Science.gov

Sample records for aligned biological networks

  1. BinAligner: a heuristic method to align biological networks.

    PubMed

    Yang, Jialiang; Li, Jun; Grünewald, Stefan; Wan, Xiu-Feng

    2013-01-01

    The advances in high throughput omics technologies have made it possible to characterize molecular interactions within and across various species. Alignments and comparison of molecular networks across species will help detect orthologs and conserved functional modules and provide insights on the evolutionary relationships of the compared species. However, such analyses are not trivial due to the complexity of network and high computational cost. Here we develop a mixture of global and local algorithm, BinAligner, for network alignments. Based on the hypotheses that the similarity between two vertices across networks would be context dependent and that the information from the edges and the structures of subnetworks can be more informative than vertices alone, two scoring schema, 1-neighborhood subnetwork and graphlet, were introduced to derive the scoring matrices between networks, besides the commonly used scoring scheme from vertices. Then the alignment problem is formulated as an assignment problem, which is solved by the combinatorial optimization algorithm, such as the Hungarian method. The proposed algorithm was applied and validated in aligning the protein-protein interaction network of Kaposi's sarcoma associated herpesvirus (KSHV) and that of varicella zoster virus (VZV). Interestingly, we identified several putative functional orthologous proteins with similar functions but very low sequence similarity between the two viruses. For example, KSHV open reading frame 56 (ORF56) and VZV ORF55 are helicase-primase subunits with sequence identity 14.6%, and KSHV ORF75 and VZV ORF44 are tegument proteins with sequence identity 15.3%. These functional pairs can not be identified if one restricts the alignment into orthologous protein pairs. In addition, BinAligner identified a conserved pathway between two viruses, which consists of 7 orthologous protein pairs and these proteins are connected by conserved links. This pathway might be crucial for virus packing and

  2. Node Handprinting: A Scalable and Accurate Algorithm for Aligning Multiple Biological Networks.

    PubMed

    Radu, Alex; Charleston, Michael

    2015-07-01

    Due to recent advancements in high-throughput sequencing technologies, progressively more protein-protein interactions have been identified for a growing number of species. Subsequently, the protein-protein interaction networks for these species have been further refined. The increase in the quality and availability of these networks has in turn brought a demand for efficient methods to analyze such networks. The pairwise alignment of these networks has been moderately investigated, with numerous algorithms available, but there is very little progress in the field of multiple network alignment. Multiple alignment of networks from different organisms is ideal at finding abnormally conserved or disparate subnetworks. We present a fast and accurate algorithmic approach, Node Handprinting (NH), based on our previous work with Node Fingerprinting, which enables quick and accurate alignment of multiple networks. We also propose two new metrics for the analysis of multiple alignments, as the current metrics are not as sophisticated as their pairwise alignment counterparts. To assess the performance of NH, we use previously aligned datasets as well as protein interaction networks generated from the public database BioGRID. Our results indicate that NH compares favorably with current methodologies and is the only algorithm capable of performing the more complex alignments. PMID:25695597

  3. Aligning Biomolecular Networks Using Modular Graph Kernels

    NASA Astrophysics Data System (ADS)

    Towfic, Fadi; Greenlee, M. Heather West; Honavar, Vasant

    Comparative analysis of biomolecular networks constructed using measurements from different conditions, tissues, and organisms offer a powerful approach to understanding the structure, function, dynamics, and evolution of complex biological systems. We explore a class of algorithms for aligning large biomolecular networks by breaking down such networks into subgraphs and computing the alignment of the networks based on the alignment of their subgraphs. The resulting subnetworks are compared using graph kernels as scoring functions. We provide implementations of the resulting algorithms as part of BiNA, an open source biomolecular network alignment toolkit. Our experiments using Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo sapiens protein-protein interaction networks extracted from the DIP repository of protein-protein interaction data demonstrate that the performance of the proposed algorithms (as measured by % GO term enrichment of subnetworks identified by the alignment) is competitive with some of the state-of-the-art algorithms for pair-wise alignment of large protein-protein interaction networks. Our results also show that the inter-species similarity scores computed based on graph kernels can be used to cluster the species into a species tree that is consistent with the known phylogenetic relationships among the species.

  4. Global multiple protein-protein interaction network alignment by combining pairwise network alignments

    PubMed Central

    2015-01-01

    Background A wealth of protein interaction data has become available in recent years, creating an urgent need for powerful analysis techniques. In this context, the problem of finding biologically meaningful correspondences between different protein-protein interaction networks (PPIN) is of particular interest. The PPIN of a species can be compared with that of other species through the process of PPIN alignment. Such an alignment can provide insight into basic problems like species evolution and network component function determination, as well as translational problems such as target identification and elucidation of mechanisms of disease spread. Furthermore, multiple PPINs can be aligned simultaneously, expanding the analytical implications of the result. While there are several pairwise network alignment algorithms, few methods are capable of multiple network alignment. Results We propose SMAL, a MNA algorithm based on the philosophy of scaffold-based alignment. SMAL is capable of converting results from any global pairwise alignment algorithms into a MNA in linear time. Using this method, we have built multiple network alignments based on combining pairwise alignments from a number of publicly available (pairwise) network aligners. We tested SMAL using PPINs of eight species derived from the IntAct repository and employed a number of measures to evaluate performance. Additionally, as part of our experimental investigations, we compared the effectiveness of SMAL while aligning up to eight input PPINs, and examined the effect of scaffold network choice on the alignments. Conclusions A key advantage of SMAL lies in its ability to create MNAs through the use of pairwise network aligners for which native MNA implementations do not exist. Experiments indicate that the performance of SMAL was comparable to that of the native MNA implementation of established methods such as IsoRankN and SMETANA. However, in terms of computational time, SMAL was significantly faster

  5. Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment

    SciTech Connect

    Mohammadi, Shahin; Gleich, David F.; Kolda, Tamara G.; Grama, Ananth

    2015-11-01

    Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangular AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.

  6. An Adaptive Hybrid Algorithm for Global Network Alignment.

    PubMed

    Xie, Jiang; Xiang, Chaojuan; Ma, Jin; Tan, Jun; Wen, Tieqiao; Lei, Jinzhi; Nie, Qing

    2016-01-01

    It is challenging to obtain reliable and optimal mapping between networks for alignment algorithms when both nodal and topological structures are taken into consideration due to the underlying NP-hard problem. Here, we introduce an adaptive hybrid algorithm that combines the classical Hungarian algorithm and the Greedy algorithm (HGA) for the global alignment of biomolecular networks. With this hybrid algorithm, every pair of nodes with one in each network is first aligned based on node information (e.g., their sequence attributes) and then followed by an adaptive and convergent iteration procedure for aligning the topological connections in the networks. For four well-studied protein interaction networks, i.e., C.elegans, yeast, D.melanogaster, and human, applications of HGA lead to improved alignments in acceptable running time. The mapping between yeast and human PINs obtained by the new algorithm has the largest value of common gene ontology (GO) terms compared to those obtained by other existing algorithms, while it still has lower Mean normalized entropy (MNE) and good performances on several other measures. Overall, the adaptive HGA is effective and capable of providing good mappings between aligned networks in which the biological properties of both the nodes and the connections are important. PMID:27295633

  7. Multiple network alignment on quantum computers

    NASA Astrophysics Data System (ADS)

    Daskin, Anmer; Grama, Ananth; Kais, Sabre

    2014-12-01

    Comparative analyses of graph-structured datasets underly diverse problems. Examples of these problems include identification of conserved functional components (biochemical interactions) across species, structural similarity of large biomolecules, and recurring patterns of interactions in social networks. A large class of such analyses methods quantify the topological similarity of nodes across networks. The resulting correspondence of nodes across networks, also called node alignment, can be used to identify invariant subgraphs across the input graphs. Given graphs as input, alignment algorithms use topological information to assign a similarity score to each -tuple of nodes, with elements (nodes) drawn from each of the input graphs. Nodes are considered similar if their neighbors are also similar. An alternate, equivalent view of these network alignment algorithms is to consider the Kronecker product of the input graphs and to identify high-ranked nodes in the Kronecker product graph. Conventional methods such as PageRank and HITS (Hypertext-Induced Topic Selection) can be used for this purpose. These methods typically require computation of the principal eigenvector of a suitably modified Kronecker product matrix of the input graphs. We adopt this alternate view of the problem to address the problem of multiple network alignment. Using the phase estimation algorithm, we show that the multiple network alignment problem can be efficiently solved on quantum computers. We characterize the accuracy and performance of our method and show that it can deliver exponential speedups over conventional (non-quantum) methods.

  8. Multiple network alignment on quantum computers

    NASA Astrophysics Data System (ADS)

    Daskin, Anmer; Grama, Ananth; Kais, Sabre

    2014-09-01

    Comparative analyses of graph structured datasets underly diverse problems. Examples of these problems include identification of conserved functional components (biochemical interactions) across species, structural similarity of large biomolecules, and recurring patterns of interactions in social networks. A large class of such analyses methods quantify the topological similarity of nodes across networks. The resulting correspondence of nodes across networks, also called node alignment, can be used to identify invariant subgraphs across the input graphs. Given $k$ graphs as input, alignment algorithms use topological information to assign a similarity score to each $k$-tuple of nodes, with elements (nodes) drawn from each of the input graphs. Nodes are considered similar if their neighbors are also similar. An alternate, equivalent view of these network alignment algorithms is to consider the Kronecker product of the input graphs, and to identify high-ranked nodes in the Kronecker product graph. Conventional methods such as PageRank and HITS (Hypertext Induced Topic Selection) can be used for this purpose. These methods typically require computation of the principal eigenvector of a suitably modified Kronecker product matrix of the input graphs. We adopt this alternate view of the problem to address the problem of multiple network alignment. Using the phase estimation algorithm, we show that the multiple network alignment problem can be efficiently solved on quantum computers. We characterize the accuracy and performance of our method, and show that it can deliver exponential speedups over conventional (non-quantum) methods.

  9. Networks in Cell Biology

    NASA Astrophysics Data System (ADS)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele

    2010-05-01

    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  10. Functional Aspects of Biological Networks

    NASA Astrophysics Data System (ADS)

    Sneppen, Kim

    2007-03-01

    We discuss biological networks with respect to 1) relative positioning and importance of high degree nodes, 2) function and signaling, 3) logic and dynamics of regulation. Visually the soft modularity of many real world networks can be characterized in terms of number of high and low degrees nodes positioned relative to each other in a landscape analogue with mountains (high-degree nodes) and valleys (low-degree nodes). In these terms biological networks looks like rugged landscapes with separated peaks, hub proteins, which each are roughly as essential as any of the individual proteins on the periphery of the hub. Within each sup-domain of a molecular network one can often identify dynamical feedback mechanisms that falls into combinations of positive and negative feedback circuits. We will illustrate this with examples taken from phage regulation and bacterial uptake and regulation of small molecules. In particular we find that a double negative regulation often are replaced by a single positive link in unrelated organisms with same functional requirements. Overall we argue that network topology primarily reflects functional constraints. References: S. Maslov and K. Sneppen. ``Computational architecture of the yeast regulatory network." Phys. Biol. 2:94 (2005) A. Trusina et al. ``Functional alignment of regulatory networks: A study of temerate phages". Plos Computational Biology 1:7 (2005). J.B. Axelsen et al. ``Degree Landscapes in Scale-Free Networks" physics/0512075 (2005). A. Trusina et al. ``Hierarchy and Anti-Hierarchy in Real and Scale Free networks." PRL 92:178702 (2004) S. Semsey et al. ``Genetic Regulation of Fluxes: Iron Homeostasis of Escherichia coli". (2006) q-bio.MN/0609042

  11. Sentence alignment using feed forward neural network.

    PubMed

    Fattah, Mohamed Abdel; Ren, Fuji; Kuroiwa, Shingo

    2006-12-01

    Parallel corpora have become an essential resource for work in multi lingual natural language processing. However, sentence aligned parallel corpora are more efficient than non-aligned parallel corpora for cross language information retrieval and machine translation applications. In this paper, we present a new approach to align sentences in bilingual parallel corpora based on feed forward neural network classifier. A feature parameter vector is extracted from the text pair under consideration. This vector contains text features such as length, punctuate score, and cognate score values. A set of manually prepared training data has been assigned to train the feed forward neural network. Another set of data was used for testing. Using this new approach, we could achieve an error reduction of 60% over length based approach when applied on English-Arabic parallel documents. Moreover this new approach is valid for any language pair and it is quite flexible approach since the feature parameter vector may contain more/less or different features than that we used in our system such as lexical match feature. PMID:17285688

  12. Seed selection strategy in global network alignment without destroying the entire structures of functional modules

    PubMed Central

    2012-01-01

    Background Network alignment is one of the most common biological network comparison methods. Aligning protein-protein interaction (PPI) networks of different species is of great important to detect evolutionary conserved pathways or protein complexes across species through the identification of conserved interactions, and to improve our insight into biological systems. Global network alignment (GNA) problem is NP-complete, for which only heuristic methods have been proposed so far. Generally, the current GNA methods fall into global heuristic seed-and-extend approaches. These methods can not get the best overall consistent alignment between networks for the opinionated local seed. Furthermore These methods are lost in maximizing the number of aligned edges between two networks without considering the original structures of functional modules. Methods We present a novel seed selection strategy for global network alignment by constructing the pairs of hub nodes of networks to be aligned into multiple seeds. Beginning from every hub seed and using the membership similarity of nodes to quantify to what extent the nodes can participate in functional modules associated with current seed topologically we align the networks by modules. By this way we can maintain the functional modules are not damaged during the heuristic alignment process. And our method is efficient in resolving the fatal problem of most conventional algorithms that the initialization selected seeds have a direct influence on the alignment result. The similarity measures between network nodes (e.g., proteins) include sequence similarity, centrality similarity, and dynamic membership similarity and our algorithm can be called Multiple Hubs-based Alignment (MHA). Results When applying our seed selection strategy to several pairs of real PPI networks, it is observed that our method is working to strike a balance, extending the conserved interactions while maintaining the functional modules unchanged. In

  13. SUMONA: A supervised method for optimizing network alignment.

    PubMed

    Tuncay, Erhun Giray; Can, Tolga

    2016-08-01

    This study focuses on improving the multi-objective memetic algorithm for protein-protein interaction (PPI) network alignment, Optimizing Network Aligner - OptNetAlign, via integration with other existing network alignment methods such as SPINAL, NETAL and HubAlign. The output of this algorithm is an elite set of aligned networks all of which are optimal with respect to multiple user-defined criteria. However, OptNetAlign is an unsupervised genetic algorithm that initiates its search with completely random solutions and it requires substantial running times to generate an elite set of solutions that have high scores with respect to the given criteria. In order to improve running time, the search space of the algorithm can be narrowed down by focusing on remarkably qualified alignments and trying to optimize the most desired criteria on a more limited set of solutions. The method presented in this study improves OptNetAlign in a supervised fashion by utilizing the alignment results of different network alignment algorithms with varying parameters that depend upon user preferences. Therefore, the user can prioritize certain objectives upon others and achieve better running time performance while optimizing the secondary objectives. PMID:27177812

  14. Services supporting collaborative alignment of engineering networks

    NASA Astrophysics Data System (ADS)

    Jansson, Kim; Uoti, Mikko; Karvonen, Iris

    2015-08-01

    Large-scale facilities such as power plants, process factories, ships and communication infrastructures are often engineered and delivered through geographically distributed operations. The competencies required are usually distributed across several contributing organisations. In these complicated projects, it is of key importance that all partners work coherently towards a common goal. VTT and a number of industrial organisations in the marine sector have participated in a national collaborative research programme addressing these needs. The main output of this programme was development of the Innovation and Engineering Maturity Model for Marine-Industry Networks. The recently completed European Union Framework Programme 7 project COIN developed innovative solutions and software services for enterprise collaboration and enterprise interoperability. One area of focus in that work was services for collaborative project management. This article first addresses a number of central underlying research themes and previous research results that have influenced the development work mentioned above. This article presents two approaches for the development of services that support distributed engineering work. Experience from use of the services is analysed, and potential for development is identified. This article concludes with a proposal for consolidation of the two above-mentioned methodologies. This article outlines the characteristics and requirements of future services supporting collaborative alignment of engineering networks.

  15. Finding optimal interaction interface alignments between biological complexes

    PubMed Central

    Cui, Xuefeng; Naveed, Hammad; Gao, Xin

    2015-01-01

    Motivation: Biological molecules perform their functions through interactions with other molecules. Structure alignment of interaction interfaces between biological complexes is an indispensable step in detecting their structural similarities, which are keys to understanding their evolutionary histories and functions. Although various structure alignment methods have been developed to successfully access the similarities of protein structures or certain types of interaction interfaces, existing alignment tools cannot directly align arbitrary types of interfaces formed by protein, DNA or RNA molecules. Specifically, they require a ‘blackbox preprocessing’ to standardize interface types and chain identifiers. Yet their performance is limited and sometimes unsatisfactory. Results: Here we introduce a novel method, PROSTA-inter, that automatically determines and aligns interaction interfaces between two arbitrary types of complex structures. Our method uses sequentially remote fragments to search for the optimal superimposition. The optimal residue matching problem is then formulated as a maximum weighted bipartite matching problem to detect the optimal sequence order-independent alignment. Benchmark evaluation on all non-redundant protein–DNA complexes in PDB shows significant performance improvement of our method over TM-align and iAlign (with the ‘blackbox preprocessing’). Two case studies where our method discovers, for the first time, structural similarities between two pairs of functionally related protein–DNA complexes are presented. We further demonstrate the power of our method on detecting structural similarities between a protein–protein complex and a protein–RNA complex, which is biologically known as a protein–RNA mimicry case. Availability and implementation: The PROSTA-inter web-server is publicly available at http://www.cbrc.kaust.edu.sa/prosta/. Contact: xin.gao@kaust.edu.sa PMID:26072475

  16. Querying Large Biological Network Datasets

    ERIC Educational Resources Information Center

    Gulsoy, Gunhan

    2013-01-01

    New experimental methods has resulted in increasing amount of genetic interaction data to be generated every day. Biological networks are used to store genetic interaction data gathered. Increasing amount of data available requires fast large scale analysis methods. Therefore, we address the problem of querying large biological network datasets.…

  17. Optimizing a global alignment of protein interaction networks

    PubMed Central

    Chindelevitch, Leonid; Ma, Cheng-Yu; Liao, Chung-Shou; Berger, Bonnie

    2013-01-01

    Motivation: The global alignment of protein interaction networks is a widely studied problem. It is an important first step in understanding the relationship between the proteins in different species and identifying functional orthologs. Furthermore, it can provide useful insights into the species’ evolution. Results: We propose a novel algorithm, PISwap, for optimizing global pairwise alignments of protein interaction networks, based on a local optimization heuristic that has previously demonstrated its effectiveness for a variety of other intractable problems. PISwap can begin with different types of network alignment approaches and then iteratively adjust the initial alignments by incorporating network topology information, trading it off for sequence information. In practice, our algorithm efficiently refines other well-studied alignment techniques with almost no additional time cost. We also show the robustness of the algorithm to noise in protein interaction data. In addition, the flexible nature of this algorithm makes it suitable for different applications of network alignment. This algorithm can yield interesting insights into the evolutionary dynamics of related species. Availability: Our software is freely available for non-commercial purposes from our Web site, http://piswap.csail.mit.edu/. Contact: bab@csail.mit.edu or csliao@ie.nthu.edu.tw Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24048352

  18. HubAlign: an accurate and efficient method for global alignment of protein–protein interaction networks

    PubMed Central

    Hashemifar, Somaye; Xu, Jinbo

    2014-01-01

    Motivation: High-throughput experimental techniques have produced a large amount of protein–protein interaction (PPI) data. The study of PPI networks, such as comparative analysis, shall benefit the understanding of life process and diseases at the molecular level. One way of comparative analysis is to align PPI networks to identify conserved or species-specific subnetwork motifs. A few methods have been developed for global PPI network alignment, but it still remains challenging in terms of both accuracy and efficiency. Results: This paper presents a novel global network alignment algorithm, denoted as HubAlign, that makes use of both network topology and sequence homology information, based upon the observation that topologically important proteins in a PPI network usually are much more conserved and thus, more likely to be aligned. HubAlign uses a minimum-degree heuristic algorithm to estimate the topological and functional importance of a protein from the global network topology information. Then HubAlign aligns topologically important proteins first and gradually extends the alignment to the whole network. Extensive tests indicate that HubAlign greatly outperforms several popular methods in terms of both accuracy and efficiency, especially in detecting functionally similar proteins. Availability: HubAlign is available freely for non-commercial purposes at http://ttic.uchicago.edu/∼hashemifar/software/HubAlign.zip Contact: jinboxu@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25161231

  19. An Alignment Model for Collaborative Value Networks

    NASA Astrophysics Data System (ADS)

    Bremer, Carlos; Azevedo, Rodrigo Cambiaghi; Klen, Alexandra Pereira

    This paper presents parts of the work carried out in several global organizations through the development of strategic projects with high tactical and operational complexity. By investing in long-term relationships, strongly operating in the transformation of the competitive model and focusing on the value chain management, the main aim of these projects was the alignment of multiple value chains. The projects were led by the Axia Transformation Methodology as well as by its Management Model and following the principles of Project Management. As a concrete result of the efforts made in the last years in the Brazilian market this work also introduces the Alignment Model which supports the transformation process that the companies undergo.

  20. Graphics processing unit-based alignment of protein interaction networks.

    PubMed

    Xie, Jiang; Zhou, Zhonghua; Ma, Jin; Xiang, Chaojuan; Nie, Qing; Zhang, Wu

    2015-08-01

    Network alignment is an important bridge to understanding human protein-protein interactions (PPIs) and functions through model organisms. However, the underlying subgraph isomorphism problem complicates and increases the time required to align protein interaction networks (PINs). Parallel computing technology is an effective solution to the challenge of aligning large-scale networks via sequential computing. In this study, the typical Hungarian-Greedy Algorithm (HGA) is used as an example for PIN alignment. The authors propose a HGA with 2-nearest neighbours (HGA-2N) and implement its graphics processing unit (GPU) acceleration. Numerical experiments demonstrate that HGA-2N can find alignments that are close to those found by HGA while dramatically reducing computing time. The GPU implementation of HGA-2N optimises the parallel pattern, computing mode and storage mode and it improves the computing time ratio between the CPU and GPU compared with HGA when large-scale networks are considered. By using HGA-2N in GPUs, conserved PPIs can be observed, and potential PPIs can be predicted. Among the predictions based on 25 common Gene Ontology terms, 42.8% can be found in the Human Protein Reference Database. Furthermore, a new method of reconstructing phylogenetic trees is introduced, which shows the same relationships among five herpes viruses that are obtained using other methods. PMID:26243827

  1. Design principles in biological networks

    NASA Astrophysics Data System (ADS)

    Goyal, Sidhartha

    Much of biology emerges from networks of interactions. Even in a single bacterium such as Escherichia coli, there are hundreds of coexisting gene and protein networks. Although biological networks are the outcome of evolution, various physical and biological constraints limit their functional capacity. The focus of this thesis is to understand how functional constraints such as optimal growth in mircoorganisms and information flow in signaling pathways shape the metabolic network of bacterium E. coli and the quorum sensing network of marine bacterium Vibrio harveyi, respectively. Metabolic networks convert basic elemental sources into complex building-blocks eventually leading to cell's growth. Therefore, typically, metabolic pathways are often coupled both by the use of a common substrate and by stoichiometric utilization of their products for cell growth. We showed that such a coupled network with product-feedback inhibition may exhibit limit-cycle oscillations which arise via a Hopf bifurcation. Furthermore, we analyzed several representative metabolic modules and find that, in all cases, simple product-feedback inhibition allows nearly optimal growth, in agreement with the predicted growth-rate by the flux-balance analysis (FBA). Bacteria have fascinating and diverse social lives. They display coordinated group behaviors regulated by quorum sensing (QS) systems. The QS circuit of V. harveyi integrates and funnels different ecological information through a common phosphorelay cascade to a set of small regulatory RNAs (sRNAs) that enables collective behavior. We analyzed the signaling properties and information flow in the QS circuit, which provides a model for information flow in signaling networks more generally. A comparative study of post-transcriptional and conventional transcriptional regulation suggest a niche for sRNAs in allowing cells to transition quickly yet reliably between distinct states. Furthermore, we develop a new framework for analyzing signal

  2. Reputation-based collaborative network biology.

    PubMed

    Binder, Jean; Boue, Stephanie; Di Fabio, Anselmo; Fields, R Brett; Hayes, William; Hoeng, Julia; Park, Jennifer S; Peitsch, Manuel C

    2015-01-01

    A pilot reputation-based collaborative network biology platform, Bionet, was developed for use in the sbv IMPROVER Network Verification Challenge to verify and enhance previously developed networks describing key aspects of lung biology. Bionet was successful in capturing a more comprehensive view of the biology associated with each network using the collective intelligence and knowledge of the crowd. One key learning point from the pilot was that using a standardized biological knowledge representation language such as BEL is critical to the success of a collaborative network biology platform. Overall, Bionet demonstrated that this approach to collaborative network biology is highly viable. Improving this platform for de novo creation of biological networks and network curation with the suggested enhancements for scalability will serve both academic and industry systems biology communities. PMID:25592588

  3. Walking tree heuristics for biological string alignment, gene location, and phylogenies

    NASA Astrophysics Data System (ADS)

    Cull, P.; Holloway, J. L.; Cavener, J. D.

    1999-03-01

    Basic biological information is stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Teasing out the meaning of these strings is a central problem of modern biology. Matching and aligning strings brings out their shared characteristics. Although string matching is well-understood in the edit-distance model, biological strings with transpositions and inversions violate this model's assumptions. We propose a family of heuristics called walking trees to align biologically reasonable strings. Both edit-distance and walking tree methods can locate specific genes within a large string when the genes' sequences are given. When we attempt to match whole strings, the walking tree matches most genes, while the edit-distance method fails. We also give examples in which the walking tree matches substrings even if they have been moved or inverted. The edit-distance method was not designed to handle these problems. We include an example in which the walking tree "discovered" a gene. Calculating scores for whole genome matches gives a method for approximating evolutionary distance. We show two evolutionary trees for the picornaviruses which were computed by the walking tree heuristic. Both of these trees show great similarity to previously constructed trees. The point of this demonstration is that WHOLE genomes can be matched and distances calculated. The first tree was created on a Sequent parallel computer and demonstrates that the walking tree heuristic can be efficiently parallelized. The second tree was created using a network of work stations and demonstrates that there is suffient parallelism in the phylogenetic tree calculation that the sequential walking tree can be used effectively on a network.

  4. Multiple deep convolutional neural networks averaging for face alignment

    NASA Astrophysics Data System (ADS)

    Zhang, Shaohua; Yang, Hua; Yin, Zhouping

    2015-05-01

    Face alignment is critical for face recognition, and the deep learning-based method shows promise for solving such issues, given that competitive results are achieved on benchmarks with additional benefits, such as dispensing with handcrafted features and initial shape. However, most existing deep learning-based approaches are complicated and quite time-consuming during training. We propose a compact face alignment method for fast training without decreasing its accuracy. Rectified linear unit is employed, which allows all networks approximately five times faster convergence than a tanh neuron. An eight learnable layer deep convolutional neural network (DCNN) based on local response normalization and a padding convolutional layer (PCL) is designed to provide reliable initial values during prediction. A model combination scheme is presented to further reduce errors, while showing that only two network architectures and hyperparameter selection procedures are required in our approach. A three-level cascaded system is ultimately built based on the DCNNs and model combination mode. Extensive experiments validate the effectiveness of our method and demonstrate comparable accuracy with state-of-the-art methods on BioID, labeled face parts in the wild, and Helen datasets.

