS)
Riasati, Vahid R.; Gao, Wenhue
2012-06-01
Principal Component Analysis (PCA) has been used in a variety of applications like feature extraction for classification, data compression and dimensionality reduction. Often, a small set of principal components are sufficient to capture the largest variations in the data. As a result, the eigen-values of the data covariance matrix with the lowest magnitude are ignored (along with their corresponding eigen-vectors) and the remaining eigenvectors are used for a 'coarse' representation of the data. It is well known that this process of choosing a few principal components naturally induces a loss in information from a signal reconstruction standpoint. We propose a new technique to represent the data in terms of a new set of basis vectors where the high-frequency detail is preserved, at the expense of a 'feature-scale blurring'. In other words, the 'blurring' that occurs due to possible colinearities in the bases vectors is relative to the eigen-features' scales; this is inherently different from a systematic blurring function. Instead of thresholding the eigen-values, we retain all eigen-values, and apply thresholds on the components of each eigen-vector separately. The resulting basis vectors can no longer be interpreted as eigenvectors and will, in general, lose their orthogonality properties, but offer benefits in terms of preserving detail that is crucial for classification tasks. We test the merits of this new basis representation for magnitude synthetic aperture radar (SAR) Automatic Target Recognition (ATR). A feature vector is obtained by projecting a SAR image onto the aforementioned basis. Decision engines such as support vector machines (SVMs) are trained on example feature vectors per class and ultimately used to recognize the target class in real-time. Experimental validation are performed on the MSTAR database and involve comparisons against a PCA based ATR algorithm.
Adaptive support vector regression for UAV flight control.
Shin, Jongho; Jin Kim, H; Kim, Youdan
2011-01-01
This paper explores an application of support vector regression for adaptive control of an unmanned aerial vehicle (UAV). Unlike neural networks, support vector regression (SVR) generates global solutions, because SVR basically solves quadratic programming (QP) problems. With this advantage, the input-output feedback-linearized inverse dynamic model and the compensation term for the inversion error are identified off-line, which we call I-SVR (inversion SVR) and C-SVR (compensation SVR), respectively. In order to compensate for the inversion error and the unexpected uncertainty, an online adaptation algorithm for the C-SVR is proposed. Then, the stability of the overall error dynamics is analyzed by the uniformly ultimately bounded property in the nonlinear system theory. In order to validate the effectiveness of the proposed adaptive controller, numerical simulations are performed on the UAV model. PMID:20970303
A novel support vector machine with globality-locality preserving.
Ma, Cheng-Long; Yuan, Yu-Bo
2014-01-01
Support vector machine (SVM) is regarded as a powerful method for pattern classification. However, the solution of the primal optimal model of SVM is susceptible for class distribution and may result in a nonrobust solution. In order to overcome this shortcoming, an improved model, support vector machine with globality-locality preserving (GLPSVM), is proposed. It introduces globality-locality preserving into the standard SVM, which can preserve the manifold structure of the data space. We complete rich experiments on the UCI machine learning data sets. The results validate the effectiveness of the proposed model, especially on the Wine and Iris databases; the recognition rate is above 97% and outperforms all the algorithms that were developed from SVM. PMID:25045750
Vectorization of linear discrete filtering algorithms
NASA Technical Reports Server (NTRS)
Schiess, J. R.
1977-01-01
Linear filters, including the conventional Kalman filter and versions of square root filters devised by Potter and Carlson, are studied for potential application on streaming computers. The square root filters are known to maintain a positive definite covariance matrix in cases in which the Kalman filter diverges due to ill-conditioning of the matrix. Vectorization of the filters is discussed, and comparisons are made of the number of operations and storage locations required by each filter. The Carlson filter is shown to be the most efficient of the filters on the Control Data STAR-100 computer.
Applications of Support Vector Machines In Chemo And Bioinformatics
NASA Astrophysics Data System (ADS)
Jayaraman, V. K.; Sundararajan, V.
2010-10-01
Conventional linear & nonlinear tools for classification, regression & data driven modeling are being replaced on a rapid scale by newer techniques & tools based on artificial intelligence and machine learning. While the linear techniques are not applicable for inherently nonlinear problems, newer methods serve as attractive alternatives for solving real life problems. Support Vector Machine (SVM) classifiers are a set of universal feed-forward network based classification algorithms that have been formulated from statistical learning theory and structural risk minimization principle. SVM regression closely follows the classification methodology. In this work recent applications of SVM in Chemo & Bioinformatics will be described with suitable illustrative examples.
Implicit, nonswitching, vector-oriented algorithm for steady transonic flow
NASA Technical Reports Server (NTRS)
Lottati, I.
1983-01-01
A rapid computation of a sequence of transonic flow solutions has to be performed in many areas of aerodynamic technology. The employment of low-cost vector array processors makes the conduction of such calculations economically feasible. However, for a full utilization of the new hardware, the developed algorithms must take advantage of the special characteristics of the vector array processor. The present investigation has the objective to develop an efficient algorithm for solving transonic flow problems governed by mixed partial differential equations on an array processor.
Weighted K-means support vector machine for cancer prediction.
Kim, SungHwan
2016-01-01
To date, the support vector machine (SVM) has been widely applied to diverse bio-medical fields to address disease subtype identification and pathogenicity of genetic variants. In this paper, I propose the weighted K-means support vector machine (wKM-SVM) and weighted support vector machine (wSVM), for which I allow the SVM to impose weights to the loss term. Besides, I demonstrate the numerical relations between the objective function of the SVM and weights. Motivated by general ensemble techniques, which are known to improve accuracy, I directly adopt the boosting algorithm to the newly proposed weighted KM-SVM (and wSVM). For predictive performance, a range of simulation studies demonstrate that the weighted KM-SVM (and wSVM) with boosting outperforms the standard KM-SVM (and SVM) including but not limited to many popular classification rules. I applied the proposed methods to simulated data and two large-scale real applications in the TCGA pan-cancer methylation data of breast and kidney cancer. In conclusion, the weighted KM-SVM (and wSVM) increases accuracy of the classification model, and will facilitate disease diagnosis and clinical treatment decisions to benefit patients. A software package (wSVM) is publicly available at the R-project webpage (https://www.r-project.org). PMID:27512621
Vectorized Rebinning Algorithm for Fast Data Down-Sampling
NASA Technical Reports Server (NTRS)
Dean, Bruce; Aronstein, David; Smith, Jeffrey
2013-01-01
A vectorized rebinning (down-sampling) algorithm, applicable to N-dimensional data sets, has been developed that offers a significant reduction in computer run time when compared to conventional rebinning algorithms. For clarity, a two-dimensional version of the algorithm is discussed to illustrate some specific details of the algorithm content, and using the language of image processing, 2D data will be referred to as "images," and each value in an image as a "pixel." The new approach is fully vectorized, i.e., the down-sampling procedure is done as a single step over all image rows, and then as a single step over all image columns. Data rebinning (or down-sampling) is a procedure that uses a discretely sampled N-dimensional data set to create a representation of the same data, but with fewer discrete samples. Such data down-sampling is fundamental to digital signal processing, e.g., for data compression applications.
A Longitudinal Support Vector Regression for Prediction of ALS Score
Du, Wei; Cheung, Huey; Goldberg, Ilya; Thambisetty, Madhav; Becker, Kevin; Johnson, Calvin A.
2015-01-01
Longitudinal studies play a key role in various fields, including epidemiology, clinical research, and genomic analysis. Currently, the most popular methods in longitudinal data analysis are model-driven regression approaches, which impose strong prior assumptions and are unable to scale to large problems in the manner of machine learning algorithms. In this work, we propose a novel longitudinal support vector regression (LSVR) algorithm that not only takes the advantage of one of the most popular machine learning methods, but also is able to model the temporal nature of longitudinal data by taking into account observational dependence within subjects. We test LSVR on publicly available data from the DREAM-Phil Bowen ALS Prediction Prize4Life challenge. Results suggest that LSVR is at a minimum competitive with favored machine learning methods and is able to outperform those methods in predicting ALS score one month in advance. PMID:27042700
An assessment of support vector machines for land cover classification
Huang, C.; Davis, L.S.; Townshend, J.R.G.
2002-01-01
The support vector machine (SVM) is a group of theoretically superior machine learning algorithms. It was found competitive with the best available machine learning algorithms in classifying high-dimensional data sets. This paper gives an introduction to the theoretical development of the SVM and an experimental evaluation of its accuracy, stability and training speed in deriving land cover classifications from satellite images. The SVM was compared to three other popular classifiers, including the maximum likelihood classifier (MLC), neural network classifiers (NNC) and decision tree classifiers (DTC). The impacts of kernel configuration on the performance of the SVM and of the selection of training data and input variables on the four classifiers were also evaluated in this experiment.
Fast and Accurate Support Vector Machines on Large Scale Systems
Vishnu, Abhinav; Narasimhan, Jayenthi; Holder, Larry; Kerbyson, Darren J.; Hoisie, Adolfy
2015-09-08
Support Vector Machines (SVM) is a supervised Machine Learning and Data Mining (MLDM) algorithm, which has become ubiquitous largely due to its high accuracy and obliviousness to dimensionality. The objective of SVM is to find an optimal boundary --- also known as hyperplane --- which separates the samples (examples in a dataset) of different classes by a maximum margin. Usually, very few samples contribute to the definition of the boundary. However, existing parallel algorithms use the entire dataset for finding the boundary, which is sub-optimal for performance reasons. In this paper, we propose a novel distributed memory algorithm to eliminate the samples which do not contribute to the boundary definition in SVM. We propose several heuristics, which range from early (aggressive) to late (conservative) elimination of the samples, such that the overall time for generating the boundary is reduced considerably. In a few cases, a sample may be eliminated (shrunk) pre-emptively --- potentially resulting in an incorrect boundary. We propose a scalable approach to synchronize the necessary data structures such that the proposed algorithm maintains its accuracy. We consider the necessary trade-offs of single/multiple synchronization using in-depth time-space complexity analysis. We implement the proposed algorithm using MPI and compare it with libsvm--- de facto sequential SVM software --- which we enhance with OpenMP for multi-core/many-core parallelism. Our proposed approach shows excellent efficiency using up to 4096 processes on several large datasets such as UCI HIGGS Boson dataset and Offending URL dataset.
A duct mapping method using least squares support vector machines
NASA Astrophysics Data System (ADS)
Douvenot, RéMi; Fabbro, Vincent; Gerstoft, Peter; Bourlier, Christophe; Saillard, Joseph
2008-12-01
This paper introduces a "refractivity from clutter" (RFC) approach with an inversion method based on a pregenerated database. The RFC method exploits the information contained in the radar sea clutter return to estimate the refractive index profile. Whereas initial efforts are based on algorithms giving a good accuracy involving high computational needs, the present method is based on a learning machine algorithm in order to obtain a real-time system. This paper shows the feasibility of a RFC technique based on the least squares support vector machine inversion method by comparing it to a genetic algorithm on simulated and noise-free data, at 1 and 5 GHz. These data are simulated in the presence of ideal trilinear surface-based ducts. The learning machine is based on a pregenerated database computed using Latin hypercube sampling to improve the efficiency of the learning. The results show that little accuracy is lost compared to a genetic algorithm approach. The computational time of a genetic algorithm is very high, whereas the learning machine approach is real time. The advantage of a real-time RFC system is that it could work on several azimuths in near real time.
Supernova Recognition using Support Vector Machines
Romano, Raquel A.; Aragon, Cecilia R.; Ding, Chris
2006-10-01
We introduce a novel application of Support Vector Machines(SVMs) to the problem of identifying potential supernovae usingphotometric and geometric features computed from astronomical imagery.The challenges of this supervised learning application are significant:1) noisy and corrupt imagery resulting in high levels of featureuncertainty,2) features with heavy-tailed, peaked distributions,3)extremely imbalanced and overlapping positiveand negative data sets, and4) the need to reach high positive classification rates, i.e. to find allpotential supernovae, while reducing the burdensome workload of manuallyexamining false positives. High accuracy is achieved viaasign-preserving, shifted log transform applied to features with peaked,heavy-tailed distributions. The imbalanced data problem is handled byoversampling positive examples,selectively sampling misclassifiednegative examples,and iteratively training multiple SVMs for improvedsupernovarecognition on unseen test data. We present crossvalidationresults and demonstrate the impact on a largescale supernova survey thatcurrently uses the SVM decision value to rank-order 600,000 potentialsupernovae each night.
Privacy preserving RBF kernel support vector machine.
Li, Haoran; Xiong, Li; Ohno-Machado, Lucila; Jiang, Xiaoqian
2014-01-01
Data sharing is challenging but important for healthcare research. Methods for privacy-preserving data dissemination based on the rigorous differential privacy standard have been developed but they did not consider the characteristics of biomedical data and make full use of the available information. This often results in too much noise in the final outputs. We hypothesized that this situation can be alleviated by leveraging a small portion of open-consented data to improve utility without sacrificing privacy. We developed a hybrid privacy-preserving differentially private support vector machine (SVM) model that uses public data and private data together. Our model leverages the RBF kernel and can handle nonlinearly separable cases. Experiments showed that this approach outperforms two baselines: (1) SVMs that only use public data, and (2) differentially private SVMs that are built from private data. Our method demonstrated very close performance metrics compared to nonprivate SVMs trained on the private data. PMID:25013805
Attitude determination using vector observations: A fast optimal matrix algorithm
NASA Technical Reports Server (NTRS)
Markley, F. Landis
1993-01-01
The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function.
Biologically relevant neural network architectures for support vector machines.
Jändel, Magnus
2014-01-01
Neural network architectures that implement support vector machines (SVM) are investigated for the purpose of modeling perceptual one-shot learning in biological organisms. A family of SVM algorithms including variants of maximum margin, 1-norm, 2-norm and ν-SVM is considered. SVM training rules adapted for neural computation are derived. It is found that competitive queuing memory (CQM) is ideal for storing and retrieving support vectors. Several different CQM-based neural architectures are examined for each SVM algorithm. Although most of the sixty-four scanned architectures are unconvincing for biological modeling four feasible candidates are found. The seemingly complex learning rule of a full ν-SVM implementation finds a particularly simple and natural implementation in bisymmetric architectures. Since CQM-like neural structures are thought to encode skilled action sequences and bisymmetry is ubiquitous in motor systems it is speculated that trainable pattern recognition in low-level perception has evolved as an internalized motor programme. PMID:24126252
A generalized vector-valued total variation algorithm
Wohlberg, Brendt; Rodriguez, Paul
2009-01-01
We propose a simple but flexible method for solving the generalized vector-valued TV (VTV) functional, which includes both the {ell}{sup 2}-VTV and {ell}{sup 1}-VTV regularizations as special cases, to address the problems of deconvolution and denoising of vector-valued (e.g. color) images with Gaussian or salt-andpepper noise. This algorithm is the vectorial extension of the Iteratively Reweighted Norm (IRN) algorithm [I] originally developed for scalar (grayscale) images. This method offers competitive computational performance for denoising and deconvolving vector-valued images corrupted with Gaussian ({ell}{sup 2}-VTV case) and salt-and-pepper noise ({ell}{sup 1}-VTV case).
A sparse matrix algorithm on the Boolean vector machine
NASA Technical Reports Server (NTRS)
Wagner, Robert A.; Patrick, Merrell L.
1988-01-01
VLSI technology is being used to implement a prototype Boolean Vector Machine (BVM), which is a large network of very small processors with equally small memories that operate in SIMD mode; these use bit-serial arithmetic, and communicate via cube-connected cycles network. The BVM's bit-serial arithmetic and the small memories of individual processors are noted to compromise the system's effectiveness in large numerical problem applications. Attention is presently given to the implementation of a basic matrix-vector iteration algorithm for space matrices of the BVM, in order to generate over 1 billion useful floating-point operations/sec for this iteration algorithm. The algorithm is expressed in a novel language designated 'BVM'.
Support vector machines for geophysical inversion
NASA Astrophysics Data System (ADS)
Kuzma, Heidi Anderson
This thesis explores what it means to replace classical non-linear geophysical inversion with computer learning via Support Vector Machines. Geophysical inverse problems are almost always ill-posed which means that many different models (i.e. descriptions of the earth) can be found to explain a given noisy or incomplete data set. Regularization and constraints encourage inversions to find physically realistic models. The set of preferred models needs to be defined a priori using as much geologic knowledge as is available. In inversion, it is assumed that data and a forward modeling process is known. The goal is to solve for a model. In the SVM paradigm, a series of models and associated data are known. The goal is to solve for a reverse modeling process. Starting with a series of initial models assembled using all available geologic information, synthetic data is created using the most realistic forward modeling program available. With the synthetic data as inputs and the known models as outputs, a Support Vector Machine is trained to approximate a local inverse to the forward modeling program. The advantages of this approach are that it is honest about the need to establish, a priori, the kinds of models that are reasonable in a particular field situation. There is no need to adjust the forward process to accommodate inversion, because SVMs can be easily modified to capture complicated, non-linear relationships. SVMs are transparent and require very little programming. If an SVM is trained using model/data pairs that are drawn from the same probability distribution that is implicit in the regularization of an inversion, then it will get very similar results to the inversion. Because SVMs can interpret as much data as desired so long as the conditions of an experiment do not change, they can be used to perform otherwise computationally expensive procedures. The SVMs in this paper are trained to emulate linear and non-linear seismic Amplitude Variation with Offset
Fast clustering algorithm for codebook production in image vector quantization
NASA Astrophysics Data System (ADS)
Al-Otum, Hazem M.
2001-04-01
In this paper, a fast clustering algorithm (FCA) is proposed to be implemented in vector quantization codebook production. This algorithm gives the ability to avoid iterative averaging of vectors and is based on collecting vectors with similar or closely similar characters to produce corresponding clusters. FCA gives an increase in peak signal-to-noise ratio (PSNR) about 0.3 - 1.1 dB, over the LBG algorithm and reduces the computational cost for codebook production (10% - 60%) at different bit rates. Here, two FCA modifications are proposed: FCA with limited cluster size 1& (FCA-LCS1 and FCA-LCS2, respectively). FCA- LCS1 tends to subdivide large clusters into smaller ones while FCA-LCS2 reduces a predetermined threshold by a step to reach the required cluster size. The FCA-LCS1 and FCA- LCS2 give an increase in PSNR of about 0.9 - 1.0 and 0.9 - 1.1 dB, respectively, over the FCA algorithm, at the expense of about 15% - 25% and 18% - 28% increase in the output codebook size.