  5. A perl package and an alignment tool for phylogenetic networks

    PubMed Central

    Cardona, Gabriel; Rosselló, Francesc; Valiente, Gabriel

    2008-01-01

    Background Phylogenetic networks are a generalization of phylogenetic trees that allow for the representation of evolutionary events acting at the population level, like recombination between genes, hybridization between lineages, and lateral gene transfer. While most phylogenetics tools implement a wide range of algorithms on phylogenetic trees, there exist only a few applications to work with phylogenetic networks, none of which are open-source libraries, and they do not allow for the comparative analysis of phylogenetic networks by computing distances between them or aligning them. Results In order to improve this situation, we have developed a Perl package that relies on the BioPerl bundle and implements many algorithms on phylogenetic networks. We have also developed a Java applet that makes use of the aforementioned Perl package and allows the user to make simple experiments with phylogenetic networks without having to develop a program or Perl script by him or herself. Conclusion The Perl package is available as part of the BioPerl bundle, and can also be downloaded. A web-based application is also available (see availability and requirements). The Perl package includes full documentation of all its features. PMID:18371228

  6. Introduction to Network Analysis in Systems Biology

    PubMed Central

    Ma’ayan, Avi

    2011-01-01

    This Teaching Resource provides lecture notes, slides, and a problem set for a set of three lectures from a course entitled “Systems Biology: Biomedical Modeling.” The materials are from three separate lectures introducing applications of graph theory and network analysis in systems biology. The first lecture describes different types of intracellular networks, methods for constructing biological networks, and different types of graphs used to represent regulatory intracellular networks. The second lecture surveys milestones and key concepts in network analysis by introducing topological measures, random networks, growing network models, and topological observations from molecular biological systems abstracted to networks. The third lecture discusses methods for analyzing lists of genes and experimental data in the context of prior knowledge networks to make predictions. PMID:21917719

  7. GASOLINE: a Cytoscape app for multiple local alignment of PPI networks

    PubMed Central

    Micale, Giovanni; Continella, Andrea; Ferro, Alfredo; Giugno, Rosalba; Pulvirenti, Alfredo

    2014-01-01

    Comparing protein interaction networks can reveal interesting patterns of interactions for a specific function or process in distantly related species. In this paper we present GASOLINE, a Cytoscape app for multiple local alignments of PPI (protein-protein interaction) networks. The app is based on the homonymous greedy and stochastic algorithm. GASOLINE starts with the identification of sets of similar nodes, called seeds of the alignment. Alignments are then extended in a greedy manner and finally refined. Both the identification of seeds and the extension of alignments are performed through an iterative Gibbs sampling strategy. GASOLINE is a Cytoscape app for computing and visualizing local alignments, without requiring any post-processing operations. GO terms can be easily attached to the aligned proteins for further functional analysis of alignments. GASOLINE can perform the alignment task in few minutes, even for a large number of input networks. PMID:25324964

  8. Measuring the evolutionary rewiring of biological networks.

    PubMed

    Shou, Chong; Bhardwaj, Nitin; Lam, Hugo Y K; Yan, Koon-Kiu; Kim, Philip M; Snyder, Michael; Gerstein, Mark B

    2011-01-01

    We have accumulated a large amount of biological network data and expect even more to come. Soon, we anticipate being able to compare many different biological networks as we commonly do for molecular sequences. It has long been believed that many of these networks change, or "rewire", at different rates. It is therefore important to develop a framework to quantify the differences between networks in a unified fashion. We developed such a formalism based on analogy to simple models of sequence evolution, and used it to conduct a systematic study of network rewiring on all the currently available biological networks. We found that, similar to sequences, biological networks show a decreased rate of change at large time divergences, because of saturation in potential substitutions. However, different types of biological networks consistently rewire at different rates. Using comparative genomics and proteomics data, we found a consistent ordering of the rewiring rates: transcription regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, and metabolic pathway network, from fast to slow. This ordering was found in all comparisons we did of matched networks between organisms. To gain further intuition on network rewiring, we compared our observed rewirings with those obtained from simulation. We also investigated how readily our formalism could be mapped to other network contexts; in particular, we showed how it could be applied to analyze changes in a range of "commonplace" networks such as family trees, co-authorships and linux-kernel function dependencies. PMID:21253555

  9. Optimizing Nutrient Uptake in Biological Transport Networks

    NASA Astrophysics Data System (ADS)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2013-03-01

    Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.

  10. Generation of Spatially Aligned Collagen Fiber Networks through Microtransfer Molding

    PubMed Central

    Naik, Nisarga; Caves, Jeffrey

    2013-01-01

    The unique biomechanical properties of native tissue are governed by the organization and composition of integrated collagen and elastin networks. We report an approach for fabricating spatially aligned, fiber-reinforced composites (FRC) with adjustable collagen fiber dimensions, layouts, and distribution within an elastin-like protein matrix yielding a biocomposite with controllable mechanical responses. Microtransfer molding is employed for the fabrication of hollow and solid collagen fibers with straight or crimped fiber geometries. Collagen fibers (width: 2 – 50 μm, thickness: 300 nm – 3 μm) exhibit a Young’s modulus of 126 ± 61 MPa and an ultimate tensile strength (UTS) of 7 ± 3.2 MPa. As fiber networks within composite structures, straight fiber layouts display orthotropic responses with Young’s modulus ranging from 0.95 ± 0.35 to 10.4 ± 0.5 MPa and tensile strength from 0.22 ± 0.08 to 0.87 ± 0.5 MPa with increasing fraction of collagen fibers (1–10% v/v). In contrast, composites based on crimped fiber layouts exhibit strain-dependent stiffness with an increase in Young’s modulus from 0.7 ± 0.14 MPa to 3.15 ± 0.49 MPa, at a specific transition strain. Through controlling the microstructure of engineered collagen fiber networks, a facile means has been established to control macroscale mechanical responses of composite protein-based materials. PMID:24039146

  11. Generation of spatially aligned collagen fiber networks through microtransfer molding.

    PubMed

    Naik, Nisarga; Caves, Jeffrey; Chaikof, Elliot L; Allen, Mark G

    2014-03-01

    The unique biomechanical properties of native tissue are governed by the organization and composition of integrated collagen and elastin networks. An approach for fabricating spatially aligned, fiber-reinforced composites with adjustable collagen fiber dimensions, layouts, and distribution within an elastin-like protein matrix yielding a biocomposite with controllable mechanical responses is reported. Microtransfer molding is employed for the fabrication of hollow and solid collagen fibers with straight or crimped fiber geometries. Collagen fibers (width: 2-50 μm, thickness: 300 nm to 3 μm) exhibit a Young's modulus of 126 ± 61 MPa and an ultimate tensile strength of 7 ± 3.2 MPa. As fiber networks within composite structures, straight fiber layouts display orthotropic responses with Young's modulus ranging from 0.95 ± 0.35 to 10.4 ± 0.5 MPa and tensile strength from 0.22 ± 0.08 to 0.87 ± 0.5 MPa with increasing fraction of collagen fibers (1-10%, v/v). In contrast, composites based on crimped fiber layouts exhibit strain-dependent stiffness with an increase in Young's modulus from 0.7 ± 0.14 MPa to 3.15 ± 0.49 MPa, at a specific transition strain. Through controlling the microstructure of engineered collagen fiber networks, a facile means is established to control macroscale mechanical responses of composite protein-based materials. PMID:24039146

  12. A Multithreaded Algorithm for Network Alignment Via Approximate Matching

    SciTech Connect

    Khan, Arif; Gleich, David F.; Pothen, Alex; Halappanavar, Mahantesh

    2012-11-16

    Network alignment is an optimization problem to find the best one-to-one map between the vertices of a pair of graphs that overlaps in as many edges as possible. It is a relaxation of the graph isomorphism problem and is closely related to the subgraph isomorphism problem. The best current approaches are entirely heuristic, and are iterative in nature. They generate real-valued heuristic approximations that must be rounded to find integer solutions. This rounding requires solving a bipartite maximum weight matching problem at each step in order to avoid missing high quality solutions. We investigate substituting a parallel, half-approximation for maximum weight matching instead of an exact computation. Our experiments show that the resulting difference in solution quality is negligible. We demonstrate almost a 20-fold speedup using 40 threads on an 8 processor Intel Xeon E7-8870 system (from 10 minutes to 36 seconds).

  13. Integrating alignment-based and alignment-free sequence similarity measures for biological sequence classification

    PubMed Central

    Borozan, Ivan; Watt, Stuart; Ferretti, Vincent

    2015-01-01

    Motivation: Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Results: Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. Availability and implementation: All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. Contact: ivan.borozan@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573913

  14. On Crowd-verification of Biological Networks.

    PubMed

    Ansari, Sam; Binder, Jean; Boue, Stephanie; Di Fabio, Anselmo; Hayes, William; Hoeng, Julia; Iskandar, Anita; Kleiman, Robin; Norel, Raquel; O'Neel, Bruce; Peitsch, Manuel C; Poussin, Carine; Pratt, Dexter; Rhrissorrakrai, Kahn; Schlage, Walter K; Stolovitzky, Gustavo; Talikka, Marja

    2013-01-01

    Biological networks with a structured syntax are a powerful way of representing biological information generated from high density data; however, they can become unwieldy to manage as their size and complexity increase. This article presents a crowd-verification approach for the visualization and expansion of biological networks. Web-based graphical interfaces allow visualization of causal and correlative biological relationships represented using Biological Expression Language (BEL). Crowdsourcing principles enable participants to communally annotate these relationships based on literature evidences. Gamification principles are incorporated to further engage domain experts throughout biology to gather robust peer-reviewed information from which relationships can be identified and verified. The resulting network models will represent the current status of biological knowledge within the defined boundaries, here processes related to human lung disease. These models are amenable to computational analysis. For some period following conclusion of the challenge, the published models will remain available for continuous use and expansion by the scientific community. PMID:24151423

  15. On Crowd-verification of Biological Networks

    PubMed Central

    Ansari, Sam; Binder, Jean; Boue, Stephanie; Di Fabio, Anselmo; Hayes, William; Hoeng, Julia; Iskandar, Anita; Kleiman, Robin; Norel, Raquel; O’Neel, Bruce; Peitsch, Manuel C.; Poussin, Carine; Pratt, Dexter; Rhrissorrakrai, Kahn; Schlage, Walter K.; Stolovitzky, Gustavo; Talikka, Marja

    2013-01-01

    Biological networks with a structured syntax are a powerful way of representing biological information generated from high density data; however, they can become unwieldy to manage as their size and complexity increase. This article presents a crowd-verification approach for the visualization and expansion of biological networks. Web-based graphical interfaces allow visualization of causal and correlative biological relationships represented using Biological Expression Language (BEL). Crowdsourcing principles enable participants to communally annotate these relationships based on literature evidences. Gamification principles are incorporated to further engage domain experts throughout biology to gather robust peer-reviewed information from which relationships can be identified and verified. The resulting network models will represent the current status of biological knowledge within the defined boundaries, here processes related to human lung disease. These models are amenable to computational analysis. For some period following conclusion of the challenge, the published models will remain available for continuous use and expansion by the scientific community. PMID:24151423

  16. Biological Networks for Cancer Candidate Biomarkers Discovery.

    PubMed

    Yan, Wenying; Xue, Wenjin; Chen, Jiajia; Hu, Guang

    2016-01-01

    Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field. PMID:27625573

  17. Biological Networks for Cancer Candidate Biomarkers Discovery

    PubMed Central

    Yan, Wenying; Xue, Wenjin; Chen, Jiajia; Hu, Guang

    2016-01-01

    Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field. PMID:27625573

  18. Simplified models of biological networks.

    PubMed

    Sneppen, Kim; Krishna, Sandeep; Semsey, Szabolcs

    2010-01-01

    The function of living cells is controlled by complex regulatory networks that are built of a wide diversity of interacting molecular components. The sheer size and intricacy of molecular networks of even the simplest organisms are obstacles toward understanding network functionality. This review discusses the achievements and promise of a bottom-up approach that uses well-characterized subnetworks as model systems for understanding larger networks. It highlights the interplay between the structure, logic, and function of various types of small regulatory circuits. The bottom-up approach advocates understanding regulatory networks as a collection of entangled motifs. We therefore emphasize the potential of negative and positive feedback, as well as their combinations, to generate robust homeostasis, epigenetics, and oscillations. PMID:20192769

  19. Asian Network for Biological Sciences (ANBS).

    ERIC Educational Resources Information Center

    Asian Network for Biological Sciences.

    The Asian Network for Biological Sciences (ANBS) is a group of institutions, laboratories, research centers, and scholars who are willing to cooperate in programs and activities aimed at improving teaching and research in the biological sciences. This publication: (1) outlines ANBS aims and objectives; (2) describes major activities in the past;…

  20. Network-Based Models in Molecular Biology

    NASA Astrophysics Data System (ADS)

    Beyer, Andreas

    Biological systems are characterized by a large number of diverse interactions. Interaction maps have been used to abstract those interactions at all biological scales ranging from food webs at the ecosystem level down to protein interaction networks at the molecular scale.

  1. Quantifying evolvability in small biological networks

    SciTech Connect

    Nemenman, Ilya; Mugler, Andrew; Ziv, Etay; Wiggins, Chris H

    2008-01-01

    The authors introduce a quantitative measure of the capacity of a small biological network to evolve. The measure is applied to a stochastic description of the experimental setup of Guet et al. (Science 2002, 296, pp. 1466), treating chemical inducers as functional inputs to biochemical networks and the expression of a reporter gene as the functional output. The authors take an information-theoretic approach, allowing the system to set parameters that optimise signal processing ability, thus enumerating each network's highest-fidelity functions. All networks studied are highly evolvable by the measure, meaning that change in function has little dependence on change in parameters. Moreover, each network's functions are connected by paths in the parameter space along which information is not significantly lowered, meaning a network may continuously change its functionality without completely losing it along the way. This property further underscores the evolvability of the networks.

  2. Knowledge-Intensive University Spin-Off Firms in South Africa: Fragile Network Alignment?

    ERIC Educational Resources Information Center

    Kruss, Glenda

    2008-01-01

    This paper analyses the conditions for sustaining spin-off firms from university-based research in South Africa through follow-up case studies of three high-technology networks, using a "network alignment" approach. Commercialization failed in the first case because of a lack of interactive capability and an absence of networks between the…

  3. Biodiesel and Integrated STEM: Vertical Alignment of High School Biology/Biochemistry and Chemistry

    ERIC Educational Resources Information Center

    Burrows, Andrea C.; Breiner, Jonathan M.; Keiner, Jennifer; Behm, Chris

    2014-01-01

    This article explores the vertical alignment of two high school classes, biology and chemistry, around the core concept of biodiesel fuel production. High school teachers and university faculty members investigated biodiesel as it relates to societal impact through a National Science Foundation Research Experience for Teachers. Using an action…

  4. Reconstructing Causal Biological Networks through Active Learning.

    PubMed

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. PMID:26930205

  5. Reconstructing Causal Biological Networks through Active Learning

    PubMed Central

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. PMID:26930205

  6. Network Reverse Engineering Approach in Synthetic Biology

    NASA Astrophysics Data System (ADS)

    Zhang, Haoqian; Liu, Ao; Lu, Yuheng; Sheng, Ying; Wu, Qianzhu; Yin, Zhenzhen; Chen, Yiwei; Liu, Zairan; Pan, Heng; Ouyang, Qi

    2013-12-01

    Synthetic biology is a new branch of interdisciplinary science that has been developed in recent years. The main purpose of synthetic biology is to apply successful principles that have been developed in electronic and chemical engineering to develop basic biological functional modules, and through rational design, develop man-made biological systems that have predicted useful functions. Here, we discuss an important principle in rational design of functional biological circuits: the reverse engineering design. We will use a research project that was conducted at Peking University for the International Genetic Engineering Machine Competition (iGEM) to illustrate the principle: synthesis a cell which has a semi-log dose-response to the environment. Through this work we try to demonstrate the potential application of network engineering in synthetic biology.

  7. Biological and Environmental Research Network Requirements

    SciTech Connect

    Balaji, V.; Boden, Tom; Cowley, Dave; Dart, Eli; Dattoria, Vince; Desai, Narayan; Egan, Rob; Foster, Ian; Goldstone, Robin; Gregurick, Susan; Houghton, John; Izaurralde, Cesar; Johnston, Bill; Joseph, Renu; Kleese-van Dam, Kerstin; Lipton, Mary; Monga, Inder; Pritchard, Matt; Rotman, Lauren; Strand, Gary; Stuart, Cory; Tatusova, Tatiana; Tierney, Brian; Thomas, Brian; Williams, Dean N.; Zurawski, Jason

    2013-09-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet be a highly successful enabler of scientific discovery for over 25 years. In November 2012, ESnet and the Office of Biological and Environmental Research (BER) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the BER program office. Several key findings resulted from the review. Among them: 1) The scale of data sets available to science collaborations continues to increase exponentially. This has broad impact, both on the network and on the computational and storage systems connected to the network. 2) Many science collaborations require assistance to cope with the systems and network engineering challenges inherent in managing the rapid growth in data scale. 3) Several science domains operate distributed facilities that rely on high-performance networking for success. Key examples illustrated in this report include the Earth System Grid Federation (ESGF) and the Systems Biology Knowledgebase (KBase). This report expands on these points, and addresses others as well. The report contains a findings section as well as the text of the case studies discussed at the review.

  8. Optimizing parameters on alignment of PCL/PGA nanofibrous scaffold: An artificial neural networks approach.

    PubMed

    Paskiabi, Farnoush Asghari; Mirzaei, Esmaeil; Amani, Amir; Shokrgozar, Mohammad Ali; Saber, Reza; Faridi-Majidi, Reza

    2015-11-01

    This paper proposes an artificial neural networks approach to finding the effects of electrospinning parameters on alignment of poly(ɛ-caprolactone)/poly(glycolic acid) blend nanofibers. Four electrospinning parameters, namely total polymer concentration, working distance, drum speed and applied voltage were considered as input and the standard deviation of the angles of nanofibers, introducing fibers alignments, as the output of the model. The results demonstrated that drum speed and applied voltage are two critical factors influencing nanofibers alignment, however their effect are entirely interdependent. Their effects also are not independent of other electrospinning parameters. In obtaining aligned electrospun nanofibers, the concentration and working distance can also be effective. In vitro cell culture study on random and aligned nanofibers showed directional growth of cells on aligned fibers. PMID:25450538

  9. Global Alignment of Pairwise Protein Interaction Networks for Maximal Common Conserved Patterns

    DOE PAGESBeta

    Tian, Wenhong; Samatova, Nagiza F.

    2013-01-01

    A number of tools for the alignment of protein-protein interaction (PPI) networks have laid the foundation for PPI network analysis. Most of alignment tools focus on finding conserved interaction regions across the PPI networks through either local or global mapping of similar sequences. Researchers are still trying to improve the speed, scalability, and accuracy of network alignment. In view of this, we introduce a connected-components based fast algorithm, HopeMap, for network alignment. Observing that the size of true orthologs across species is small comparing to the total number of proteins in all species, we take a different approach basedmore » on a precompiled list of homologs identified by KO terms. Applying this approach to S. cerevisiae (yeast) and D. melanogaster (fly), E. coli K12 and S. typhimurium , E. coli K12 and C. crescenttus , we analyze all clusters identified in the alignment. The results are evaluated through up-to-date known gene annotations, gene ontology (GO), and KEGG ortholog groups (KO). Comparing to existing tools, our approach is fast with linear computational cost, highly accurate in terms of KO and GO terms specificity and sensitivity, and can be extended to multiple alignments easily.« less

  10. Modeling aligning effect of polymer network in polymer stabilized nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Yang, Deng-Ke; Cui, Yue; Nemati, Hossein; Zhou, Xiaochen; Moheghi, Alireza

    2013-12-01

    We developed a phenomenological theory to describe the aligning field of polymer networks in polymer stabilized liquid crystals where sub-micron size polymer networks are phase separated from the liquid crystal in dispersion. The polymer networks are anisotropic and anchor the liquid crystals in their longitudinal direction. They inhibit the liquid crystals reorientation when external stimuli, such as electric field and temperature, are applied and reduce the relaxation time from distorted states. We model the effects produced by the polymer networks as an effective aligning field. We calculate the effective field as a function of the polymer network volume fraction and the lateral size of the network. The theory is compared with experimental results and good agreements were obtained. It is very useful in predicting how much polymer networks change the driving voltage and response time of liquid crystal devices.

  11. Structural determinants of criticality in biological networks

    PubMed Central

    Valverde, Sergi; Ohse, Sebastian; Turalska, Malgorzata; West, Bruce J.; Garcia-Ojalvo, Jordi

    2015-01-01

    Many adaptive evolutionary systems display spatial and temporal features, such as long-range correlations, typically associated with the critical point of a phase transition in statistical physics. Empirical and theoretical studies suggest that operating near criticality enhances the functionality of biological networks, such as brain and gene networks, in terms for instance of information processing, robustness, and evolvability. While previous studies have explained criticality with specific system features, we still lack a general theory of critical behavior in biological systems. Here we look at this problem from the complex systems perspective, since in principle all critical biological circuits have in common the fact that their internal organization can be described as a complex network. An important question is how self-similar structure influences self-similar dynamics. Modularity and heterogeneity, for instance, affect the location of critical points and can be used to tune the system toward criticality. We review and discuss recent studies on the criticality of neuronal and genetic networks, and discuss the implications of network theory when assessing the evolutionary features of criticality. PMID:26005422

  12. Theoretical knock-outs on biological networks.

    PubMed

    Miranda, Pedro J; de S Pinto, Sandro E; Baptista, Murilo S; La Guardia, Giuliano G

    2016-08-21

    In this work we redefine the concept of biological importance and how to compute it, based on a model of complex networks and random walk. We call this new procedure, theoretical knock-out (KO). The proposed method generalizes the procedure presented in a recent study about Oral Tolerance. To devise this method, we make two approaches: algebraically and algorithmically. In both cases we compute a vector on an asymptotic state, called flux vector. The flux is given by a random walk on a directed graph that represents a biological phenomenon. This vector gives us the information about the relative flux of walkers on a vertex which represents a biological agent. With two vector of this kind, we can calculate the relative mean error between them by averaging over its coefficients. This quantity allows us to assess the degree of importance of each vertex of a complex network that evolves in time and has experimental background. We find out that this procedure can be applied in any sort of biological phenomena in which we can know the role and interrelationships of its agents. These results also provide experimental biologists to predict the order of importance of biological agents on a mounted complex network. PMID:27188251

  13. Discovery of Chemical Toxicity via Biological Networks and Systems Biology

    SciTech Connect

    Perkins, Edward; Habib, Tanwir; Guan, Xin; Escalon, Barbara; Falciani, Francesco; Chipman, J.K.; Antczak, Philipp; Edwards, Stephen; Taylor, Ronald C.; Vulpe, Chris; Loguinov, Alexandre; Van Aggelen, Graham; Villeneuve, Daniel L.; Garcia-Reyero, Natalia

    2010-09-30

    Both soldiers and animals are exposed to many chemicals as the result of military activities. Tools are needed to understand the hazards and risks that chemicals and new materials pose to soldiers and the environment. We have investigated the potential of global gene regulatory networks in understanding the impact of chemicals on reproduction. We characterized effects of chemicals on ovaries of the model animal system, the Fathead minnow (Pimopheles promelas) connecting chemical impacts on gene expression to circulating blood levels of the hormones testosterone and estradiol in addition to the egg yolk protein vitellogenin. We describe the application of reverse engineering complex interaction networks from high dimensional gene expression data to characterize chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis that governs reproduction in fathead minnows. The construction of global gene regulatory networks provides deep insights into how drugs and chemicals effect key organs and biological pathways.

  14. Review of Biological Network Data and Its Applications

    PubMed Central

    Yu, Donghyeon; Kim, MinSoo; Xiao, Guanghua

    2013-01-01

    Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study. PMID:24465231

  15. Application of graph colouring to biological networks.

    PubMed

    Khor, S

    2010-05-01

    The author explores the application of graph colouring to biological networks, specifically protein-protein interaction (PPI) networks. First, the author finds that given similar conditions (i.e. graph size, degree distribution and clustering), fewer colours are needed to colour disassortative than assortative networks. Fewer colours create fewer independent sets which in turn imply higher concurrency potential for a network. Since PPI networks tend to be disassortative, the author suggests that in addition to functional specificity and stability proposed previously by Maslov and Sneppen (Science, 296, 2002), the disassortative nature of PPI networks may promote the ability of cells to perform multiple, crucial and functionally diverse tasks concurrently. Second, because graph colouring is closely related to the presence of cliques in a graph, the significance of node colouring information to the problem of identifying protein complexes (dense subgraphs in PPI networks), is investigated. The author finds that for PPI networks where 1-11% of nodes participate in at least one identified protein complex, such as H. sapien, DSATUR (a well-known complete graph colouring algorithm) node colouring information can improve the quality (homogeneity and separation) of initial candidate complexes. This finding may help improve existing protein complex detection methods, and/or suggest new methods. [Includes supplementary material]. PMID:20499999

  16. BIOLOGICAL NETWORK EXPLORATION WITH CYTOSCAPE 3

    PubMed Central

    Su, Gang; Morris, John H.; Demchak, Barry; Bader, Gary D.

    2014-01-01

    Cytoscape is one of the most popular open-source software tools for the visual exploration of biomedical networks composed of protein, gene and other types of interactions. It offers researchers a versatile and interactive visualization interface for exploring complex biological interconnections supported by diverse annotation and experimental data, thereby facilitating research tasks such as predicting gene function and pathway construction. Cytoscape provides core functionality to load, visualize, search, filter and save networks, and hundreds of Apps extend this functionality to address specific research needs. The latest generation of Cytoscape (version 3.0 and later) has substantial improvements in function, user interface and performance relative to previous versions. This protocol aims to jump-start new users with specific protocols for basic Cytoscape functions, such as installing Cytoscape and Cytoscape Apps, loading data, visualizing and navigating the network, visualizing network associated data (attributes) and identifying clusters. It also highlights new features that benefit experienced users. PMID:25199793

  17. Some physics problems in biological networks

    NASA Astrophysics Data System (ADS)

    Bialek, William

    2007-03-01

    Most of the interesting things that happen in living organisms require interactions among many components, and it is convenient to think of these as a ``network'' of interactions. We use this language at the level of single molecules (the network of interactions among amino acids that determine protein structure), single cells (the network of protein-DNA interactions responsible for the regulation of gene expression) and complex multicellular organisms (the networks of neurons in our brain). In this talk I'll try to look at two very different kinds of theoretical physics problems that arise in thinking about such networks. The first problems are phenomenological: Given what our experimentalists friends can measure, can we generate a global view of network function and dynamics? I'll argue that maximum entropy methods can be useful here, and show how such methods have been used in very recent work on networks of neurons, enzymes, genes and (in disguise) amino acids. In this line of reasoning there are of course interesting connections to statistical mechanics, and we'll see that natural statistical mechanics questions about the underlying models actually teach us something about how the real biological system works, in ways that will be tested through new experiments. In the second half of the talk I'll ask if there are principles from which we might actually be able to predict the structure and dynamics of biological networks. I'll focus on optimization principles, in particular the optimization of information flow in transcriptional regulation. Even setting up these arguments forces us to think critically about our understanding of the signals, specificity and noise in these systems, all current topics of research. Although we don't know if we have the right principles, trying to work out the consequences of such optimization again suggests new experiments.

  18. Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks

    SciTech Connect

    Lee, Jeonyoon; Stein, Itai Y.; Devoe, Mackenzie E.; Lewis, Diana J.; Lachman, Noa; Buschhorn, Samuel T.; Wardle, Brian L.; Kessler, Seth S.

    2015-02-02

    Here, we quantify the electron transport properties of aligned carbon nanotube (CNT) networks as a function of the CNT length, where the electrical conductivities may be tuned by up to 10× with anisotropies exceeding 40%. Testing at elevated temperatures demonstrates that the aligned CNT networks have a negative temperature coefficient of resistance, and application of the fluctuation induced tunneling model leads to an activation energy of ≈14 meV for electron tunneling at the CNT-CNT junctions. Since the tunneling activation energy is shown to be independent of both CNT length and orientation, the variation in electron transport is attributed to the number of CNT-CNT junctions an electron must tunnel through during its percolated path, which is proportional to the morphology of the aligned CNT network.

  19. Random networks created by biological evolution

    NASA Astrophysics Data System (ADS)

    Slanina, František; Kotrla, Miroslav

    2000-11-01

    We investigate a model of an evolving random network, introduced by us previously [Phys. Rev. Lett. 83, 5587 (1999)]. The model is a generalization of the Bak-Sneppen model of biological evolution, with the modification that the underlying network can evolve by adding and removing sites. The behavior and the averaged properties of the network depend on the parameter p, the probability to establish a link to the newly introduced site. For p=1 the system is self-organized critical, with two distinct power-law regimes with forward-avalanche exponents τ=1.98+/-0.04 and τ'=1.65+/-0.05. The average size of the network diverges as a powerlaw when p-->1. We study various geometrical properties of the network: the probability distribution of sizes and connectivities, size and number of disconnected clusters, and the dependence of the mean distance between two sites on the cluster size. The connection with models of growing networks with a preferential attachment is discussed.

  20. Adaptation and optimization of biological transport networks.

    PubMed

    Hu, Dan; Cai, David

    2013-09-27

    It has been hypothesized that topological structures of biological transport networks are consequences of energy optimization. Motivated by experimental observation, we propose that adaptation dynamics may underlie this optimization. In contrast to the global nature of optimization, our adaptation dynamics responds only to local information and can naturally incorporate fluctuations in flow distributions. The adaptation dynamics minimizes the global energy consumption to produce optimal networks, which may possess hierarchical loop structures in the presence of strong fluctuations in flow distribution. We further show that there may exist a new phase transition as there is a critical open probability of sinks, above which there are only trees for network structures whereas below which loops begin to emerge. PMID:24116821

  1. MEDYAN: Mechanochemical Simulations of Contraction and Polarity Alignment in Actomyosin Networks

    PubMed Central

    Papoian, Garegin A.