Data selection using support vector regression
NASA Astrophysics Data System (ADS)
Richman, Michael B.; Leslie, Lance M.; Trafalis, Theodore B.; Mansouri, Hicham
2015-03-01
Geophysical data sets are growing at an ever-increasing rate, requiring computationally efficient data selection (thinning) methods to preserve essential information. Satellites, such as WindSat, provide large data sets for assessing the accuracy and computational efficiency of data selection techniques. A new data thinning technique, based on support vector regression (SVR), is developed and tested. To manage large on-line satellite data streams, observations from WindSat are formed into subsets by Voronoi tessellation and then each is thinned by SVR (TSVR). Three experiments are performed. The first confirms the viability of TSVR for a relatively small sample, comparing it to several commonly used data thinning methods (random selection, averaging and Barnes filtering), producing a 10% thinning rate (90% data reduction), low mean absolute errors (MAE) and large correlations with the original data. A second experiment, using a larger dataset, shows TSVR retrievals with MAE < 1 m s-1 and correlations ⩽ 0.98. TSVR was an order of magnitude faster than the commonly used thinning methods. A third experiment applies a two-stage pipeline to TSVR, to accommodate online data. The pipeline subsets reconstruct the wind field with the same accuracy as the second experiment, is an order of magnitude faster than the nonpipeline TSVR. Therefore, pipeline TSVR is two orders of magnitude faster than commonly used thinning methods that ingest the entire data set. This study demonstrates that TSVR pipeline thinning is an accurate and computationally efficient alternative to commonly used data selection techniques.
Tea category classification using morphological characteristics and support vector machines
NASA Astrophysics Data System (ADS)
Li, X. L.; He, Y.; Qiu, Z. J.; Bao, Y. D.
2008-11-01
Tea categories classification is an importance task for quality inspection. And traditional way for doing this by human is time-consuming, requirement of too much manual labor. This study proposed a method for discriminating green tea categories based on multi-spectral images technique. Four tea categories were selected for this study, and total of 243 multi-spectral images were collected using a common-aperture multi-spectral charged coupled device camera with three channels (550, 660 and 800 nm). A compound image which has the clearest outline of samples was process by combination of the three monochrome images (550, 660 and 800 nm). After image preprocessing, 18 morphometry parameters were obtained for each samples. The 18 parameters used including area, perimeter, centroid and eccentricity et al. To better understanding these parameters, principal component analysis was conducted on them, and score plot of the first three independent components was obtained. The first three components accounted for 99.02% of the variation of original 18 parameters. It can be found that the four tea categories were distributed in dense clusters respectively in score plot. But the boundaries among them were not clear, so a further discrimination must be developed. Three algorithms including support vector machines, artificial neural network and linear discriminant analysis were adopted for developed classification models based on the optimized 9 features. Wonderful result was obtained by support vector machines model with accuracy of 93.75% for prediction unknown samples in testing set. It can be concluded that it is an effective method to classification tea categories based on computer vision, and support vector machines is very specialized for development of classification model.
Support vector machines for nuclear reactor state estimation
Zavaljevski, N.; Gross, K. C.
2000-02-14
Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformed into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.
Intelligent Quality Prediction Using Weighted Least Square Support Vector Regression
NASA Astrophysics Data System (ADS)
Yu, Yaojun
A novel quality prediction method with mobile time window is proposed for small-batch producing process based on weighted least squares support vector regression (LS-SVR). The design steps and learning algorithm are also addressed. In the method, weighted LS-SVR is taken as the intelligent kernel, with which the small-batch learning is solved well and the nearer sample is set a larger weight, while the farther is set the smaller weight in the history data. A typical machining process of cutting bearing outer race is carried out and the real measured data are used to contrast experiment. The experimental results demonstrate that the prediction accuracy of the weighted LS-SVR based model is only 20%-30% that of the standard LS-SVR based one in the same condition. It provides a better candidate for quality prediction of small-batch producing process.
Support Vector Machines for Hyperspectral Remote Sensing Classification
NASA Technical Reports Server (NTRS)
Gualtieri, J. Anthony; Cromp, R. F.
1998-01-01
The Support Vector Machine provides a new way to design classification algorithms which learn from examples (supervised learning) and generalize when applied to new data. We demonstrate its success on a difficult classification problem from hyperspectral remote sensing, where we obtain performances of 96%, and 87% correct for a 4 class problem, and a 16 class problem respectively. These results are somewhat better than other recent results on the same data. A key feature of this classifier is its ability to use high-dimensional data without the usual recourse to a feature selection step to reduce the dimensionality of the data. For this application, this is important, as hyperspectral data consists of several hundred contiguous spectral channels for each exemplar. We provide an introduction to this new approach, and demonstrate its application to classification of an agriculture scene.
Segmentation of mosaicism in cervicographic images using support vector machines
NASA Astrophysics Data System (ADS)
Xue, Zhiyun; Long, L. Rodney; Antani, Sameer; Jeronimo, Jose; Thoma, George R.
2009-02-01
The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating a large digital repository of cervicographic images for the study of uterine cervix cancer prevention. One of the research goals is to automatically detect diagnostic bio-markers in these images. Reliable bio-marker segmentation in large biomedical image collections is a challenging task due to the large variation in image appearance. Methods described in this paper focus on segmenting mosaicism, which is an important vascular feature used to visually assess the degree of cervical intraepithelial neoplasia. The proposed approach uses support vector machines (SVM) trained on a ground truth dataset annotated by medical experts (which circumvents the need for vascular structure extraction). We have evaluated the performance of the proposed algorithm and experimentally demonstrated its feasibility.
Application of Support Vector Machine to Forex Monitoring
NASA Astrophysics Data System (ADS)
Kamruzzaman, Joarder; Sarker, Ruhul A.
Previous studies have demonstrated superior performance of artificial neural network (ANN) based forex forecasting models over traditional regression models. This paper applies support vector machines to build a forecasting model from the historical data using six simple technical indicators and presents a comparison with an ANN based model trained by scaled conjugate gradient (SCG) learning algorithm. The models are evaluated and compared on the basis of five commonly used performance metrics that measure closeness of prediction as well as correctness in directional change. Forecasting results of six different currencies against Australian dollar reveal superior performance of SVM model using simple linear kernel over ANN-SCG model in terms of all the evaluation metrics. The effect of SVM parameter selection on prediction performance is also investigated and analyzed.
Cloud Detection of Optical Satellite Images Using Support Vector Machine
NASA Astrophysics Data System (ADS)
Lee, Kuan-Yi; Lin, Chao-Hung
2016-06-01
Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection
Testing of the Support Vector Machine for Binary-Class Classification
NASA Technical Reports Server (NTRS)
Scholten, Matthew
2011-01-01
The Support Vector Machine is a powerful algorithm, useful in classifying data in to species. The Support Vector Machines implemented in this research were used as classifiers for the final stage in a Multistage Autonomous Target Recognition system. A single kernel SVM known as SVMlight, and a modified version known as a Support Vector Machine with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SMV as a method for classification. From trial to trial, SVM produces consistent results
River stage prediction based on a distributed support vector regression
NASA Astrophysics Data System (ADS)
Wu, C. L.; Chau, K. W.; Li, Y. S.
2008-08-01
SummaryAn accurate and timely prediction of river flow flooding can provide time for the authorities to take pertinent flood protection measures such as evacuation. Various data-derived models including LR (linear regression), NNM (the nearest-neighbor method) ANN (artificial neural network) and SVR (support vector regression), have been successfully applied to water level prediction. Of them, SVR is particularly highly valued, because it has the advantage over many data-derived models in overcoming overfitting of training data. However, SVR is computationally time-consuming when used to solve large-size problems. In the context of river flow prediction, equipped with LR model as a benchmark and genetic algorithm-based ANN (ANN-GA) and NNM as counterparts, a novel distributed SVR (D-SVR) model is proposed in this study. It implements a local approximation to training data because partitioned original training data are independently fitted by each local SVR model. ANN-GA and LR models are also used to help determine input variables. A two-step GA algorithm is employed to find the optimal triplets ( C, ɛ, σ) for D-SVR model. The validation results reveal that the proposed D-SVR model can carry out the river flow prediction better in comparison with others, and dramatically reduce the training time compared with the conventional SVR model. The pivotal factor contributing to the performance of D-SVR may be that it implements a local approximation method and the principle of structural risk minimization.
Using support vector machines in the multivariate state estimation technique
Zavaljevski, N.; Gross, K.C.
1999-07-01
One approach to validate nuclear power plant (NPP) signals makes use of pattern recognition techniques. This approach often assumes that there is a set of signal prototypes that are continuously compared with the actual sensor signals. These signal prototypes are often computed based on empirical models with little or no knowledge about physical processes. A common problem of all data-based models is their limited ability to make predictions on the basis of available training data. Another problem is related to suboptimal training algorithms. Both of these potential shortcomings with conventional approaches to signal validation and sensor operability validation are successfully resolved by adopting a recently proposed learning paradigm called the support vector machine (SVM). The work presented here is a novel application of SVM for data-based modeling of system state variables in an NPP, integrated with a nonlinear, nonparametric technique called the multivariate state estimation technique (MSET), an algorithm developed at Argonne National Laboratory for a wide range of nuclear plant applications.
A support vector machine approach for detection of microcalcifications.
El-Naqa, Issam; Yang, Yongyi; Wernick, Miles N; Galatsanos, Nikolas P; Nishikawa, Robert M
2002-12-01
In this paper, we investigate an approach based on support vector machines (SVMs) for detection of microcalcification (MC) clusters in digital mammograms, and propose a successive enhancement learning scheme for improved performance. SVM is a machine-learning method, based on the principle of structural risk minimization, which performs well when applied to data outside the training set. We formulate MC detection as a supervised-learning problem and apply SVM to develop the detection algorithm. We use the SVM to detect at each location in the image whether an MC is present or not. We tested the proposed method using a database of 76 clinical mammograms containing 1120 MCs. We use free-response receiver operating characteristic curves to evaluate detection performance, and compare the proposed algorithm with several existing methods. In our experiments, the proposed SVM framework outperformed all the other methods tested. In particular, a sensitivity as high as 94% was achieved by the SVM method at an error rate of one false-positive cluster per image. The ability of SVM to out perform several well-known methods developed for the widely studied problem of MC detection suggests that SVM is a promising technique for object detection in a medical imaging application. PMID:12588039
Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.
Sun, Shiliang; Xie, Xijiong
2016-09-01
Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms. PMID:26277005
Automatic inspection of textured surfaces by support vector machines
NASA Astrophysics Data System (ADS)
Jahanbin, Sina; Bovik, Alan C.; Pérez, Eduardo; Nair, Dinesh
2009-08-01
Automatic inspection of manufactured products with natural looking textures is a challenging task. Products such as tiles, textile, leather, and lumber project image textures that cannot be modeled as periodic or otherwise regular; therefore, a stochastic modeling of local intensity distribution is required. An inspection system to replace human inspectors should be flexible in detecting flaws such as scratches, cracks, and stains occurring in various shapes and sizes that have never been seen before. A computer vision algorithm is proposed in this paper that extracts local statistical features from grey-level texture images decomposed with wavelet frames into subbands of various orientations and scales. The local features extracted are second order statistics derived from grey-level co-occurrence matrices. Subsequently, a support vector machine (SVM) classifier is trained to learn a general description of normal texture from defect-free samples. This algorithm is implemented in LabVIEW and is capable of processing natural texture images in real-time.
Performance evaluation of a FPGA implementation of a digital rotation support vector machine
NASA Astrophysics Data System (ADS)
Lamela, Horacio; Gimeno, Jesús; Jiménez, Matías; Ruiz, Marta
2008-04-01
In this paper we provide a simple and fast hardware implementation for a Support Vector Machine (SVM). By using the CORDIC algorithm and implementing a 2-based exponential kernel that allows us to simplify operations, we overcome the problems caused by too many internal multiplications found in the classification process, both while applying the Kernel formula and later on multiplying by the weights. We show a simple example of classification with the algorithm and analyze the classification speed and accuracy.
Using support vector machines for anomalous change detonation
Theiler, James P; Steinwart, Ingo; Llamocca, Daniel
2010-01-01
We cast anomalous change detection as a binary classification problem, and use a support vector machine (SVM) to build a detector that does not depend on assumptions about the underlying data distribution. To speed up the computation, our SVM is implemented, in part, on a graphical processing unit. Results on real and simulated anomalous changes are used to compare performance to algorithms which effectively assume a Gaussian distribution. In this paper, we investigate the use of support vector machines (SVMs) with radial basis kernels for finding anomalous changes. Compared to typical applications of SVMs, we are operating in a regime of very low false alarm rate. This means that even for relatively large training sets, the data are quite meager in the regime of operational interest. This drives us to use larger training sets, which in turn places more of a computational burden on the SVM. We initially considered three different approaches to to address the need to work in the very low false alarm rate regime. The first is a standard SVM which is trained at one threshold (where more reliable estimates of false alarm rates are possible) and then re-thresholded for the low false alarm rate regime. The second uses the same thresholding approach, but employs a so-called least squares SVM; here a quadratic (instead of a hinge-based) loss function is employed, and for this model, there are good theoretical arguments in favor of adjusting the threshold in a straightforward manner. The third approach employs a weighted support vector machine, where the weights for the two types of errors (false alarm and missed detection) are automatically adjusted to achieve the desired false alarm rate. We have found in previous experiments (not shown here) that the first two types can in some cases work well, while in other cases they do not. This renders both approaches unreliable for automated change detection. By contrast, the third approach reliably produces good results, but at
A Distributed Support Vector Machine Learning Over Wireless Sensor Networks.
Kim, Woojin; Stanković, Milos S; Johansson, Karl H; Kim, H Jin
2015-11-01
This paper is about fully-distributed support vector machine (SVM) learning over wireless sensor networks. With the concept of the geometric SVM, we propose to gossip the set of extreme points of the convex hull of local data set with neighboring nodes. It has the advantages of a simple communication mechanism and finite-time convergence to a common global solution. Furthermore, we analyze the scalability with respect to the amount of exchanged information and convergence time, with a specific emphasis on the small-world phenomenon. First, with the proposed naive convex hull algorithm, the message length remains bounded as the number of nodes increases. Second, by utilizing a small-world network, we have an opportunity to drastically improve the convergence performance with only a small increase in power consumption. These properties offer a great advantage when dealing with a large-scale network. Simulation and experimental results support the feasibility and effectiveness of the proposed gossip-based process and the analysis. PMID:26470063
SPIDERz: SuPport vector classification for IDEntifying Redshifts
NASA Astrophysics Data System (ADS)
Jones, Evan; Singal, J.
2016-08-01
SPIDERz (SuPport vector classification for IDEntifying Redshifts) applies powerful support vector machine (SVM) optimization and statistical learning techniques to custom data sets to obtain accurate photometric redshift (photo-z) estimations. It is written for the IDL environment and can be applied to traditional data sets consisting of photometric band magnitudes, or alternatively to data sets with additional galaxy parameters (such as shape information) to investigate potential correlations between the extra galaxy parameters and redshift.
Ma, Yuliang; Ding, Xiaohui; She, Qingshan; Luo, Zhizeng; Potter, Thomas; Zhang, Yingchun
2016-01-01
Support vector machines are powerful tools used to solve the small sample and nonlinear classification problems, but their ultimate classification performance depends heavily upon the selection of appropriate kernel and penalty parameters. In this study, we propose using a particle swarm optimization algorithm to optimize the selection of both the kernel and penalty parameters in order to improve the classification performance of support vector machines. The performance of the optimized classifier was evaluated with motor imagery EEG signals in terms of both classification and prediction. Results show that the optimized classifier can significantly improve the classification accuracy of motor imagery EEG signals. PMID:27313656
Ma, Yuliang; Ding, Xiaohui; She, Qingshan; Luo, Zhizeng; Potter, Thomas; Zhang, Yingchun
2016-01-01
Support vector machines are powerful tools used to solve the small sample and nonlinear classification problems, but their ultimate classification performance depends heavily upon the selection of appropriate kernel and penalty parameters. In this study, we propose using a particle swarm optimization algorithm to optimize the selection of both the kernel and penalty parameters in order to improve the classification performance of support vector machines. The performance of the optimized classifier was evaluated with motor imagery EEG signals in terms of both classification and prediction. Results show that the optimized classifier can significantly improve the classification accuracy of motor imagery EEG signals. PMID:27313656
Vectorization of a penalty function algorithm for well scheduling
NASA Technical Reports Server (NTRS)
Absar, I.
1984-01-01
In petroleum engineering, the oil production profiles of a reservoir can be simulated by using a finite gridded model. This profile is affected by the number and choice of wells which in turn is a result of various production limits and constraints including, for example, the economic minimum well spacing, the number of drilling rigs available and the time required to drill and complete a well. After a well is available it may be shut in because of excessive water or gas productions. In order to optimize the field performance a penalty function algorithm was developed for scheduling wells. For an example with some 343 wells and 15 different constraints, the scheduling routine vectorized for the CYBER 205 averaged 560 times faster performance than the scalar version.
Christodoulou, Christos George (University of New Mexico, Albuquerque, NM); Abdallah, Chaouki T. (University of New Mexico, Albuquerque, NM); Rohwer, Judd Andrew
2003-02-01
The paper presents a multiclass, multilabel implementation of least squares support vector machines (LS-SVM) for direction of arrival (DOA) estimation in a CDMA system. For any estimation or classification system, the algorithm's capabilities and performance must be evaluated. Specifically, for classification algorithms, a high confidence level must exist along with a technique to tag misclassifications automatically. The presented learning algorithm includes error control and validation steps for generating statistics on the multiclass evaluation path and the signal subspace dimension. The error statistics provide a confidence level for the classification accuracy.
A new approach to simulate characterization of particulate matter employing support vector machines.
Mogireddy, K; Devabhaktuni, V; Kumar, A; Aggarwal, P; Bhattacharya, P
2011-02-28
This paper, for the first time, applies the support vector machines (SVMs) paradigm to identify the optimal segmentation algorithm for physical characterization of particulate matter. Size of the particles is an essential component of physical characterization as larger particles get filtered through nose and throat while smaller particles have detrimental effect on human health. Typical particulate characterization processes involve image reading, preprocessing, segmentation, feature extraction, and representation. Of these various steps, knowledge based selection of optimal image segmentation algorithm (from existing segmentation algorithms) is the key for accurately analyzing the captured images of fine particulate matter. Motivated by the emerging machine-learning concepts, we present a new framework for automating the selection of optimal image segmentation algorithm employing SVMs trained and validated with image feature data. Results show that the SVM method accurately predicts the best segmentation algorithm. As well, an image processing algorithm based on Sobel edge detection is developed and illustrated. PMID:21185646
Ensemble Feature Learning of Genomic Data Using Support Vector Machine
Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R.; Braytee, Ali; Kennedy, Paul J.
2016-01-01
The identification of a subset of genes having the ability to capture the necessary information to distinguish classes of patients is crucial in bioinformatics applications. Ensemble and bagging methods have been shown to work effectively in the process of gene selection and classification. Testament to that is random forest which combines random decision trees with bagging to improve overall feature selection and classification accuracy. Surprisingly, the adoption of these methods in support vector machines has only recently received attention but mostly on classification not gene selection. This paper introduces an ensemble SVM-Recursive Feature Elimination (ESVM-RFE) for gene selection that follows the concepts of ensemble and bagging used in random forest but adopts the backward elimination strategy which is the rationale of RFE algorithm. The rationale behind this is, building ensemble SVM models using randomly drawn bootstrap samples from the training set, will produce different feature rankings which will be subsequently aggregated as one feature ranking. As a result, the decision for elimination of features is based upon the ranking of multiple SVM models instead of choosing one particular model. Moreover, this approach will address the problem of imbalanced datasets by constructing a nearly balanced bootstrap sample. Our experiments show that ESVM-RFE for gene selection substantially increased the classification performance on five microarray datasets compared to state-of-the-art methods. Experiments on the childhood leukaemia dataset show that an average 9% better accuracy is achieved by ESVM-RFE over SVM-RFE, and 5% over random forest based approach. The selected genes by the ESVM-RFE algorithm were further explored with Singular Value Decomposition (SVD) which reveals significant clusters with the selected data. PMID:27304923
An Equivalence Between Sparse Approximation and Support Vector Machines.
Girosi
1998-07-28
This article shows a relationship between two different approximation techniques: the support vector machines (SVM), proposed by V. Vapnik (1995) and a sparse approximation scheme that resembles the basis pursuit denoising algorithm (Chen, 1995; Chen, Donoho, and Saunders, 1995). SVM is a technique that can be derived from the structural risk minimization principle (Vapnik, 1982) and can be used to estimate the parameters of several different approximation schemes, including radial basis functions, algebraic and trigonometric polynomials, B-splines, and some forms of multilayer perceptrons. Basis pursuit denoising is a sparse approximation technique in which a function is reconstructed by using a small number of basis functions chosen from a large set (the dictionary). We show that if the data are noiseless, the modified version of basis pursuit denoising proposed in this article is equivalent to SVM in the following sense: if applied to the same data set, the two techniques give the same solution, which is obtained by solving the same quadratic programming problem. In the appendix, we present a derivation of the SVM technique in one framework of regularization theory, rather than statistical learning theory, establishing a connection between SVM, sparse approximation, and regularization theory. PMID:9698353
Building Ultra-Low False Alarm Rate Support Vector Classifier Ensembles Using Random Subspaces
Chen, B Y; Lemmond, T D; Hanley, W G
2008-10-06
This paper presents the Cost-Sensitive Random Subspace Support Vector Classifier (CS-RS-SVC), a new learning algorithm that combines random subspace sampling and bagging with Cost-Sensitive Support Vector Classifiers to more effectively address detection applications burdened by unequal misclassification requirements. When compared to its conventional, non-cost-sensitive counterpart on a two-class signal detection application, random subspace sampling is shown to very effectively leverage the additional flexibility offered by the Cost-Sensitive Support Vector Classifier, yielding a more than four-fold increase in the detection rate at a false alarm rate (FAR) of zero. Moreover, the CS-RS-SVC is shown to be fairly robust to constraints on the feature subspace dimensionality, enabling reductions in computation time of up to 82% with minimal performance degradation.
An Algorithm for Converting Static Earth Sensor Measurements into Earth Observation Vectors
NASA Technical Reports Server (NTRS)
Harman, R.; Hashmall, Joseph A.; Sedlak, Joseph
2004-01-01
An algorithm has been developed that converts penetration angles reported by Static Earth Sensors (SESs) into Earth observation vectors. This algorithm allows compensation for variation in the horizon height including that caused by Earth oblateness. It also allows pitch and roll to be computed using any number (greater than 1) of simultaneous sensor penetration angles simplifying processing during periods of Sun and Moon interference. The algorithm computes body frame unit vectors through each SES cluster. It also computes GCI vectors from the spacecraft to the position on the Earth's limb where each cluster detects the Earth's limb. These body frame vectors are used as sensor observation vectors and the GCI vectors are used as reference vectors in an attitude solution. The attitude, with the unobservable yaw discarded, is iteratively refined to provide the Earth observation vector solution.
NASA Astrophysics Data System (ADS)
Jankowski, Stanisław; Będkowski, Janusz; Danilewicz, Przemysław; Szymański, Zbigniew
2008-01-01
We propose new approach for defect centers parameters extraction in semi-insulating GaAs. The experimental data is obtained by high-resolution photoinduced transient spectroscopy (HR-PITS). Two algorithms have been introduced: support vector machine - sequential minimal optimization (SVM-SMO) and relevance vector machine (RVM). Those methods perform the approximation of the Laplace surface. The advantages of proposed methods are: good accuracy of approximation, low complexity, excellent generalization. We developed SVM-RVM-PITS system, which enables graphical representation of Laplace surface, defining local area for defect parameter extraction, choosing the SVM or RVM method for approximation, calculation of the Arrhenius line factors and finally the parameters of the defect centers.
A selective-update affine projection algorithm with selective input vectors
NASA Astrophysics Data System (ADS)
Kong, NamWoong; Shin, JaeWook; Park, PooGyeon
2011-10-01
This paper proposes an affine projection algorithm (APA) with selective input vectors, which based on the concept of selective-update in order to reduce estimation errors and computations. The algorithm consists of two procedures: input- vector-selection and state-decision. The input-vector-selection procedure determines the number of input vectors by checking with mean square error (MSE) whether the input vectors have enough information for update. The state-decision procedure determines the current state of the adaptive filter by using the state-decision criterion. As the adaptive filter is in transient state, the algorithm updates the filter coefficients with the selected input vectors. On the other hand, as soon as the adaptive filter reaches the steady state, the update procedure is not performed. Through these two procedures, the proposed algorithm achieves small steady-state estimation errors, low computational complexity and low update complexity for colored input signals.
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-01-01
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms. PMID:26198233
An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-01-01
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms. PMID:26198233
Li, Shaoxin; Guo, Zhouyi; Liu, Zhiming
2015-01-01
Prostate cancer is one of the most common malignancies of the older males worldwide. Early diagnosis and treatment are important to improve the survival of patients. Recently, we developed a new method for prostate cancer screening: by measuring the serum surface-enhanced Raman spectroscopy of prostate cancer patients and normal subjects, combining with classification algorithms of support vector machines, the measured surface-enhanced Raman spectroscopy spectra are successfully classified with accuracy of 98.1%. Although the practical application faces several difficulties, we believe that this label-free serum surface-enhanced Raman spectroscopy analysis technique combined with support vector machine diagnostic algorithms will become a powerful tool for noninvasive prostate cancer screening in the future. PMID:25525666
nu-Anomica: A Fast Support Vector Based Novelty Detection Technique
NASA Technical Reports Server (NTRS)
Das, Santanu; Bhaduri, Kanishka; Oza, Nikunj C.; Srivastava, Ashok N.
2009-01-01
In this paper we propose nu-Anomica, a novel anomaly detection technique that can be trained on huge data sets with much reduced running time compared to the benchmark one-class Support Vector Machines algorithm. In -Anomica, the idea is to train the machine such that it can provide a close approximation to the exact decision plane using fewer training points and without losing much of the generalization performance of the classical approach. We have tested the proposed algorithm on a variety of continuous data sets under different conditions. We show that under all test conditions the developed procedure closely preserves the accuracy of standard one-class Support Vector Machines while reducing both the training time and the test time by 5 - 20 times.
Support vector machine for day ahead electricity price forecasting
NASA Astrophysics Data System (ADS)
Razak, Intan Azmira binti Wan Abdul; Abidin, Izham bin Zainal; Siah, Yap Keem; Rahman, Titik Khawa binti Abdul; Lada, M. Y.; Ramani, Anis Niza binti; Nasir, M. N. M.; Ahmad, Arfah binti
2015-05-01
Electricity price forecasting has become an important part of power system operation and planning. In a pool- based electric energy market, producers submit selling bids consisting in energy blocks and their corresponding minimum selling prices to the market operator. Meanwhile, consumers submit buying bids consisting in energy blocks and their corresponding maximum buying prices to the market operator. Hence, both producers and consumers use day ahead price forecasts to derive their respective bidding strategies to the electricity market yet reduce the cost of electricity. However, forecasting electricity prices is a complex task because price series is a non-stationary and highly volatile series. Many factors cause for price spikes such as volatility in load and fuel price as well as power import to and export from outside the market through long term contract. This paper introduces an approach of machine learning algorithm for day ahead electricity price forecasting with Least Square Support Vector Machine (LS-SVM). Previous day data of Hourly Ontario Electricity Price (HOEP), generation's price and demand from Ontario power market are used as the inputs for training data. The simulation is held using LSSVMlab in Matlab with the training and testing data of 2004. SVM that widely used for classification and regression has great generalization ability with structured risk minimization principle rather than empirical risk minimization. Moreover, same parameter settings in trained SVM give same results that absolutely reduce simulation process compared to other techniques such as neural network and time series. The mean absolute percentage error (MAPE) for the proposed model shows that SVM performs well compared to neural network.
Optical diagnosis of colon and cervical cancer by support vector machine
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sabyasachi; Kurmi, Indrajit; Dey, Rajib; Das, Nandan K.; Pradhan, Sanjay; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.; Mohanty, Samarendra
2016-05-01
A probabilistic robust diagnostic algorithm is very much essential for successful cancer diagnosis by optical spectroscopy. We report here support vector machine (SVM) classification to better discriminate the colon and cervical cancer tissues from normal tissues based on elastic scattering spectroscopy. The efficacy of SVM based classification with different kernel has been tested on multifractal parameters like Hurst exponent, singularity spectrum width in order to classify the cancer tissues.
Identifying saltcedar with hyperspectral data and support vector machines
Technology Transfer Automated Retrieval System (TEKTRAN)
Saltcedar (Tamarix spp.) are a group of dense phreatophytic shrubs and trees that are invasive to riparian areas throughout the United States. This study determined the feasibility of using hyperspectral data and a support vector machine (SVM) classifier to discriminate saltcedar from other cover t...
Support vector machines classifiers of physical activities in preschoolers
Technology Transfer Automated Retrieval System (TEKTRAN)
The goal of this study is to develop, test, and compare multinomial logistic regression (MLR) and support vector machines (SVM) in classifying preschool-aged children physical activity data acquired from an accelerometer. In this study, 69 children aged 3-5 years old were asked to participate in a s...
Diagnosis of Acute Coronary Syndrome with a Support Vector Machine.
Berikol, Göksu Bozdereli; Yildiz, Oktay; Özcan, I Türkay
2016-04-01
Acute coronary syndrome (ACS) is a serious condition arising from an imbalance of supply and demand to meet myocardium's metabolic needs. Patients typically present with retrosternal chest pain radiating to neck and left arm. Electrocardiography (ECG) and laboratory tests are used indiagnosis. However in emergency departments, there are some difficulties for physicians to decide whether hospitalizing, following up or discharging the patient. The aim of the study is to diagnose ACS and helping the physician with his decisionto discharge or to hospitalizevia machine learning techniques such as support vector machine (SVM) by using patient data including age, sex, risk factors, and cardiac enzymes (CK-MB, Troponin I) of patients presenting to emergency department with chest pain. Clinical, laboratory, and imaging data of 228 patients presenting to emergency department with chest pain were reviewedand the performance of support vector machine. Four different methods (Support vector machine (SVM), Artificial neural network (ANN), Naïve Bayes and Logistic Regression) were tested and the results of SVM which has the highest accuracy is reported. Among 228 patients aged 19 to 91 years who were included in the study, 99 (43.4 %) were qualified as ACS, while 129 (56.5 %) had no ACS. The classification model using SVM attained a 99.13 % classification success. The present study showed a 99.13 % classification success for ACS diagnosis attained by Support Vector Machine. This study showed that machine learning techniques may help emergency department staff make decisions by rapidly producing relevant data. PMID:26815338
Fast support vector data descriptions for novelty detection.
Liu, Yi-Hung; Liu, Yan-Chen; Chen, Yen-Jen
2010-08-01
Support vector data description (SVDD) has become a very attractive kernel method due to its good results in many novelty detection problems. However, the decision function of SVDD is expressed in terms of the kernel expansion, which results in a run-time complexity linear in the number of support vectors. For applications where fast real-time response is needed, how to speed up the decision function is crucial. This paper aims at dealing with the issue of reducing the testing time complexity of SVDD. A method called fast SVDD (F-SVDD) is proposed. Unlike the traditional methods which all try to compress a kernel expansion into one with fewer terms, the proposed F-SVDD directly finds the preimage of a feature vector, and then uses a simple relationship between this feature vector and the SVDD sphere center to re-express the center with a single vector. The decision function of F-SVDD contains only one kernel term, and thus the decision boundary of F-SVDD is only spherical in the original space. Hence, the run-time complexity of the F-SVDD decision function is no longer linear in the support vectors, but is a constant, no matter how large the training set size is. In this paper, we also propose a novel direct preimage-finding method, which is noniterative and involves no free parameters. The unique preimage can be obtained in real time by the proposed direct method without taking trial-and-error. For demonstration, several real-world data sets and a large-scale data set, the extended MIT face data set, are used in experiments. In addition, a practical industry example regarding liquid crystal display micro-defect inspection is also used to compare the applicability of SVDD and our proposed F-SVDD when faced with mass data input. The results are very encouraging. PMID:20639178
SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM
Bobra, M. G.; Couvidat, S.
2015-01-10
We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.
SAR ATR using a modified learning vector quantization algorithm
NASA Astrophysics Data System (ADS)
Marinelli, Anne Marie P.; Kaplan, Lance M.; Nasrabadi, Nasser M.
1999-08-01
We addressed the problem of classifying 10 target types in imagery formed from synthetic aperture radar (SAR). By executing a group training process, we show how to increase the performance of 10 initial sets of target templates formed by simple averaging. This training process is a modified learning vector quantization (LVQ) algorithm that was previously shown effective with forward-looking infrared (FLIR) imagery. For comparison, we ran the LVQ experiments using coarse, medium, and fine template sets that captured the target pose signature variations over 60 degrees, 40 degrees, and 20 degrees, respectively. Using sequestered test imagery, we evaluated how well the original and post-LVQ template sets classify the 10 target types. We show that after the LVQ training process, the coarse template set outperforms the coarse and medium original sets. And, for a test set that included untrained version variants, we show that classification using coarse template sets nearly matches that of the fine template sets. In a related experiment, we stored 9 initial template sets to classify 9 of the target types and used a threshold to separate the 10th type, previously found to be a 'confusing' type. We used imagery of all 10 targets in the LVQ training process to modify the 9 template sets. Overall classification performance increased slightly and an equalization of the individual target classification rates occurred, as compared to the 10-template experiment. The SAR imagery that we used is publicly available from the Moving and Stationary Target Acquisition and Recognition (MSTAR) program, sponsored by the Defense Advanced Research Projects Agency (DARPA).
Classification of Regional Ionospheric Disturbances Based on Support Vector Machines
NASA Astrophysics Data System (ADS)
Begüm Terzi, Merve; Arikan, Feza; Arikan, Orhan; Karatay, Secil
2016-07-01
Ionosphere is an anisotropic, inhomogeneous, time varying and spatio-temporally dispersive medium whose parameters can be estimated almost always by using indirect measurements. Geomagnetic, gravitational, solar or seismic activities cause variations of ionosphere at various spatial and temporal scales. This complex spatio-temporal variability is challenging to be identified due to extensive scales in period, duration, amplitude and frequency of disturbances. Since geomagnetic and solar indices such as Disturbance storm time (Dst), F10.7 solar flux, Sun Spot Number (SSN), Auroral Electrojet (AE), Kp and W-index provide information about variability on a global scale, identification and classification of regional disturbances poses a challenge. The main aim of this study is to classify the regional effects of global geomagnetic storms and classify them according to their risk levels. For this purpose, Total Electron Content (TEC) estimated from GPS receivers, which is one of the major parameters of ionosphere, will be used to model the regional and local variability that differs from global activity along with solar and geomagnetic indices. In this work, for the automated classification of the regional disturbances, a classification technique based on a robust machine learning technique that have found wide spread use, Support Vector Machine (SVM) is proposed. SVM is a supervised learning model used for classification with associated learning algorithm that analyze the data and recognize patterns. In addition to performing linear classification, SVM can efficiently perform nonlinear classification by embedding data into higher dimensional feature spaces. Performance of the developed classification technique is demonstrated for midlatitude ionosphere over Anatolia using TEC estimates generated from the GPS data provided by Turkish National Permanent GPS Network (TNPGN-Active) for solar maximum year of 2011. As a result of implementing the developed classification
Chen, Yuantao; Xu, Weihong; Kuang, Fangjun; Gao, Shangbing
2013-01-01
The efficient target tracking algorithm researches have become current research focus of intelligent robots. The main problems of target tracking process in mobile robot face environmental uncertainty. They are very difficult to estimate the target states, illumination change, target shape changes, complex backgrounds, and other factors and all affect the occlusion in tracking robustness. To further improve the target tracking's accuracy and reliability, we present a novel target tracking algorithm to use visual saliency and adaptive support vector machine (ASVM). Furthermore, the paper's algorithm has been based on the mixture saliency of image features. These features include color, brightness, and sport feature. The execution process used visual saliency features and those common characteristics have been expressed as the target's saliency. Numerous experiments demonstrate the effectiveness and timeliness of the proposed target tracking algorithm in video sequences where the target objects undergo large changes in pose, scale, and illumination. PMID:24363779
Classifier based on support vector machine for JET plasma configurationsa)
NASA Astrophysics Data System (ADS)
Dormido-Canto, S.; Farias, G.; Vega, J.; Dormido, R.; Sánchez, J.; Duro, N.; Vargas, H.; Murari, A.; Jet-Efda Contributors
2008-10-01
The last flux surface can be used to identify the plasma configuration of discharges. For automated recognition of JET configurations, a learning system based on support vector machines has been developed. Each configuration is described by 12 geometrical parameters. A multiclass system has been developed by means of the one-versus-the-rest approach. Results with eight simultaneous classes (plasma configurations) show a success rate close to 100%.