    2016-01-01

    Active matter systems, and in particular the cell cytoskeleton, exhibit complex mechanochemical dynamics that are still not well understood. While prior computational models of cytoskeletal dynamics have lead to many conceptual insights, an important niche still needs to be filled with a high-resolution structural modeling framework, which includes a minimally-complete set of cytoskeletal chemistries, stochastically treats reaction and diffusion processes in three spatial dimensions, accurately and efficiently describes mechanical deformations of the filamentous network under stresses generated by molecular motors, and deeply couples mechanics and chemistry at high spatial resolution. To address this need, we propose a novel reactive coarse-grained force field, as well as a publicly available software package, named the Mechanochemical Dynamics of Active Networks (MEDYAN), for simulating active network evolution and dynamics (available at www.medyan.org). This model can be used to study the non-linear, far from equilibrium processes in active matter systems, in particular, comprised of interacting semi-flexible polymers embedded in a solution with complex reaction-diffusion processes. In this work, we applied MEDYAN to investigate a contractile actomyosin network consisting of actin filaments, alpha-actinin cross-linking proteins, and non-muscle myosin IIA mini-filaments. We found that these systems undergo a switch-like transition in simulations from a random network to ordered, bundled structures when cross-linker concentration is increased above a threshold value, inducing contraction driven by myosin II mini-filaments. Our simulations also show how myosin II mini-filaments, in tandem with cross-linkers, can produce a range of actin filament polarity distributions and alignment, which is crucially dependent on the rate of actin filament turnover and the actin filament’s resulting super-diffusive behavior in the actomyosin-cross-linker system. We discuss the

  2. MEDYAN: Mechanochemical Simulations of Contraction and Polarity Alignment in Actomyosin Networks.

    PubMed

    Popov, Konstantin; Komianos, James; Papoian, Garegin A

    2016-04-01

    Active matter systems, and in particular the cell cytoskeleton, exhibit complex mechanochemical dynamics that are still not well understood. While prior computational models of cytoskeletal dynamics have lead to many conceptual insights, an important niche still needs to be filled with a high-resolution structural modeling framework, which includes a minimally-complete set of cytoskeletal chemistries, stochastically treats reaction and diffusion processes in three spatial dimensions, accurately and efficiently describes mechanical deformations of the filamentous network under stresses generated by molecular motors, and deeply couples mechanics and chemistry at high spatial resolution. To address this need, we propose a novel reactive coarse-grained force field, as well as a publicly available software package, named the Mechanochemical Dynamics of Active Networks (MEDYAN), for simulating active network evolution and dynamics (available at www.medyan.org). This model can be used to study the non-linear, far from equilibrium processes in active matter systems, in particular, comprised of interacting semi-flexible polymers embedded in a solution with complex reaction-diffusion processes. In this work, we applied MEDYAN to investigate a contractile actomyosin network consisting of actin filaments, alpha-actinin cross-linking proteins, and non-muscle myosin IIA mini-filaments. We found that these systems undergo a switch-like transition in simulations from a random network to ordered, bundled structures when cross-linker concentration is increased above a threshold value, inducing contraction driven by myosin II mini-filaments. Our simulations also show how myosin II mini-filaments, in tandem with cross-linkers, can produce a range of actin filament polarity distributions and alignment, which is crucially dependent on the rate of actin filament turnover and the actin filament's resulting super-diffusive behavior in the actomyosin-cross-linker system. We discuss the

  3. Comparing artificial and biological dynamical neural networks

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2006-05-01

    Modern computers can be made more friendly and otherwise improved by making them behave more like humans. Perhaps we can learn how to do this from biology in which human brains evolved over a long period of time. Therefore, we first explain a commonly used biological neural network (BNN) model, the Wilson-Cowan neural oscillator, that has cross-coupled excitatory (positive) and inhibitory (negative) neurons. The two types of neurons are used for frequency modulation communication between neurons which provides immunity to electromagnetic interference. We then evolve, for the first time, an artificial neural network (ANN) to perform the same task. Two dynamical feed-forward artificial neural networks use cross-coupling feedback (like that in a flip-flop) to form an ANN nonlinear dynamic neural oscillator with the same equations as the Wilson-Cowan neural oscillator. Finally we show, through simulation, that the equations perform the basic neural threshold function, switching between stable zero output and a stable oscillation, that is a stable limit cycle. Optical implementation with an injected laser diode and future research are discussed.

  4. New scaling relation for information transfer in biological networks.

    PubMed

    Kim, Hyunju; Davies, Paul; Walker, Sara Imari

    2015-12-01

    We quantify characteristics of the informational architecture of two representative biological networks: the Boolean network model for the cell-cycle regulatory network of the fission yeast Schizosaccharomyces pombe (Davidich et al. 2008 PLoS ONE 3, e1672 (doi:10.1371/journal.pone.0001672)) and that of the budding yeast Saccharomyces cerevisiae (Li et al. 2004 Proc. Natl Acad. Sci. USA 101, 4781-4786 (doi:10.1073/pnas.0305937101)). We compare our results for these biological networks with the same analysis performed on ensembles of two different types of random networks: Erdös-Rényi and scale-free. We show that both biological networks share features in common that are not shared by either random network ensemble. In particular, the biological networks in our study process more information than the random networks on average. Both biological networks also exhibit a scaling relation in information transferred between nodes that distinguishes them from random, where the biological networks stand out as distinct even when compared with random networks that share important topological properties, such as degree distribution, with the biological network. We show that the most biologically distinct regime of this scaling relation is associated with a subset of control nodes that regulate the dynamics and function of each respective biological network. Information processing in biological networks is therefore interpreted as an emergent property of topology (causal structure) and dynamics (function). Our results demonstrate quantitatively how the informational architecture of biologically evolved networks can distinguish them from other classes of network architecture that do not share the same informational properties. PMID:26701883

  5. Neural-network-directed alignment of optical systems using the laser-beam spatial filter as an example

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Krasowski, Michael J.; Weiland, Kenneth E.

    1993-01-01

    This report describes an effort at NASA Lewis Research Center to use artificial neural networks to automate the alignment and control of optical measurement systems. Specifically, it addresses the use of commercially available neural network software and hardware to direct alignments of the common laser-beam-smoothing spatial filter. The report presents a general approach for designing alignment records and combining these into training sets to teach optical alignment functions to neural networks and discusses the use of these training sets to train several types of neural networks. Neural network configurations used include the adaptive resonance network, the back-propagation-trained network, and the counter-propagation network. This work shows that neural networks can be used to produce robust sequencers. These sequencers can learn by example to execute the step-by-step procedures of optical alignment and also can learn adaptively to correct for environmentally induced misalignment. The long-range objective is to use neural networks to automate the alignment and operation of optical measurement systems in remote, harsh, or dangerous aerospace environments. This work also shows that when neural networks are trained by a human operator, training sets should be recorded, training should be executed, and testing should be done in a manner that does not depend on intellectual judgments of the human operator.

  6. Noncommutative Biology: Sequential Regulation of Complex Networks

    PubMed Central

    Letsou, William; Cai, Long

    2016-01-01

    Single-cell variability in gene expression is important for generating distinct cell types, but it is unclear how cells use the same set of regulatory molecules to specifically control similarly regulated genes. While combinatorial binding of transcription factors at promoters has been proposed as a solution for cell-type specific gene expression, we found that such models resulted in substantial information bottlenecks. We sought to understand the consequences of adopting sequential logic wherein the time-ordering of factors informs the final outcome. We showed that with noncommutative control, it is possible to independently control targets that would otherwise be activated simultaneously using combinatorial logic. Consequently, sequential logic overcomes the information bottleneck inherent in complex networks. We derived scaling laws for two noncommutative models of regulation, motivated by phosphorylation/neural networks and chromosome folding, respectively, and showed that they scale super-exponentially in the number of regulators. We also showed that specificity in control is robust to the loss of a regulator. Lastly, we connected these theoretical results to real biological networks that demonstrate specificity in the context of promiscuity. These results show that achieving a desired outcome often necessitates roundabout steps. PMID:27560383

  7. Noncommutative Biology: Sequential Regulation of Complex Networks.

    PubMed

    Letsou, William; Cai, Long

    2016-08-01

    Single-cell variability in gene expression is important for generating distinct cell types, but it is unclear how cells use the same set of regulatory molecules to specifically control similarly regulated genes. While combinatorial binding of transcription factors at promoters has been proposed as a solution for cell-type specific gene expression, we found that such models resulted in substantial information bottlenecks. We sought to understand the consequences of adopting sequential logic wherein the time-ordering of factors informs the final outcome. We showed that with noncommutative control, it is possible to independently control targets that would otherwise be activated simultaneously using combinatorial logic. Consequently, sequential logic overcomes the information bottleneck inherent in complex networks. We derived scaling laws for two noncommutative models of regulation, motivated by phosphorylation/neural networks and chromosome folding, respectively, and showed that they scale super-exponentially in the number of regulators. We also showed that specificity in control is robust to the loss of a regulator. Lastly, we connected these theoretical results to real biological networks that demonstrate specificity in the context of promiscuity. These results show that achieving a desired outcome often necessitates roundabout steps. PMID:27560383

  8. Robust Multi-Network Clustering via Joint Cross-Domain Cluster Alignment

    PubMed Central

    Liu, Rui; Cheng, Wei; Tong, Hanghang; Wang, Wei; Zhang, Xiang

    2016-01-01

    Network clustering is an important problem that has recently drawn a lot of attentions. Most existing work focuses on clustering nodes within a single network. In many applications, however, there exist multiple related networks, in which each network may be constructed from a different domain and instances in one domain may be related to instances in other domains. In this paper, we propose a robust algorithm, MCA, for multi-network clustering that takes into account cross-domain relationships between instances. MCA has several advantages over the existing single network clustering methods. First, it is able to detect associations between clusters from different domains, which, however, is not addressed by any existing methods. Second, it achieves more consistent clustering results on multiple networks by leveraging the duality between clustering individual networks and inferring cross-network cluster alignment. Finally, it provides a multi-network clustering solution that is more robust to noise and errors. We perform extensive experiments on a variety of real and synthetic networks to demonstrate the effectiveness and efficiency of MCA.

  9. Irregularity and asynchrony in biologic network signals.

    PubMed

    Pincus, S M

    2000-01-01

    ; "r" is chosen as a fixed percentage (often 20%) of the subject's SD. This version of ApEn has the property that it is decorrelated from process SD--it remains unchanged under uniform process magnification, reduction, and translation (shift by a constant). Cross-ApEn is generally applied to compare sequences from two distinct yet interwined variables in a network. Thus we can directly assess network, and not just nodal, evolution, under different settings--e.g., to directly evaluate uncoupling and/or changes in feedback and control. Hence, cross-ApEn facilitates analyses of output from myriad complicated networks, avoiding the requirement to fully model the underlying system. This is especially important, since accurate modeling of (biological) networks is often nearly impossible. Algorithmically and insofar as implementation and reproducibility properties are concerned, cross-ApEn is thematically similar to ApEn. Furthermore, cross-ApEn is shown to be complementary to the two most prominent statistical means of assessing multivariate series, correlation and power spectral methodologies. In particular, we highlight, both theoretically and by case study examples, the many physiological feedback and/or control systems and models for which cross-ApEn can detect significant changes in bivariate asynchrony, yet for which cross-correlation and cross-spectral methods fail to clearly highlight markedly changing features of the data sets under consideration. Finally, we introduce spatial ApEn, which appears to have considerable potential, both theoretically and empirically, in evaluating multidimensional lattice structures, to discern and quantify the extent of changing patterns, and for the emergence and dissolution of traveling waves, throughout multiple contexts within biology and chemistry. PMID:10909056

  10. Centrality Analysis Methods for Biological Networks and Their Application to Gene Regulatory Networks

    PubMed Central

    Koschützki, Dirk; Schreiber, Falk

    2008-01-01

    The structural analysis of biological networks includes the ranking of the vertices based on the connection structure of a network. To support this analysis we discuss centrality measures which indicate the importance of vertices, and demonstrate their applicability on a gene regulatory network. We show that common centrality measures result in different valuations of the vertices and that novel measures tailored to specific biological investigations are useful for the analysis of biological networks, in particular gene regulatory networks. PMID:19787083

  11. Aligning 3D nanofibrous networks from self-assembled phenylalanine nanofibers†

    PubMed Central

    Wang, Xianfeng; Chen, Yi Charlie

    2015-01-01

    Self-assembled synthetic materials are typically disordered, and controlling the alignment of such materials at the nanometer scale may be important for a variety of biological applications. In this study, we have applied directional freeze-drying, for the first time, to develop well aligned three dimensional (3D) nanofibrous materials using amino acid like L-phenylalanine (Phe). 3D free-standing Phe nanofibrous monoliths have been successfully prepared using directional freeze-drying, and have presented a unique hierarchical structure with well-aligned nanofibers at the nanometer scale and an ordered compartmental architecture at the micrometer scale. We have found that the physical properties (e.g. nanofiber density and alignment) of the nanofibrous materials could be tuned by controlling the concentration and pH of the Phe solution and the freezing temperature. Moreover, the same strategy (i.e. directional freeze-drying) has been successfully applied to assemble peptide nanofibrous materials using a dipeptide (i.e. diphenylalanine), and to assemble Phe-based nanofibrous composites using polyethylenimine and poly(vinyl alcohol). The tunability of the nanofibrous structures together with the biocompatibility of Phe may make these 3D nanofibrous materials suitable for a variety of applications, including biosensor templates, tissue scaffolds, filtration membranes, and absorbents. The strategy reported here is likely applicable to create aligned nanofibrous structures using other amino acids, peptides, and polymers. PMID:25621167

  12. Topological implications of negative curvature for biological and social networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; DasGupta, Bhaskar; Mobasheri, Nasim

    2014-03-01

    Network measures that reflect the most salient properties of complex large-scale networks are in high demand in the network research community. In this paper we adapt a combinatorial measure of negative curvature (also called hyperbolicity) to parametrized finite networks, and show that a variety of biological and social networks are hyperbolic. This hyperbolicity property has strong implications on the higher-order connectivity and other topological properties of these networks. Specifically, we derive and prove bounds on the distance among shortest or approximately shortest paths in hyperbolic networks. We describe two implications of these bounds to crosstalk in biological networks, and to the existence of central, influential neighborhoods in both biological and social networks.

  13. Alignment of paired molecules of C60 within a hexagonal platform networked through hydrogen-bonds.

    PubMed

    Hisaki, Ichiro; Nakagawa, Shoichi; Sato, Hiroyasu; Tohnai, Norimitsu

    2016-07-28

    We demonstrate, for the first time, that a hydrogen-bonded low-density organic framework can be applied as a platform to achieve periodic alignment of paired molecules of C60, which is the smallest example of a finite-numbered cluster of C60. The framework is a layered assembly of a hydrogen-bonded 2D hexagonal network (LA-H-HexNet) composed of dodecadehydrotribenzo[18]annulene derivatives. PMID:27417325

  14. Predicting and exploring network components involved in pathogenesis in the malaria parasite via novel subnetwork alignments

    PubMed Central

    2015-01-01

    Background Malaria is a major health threat, affecting over 40% of the world's population. The latest report released by the World Health Organization estimated about 207 million cases of malaria infection, and about 627,000 deaths in 2012 alone. During the past decade, new therapeutic targets have been identified and are at various stages of characterization, thanks to the emerging omics-based technologies. However, the mechanism of malaria pathogenesis remains largely unknown. In this paper, we employ a novel neighborhood subnetwork alignment approach to identify network components that are potentially involved in pathogenesis. Results Our module-based subnetwork alignment approach identified 24 functional homologs of pathogenesis-related proteins in the malaria parasite P. falciparum, using the protein-protein interaction networks in Escherichia coli as references. Eighteen out of these 24 proteins are associated with 418 other proteins that are related to DNA replication, transcriptional regulation, translation, signaling, metabolism, cell cycle regulation, as well as cytoadherence and entry to the host. Conclusions The subnetwork alignments and subsequent protein-protein association network mining predicted a group of malarial proteins that may be involved in parasite development and parasite-host interaction, opening a new systems-level view of parasite pathogenesis and virulence. PMID:26100579

  15. Computer-Based Semantic Network in Molecular Biology: A Demonstration.

    ERIC Educational Resources Information Center

    Callman, Joshua L.; And Others

    This paper analyzes the hardware and software features that would be desirable in a computer-based semantic network system for representing biology knowledge. It then describes in detail a prototype network of molecular biology knowledge that has been developed using Filevision software and a Macintosh computer. The prototype contains about 100…

  16. Analyzing large biological datasets with association networks

    SciTech Connect

    Karpinets, T. V.; Park, B. H.; Uberbacher, E. C.

    2012-05-25

    Due to advances in high throughput biotechnologies biological information is being collected in databases at an amazing rate, requiring novel computational approaches for timely processing of the collected data into new knowledge. In this study we address this problem by developing a new approach for discovering modular structure, relationships and regularities in complex data. These goals are achieved by converting records of biological annotations of an object, like organism, gene, chemical, sequence, into networks (Anets) and rules (Arules) of the associated annotations. Anets are based on similarity of annotation profiles of objects and can be further analyzed and visualized providing a compact birds-eye view of most significant relationships in the collected data and a way of their clustering and classification. Arules are generated by Apriori considering each record of annotations as a transaction and augmenting each annotation item by its type. Arules provide a way to validate relationships discovered by Anets producing comprehensive statistics on frequently associated annotations and specific confident relationships among them. A combination of Anets and Arules represents condensed information on associations among the collected data, helping to discover new knowledge and generate hypothesis. As an example we have applied the approach to analyze bacterial metadata from the Genomes OnLine Database. The analysis allowed us to produce a map of sequenced bacterial and archaeal organisms based on their genomic, metabolic and physiological characteristics with three major clusters of metadata representing bacterial pathogens, environmental isolates, and plant symbionts. A signature profile of clustered annotations of environmental bacteria if compared with pathogens linked the aerobic respiration, the high GC content and the large genome size to diversity of metabolic activities and physiological features of the organisms.

  17. Biology Question Generation from a Semantic Network

    NASA Astrophysics Data System (ADS)

    Zhang, Lishan

    Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to supply instructors with biology questions, a semantic network approach was developed for generating open response biology questions. The generated questions were compared to professional authorized questions. To boost students' learning experience, adaptive selection was built on the generated questions. Bayesian Knowledge Tracing was used as embedded assessment of the student's current competence so that a suitable question could be selected based on the student's previous performance. A between-subjects experiment with 42 participants was performed, where half of the participants studied with adaptive selected questions and the rest studied with mal-adaptive order of questions. Both groups significantly improved their test scores, and the participants in adaptive group registered larger learning gains than participants in the control group. To explore the possibility of generating rich instructional feedback for machine-generated questions, a question-paragraph mapping task was identified. Given a set of questions and a list of paragraphs for a textbook, the goal of the task was to map the related paragraphs to each question. An algorithm was developed whose performance was comparable to human annotators. A multiple-choice question with high quality distractors (incorrect answers) can be pedagogically valuable as well as being much easier to grade than open-response questions. Thus, an algorithm was developed to generate good distractors for multiple-choice questions. The machine-generated multiple-choice questions were compared to human-generated questions in terms of three measures: question difficulty, question discrimination and distractor usefulness. By recruiting 200 participants from

  18. Systems Biology in the Context of Big Data and Networks

    PubMed Central

    Altaf-Ul-Amin, Md.; Afendi, Farit Mochamad; Kiboi, Samuel Kuria; Kanaya, Shigehiko

    2014-01-01

    Science is going through two rapidly changing phenomena: one is the increasing capabilities of the computers and software tools from terabytes to petabytes and beyond, and the other is the advancement in high-throughput molecular biology producing piles of data related to genomes, transcriptomes, proteomes, metabolomes, interactomes, and so on. Biology has become a data intensive science and as a consequence biology and computer science have become complementary to each other bridged by other branches of science such as statistics, mathematics, physics, and chemistry. The combination of versatile knowledge has caused the advent of big-data biology, network biology, and other new branches of biology. Network biology for instance facilitates the system-level understanding of the cell or cellular components and subprocesses. It is often also referred to as systems biology. The purpose of this field is to understand organisms or cells as a whole at various levels of functions and mechanisms. Systems biology is now facing the challenges of analyzing big molecular biological data and huge biological networks. This review gives an overview of the progress in big-data biology, and data handling and also introduces some applications of networks and multivariate analysis in systems biology. PMID:24982882

  19. BioNSi: A Discrete Biological Network Simulator Tool.

    PubMed

    Rubinstein, Amir; Bracha, Noga; Rudner, Liat; Zucker, Noga; Sloin, Hadas E; Chor, Benny

    2016-08-01

    Modeling and simulation of biological networks is an effective and widely used research methodology. The Biological Network Simulator (BioNSi) is a tool for modeling biological networks and simulating their discrete-time dynamics, implemented as a Cytoscape App. BioNSi includes a visual representation of the network that enables researchers to construct, set the parameters, and observe network behavior under various conditions. To construct a network instance in BioNSi, only partial, qualitative biological data suffices. The tool is aimed for use by experimental biologists and requires no prior computational or mathematical expertise. BioNSi is freely available at http://bionsi.wix.com/bionsi , where a complete user guide and a step-by-step manual can also be found. PMID:27354160

  20. Discovery of biological networks from diverse functional genomic data

    PubMed Central

    Myers, Chad L; Robson, Drew; Wible, Adam; Hibbs, Matthew A; Chiriac, Camelia; Theesfeld, Chandra L; Dolinski, Kara; Troyanskaya, Olga G

    2005-01-01

    We have developed a general probabilistic system for query-based discovery of pathway-specific networks through integration of diverse genome-wide data. This framework was validated by accurately recovering known networks for 31 biological processes in Saccharomyces cerevisiae and experimentally verifying predictions for the process of chromosomal segregation. Our system, bioPIXIE, a public, comprehensive system for integration, analysis, and visualization of biological network predictions for S. cerevisiae, is freely accessible over the worldwide web. PMID:16420673

  1. Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems

    PubMed Central

    Boué, Stéphanie; Talikka, Marja; Westra, Jurjen Willem; Hayes, William; Di Fabio, Anselmo; Park, Jennifer; Schlage, Walter K.; Sewer, Alain; Fields, Brett; Ansari, Sam; Martin, Florian; Veljkovic, Emilija; Kenney, Renee; Peitsch, Manuel C.; Hoeng, Julia

    2015-01-01

    With the wealth of publications and data available, powerful and transparent computational approaches are required to represent measured data and scientific knowledge in a computable and searchable format. We developed a set of biological network models, scripted in the Biological Expression Language, that reflect causal signaling pathways across a wide range of biological processes, including cell fate, cell stress, cell proliferation, inflammation, tissue repair and angiogenesis in the pulmonary and cardiovascular context. This comprehensive collection of networks is now freely available to the scientific community in a centralized web-based repository, the Causal Biological Network database, which is composed of over 120 manually curated and well annotated biological network models and can be accessed at http://causalbionet.com. The website accesses a MongoDB, which stores all versions of the networks as JSON objects and allows users to search for genes, proteins, biological processes, small molecules and keywords in the network descriptions to retrieve biological networks of interest. The content of the networks can be visualized and browsed. Nodes and edges can be filtered and all supporting evidence for the edges can be browsed and is linked to the original articles in PubMed. Moreover, networks may be downloaded for further visualization and evaluation. Database URL: http://causalbionet.com PMID:25887162

  2. Constructive Formation and Connection of Aligned Micropatterned Neural Networks by Stepwise Photothermal Etching during Cultivation

    NASA Astrophysics Data System (ADS)

    Suzuki, Ikurou; Yasuda, Kenji

    2007-09-01

    To understand the topologically dependence of neural network function and its community effects, a constructive approach to forming a model culture system in which we can fully control the spatiotemporal pattern modification during cultivation is useful. We thus newly developed an on-chip multi-electrode array (MEA) system combined with an agarose microchamber (AMC) array to record the firing at multiple cells simultaneously over a long term and to topographically control the cell positions and their connections in order to form two linearly aligned micropatterned networks using additional photothermal etching during cultivation. The electrical connection through the additional neurite connection between two networks in both synchronized spontaneous firings and evoked responses to electrical stimulation was measured, and the localized synaptogenesis at the additional connection point and the propagation by chemical synapses were confirmed. The results show the advantages of AMC/MEA cultivation and measurement methods and indicate they will be useful for investigating community effects by pattern modification during cultivation.

  3. BioFNet: biological functional network database for analysis and synthesis of biological systems.

    PubMed

    Kurata, Hiroyuki; Maeda, Kazuhiro; Onaka, Toshikazu; Takata, Takenori

    2014-09-01

    In synthetic biology and systems biology, a bottom-up approach can be used to construct a complex, modular, hierarchical structure of biological networks. To analyze or design such networks, it is critical to understand the relationship between network structure and function, the mechanism through which biological parts or biomolecules are assembled into building blocks or functional networks. A functional network is defined as a subnetwork of biomolecules that performs a particular function. Understanding the mechanism of building functional networks would help develop a methodology for analyzing the structure of large-scale networks and design a robust biological circuit to perform a target function. We propose a biological functional network database, named BioFNet, which can cover the whole cell at the level of molecular interactions. The BioFNet takes an advantage in implementing the simulation program for the mathematical models of the functional networks, visualizing the simulated results. It presents a sound basis for rational design of biochemical networks and for understanding how functional networks are assembled to create complex high-level functions, which would reveal design principles underlying molecular architectures. PMID:23894104

  4. On the Interplay between the Evolvability and Network Robustness in an Evolutionary Biological Network: A Systems Biology Approach

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2011-01-01

    In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563

  5. Effect of surface alignment layer and polymer network on the Helfrich deformation in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Nemati, H.; Yang, D.-K.; Cheng, K.-L.; Liang, C.-C.; Shiu, J.-W.; Tsai, C.-C.; Zola, R. S.

    2012-12-01

    We show that the Helfrich deformation can be used for fast response time, low driving voltage reflective displays by using cholesteric liquid crystals under short voltage pulses (˜10 ms). Rather than turning planar domains into focal conic domains through a nucleation process, as used in bistable modes, the fast voltage pulse only deforms the cholesteric planar layers to form wrinkled layers. Since the deformed state is formed through a homogeneous process, quick response times and low operating voltage can be achieved. We studied the effects of alignment layer and dispersed polymer on the stability of the Helfrich deformed cholesteric layers, and found that homogeneous alignment layer and polymer network can inhibit the nucleation process responsible for breaking the layers.

  6. Improving accountability through alignment: the role of academic health science centres and networks in England

    PubMed Central

    2014-01-01

    Background As in many countries around the world, there are high expectations on academic health science centres and networks in England to provide high-quality care, innovative research, and world-class education, while also supporting wealth creation and economic growth. Meeting these expectations increasingly depends on partnership working between university medical schools and teaching hospitals, as well as other healthcare providers. However, academic-clinical relationships in England are still characterised by the “unlinked partners” model, whereby universities and their partner teaching hospitals are neither fiscally nor structurally linked, creating bifurcating accountabilities to various government and public agencies. Discussion This article focuses on accountability relationships in universities and teaching hospitals, as well as other healthcare providers that form core constituent parts of academic health science centres and networks. The authors analyse accountability for the tripartite mission of patient care, research, and education, using a four-fold typology of accountability relationships, which distinguishes between hierarchical (bureaucratic) accountability, legal accountability, professional accountability, and political accountability. Examples from North West London suggest that a number of mechanisms can be used to improve accountability for the tripartite mission through alignment, but that the simple creation of academic health science centres and networks is probably not sufficient. Summary At the heart of the challenge for academic health science centres and networks is the separation of accountabilities for patient care, research, and education in different government departments. Given that a fundamental top-down system redesign is now extremely unlikely, local academic and clinical leaders face the challenge of aligning their institutions as a matter of priority in order to improve accountability for the tripartite mission from

  7. GeneWeaver: data driven alignment of cross-species genomics in biology and disease

    PubMed Central

    Baker, Erich; Bubier, Jason A.; Reynolds, Timothy; Langston, Michael A.; Chesler, Elissa J.