An unsupervised support vector method for change detection
NASA Astrophysics Data System (ADS)
Bovolo, F.; Camps-Valls, G.; Bruzzone, L.
2007-10-01
This paper formulates the problem of distinguishing changed from unchanged pixels in remote sensing images as a minimum enclosing ball (MEB) problem with changed pixels as target class. The definition of the sphere shaped decision boundary with minimal volume that embraces changed pixels is approached in the context the support vector formalism adopting a support vector domain description (SVDD) one-class classifier. The SVDD maps the data into a high dimensional feature space where the spherical support of the high dimensional distribution of changed pixels is computed. The proposed formulation of the SVDD uses both target and outlier samples for defining the MEB, and is included here in an unsupervised system for change detection. For this purpose, nearly certain examples for the classes of both targets (i.e., changed pixels) and outliers (i.e., unchanged pixels) for training are identified based on thresholding the magnitude of spectral change vectors. Experimental results obtained on two different multitemporal and multispectral remote sensing images pointed out the effectiveness of the proposed method.
Simple, fast codebook training algorithm by entropy sequence for vector quantization
NASA Astrophysics Data System (ADS)
Pang, Chao-yang; Yao, Shaowen; Qi, Zhang; Sun, Shi-xin; Liu, Jingde
2001-09-01
The traditional training algorithm for vector quantization such as the LBG algorithm uses the convergence of distortion sequence as the condition of the end of algorithm. We presented a novel training algorithm for vector quantization in this paper. The convergence of the entropy sequence of each region sequence is employed as the condition of the end of the algorithm. Compared with the famous LBG algorithm, it is simple, fast and easy to be comprehended and controlled. We test the performance of the algorithm by typical test image Lena and Barb. The result shows that the PSNR difference between the algorithm and LBG is less than 0.1dB, but the running time of it is at most one second of LBG.
Seismic interpretation using Support Vector Machines implemented on Graphics Processing Units
Kuzma, H A; Rector, J W; Bremer, D
2006-06-22
Support Vector Machines (SVMs) estimate lithologic properties of rock formations from seismic data by interpolating between known models using synthetically generated model/data pairs. SVMs are related to kriging and radial basis function neural networks. In our study, we train an SVM to approximate an inverse to the Zoeppritz equations. Training models are sampled from distributions constructed from well-log statistics. Training data is computed via a physically realistic forward modeling algorithm. In our experiments, each training data vector is a set of seismic traces similar to a 2-d image. The SVM returns a model given by a weighted comparison of the new data to each training data vector. The method of comparison is given by a kernel function which implicitly transforms data into a high-dimensional feature space and performs a dot-product. The feature space of a Gaussian kernel is made up of sines and cosines and so is appropriate for band-limited seismic problems. Training an SVM involves estimating a set of weights from the training model/data pairs. It is designed to be an easy problem; at worst it is a quadratic programming problem on the order of the size of the training set. By implementing the slowest part of our SVM algorithm on a graphics processing unit (GPU), we improve the speed of the algorithm by two orders of magnitude. Our SVM/GPU combination achieves results that are similar to those of conventional iterative inversion in fractions of the time.
Scorebox extraction from mobile sports videos using Support Vector Machines
NASA Astrophysics Data System (ADS)
Kim, Wonjun; Park, Jimin; Kim, Changick
2008-08-01
Scorebox plays an important role in understanding contents of sports videos. However, the tiny scorebox may give the small-display-viewers uncomfortable experience in grasping the game situation. In this paper, we propose a novel framework to extract the scorebox from sports video frames. We first extract candidates by using accumulated intensity and edge information after short learning period. Since there are various types of scoreboxes inserted in sports videos, multiple attributes need to be used for efficient extraction. Based on those attributes, the optimal information gain is computed and top three ranked attributes in terms of information gain are selected as a three-dimensional feature vector for Support Vector Machines (SVM) to distinguish the scorebox from other candidates, such as logos and advertisement boards. The proposed method is tested on various videos of sports games and experimental results show the efficiency and robustness of our proposed method.
Wang, Shuihua; Chen, Mengmeng; Li, Yang; Shao, Ying; Zhang, Yudong; Du, Sidan; Wu, Jane
2016-01-01
Dendritic spines are described as neuronal protrusions. The morphology of dendritic spines and dendrites has a strong relationship to its function, as well as playing an important role in understanding brain function. Quantitative analysis of dendrites and dendritic spines is essential to an understanding of the formation and function of the nervous system. However, highly efficient tools for the quantitative analysis of dendrites and dendritic spines are currently undeveloped. In this paper we propose a novel three-step cascaded algorithm-RTSVM- which is composed of ridge detection as the curvature structure identifier for backbone extraction, boundary location based on differences in density, the Hu moment as features and Twin Support Vector Machine (TSVM) classifiers for spine classification. Our data demonstrates that this newly developed algorithm has performed better than other available techniques used to detect accuracy and false alarm rates. This algorithm will be used effectively in neuroscience research. PMID:27547530
Feature Selection and Classification of Hyperspectral Images with Support Vector Machines
Archibald, Richard K; Fann, George I
2007-01-01
Hyperspectral images consist of large number of bands which require sophisticated analysis to extract. One approach to reduce computational cost, information representation, and accelerate knowledge discovery is to eliminate bands that do not add value to the classification and analysis method which is being applied. In particular, algorithms that perform band elimination should be designed to take advantage of the structure of the classification method used. This letter introduces an embedded-feature-selection (EFS) algorithm that is tailored to operate with support vector machines (SVMs) to perform band selection and classification simultaneously. We have successfully applied this algorithm to determine a reasonable subset of bands without any user-defined stopping criteria on some sample AVIRIS images; a problem occurs in benchmarking recursive-feature-elimination methods for the SVMs.
Saidi, Lotfi; Ben Ali, Jaouher; Fnaiech, Farhat
2015-01-01
Condition monitoring and fault diagnosis of rolling element bearings timely and accurately are very important to ensure the reliability of rotating machinery. This paper presents a novel pattern classification approach for bearings diagnostics, which combines the higher order spectra analysis features and support vector machine classifier. The use of non-linear features motivated by the higher order spectra has been reported to be a promising approach to analyze the non-linear and non-Gaussian characteristics of the mechanical vibration signals. The vibration bi-spectrum (third order spectrum) patterns are extracted as the feature vectors presenting different bearing faults. The extracted bi-spectrum features are subjected to principal component analysis for dimensionality reduction. These principal components were fed to support vector machine to distinguish four kinds of bearing faults covering different levels of severity for each fault type, which were measured in the experimental test bench running under different working conditions. In order to find the optimal parameters for the multi-class support vector machine model, a grid-search method in combination with 10-fold cross-validation has been used. Based on the correct classification of bearing patterns in the test set, in each fold the performance measures are computed. The average of these performance measures is computed to report the overall performance of the support vector machine classifier. In addition, in fault detection problems, the performance of a detection algorithm usually depends on the trade-off between robustness and sensitivity. The sensitivity and robustness of the proposed method are explored by running a series of experiments. A receiver operating characteristic (ROC) curve made the results more convincing. The results indicated that the proposed method can reliably identify different fault patterns of rolling element bearings based on vibration signals. PMID:25282095
Improvements on ν-Twin Support Vector Machine.
Khemchandani, Reshma; Saigal, Pooja; Chandra, Suresh
2016-07-01
In this paper, we propose two novel binary classifiers termed as "Improvements on ν-Twin Support Vector Machine: Iν-TWSVM and Iν-TWSVM (Fast)" that are motivated by ν-Twin Support Vector Machine (ν-TWSVM). Similar to ν-TWSVM, Iν-TWSVM determines two nonparallel hyperplanes such that they are closer to their respective classes and are at least ρ distance away from the other class. The significant advantage of Iν-TWSVM over ν-TWSVM is that Iν-TWSVM solves one smaller-sized Quadratic Programming Problem (QPP) and one Unconstrained Minimization Problem (UMP); as compared to solving two related QPPs in ν-TWSVM. Further, Iν-TWSVM (Fast) avoids solving a smaller sized QPP and transforms it as a unimodal function, which can be solved using line search methods and similar to Iν-TWSVM, the other problem is solved as a UMP. Due to their novel formulation, the proposed classifiers are faster than ν-TWSVM and have comparable generalization ability. Iν-TWSVM also implements structural risk minimization (SRM) principle by introducing a regularization term, along with minimizing the empirical risk. The other properties of Iν-TWSVM, related to support vectors (SVs), are similar to that of ν-TWSVM. To test the efficacy of the proposed method, experiments have been conducted on a wide range of UCI and a skewed variation of NDC datasets. We have also given the application of Iν-TWSVM as a binary classifier for pixel classification of color images. PMID:27136663
Gene classification using codon usage and support vector machines.
Ma, Jianmin; Nguyen, Minh N; Rajapakse, Jagath C
2009-01-01
A novel approach for gene classification, which adopts codon usage bias as input feature vector for classification by support vector machines (SVM) is proposed. The DNA sequence is first converted to a 59-dimensional feature vector where each element corresponds to the relative synonymous usage frequency of a codon. As the input to the classifier is independent of sequence length and variance, our approach is useful when the sequences to be classified are of different lengths, a condition that homology-based methods tend to fail. The method is demonstrated by using 1,841 Human Leukocyte Antigen (HLA) sequences which are classified into two major classes: HLA-I and HLA-II; each major class is further subdivided into sub-groups of HLA-I and HLA-II molecules. Using codon usage frequencies, binary SVM achieved accuracy rate of 99.3% for HLA major class classification and multi-class SVM achieved accuracy rates of 99.73% and 98.38% for sub-class classification of HLA-I and HLA-II molecules, respectively. The results show that gene classification based on codon usage bias is consistent with the molecular structures and biological functions of HLA molecules. PMID:19179707
Objective image quality assessment based on support vector regression.
Narwaria, Manish; Lin, Weisi
2010-03-01
Objective image quality estimation is useful in many visual processing systems, and is difficult to perform in line with the human perception. The challenge lies in formulating effective features and fusing them into a single number to predict the quality score. In this brief, we propose a new approach to address the problem, with the use of singular vectors out of singular value decomposition (SVD) as features for quantifying major structural information in images and then support vector regression (SVR) for automatic prediction of image quality. The feature selection with singular vectors is novel and general for gauging structural changes in images as a good representative of visual quality variations. The use of SVR exploits the advantages of machine learning with the ability to learn complex data patterns for an effective and generalized mapping of features into a desired score, in contrast with the oft-utilized feature pooling process in the existing image quality estimators; this is to overcome the difficulty of model parameter determination for such a system to emulate the related, complex human visual system (HVS) characteristics. Experiments conducted with three independent databases confirm the effectiveness of the proposed system in predicting image quality with better alignment with the HVS's perception than the relevant existing work. The tests with untrained distortions and databases further demonstrate the robustness of the system and the importance of the feature selection. PMID:20100674
Support vector machine classifiers for large data sets.
Gertz, E. M.; Griffin, J. D.
2006-01-31
This report concerns the generation of support vector machine classifiers for solving the pattern recognition problem in machine learning. Several methods are proposed based on interior point methods for convex quadratic programming. Software implementations are developed by adapting the object-oriented packaging OOQP to the problem structure and by using the software package PETSc to perform time-intensive computations in a distributed setting. Linear systems arising from classification problems with moderately large numbers of features are solved by using two techniques--one a parallel direct solver, the other a Krylov-subspace method incorporating novel preconditioning strategies. Numerical results are provided, and computational experience is discussed.
Cardiovascular Response Identification Based on Nonlinear Support Vector Regression
NASA Astrophysics Data System (ADS)
Wang, Lu; Su, Steven W.; Chan, Gregory S. H.; Celler, Branko G.; Cheng, Teddy M.; Savkin, Andrey V.
This study experimentally investigates the relationships between central cardiovascular variables and oxygen uptake based on nonlinear analysis and modeling. Ten healthy subjects were studied using cycle-ergometry exercise tests with constant workloads ranging from 25 Watt to 125 Watt. Breath by breath gas exchange, heart rate, cardiac output, stroke volume and blood pressure were measured at each stage. The modeling results proved that the nonlinear modeling method (Support Vector Regression) outperforms traditional regression method (reducing Estimation Error between 59% and 80%, reducing Testing Error between 53% and 72%) and is the ideal approach in the modeling of physiological data, especially with small training data set.
Fuzzy nonlinear proximal support vector machine for land extraction based on remote sensing image.
Zhong, Xiaomei; Li, Jianping; Dou, Huacheng; Deng, Shijun; Wang, Guofei; Jiang, Yu; Wang, Yongjie; Zhou, Zebing; Wang, Li; Yan, Fei
2013-01-01
Currently, remote sensing technologies were widely employed in the dynamic monitoring of the land. This paper presented an algorithm named fuzzy nonlinear proximal support vector machine (FNPSVM) by basing on ETM(+) remote sensing image. This algorithm is applied to extract various types of lands of the city Da'an in northern China. Two multi-category strategies, namely "one-against-one" and "one-against-rest" for this algorithm were described in detail and then compared. A fuzzy membership function was presented to reduce the effects of noises or outliers on the data samples. The approaches of feature extraction, feature selection, and several key parameter settings were also given. Numerous experiments were carried out to evaluate its performances including various accuracies (overall accuracies and kappa coefficient), stability, training speed, and classification speed. The FNPSVM classifier was compared to the other three classifiers including the maximum likelihood classifier (MLC), back propagation neural network (BPN), and the proximal support vector machine (PSVM) under different training conditions. The impacts of the selection of training samples, testing samples and features on the four classifiers were also evaluated in these experiments. PMID:23936016
Agricultural mapping using Support Vector Machine-Based Endmember Extraction (SVM-BEE)
Archibald, Richard K; Filippi, Anthony M; Bhaduri, Budhendra L; Bright, Eddie A
2009-01-01
Extracting endmembers from remotely sensed images of vegetated areas can present difficulties. In this research, we applied a recently developed endmember-extraction algorithm based on Support Vector Machines (SVMs) to the problem of semi-autonomous estimation of vegetation endmembers from a hyperspectral image. This algorithm, referred to as Support Vector Machine-Based Endmember Extraction (SVM-BEE), accurately and rapidly yields a computed representation of hyperspectral data that can accommodate multiple distributions. The number of distributions is identified without prior knowledge, based upon this representation. Prior work established that SVM-BEE is robustly noise-tolerant and can semi-automatically and effectively estimate endmembers; synthetic data and a geologic scene were previously analyzed. Here we compared the efficacies of the SVM-BEE and N-FINDR algorithms in extracting endmembers from a predominantly agricultural scene. SVM-BEE was able to estimate vegetation and other endmembers for all classes in the image, which N-FINDR failed to do. Classifications based on SVM-BEE endmembers were markedly more accurate compared with those based on N-FINDR endmembers.
Research on multi-class classification of support vector data description
NASA Astrophysics Data System (ADS)
Shen, Minghua; Xiao, Huaitie; Fu, Qiang
2007-11-01
Support Vector Data Description (SVDD) is a one-class classification method developed in recent years. It has been used in many fields because of its good performance and high executive efficiency when there are only one-class training samples. It has been proven that SVDD has less support vector numbers, less optimization time and faster testing speed than those of two-class classifier such as SVM. At present, researches and acquirable literatures about SVDD multi-class classification are little, which restricts the SVDD application. One SVDD multi-class classification algorithm is proposed in the paper. Based on minimum distance classification rule, the misclassification in multi-class classification is well solved and by applying the threshold strategy the rejection in multi-class classification is greatly alleviated. Finally, by classifying range profiles of three targets, the effect of kernel function parameter and SNR on the proposed algorithm is investigated and the effectiveness of the algorithm is testified by quantities of experiments.
Fuzzy Nonlinear Proximal Support Vector Machine for Land Extraction Based on Remote Sensing Image
Zhong, Xiaomei; Li, Jianping; Dou, Huacheng; Deng, Shijun; Wang, Guofei; Jiang, Yu; Wang, Yongjie; Zhou, Zebing; Wang, Li; Yan, Fei
2013-01-01
Currently, remote sensing technologies were widely employed in the dynamic monitoring of the land. This paper presented an algorithm named fuzzy nonlinear proximal support vector machine (FNPSVM) by basing on ETM+ remote sensing image. This algorithm is applied to extract various types of lands of the city Da’an in northern China. Two multi-category strategies, namely “one-against-one” and “one-against-rest” for this algorithm were described in detail and then compared. A fuzzy membership function was presented to reduce the effects of noises or outliers on the data samples. The approaches of feature extraction, feature selection, and several key parameter settings were also given. Numerous experiments were carried out to evaluate its performances including various accuracies (overall accuracies and kappa coefficient), stability, training speed, and classification speed. The FNPSVM classifier was compared to the other three classifiers including the maximum likelihood classifier (MLC), back propagation neural network (BPN), and the proximal support vector machine (PSVM) under different training conditions. The impacts of the selection of training samples, testing samples and features on the four classifiers were also evaluated in these experiments. PMID:23936016
Algorithms for solving large sparse systems of simultaneous linear equations on vector processors
NASA Technical Reports Server (NTRS)
David, R. E.
1984-01-01
Very efficient algorithms for solving large sparse systems of simultaneous linear equations have been developed for serial processing computers. These involve a reordering of matrix rows and columns in order to obtain a near triangular pattern of nonzero elements. Then an LU factorization is developed to represent the matrix inverse in terms of a sequence of elementary Gaussian eliminations, or pivots. In this paper it is shown how these algorithms are adapted for efficient implementation on vector processors. Results obtained on the CYBER 200 Model 205 are presented for a series of large test problems which show the comparative advantages of the triangularization and vector processing algorithms.
Runtime support for parallelizing data mining algorithms
NASA Astrophysics Data System (ADS)
Jin, Ruoming; Agrawal, Gagan
2002-03-01
With recent technological advances, shared memory parallel machines have become more scalable, and offer large main memories and high bus bandwidths. They are emerging as good platforms for data warehousing and data mining. In this paper, we focus on shared memory parallelization of data mining algorithms. We have developed a series of techniques for parallelization of data mining algorithms, including full replication, full locking, fixed locking, optimized full locking, and cache-sensitive locking. Unlike previous work on shared memory parallelization of specific data mining algorithms, all of our techniques apply to a large number of common data mining algorithms. In addition, we propose a reduction-object based interface for specifying a data mining algorithm. We show how our runtime system can apply any of the technique we have developed starting from a common specification of the algorithm.
NASA Astrophysics Data System (ADS)
Georgiopoulos, C. H.; Goldman, J. H.; Hodous, M. F.
1987-11-01
We report on a fully vectorized track finding and fitting algorithm that has been used to reconstruct charged particle trajectories in a multiwire chamber system. This algorithm is currently used for data analysis of the E-711 experiment a Fermilab. The program is written for a CYBER 205 on which the average event takes 13.5 ms to process compared to 6.7 s for an optimized scalar algorithm on a VAX-11/780.
Application of Multi-Sensor Information Fusion Method Based on Rough Sets and Support Vector Machine
NASA Astrophysics Data System (ADS)
Xue, Jinxue; Wang, Guohu; Wang, Xiaoqiang; Cui, Fengkui
In order to improve the precision and date processing speed of multi-sensor information fusion, a kind of multi-sensor data fusion process algorithm has been studied in this paper. First, based on rough set theory (RS) to attribute reduction the parameter set, we use the advantages of rough set theory in dealing with large amount of data to eliminate redundant information. Then, the data can be trained and classified by Support Vector Machine (SYM). Experimental results showed that this method can improve the speed and accuracy of multi-sensor fusion system.
Automatic classification of 3D segmented CT data using data fusion and support vector machine
NASA Astrophysics Data System (ADS)
Osman, Ahmad; Kaftandjian, Valérie; Hassler, Ulf
2011-07-01
The three dimensional X-ray computed tomography (3D-CT) has proved its successful usage as inspection method in non destructive testing. The generated 3D volume using high efficiency reconstruction algorithms contains all the inner structures of the inspected part. Segmentation of this volume reveals suspicious regions which need to be classified into defects or false alarms. This paper deals with the classification step using data fusion theory and support vector machine. Results achieved are very promising and prove the effectiveness of the data fusion theory as a method to build stronger classifier.
Surgical planning for horizontal strabismus using Support Vector Regression.
Almeida, João Dallyson Sousa de; Silva, Aristófanes Corrêa; Teixeira, Jorge Antonio Meireles; Paiva, Anselmo Cardoso; Gattass, Marcelo
2015-08-01
Strabismus is a pathology which affects about 4% of the population, causing esthetic problems (reversible at any age) and irreversible sensory disorders, altering the vision mechanism. Many techniques can be applied to settle the muscular balance, thus eliminating strabismus. However, when the conservative treatment is not enough, the surgical treatment is adopted, applying recoils or resections to the ocular muscles affected. The factors involved in the surgical strategy in cases of strabismus are complex, demanding both theoretical knowledge and experience from the surgeon. So, the present work proposes a methodology based on Support Vector Regression to help the physician with decision related to horizontal strabismus surgeries. The efficiency of the method at the indication of the surgical plan was evaluated through the average difference between the values that it provided and the values indicated by the specialists. In the planning of medial rectus muscles surgeries, the average error was 0.5mm for recoil and 0.7 for resection. For lateral rectus muscles, the mean error was 0.6 for recoil and 0.8 for resection. The results are promising and prove the feasibility of the use of Support Vector Regression in the indication of strabismus surgeries. PMID:26093785
Clifford support vector machines for classification, regression, and recurrence.
Bayro-Corrochano, Eduardo Jose; Arana-Daniel, Nancy
2010-11-01
This paper introduces the Clifford support vector machines (CSVM) as a generalization of the real and complex-valued support vector machines using the Clifford geometric algebra. In this framework, we handle the design of kernels involving the Clifford or geometric product. In this approach, one redefines the optimization variables as multivectors. This allows us to have a multivector as output. Therefore, we can represent multiple classes according to the dimension of the geometric algebra in which we work. We show that one can apply CSVM for classification and regression and also to build a recurrent CSVM. The CSVM is an attractive approach for the multiple input multiple output processing of high-dimensional geometric entities. We carried out comparisons between CSVM and the current approaches to solve multiclass classification and regression. We also study the performance of the recurrent CSVM with experiments involving time series. The authors believe that this paper can be of great use for researchers and practitioners interested in multiclass hypercomplex computing, particularly for applications in complex and quaternion signal and image processing, satellite control, neurocomputation, pattern recognition, computer vision, augmented virtual reality, robotics, and humanoids. PMID:20876017
Support Vector Machine Diagnosis of Acute Abdominal Pain
NASA Astrophysics Data System (ADS)
Björnsdotter, Malin; Nalin, Kajsa; Hansson, Lars-Erik; Malmgren, Helge
This study explores the feasibility of a decision-support system for patients seeking care for acute abdominal pain, and, specifically the diagnosis of acute diverticulitis. We used a linear support vector machine (SVM) to separate diverticulitis from all other reported cases of abdominal pain and from the important differential diagnosis non-specific abdominal pain (NSAP). On a database containing 3337 patients, the SVM obtained results comparable to those of the doctors in separating diverticulitis or NSAP from the remaining diseases. The distinction between diverticulitis and NSAP was, however, substantially improved by the SVM. For this patient group, the doctors achieved a sensitivity of 0.714 and a specificity of 0.963. When adjusted to the physicians' results, the SVM sensitivity/specificity was higher at 0.714/0.985 and 0.786/0.963 respectively. Age was found as the most important discriminative variable, closely followed by C-reactive protein level and lower left side pain.
Robust Support Vector Machines for Classification with Nonconvex and Smooth Losses.
Feng, Yunlong; Yang, Yuning; Huang, Xiaolin; Mehrkanoon, Siamak; Suykens, Johan A K
2016-06-01
This letter addresses the robustness problem when learning a large margin classifier in the presence of label noise. In our study, we achieve this purpose by proposing robustified large margin support vector machines. The robustness of the proposed robust support vector classifiers (RSVC), which is interpreted from a weighted viewpoint in this work, is due to the use of nonconvex classification losses. Besides the robustness, we also show that the proposed RSCV is simultaneously smooth, which again benefits from using smooth classification losses. The idea of proposing RSVC comes from M-estimation in statistics since the proposed robust and smooth classification losses can be taken as one-sided cost functions in robust statistics. Its Fisher consistency property and generalization ability are also investigated. Besides the robustness and smoothness, another nice property of RSVC lies in the fact that its solution can be obtained by solving weighted squared hinge loss-based support vector machine problems iteratively. We further show that in each iteration, it is a quadratic programming problem in its dual space and can be solved by using state-of-the-art methods. We thus propose an iteratively reweighted type algorithm and provide a constructive proof of its convergence to a stationary point. Effectiveness of the proposed classifiers is verified on both artificial and real data sets. PMID:27137357
NASA Astrophysics Data System (ADS)
Na'imi, S. R.; Shadizadeh, S. R.; Riahi, M. A.; Mirzakhanian, M.
2014-08-01
Porosity and fluid saturation distributions are crucial properties of hydrocarbon reservoirs and are involved in almost all calculations related to reservoir and production. True measurements of these parameters derived from laboratory measurements, are only available at the isolated localities of a reservoir and also are expensive and time-consuming. Therefore, employing other methodologies which have stiffness, simplicity, and cheapness is needful. Support Vector Regression approach is a moderately novel method for doing functional estimation in regression problems. Contrary to conventional neural networks which minimize the error on the training data by the use of usual Empirical Risk Minimization principle, Support Vector Regression minimizes an upper bound on the anticipated risk by means of the Structural Risk Minimization principle. This difference which is the destination in statistical learning causes greater ability of this approach for generalization tasks. In this study, first, appropriate seismic attributes which have an underlying dependency with reservoir porosity and water saturation are extracted. Subsequently, a non-linear support vector regression algorithm is utilized to obtain quantitative formulation between porosity and water saturation parameters and selected seismic attributes. For an undrilled reservoir, in which there are no sufficient core and log data, it is moderately possible to characterize hydrocarbon bearing formation by means of this method.
Protein Kinase Classification with 2866 Hidden Markov Models and One Support Vector Machine
NASA Technical Reports Server (NTRS)
Weber, Ryan; New, Michael H.; Fonda, Mark (Technical Monitor)
2002-01-01
The main application considered in this paper is predicting true kinases from randomly permuted kinases that share the same length and amino acid distributions as the true kinases. Numerous methods already exist for this classification task, such as HMMs, motif-matchers, and sequence comparison algorithms. We build on some of these efforts by creating a vector from the output of thousands of structurally based HMMs, created offline with Pfam-A seed alignments using SAM-T99, which then must be combined into an overall classification for the protein. Then we use a Support Vector Machine for classifying this large ensemble Pfam-Vector, with a polynomial and chisquared kernel. In particular, the chi-squared kernel SVM performs better than the HMMs and better than the BLAST pairwise comparisons, when predicting true from false kinases in some respects, but no one algorithm is best for all purposes or in all instances so we consider the particular strengths and weaknesses of each.
Modeling node bandwidth limits and their effects on vector combining algorithms
Littlefield, R.J.
1992-01-13
Each node in a message-passing multicomputer typically has several communication links. However, the maximum aggregate communication speed of a node is often less than the sum of its individual link speeds. Such computers are called node bandwidth limited (NBL). The NBL constraint is important when choosing algorithms because it can change the relative performance of different algorithms that accomplish the same task. This paper introduces a model of communication performance for NBL computers and uses the model to analyze the overall performance of three algorithms for vector combining (global sum) on the Intel Touchstone DELTA computer. Each of the three algorithms is found to be at least 33% faster than the other two for some combinations of machine size and vector length. The NBL constraint is shown to significantly affect the conditions under which each algorithm is fastest.
Automated identification of biomedical article type using support Vector machines
NASA Astrophysics Data System (ADS)
Kim, In Cheol; Le, Daniel X.; Thoma, George R.
2011-01-01
Authors of short papers such as letters or editorials often express complementary opinions, and sometimes contradictory ones, on related work in previously published articles. The MEDLINE® citations for such short papers are required to list bibliographic data on these "commented on" articles in a "CON" field. The challenge is to automatically identify the CON articles referred to by the author of the short paper (called "Comment-in" or CIN paper). Our approach is to use support vector machines (SVM) to first classify a paper as either a CIN or a regular full-length article (which is exempt from this requirement), and then to extract from the CIN paper the bibliographic data of the CON articles. A solution to the first part of the problem, identifying CIN articles, is addressed here. We implement and compare the performance of two types of SVM, one with a linear kernel function and the other with a radial basis kernel function (RBF). Input feature vectors for the SVMs are created by combining four types of features based on statistics of words in the article title, words that suggest the article type (letter, correspondence, editorial), size of body text, and cue phrases. Experiments conducted on a set of online biomedical articles show that the SVM with a linear kernel function yields a significantly lower false negative error rate than the one with an RBF. Our experiments also show that the SVM with a linear kernel function achieves a significantly higher level of accuracy, and lower false positive and false negative error rates by using input feature vectors created by combining all four types of features rather than any single type.
Interpreting linear support vector machine models with heat map molecule coloring
2011-01-01
Background Model-based virtual screening plays an important role in the early drug discovery stage. The outcomes of high-throughput screenings are a valuable source for machine learning algorithms to infer such models. Besides a strong performance, the interpretability of a machine learning model is a desired property to guide the optimization of a compound in later drug discovery stages. Linear support vector machines showed to have a convincing performance on large-scale data sets. The goal of this study is to present a heat map molecule coloring technique to interpret linear support vector machine models. Based on the weights of a linear model, the visualization approach colors each atom and bond of a compound according to its importance for activity. Results We evaluated our approach on a toxicity data set, a chromosome aberration data set, and the maximum unbiased validation data sets. The experiments show that our method sensibly visualizes structure-property and structure-activity relationships of a linear support vector machine model. The coloring of ligands in the binding pocket of several crystal structures of a maximum unbiased validation data set target indicates that our approach assists to determine the correct ligand orientation in the binding pocket. Additionally, the heat map coloring enables the identification of substructures important for the binding of an inhibitor. Conclusions In combination with heat map coloring, linear support vector machine models can help to guide the modification of a compound in later stages of drug discovery. Particularly substructures identified as important by our method might be a starting point for optimization of a lead compound. The heat map coloring should be considered as complementary to structure based modeling approaches. As such, it helps to get a better understanding of the binding mode of an inhibitor. PMID:21439031
NASA Astrophysics Data System (ADS)
Lv, Jie; Yan, Zhenguo; Wei, Jingyi
2014-11-01
Accurate retrieval of crop chlorophyll content is of great importance for crop growth monitoring, crop stress situations, and the crop yield estimation. This study focused on retrieval of rice chlorophyll content from data through radiative transfer model inversion. A field campaign was carried out in September 2009 in the farmland of ChangChun, Jinlin province, China. A different set of 10 sites of the same species were used in 2009 for validation of methodologies. Reflectance of rice was collected using ASD field spectrometer for the solar reflective wavelengths (350-2500 nm), chlorophyll content of rice was measured by SPAD-502 chlorophyll meter. Each sample sites was recorded with a Global Position System (GPS).Firstly, the PROSPECT radiative transfer model was inverted using support vector machine in order to link rice spectrum and the corresponding chlorophyll content. Secondly, genetic algorithms were adopted to select parameters of support vector machine, then support vector machine was trained the training data set, in order to establish leaf chlorophyll content estimation model. Thirdly, a validation data set was established based on hyperspectral data, and the leaf chlorophyll content estimation model was applied to the validation data set to estimate leaf chlorophyll content of rice in the research area. Finally, the outcome of the inversion was evaluated using the calculated R2 and RMSE values with the field measurements. The results of the study highlight the significance of support vector machine in estimating leaf chlorophyll content of rice. Future research will concentrated on the view of the definition of satellite images and the selection of the best measurement configuration for accurate estimation of rice characteristics.
NASA Astrophysics Data System (ADS)
Gao, Wei; Zhu, Linli; Wang, Kaiyun
2015-12-01
Ontology, a model of knowledge representation and storage, has had extensive applications in pharmaceutics, social science, chemistry and biology. In the age of “big data”, the constructed concepts are often represented as higher-dimensional data by scholars, and thus the sparse learning techniques are introduced into ontology algorithms. In this paper, based on the alternating direction augmented Lagrangian method, we present an ontology optimization algorithm for ontological sparse vector learning, and a fast version of such ontology technologies. The optimal sparse vector is obtained by an iterative procedure, and the ontology function is then obtained from the sparse vector. Four simulation experiments show that our ontological sparse vector learning model has a higher precision ratio on plant ontology, humanoid robotics ontology, biology ontology and physics education ontology data for similarity measuring and ontology mapping applications.
Support Vector Machines for Non-linear Geophysical Inversion
NASA Astrophysics Data System (ADS)
Kuzma, H. A.; Rector, J. W.
2004-12-01
Classical non-linear geophysical inversion can be simulated using computer learning via Support Vector Machines. Geophysical inverse problems are almost always ill-posed which means that many different models (i.e. descriptions of the earth) can be found to explain a given noisy or incomplete data set. Regularization and constraints encourage inversions to find physically realistic models. The set of preferred models needs to be defined a priori using as much geologic knowledge as is available. In inversion, it is assumed that data and a forward modeling process is known. The goal is to solve for a model. In the SVM paradigm, a series of models and associated data are known. The goal is to solve for a reverse modeling process. Starting with a series of initial models assembled using all available geologic information, synthetic data is created using the most realistic forward modeling program available. With the synthetic data as inputs and the known models as outputs, a Support Vector Machine is trained to approximate a local inverse to the forward modeling program. The advantages of this approach are that it is honest about the need to establish, a priori, the kinds of models that are reasonable in a particular field situation. There is no need to adjust the forward process to accommodate inversion, because SVMs can be easily modified to capture complicated, non-linear relationships. SVMs are transparent and require very little programming. If an SVM is trained using model/data pairs that are drawn from the same probability distribution that is implicit in the regularization of an inversion, then it will get very similar results to the inversion. Because SVMs can interpret as much data as desired so long as the conditions of an experiment do not change, they can be used to perform otherwise computationally expensive procedures. Support Vector Machines are trained to emulate non-linear seismic Amplitude Variation with Offset (AVO) inversions, gravity inversions
Cui, Song; Youn, Eunseog; Lee, Joohyun; Maas, Stephan J.
2014-01-01
Biological prediction of transcription factor binding sites and their corresponding transcription factor target genes (TFTGs) makes great contribution to understanding the gene regulatory networks. However, these approaches are based on laborious and time-consuming biological experiments. Numerous computational approaches have shown great potential to circumvent laborious biological methods. However, the majority of these algorithms provide limited performances and fail to consider the structural property of the datasets. We proposed a refined systematic computational approach for predicting TFTGs. Based on previous work done on identifying auxin response factor target genes from Arabidopsis thaliana co-expression data, we adopted a novel reverse-complementary distance-sensitive n-gram profile algorithm. This algorithm converts each upstream sub-sequence into a high-dimensional vector data point and transforms the prediction task into a classification problem using support vector machine-based classifier. Our approach showed significant improvement compared to other computational methods based on the area under curve value of the receiver operating characteristic curve using 10-fold cross validation. In addition, in the light of the highly skewed structure of the dataset, we also evaluated other metrics and their associated curves, such as precision-recall curves and cost curves, which provided highly satisfactory results. PMID:24743548
Sensorless tension control of shuttleless loom system based on support vector regression
NASA Astrophysics Data System (ADS)
Han, Dong Chang; Back, Woon Jae; Lee, Yoon Chul; Lee, Sang Hwa; Lee, Hyuk Jin; Noh, Seok Hong; Kim, Han Kil; Park, Jae Yong; Lee, Suk Gyu; Chun, Du Hwan
2005-12-01
Tension control of loom system are usually achieved by using loadcell sensor and powder clutch, which require additional mounting space, reduce the reliability in harsh environments and increase the cost of a loom system. Moreover, the physical properties of textile fabrics are very sensitive to several factors(temperature, humidity, radius change of warp beam etc.) which result in tension change. In this paper, a novel sensorless tension control of a shuttleless loom system based on SVR(Support Vector Regression) is presented. The sensorless tension algorithm of shuttleless loom system driven by servo motor which is robust to disturbance and tension variation. First, the modeling and dynamic behaviors of a shuttleless loom system is described. Then, different tension control strategies are analyzed and discussed. And finally, the validity and the usefulness of proposed algorithm are thoroughly verified through numerical simulation.