    2016-01-01

    The GeneWeaver data and analytics website (www.geneweaver.org) is a publically available resource for storing, curating and analyzing sets of genes from heterogeneous data sources. The system enables discovery of relationships among genes, variants, traits, drugs, environments, anatomical structures and diseases implicitly found through gene set intersections. Since the previous review in the 2012 Nucleic Acids Research Database issue, GeneWeaver's underlying analytics platform has been enhanced, its number and variety of publically available gene set data sources has been increased, and its advanced search mechanisms have been expanded. In addition, its interface has been redesigned to take advantage of flexible web services, programmatic data access, and a refined data model for handling gene network data in addition to its original emphasis on gene set data. By enumerating the common and distinct biological molecules associated with all subsets of curated or user submitted groups of gene sets and gene networks, GeneWeaver empowers users with the ability to construct data driven descriptions of shared and unique biological processes, diseases and traits within and across species. PMID:26656951

  8. GeneWeaver: data driven alignment of cross-species genomics in biology and disease.

    PubMed

    Baker, Erich; Bubier, Jason A; Reynolds, Timothy; Langston, Michael A; Chesler, Elissa J

    2016-01-01

    The GeneWeaver data and analytics website (www.geneweaver.org) is a publically available resource for storing, curating and analyzing sets of genes from heterogeneous data sources. The system enables discovery of relationships among genes, variants, traits, drugs, environments, anatomical structures and diseases implicitly found through gene set intersections. Since the previous review in the 2012 Nucleic Acids Research Database issue, GeneWeaver's underlying analytics platform has been enhanced, its number and variety of publically available gene set data sources has been increased, and its advanced search mechanisms have been expanded. In addition, its interface has been redesigned to take advantage of flexible web services, programmatic data access, and a refined data model for handling gene network data in addition to its original emphasis on gene set data. By enumerating the common and distinct biological molecules associated with all subsets of curated or user submitted groups of gene sets and gene networks, GeneWeaver empowers users with the ability to construct data driven descriptions of shared and unique biological processes, diseases and traits within and across species. PMID:26656951

  9. Globally Optimal Base Station Clustering in Interference Alignment-Based Multicell Networks

    NASA Astrophysics Data System (ADS)

    Brandt, Rasmus; Mochaourab, Rami; Bengtsson, Mats

    2016-04-01

    Coordinated precoding based on interference alignment is a promising technique for improving the throughputs in future wireless multicell networks. In small networks, all base stations can typically jointly coordinate their precoding. In large networks however, base station clustering is necessary due to the otherwise overwhelmingly high channel state information (CSI) acquisition overhead. In this work, we provide a branch and bound algorithm for finding the globally optimal base station clustering. The algorithm is mainly intended for benchmarking existing suboptimal clustering schemes. We propose a general model for the user throughputs, which only depends on the long-term CSI statistics. The model assumes intracluster interference alignment and is able to account for the CSI acquisition overhead. By enumerating a search tree using a best-first search and pruning sub-trees in which the optimal solution provably cannot be, the proposed method converges to the optimal solution. The pruning is done using specifically derived bounds, which exploit some assumed structure in the throughput model. It is empirically shown that the proposed method has an average complexity which is orders of magnitude lower than that of exhaustive search.

  10. A unified biological modeling and simulation system for analyzing biological reaction networks

    NASA Astrophysics Data System (ADS)

    Yu, Seok Jong; Tung, Thai Quang; Park, Junho; Lim, Jongtae; Yoo, Jaesoo

    2013-12-01

    In order to understand the biological response in a cell, a researcher has to create a biological network and design an experiment to prove it. Although biological knowledge has been accumulated, we still don't have enough biological models to explain complex biological phenomena. If a new biological network is to be created, integrated modeling software supporting various biological models is required. In this research, we design and implement a unified biological modeling and simulation system, called ezBioNet, for analyzing biological reaction networks. ezBioNet designs kinetic and Boolean network models and simulates the biological networks using a server-side simulation system with Object Oriented Parallel Accelerator Library framework. The main advantage of ezBioNet is that a user can create a biological network by using unified modeling canvas of kinetic and Boolean models and perform massive simulations, including Ordinary Differential Equation analyses, sensitivity analyses, parameter estimates and Boolean network analysis. ezBioNet integrates useful biological databases, including the BioModels database, by connecting European Bioinformatics Institute servers through Web services Application Programming Interfaces. In addition, we employ Eclipse Rich Client Platform, which is a powerful modularity framework to allow various functional expansions. ezBioNet is intended to be an easy-to-use modeling tool and a simulation system for understanding the control mechanism by monitoring the change of each component in a biological network. The simulation result can be managed and visualized on ezBioNet, which is available free of charge at http://ezbionet.sourceforge.net or http://ezbionet.cbnu.ac.kr.

  11. Organization principles of biological networks: An explorative study.

    PubMed

    Kohestani, Havva; Giuliani, Alessandro

    2016-03-01

    The definition of general topological principles allowing for graph characterization is an important pre-requisite for investigating structure-function relationships in biological networks. Here we approached the problem by means of an explorative, data-driven strategy, building upon a size-balanced data set made of around 200 distinct biological networks from seven functional classes and simulated networks coming from three mathematical graph models. A clear link between topological structure and biological function did emerge in terms of class membership prediction (average 67% of correct predictions, p<0.0001) with a varying degree of 'peculiarity' across classes going from a very low (25%) recognition efficiency for neural and brain networks to the extremely high (80%) peculiarity of amino acid-amino acid interaction (AAI) networks. We recognized four main dimensions (principal components) as main organization principles of biological networks. These components allowed for an efficient description of network architectures and for the identification of 'not-physiological' (in this case cancer metabolic networks acting as test set) wiring patterns. We highlighted as well the need of developing new theoretical generative models for biological networks overcoming the limitations of present mathematical graph idealizations. PMID:26845173

  12. A Biologically Inspired Network Design Model

    PubMed Central

    Zhang, Xiaoge; Adamatzky, Andrew; Chan, Felix T.S.; Deng, Yong; Yang, Hai; Yang, Xin-She; Tsompanas, Michail-Antisthenis I.; Sirakoulis, Georgios Ch.; Mahadevan, Sankaran

    2015-01-01

    A network design problem is to select a subset of links in a transport network that satisfy passengers or cargo transportation demands while minimizing the overall costs of the transportation. We propose a mathematical model of the foraging behaviour of slime mould P. polycephalum to solve the network design problem and construct optimal transport networks. In our algorithm, a traffic flow between any two cities is estimated using a gravity model. The flow is imitated by the model of the slime mould. The algorithm model converges to a steady state, which represents a solution of the problem. We validate our approach on examples of major transport networks in Mexico and China. By comparing networks developed in our approach with the man-made highways, networks developed by the slime mould, and a cellular automata model inspired by slime mould, we demonstrate the flexibility and efficiency of our approach. PMID:26041508

  13. Biological solutions to transport network design.

    PubMed

    Bebber, Daniel P; Hynes, Juliet; Darrah, Peter R; Boddy, Lynne; Fricker, Mark D

    2007-09-22

    Transport networks are vital components of multicellular organisms, distributing nutrients and removing waste products. Animal and plant transport systems are branching trees whose architecture is linked to universal scaling laws in these organisms. In contrast, many fungi form reticulated mycelia via the branching and fusion of thread-like hyphae that continuously adapt to the environment. Fungal networks have evolved to explore and exploit a patchy environment, rather than ramify through a three-dimensional organism. However, there has been no explicit analysis of the network structures formed, their dynamic behaviour nor how either impact on their ecological function. Using the woodland saprotroph Phanerochaete velutina, we show that fungal networks can display both high transport capacity and robustness to damage. These properties are enhanced as the network grows, while the relative cost of building the network decreases. Thus, mycelia achieve the seemingly competing goals of efficient transport and robustness, with decreasing relative investment, by selective reinforcement and recycling of transport pathways. Fungal networks demonstrate that indeterminate, decentralized systems can yield highly adaptive networks. Understanding how these relatively simple organisms have found effective transport networks through a process of natural selection may inform the design of man-made networks. PMID:17623638

  14. Controllability and observability of Boolean networks arising from biology.

    PubMed

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems. PMID:25725640

  15. Controllability and observability of Boolean networks arising from biology

    NASA Astrophysics Data System (ADS)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  16. Modeling information flow in biological networks

    NASA Astrophysics Data System (ADS)

    Kim, Yoo-Ah; Przytycki, Jozef H.; Wuchty, Stefan; Przytycka, Teresa M.

    2011-06-01

    Large-scale molecular interaction networks are being increasingly used to provide a system level view of cellular processes. Modeling communications between nodes in such huge networks as information flows is useful for dissecting dynamical dependences between individual network components. In the information flow model, individual nodes are assumed to communicate with each other by propagating the signals through intermediate nodes in the network. In this paper, we first provide an overview of the state of the art of research in the network analysis based on information flow models. In the second part, we describe our computational method underlying our recent work on discovering dysregulated pathways in glioma. Motivated by applications to inferring information flow from genotype to phenotype in a very large human interaction network, we generalized previous approaches to compute information flows for a large number of instances and also provided a formal proof for the method.

  17. Rigidity and flexibility of biological networks.

    PubMed

    Gáspár, Merse E; Csermely, Peter

    2012-11-01

    The network approach became a widely used tool to understand the behaviour of complex systems in the last decade. We start from a short description of structural rigidity theory. A detailed account on the combinatorial rigidity analysis of protein structures, as well as local flexibility measures of proteins and their applications in explaining allostery and thermostability is given. We also briefly discuss the network aspects of cytoskeletal tensegrity. Finally, we show the importance of the balance between functional flexibility and rigidity in protein-protein interaction, metabolic, gene regulatory and neuronal networks. Our summary raises the possibility that the concepts of flexibility and rigidity can be generalized to all networks. PMID:23165349

  18. The Structure and Function of Biological Networks

    ERIC Educational Resources Information Center

    Wu, Daniel Duanqing

    2010-01-01

    Biology has been revolutionized in recent years by an explosion in the availability of data. Transforming this new wealth of data into meaningful biological insights and clinical breakthroughs requires a complete overhaul both in the questions being asked and the methodologies used to answer them. A major challenge in organizing and understanding…

  19. Identification of the connections in biologically inspired neural networks

    NASA Technical Reports Server (NTRS)

    Demuth, H.; Leung, K.; Beale, M.; Hicklin, J.

    1990-01-01

    We developed an identification method to find the strength of the connections between neurons from their behavior in small biologically-inspired artificial neural networks. That is, given the network external inputs and the temporal firing pattern of the neurons, we can calculate a solution for the strengths of the connections between neurons and the initial neuron activations if a solution exists. The method determines directly if there is a solution to a particular neural network problem. No training of the network is required. It should be noted that this is a first pass at the solution of a difficult problem. The neuron and network models chosen are related to biology but do not contain all of its complexities, some of which we hope to add to the model in future work. A variety of new results have been obtained. First, the method has been tailored to produce connection weight matrix solutions for networks with important features of biological neural (bioneural) networks. Second, a computationally efficient method of finding a robust central solution has been developed. This later method also enables us to find the most consistent solution in the presence of noisy data. Prospects of applying our method to identify bioneural network connections are exciting because such connections are almost impossible to measure in the laboratory. Knowledge of such connections would facilitate an understanding of bioneural networks and would allow the construction of the electronic counterparts of bioneural networks on very large scale integrated (VLSI) circuits.

  20. Epigenetics and Why Biological Networks are More Controllable than Expected

    NASA Astrophysics Data System (ADS)

    Motter, Adilson

    2013-03-01

    A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behavior or fail. In this talk, I will show that it is possible to exploit this same principle to control network behavior. This approach takes advantage of the nonlinear dynamics inherent to real networks, and allows bringing the system to a desired target state even when this state is not directly accessible or the linear counterpart is not controllable. Applications show that this framework permits both reprogramming a network to a desired task as well as rescuing networks from the brink of failure, which I will illustrate through various biological problems. I will also briefly review the progress our group has made over the past 5 years on related control of complex networks in non-biological domains.

  1. Systematic Functional Annotation and Visualization of Biological Networks.

    PubMed

    Baryshnikova, Anastasia

    2016-06-22

    Large-scale biological networks represent relationships between genes, but our understanding of how networks are functionally organized is limited. Here, I describe spatial analysis of functional enrichment (SAFE), a systematic method for annotating biological networks and examining their functional organization. SAFE visualizes the network in 2D space and measures the continuous distribution of functional enrichment across local neighborhoods, producing a list of the associated functions and a map of their relative positioning. I applied SAFE to annotate the Saccharomyces cerevisiae genetic interaction similarity network and protein-protein interaction network with gene ontology terms. SAFE annotations of the genetic network matched manually derived annotations, while taking less than 1% of the time, and proved robust to noise and sensitive to biological signal. Integration of genetic interaction and chemical genomics data using SAFE revealed a link between vesicle-mediate transport and resistance to the anti-cancer drug bortezomib. These results demonstrate the utility of SAFE for examining biological networks and understanding their functional organization. PMID:27237738

  2. NETWORKS, BIOLOGY AND SYSTEMS ENGINEERING: A CASE STUDY IN INFLAMMATION

    PubMed Central

    Foteinou, P.T.; Yang, E.; Androulakis, I. P.

    2009-01-01

    Biological systems can be modeled as networks of interacting components across multiple scales. A central problem in computational systems biology is to identify those critical components and the rules that define their interactions and give rise to the emergent behavior of a host response. In this paper we will discuss two fundamental problems related to the construction of transcription factor networks and the identification of networks of functional modules describing disease progression. We focus on inflammation as a key physiological response of clinical and translational importance. PMID:20161495

  3. Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field.

    PubMed

    Lim, Young Jin; Choi, Young Eun; Lee, Jun Hee; Lee, Gi-Dong; Komitov, Lachezar; Lee, Seung Hee

    2014-05-01

    Polymer network in vertical alignment liquid crystal cell driven by in-plane field (VA-IPS) is formed in three dimensions to achieve fast response time and to keep the liquid crystal alignment even when an external pressure is applied to the cell. The network formed by UV irradiation to vertically aligned liquid crystal cell with reactive mesogen does not disturb a dark state while exhibiting very fast decaying response time less than 2ms in all grey scales and almost zero pooling mura. The proposed device has a strong potential to be applicable to field sequential display owing to super-fast response time and flexible display owing to polymer network in bulk which supports a gap between two substrates. PMID:24921764

  4. Using biological networks to improve our understanding of infectious diseases

    PubMed Central

    Mulder, Nicola J.; Akinola, Richard O.; Mazandu, Gaston K.; Rapanoel, Holifidy

    2014-01-01

    Infectious diseases are the leading cause of death, particularly in developing countries. Although many drugs are available for treating the most common infectious diseases, in many cases the mechanism of action of these drugs or even their targets in the pathogen remain unknown. In addition, the key factors or processes in pathogens that facilitate infection and disease progression are often not well understood. Since proteins do not work in isolation, understanding biological systems requires a better understanding of the interconnectivity between proteins in different pathways and processes, which includes both physical and other functional interactions. Such biological networks can be generated within organisms or between organisms sharing a common environment using experimental data and computational predictions. Though different data sources provide different levels of accuracy, confidence in interactions can be measured using interaction scores. Connections between interacting proteins in biological networks can be represented as graphs and edges, and thus studied using existing algorithms and tools from graph theory. There are many different applications of biological networks, and here we discuss three such applications, specifically applied to the infectious disease tuberculosis, with its causative agent Mycobacterium tuberculosis and host, Homo sapiens. The applications include the use of the networks for function prediction, comparison of networks for evolutionary studies, and the generation and use of host–pathogen interaction networks. PMID:25379138

  5. Biological Network Inference and Analysis using SEBINI and CABIN

    SciTech Connect

    Taylor, Ronald C.; Singhal, Mudita

    2008-01-01

    Attaining a detailed understanding of the various biological networks in an organism lies at the core of the emerging discipline of systems biology. A precise description of the relationships formed between genes, mRNA molecules, and proteins is a necessary step toward a complete description of the dynamic behavior of an organism at the cellular level; and towards intelligent, efficient and directed modification of an organism. The importance of understanding such regulatory, signaling, and interaction networks has fueled the development of numerous in silico inference algorithms, as well as new experimental techniques and a growing collection of public databases. The Software Environment for BIological Network Inference (SEBINI) has been created to provide an interactive environment for the deployment, evaluation, and improvement of algorithms used to reconstruct the structure of biological regulatory and interaction networks. SEBINI can be used to analyze high-throughput gene expression, protein expression, or protein activation data via a suite of state-of-the-art network inference algorithms. It also allows algorithm developers to compare and train network inference methods on artificial networks and simulated gene expression perturbation data. SEBINI can therefore be used by software developers wishing to evaluate, refine, or combine inference techniques, as well as by bioinformaticians analyzing experimental data. Networks inferred from the SEBINI software platform can be further analyzed using the Collective Analysis of Biological Interaction Networks (CABIN) tool, which is exploratory data analysis software that enables integration and analysis of protein-protein interaction and gene-to-gene regulatory evidence obtained from multiple sources. The collection of edges in public databases, along with the confidence held in each edge (if available), can be fed into CABIN as one “evidence network”, using the Cytoscape SIF file format. Using CABIN, one may

  6. Analysis and logical modeling of biological signaling transduction networks

    NASA Astrophysics Data System (ADS)

    Sun, Zhongyao

    The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.

  7. Mechanical property and biological performance of electrospun silk fibroin-polycaprolactone scaffolds with aligned fibers.

    PubMed

    Yuan, Han; Shi, Hongfei; Qiu, Xushen; Chen, Yixin

    2016-01-01

    The mechanical strength, biocompatibility, and sterilizability of silk fibroin allow it to be a possible candidate as a natural bone regenerate material. To improve mechanical character and reinforce the cell movement induction, silk fibroin (SF)-polycaprolactone (PCL) alloy was fabricated by electrospinning techniques with a rotating collector to form aligned fibrous scaffolds and random-oriented scaffolds. The scanning electron microscope image of the scaffold and the mechanical properties of the scaffold were investigated by tensile mechanical tests, which were compared to random-oriented scaffolds. Furthermore, mesenchymal stem cells were planted on these scaffolds to investigate the biocompatibility, elongation, and cell movement in situ. Scanning electron microscopy shows that 91% fibers on the aligned fibroin scaffold were distributed between the dominant direction ±10°. With an ideal support for stem cell proliferation in vitro, the aligned fibrous scaffold induces cell elongation at a length of 236.46 ± 82 μm and distribution along the dominant fiber direction with a cell alignment angle at 6.57° ± 4.45°. Compared with random-oriented scaffolds made by artificial materials, aligned SF-PCL scaffolds could provide a moderate mesenchymal stem cell engraftment interface and speed up early stage cell movement toward the bone defect. PMID:26588014

  8. Toward modeling a dynamic biological neural network.

    PubMed

    Ross, M D; Dayhoff, J E; Mugler, D H

    1990-01-01

    Mammalian macular endorgans are linear bioaccelerometers located in the vestibular membranous labyrinth of the inner ear. In this paper, the organization of the endorgan is interpreted on physical and engineering principles. This is a necessary prerequisite to mathematical and symbolic modeling of information processing by the macular neural network. Mathematical notations that describe the functioning system were used to produce a novel, symbolic model. The model is six-tiered and is constructed to mimic the neural system. Initial simulations show that the network functions best when some of the detecting elements (type I hair cells) are excitatory and others (type II hair cells) are weakly inhibitory. The simulations also illustrate the importance of disinhibition of receptors located in the third tier in shaping nerve discharge patterns at the sixth tier in the model system. PMID:11538873

  9. Biological impacts and context of network theory

    SciTech Connect

    Almaas, E

    2007-01-05

    Many complex systems can be represented and analyzed as networks, and examples that have benefited from this approach span the natural sciences. For instance, we now know that systems as disparate as the World-Wide Web, the Internet, scientific collaborations, food webs, protein interactions and metabolism all have common features in their organization, the most salient of which are their scale-free connectivity distributions and their small-world behavior. The recent availability of large scale datasets that span the proteome or metabolome of an organism have made it possible to elucidate some of the organizational principles and rules that govern their function, robustness and evolution. We expect that combining the currently separate layers of information from gene regulatory-, signal transduction-, protein interaction- and metabolic networks will dramatically enhance our understanding of cellular function and dynamics.

  10. Classifying pairs with trees for supervised biological network inference.

    PubMed

    Schrynemackers, Marie; Wehenkel, Louis; Babu, M Madan; Geurts, Pierre

    2015-08-01

    Networks are ubiquitous in biology, and computational approaches have been largely investigated for their inference. In particular, supervised machine learning methods can be used to complete a partially known network by integrating various measurements. Two main supervised frameworks have been proposed: the local approach, which trains a separate model for each network node, and the global approach, which trains a single model over pairs of nodes. Here, we systematically investigate, theoretically and empirically, the exploitation of tree-based ensemble methods in the context of these two approaches for biological network inference. We first formalize the problem of network inference as a classification of pairs, unifying in the process homogeneous and bipartite graphs and discussing two main sampling schemes. We then present the global and the local approaches, extending the latter for the prediction of interactions between two unseen network nodes, and discuss their specializations to tree-based ensemble methods, highlighting their interpretability and drawing links with clustering techniques. Extensive computational experiments are carried out with these methods on various biological networks that clearly highlight that these methods are competitive with existing methods. PMID:26008881

  11. Course 10: Three Lectures on Biological Networks

    NASA Astrophysics Data System (ADS)

    Magnasco, M. O.

    1 Enzymatic networks. Proofreading knots: How DNA topoisomerases disentangle DNA 1.1 Length scales and energy scales 1.2 DNA topology 1.3 Topoisomerases 1.4 Knots and supercoils 1.5 Topological equilibrium 1.6 Can topoisomerases recognize topology? 1.7 Proposal: Kinetic proofreading 1.8 How to do it twice 1.9 The care and proofreading of knots 1.10 Suppression of supercoils 1.11 Problems and outlook 1.12 Disquisition 2 Gene expression networks. Methods for analysis of DNA chip experiments 2.1 The regulation of gene expression 2.2 Gene expression arrays 2.3 Analysis of array data 2.4 Some simplifying assumptions 2.5 Probeset analysis 2.6 Discussion 3 Neural and gene expression networks: Song-induced gene expression in the canary brain 3.1 The study of songbirds 3.2 Canary song 3.3 ZENK 3.4 The blush 3.5 Histological analysis 3.6 Natural vs. artificial 3.7 The Blush II: gAP 3.8 Meditation

  12. Directional Freezing of Nanocellulose Dispersions Aligns the Rod-Like Particles and Produces Low-Density and Robust Particle Networks.

    PubMed

    Munier, Pierre; Gordeyeva, Korneliya; Bergström, Lennart; Fall, Andreas B

    2016-05-01

    We show that unidirectional freezing of nanocellulose dispersions produces cellular foams with high alignment of the rod-like nanoparticles in the freezing direction. Quantification of the alignment in the long direction of the tubular pores with X-ray diffraction shows high orientation of cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC) at particle concentrations above 0.2 wt % (CNC) and 0.08 wt % (CNF). Aggregation of CNF by pH decrease or addition of salt significantly reduces the particle orientation; in contrast, exceeding the concentration where particles gel by mobility constraints had a relatively small effect on the orientation. The dense nanocellulose network formed by directional freezing was sufficiently strong to resist melting. The formed hydrogels were birefringent and displayed anisotropic laser diffraction patterns, suggesting preserved nanocellulose alignment and cellular structure. Nondirectional freezing of the hydrogels followed by sublimation generates foams with a pore structure and nanocellulose alignment resembling the structure of the initial directional freezing. PMID:27071304

  13. Integrated crystal mounting and alignment system for high-throughput biological crystallography

    DOEpatents

    Nordmeyer, Robert A.; Snell, Gyorgy P.; Cornell, Earl W.; Kolbe, William F.; Yegian, Derek T.; Earnest, Thomas N.; Jaklevich, Joseph M.; Cork, Carl W.; Santarsiero, Bernard D.; Stevens, Raymond C.

    2007-09-25

    A method and apparatus for the transportation, remote and unattended mounting, and visual alignment and monitoring of protein crystals for synchrotron generated x-ray diffraction analysis. The protein samples are maintained at liquid nitrogen temperatures at all times: during shipment, before mounting, mounting, alignment, data acquisition and following removal. The samples must additionally be stably aligned to within a few microns at a point in space. The ability to accurately perform these tasks remotely and automatically leads to a significant increase in sample throughput and reliability for high-volume protein characterization efforts. Since the protein samples are placed in a shipping-compatible layered stack of sample cassettes each holding many samples, a large number of samples can be shipped in a single cryogenic shipping container.

  14. Integrated crystal mounting and alignment system for high-throughput biological crystallography

    DOEpatents

    Nordmeyer, Robert A.; Snell, Gyorgy P.; Cornell, Earl W.; Kolbe, William; Yegian, Derek; Earnest, Thomas N.; Jaklevic, Joseph M.; Cork, Carl W.; Santarsiero, Bernard D.; Stevens, Raymond C.

    2005-07-19

    A method and apparatus for the transportation, remote and unattended mounting, and visual alignment and monitoring of protein crystals for synchrotron generated x-ray diffraction analysis. The protein samples are maintained at liquid nitrogen temperatures at all times: during shipment, before mounting, mounting, alignment, data acquisition and following removal. The samples must additionally be stably aligned to within a few microns at a point in space. The ability to accurately perform these tasks remotely and automatically leads to a significant increase in sample throughput and reliability for high-volume protein characterization efforts. Since the protein samples are placed in a shipping-compatible layered stack of sample cassettes each holding many samples, a large number of samples can be shipped in a single cryogenic shipping container.

  15. Topology and static response of interaction networks in molecular biology.

    PubMed

    Radulescu, Ovidiu; Lagarrigue, Sandrine; Siegel, Anne; Veber, Philippe; Le Borgne, Michel

    2006-02-22

    We introduce a mathematical framework describing static response of networks occurring in molecular biology. This formalism has many similarities with the Laplace-Kirchhoff equations for electrical networks. We introduce the concept of graph boundary and we show how the response of the biological networks to external perturbations can be related to the Dirichlet or Neumann problems for the corresponding equations on the interaction graph. Solutions to these two problems are given in terms of path moduli (measuring path rigidity with respect to the propagation of interaction along the graph). Path moduli are related to loop products in the interaction graph via generalized Mason-Coates formulae. We apply our results to two specific biological examples: the lactose operon and the genetic regulation of lipogenesis. Our applications show consistency with experimental results and in the case of lipogenesis check some hypothesis on the behaviour of hepatic fatty acids on fasting. PMID:16849230

  16. Topology and static response of interaction networks in molecular biology

    PubMed Central

    Radulescu, Ovidiu; Lagarrigue, Sandrine; Siegel, Anne; Veber, Philippe; Le Borgne, Michel

    2005-01-01

    We introduce a mathematical framework describing static response of networks occurring in molecular biology. This formalism has many similarities with the Laplace–Kirchhoff equations for electrical networks. We introduce the concept of graph boundary and we show how the response of the biological networks to external perturbations can be related to the Dirichlet or Neumann problems for the corresponding equations on the interaction graph. Solutions to these two problems are given in terms of path moduli (measuring path rigidity with respect to the propagation of interaction along the graph). Path moduli are related to loop products in the interaction graph via generalized Mason–Coates formulae. We apply our results to two specific biological examples: the lactose operon and the genetic regulation of lipogenesis. Our applications show consistency with experimental results and in the case of lipogenesis check some hypothesis on the behaviour of hepatic fatty acids on fasting. PMID:16849230

  17. BiologicalNetworks 2.0 - an integrative view of genome biology data

    PubMed Central

    2010-01-01

    Background A significant problem in the study of mechanisms of an organism's development is the elucidation of interrelated factors which are making an impact on the different levels of the organism, such as genes, biological molecules, cells, and cell systems. Numerous sources of heterogeneous data which exist for these subsystems are still not integrated sufficiently enough to give researchers a straightforward opportunity to analyze them together in the same frame of study. Systematic application of data integration methods is also hampered by a multitude of such factors as the orthogonal nature of the integrated data and naming problems. Results Here we report on a new version of BiologicalNetworks, a research environment for the integral visualization and analysis of heterogeneous biological data. BiologicalNetworks can be queried for properties of thousands of different types of biological entities (genes/proteins, promoters, COGs, pathways, binding sites, and other) and their relations (interactions, co-expression, co-citations, and other). The system includes the build-pathways infrastructure for molecular interactions/relations and module discovery in high-throughput experiments. Also implemented in BiologicalNetworks are the Integrated Genome Viewer and Comparative Genomics Browser applications, which allow for the search and analysis of gene regulatory regions and their conservation in multiple species in conjunction with molecular pathways/networks, experimental data and functional annotations. Conclusions The new release of BiologicalNetworks together with its back-end database introduces extensive functionality for a more efficient integrated multi-level analysis of microarray, sequence, regulatory, and other data. BiologicalNetworks is freely available at http://www.biologicalnetworks.org. PMID:21190573

  18. Discriminating direct and indirect connectivities in biological networks

    PubMed Central

    Kang, Taek; Moore, Richard; Li, Yi; Sontag, Eduardo; Bleris, Leonidas

    2015-01-01

    Reverse engineering of biological pathways involves an iterative process between experiments, data processing, and theoretical analysis. Despite concurrent advances in quality and quantity of data as well as computing resources and algorithms, difficulties in deciphering direct and indirect network connections are prevalent. Here, we adopt the notions of abstraction, emulation, benchmarking, and validation in the context of discovering features specific to this family of connectivities. After subjecting benchmark synthetic circuits to perturbations, we inferred the network connections using a combination of nonparametric single-cell data resampling and modular response analysis. Intriguingly, we discovered that recovered weights of specific network edges undergo divergent shifts under differential perturbations, and that the particular behavior is markedly different between topologies. Our results point to a conceptual advance for reverse engineering beyond weight inference. Investigating topological changes under differential perturbations may address the longstanding problem of discriminating direct and indirect connectivities in biological networks. PMID:26420864

  19. Non-Hermitian localization in biological networks

    NASA Astrophysics Data System (ADS)

    Amir, Ariel; Hatano, Naomichi; Nelson, David R.