Blind multiuser detector for chaos-based CDMA using support vector machine.
Kao, Johnny Wei-Hsun; Berber, Stevan Mirko; Kecman, Vojislav
2010-08-01
The algorithm and the results of a blind multiuser detector using a machine learning technique called support vector machine (SVM) on a chaos-based code division multiple access system is presented in this paper. Simulation results showed that the performance achieved by using SVM is comparable to existing minimum mean square error (MMSE) detector under both additive white Gaussian noise (AWGN) and Rayleigh fading conditions. However, unlike the MMSE detector, the SVM detector does not require the knowledge of spreading codes of other users in the system or the estimate of the channel noise variance. The optimization of this algorithm is considered in this paper and its complexity is compared with the MMSE detector. This detector is much more suitable to work in the forward link than MMSE. In addition, original theoretical bit-error rate expressions for the SVM detector under both AWGN and Rayleigh fading are derived to verify the simulation results. PMID:20570769
Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines
del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J.; Raboso, Mariano
2015-01-01
Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392
[Optimization of extraction process of compound Clematidis Radix spray by support vector machine].
Zhao, Li; Li, Hui; Liu, Yi-fan; Fu, Yan; Liu, Yu-ling; Zhang, Xiao-li
2015-04-01
L9 (3(4)) orthogonal experiment was used to design the extraction technology of compound Clematidis Radix spray. Weight coefficients of active ingredients and dry extract rate were solved by information entropy. Support vector machine (SVM) was established and the model parameters were optimized through the genetic algorithm. Grid search algorithm was used for optimization of extraction technology of Clematidis Radix spray. The optimal extraction technology was to extract Clematidis Radix spray in water with 6 times the weight of herbal medicine for 3 times, with 2 h once. Bias of value between real and predicted by SVM was 1.23%. SVM was compared with traditional intuitive analysis of orthogonal design. It indicates that the new method used to optimize the extraction parameters of compound Clematidis Radix spray is more accurate and reliable. PMID:26281549
Manivannan, K; Aggarwal, P; Devabhaktuni, V; Kumar, A; Nims, D; Bhattacharya, P
2012-07-15
An efficient and highly reliable automatic selection of optimal segmentation algorithm for characterizing particulate matter is presented in this paper. Support vector machines (SVMs) are used as a new self-regulating classifier trained by gray level co-occurrence matrix (GLCM) of the image. This matrix is calculated at various angles and the texture features are evaluated for classifying the images. Results show that the performance of GLCM-based SVMs is drastically improved over the previous histogram-based SVMs. Our proposed GLCM-based approach of training SVM predicts a robust and more accurate segmentation algorithm than the standard histogram technique, as additional information based on the spatial relationship between pixels is incorporated for image classification. Further, the GLCM-based SVM classifiers were more accurate and required less training data when compared to the artificial neural network (ANN) classifiers. PMID:22595545
Wang, Shuihua; Chen, Mengmeng; Li, Yang; Shao, Ying; Zhang, Yudong
2016-01-01
Dendritic spines are described as neuronal protrusions. The morphology of dendritic spines and dendrites has a strong relationship to its function, as well as playing an important role in understanding brain function. Quantitative analysis of dendrites and dendritic spines is essential to an understanding of the formation and function of the nervous system. However, highly efficient tools for the quantitative analysis of dendrites and dendritic spines are currently undeveloped. In this paper we propose a novel three-step cascaded algorithm–RTSVM— which is composed of ridge detection as the curvature structure identifier for backbone extraction, boundary location based on differences in density, the Hu moment as features and Twin Support Vector Machine (TSVM) classifiers for spine classification. Our data demonstrates that this newly developed algorithm has performed better than other available techniques used to detect accuracy and false alarm rates. This algorithm will be used effectively in neuroscience research. PMID:27547530
Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.
del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano
2015-01-01
Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392
Yoo, Jaehyun; Kim, H Jin
2015-01-01
Machine learning has been successfully used for target localization in wireless sensor networks (WSNs) due to its accurate and robust estimation against highly nonlinear and noisy sensor measurement. For efficient and adaptive learning, this paper introduces online semi-supervised support vector regression (OSS-SVR). The first advantage of the proposed algorithm is that, based on semi-supervised learning framework, it can reduce the requirement on the amount of the labeled training data, maintaining accurate estimation. Second, with an extension to online learning, the proposed OSS-SVR automatically tracks changes of the system to be learned, such as varied noise characteristics. We compare the proposed algorithm with semi-supervised manifold learning, an online Gaussian process and online semi-supervised colocalization. The algorithms are evaluated for estimating the unknown location of a mobile robot in a WSN. The experimental results show that the proposed algorithm is more accurate under the smaller amount of labeled training data and is robust to varying noise. Moreover, the suggested algorithm performs fast computation, maintaining the best localization performance in comparison with the other methods. PMID:26024420
Extended robust support vector machine based on financial risk minimization.
Takeda, Akiko; Fujiwara, Shuhei; Kanamori, Takafumi
2014-11-01
Financial risk measures have been used recently in machine learning. For example, ν-support vector machine ν-SVM) minimizes the conditional value at risk (CVaR) of margin distribution. The measure is popular in finance because of the subadditivity property, but it is very sensitive to a few outliers in the tail of the distribution. We propose a new classification method, extended robust SVM (ER-SVM), which minimizes an intermediate risk measure between the CVaR and value at risk (VaR) by expecting that the resulting model becomes less sensitive than ν-SVM to outliers. We can regard ER-SVM as an extension of robust SVM, which uses a truncated hinge loss. Numerical experiments imply the ER-SVM's possibility of achieving a better prediction performance with proper parameter setting. PMID:25058701
Prediction of Pork Quality by Fuzzy Support Vector Machine Classifier
NASA Astrophysics Data System (ADS)
Zhang, Jianxi; Yu, Huaizhi; Wang, Jiamin
Existing objective methods to evaluate pork quality in general do not yield satisfactory results and their applications in meat industry are limited. In this study, fuzzy support vector machine (FSVM) method was developed to evaluate and predict pork quality rapidly and nondestructively. Firstly, the discrete wavelet transform (DWT) was used to eliminate the noise component in original spectrum and the new spectrum was reconstructed. Then, considering the characteristic variables still exist correlation and contain some redundant information, principal component analysis (PCA) was carried out. Lastly, FSVM was developed to differentiate and classify pork samples into different quality grades using the features from PCA. Jackknife tests on the working datasets indicated that the prediction accuracies were higher than other methods.
Improved Online Support Vector Machines Spam Filtering Using String Kernels
NASA Astrophysics Data System (ADS)
Amayri, Ola; Bouguila, Nizar
A major bottleneck in electronic communications is the enormous dissemination of spam emails. Developing of suitable filters that can adequately capture those emails and achieve high performance rate become a main concern. Support vector machines (SVMs) have made a large contribution to the development of spam email filtering. Based on SVMs, the crucial problems in email classification are feature mapping of input emails and the choice of the kernels. In this paper, we present thorough investigation of several distance-based kernels and propose the use of string kernels and prove its efficiency in blocking spam emails. We detail a feature mapping variants in text classification (TC) that yield improved performance for the standard SVMs in filtering task. Furthermore, to cope for realtime scenarios we propose an online active framework for spam filtering.
Support vector regression for real-time flood stage forecasting
NASA Astrophysics Data System (ADS)
Yu, Pao-Shan; Chen, Shien-Tsung; Chang, I.-Fan
2006-09-01
SummaryFlood forecasting is an important non-structural approach for flood mitigation. The flood stage is chosen as the variable to be forecasted because it is practically useful in flood forecasting. The support vector machine, a novel artificial intelligence-based method developed from statistical learning theory, is adopted herein to establish a real-time stage forecasting model. The lags associated with the input variables are determined by applying the hydrological concept of the time of response, and a two-step grid search method is applied to find the optimal parameters, and thus overcome the difficulties in constructing the learning machine. Two structures of models used to perform multiple-hour-ahead stage forecasts are developed. Validation results from flood events in Lan-Yang River, Taiwan, revealed that the proposed models can effectively predict the flood stage forecasts one-to-six-hours ahead. Moreover, a sensitivity analysis was conducted on the lags associated with the input variables.
Aero-Engine Condition Monitoring Based on Support Vector Machine
NASA Astrophysics Data System (ADS)
Zhang, Chunxiao; Wang, Nan
The maintenance and management of civil aero-engine require advanced monitor approaches to estimate aero-engine performance and health in order to increase life of aero-engine and reduce maintenance costs. In this paper, we adopted support vector machine (SVM) regression approach to monitor an aero-engine health and condition by building monitoring models of main aero-engine performance parameters(EGT, N1, N2 and FF). The accuracy of nonlinear baseline models of performance parameters is tested and the maximum relative error does not exceed ±0.3%, which meets the engineering requirements. The results show that SVM nonlinear regression is an effective method in aero-engine monitoring.
Image replica detection based on support vector classifier
NASA Astrophysics Data System (ADS)
Maret, Y.; Dufaux, F.; Ebrahimi, T.
2005-08-01
In this paper, we propose a technique for image replica detection. By replica, we mean equivalent versions of a given reference image, e.g. after it has undergone operations such as compression, filtering or resizing. Applications of this technique include discovery of copyright infringement or detection of illicit content. The technique is based on the extraction of multiple features from an image, namely texture, color, and spatial distribution of colors. Similar features are then grouped into groups and the similarity between two images is given by several partial distances. The decision function to decide whether a test image is a replica of a given reference image is finally derived using Support Vector Classifier (SVC). In this paper, we show that this technique achieves good results on a large database of images. For instance, for a false negative rate of 5 % the system yields a false positive rate of only 6 " 10-5.
Bullet Image Classification using Support Vector Machine (SVM)
NASA Astrophysics Data System (ADS)
Ratna S, Dwi; Setyono, Budi; Herdha, Tyara
2016-02-01
All Quality control of the bullet is usually done manually. Manual inspection process has some disadvantages for instance human error factor and the time inspection are relatively longer. In this study, defect detection and classification of bullets by using Support Vector Machine (SVM)has been done. The stages of classification of scheme bullets in this study include pre-processing, feature extraction with Principal Component Analysis (PCA) and classification of bullets by using SVM normalized. Performance of the proposed classification of scheme was tested using 80 images of bullets in which 40 images free of defects and 40 images with defect. The results show that the scheme can classify images of bullets with a 90% accuracy rate with test data in the form of 10 images free-defect and 10 image defects.
Finger vein image quality evaluation using support vector machines
NASA Astrophysics Data System (ADS)
Yang, Lu; Yang, Gongping; Yin, Yilong; Xiao, Rongyang
2013-02-01
In an automatic finger-vein recognition system, finger-vein image quality is significant for segmentation, enhancement, and matching processes. In this paper, we propose a finger-vein image quality evaluation method using support vector machines (SVMs). We extract three features including the gradient, image contrast, and information capacity from the input image. An SVM model is built on the training images with annotated quality labels (i.e., high/low) and then applied to unseen images for quality evaluation. To resolve the class-imbalance problem in the training data, we perform oversampling for the minority class with random-synthetic minority oversampling technique. Cross-validation is also employed to verify the reliability and stability of the learned model. Our experimental results show the effectiveness of our method in evaluating the quality of finger-vein images, and by discarding low-quality images detected by our method, the overall finger-vein recognition performance is considerably improved.
Material characterization via least squares support vector machines
NASA Astrophysics Data System (ADS)
Swaddiwudhipong, S.; Tho, K. K.; Liu, Z. S.; Hua, J.; Ooi, N. S. B.
2005-09-01
Analytical methods to interpret the load indentation curves are difficult to formulate and execute directly due to material and geometric nonlinearities as well as complex contact interactions. In the present study, a new approach based on the least squares support vector machines (LS-SVMs) is adopted in the characterization of materials obeying power law strain-hardening. The input data for training and verification of the LS-SVM model are obtained from 1000 large strain-large deformation finite element analyses which were carried out earlier to simulate indentation tests. The proposed LS-SVM model relates the characteristics of the indentation load-displacement curve directly to the elasto-plastic material properties without resorting to any iterative schemes. The tuned LS-SVM model is able to accurately predict the material properties when presented with new sets of load-indentation curves which were not used in the training and verification of the model.
HYBRID NEURAL NETWORK AND SUPPORT VECTOR MACHINE METHOD FOR OPTIMIZATION
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor)
2005-01-01
System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.
Hybrid Neural Network and Support Vector Machine Method for Optimization
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor)
2007-01-01
System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.
Interpreting support vector machine models for multivariate group wise analysis in neuroimaging
Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos
2015-01-01
Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913
Interpreting support vector machine models for multivariate group wise analysis in neuroimaging.
Gaonkar, Bilwaj; T Shinohara, Russell; Davatzikos, Christos
2015-08-01
Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier's decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913
3D ultrasound image segmentation using wavelet support vector machines
Akbari, Hamed; Fei, Baowei
2012-01-01
Purpose: Transrectal ultrasound (TRUS) imaging is clinically used in prostate biopsy and therapy. Segmentation of the prostate on TRUS images has many applications. In this study, a three-dimensional (3D) segmentation method for TRUS images of the prostate is presented for 3D ultrasound-guided biopsy. Methods: This segmentation method utilizes a statistical shape, texture information, and intensity profiles. A set of wavelet support vector machines (W-SVMs) is applied to the images at various subregions of the prostate. The W-SVMs are trained to adaptively capture the features of the ultrasound images in order to differentiate the prostate and nonprostate tissue. This method consists of a set of wavelet transforms for extraction of prostate texture features and a kernel-based support vector machine to classify the textures. The voxels around the surface of the prostate are labeled in sagittal, coronal, and transverse planes. The weight functions are defined for each labeled voxel on each plane and on the model at each region. In the 3D segmentation procedure, the intensity profiles around the boundary between the tentatively labeled prostate and nonprostate tissue are compared to the prostate model. Consequently, the surfaces are modified based on the model intensity profiles. The segmented prostate is updated and compared to the shape model. These two steps are repeated until they converge. Manual segmentation of the prostate serves as the gold standard and a variety of methods are used to evaluate the performance of the segmentation method. Results: The results from 40 TRUS image volumes of 20 patients show that the Dice overlap ratio is 90.3% ± 2.3% and that the sensitivity is 87.7% ± 4.9%. Conclusions: The proposed method provides a useful tool in our 3D ultrasound image-guided prostate biopsy and can also be applied to other applications in the prostate. PMID:22755682
Complex support vector machines for regression and quaternary classification.
Bouboulis, Pantelis; Theodoridis, Sergios; Mavroforakis, Charalampos; Evaggelatou-Dalla, Leoni
2015-06-01
The paper presents a new framework for complex support vector regression (SVR) as well as Support Vector Machines (SVM) for quaternary classification. The method exploits the notion of widely linear estimation to model the input-out relation for complex-valued data and considers two cases: 1) the complex data are split into their real and imaginary parts and a typical real kernel is employed to map the complex data to a complexified feature space and 2) a pure complex kernel is used to directly map the data to the induced complex feature space. The recently developed Wirtinger's calculus on complex reproducing kernel Hilbert spaces is employed to compute the Lagrangian and derive the dual optimization problem. As one of our major results, we prove that any complex SVM/SVR task is equivalent with solving two real SVM/SVR tasks exploiting a specific real kernel, which is generated by the chosen complex kernel. In particular, the case of pure complex kernels leads to the generation of new kernels, which have not been considered before. In the classification case, the proposed framework inherently splits the complex space into four parts. This leads naturally to solving the four class-task (quaternary classification), instead of the typical two classes of the real SVM. In turn, this rationale can be used in a multiclass problem as a split-class scenario based on four classes, as opposed to the one-versus-all method; this can lead to significant computational savings. Experiments demonstrate the effectiveness of the proposed framework for regression and classification tasks that involve complex data. PMID:25095266
Datta, Shounak; Das, Swagatam
2015-10-01
Support Vector Machines (SVMs) form a family of popular classifier algorithms originally developed to solve two-class classification problems. However, SVMs are likely to perform poorly in situations with data imbalance between the classes, particularly when the target class is under-represented. This paper proposes a Near-Bayesian Support Vector Machine (NBSVM) for such imbalanced classification problems, by combining the philosophies of decision boundary shift and unequal regularization costs. Based on certain assumptions which hold true for most real-world datasets, we use the fractions of representation from each of the classes, to achieve the boundary shift as well as the asymmetric regularization costs. The proposed approach is extended to the multi-class scenario and also adapted for cases with unequal misclassification costs for the different classes. Extensive comparison with standard SVM and some state-of-the-art methods is furnished as a proof of the ability of the proposed approach to perform competitively on imbalanced datasets. A modified Sequential Minimal Optimization (SMO) algorithm is also presented to solve the NBSVM optimization problem in a computationally efficient manner. PMID:26210983
NASA Astrophysics Data System (ADS)
Yang, Chien-Chun; Nagarajan, Mahesh B.; Huber, Markus B.; Carballido-Gamio, Julio; Bauer, Jan S.; Baum, Thomas; Eckstein, Felix; Lochmüller, Eva-Maria; Link, Thomas M.; Wismüller, Axel
2014-03-01
Regional trabecular bone quality estimation for purposes of femoral bone strength prediction is important for improving the clinical assessment of osteoporotic fracture risk. In this study, we explore the ability of 3D Minkowski Functionals derived from multi-detector computed tomography (MDCT) images of proximal femur specimens in predicting their corresponding biomechanical strength. MDCT scans were acquired for 50 proximal femur specimens harvested from human cadavers. An automated volume of interest (VOI)-fitting algorithm was used to define a consistent volume in the femoral head of each specimen. In these VOIs, the trabecular bone micro-architecture was characterized by statistical moments of its BMD distribution and by topological features derived from Minkowski Functionals. A linear multiregression analysis and a support vector regression (SVR) algorithm with a linear kernel were used to predict the failure load (FL) from the feature sets; the predicted FL was compared to the true FL determined through biomechanical testing. The prediction performance was measured by the root mean square error (RMSE) for each feature set. The best prediction result was obtained from the Minkowski Functional surface used in combination with SVR, which had the lowest prediction error (RMSE = 0.939 ± 0.345) and which was significantly lower than mean BMD (RMSE = 1.075 ± 0.279, p<0.005). Our results indicate that the biomechanical strength prediction can be significantly improved in proximal femur specimens with Minkowski Functionals extracted from on MDCT images used in conjunction with support vector regression.
A 2D vector map watermarking algorithm resistant to simplication attack
NASA Astrophysics Data System (ADS)
Wang, Chuanjian; Liang, Bin; Zhao, Qingzhan; Qiu, Zuqi; Peng, Yuwei; Yu, Liang
2009-12-01
Vector maps are valuable asset of data producers. How to protect copyright of vector maps effectively using digital watermarking is a hot research issue. In this paper, we propose a new robust and blind watermarking algorithm resilient to simplification attack. We proof that spatial topological relation between map objects bears an important property of approximate simplification invariance. We choose spatial topological relations as watermark feature domain and embed watermarks by slightly modifying spatial topological relation between map objects. Experiment shows that our algorithm has good performance to resist simplification attack and tradeoff of the robustness and data fidelity is acquired.
NASA Astrophysics Data System (ADS)
Khawaja, Taimoor Saleem
A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior
A circuitous shortest path algorithm labeled by previous-arc vector group in navigation GIS
NASA Astrophysics Data System (ADS)
Yang, Lin; Zhou, Shunping; Wan, Bo; Pan, Xiaofang
2008-10-01
Path planning, as the core module of navigation GIS, its efficiency and accuracy has a crucial impact on the navigation system. General shortest-path algorithm is based on the classic node label-setting algorithm, which does not consider the situation of including circuitous road sections. Therefore, sometimes it will neglect the closer circuitous path at hand but find the farther path or even failed to find any path in the real road network with complicated traffic restrictions. For the sake of finding more accurate path, this paper presents a circuitous shortest path algorithm labeled by previous-arc vector group. Firstly, we generate incremental network topological relationships according to two random positions travelers are interested in. Secondly, we construct a vector group including previous arc, and seek the way by labeling the previous-arc vector group. Finally, the shortest path in the sense of mathematics which may contain circuitous road sections can be acquired. An experimental work has been done with this algorithm using the map of Beijing, which showed that the algorithm not only well improved the accuracy of the shortest path result between the two random positions in the road network, but also kept the efficiency of the classic node labeled algorithm.
Robust Vision-Based Pose Estimation Algorithm for AN Uav with Known Gravity Vector
NASA Astrophysics Data System (ADS)
Kniaz, V. V.
2016-06-01
Accurate estimation of camera external orientation with respect to a known object is one of the central problems in photogrammetry and computer vision. In recent years this problem is gaining an increasing attention in the field of UAV autonomous flight. Such application requires a real-time performance and robustness of the external orientation estimation algorithm. The accuracy of the solution is strongly dependent on the number of reference points visible on the given image. The problem only has an analytical solution if 3 or more reference points are visible. However, in limited visibility conditions it is often needed to perform external orientation with only 2 visible reference points. In such case the solution could be found if the gravity vector direction in the camera coordinate system is known. A number of algorithms for external orientation estimation for the case of 2 known reference points and a gravity vector were developed to date. Most of these algorithms provide analytical solution in the form of polynomial equation that is subject to large errors in the case of complex reference points configurations. This paper is focused on the development of a new computationally effective and robust algorithm for external orientation based on positions of 2 known reference points and a gravity vector. The algorithm implementation for guidance of a Parrot AR.Drone 2.0 micro-UAV is discussed. The experimental evaluation of the algorithm proved its computational efficiency and robustness against errors in reference points positions and complex configurations.
Effective forecasting of hourly typhoon rainfall using support vector machines
NASA Astrophysics Data System (ADS)
Lin, Gwo-Fong; Chen, Guo-Rong; Wu, Ming-Chang; Chou, Yang-Ching
2009-08-01
Typhoon rainfall is one of the most difficult elements of the hydrologic cycle to forecast because of the high variability in space and time and the complex physical process. To obtain more effective forecasts of hourly typhoon rainfall, novel models with better ability are desired. On the basis of support vector machines (SVMs), which are a novel kind of neural networks (NNs), effective hourly typhoon rainfall forecasting models are constructed. As compared with backpropagation networks (BPNs), which are the most frequently used conventional NNs, SVMs have three advantages: (1) SVMs have better generalization ability, (2) the architectures and the weights of the SVMs are guaranteed to be unique and globally optimal, and (3) SVM is trained much more rapidly. An application is conducted to clearly demonstrate these three advantages. The results indicate that the proposed SVM-based models are better performed, robust, and efficient than the existing BPN-based models. To further improve the long lead time forecasting, typhoon characteristics are added as key input to the proposed models. The comparison between SVM-based models with and without typhoon characteristics confirms the significant improvement in forecasting performance due to the addition of typhoon characteristics for long lead time forecasting. The proposed SVM-based models are recommended as an alternative to the existing models. The proposed modeling technique is also expected to be useful to support reservoir operation systems and flood, landslide, debris flow, and other disaster warning systems.
Support vector machines classifiers of physical activities in preschoolers
Zhao, Wei; Adolph, Anne L; Puyau, Maurice R; Vohra, Firoz A; Butte, Nancy F; Zakeri, Issa F
2013-01-01
The goal of this study is to develop, test, and compare multinomial logistic regression (MLR) and support vector machines (SVM) in classifying preschool-aged children physical activity data acquired from an accelerometer. In this study, 69 children aged 3–5 years old were asked to participate in a supervised protocol of physical activities while wearing a triaxial accelerometer. Accelerometer counts, steps, and position were obtained from the device. We applied K-means clustering to determine the number of natural groupings presented by the data. We used MLR and SVM to classify the six activity types. Using direct observation as the criterion method, the 10-fold cross-validation (CV) error rate was used to compare MLR and SVM classifiers, with and without sleep. Altogether, 58 classification models based on combinations of the accelerometer output variables were developed. In general, the SVM classifiers have a smaller 10-fold CV error rate than their MLR counterparts. Including sleep, a SVM classifier provided the best performance with a 10-fold CV error rate of 24.70%. Without sleep, a SVM classifier-based triaxial accelerometer counts, vector magnitude, steps, position, and 1- and 2-min lag and lead values achieved a 10-fold CV error rate of 20.16% and an overall classification error rate of 15.56%. SVM supersedes the classical classifier MLR in categorizing physical activities in preschool-aged children. Using accelerometer data, SVM can be used to correctly classify physical activities typical of preschool-aged children with an acceptable classification error rate. PMID:24303099
Assimilation of PFISR Data Using Support Vector Regression and Ground Based Camera Constraints
NASA Astrophysics Data System (ADS)
Clayton, R.; Lynch, K. A.; Nicolls, M. J.; Hampton, D. L.; Michell, R.; Samara, M.; Guinther, J.
2013-12-01
In order to best interpret the information gained from multipoint in situ measurements, a Support Vector Regression algorithm is being developed to interpret the data collected from the instruments in the context of ground observations (such as those from camera or radar array). The idea behind SVR is to construct the simplest function that models the data with the least squared error, subject to constraints given by the user. Constraints can be brought into the algorithm from other data sources or from models. As is often the case with data, a perfect solution to such a problem may be impossible, thus 'slack' may be introduced to control how closely the model adheres to the data. The algorithm employs kernels, and chooses radial basis functions as an appropriate kernel. The current SVR code can take input data as one to three dimensional scalars or vectors, and may also include time. External data can be incorporated and assimilated into a model of the environment. Regions of minimal and maximal values are allowed to relax to the sample average (or a user-supplied model) on size and time scales determined by user input, known as feature sizes. These feature sizes can vary for each degree of freedom if the user desires. The user may also select weights for each data point, if it is desirable to weight parts of the data differently. In order to test the algorithm, Poker Flat Incoherent Scatter Radar (PFISR) and MICA sounding rocket data are being used as sample data. The PFISR data consists of many beams, each with multiple ranges. In addition to analyzing the radar data as it stands, the algorithm is being used to simulate data from a localized ionospheric swarm of Cubesats using existing PFISR data. The sample points of the radar at one altitude slice can serve as surrogates for satellites in a cubeswarm. The number of beams of the PFISR radar can then be used to see what the algorithm would output for a swarm of similar size. By using PFISR data in the 15-beam to
Modified particle filtering algorithm for single acoustic vector sensor DOA tracking.
Li, Xinbo; Sun, Haixin; Jiang, Liangxu; Shi, Yaowu; Wu, Yue
2015-01-01
The conventional direction of arrival (DOA) estimation algorithm with static sources assumption usually estimates the source angles of two adjacent moments independently and the correlation of the moments is not considered. In this article, we focus on the DOA estimation of moving sources and a modified particle filtering (MPF) algorithm is proposed with state space model of single acoustic vector sensor. Although the particle filtering (PF) algorithm has been introduced for acoustic vector sensor applications, it is not suitable for the case that one dimension angle of source is estimated with large deviation, the two dimension angles (pitch angle and azimuth angle) cannot be simultaneously employed to update the state through resampling processing of PF algorithm. To solve the problems mentioned above, the MPF algorithm is proposed in which the state estimation of previous moment is introduced to the particle sampling of present moment to improve the importance function. Moreover, the independent relationship of pitch angle and azimuth angle is considered and the two dimension angles are sampled and evaluated, respectively. Then, the MUSIC spectrum function is used as the "likehood" function of the MPF algorithm, and the modified PF-MUSIC (MPF-MUSIC) algorithm is proposed to improve the root mean square error (RMSE) and the probability of convergence. The theoretical analysis and the simulation results validate the effectiveness and feasibility of the two proposed algorithms. PMID:26501280
Modified Particle Filtering Algorithm for Single Acoustic Vector Sensor DOA Tracking
Li, Xinbo; Sun, Haixin; Jiang, Liangxu; Shi, Yaowu; Wu, Yue
2015-01-01
The conventional direction of arrival (DOA) estimation algorithm with static sources assumption usually estimates the source angles of two adjacent moments independently and the correlation of the moments is not considered. In this article, we focus on the DOA estimation of moving sources and a modified particle filtering (MPF) algorithm is proposed with state space model of single acoustic vector sensor. Although the particle filtering (PF) algorithm has been introduced for acoustic vector sensor applications, it is not suitable for the case that one dimension angle of source is estimated with large deviation, the two dimension angles (pitch angle and azimuth angle) cannot be simultaneously employed to update the state through resampling processing of PF algorithm. To solve the problems mentioned above, the MPF algorithm is proposed in which the state estimation of previous moment is introduced to the particle sampling of present moment to improve the importance function. Moreover, the independent relationship of pitch angle and azimuth angle is considered and the two dimension angles are sampled and evaluated, respectively. Then, the MUSIC spectrum function is used as the “likehood” function of the MPF algorithm, and the modified PF-MUSIC (MPF-MUSIC) algorithm is proposed to improve the root mean square error (RMSE) and the probability of convergence. The theoretical analysis and the simulation results validate the effectiveness and feasibility of the two proposed algorithms. PMID:26501280
2014-01-01
Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463
NASA Astrophysics Data System (ADS)
Dovgalenko, George E.; Onischenko, Yuri I.; Loutchkina, Irina I.; Bakhtin, V.
1995-09-01
Vector tensor theory results have been applied to optimization of selfdiffraction phenomena in photorefractive crystals of symmetry 23. The giant diffraction efficiency of 77% in doped and radiate BTO crystal is observed. The signal to noise ratio was 600. Optimization algorithm for improving this ratio is proposed. These results are applied to small size sensors for some engineering applications.
Fruit fly optimization based least square support vector regression for blind image restoration
NASA Astrophysics Data System (ADS)
Zhang, Jiao; Wang, Rui; Li, Junshan; Yang, Yawei
2014-11-01
The goal of image restoration is to reconstruct the original scene from a degraded observation. It is a critical and challenging task in image processing. Classical restorations require explicit knowledge of the point spread function and a description of the noise as priors. However, it is not practical for many real image processing. The recovery processing needs to be a blind image restoration scenario. Since blind deconvolution is an ill-posed problem, many blind restoration methods need to make additional assumptions to construct restrictions. Due to the differences of PSF and noise energy, blurring images can be quite different. It is difficult to achieve a good balance between proper assumption and high restoration quality in blind deconvolution. Recently, machine learning techniques have been applied to blind image restoration. The least square support vector regression (LSSVR) has been proven to offer strong potential in estimating and forecasting issues. Therefore, this paper proposes a LSSVR-based image restoration method. However, selecting the optimal parameters for support vector machine is essential to the training result. As a novel meta-heuristic algorithm, the fruit fly optimization algorithm (FOA) can be used to handle optimization problems, and has the advantages of fast convergence to the global optimal solution. In the proposed method, the training samples are created from a neighborhood in the degraded image to the central pixel in the original image. The mapping between the degraded image and the original image is learned by training LSSVR. The two parameters of LSSVR are optimized though FOA. The fitness function of FOA is calculated by the restoration error function. With the acquired mapping, the degraded image can be recovered. Experimental results show the proposed method can obtain satisfactory restoration effect. Compared with BP neural network regression, SVR method and Lucy-Richardson algorithm, it speeds up the restoration rate and
NASA Astrophysics Data System (ADS)
Nayak, Munir Ahmad; Ghosh, Subimal
2013-11-01
A major component of flood alert broadcasting is the short-term prediction of extreme rainfall events, which remains a challenging task, even with the improvements of numerical weather prediction models. Such prediction is a high priority research challenge, specifically in highly urbanized areas like Mumbai, India, which is extremely prone to urban flooding. Here, we attempt to develop an algorithm based on a machine learning technique, support vector machine (SVM), to predict extreme rainfall with a lead time of 6-48 h in Mumbai, using mesoscale (20-200 km) and synoptic scale (200-2,000 km) weather patterns. The underlying hypothesis behind this algorithm is that the weather patterns before (6-48 h) extreme events are significantly different from those of normal weather days. The present algorithm attempts to identify those specific patterns for extreme events and applies SVM-based classifiers for extreme rainfall classification and prediction. Here, we develop the anomaly frequency method (AFM), where the predictors (and their patterns) for SVM are identified with the frequency of high anomaly values of weather variables at different pressure levels, which are present before extreme events, but absent for non-extreme conditions. We observe that weather patterns before the extreme rainfall events during nighttime (1800 to 0600Z) is different from those during daytime (0600 to 1800Z) and, accordingly, we develop a two-phase support vector classifier for extreme prediction. Though there are false alarms associated with this prediction method, the model predicts all the extreme events well in advance. The performance is compared with the state-of-the-art statistical technique fingerprinting approach and is observed to be better in terms of false alarm and prediction.
Monthly evaporation forecasting using artificial neural networks and support vector machines
NASA Astrophysics Data System (ADS)
Tezel, Gulay; Buyukyildiz, Meral
2016-04-01
Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and ɛ-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg-Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, ɛ-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R 2). According to the performance criteria, the ANN algorithms and ɛ-SVR had similar results. The ANNs and ɛ-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R 2 = 0.905.
Spacebased Estimation of Moisture Transport in Marine Atmosphere Using Support Vector Regression
NASA Technical Reports Server (NTRS)
Xie, Xiaosu; Liu, W. Timothy; Tang, Benyang
2007-01-01
An improved algorithm is developed based on support vector regression (SVR) to estimate horizonal water vapor transport integrated through the depth of the atmosphere ((Theta)) over the global ocean from observations of surface wind-stress vector by QuikSCAT, cloud drift wind vector derived from the Multi-angle Imaging SpectroRadiometer (MISR) and geostationary satellites, and precipitable water from the Special Sensor Microwave/Imager (SSM/I). The statistical relation is established between the input parameters (the surface wind stress, the 850 mb wind, the precipitable water, time and location) and the target data ((Theta) calculated from rawinsondes and reanalysis of numerical weather prediction model). The results are validated with independent daily rawinsonde observations, monthly mean reanalysis data, and through regional water balance. This study clearly demonstrates the improvement of (Theta) derived from satellite data using SVR over previous data sets based on linear regression and neural network. The SVR methodology reduces both mean bias and standard deviation comparedwith rawinsonde observations. It agrees better with observations from synoptic to seasonal time scales, and compare more favorably with the reanalysis data on seasonal variations. Only the SVR result can achieve the water balance over South America. The rationale of the advantage by SVR method and the impact of adding the upper level wind will also be discussed.