    2016-04-01

    We explore the spectra and localization properties of the N -site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced response. A finite fraction of the eigenvalues condense onto the real or imaginary axes. For large N , the spectrum has remarkable symmetries not only with respect to reflections across the real and imaginary axes but also with respect to 90∘ rotations, with an unusual anisotropic divergence in the localization length near the origin. When chains with periodic boundary conditions become directed, with a systematic directional bias superimposed on the randomness, a hole centered on the origin opens up in the density-of-states in the complex plane. All states are extended on the rim of this hole, while the localized eigenvalues outside the hole are unchanged. The bias-dependent shape of this hole tracks the bias-independent contours of constant localization length. We treat the large-N limit by a combination of direct numerical diagonalization and using transfer matrices, an approach that allows us to exploit an electrostatic analogy connecting the "charges" embodied in the eigenvalue distribution with the contours of constant localization length. We show that similar results are obtained for more realistic neural networks that obey "Dale's law" (each site is purely excitatory or inhibitory) and conclude with perturbation theory results that describe the limit of large directional bias, when all states are extended. Related problems arise in random ecological networks and in chains of artificial cells with randomly coupled gene expression patterns.

  20. Non-Hermitian localization in biological networks.

    PubMed

    Amir, Ariel; Hatano, Naomichi; Nelson, David R

    2016-04-01

    We explore the spectra and localization properties of the N-site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced response. A finite fraction of the eigenvalues condense onto the real or imaginary axes. For large N, the spectrum has remarkable symmetries not only with respect to reflections across the real and imaginary axes but also with respect to 90^{∘} rotations, with an unusual anisotropic divergence in the localization length near the origin. When chains with periodic boundary conditions become directed, with a systematic directional bias superimposed on the randomness, a hole centered on the origin opens up in the density-of-states in the complex plane. All states are extended on the rim of this hole, while the localized eigenvalues outside the hole are unchanged. The bias-dependent shape of this hole tracks the bias-independent contours of constant localization length. We treat the large-N limit by a combination of direct numerical diagonalization and using transfer matrices, an approach that allows us to exploit an electrostatic analogy connecting the "charges" embodied in the eigenvalue distribution with the contours of constant localization length. We show that similar results are obtained for more realistic neural networks that obey "Dale's law" (each site is purely excitatory or inhibitory) and conclude with perturbation theory results that describe the limit of large directional bias, when all states are extended. Related problems arise in random ecological networks and in chains of artificial cells with randomly coupled gene expression patterns. PMID:27176315

  1. Spectral algorithms for heterogeneous biological networks.

    PubMed

    McDonald, Martin; Higham, Desmond J; Vass, J Keith

    2012-11-01

    Spectral methods, which use information relating to eigenvectors, singular vectors and generalized singular vectors, help us to visualize and summarize sets of pairwise interactions. In this work, we motivate and discuss the use of spectral methods by taking a matrix computation view and applying concepts from applied linear algebra. We show that this unified approach is sufficiently flexible to allow multiple sources of network information to be combined. We illustrate the methods on microarray data arising from a large population-based study in human adipose tissue, combined with related information concerning metabolic pathways. PMID:23117863

  2. Using biological networks to integrate, visualize and analyze genomics data.

    PubMed

    Charitou, Theodosia; Bryan, Kenneth; Lynn, David J

    2016-01-01

    Network biology is a rapidly developing area of biomedical research and reflects the current view that complex phenotypes, such as disease susceptibility, are not the result of single gene mutations that act in isolation but are rather due to the perturbation of a gene's network context. Understanding the topology of these molecular interaction networks and identifying the molecules that play central roles in their structure and regulation is a key to understanding complex systems. The falling cost of next-generation sequencing is now enabling researchers to routinely catalogue the molecular components of these networks at a genome-wide scale and over a large number of different conditions. In this review, we describe how to use publicly available bioinformatics tools to integrate genome-wide 'omics' data into a network of experimentally-supported molecular interactions. In addition, we describe how to visualize and analyze these networks to identify topological features of likely functional relevance, including network hubs, bottlenecks and modules. We show that network biology provides a powerful conceptual approach to integrate and find patterns in genome-wide genomic data but we also discuss the limitations and caveats of these methods, of which researchers adopting these methods must remain aware. PMID:27036106

  3. Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders

    PubMed Central

    Parikshak, Neelroop N.; Gandal, Michael J.; Geschwind, Daniel H.

    2015-01-01

    Genetic and genomic approaches have implicated hundreds of genetic loci in neurodevelopmental disorders and neurodegeneration, but mechanistic understanding continues to lag behind the pace of gene discovery. Understanding the role of specific genetic variants in the brain involves dissecting a functional hierarchy that encompasses molecular pathways, diverse cell types, neural circuits and, ultimately, cognition and behaviour. With a focus on transcriptomics, this Review discusses how high-throughput molecular, integrative and network approaches inform disease biology by placing human genetics in a molecular systems and neurobiological context. We provide a framework for interpreting network biology studies and leveraging big genomics data sets in neurobiology. PMID:26149713

  4. A Newtonian framework for community detection in undirected biological networks.

    PubMed

    Narayanan, Tejaswini; Subramaniam, Shankar

    2014-02-01

    Community detection is a key problem of interest in network analysis, with applications in a variety of domains such as biological networks, social network modeling, and communication pattern analysis. In this paper, we present a novel framework for community detection that is motivated by a physical system analogy. We model a network as a system of point masses, and drive the process of community detection, by leveraging the Newtonian interactions between the point masses. Our framework is designed to be generic and extensible relative to the model parameters that are most suited for the problem domain. We illustrate the applicability of our approach by applying the Newtonian Community Detection algorithm on protein-protein interaction networks of E. coli , C. elegans, and S. cerevisiae. We obtain results that are comparable in quality to those obtained from the Newman-Girvan algorithm, a widely employed divisive algorithm for community detection. We also present a detailed analysis of the structural properties of the communities produced by our proposed algorithm, together with a biological interpretation using E. coli protein network as a case study. A functional enrichment heat map is constructed with the Gene Ontology functional mapping, in addition to a pathway analysis for each community. The analysis illustrates that the proposed algorithm elicits communities that are not only meaningful from a topological standpoint, but also possess biological relevance. We believe that our algorithm has the potential to serve as a key computational tool for driving therapeutic applications involving targeted drug development for personalized care delivery. PMID:24681920

  5. Theory of interface: category theory, directed networks and evolution of biological networks.

    PubMed

    Haruna, Taichi

    2013-11-01

    Biological networks have two modes. The first mode is static: a network is a passage on which something flows. The second mode is dynamic: a network is a pattern constructed by gluing functions of entities constituting the network. In this paper, first we discuss that these two modes can be associated with the category theoretic duality (adjunction) and derive a natural network structure (a path notion) for each mode by appealing to the category theoretic universality. The path notion corresponding to the static mode is just the usual directed path. The path notion for the dynamic mode is called lateral path which is the alternating path considered on the set of arcs. Their general functionalities in a network are transport and coherence, respectively. Second, we introduce a betweenness centrality of arcs for each mode and see how the two modes are embedded in various real biological network data. We find that there is a trade-off relationship between the two centralities: if the value of one is large then the value of the other is small. This can be seen as a kind of division of labor in a network into transport on the network and coherence of the network. Finally, we propose an optimization model of networks based on a quality function involving intensities of the two modes in order to see how networks with the above trade-off relationship can emerge through evolution. We show that the trade-off relationship can be observed in the evolved networks only when the dynamic mode is dominant in the quality function by numerical simulations. We also show that the evolved networks have features qualitatively similar to real biological networks by standard complex network analysis. PMID:24012823

  6. From biological and social network metaphors to coupled bio-social wireless networks.

    PubMed

    Barrett, Christopher L; Channakeshava, Karthik; Eubank, Stephen; Anil Kumar, V S; Marathe, Madhav V

    2011-01-01

    Biological and social analogies have been long applied to complex systems. Inspiration has been drawn from biological solutions to solve problems in engineering products and systems, ranging from Velcro to camouflage to robotics to adaptive and learning computing methods. In this paper, we present an overview of recent advances in understanding biological systems as networks and use this understanding to design and analyse wireless communication networks. We expand on two applications, namely cognitive sensing and control and wireless epidemiology. We discuss how our work in these two applications is motivated by biological metaphors. We believe that recent advances in computing and communications coupled with advances in health and social sciences raise the possibility of studying coupled bio-social communication networks. We argue that we can better utilise the advances in our understanding of one class of networks to better our understanding of the other. PMID:21643462

  7. From biological and social network metaphors to coupled bio-social wireless networks

    PubMed Central

    Barrett, Christopher L.; Eubank, Stephen; Anil Kumar, V.S.; Marathe, Madhav V.

    2010-01-01

    Biological and social analogies have been long applied to complex systems. Inspiration has been drawn from biological solutions to solve problems in engineering products and systems, ranging from Velcro to camouflage to robotics to adaptive and learning computing methods. In this paper, we present an overview of recent advances in understanding biological systems as networks and use this understanding to design and analyse wireless communication networks. We expand on two applications, namely cognitive sensing and control and wireless epidemiology. We discuss how our work in these two applications is motivated by biological metaphors. We believe that recent advances in computing and communications coupled with advances in health and social sciences raise the possibility of studying coupled bio-social communication networks. We argue that we can better utilise the advances in our understanding of one class of networks to better our understanding of the other. PMID:21643462

  8. Towards the understanding of network information processing in biology

    NASA Astrophysics Data System (ADS)

    Singh, Vijay

    Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.

  9. Flux-concentration duality in dynamic nonequilibrium biological networks.

    PubMed

    Jamshidi, Neema; Palsson, Bernhard Ø

    2009-09-01

    The structure of dynamic states in biological networks is of fundamental importance in understanding their function. Considering the elementary reaction structure of reconstructed metabolic networks, we show how appreciation of a gradient matrix, G =dv/dx (where v is the vector of fluxes and x is the vector of concentrations), enables the formulation of dual Jacobian matrices. One is for concentrations, J(x) =S x G, and the other is for fluxes, J(v) =G x S. The fundamental properties of these two Jacobians and the underlying duality that relates them are delineated. We describe a generalized approach to decomposing reaction networks in terms of the thermodynamic and kinetic components in the context of the network structure. The thermodynamic and kinetic influences can be viewed in terms of direction-driver relationships in the network. PMID:19720010

  10. Automated sample mounting and alignment system for biological crystallography at a synchrotron source.

    PubMed

    Snell, Gyorgy; Cork, Carl; Nordmeyer, Robert; Cornell, Earl; Meigs, George; Yegian, Derek; Jaklevic, Joseph; Jin, Jian; Stevens, Raymond C; Earnest, Thomas

    2004-04-01

    High-throughput data collection for macromolecular crystallography requires an automated sample mounting and alignment system for cryo-protected crystals that functions reliably when integrated into protein-crystallography beamlines at synchrotrons. Rapid mounting and dismounting of the samples increases the efficiency of the crystal screening and data collection processes, where many crystals can be tested for the quality of diffraction. The sample-mounting subsystem has random access to 112 samples, stored under liquid nitrogen. Results of extensive tests regarding the performance and reliability of the system are presented. To further increase throughput, we have also developed a sample transport/storage system based on "puck-shaped" cassettes, which can hold sixteen samples each. Seven cassettes fit into a standard dry shipping Dewar. The capabilities of a robotic crystal mounting and alignment system with instrumentation control software and a relational database allows for automated screening and data collection to be developed. PMID:15062077

  11. Convergence behaviour and Control in Non-Linear Biological Networks

    PubMed Central

    Karl, Stefan; Dandekar, Thomas

    2015-01-01

    Control of genetic regulatory networks is challenging to define and quantify. Previous control centrality metrics, which aim to capture the ability of individual nodes to control the system, have been found to suffer from plausibility and applicability problems. Here we present a new approach to control centrality based on network convergence behaviour, implemented as an extension of our genetic regulatory network simulation framework Jimena ( http://stefan-karl.de/jimena). We distinguish three types of network control, and show how these mathematical concepts correspond to experimentally verified node functions and signalling pathways in immunity and cell differentiation: Total control centrality quantifies the impact of node mutations and identifies potential pharmacological targets such as genes involved in oncogenesis (e.g. zinc finger protein GLI2 or bone morphogenetic proteins in chondrocytes). Dynamic control centrality describes relaying functions as observed in signalling cascades (e.g. src kinase or Jak/Stat pathways). Value control centrality measures the direct influence of the value of the node on the network (e.g. Indian hedgehog as an essential regulator of proliferation in chondrocytes). Surveying random scale-free networks and biological networks, we find that control of the network resides in few high degree driver nodes and networks can be controlled best if they are sparsely connected. PMID:26068060

  12. Composite nanowire networks for biological sensor platforms

    NASA Astrophysics Data System (ADS)

    Jabal, Jamie Marie Francisco

    The main goal of this research is to design, fabricate, and test a nanomaterial-based platform adequate for the measurement of physiological changes in living cells. The two primary objectives toward this end are (1) the synthesis and selection of a suitable nanomaterial and (2) the demonstration of cellular response to a direct stimulus. Determining a useful nanomaterial morphology and behavior within a sensor configuration presented challenges based on cellular integration and access to electrochemical characterization. The prospect for feasible optimization and eventual scale-up in technology were also significant. Constraining criteria are that the nanomaterial detector must (a) be cheap and relatively easy to fabricate controllably, (b) encourage cell attachment, (c) exhibit consistent wettability over time, and (d) facilitate electrochemical processes. The ultimate goal would be to transfer a proof-of-principle and proof-of-design for a whole-cell sensor technology that is cost effective and has a potential for hand-held packaging. Initial tasks were to determine an effective and highly-functional nanomaterial for biosensors by assessing wettability, morphology and conductivity behavior of several candidate materials: gallium nitride nanowires, silicon dioxide nanosprings and nanowires, and titania nanofibers. Electrospinning poly(vinyl pyrrolidone)-coated titania nano- and microfibers (O20 nm--2 microm) into a pseudo-random network is controllable to a uniformity of 1--2° in contact angle. The final electrode can be prepared with a precise wettability ranging from partial wetting to ultrahydrophobic (170°) on a variety of substrates: glass, indium tin oxide, silicon, and aluminum. Fiber mats exhibit excellent mechanical stability against rinsing, and support the incubation of epithelial (skin) and pancreatic cells. Impedance spectroscopy on the whole-cell sensor shows resistive changes attributed to cell growth as well as complex frequency

  13. Centered Kernel Alignment Enhancing Neural Network Pretraining for MRI-Based Dementia Diagnosis

    PubMed Central

    Cárdenas-Peña, David; Collazos-Huertas, Diego; Castellanos-Dominguez, German

    2016-01-01

    Dementia is a growing problem that affects elderly people worldwide. More accurate evaluation of dementia diagnosis can help during the medical examination. Several methods for computer-aided dementia diagnosis have been proposed using resonance imaging scans to discriminate between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and healthy controls (NC). Nonetheless, the computer-aided diagnosis is especially challenging because of the heterogeneous and intermediate nature of MCI. We address the automated dementia diagnosis by introducing a novel supervised pretraining approach that takes advantage of the artificial neural network (ANN) for complex classification tasks. The proposal initializes an ANN based on linear projections to achieve more discriminating spaces. Such projections are estimated by maximizing the centered kernel alignment criterion that assesses the affinity between the resonance imaging data kernel matrix and the label target matrix. As a result, the performed linear embedding allows accounting for features that contribute the most to the MCI class discrimination. We compare the supervised pretraining approach to two unsupervised initialization methods (autoencoders and Principal Component Analysis) and against the best four performing classification methods of the 2014 CADDementia challenge. As a result, our proposal outperforms all the baselines (7% of classification accuracy and area under the receiver-operating-characteristic curve) at the time it reduces the class biasing. PMID:27148392

  14. Parallel access alignment network with barrel switch implementation for d-ordered vector elements

    NASA Technical Reports Server (NTRS)

    Barnes, George H. (Inventor)

    1980-01-01

    An alignment network between N parallel data input ports and N parallel data outputs includes a first and a second barrel switch. The first barrel switch fed by the N parallel input ports shifts the N outputs thereof and in turn feeds the N-1 input data paths of the second barrel switch according to the relationship X=k.sup.y modulo N wherein x represents the output data path ordering of the first barrel switch, y represents the input data path ordering of the second barrel switch, and k equals a primitive root of the number N. The zero (0) ordered output data path of the first barrel switch is fed directly to the zero ordered output port. The N-1 output data paths of the second barrel switch are connected to the N output ports in the reverse ordering of the connections between the output data paths of the first barrel switch and the input data paths of the second barrel switch. The second switch is controlled by a value m, which in the preferred embodiment is produced at the output of a ROM addressed by the value d wherein d represents the incremental spacing or distance between data elements to be accessed from the N input ports, and m is generated therefrom according to the relationship d=k.sup.m modulo N.

  15. A Rapid Convergent Low Complexity Interference Alignment Algorithm for Wireless Sensor Networks

    PubMed Central

    Jiang, Lihui; Wu, Zhilu; Ren, Guanghui; Wang, Gangyi; Zhao, Nan

    2015-01-01

    Interference alignment (IA) is a novel technique that can effectively eliminate the interference and approach the sum capacity of wireless sensor networks (WSNs) when the signal-to-noise ratio (SNR) is high, by casting the desired signal and interference into different signal subspaces. The traditional alternating minimization interference leakage (AMIL) algorithm for IA shows good performance in high SNR regimes, however, the complexity of the AMIL algorithm increases dramatically as the number of users and antennas increases, posing limits to its applications in the practical systems. In this paper, a novel IA algorithm, called directional quartic optimal (DQO) algorithm, is proposed to minimize the interference leakage with rapid convergence and low complexity. The properties of the AMIL algorithm are investigated, and it is discovered that the difference between the two consecutive iteration results of the AMIL algorithm will approximately point to the convergence solution when the precoding and decoding matrices obtained from the intermediate iterations are sufficiently close to their convergence values. Based on this important property, the proposed DQO algorithm employs the line search procedure so that it can converge to the destination directly. In addition, the optimal step size can be determined analytically by optimizing a quartic function. Numerical results show that the proposed DQO algorithm can suppress the interference leakage more rapidly than the traditional AMIL algorithm, and can achieve the same level of sum rate as that of AMIL algorithm with far less iterations and execution time. PMID:26230697

  16. Reduction of dynamical biochemical reactions networks in computational biology

    PubMed Central

    Radulescu, O.; Gorban, A. N.; Zinovyev, A.; Noel, V.

    2012-01-01

    Biochemical networks are used in computational biology, to model mechanistic details of systems involved in cell signaling, metabolism, and regulation of gene expression. Parametric and structural uncertainty, as well as combinatorial explosion are strong obstacles against analyzing the dynamics of large models of this type. Multiscaleness, an important property of these networks, can be used to get past some of these obstacles. Networks with many well separated time scales, can be reduced to simpler models, in a way that depends only on the orders of magnitude and not on the exact values of the kinetic parameters. The main idea used for such robust simplifications of networks is the concept of dominance among model elements, allowing hierarchical organization of these elements according to their effects on the network dynamics. This concept finds a natural formulation in tropical geometry. We revisit, in the light of these new ideas, the main approaches to model reduction of reaction networks, such as quasi-steady state (QSS) and quasi-equilibrium approximations (QE), and provide practical recipes for model reduction of linear and non-linear networks. We also discuss the application of model reduction to the problem of parameter identification, via backward pruning machine learning techniques. PMID:22833754

  17. Automated sample mounting and technical advance alignment system for biological crystallography at a synchrotron source

    SciTech Connect

    Snell, Gyorgy; Cork, Carl; Nordmeyer, Robert; Cornell, Earl; Meigs, George; Yegian, Derek; Jaklevic, Joseph; Jin, Jian; Stevens, Raymond C.; Earnest, Thomas

    2004-01-07

    High-throughput data collection for macromolecular crystallography requires an automated sample mounting system for cryo-protected crystals that functions reliably when integrated into protein-crystallography beamlines at synchrotrons. Rapid mounting and dismounting of the samples increases the efficiency of the crystal screening and data collection processes, where many crystals can be tested for the quality of diffraction. The sample-mounting subsystem has random access to 112 samples, stored under liquid nitrogen. Results of extensive tests regarding the performance and reliability of the system are presented. To further increase throughput, we have also developed a sample transport/storage system based on ''puck-shaped'' cassettes, which can hold sixteen samples each. Seven cassettes fit into a standard dry shipping Dewar. The capabilities of a robotic crystal mounting and alignment system with instrumentation control software and a relational database allows for automated screening and data collection to be developed.

  18. An open system network for the biological sciences.

    PubMed Central

    Springer, G. K.; Loch, J. L.; Patrick, T. B.

    1991-01-01

    A description of an open system, distributed computing environment for the Biological Sciences is presented. This system utilizes a transparent interface in a computer network using NCS to implement an application system for molecular biologists to perform various processing activities from their local workstation. This system accepts requests for the services of a remote database server, located across the network, to perform all of the database searches needed to support the activities of the user. This database access is totally transparent to the user of the system and it appears, to the user, that all activities are being carried out on the local workstation. This system is a prototype for a much more extensive system being built to support the research efforts in the Biological Sciences at UMC. PMID:1807659

  19. High-resolution network biology: connecting sequence with function

    PubMed Central

    Ryan, Colm J.; Cimermančič, Peter; Szpiech, Zachary A.; Sali, Andrej; Hernandez, Ryan D.; Krogan, Nevan J.

    2014-01-01

    Proteins are not monolithic entities; rather, they can contain multiple domains that mediate distinct interactions, and their functionality can be regulated through post-translational modifications at multiple distinct sites. Traditionally, network biology has ignored such properties of proteins and has instead examined either the physical interactions of whole proteins or the consequences of removing entire genes. In this Review, we discuss experimental and computational methods to increase the resolution of protein– protein, genetic and drug–gene interaction studies to the domain and residue levels. Such work will be crucial for using interaction networks to connect sequence and structural information, and to understand the biological consequences of disease-associated mutations, which will hopefully lead to more effective therapeutic strategies. PMID:24197012

  20. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities

    PubMed Central

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D.; Correia, Cristina; Li, Hu

    2016-01-01

    The sequential chain of interactions altering the binary state of a biomolecule represents the ‘information flow’ within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein–protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes—network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. PMID:26975659

  1. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.

    PubMed

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D; Correia, Cristina; Li, Hu

    2016-06-01

    The sequential chain of interactions altering the binary state of a biomolecule represents the 'information flow' within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein-protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes-network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. PMID:26975659

  2. A biologically inspired immunization strategy for network epidemiology.

    PubMed

    Liu, Yang; Deng, Yong; Jusup, Marko; Wang, Zhen

    2016-07-01

    Well-known immunization strategies, based on degree centrality, betweenness centrality, or closeness centrality, either neglect the structural significance of a node or require global information about the network. We propose a biologically inspired immunization strategy that circumvents both of these problems by considering the number of links of a focal node and the way the neighbors are connected among themselves. The strategy thus measures the dependence of the neighbors on the focal node, identifying the ability of this node to spread the disease. Nodes with the highest ability in the network are the first to be immunized. To test the performance of our method, we conduct numerical simulations on several computer-generated and empirical networks, using the susceptible-infected-recovered (SIR) model. The results show that the proposed strategy largely outperforms the existing well-known strategies. PMID:27113785

  3. Systems analysis of biological networks in skeletal muscle function.

    PubMed

    Smith, Lucas R; Meyer, Gretchen; Lieber, Richard L

    2013-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation-contraction coupling enabling Ca(2+) release. Ca(2+) then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. PMID:23188744

  4. Protozoan HSP90-heterocomplex: molecular interaction network and biological significance.

    PubMed

    Figueras, Maria J; Echeverria, Pablo C; Angel, Sergio O

    2014-05-01

    The HSP90 chaperone is a highly conserved protein from bacteria to higher eukaryotes. In eukaryotes, this chaperone participates in different large complexes, such as the HSP90 heterocomplex, which has important biological roles in cell homeostasis and differentiation. The HSP90-heterocomplex is also named the HSP90/HSP70 cycle because different co-chaperones (HIP, HSP40, HOP, p23, AHA1, immunophilins, PP5) participate in this complex by assembling sequentially, from the early to the mature complex. In this review, we analyze the conservation and relevance of HSP90 and the HSP90-heterocomplex in several protozoan parasites, with emphasis in Plasmodium spp., Toxoplasma spp., Leishmania spp. and Trypanosoma spp. In the last years, there has been an outburst of studies based on yeast two-hybrid methodology, co-immunoprecipitation-mass spectrometry and bioinformatics, which have generated a most comprehensive protein-protein interaction (PPI) network of HSP90 and its co-chaperones. This review analyzes the existing PPI networks of HSP90 and its co-chaperones of some protozoan parasites and discusses the usefulness of these powerful tools to analyze the biological role of the HSP90-heterocomplex in these parasites. The generation of a T. gondii HSP90 heterocomplex PPI network based on experimental data and a recent Plasmodium HSP90 heterocomplex PPI network are also included and discussed. As an example, the putative implication of nuclear transport and chromatin (histones and Sir2) as HSP90-heterocomplex interactors is here discussed. PMID:24694366

  5. Systems analysis of biological networks in skeletal muscle function

    PubMed Central

    Smith, Lucas R.; Meyer, Gretchen; Lieber, Richard L.

    2014-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation–contraction coupling enabling Ca2+ release. Ca2+ then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. PMID:23188744

  6. Minimum dominating set-based methods for analyzing biological networks.

    PubMed

    Nacher, Jose C; Akutsu, Tatsuya

    2016-06-01

    The fast increase of 'multi-omics' data does not only pose a computational challenge for its analysis but also requires novel algorithmic methodologies to identify complex biological patterns and decipher the ultimate roots of human disorders. To that end, the massive integration of omics data with disease phenotypes is offering a new window into the cell functionality. The minimum dominating set (MDS) approach has rapidly emerged as a promising algorithmic method to analyze complex biological networks integrated with human disorders, which can be composed of a variety of omics data, from proteomics and transcriptomics to metabolomics. Here we review the main theoretical foundations of the methodology and the key algorithms, and examine the recent applications in which biological systems are analyzed by using the MDS approach. PMID:26773457

  7. Curriculum alignment and higher order thinking in introductory biology in Arkansas public two-year colleges

    NASA Astrophysics Data System (ADS)

    Crandall, Elizabeth Diane

    This dissertation identified the cognitive levels of lecture objectives, lab objectives, and test questions in introductory majors' biology. The study group included courses offered by 27 faculty members at 18 of the 22 community colleges in Arkansas. Using Bloom's Taxonomy to identify cognitive levels, the median lecture learning outcomes were at level 2 (Comprehension) and test assessments at Level 1 (Knowledge). Lab learning outcomes were determined to have a median of level 3 (Analysis). A correlation analysis was performed using SPSS software to determine if there was an association between the Bloom's level of lecture objectives and test assessments. The only significant difference found was at the Analysis level, or Bloom's level 4 (p=.043). Correlation analyses were run for two other data sets. Years of college teaching experience and hours of training in writing objectives and assessments were compared to the Bloom's Taxonomy level of lecture objectives and test items. No significant difference was found for either of these independent variables. This dissertation provides Arkansas two-year college biology faculty with baseline information about the levels of cognitive skills that are required in freshman biology for majors courses. It can serve to initiate conversations about where we are compared to a national study, where we need to be, and how we get there.

  8. From biological neural networks to thinking machines: Transitioning biological organizational principles to computer technology

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.

    1991-01-01

    The three-dimensional organization of the vestibular macula is under study by computer assisted reconstruction and simulation methods as a model for more complex neural systems. One goal of this research is to transition knowledge of biological neural network architecture and functioning to computer technology, to contribute to the development of thinking computers. Maculas are organized as weighted neural networks for parallel distributed processing of information. The network is characterized by non-linearity of its terminal/receptive fields. Wiring appears to develop through constrained randomness. A further property is the presence of two main circuits, highly channeled and distributed modifying, that are connected through feedforward-feedback collaterals and biasing subcircuit. Computer simulations demonstrate that differences in geometry of the feedback (afferent) collaterals affects the timing and the magnitude of voltage changes delivered to the spike initiation zone. Feedforward (efferent) collaterals act as voltage followers and likely inhibit neurons of the distributed modifying circuit. These results illustrate the importance of feedforward-feedback loops, of timing, and of inhibition in refining neural network output. They also suggest that it is the distributed modifying network that is most involved in adaptation, memory, and learning. Tests of macular adaptation, through hyper- and microgravitational studies, support this hypothesis since synapses in the distributed modifying circuit, but not the channeled circuit, are altered. Transitioning knowledge of biological systems to computer technology, however, remains problematical.

  9. Biological Instability in a Chlorinated Drinking Water Distribution Network

    PubMed Central

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×103 cells mL−1 to 4.66×105 cells mL−1 in the network. While this parameter did not exceed 2.1×104 cells mL−1 in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×105 cells mL−1. This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability. PMID:24796923

  10. PREFACE: Complex Networks: from Biology to Information Technology

    NASA Astrophysics Data System (ADS)

    Barrat, A.; Boccaletti, S.; Caldarelli, G.; Chessa, A.; Latora, V.; Motter, A. E.

    2008-06-01

    The field of complex networks is one of the most active areas in contemporary statistical physics. Ten years after seminal work initiated the modern study of networks, interest in the field is in fact still growing, as indicated by the ever increasing number of publications in network science. The reason for such a resounding success is most likely the simplicity and broad significance of the approach that, through graph theory, allows researchers to address a variety of different complex systems within a common framework. This special issue comprises a selection of contributions presented at the workshop 'Complex Networks: from Biology to Information Technology' held in July 2007 in Pula (Cagliari), Italy as a satellite of the general conference STATPHYS23. The contributions cover a wide range of problems that are currently among the most important questions in the area of complex networks and that are likely to stimulate future research. The issue is organised into four sections. The first two sections describe 'methods' to study the structure and the dynamics of complex networks, respectively. After this methodological part, the issue proceeds with a section on applications to biological systems. The issue closes with a section concentrating on applications to the study of social and technological networks. The first section, entitled Methods: The Structure, consists of six contributions focused on the characterisation and analysis of structural properties of complex networks: The paper Motif-based communities in complex networks by Arenas et al is a study of the occurrence of characteristic small subgraphs in complex networks. These subgraphs, known as motifs, are used to define general classes of nodes and their communities by extending the mathematical expression of the Newman-Girvan modularity. The same line of research, aimed at characterising network structure through the analysis of particular subgraphs, is explored by Bianconi and Gulbahce in Algorithm

  11. Predicting genetic interactions from Boolean models of biological networks.

    PubMed

    Calzone, Laurence; Barillot, Emmanuel; Zinovyev, Andrei

    2015-08-01

    Genetic interaction can be defined as a deviation of the phenotypic quantitative effect of a double gene mutation from the effect predicted from single mutations using a simple (e.g., multiplicative or linear additive) statistical model. Experimentally characterized genetic interaction networks in model organisms provide important insights into relationships between different biological functions. We describe a computational methodology allowing us to systematically and quantitatively characterize a Boolean mathematical model of a biological network in terms of genetic interactions between all loss of function and gain of function mutations with respect to all model phenotypes or outputs. We use the probabilistic framework defined in MaBoSS software, based on continuous time Markov chains and stochastic simulations. In addition, we suggest several computational tools for studying the distribution of double mutants in the space of model phenotype probabilities. We demonstrate this methodology on three published models for each of which we derive the genetic interaction networks and analyze their properties. We classify the obtained interactions according to their class of epistasis, dependence on the chosen initial conditions and the phenotype. The use of this methodology for validating mathematical models from experimental data and designing new experiments is discussed. PMID:25958956

  12. Competition for Catalytic Resources Alters Biological Network Dynamics

    NASA Astrophysics Data System (ADS)

    Rondelez, Yannick

    2012-01-01

    Genetic regulation networks orchestrate many complex cellular behaviors. Dynamic operations that take place within cells are thus dependent on the gene expression machinery, enabled by powerful enzymes such as polymerases, ribosomes, or nucleases. These generalist enzymes typically process many different substrates, potentially leading to competitive situations: by saturating the common enzyme, one substrate may down-regulate its competitors. However, most theoretical or experimental models simply omit these effects, focusing on the pattern of genetic regulatory interactions as the main determinant of network function. We show here that competition effects have important outcomes, which can be spotted within the global dynamics of experimental systems. Further we demonstrate that enzyme saturation creates a layer of cross couplings that may foster, but also hamper, the expected behavior of synthetic biology constructs.

  13. CellNet: Network Biology Applied to Stem Cell Engineering

    PubMed Central

    Cahan, Patrick; Li, Hu; Morris, Samantha A.; da Rocha, Edroaldo Lummertz; Daley, George Q.; Collins, James J.

    2014-01-01

    SUMMARY Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population, and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. PMID:25126793

  14. Characterizing Loopy Biological Distribution Networks in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Modes, Carl; Katifori, Eleni; Magnasco, Marcelo

    2014-03-01

    In order to develop useful predictive models for vascular or other biological distribution networks that include the effects of network architecture, development, and topology some set of tools must be chosen to characterize vasculature in a physically relevant, mathematically compact way. Few such tools are extant. To address this issue we have generalized the existing two dimensional leaf venation characterization to a fully three dimensional setting, from whence it may be brought to bear on many problems in human and mammalian vasculature, particularly where that vasculature is extremely complex, as in the organs. The new algorithm rests on the abstraction of the physical `tiling' from the two dimensional case to an effective, statistical tiling of an abstract surface that the network may be thought to sit in. Generically these abstract surfaces are richer than the flat plane and as a result there are now two families of fundamental units that may aggregate upon cutting weakest links - the plaquettes of the tiling and the longer `topological' cycles associated with the abstract surface. Upon sequential removal of these weakest links, two characterizing trees emerge that condense most of the relevant information from the full network.

  15. Algorithmic Perspectives of Network Transitive Reduction Problems and their Applications to Synthesis and Analysis of Biological Networks

    PubMed Central

    Aditya, Satabdi; DasGupta, Bhaskar; Karpinski, Marek

    2013-01-01

    In this survey paper, we will present a number of core algorithmic questions concerning several transitive reduction problems on network that have applications in network synthesis and analysis involving cellular processes. Our starting point will be the so-called minimum equivalent digraph problem, a classic computational problem in combinatorial algorithms. We will subsequently consider a few non-trivial extensions or generalizations of this problem motivated by applications in systems biology. We will then discuss the applications of these algorithmic methodologies in the context of three major biological research questions: synthesizing and simplifying signal transduction networks, analyzing disease networks, and measuring redundancy of biological networks. PMID:24833332

  16. Biological control of crystallographic architecture: hierarchy and co-alignment parameters.

    PubMed

    Maier, B J; Griesshaber, E; Alexa, P; Ziegler, A; Ubhi, H S; Schmahl, W W

    2014-09-01

    the ability of the organism to maintain homoepitaxial crystallization over a certain length scale. This probability density is distributed log-normally which can be described by a geometric mean and a multiplicative standard deviation. Hence, those parameters are suggested to be a numerical measure for the biological control over crystallographic texture. PMID:24590164

  17. Arena3D: visualization of biological networks in 3D

    PubMed Central

    Pavlopoulos, Georgios A; O'Donoghue, Seán I; Satagopam, Venkata P; Soldatos, Theodoros G; Pafilis, Evangelos; Schneider, Reinhard

    2008-01-01

    Background Complexity is a key problem when visualizing biological networks; as the number of entities increases, most graphical views become incomprehensible. Our goal is to enable many thousands of entities to be visualized meaningfully and with high performance. Results We present a new visualization tool, Arena3D, which introduces a new concept of staggered layers in 3D space. Related data – such as proteins, chemicals, or pathways – can be grouped onto separate layers and arranged via layout algorithms, such as Fruchterman-Reingold, distance geometry, and a novel hierarchical layout. Data on a layer can be clustered via k-means, affinity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-group method with arithmetic mean'). A simple input format defines the name and URL for each node, and defines connections or similarity scores between pairs of nodes. The use of Arena3D is illustrated with datasets related to Huntington's disease. Conclusion Arena3D is a user friendly visualization tool that is able to visualize biological or any other network in 3D space. It is free for academic use and runs on any platform. It can be downloaded or lunched directly from . Java3D library and Java 1.5 need to be pre-installed for the software to run. PMID:19040715

  18. Network portal: a database for storage, analysis and visualization of biological networks

    PubMed Central

    Turkarslan, Serdar; Wurtmann, Elisabeth J.; Wu, Wei-Ju; Jiang, Ning; Bare, J. Christopher; Foley, Karen; Reiss, David J.; Novichkov, Pavel; Baliga, Nitin S.

    2014-01-01

    The ease of generating high-throughput data has enabled investigations into organismal complexity at the systems level through the inference of networks of interactions among the various cellular components (genes, RNAs, proteins and metabolites). The wider scientific community, however, currently has limited access to tools for network inference, visualization and analysis because these tasks often require advanced computational knowledge and expensive computing resources. We have designed the network portal (http://networks.systemsbiology.net) to serve as a modular database for the integration of user uploaded and public data, with inference algorithms and tools for the storage, visualization and analysis of biological networks. The portal is fully integrated into the Gaggle framework to seamlessly exchange data with desktop and web applications and to allow the user to create, save and modify workspaces, and it includes social networking capabilities for collaborative projects. While the current release of the database contains networks for 13 prokaryotic organisms from diverse phylogenetic clades (4678 co-regulated gene modules, 3466 regulators and 9291 cis-regulatory motifs), it will be rapidly populated with prokaryotic and eukaryotic organisms as relevant data become available in public repositories and through user input. The modular architecture, simple data formats and open API support community development of the portal. PMID:24271392

  19. Integrative Biology Identifies Shared Transcriptional Networks in CKD

    PubMed Central

    Martini, Sebastian; Nair, Viji; Keller, Benjamin J.; Eichinger, Felix; Hawkins, Jennifer J.; Randolph, Ann; Böger, Carsten A.; Gadegbeku, Crystal A.; Fox, Caroline S.; Cohen, Clemens D.

    2014-01-01

    A previous meta-analysis of genome-wide association data by the Cohorts for Heart and Aging Research in Genomic Epidemiology and CKDGen consortia identified 16 loci associated with eGFR. To define how each of these single-nucleotide polymorphisms (SNPs) could affect renal function, we integrated GFR-associated loci with regulatory pathways, producing a molecular map of CKD. In kidney biopsy specimens from 157 European subjects representing nine different CKDs, renal transcript levels for 18 genes in proximity to the SNPs significantly correlated with GFR. These 18 genes were mapped into their biologic context by testing coregulated transcripts for enriched pathways. A network of 97 pathways linked by shared genes was constructed and characterized. Of these pathways, 56 pathways were reported previously to be associated with CKD; 41 pathways without prior association with CKD were ranked on the basis of the number of candidate genes connected to the respective pathways. All pathways aggregated into a network of two main clusters comprising inflammation- and metabolism-related pathways, with the NRF2-mediated oxidative stress response pathway serving as the hub between the two clusters. In all, 78 pathways and 95% of the connections among those pathways were verified in an independent North American biopsy cohort. Disease-specific analyses showed that most pathways are shared between sets of three diseases, with closest interconnection between lupus nephritis, IgA nephritis, and diabetic nephropathy. Taken together, the network integrates candidate genes from genome-wide association studies into their functional context, revealing interactions and defining established and novel biologic mechanisms of renal impairment in renal diseases. PMID:24925724

  20. Community-Reviewed Biological Network Models for Toxicology and Drug Discovery Applications

    PubMed Central

    Namasivayam, Aishwarya Alex; Morales, Alejandro Ferreiro; Lacave, Ángela María Fajardo; Tallam, Aravind; Simovic, Borislav; Alfaro, David Garrido; Bobbili, Dheeraj Reddy; Martin, Florian; Androsova, Ganna; Shvydchenko, Irina; Park, Jennifer; Calvo, Jorge Val; Hoeng, Julia; Peitsch, Manuel C.; Racero, Manuel González Vélez; Biryukov, Maria; Talikka, Marja; Pérez, Modesto Berraquero; Rohatgi, Neha; Díaz-Díaz, Noberto; Mandarapu, Rajesh; Ruiz, Rubén Amián; Davidyan, Sergey; Narayanasamy, Shaman; Boué, Stéphanie; Guryanova, Svetlana; Arbas, Susana Martínez; Menon, Swapna; Xiang, Yang

    2016-01-01

    Biological network models offer a framework for understanding disease by describing the relationships between the mechanisms involved in the regulation of biological processes. Crowdsourcing can efficiently gather feedback from a wide audience with varying expertise. In the Network Verification Challenge, scientists verified and enhanced a set of 46 biological networks relevant to lung and chronic obstructive pulmonary disease. The networks were built using Biological Expression Language and contain detailed information for each node and edge, including supporting evidence from the literature. Network scoring of public transcriptomics data inferred perturbation of a subset of mechanisms and networks that matched the measured outcomes. These results, based on a computable network approach, can be used to identify novel mechanisms activated in disease, quantitatively compare different treatments and time points, and allow for assessment of data with low signal. These networks are periodically verified by the crowd to maintain an up-to-date suite of networks for toxicology and drug discovery applications. PMID:27429547

  1. Community-Reviewed Biological Network Models for Toxicology and Drug Discovery Applications.

    PubMed

    Namasivayam, Aishwarya Alex; Morales, Alejandro Ferreiro; Lacave, Ángela María Fajardo; Tallam, Aravind; Simovic, Borislav; Alfaro, David Garrido; Bobbili, Dheeraj Reddy; Martin, Florian; Androsova, Ganna; Shvydchenko, Irina; Park, Jennifer; Calvo, Jorge Val; Hoeng, Julia; Peitsch, Manuel C; Racero, Manuel González Vélez; Biryukov, Maria; Talikka, Marja; Pérez, Modesto Berraquero; Rohatgi, Neha; Díaz-Díaz, Noberto; Mandarapu, Rajesh; Ruiz, Rubén Amián; Davidyan, Sergey; Narayanasamy, Shaman; Boué, Stéphanie; Guryanova, Svetlana; Arbas, Susana Martínez; Menon, Swapna; Xiang, Yang

    2016-01-01

    Biological network models offer a framework for understanding disease by describing the relationships between the mechanisms involved in the regulation of biological processes. Crowdsourcing can efficiently gather feedback from a wide audience with varying expertise. In the Network Verification Challenge, scientists verified and enhanced a set of 46 biological networks relevant to lung and chronic obstructive pulmonary disease. The networks were built using Biological Expression Language and contain detailed information for each node and edge, including supporting evidence from the literature. Network scoring of public transcriptomics data inferred perturbation of a subset of mechanisms and networks that matched the measured outcomes. These results, based on a computable network approach, can be used to identify novel mechanisms activated in disease, quantitatively compare different treatments and time points, and allow for assessment of data with low signal. These networks are periodically verified by the crowd to maintain an up-to-date suite of networks for toxicology and drug discovery applications. PMID:27429547

  2. A network biology approach to denitrification in Pseudomonas aeruginosa

    DOE PAGESBeta

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-02-23

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO₂), nitric oxide (NO) and nitrous oxide (N₂O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O₂), nitrate (NO₃),more » and phosphate (PO₄) suggests that PO₄ concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO₄ on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N₂O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.« less

  3. A Network Biology Approach to Denitrification in Pseudomonas aeruginosa

    PubMed Central

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-01-01

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO2), nitric oxide (NO) and nitrous oxide (N2O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O2), nitrate (NO3), and phosphate (PO4) suggests that PO4 concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO4 on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N2O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide. PMID:25706405

  4. A network biology approach to denitrification in Pseudomonas aeruginosa.

    PubMed

    Arat, Seda; Bullerjahn, George S; Laubenbacher, Reinhard

    2015-01-01

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO2), nitric oxide (NO) and nitrous oxide (N2O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O2), nitrate (NO3), and phosphate (PO4) suggests that PO4 concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO4 on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N2O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide. PMID:25706405

  5. Aligned, ultra-long graphene nanoribbon network fabrication by nanowire etch masks

    NASA Astrophysics Data System (ADS)

    Wood, Joshua; Sivapalan, Sean; Dorgan, Vincent; Murphy, Catherine; Pop, Eric; Lyding, Joseph

    2011-03-01

    Patterning semi-metallic graphene into quasi one-dimensional structures known as nanoribbons (GNRs) can open a ~ 0.5 eV bandgap by quantum confinement. To circumvent GNR lithographic difficulties, Si nanowires (NWs) were used previously as an etch mask for exfoliated graphene, but with no scalability or alignment control. Conversely, we transfer ~ 1 in 2 graphene sheets off copper to silicon dioxide, giving us a template for array fabrication. We meniscus align both Au NWs (w > = 20 nm , l = 400 nm) andAgNWs (w > = 200 nm , l > = 10 μ m) , respectively , onthegraphenesurface . Byreactiveionetch (RIE) , weremovetheunmaskedgraphene , andweetchtheNWs . BasedonthestartingNWs , theresultingGNRarrayshavelengthsrangingfrom 200 nmtotensofmicrons , andwidthsfrom 10 nmto 250 nm . WecreatesingleGNRsthatcanspanmicron - separatedcontactsandGNRnetworks , similartoagraphenenanomesh . UsingatomicforcemicroscopyandRamanspectroscopy , wedeterminethatwehavemonolayerGNRswithahighdisorderintensityI D / I G ~ 1 , indicating rough edges and graphene grain boundaries, which are deleterious to transport.

  6. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    PubMed

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/. PMID:27446133

  7. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach

    PubMed Central

    Li, Jun; Zhao, Patrick X.

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/. PMID:27446133

  8. Smarter Tools, Better Teachers: Applying Neural Network Technology to Curriculum Alignment.

    ERIC Educational Resources Information Center

    Clariana, Roy B.

    Neural network based intelligent tools, developed for the national security infrastructure, will soon be available for teachers. Neural network software establishes powerful intuitive connections among words, concepts, documents, and search queries. In the school setting, such a search tool could automatically index textbooks, cross-reference any…

  9. 3D self-consistent percolative model for networks of randomly aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Colasanti, S.; Deep Bhatt, V.; Abdellah, A.; Lugli, P.

    2015-10-01

    A numerical percolative model for simulations of random networks of carbon nanotubes is presented. This algorithm takes into account the real 3D nature of these networks, allowing for a better understanding of their electrical properties. The nanotubes are modeled as non-rigid bendable cylinders with geometrical properties derived according to some statistical distributions inferred from the experiments. For the transport mechanisms we refer to the theory of one-dimensional ballistic channels which is based on the computation of the density of states. The behavior of the entire network is then simulated by coupling a SPICE program with an iterative algorithm that calculates self-consistently the electrostatic potential and the current flow in each node of the network. We performed several simulations on the resistivity of networks with different thicknesses and over different simulation domains. Our results confirm the percolative nature of the electrical transport, which are more pronounced in films close to their percolation threshold.

  10. Engineering highly organized and aligned single walled carbon nanotube networks for electronic device applications: Interconnects, chemical sensor, and optoelectronics

    NASA Astrophysics Data System (ADS)

    Kim, Young Lae

    For 20 years, single walled carbon nanotubes (SWNTs) have been studied actively due to their unique one-dimensional nanostructure and superior electrical, thermal, and mechanical properties. For these reasons, they offer the potential to serve as building blocks for future electronic devices such as field effect transistors (FETs), electromechanical devices, and various sensors. In order to realize these applications, it is crucial to develop a simple, scalable, and reliable nanomanufacturing process that controllably places aligned SWNTs in desired locations, orientations, and dimensions. Also electronic properties (semiconducting/metallic) of SWNTs and their organized networks must be controlled for the desired performance of devices and systems. These fundamental challenges are significantly limiting the use of SWNTs for future electronic device applications. Here, we demonstrate a strategy to fabricate highly controlled micro/nanoscale SWNT network structures and present the related assembly mechanism to engineer the SWNT network topology and its electrical transport properties. A method designed to evaluate the electrical reliability of such nano- and microscale SWNT networks is also presented. Moreover, we develop and investigate a robust SWNT based multifunctional selective chemical sensor and a range of multifunctional optoelectronic switches, photo-transistors, optoelectronic logic gates and complex optoelectronic digital circuits.

  11. Alzheimer disease: modeling an Aβ-centered biological network.

    PubMed

    Campion, D; Pottier, C; Nicolas, G; Le Guennec, K; Rovelet-Lecrux, A

    2016-07-01

    In genetically complex diseases, the search for missing heritability is focusing on rare variants with large effect. Thanks to next generation sequencing technologies, genome-wide characterization of these variants is now feasible in every individual. However, a lesson from current studies is that collapsing rare variants at the gene level is often insufficient to obtain a statistically significant signal in case-control studies, and that network-based analyses are an attractive complement to classical approaches. In Alzheimer disease (AD), according to the prevalent amyloid cascade hypothesis, the pathology is driven by the amyloid beta (Aβ) peptide. In past years, based on experimental studies, several hundreds of proteins have been shown to interfere with Aβ production, clearance, aggregation or toxicity. Thanks to a manual curation of the literature, we identified 335 genes/proteins involved in this biological network and classified them according to their cellular function. The complete list of genes, or its subcomponents, will be of interest in ongoing AD genetic studies. PMID:27021818

  12. Biologically relevant neural network architectures for support vector machines.

    PubMed

    Jändel, Magnus

    2014-01-01

    Neural network architectures that implement support vector machines (SVM) are investigated for the purpose of modeling perceptual one-shot learning in biological organisms. A family of SVM algorithms including variants of maximum margin, 1-norm, 2-norm and ν-SVM is considered. SVM training rules adapted for neural computation are derived. It is found that competitive queuing memory (CQM) is ideal for storing and retrieving support vectors. Several different CQM-based neural architectures are examined for each SVM algorithm. Although most of the sixty-four scanned architectures are unconvincing for biological modeling four feasible candidates are found. The seemingly complex learning rule of a full ν-SVM implementation finds a particularly simple and natural implementation in bisymmetric architectures. Since CQM-like neural structures are thought to encode skilled action sequences and bisymmetry is ubiquitous in motor systems it is speculated that trainable pattern recognition in low-level perception has evolved as an internalized motor programme. PMID:24126252

  13. Fabrication of Aligned Nanofiber Polymer Yarn Networks for Anisotropic Soft Tissue Scaffolds.

    PubMed

    Wu, Shaohua; Duan, Bin; Liu, Penghong; Zhang, Caidan; Qin, Xiaohong; Butcher, Jonathan T

    2016-07-01

    Nanofibrous scaffolds with defined architectures and anisotropic mechanical properties are attractive for many tissue engineering and regenerative medicine applications. Here, a novel electrospinning system is developed and implemented to fabricate continuous processable uniaxially aligned nanofiber yarns (UANY). UANY were processed into fibrous tissue scaffolds with defined anisotropic material properties using various textile-forming technologies, i.e., braiding, weaving, and knitting techniques. UANY braiding dramatically increased overall stiffness and strength compared to the same number of UANY unbraided. Human adipose derived stem cells (HADSC) cultured on UANY or woven and knitted 3D scaffolds aligned along local fiber direction and were >90% viable throughout 21 days. Importantly, UANY supported biochemical induction of HADSC differentiation toward smooth muscle and osteogenic lineages. Moreover, we integrated an anisotropic woven fiber mesh within a bioactive hydrogel to mimic the complex microstructure and mechanical behavior of valve tissues. Human aortic valve interstitial cells (HAVIC) and human aortic root smooth muscle cells (HASMC) were separately encapsulated within hydrogel/woven fabric composite scaffolds for generating scaffolds with anisotropic biomechanics and valve ECM like microenvironment for heart valve tissue engineering. UANY have great potential as building blocks for generating fiber-shaped tissues or tissue microstructures with complex architectures. PMID:27304080

  14. Managing biological networks by using text mining and computer-aided curation

    NASA Astrophysics Data System (ADS)

    Yu, Seok Jong; Cho, Yongseong; Lee, Min-Ho; Lim, Jongtae; Yoo, Jaesoo

    2015-11-01

    In order to understand a biological mechanism in a cell, a researcher should collect a huge number of protein interactions with experimental data from experiments and the literature. Text mining systems that extract biological interactions from papers have been used to construct biological networks for a few decades. Even though the text mining of literature is necessary to construct a biological network, few systems with a text mining tool are available for biologists who want to construct their own biological networks. We have developed a biological network construction system called BioKnowledge Viewer that can generate a biological interaction network by using a text mining tool and biological taggers. It also Boolean simulation software to provide a biological modeling system to simulate the model that is made with the text mining tool. A user can download PubMed articles and construct a biological network by using the Multi-level Knowledge Emergence Model (KMEM), MetaMap, and A Biomedical Named Entity Recognizer (ABNER) as a text mining tool. To evaluate the system, we constructed an aging-related biological network that consist 9,415 nodes (genes) by using manual curation. With network analysis, we found that several genes, including JNK, AP-1, and BCL-2, were highly related in aging biological network. We provide a semi-automatic curation environment so that users can obtain a graph database for managing text mining results that are generated in the server system and can navigate the network with BioKnowledge Viewer, which is freely available at http://bioknowledgeviewer.kisti.re.kr.

  15. Generalized schemes for access and alignment of data in parallel processors with self-routing interconnection networks

    SciTech Connect

    Boppana, R.V.; Raghavendra, C.S. )

    1991-02-01

    In this paper the authors give a generalized solution to the problem of conflict-free access of various templates of data of a matrix, when they are stored in memory units in a parallel processor. The important features of the method are: compact representation of a skewing scheme, simple address computation, use of self- routing schemes to set up the interconnection network, and a general framework for the study of skewing schemes. In the method, each template access of interest will be a linear permutation on the processor address. The linear permutation involved determines the types of templates accessible. For parallel access of the most important templates, namely, row, column, main diagonal, and square blocks, the interconnection network needs to realize only the class of linear-complement permutations. It is known that with Benes or Omega as the interconnection network, one can efficiently self-route these permutations; this compares favorably with the schemes proposed by other researchers who assume that a cross bar is available for processor-memory interconnections. Hence, the approach given in the paper can be used to solve the data alignment problem for the existing parallel machines such as IBM RP3, Cedar multiprocessor, and NYU Ultracomputer. This is a generalized solution to the data skewing problem and encompasses the previous efforts by other researchers as special cases.

  16. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystal with orthogonal alignment layers

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih; Lin, Yi-Hsin

    2012-10-01

    A polarization-independent liquid crystal (LC) phase modulation using polymer-network liquid crystals with orthogonal alignments layers (T-PNLC) is demonstrated. T-PNLC consists of three layers. LC directors in the two layers near glass substrates are orthogonal to each other. In the middle layer, LC directors are perpendicular to the glass substrate. The advantages of such T-PNLC include polarizer-free, larger phase shift (~0.4π rad) than the residual phase type (<0.05π rad), and low operating voltage (< 30Vrms). It does not require bias voltage for avoiding scattering because the refractive index of liquid crystals matches that of polymers. The phase shift of T-PNLC is affected by the cell gap and the curing voltages. The potential applications are laser beam steering, spatial light modulators and electrically tunable micro-lens arrays.

  17. Contribution made by biomarkers of status to an FP6 Network of Excellence, EURopean micronutrient RECommendations Aligned (EURRECA).