Khormali, Aminollah; Addeh, Jalil
2016-07-01
Unnatural patterns in the control charts can be associated with a specific set of assignable causes for process variation. Hence, pattern recognition is very useful in identifying the process problems. In this study, a multiclass SVM (SVM) based classifier is proposed because of the promising generalization capability of support vector machines. In the proposed method type-2 fuzzy c-means (T2FCM) clustering algorithm is used to make a SVM system more effective. The fuzzy support vector machine classifier suggested in this paper is composed of three main sub-networks: fuzzy classifier sub-network, SVM sub-network and optimization sub-network. In SVM training, the hyper-parameters plays a very important role in its recognition accuracy. Therefore, cuckoo optimization algorithm (COA) is proposed for selecting appropriate parameters of the classifier. Simulation results showed that the proposed system has very high recognition accuracy. PMID:27101724
2013-01-01
Background Named entity recognition (NER) is an important task in clinical natural language processing (NLP) research. Machine learning (ML) based NER methods have shown good performance in recognizing entities in clinical text. Algorithms and features are two important factors that largely affect the performance of ML-based NER systems. Conditional Random Fields (CRFs), a sequential labelling algorithm, and Support Vector Machines (SVMs), which is based on large margin theory, are two typical machine learning algorithms that have been widely applied to clinical NER tasks. For features, syntactic and semantic information of context words has often been used in clinical NER systems. However, Structural Support Vector Machines (SSVMs), an algorithm that combines the advantages of both CRFs and SVMs, and word representation features, which contain word-level back-off information over large unlabelled corpus by unsupervised algorithms, have not been extensively investigated for clinical text processing. Therefore, the primary goal of this study is to evaluate the use of SSVMs and word representation features in clinical NER tasks. Methods In this study, we developed SSVMs-based NER systems to recognize clinical entities in hospital discharge summaries, using the data set from the concept extration task in the 2010 i2b2 NLP challenge. We compared the performance of CRFs and SSVMs-based NER classifiers with the same feature sets. Furthermore, we extracted two different types of word representation features (clustering-based representation features and distributional representation features) and integrated them with the SSVMs-based clinical NER system. We then reported the performance of SSVM-based NER systems with different types of word representation features. Results and discussion Using the same training (N = 27,837) and test (N = 45,009) sets in the challenge, our evaluation showed that the SSVMs-based NER systems achieved better performance than the CRFs
Evaluation of Algorithms for a Miles-in-Trail Decision Support Tool
NASA Technical Reports Server (NTRS)
Bloem, Michael; Hattaway, David; Bambos, Nicholas
2012-01-01
Four machine learning algorithms were prototyped and evaluated for use in a proposed decision support tool that would assist air traffic managers as they set Miles-in-Trail restrictions. The tool would display probabilities that each possible Miles-in-Trail value should be used in a given situation. The algorithms were evaluated with an expected Miles-in-Trail cost that assumes traffic managers set restrictions based on the tool-suggested probabilities. Basic Support Vector Machine, random forest, and decision tree algorithms were evaluated, as was a softmax regression algorithm that was modified to explicitly reduce the expected Miles-in-Trail cost. The algorithms were evaluated with data from the summer of 2011 for air traffic flows bound to the Newark Liberty International Airport (EWR) over the ARD, PENNS, and SHAFF fixes. The algorithms were provided with 18 input features that describe the weather at EWR, the runway configuration at EWR, the scheduled traffic demand at EWR and the fixes, and other traffic management initiatives in place at EWR. Features describing other traffic management initiatives at EWR and the weather at EWR achieved relatively high information gain scores, indicating that they are the most useful for estimating Miles-in-Trail. In spite of a high variance or over-fitting problem, the decision tree algorithm achieved the lowest expected Miles-in-Trail costs when the algorithms were evaluated using 10-fold cross validation with the summer 2011 data for these air traffic flows.
NASA Astrophysics Data System (ADS)
Krys, Sebastian; Jankowski, Stanislaw; Piatkowska-Janko, Ewa
2009-06-01
This paper presents the application of differential evolution, an evolutionary algorithm of solving a single objective optimization problem - tuning the hiperparameters of least-square support vector machine classifier. The goal was to improve the classification of patients with sustained ventricular tachycardia after myocardial infarction based on a signal-averaged electrocardiography dataset received from the Medical University of Warsaw. The applied method attained a classification rate of 96% of the SVT+ group.
Data filtering with support vector machines in geometric camera calibration.
Ergun, B; Kavzoglu, T; Colkesen, I; Sahin, C
2010-02-01
The use of non-metric digital cameras in close-range photogrammetric applications and machine vision has become a popular research agenda. Being an essential component of photogrammetric evaluation, camera calibration is a crucial stage for non-metric cameras. Therefore, accurate camera calibration and orientation procedures have become prerequisites for the extraction of precise and reliable 3D metric information from images. The lack of accurate inner orientation parameters can lead to unreliable results in the photogrammetric process. A camera can be well defined with its principal distance, principal point offset and lens distortion parameters. Different camera models have been formulated and used in close-range photogrammetry, but generally sensor orientation and calibration is performed with a perspective geometrical model by means of the bundle adjustment. In this study, support vector machines (SVMs) using radial basis function kernel is employed to model the distortions measured for Olympus Aspherical Zoom lens Olympus E10 camera system that are later used in the geometric calibration process. It is intended to introduce an alternative approach for the on-the-job photogrammetric calibration stage. Experimental results for DSLR camera with three focal length settings (9, 18 and 36 mm) were estimated using bundle adjustment with additional parameters, and analyses were conducted based on object point discrepancies and standard errors. Results show the robustness of the SVMs approach on the correction of image coordinates by modelling total distortions on-the-job calibration process using limited number of images. PMID:20174021
Single Object Tracking With Fuzzy Least Squares Support Vector Machine.
Zhang, Shunli; Zhao, Sicong; Sui, Yao; Zhang, Li
2015-12-01
Single object tracking, in which a target is often initialized manually in the first frame and then is tracked and located automatically in the subsequent frames, is a hot topic in computer vision. The traditional tracking-by-detection framework, which often formulates tracking as a binary classification problem, has been widely applied and achieved great success in single object tracking. However, there are some potential issues in this formulation. For instance, the boundary between the positive and negative training samples is fuzzy, and the objectives of tracking and classification are inconsistent. In this paper, we attempt to address the above issues from the fuzzy system perspective and propose a novel tracking method by formulating tracking as a fuzzy classification problem. First, we introduce the fuzzy strategy into tracking and propose a novel fuzzy tracking framework, which can measure the importance of the training samples by assigning different memberships to them and offer more strict spatial constraints. Second, we develop a fuzzy least squares support vector machine (FLS-SVM) approach and employ it to implement a concrete tracker. In particular, the primal form, dual form, and kernel form of FLS-SVM are analyzed and the corresponding closed-form solutions are derived for efficient realizations. Besides, a least squares regression model is built to control the update adaptively, retaining the robustness of the appearance model. The experimental results demonstrate that our method can achieve comparable or superior performance to many state-of-the-art methods. PMID:26441419
Predicting Computer System Failures Using Support Vector Machines
Fulp, Errin W.; Fink, Glenn A.; Haack, Jereme N.
2008-12-07
Mitigating the impact of computer failure is possible if accurate failure predictions are provided. Resources, applications, and services can be scheduled around predicted failure and limit the impact. Such strategies are especially important for multi-computer systems, such as compute clusters, that experience a higher rate failure due to the large number of components. However providing accurate predictions with sufficient lead time remains a challenging problem. This paper describes a new spectrum-kernel Support Vector Machine (SVM) approach to predict failure events based on system log files. These files contain messages that represent a change of system state. While a single message in the file may not be sufficient for predicting failure, a sequence or pattern of messages may be. The approach described in this paper will use a sliding window (sub-sequence) of messages to predict the likelihood of failure. The frequency representation of the message sub-sequences observed are then used as input to the SVM that associates the messages to a class of failed or non-failed system. Experimental results using actual system log files from a Linux-based compute cluster indicate the proposed SVM approach can predict hard disk failure with an accuracy of 76% one day in advance.
Support vector machine in machine condition monitoring and fault diagnosis
NASA Astrophysics Data System (ADS)
Widodo, Achmad; Yang, Bo-Suk
2007-08-01
Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a survey of machine condition monitoring and fault diagnosis using support vector machine (SVM). It attempts to summarize and review the recent research and developments of SVM in machine condition monitoring and diagnosis. Numerous methods have been developed based on intelligent systems such as artificial neural network, fuzzy expert system, condition-based reasoning, random forest, etc. However, the use of SVM for machine condition monitoring and fault diagnosis is still rare. SVM has excellent performance in generalization so it can produce high accuracy in classification for machine condition monitoring and diagnosis. Until 2006, the use of SVM in machine condition monitoring and fault diagnosis is tending to develop towards expertise orientation and problem-oriented domain. Finally, the ability to continually change and obtain a novel idea for machine condition monitoring and fault diagnosis using SVM will be future works.
Support vector classifiers via gradient systems with discontinuous righthand sides.
Ferreira, Leonardo V; Kaszkurewicz, Eugenius; Bhaya, Amit
2006-12-01
Gradient dynamical systems with discontinuous righthand sides are designed using Persidskii-type nonsmooth Lyapunov functions to work as support vector machines (SVMs) for the discrimination of nonseparable classes. The gradient systems are obtained from an exact penalty method applied to the constrained quadratic optimization problems, which are formulations of two well known SVMs. Global convergence of the trajectories of the gradient dynamical systems to the solution of the corresponding constrained problems is shown to be independent of the penalty parameters and of the parameters of the SVMs. The proposed gradient systems can be implemented as simple analog circuits as well as using standard software for integration of ODEs, and in order to use efficient integration methods with adaptive stepsize selection, the discontinuous terms are smoothed around a neighborhood of the discontinuity surface by means of the boundary layer technique. The scalability of the proposed gradient systems is also shown by means of an implementation using parallel computers, resulting in smaller processing times when compared with traditional SVM packages. PMID:17011165
Predicting full thickness skin sensitization using a support vector machine
Lee, Serom; Dong, David Xu; Jindal, Rohit; Maguire, Tim; Mitra, Bhaskar; Schloss, Rene; Yarmush, Martin
2015-01-01
To assess the public’s propensity for allergic contact dermatitis (ACD), many alternatives to in vivo chemical screening have been developed which generally incorporate a small panel of cell surface and secreted dendritic cell biomarkers. However, given the underlying complexity of ACD, one cell type and limited cellular metrics may be insufficient to predict contact sensitizers accurately. To identify a molecular signature that can further characterize sensitization, we developed a novel system using RealSkin, a full thickness skin equivalent, in co-culture with MUTZ-3 derived Langerhan’s cells. This system was used to distinguish a model moderate pro-hapten isoeugenol (IE) and a model strong pre-hapten p-phenylenediamine (PPD) from irritant, salicylic acid (SA). Commonly evaluated metrics such as CD86, CD54, and IL-8 secretion were assessed, in concert with a 27-cytokine multi-plex screen and a functional chemotaxis assay. Data were analyzed with feature selection methods using ANOVA, hierarchical cluster analysis, and a support vector machine to identify the best molecular signature for sensitization. A panel consisting of IL-12, IL-9, VEGF, and IFN-γ predicted sensitization with over 90% accuracy using this co-culture system analysis. Thus, a multi-metric approach that has the potential to identify a molecular signature may be more predictive of contact sensitization. PMID:25025180
Detection of Splice Sites Using Support Vector Machine
NASA Astrophysics Data System (ADS)
Varadwaj, Pritish; Purohit, Neetesh; Arora, Bhumika
Automatic identification and annotation of exon and intron region of gene, from DNA sequences has been an important research area in field of computational biology. Several approaches viz. Hidden Markov Model (HMM), Artificial Intelligence (AI) based machine learning and Digital Signal Processing (DSP) techniques have extensively and independently been used by various researchers to cater this challenging task. In this work, we propose a Support Vector Machine based kernel learning approach for detection of splice sites (the exon-intron boundary) in a gene. Electron-Ion Interaction Potential (EIIP) values of nucleotides have been used for mapping character sequences to corresponding numeric sequences. Radial Basis Function (RBF) SVM kernel is trained using EIIP numeric sequences. Furthermore this was tested on test gene dataset for detection of splice site by window (of 12 residues) shifting. Optimum values of window size, various important parameters of SVM kernel have been optimized for a better accuracy. Receiver Operating Characteristic (ROC) curves have been utilized for displaying the sensitivity rate of the classifier and results showed 94.82% accuracy for splice site detection on test dataset.
Segmentation of multiple sclerosis lesions using support vector machines
NASA Astrophysics Data System (ADS)
Ferrari, Ricardo J.; Wei, Xingchang; Zhang, Yunyan; Scott, James N.; Mitchell, J. R.
2003-05-01
In this paper we present preliminary results to automatically segment multiple sclerosis (MS) lesions in multispectral magnetic resonance datasets using support vector machines (SVM). A total of eighteen studies (each composed of T1-, T2-weighted and FLAIR images) acquired from a 3T GE Signa scanner was analyzed. A neuroradiologist used a computer-assisted technique to identify all MS lesions in each study. These results were used later in the training and testing stages of the SVM classifier. A preprocessing stage including anisotropic diffusion filtering, non-uniformity intensity correction, and intensity tissue normalization was applied to the images. The SVM kernel used in this study was the radial basis function (RBF). The kernel parameter (γ) and the penalty value for the errors were determined by using a very loose stopping criterion for the SVM decomposition. Overall, a 5-fold cross-validation accuracy rate of 80% was achieved in the automatic classification of MS lesion voxels using the proposed SVM-RBF classifier.
End-user display calibration via support vector regression
NASA Astrophysics Data System (ADS)
Bastani, Behnam; Funt, Brian; Xiong, Weihua
2006-01-01
The technique of support vector regression (SVR) is applied to the color display calibration problem. Given a set of training data, SVR estimates a continuous-valued function encoding the fundamental interrelation between a given input and its corresponding output. This mapping can then be used to find an output value for a given input value not in the training data set. Here, SVR is applied directly to the display's non-linearized RGB digital input values to predict output CIELAB values. There are several different linear methods for calibrating different display technologies (GOG, Masking and Wyble). An advantage of using SVR for color calibration is that the end-user does not need to apply a different calibration model for each different display technology. We show that the same model can be used to calibrate CRT, LCD and DLP displays accurately. We also show that the accuracy of the model is comparable to that of the optimal linear transformation introduced by Funt et al.
Analysis of metabolomic data using support vector machines.
Mahadevan, Sankar; Shah, Sirish L; Marrie, Thomas J; Slupsky, Carolyn M
2008-10-01
Metabolomics is an emerging field providing insight into physiological processes. It is an effective tool to investigate disease diagnosis or conduct toxicological studies by observing changes in metabolite concentrations in various biofluids. Multivariate statistical analysis is generally employed with nuclear magnetic resonance (NMR) or mass spectrometry (MS) data to determine differences between groups (for instance diseased vs healthy). Characteristic predictive models may be built based on a set of training data, and these models are subsequently used to predict whether new test data falls under a specific class. In this study, metabolomic data is obtained by doing a (1)H NMR spectroscopy on urine samples obtained from healthy subjects (male and female) and patients suffering from Streptococcus pneumoniae. We compare the performance of traditional PLS-DA multivariate analysis to support vector machines (SVMs), a technique widely used in genome studies on two case studies: (1) a case where nearly complete distinction may be seen (healthy versus pneumonia) and (2) a case where distinction is more ambiguous (male versus female). We show that SVMs are superior to PLS-DA in both cases in terms of predictive accuracy with the least number of features. With fewer number of features, SVMs are able to give better predictive model when compared to that of PLS-DA. PMID:18767870
Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F
2014-06-01
To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified). PMID:24007752
Development of fault diagnosis system for transformer based on multi-class support vector machines
NASA Astrophysics Data System (ADS)
Cao, Jian; Qian, Suxiang; Hu, Hongsheng; Yan, Gongbiao
2007-12-01
The support vector machine (SVM) is an algorithm based on structure risk minimizing principle and having high generalization ability. It is strong to solve the problem with small sample, nonlinear and high dimension. The fundamental theory of DGA (Dissolved Gas Analysis, DGA) and fault characteristic of transformer is firstly researched in this paper, and then the disadvantages of traditional method of transformer fault diagnosis are analyzed, finally, a new fault diagnosis method using multi-class support vector machines (M-SVMs) based on DGA theory for transformer is put forward. Then the fault diagnosis model based on M-SVMs for transformer is established. At the same time, the fault diagnosis system based on M-SVMs for transformer is developed. The system can realize the acquisition of the dissolving gas in the transformer oil and data timely and low cost transmission by GPRS (General Packet Radio Service, GPRS). And it can identify out the transformer running state according to the acquisition data. The test results show that the method proposed has an excellent performance on correct ratio. And it can overcome the disadvantage of the traditional three-ratio method which lacks of fault coding and no fault types in the existent coding. Combining the wireless communication technology with the monitoring technology, the designed and developed system can greatly improve the real-time and continuity for the transformer' condition monitoring and fault diagnosis.
Human action recognition with group lasso regularized-support vector machine
NASA Astrophysics Data System (ADS)
Luo, Huiwu; Lu, Huanzhang; Wu, Yabei; Zhao, Fei
2016-05-01
The bag-of-visual-words (BOVW) and Fisher kernel are two popular models in human action recognition, and support vector machine (SVM) is the most commonly used classifier for the two models. We show two kinds of group structures in the feature representation constructed by BOVW and Fisher kernel, respectively, since the structural information of feature representation can be seen as a prior for the classifier and can improve the performance of the classifier, which has been verified in several areas. However, the standard SVM employs L2-norm regularization in its learning procedure, which penalizes each variable individually and cannot express the structural information of feature representation. We replace the L2-norm regularization with group lasso regularization in standard SVM, and a group lasso regularized-support vector machine (GLRSVM) is proposed. Then, we embed the group structural information of feature representation into GLRSVM. Finally, we introduce an algorithm to solve the optimization problem of GLRSVM by alternating directions method of multipliers. The experiments evaluated on KTH, YouTube, and Hollywood2 datasets show that our method achieves promising results and improves the state-of-the-art methods on KTH and YouTube datasets.
A novel retinal vessel extraction algorithm based on matched filtering and gradient vector flow
NASA Astrophysics Data System (ADS)
Yu, Lei; Xia, Mingliang; Xuan, Li
2013-10-01
The microvasculature network of retina plays an important role in the study and diagnosis of retinal diseases (age-related macular degeneration and diabetic retinopathy for example). Although it is possible to noninvasively acquire high-resolution retinal images with modern retinal imaging technologies, non-uniform illumination, the low contrast of thin vessels and the background noises all make it difficult for diagnosis. In this paper, we introduce a novel retinal vessel extraction algorithm based on gradient vector flow and matched filtering to segment retinal vessels with different likelihood. Firstly, we use isotropic Gaussian kernel and adaptive histogram equalization to smooth and enhance the retinal images respectively. Secondly, a multi-scale matched filtering method is adopted to extract the retinal vessels. Then, the gradient vector flow algorithm is introduced to locate the edge of the retinal vessels. Finally, we combine the results of matched filtering method and gradient vector flow algorithm to extract the vessels at different likelihood levels. The experiments demonstrate that our algorithm is efficient and the intensities of vessel images exactly represent the likelihood of the vessels.