    PubMed

    Fairweather-Tait, Susan J

    2011-08-01

    Dietary reference values for micronutrients vary considerably among countries, and harmonization is needed to facilitate nutrition policy and public health strategies at the European and global levels. The EURopean micronutrient RECommendations Aligned (EURRECA) Network of Excellence is developing generic instruments for systematically deriving and updating micronutrient reference values and dietary recommendations. These include best practice guidelines, interlinked web pages, online databases, and decision trees. Journal supplements have been published on micronutrient intakes and status, and an ongoing activity of EURRECA is the completion of systematic reviews on associations between intakes, status, and various health outcomes for priority micronutrients (ie, iron, zinc, folate, vitamin B-12, and iodine), which were selected by using a triage technique. Future activities include meta-analyses to identify dose-response relations and the variability, factorial estimates of requirements, bioavailability from whole diets, effects of genotype, and modeling techniques for addressing dietary recommendations for combinations of nutrients with common health endpoints. PMID:21653802

  18. Fast statistical alignment.

    PubMed

    Bradley, Robert K; Roberts, Adam; Smoot, Michael; Juvekar, Sudeep; Do, Jaeyoung; Dewey, Colin; Holmes, Ian; Pachter, Lior

    2009-05-01

    We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every column and character of the alignment--previously available only with alignment programs which use computationally-expensive Markov Chain Monte Carlo approaches--yet can align thousands of long sequences. Moreover, FSA utilizes an unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.sourceforge.net/. PMID:19478997

  19. Enhancement of COPD biological networks using a web-based collaboration interface.

    PubMed

    Boue, Stephanie; Fields, Brett; Hoeng, Julia; Park, Jennifer; Peitsch, Manuel C; Schlage, Walter K; Talikka, Marja; Binenbaum, Ilona; Bondarenko, Vladimir; Bulgakov, Oleg V; Cherkasova, Vera; Diaz-Diaz, Norberto; Fedorova, Larisa; Guryanova, Svetlana; Guzova, Julia; Igorevna Koroleva, Galina; Kozhemyakina, Elena; Kumar, Rahul; Lavid, Noa; Lu, Qingxian; Menon, Swapna; Ouliel, Yael; Peterson, Samantha C; Prokhorov, Alexander; Sanders, Edward; Schrier, Sarah; Schwaitzer Neta, Golan; Shvydchenko, Irina; Tallam, Aravind; Villa-Fombuena, Gema; Wu, John; Yudkevich, Ilya; Zelikman, Mariya

    2015-01-01

    The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website ( https://bionet.sbvimprover.com/) and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD-relevant models that can be

  20. Enhancement of COPD biological networks using a web-based collaboration interface

    PubMed Central

    Boue, Stephanie; Fields, Brett; Hoeng, Julia; Park, Jennifer; Peitsch, Manuel C.; Schlage, Walter K.; Talikka, Marja; Binenbaum, Ilona; Bondarenko, Vladimir; Bulgakov, Oleg V.; Cherkasova, Vera; Diaz-Diaz, Norberto; Fedorova, Larisa; Guryanova, Svetlana; Guzova, Julia; Igorevna Koroleva, Galina; Kozhemyakina, Elena; Kumar, Rahul; Lavid, Noa; Lu, Qingxian; Menon, Swapna; Ouliel, Yael; Peterson, Samantha C.; Prokhorov, Alexander; Sanders, Edward; Schrier, Sarah; Schwaitzer Neta, Golan; Shvydchenko, Irina; Tallam, Aravind; Villa-Fombuena, Gema; Wu, John; Yudkevich, Ilya; Zelikman, Mariya

    2015-01-01

    The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website ( https://bionet.sbvimprover.com/) and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD-relevant models that can be

  1. Complex network problems in physics, computer science and biology

    NASA Astrophysics Data System (ADS)

    Cojocaru, Radu Ionut

    There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe

  2. The redox biology network in cancer pathophysiology and therapeutics

    PubMed Central

    Manda, Gina; Isvoranu, Gheorghita; Comanescu, Maria Victoria; Manea, Adrian; Debelec Butuner, Bilge; Korkmaz, Kemal Sami

    2015-01-01

    The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1) and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic), greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular heterogeneity and the

  3. Wireless address event representation system for biological sensor networks

    NASA Astrophysics Data System (ADS)

    Folowosele, Fopefolu; Tapson, Jonathan; Etienne-Cummings, Ralph

    2007-05-01

    We describe wireless networking systems for close proximity biological sensors, as would be encountered in artificial skin. The sensors communicate to a "base station" that interprets the data and decodes its origin. Using a large bundle of ultra thin metal wires from the sensors to the "base station" introduces significant technological hurdles for both the construction and maintenance of the system. Fortunately, the Address Event Representation (AER) protocol provides an elegant and biomorphic method for transmitting many impulses (i.e. neural spikes) down a single wire/channel. However, AER does not communicate any sensory information within each spike, other that the address of the origination of the spike. Therefore, each sensor must provide a number of spikes to communicate its data, typically in the form of the inter-spike intervals or spike rate. Furthermore, complex circuitry is required to arbitrate access to the channel when multiple sensors communicate simultaneously, which results in spike delay. This error is exacerbated as the number of sensors per channel increases, mandating more channels and more wires. We contend that despite the effectiveness of the wire-based AER protocol, its natural evolution will be the wireless AER protocol. A wireless AER system: (1) does not require arbitration to handle multiple simultaneous access of the channel, (2) uses cross-correlation delay to encode sensor data in every spike (eliminating the error due to arbitration delay), and (3) can be reorganized and expanded with little consequence to the network. The system uses spread spectrum communications principles, implemented with a low-power integrate-and-fire neurons. This paper discusses the design, operation and capabilities of such a system. We show that integrate-and-fire neurons can be used to both decode the origination of each spike and extract the data contained within in. We also show that there are many technical obstacles to overcome before this version

  4. Optimization-based Inference for Temporally Evolving Networks with Applications in Biology

    PubMed Central

    Chang, Young Hwan; Gray, Joe

    2012-01-01

    Abstract The problem of identifying dynamics of biological networks is of critical importance in order to understand biological systems. In this article, we propose a data-driven inference scheme to identify temporally evolving network representations of genetic networks. In the formulation of the optimization problem, we use an adjacency map as a priori information and define a cost function that both drives the connectivity of the graph to match biological data as well as generates a sparse and robust network at corresponding time intervals. Through simulation studies of simple examples, it is shown that this optimization scheme can help capture the topological change of a biological signaling pathway, and furthermore, might help to understand the structure and dynamics of biological genetic networks. PMID:23210478

  5. Aligned platinum nanowire networks from surface-oriented lipid cubic phase templates

    NASA Astrophysics Data System (ADS)

    Richardson, S. J.; Burton, M. R.; Staniec, P. A.; Nandhakumar, I. S.; Terrill, N. J.; Elliott, J. M.; Squires, A. M.

    2016-01-01

    Mesoporous metal structures featuring a bicontinuous cubic morphology have a wide range of potential applications and novel opto-electronic properties, often orientation-dependent. We describe the production of nanostructured metal films 1-2 microns thick featuring 3D-periodic `single diamond' morphology that show high out-of-plane alignment, with the (111) plane oriented parallel to the substrate. These are produced by electrodeposition of platinum through a lipid cubic phase (QII) template. Further investigation into the mechanism for the orientation revealed the surprising result that the QII template, which is tens of microns thick, is polydomain with no overall orientation. When thicker platinum films are grown, they also show increased orientational disorder. These results suggest that polydomain QII samples display a region of uniaxial orientation at the lipid/substrate interface up to approximately 2.8 +/- 0.3 μm away from the solid surface. Our approach gives previously unavailable information on the arrangement of cubic phases at solid interfaces, which is important for many applications of QII phases. Most significantly, we have produced a previously unreported class of oriented nanomaterial, with potential applications including metamaterials and lithographic masks.Mesoporous metal structures featuring a bicontinuous cubic morphology have a wide range of potential applications and novel opto-electronic properties, often orientation-dependent. We describe the production of nanostructured metal films 1-2 microns thick featuring 3D-periodic `single diamond' morphology that show high out-of-plane alignment, with the (111) plane oriented parallel to the substrate. These are produced by electrodeposition of platinum through a lipid cubic phase (QII) template. Further investigation into the mechanism for the orientation revealed the surprising result that the QII template, which is tens of microns thick, is polydomain with no overall orientation. When thicker

  6. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-offs on Phenotype Robustness in Biological Networks. Part III: Synthetic Gene Networks in Synthetic Biology.

    PubMed

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental

  7. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-offs on Phenotype Robustness in Biological Networks. Part III: Synthetic Gene Networks in Synthetic Biology

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental

  8. A Novel Joint Spatial-Code Clustered Interference Alignment Scheme for Large-Scale Wireless Sensor Networks

    PubMed Central

    Wu, Zhilu; Jiang, Lihui; Ren, Guanghui; Zhao, Nan; Zhao, Yaqin

    2015-01-01

    Interference alignment (IA) has been put forward as a promising technique which can mitigate interference and effectively increase the throughput of wireless sensor networks (WSNs). However, the number of users is strictly restricted by the IA feasibility condition, and the interference leakage will become so strong that the quality of service will degrade significantly when there are more users than that IA can support. In this paper, a novel joint spatial-code clustered (JSCC)-IA scheme is proposed to solve this problem. In the proposed scheme, the users are clustered into several groups so that feasible IA can be achieved within each group. In addition, each group is assigned a pseudo noise (PN) code in order to suppress the inter-group interference via the code dimension. The analytical bit error rate (BER) expressions of the proposed JSCC-IA scheme are formulated for the systems with identical and different propagation delays, respectively. To further improve the performance of the JSCC-IA scheme in asymmetric networks, a random grouping selection (RGS) algorithm is developed to search for better grouping combinations. Numerical results demonstrate that the proposed JSCC-IA scheme is capable of accommodating many more users to communicate simultaneously in the same frequency band with better performance. PMID:25602270

  9. Automated insertion of sequences into a ribosomal RNA alignment: An application of computational linguistics in molecular biology

    SciTech Connect

    Taylor, R.C.

    1991-11-01

    This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese's group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a group of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.

  10. Automated insertion of sequences into a ribosomal RNA alignment: An application of computational linguistics in molecular biology

    SciTech Connect

    Taylor, R.C.

    1991-11-01

    This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese`s group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a group of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.

  11. Exploratory Analysis of Biological Networks through Visualization, Clustering, and Functional Annotation in Cytoscape.

    PubMed

    Baryshnikova, Anastasia

    2016-01-01

    Biological networks define how genes, proteins, and other cellular components interact with one another to carry out specific functions, providing a scaffold for understanding cellular organization. Although in-depth network analysis requires advanced mathematical and computational knowledge, a preliminary visual exploration of biological networks is accessible to anyone with basic computer skills. Visualization of biological networks is used primarily to examine network topology, identify functional modules, and predict gene functions based on gene connectivity within the network. Networks are excellent at providing a bird's-eye view of data sets and have the power of illustrating complex ideas in simple and intuitive terms. In addition, they enable exploratory analysis and generation of new hypotheses, which can then be tested using rigorous statistical and experimental tools. This protocol describes a simple procedure for visualizing a biological network using the genetic interaction similarity network for Saccharomyces cerevisiae as an example. The visualization procedure described here relies on the open-source network visualization software Cytoscape and includes detailed instructions on formatting and loading the data, clustering networks, and overlaying functional annotations. PMID:26988373

  12. A Glimpse to Background and Characteristics of Major Molecular Biological Networks

    PubMed Central

    Altaf-Ul-Amin, Md.; Katsuragi, Tetsuo; Sato, Tetsuo; Kanaya, Shigehiko

    2015-01-01

    Recently, biology has become a data intensive science because of huge data sets produced by high throughput molecular biological experiments in diverse areas including the fields of genomics, transcriptomics, proteomics, and metabolomics. These huge datasets have paved the way for system-level analysis of the processes and subprocesses of the cell. For system-level understanding, initially the elements of a system are connected based on their mutual relations and a network is formed. Among omics researchers, construction and analysis of biological networks have become highly popular. In this review, we briefly discuss both the biological background and topological properties of major types of omics networks to facilitate a comprehensive understanding and to conceptualize the foundation of network biology. PMID:26491677

  13. Gene regulatory networks and the underlying biology of developmental toxicity

    EPA Science Inventory

    Embryonic cells are specified by large-scale networks of functionally linked regulatory genes. Knowledge of the relevant gene regulatory networks is essential for understanding phenotypic heterogeneity that emerges from disruption of molecular functions, cellular processes or sig...

  14. Network integration and graph analysis in mammalian molecular systems biology

    PubMed Central

    Ma'ayan, A.

    2009-01-01

    Abstraction of intracellular biomolecular interactions into networks is useful for data integration and graph analysis. Network analysis tools facilitate predictions of novel functions for proteins, prediction of functional interactions and identification of intracellular modules. These efforts are linked with drug and phenotype data to accelerate drug-target and biomarker discovery. This review highlights the currently available varieties of mammalian biomolecular networks, and surveys methods and tools to construct, compare, integrate, visualise and analyse such networks. PMID:19045817

  15. DEVELOPMENT OF COMPUTATIONAL TOOLS FOR OPTIMAL IDENTIFICATION OF BIOLOGICAL NETWORKS

    EPA Science Inventory

    align="left">Following the theoretical analysis and computer simulations, the next step for the development of SNIP will be a proof-of-principle laboratory application. Specifically, we have obtained a synthetic transcriptional cascade (harbored in Escherichia coli...

  16. Community Structure Reveals Biologically Functional Modules in MEF2C Transcriptional Regulatory Network

    PubMed Central

    Alcalá-Corona, Sergio A.; Velázquez-Caldelas, Tadeo E.; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2016-01-01

    Gene regulatory networks are useful to understand the activity behind the complex mechanisms in transcriptional regulation. A main goal in contemporary biology is using such networks to understand the systemic regulation of gene expression. In this work, we carried out a systematic study of a transcriptional regulatory network derived from a comprehensive selection of all potential transcription factor interactions downstream from MEF2C, a human transcription factor master regulator. By analyzing the connectivity structure of such network, we were able to find different biologically functional processes and specific biochemical pathways statistically enriched in communities of genes into the network, such processes are related to cell signaling, cell cycle and metabolism. In this way we further support the hypothesis that structural properties of biological networks encode an important part of their functional behavior in eukaryotic cells. PMID:27252657

  17. Liquid crystal polymer networks: preparation, properties, and applications of films with patterned molecular alignment.

    PubMed

    Liu, Danqing; Broer, Dirk J

    2014-11-18

    Monolithically ordered liquid crystal polymer networks are formed by the photoinitiated polymerization of multifunctional liquid crystal monomers. This paper describes the relevant principles and methods, the basic structure-property relationships in terms of mesogenic properties of the monomers, and the mechanical and optical properties of the polymers. Strategies are discussed to control the molecular orientation by various means and in all three dimensions. The versatility of the process is demonstrated by two examples of films with a patterned molecular order. It is shown that patterned retarders can be made by a two-step polymerization process which is successfully employed in a transflective display principle. A transflective display is a liquid crystal display that operates in both a reflective mode using ambient light and a transmissive mode with light coming from a backlight system. Furthermore, a method is discussed to create a patterned film in a single polymerization process. This film has alternating planar chiral nematic areas next to perpendicularly oriented (so-called homeotropic) areas. When applied as a coating to a substrate, the film changes its surface texture. During exposure to UV light, it switches from a flat to a corrugated state. PMID:24707811

  18. Pandora, a PAthway and Network DiscOveRy Approach based on common biological evidence

    PubMed Central

    Zhang, Kelvin Xi; Ouellette, B. F. Francis

    2010-01-01

    Motivation: Many biological phenomena involve extensive interactions between many of the biological pathways present in cells. However, extraction of all the inherent biological pathways remains a major challenge in systems biology. With the advent of high-throughput functional genomic techniques, it is now possible to infer biological pathways and pathway organization in a systematic way by integrating disparate biological information. Results: Here, we propose a novel integrated approach that uses network topology to predict biological pathways. We integrated four types of biological evidence (protein–protein interaction, genetic interaction, domain–domain interaction and semantic similarity of Gene Ontology terms) to generate a functionally associated network. This network was then used to develop a new pathway finding algorithm to predict biological pathways in yeast. Our approach discovered 195 biological pathways and 31 functionally redundant pathway pairs in yeast. By comparing our identified pathways to three public pathway databases (KEGG, BioCyc and Reactome), we observed that our approach achieves a maximum positive predictive value of 12.8% and improves on other predictive approaches. This study allows us to reconstruct biological pathways and delineates cellular machinery in a systematic view. Availability: The method has been implemented in Perl and is available for downloading from http://www.oicr.on.ca/research/ouellette/pandora. It is distributed under the terms of GPL (http://opensource.org/licenses/gpl-2.0.php) Contact: francis@oicr.on.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20031970

  19. Robustness of the p53 network and biological hackers.

    PubMed

    Dartnell, Lewis; Simeonidis, Evangelos; Hubank, Michael; Tsoka, Sophia; Bogle, I David L; Papageorgiou, Lazaros G

    2005-06-01

    The p53 protein interaction network is crucial in regulating the metazoan cell cycle and apoptosis. Here, the robustness of the p53 network is studied by analyzing its degeneration under two modes of attack. Linear Programming is used to calculate average path lengths among proteins and the network diameter as measures of functionality. The p53 network is found to be robust to random loss of nodes, but vulnerable to a targeted attack against its hubs, as a result of its architecture. The significance of the results is considered with respect to mutational knockouts of proteins and the directed attacks mounted by tumour inducing viruses. PMID:15896791

  20. Modeling Reactivity to Biological Macromolecules with a Deep Multitask Network.

    PubMed

    Hughes, Tyler B; Dang, Na Le; Miller, Grover P; Swamidass, S Joshua

    2016-08-24

    Most small-molecule drug candidates fail before entering the market, frequently because of unexpected toxicity. Often, toxicity is detected only late in drug development, because many types of toxicities, especially idiosyncratic adverse drug reactions (IADRs), are particularly hard to predict and detect. Moreover, drug-induced liver injury (DILI) is the most frequent reason drugs are withdrawn from the market and causes 50% of acute liver failure cases in the United States. A common mechanism often underlies many types of drug toxicities, including both DILI and IADRs. Drugs are bioactivated by drug-metabolizing enzymes into reactive metabolites, which then conjugate to sites in proteins or DNA to form adducts. DNA adducts are often mutagenic and may alter the reading and copying of genes and their regulatory elements, causing gene dysregulation and even triggering cancer. Similarly, protein adducts can disrupt their normal biological functions and induce harmful immune responses. Unfortunately, reactive metabolites are not reliably detected by experiments, and it is also expensive to test drug candidates for potential to form DNA or protein adducts during the early stages of drug development. In contrast, computational methods have the potential to quickly screen for covalent binding potential, thereby flagging problematic molecules and reducing the total number of necessary experiments. Here, we train a deep convolution neural network-the XenoSite reactivity model-using literature data to accurately predict both sites and probability of reactivity for molecules with glutathione, cyanide, protein, and DNA. On the site level, cross-validated predictions had area under the curve (AUC) performances of 89.8% for DNA and 94.4% for protein. Furthermore, the model separated molecules electrophilically reactive with DNA and protein from nonreactive molecules with cross-validated AUC performances of 78.7% and 79.8%, respectively. On both the site- and molecule-level, the

  1. Why network approach can promote a new way of thinking in biology

    PubMed Central

    Giuliani, Alessandro; Filippi, Simonetta; Bertolaso, Marta

    2014-01-01

    This work deals with the particular nature of network-based approach in biology. We will comment about the shift from the consideration of the molecular layer as the definitive place where causative process start to the elucidation of the among elements (at any level of biological organization they are located) interaction network as the main goal of scientific explanation. This shift comes from the intrinsic nature of networks where the properties of a specific node are determined by its position in the entire network (top-down explanation) while the global network characteristics emerge from the nodes wiring pattern (bottom-up explanation). This promotes a “middle-out” paradigm formally identical to the time honored chemical thought holding big promises in the study of biological regulation. PMID:24782892

  2. Commentary: Biochemistry and Molecular Biology Educators Launch National Network

    ERIC Educational Resources Information Center

    Bailey, Cheryl; Bell, Ellis; Johnson, Margaret; Mattos, Carla; Sears, Duane; White, Harold B.

    2010-01-01

    The American Society of Biochemistry and Molecular Biology (ASBMB) has launched an National Science Foundation (NSF)-funded 5 year project to support biochemistry and molecular biology educators learning what and how students learn. As a part of this initiative, hundreds of life scientists will plan and develop a rich central resource for…

  3. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-off on Phenotype Robustness in Biological Networks Part I: Gene Regulatory Networks in Systems and Evolutionary Biology.

    PubMed

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties observed in biological systems at different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be enough to confer intrinsic robustness in order to tolerate intrinsic parameter fluctuations, genetic robustness for buffering genetic variations, and environmental robustness for resisting environmental disturbances. With this, the phenotypic stability of biological network can be maintained, thus guaranteeing phenotype robustness. This paper presents a survey on biological systems and then develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation in systems and evolutionary biology. Further, from the unifying mathematical framework, it was discovered that the phenotype robustness criterion for biological networks at different levels relies upon intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness. When this is true, the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in systems and evolutionary biology can also be investigated through their corresponding phenotype robustness criterion from the systematic point of view. PMID:23515240

  4. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-off on Phenotype Robustness in Biological Networks Part I: Gene Regulatory Networks in Systems and Evolutionary Biology

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties observed in biological systems at different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be enough to confer intrinsic robustness in order to tolerate intrinsic parameter fluctuations, genetic robustness for buffering genetic variations, and environmental robustness for resisting environmental disturbances. With this, the phenotypic stability of biological network can be maintained, thus guaranteeing phenotype robustness. This paper presents a survey on biological systems and then develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation in systems and evolutionary biology. Further, from the unifying mathematical framework, it was discovered that the phenotype robustness criterion for biological networks at different levels relies upon intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness. When this is true, the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in systems and evolutionary biology can also be investigated through their corresponding phenotype robustness criterion from the systematic point of view. PMID:23515240

  5. Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology

    NASA Astrophysics Data System (ADS)

    Christensen, Claire Petra

    Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author

  6. Laser diagnostics of anisotropy in birefringent networks of biological tissues in different physiological conditions

    SciTech Connect

    Ushenko, Yu A; Tomka, Yu Ya; Dubolazov, A V

    2011-02-28

    We study the possibility of differentiation of optical anisotropy properties of biological tissues in different physiological conditions by means of statistical analysis of coordinate distributions of a new analytic parameter, namely, the complex degree of mutual anisotropy of extracellular matrix, formed by a network of birefringent filament-like protein crystals. (laser biology)

  7. A biologically inspired neural network for dynamic programming.

    PubMed

    Francelin Romero, R A; Kacpryzk, J; Gomide, F

    2001-12-01

    An artificial neural network with a two-layer feedback topology and generalized recurrent neurons, for solving nonlinear discrete dynamic optimization problems, is developed. A direct method to assign the weights of neural networks is presented. The method is based on Bellmann's Optimality Principle and on the interchange of information which occurs during the synaptic chemical processing among neurons. The neural network based algorithm is an advantageous approach for dynamic programming due to the inherent parallelism of the neural networks; further it reduces the severity of computational problems that can occur in methods like conventional methods. Some illustrative application examples are presented to show how this approach works out including the shortest path and fuzzy decision making problems. PMID:11852439

  8. Parenclitic networks: uncovering new functions in biological data

    NASA Astrophysics Data System (ADS)

    Zanin, Massimiliano; Alcazar, Joaquín Medina; Carbajosa, Jesus Vicente; Paez, Marcela Gomez; Papo, David; Sousa, Pedro; Menasalvas, Ernestina; Boccaletti, Stefano

    2014-05-01

    We introduce a novel method to represent time independent, scalar data sets as complex networks. We apply our method to investigate gene expression in the response to osmotic stress of Arabidopsis thaliana. In the proposed network representation, the most important genes for the plant response turn out to be the nodes with highest centrality in appropriately reconstructed networks. We also performed a target experiment, in which the predicted genes were artificially induced one by one, and the growth of the corresponding phenotypes compared to that of the wild-type. The joint application of the network reconstruction method and of the in vivo experiments allowed identifying 15 previously unknown key genes, and provided models of their mutual relationships. This novel representation extends the use of graph theory to data sets hitherto considered outside of the realm of its application, vastly simplifying the characterization of their underlying structure.

  9. Blood flow in microvascular networks: A study in nonlinear biology

    PubMed Central

    Geddes, John B.; Carr, Russell T.; Wu, Fan; Lao, Yingyi; Maher, Meaghan

    2010-01-01

    Plasma skimming and the Fahraeus–Lindqvist effect are well-known phenomena in blood rheology. By combining these peculiarities of blood flow in the microcirculation with simple topological models of microvascular networks, we have uncovered interesting nonlinear behavior regarding blood flow in networks. Nonlinearity manifests itself in the existence of multiple steady states. This is due to the nonlinear dependence of viscosity on blood cell concentration. Nonlinearity also appears in the form of spontaneous oscillations in limit cycles. These limit cycles arise from the fact that the physics of blood flow can be modeled in terms of state dependent delay equations with multiple interacting delay times. In this paper we extend our previous work on blood flow in a simple two node network and begin to explore how topological complexity influences the dynamics of network blood flow. In addition we present initial evidence that the nonlinear phenomena predicted by our model are observed experimentally. PMID:21198135

  10. Using Network Biology to Bridge Pharmacokinetics and Pharmacodynamics in Oncology

    PubMed Central

    Kirouac, D C; Onsum, M D

    2013-01-01

    If mathematical modeling is to be used effectively in cancer drug development, future models must take into account both the mechanistic details of cellular signal transduction networks and the pharmacokinetics (PK) of drugs used to inhibit their oncogenic activity. In this perspective, we present an approach to building multiscale models that capture systems-level architectural features of oncogenic signaling networks, and describe how these models can be used to design combination therapies and identify predictive biomarkers in silico. PMID:24005988

  11. Potential unsatisfiability of cyclic constraints on stochastic biological networks biases selection towards hierarchical architectures

    PubMed Central

    Smith, Cameron; Pechuan, Ximo; Puzio, Raymond S.; Biro, Daniel; Bergman, Aviv

    2015-01-01

    Constraints placed upon the phenotypes of organisms result from their interactions with the environment. Over evolutionary time scales, these constraints feed back onto smaller molecular subnetworks comprising the organism. The evolution of biological networks is studied by considering a network of a few nodes embedded in a larger context. Taking into account this fact that any network under study is actually embedded in a larger context, we define network architecture, not on the basis of physical interactions alone, but rather as a specification of the manner in which constraints are placed upon the states of its nodes. We show that such network architectures possessing cycles in their topology, in contrast to those that do not, may be subjected to unsatisfiable constraints. This may be a significant factor leading to selection biased against those network architectures where such inconsistent constraints are more likely to arise. We proceed to quantify the likelihood of inconsistency arising as a function of network architecture finding that, in the absence of sampling bias over the space of possible constraints and for a given network size, networks with a larger number of cycles are more likely to have unsatisfiable constraints placed upon them. Our results identify a constraint that, at least in isolation, would contribute to a bias in the evolutionary process towards more hierarchical -modular versus completely connected network architectures. Together, these results highlight the context dependence of the functionality of biological networks. PMID:26040595

  12. Characterization of Adaptation by Morphology in a Planar Biological Network of Plasmodial Slime Mold

    NASA Astrophysics Data System (ADS)

    Ito, Masateru; Okamoto, Riki; Takamatsu, Atsuko

    2011-07-01

    Growth processes of a planar biological network of plasmodium of a true slime mold, Physarum polycephalum, were analyzed quantitatively. The plasmodium forms a transportation network through which protoplasm conveys nutrients, oxygen, and cellular organelles similarly to blood in a mammalian vascular network. To analyze the network structure, vertices were defined at tube bifurcation points. Then edges were defined for the tubes connecting both end vertices. Morphological analysis was attempted along with conventional topological analysis, revealing that the growth process of the plasmodial network structure depends on environmental conditions. In an attractive condition, the network is a polygonal lattice with more than six edges per vertex at the early stage and the hexagonal lattice at a later stage. Through all growing stages, the tube structure was not highly developed but an unstructured protoplasmic thin sheet was dominantly formed. The network size is small. In contrast, in the repulsive condition, the network is a mixture of polygonal lattice and tree-graph. More specifically, the polygonal lattice has more than six edges per vertex in the early stage, then a tree-graph structure is added to the lattice network at a later stage. The thick tube structure was highly developed. The network size, in the meaning of Euclidean distance but not topological one, grows considerably. Finally, the biological meaning of the environment-dependent network structure in the plasmodium is discussed.

  13. Pattern Learning, Damage and Repair within Biological Neural Networks

    NASA Astrophysics Data System (ADS)

    Siu, Theodore; Fitzgerald O'Neill, Kate; Shinbrot, Troy

    2015-03-01

    Traumatic brain injury (TBI) causes damage to neural networks, potentially leading to disability or even death. Nearly one in ten of these patients die, and most of the remainder suffer from symptoms ranging from headaches and nausea to convulsions and paralysis. In vitro studies to develop treatments for TBI have limited in vivo applicability, and in vitro therapies have even proven to worsen the outcome of TBI patients. We propose that this disconnect between in vitro and in vivo outcomes may be associated with the fact that in vitro tests assess indirect measures of neuronal health, but do not investigate the actual function of neuronal networks. Therefore in this talk, we examine both in vitro and in silico neuronal networks that actually perform a function: pattern identification. We allow the networks to execute genetic, Hebbian, learning, and additionally, we examine the effects of damage and subsequent repair within our networks. We show that the length of repaired connections affects the overall pattern learning performance of the network and we propose therapies that may improve function following TBI in clinical settings.

  14. System Review about Function Role of ESCC Driver Gene KDM6A by Network Biology Approach.

    PubMed

    Ran, Jihua; Li, Hui; Li, Huiwu

    2016-01-01

    Background. KDM6A (Lysine (K)-Specific Demethylase 6A) is the driver gene related to esophageal squamous cell carcinoma (ESCC). In order to provide more biological insights into KDM6A, in this paper, we treat PPI (protein-protein interaction) network derived from KDM6A as a conceptual framework and follow it to review its biological function. Method. We constructed a PPI network with Cytoscape software and performed clustering of network with Clust&See. Then, we evaluate the pathways, which are statistically involved in the network derived from KDM6A. Lastly, gene ontology analysis of clusters of genes in the network was conducted. Result. The network includes three clusters that consist of 74 nodes connected via 453 edges. Fifty-five pathways are statistically involved in the network and most of them are functionally related to the processes of cell cycle, gene expression, and carcinogenesis. The biology themes of clusters 1, 2, and 3 are chromatin modification, regulation of gene expression by transcription factor complex, and control of cell cycle, respectively. Conclusion. The PPI network presents a panoramic view which can facilitate for us to understand the function role of KDM6A. It is a helpful way by network approach to perform system review on a certain gene. PMID:27294188

  15. System Review about Function Role of ESCC Driver Gene KDM6A by Network Biology Approach

    PubMed Central

    Ran, Jihua; Li, Hui; Li, Huiwu

    2016-01-01

    Background. KDM6A (Lysine (K)-Specific Demethylase 6A) is the driver gene related to esophageal squamous cell carcinoma (ESCC). In order to provide more biological insights into KDM6A, in this paper, we treat PPI (protein-protein interaction) network derived from KDM6A as a conceptual framework and follow it to review its biological function. Method. We constructed a PPI network with Cytoscape software and performed clustering of network with Clust&See. Then, we evaluate the pathways, which are statistically involved in the network derived from KDM6A. Lastly, gene ontology analysis of clusters of genes in the network was conducted. Result. The network includes three clusters that consist of 74 nodes connected via 453 edges. Fifty-five pathways are statistically involved in the network and most of them are functionally related to the processes of cell cycle, gene expression, and carcinogenesis. The biology themes of clusters 1, 2, and 3 are chromatin modification, regulation of gene expression by transcription factor complex, and control of cell cycle, respectively. Conclusion. The PPI network presents a panoramic view which can facilitate for us to understand the function role of KDM6A. It is a helpful way by network approach to perform system review on a certain gene. PMID:27294188

  16. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    PubMed

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory. PMID:26701126

  17. Computation of the effective mechanical response of biological networks accounting for large configuration changes.

    PubMed

    El Nady, K; Ganghoffer, J F

    2016-05-01

    The asymptotic homogenization technique is involved to derive the effective elastic response of biological membranes viewed as repetitive beam networks. Thereby, a systematic methodology is established, allowing the prediction of the overall mechanical properties of biological membranes in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the equivalent continuum. Biomembranes networks are classified based on nodal connectivity, so that we analyze in this work 3, 4 and 6-connectivity networks, which are representative of most biological networks. The individual filaments of the network are described as undulated beams prone to entropic elasticity, with tensile moduli determined from their persistence length. The effective micropolar continuum evaluated as a continuum substitute of the biological network has a kinematics reflecting the discrete network deformation modes, involving a nodal displacement and a microrotation. The statics involves the classical Cauchy stress and internal moments encapsulated into couple stresses, which develop internal work in duality to microcurvatures reflecting local network undulations. The relative ratio of the characteristic bending length of the effective micropolar continuum to the unit cell size determines the relevant choice of the equivalent medium. In most cases, the Cauchy continuum is sufficient to model biomembranes. The peptidoglycan network may exhibit a re-entrant hexagonal configuration due to thermal or pressure fluctuations, for which micropolar effects become important. The homogenized responses are in good agreement with FE simulations performed over the whole network. The predictive nature of the employed homogenization technique allows the identification of a strain energy density of a hyperelastic model, for the purpose of performing structural calculations of the shape evolutions of biomembranes. PMID:26541071

  18. The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection

    PubMed Central

    Chen, Bor-Sen; Ho, Shih-Ju

    2014-01-01

    In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to

  19. Logical Reduction of Biological Networks to Their Most Determinative Components.

    PubMed

    Matache, Mihaela T; Matache, Valentin

    2016-07-01

    Boolean networks have been widely used as models for gene regulatory networks, signal transduction networks, or neural networks, among many others. One of the main difficulties in analyzing the dynamics of a Boolean network and its sensitivity to perturbations or mutations is the fact that it grows exponentially with the number of nodes. Therefore, various approaches for simplifying the computations and reducing the network to a subset of relevant nodes have been proposed in the past few years. We consider a recently introduced method for reducing a Boolean network to its most determinative nodes that yield the highest information gain. The determinative power of a node is obtained by a summation of all mutual information quantities over all nodes having the chosen node as a common input, thus representing a measure of information gain obtained by the knowledge of the node under consideration. The determinative power of nodes has been considered in the literature under the assumption that the inputs are independent in which case one can use the Bahadur orthonormal basis. In this article, we relax that assumption and use a standard orthonormal basis instead. We use techniques of Hilbert space operators and harmonic analysis to generate formulas for the sensitivity to perturbations of nodes, quantified by the notions of influence, average sensitivity, and strength. Since we work on finite-dimensional spaces, our formulas and estimates can be and are formulated in plain matrix algebra terminology. We analyze the determinative power of nodes for a Boolean model of a signal transduction network of a generic fibroblast cell. We also show the similarities and differences induced by the alternative complete orthonormal basis used. Among the similarities, we mention the fact that the knowledge of the states of the most determinative nodes reduces the entropy or uncertainty of the overall network significantly. In a special case, we obtain a stronger result than in previous

  20. Biology Inspired Approach for Communal Behavior in Sensor Networks

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2006-01-01

    Research in wireless sensor network technology has exploded in the last decade. Promises of complex and ubiquitous control of the physical environment by these networks open avenues for new kinds of science and business. Due to the small size and low cost of sensor devices, visionaries promise systems enabled by deployment of massive numbers of sensors working in concert. Although the reduction in size has been phenomenal it results in severe limitations on the computing, communicating, and power capabilities of these devices. Under these constraints, research efforts have concentrated on developing techniques for performing relatively simple tasks with minimal energy expense assuming some form of centralized control. Unfortunately, centralized control does not scale to massive size networks and execution of simple tasks in sparsely populated networks will not lead to the sophisticated applications predicted. These must be enabled by new techniques dependent on local and autonomous cooperation between sensors to effect global functions. As a step in that direction, in this work we detail a technique whereby a large population of sensors can attain a global goal using only local information and by making only local decisions without any form of centralized control.

  1. Revealing gene regulation and association through biological networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review had first summarized traditional methods used by plant breeders for genetic improvement, such as QTL analysis and transcriptomic analysis. With accumulating data, we can draw a network that comprises all possible links between members of a community, including protein–protein interaction...

  2. Biological Networks Underlying Soybean Seed Oil Composition and Content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is the most important oil crop in the United States. Production of soybean seed oil requires coordinated expression of many biological components and pathways, which is further regulated by seed development and phyto-hormones. A new research project is initiated in my laboratory to delineat...

  3. BiNA: A Visual Analytics Tool for Biological Network Data

    PubMed Central

    Gerasch, Andreas; Faber, Daniel; Küntzer, Jan; Niermann, Peter; Kohlbacher, Oliver; Lenhof, Hans-Peter; Kaufmann, Michael

    2014-01-01

    Interactive visual analysis of biological high-throughput data in the context of the underlying networks is an essential task in modern biomedicine with applications ranging from metabolic engineering to personalized medicine. The complexity and heterogeneity of data sets require flexible software architectures for data analysis. Concise and easily readable graphical representation of data and interactive navigation of large data sets are essential in this context. We present BiNA - the Biological Network Analyzer - a flexible open-source software for analyzing and visualizing biological networks. Highly configurable visualization styles for regulatory and metabolic network data offer sophisticated drawings and intuitive navigation and exploration techniques using hierarchical graph concepts. The generic projection and analysis framework provides powerful functionalities for visual analyses of high-throughput omics data in the context of networks, in particular for the differential analysis and the analysis of time series data. A direct interface to an underlying data warehouse provides fast access to a wide range of semantically integrated biological network databases. A plugin system allows simple customization and integration of new analysis algorithms or visual representations. BiNA is available under the 3-clause BSD license at http://bina.unipax.info/. PMID:24551056

  4. AN INTEGRATED NETWORK APPROACH TO IDENTIFYING BIOLOGICAL PATHWAYS AND ENVIRONMENTAL EXPOSURE INTERACTIONS IN COMPLEX DISEASES

    PubMed Central

    DARABOS, CHRISTIAN; QIU, JINGYA; MOORE, JASON H.

    2015-01-01

    Complex diseases are the result of intricate interactions between genetic, epigenetic and environmental factors. In previous studies, we used epidemiological and genetic data linking environmental exposure or genetic variants to phenotypic disease to construct Human Phenotype Networks and separately analyze the effects of both environment and genetic factors on disease interactions. To better capture the intricacies of the interactions between environmental exposure and the biological pathways in complex disorders, we integrate both aspects into a single “tripartite” network. Despite extensive research, the mechanisms by which chemical agents disrupt biological pathways are still poorly understood. In this study, we use our integrated network model to identify specific biological pathway candidates possibly disrupted by environmental agents. We conjecture that a higher number of co-occurrences between an environmental substance and biological pathway pair can be associated with a higher likelihood that the substance is involved in disrupting that pathway. We validate our model by demonstrating its ability to detect known arsenic and signal transduction pathway interactions and speculate on candidate cell-cell junction organization pathways disrupted by cadmium. The validation was supported by distinct publications of cell biology and genetic studies that associated environmental exposure to pathway disruption. The integrated network approach is a novel method for detecting the biological effects of environmental exposures. A better understanding of the molecular processes associated with specific environmental exposures will help in developing targeted molecular therapies for patients who have been exposed to the toxicity of environmental chemicals. PMID:26776169

  5. Identifying common components across biological network graphs using a bipartite data model

    PubMed Central

    2014-01-01

    The GeneWeaver bipartite data model provides an efficient means to evaluate shared molecular components from sets derived across diverse species, disease states and biological processes. In order to adapt this model for examining related molecular components and biological networks, such as pathway or gene network data, we have developed a means to leverage the bipartite data structure to extract and analyze shared edges. Using the Pathway Commons database we demonstrate the ability to rapidly identify shared connected components among a diverse set of pathways. In addition, we illustrate how results from maximal bipartite discovery can be decomposed into hierarchical relationships, allowing shared pathway components to be mapped through various parent-child relationships to help visualization and discovery of emergent kernel driven relationships. Interrogating common relationships among biological networks and conventional GeneWeaver gene lists will increase functional specificity and reliability of the shared biological components. This approach enables self-organization of biological processes through shared biological networks. PMID:25374613

  6. Protein structure alignment beyond spatial proximity

    PubMed Central

    Wang, Sheng; Ma, Jianzhu; Peng, Jian; Xu, Jinbo

    2013-01-01

    Protein structure alignment is a fundamental problem in computational structure biology. Many programs have been developed for automatic protein structure alignment, but most of them align two protein structures purely based upon geometric similarity without considering evolutionary and functional relationship. As such, these programs may generate structure alignments which are not very biologically meaningful from the evolutionary perspective. This paper presents a novel method DeepAlign for automatic pairwise protein structure alignment. DeepAlign aligns two protein structures using not only spatial proximity of equivalent residues (after rigid-body superposition), but also evolutionary relationship and hydrogen-bonding similarity. Experimental results show that DeepAlign can generate structure alignments much more consistent with manually-curated alignments than other automatic tools especially when proteins under consideration are remote homologs. These results imply that in addition to geometric similarity, evolutionary information and hydrogen-bonding similarity are essential to aligning two protein structures. PMID:23486213

  7. Ordered cyclic motifs contribute to dynamic stability in biological and engineered networks

    PubMed Central

    Ma'ayan, Avi; Cecchi, Guillermo A.; Wagner, John; Rao, A. Ravi; Iyengar, Ravi; Stolovitzky, Gustavo

    2008-01-01

    Representation and analysis of complex biological and engineered systems as directed networks is useful for understanding their global structure/function organization. Enrichment of network motifs, which are over-represented subgraphs in real networks, can be used for topological analysis. Because counting network motifs is computationally expensive, only characterization of 3- to 5-node motifs has been previously reported. In this study we used a supercomputer to analyze cyclic motifs made of 3–20 nodes for 6 biological and 3 technological networks. Using tools from statistical physics, we developed a theoretical framework for characterizing the ensemble of cyclic motifs in real networks. We have identified a generic property of real complex networks, antiferromagnetic organization, which is characterized by minimal directional coherence of edges along cyclic subgraphs, such that consecutive links tend to have opposing direction. As a consequence, we find that the lack of directional coherence in cyclic motifs leads to depletion in feedback loops, where the number of nodes affected by feedback loops appears to be at a local minimum compared with surrogate shuffled networks. This topology provides more dynamic stability in large networks. PMID:19033453

  8. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    PubMed

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures. PMID:21576756

  9. Biological Implications of Dynamical Phases in Non-equilibrium Networks

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Vaikuntanathan, Suriyanarayanan

    2016-03-01

    Biology achieves novel functions like error correction, ultra-sensitivity and accurate concentration measurement at the expense of free energy through Maxwell Demon-like mechanisms. The design principles and free energy trade-offs have been studied for a variety of such mechanisms. In this review, we emphasize a perspective based on dynamical phases that can explain commonalities shared by these mechanisms. Dynamical phases are defined by typical trajectories executed by non-equilibrium systems in the space of internal states. We find that coexistence of dynamical phases can have dramatic consequences for function vs free energy cost trade-offs. Dynamical phases can also provide an intuitive picture of the design principles behind such biological Maxwell Demons.

  10. Detecting modules in biological networks by edge weight clustering and entropy significance.

    PubMed

    Lecca, Paola; Re, Angela

    2015-01-01

    Detection of the modular structure of biological networks is of interest to researchers adopting a systems perspective for the analysis of omics data. Computational systems biology has provided a rich array of methods for network clustering. To date, the majority of approaches address this task through a network node classification based on topological or external quantifiable properties of network nodes. Conversely, numerical properties of network edges are underused, even though the information content which can be associated with network edges has augmented due to steady advances in molecular biology technology over the last decade. Properly accounting for network edges in the development of clustering approaches can become crucial to improve quantitative interpretation of omics data, finally resulting in more biologically plausible models. In this study, we present a novel technique for network module detection, named WG-Cluster (Weighted Graph CLUSTERing). WG-Cluster's notable features, compared to current approaches, lie in: (1) the simultaneous exploitation of network node and edge weights to improve the biological interpretability of the connected components detected, (2) the assessment of their statistical significance, and (3) the identification of emerging topological properties in the detected connected components. WG-Cluster utilizes three major steps: (i) an unsupervised version of k-means edge-based algorithm detects sub-graphs with similar edge weights, (ii) a fast-greedy algorithm detects connected components which are then scored and selected according to the statistical significance of their scores, and (iii) an analysis of the convolution between sub-graph mean edge weight and connected component score provides a summarizing view of the connected components. WG-Cluster can be applied to directed and undirected networks of different types of interacting entities and scales up to large omics data sets. Here, we show that WG-Cluster can be

  11. Detecting modules in biological networks by edge weight clustering and entropy significance

    PubMed Central

    Lecca, Paola; Re, Angela

    2015-01-01

    Detection of the modular structure of biological networks is of interest to researchers adopting a systems perspective for the analysis of omics data. Computational systems biology has provided a rich array of methods for network clustering. To date, the majority of approaches address this task through a network node classification based on topological or external quantifiable properties of network nodes. Conversely, numerical properties of network edges are underused, even though the information content which can be associated with network edges has augmented due to steady advances in molecular biology technology over the last decade. Properly accounting for network edges in the development of clustering approaches can become crucial to improve quantitative interpretation of omics data, finally resulting in more biologically plausible models. In this study, we present a novel technique for network module detection, named WG-Cluster (Weighted Graph CLUSTERing). WG-Cluster's notable features, compared to current approaches, lie in: (1) the simultaneous exploitation of network node and edge weights to improve the biological interpretability of the connected components detected, (2) the assessment of their statistical significance, and (3) the identification of emerging topological properties in the detected connected components. WG-Cluster utilizes three major steps: (i) an unsupervised version of k-means edge-based algorithm detects sub-graphs with similar edge weights, (ii) a fast-greedy algorithm detects connected components which are then scored and selected according to the statistical significance of their scores, and (iii) an analysis of the convolution between sub-graph mean edge weight and connected component score provides a summarizing view of the connected components. WG-Cluster can be applied to directed and undirected networks of different types of interacting entities and scales up to large omics data sets. Here, we show that WG-Cluster can be

  12. SPEAR3 Construction Alignment

    SciTech Connect

    LeCocq, Catherine; Banuelos, Cristobal; Fuss, Brian; Gaudreault, Francis; Gaydosh, Michael; Griffin, Levirt; Imfeld, Hans; McDougal, John; Perry, Michael; Rogers, Michael; /SLAC

    2005-08-17

    An ambitious seven month shutdown of the existing SPEAR2 synchrotron radiation facility was successfully completed in March 2004 when the first synchrotron light was observed in the new SPEAR3 ring, SPEAR3 completely replaced SPEAR2 with new components aligned on a new highly-flat concrete floor. Devices such as magnets and vacuum chambers had to be fiducialized and later aligned on girder rafts that were then placed into the ring over pre-aligned support plates. Key to the success of aligning this new ring was to ensure that the new beam orbit matched the old SPEAR2 orbit so that existing experimental beamlines would not have to be reoriented. In this presentation a pictorial summary of the Alignment Engineering Group's surveying tasks for the construction of the SPEAR3 ring is provided. Details on the networking and analysis of various surveys throughout the project can be found in the accompanying paper.

  13. Quantitative assessment of biological impact using transcriptomic data and mechanistic network models

    SciTech Connect

    Thomson, Ty M.; Sewer, Alain; Martin, Florian; Belcastro, Vincenzo; Frushour, Brian P.; Gebel, Stephan; Park, Jennifer; Schlage, Walter K.; Talikka, Marja; Vasilyev, Dmitry M.; Westra, Jurjen W.; Hoeng, Julia; Peitsch, Manuel C.

    2013-11-01

    Exposure to biologically active substances such as therapeutic drugs or environmental toxicants can impact biological systems at various levels, affecting individual molecules, signaling pathways, and overall cellular processes. The ability to derive mechanistic insights from the resulting system responses requires the integration of experimental measures with a priori knowledge about the system and the interacting molecules therein. We developed a novel systems biology-based methodology that leverages mechanistic network models and transcriptomic data to quantitatively assess the biological impact of exposures to active substances. Hierarchically organized network models were first constructed to provide a coherent framework for investigating the impact of exposures at the molecular, pathway and process levels. We then validated our methodology using novel and previously published experiments. For both in vitro systems with simple exposure and in vivo systems with complex exposures, our methodology was able to recapitulate known biological responses matching expected or measured phenotypes. In addition, the quantitative results were in agreement with experimental endpoint data for many of the mechanistic effects that were assessed, providing further objective confirmation of the approach. We conclude that our methodology evaluates the biological impact of exposures in an objective, systematic, and quantifiable manner, enabling the computation of a systems-wide and pan-mechanistic biological impact measure for a given active substance or mixture. Our results suggest that various fields of human disease research, from drug development to consumer product testing and environmental impact analysis, could benefit from using this methodology. - Highlights: • The impact of biologically active substances is quantified at multiple levels. • The systems-level impact integrates the perturbations of individual networks. • The networks capture the relationships between

  14. Information theory in systems biology. Part II: protein-protein interaction and signaling networks.

    PubMed

    Mousavian, Zaynab; Díaz, José; Masoudi-Nejad, Ali

    2016-03-01

    By the development of information theory in 1948 by Claude Shannon to address the problems in the field of data storage and data communication over (noisy) communication channel, it has been successfully applied in many other research areas such as bioinformatics and systems biology. In this manuscript, we attempt to review some of the existing literatures in systems biology, which are using the information theory measures in their calculations. As we have reviewed most of the existing information-theoretic methods in gene regulatory and metabolic networks in the first part of the review, so in the second part of our study, the application of information theory in other types of biological networks including protein-protein interaction and signaling networks will be surveyed. PMID:26691180

  15. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    SciTech Connect

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.; Haaland, David Michael; Timlin, Jerilyn Ann; Thomas, Edward Victor; Slepoy, Alexander; Zhang, Zhaoduo; May, Elebeoba Eni; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-12-01

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineer regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.

  16. Investigating the Combinatory Effects of Biological Networks on Gene Co-expression

    PubMed Central

    Zhang, Cheng; Lee, Sunjae; Mardinoglu, Adil; Hua, Qiang

    2016-01-01

    Co-expressed genes often share similar functions, and gene co-expression networks have been widely used in studying the functionality of gene modules. Previous analysis indicated that genes are more likely to be co-expressed if they are either regulated by the same transcription factors, forming protein complexes or sharing similar topological properties in protein-protein interaction networks. Here, we reconstructed transcriptional regulatory and protein-protein networks for Saccharomyces cerevisiae using well-established databases, and we evaluated their co-expression activities using publically available gene expression data. Based on our network-dependent analysis, we found that genes that were co-regulated in the transcription regulatory networks and shared similar neighbors in the protein-protein networks were more likely to be co-expressed. Moreover, their biological functions were closely related. PMID:27445830

  17. 3-D components of a biological neural network visualized in computer generated imagery. II - Macular neural network organization

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Meyer, Glenn; Lam, Tony; Cutler, Lynn; Vaziri, Parshaw

    1990-01-01

    Computer-assisted reconstructions of small parts of the macular neural network show how the nerve terminals and receptive fields are organized in 3-dimensional space. This biological neural network is anatomically organized for parallel distributed processing of information. Processing appears to be more complex than in computer-based neural network, because spatiotemporal factors figure into synaptic weighting. Serial reconstruction data show anatomical arrangements which suggest that (1) assemblies of cells analyze and distribute information with inbuilt redundancy, to improve reliability; (2) feedforward/feedback loops provide the capacity for presynaptic modulation of output during processing; (3) constrained randomness in connectivities contributes to adaptability; and (4) local variations in network complexity permit differing analyses of incoming signals to take place simultaneously. The last inference suggests that there may be segregation of information flow to central stations subserving particular functions.

  18. Slow poisoning and destruction of networks: Edge proximity and its implications for biological and infrastructure networks

    NASA Astrophysics Data System (ADS)

    Banerjee, Soumya Jyoti; Sinha, Saptarshi; Roy, Soumen

    2015-02-01

    We propose a network metric, edge proximity, Pe, which demonstrates the importance of specific edges in a network, hitherto not captured by existing network metrics. The effects of removing edges with high Pe might initially seem inconspicuous but are eventually shown to be very harmful for networks. Compared to existing strategies, the removal of edges by Pe leads to a remarkable increase in the diameter and average shortest path length in undirected real and random networks till the first disconnection and well beyond. Pe can be consistently used to rupture the network into two nearly equal parts, thus presenting a very potent strategy to greatly harm a network. Targeting by Pe causes notable efficiency loss in U.S. and European power grid networks. Pe identifies proteins with essential cellular functions in protein-protein interaction networks. It pinpoints regulatory neural connections and important portions of the neural and brain networks, respectively. Energy flow interactions identified by Pe form the backbone of long food web chains. Finally, we scrutinize the potential of Pe in edge controllability dynamics of directed networks.

  19. The multiscale backbone of the human phenotype network based on biological pathways

    PubMed Central

    2014-01-01

    Background Networks are commonly used to represent and analyze large and complex systems of interacting elements. In systems biology, human disease networks show interactions between disorders sharing common genetic background. We built pathway-based human phenotype network (PHPN) of over 800 physical attributes, diseases, and behavioral traits; based on about 2,300 genes and 1,200 biological pathways. Using GWAS phenotype-to-genes associations, and pathway data from Reactome, we connect human traits based on the common patterns of human biological pathways, detecting more pleiotropic effects, and expanding previous studies from a gene-centric approach to that of shared cell-processes. Results The resulting network has a heavily right-skewed degree distribution, placing it in the scale-free region of the network topologies spectrum. We extract the multi-scale information backbone of the PHPN based on the local densities of the network and discarding weak connection. Using a standard community detection algorithm, we construct phenotype modules of similar traits without applying expert biological knowledge. These modules can be assimilated to the disease classes. However, we are able to classify phenotypes according to shared biology, and not arbitrary disease classes. We present examples of expected clinical connections identified by PHPN as proof of principle. Conclusions We unveil a previously uncharacterized connection between phenotype modules and discuss potential mechanistic connections that are obvious only in retrospect. The PHPN shows tremendous potential to become a useful tool both in the unveiling of the diseases’ common biology, and in the elaboration of diagnosis and treatments. PMID:24460644

  20. The BIOSCI electronic newsgroup network for the biological sciences. Final report, October 1, 1992--June 30, 1996

    SciTech Connect

    Kristofferson, D.; Mack, D.

    1996-10-01

    This is the final report for a DOE funded project on BIOSCI Electronic Newsgroup Network for the biological sciences. A usable network for scientific discussion, major announcements, problem solving, etc. has been created.

  1. Construction of biological networks from unstructured information based on a semi-automated curation workflow.

    PubMed

    Szostak, Justyna; Ansari, Sam; Madan, Sumit; Fluck, Juliane; Talikka, Marja; Iskandar, Anita; De Leon, Hector; Hofmann-Apitius, Martin; Peitsch, Manuel C; Hoeng, Julia

    2015-01-01

    Capture and representation of scientific knowledge in a structured format are essential to improve the understanding of biological mechanisms involved in complex diseases. Biological knowledge and knowledge about standardized terminologies are difficult to capture from literature in a usable form. A semi-automated knowledge extraction workflow is presented that was developed to allow users to extract causal and correlative relationships from scientific literature and to transcribe them into the computable and human readable Biological Expression Language (BEL). The workflow combines state-of-the-art linguistic tools for recognition of various entities and extraction of knowledge from literature sources. Unlike most other approaches, the workflow outputs the results to a curation interface for manual curation and converts them into BEL documents that can be compiled to form biological networks. We developed a new semi-automated knowledge extraction workflow that was designed to capture and organize scientific knowledge and reduce the required curation skills and effort for this task. The workflow was used to build a network that represents the cellular and molecular mechanisms implicated in atherosclerotic plaque destabilization in an apolipoprotein-E-deficient (ApoE(-/-)) mouse model. The network was generated using knowledge extracted from the primary literature. The resultant atherosclerotic plaque destabilization network contains 304 nodes and 743 edges supported by 33 PubMed referenced articles. A comparison between the semi-automated and conventional curation processes showed similar results, but significantly reduced curation effort for the semi-automated process. Creating structured knowledge from unstructured text is an important step for the mechanistic interpretation and reusability of knowledge. Our new semi-automated knowledge extraction workflow reduced the curation skills and effort required to capture and organize scientific knowledge. The

  2. Networking Biology: The Origins of Sequence-Sharing Practices in Genomics.

    PubMed

    Stevens, Hallam

    2015-10-01

    The wide sharing of biological data, especially nucleotide sequences, is now considered to be a key feature of genomics. Historians and sociologists have attempted to account for the rise of this sharing by pointing to precedents in model organism communities and in natural history. This article supplements these approaches by examining the role that electronic networking technologies played in generating the specific forms of sharing that emerged in genomics. The links between early computer users at the Stanford Artificial Intelligence Laboratory in the 1960s, biologists using local computer networks in the 1970s, and GenBank in the 1980s, show how networking technologies carried particular practices of communication, circulation, and data distribution from computing into biology. In particular, networking practices helped to transform sequences themselves into objects that had value as a community resource. PMID:26593711

  3. Automated selection of synthetic biology parts for genetic regulatory networks.

    PubMed

    Yaman, Fusun; Bhatia, Swapnil; Adler, Aaron; Densmore, Douglas; Beal, Jacob

    2012-08-17

    Raising the level of abstraction for synthetic biology design requires solving several challenging problems, including mapping abstract designs to DNA sequences. In this paper we present the first formalism and algorithms to address this problem. The key steps of this transformation are feature matching, signal matching, and part matching. Feature matching ensures that the mapping satisfies the regulatory relationships in the abstract design. Signal matching ensures that the expression levels of functional units are compatible. Finally, part matching finds a DNA part sequence that can implement the design. Our software tool MatchMaker implements these three steps. PMID:23651287

  4. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.

    PubMed

    Naudé, Jérémie; Cessac, Bruno; Berry, Hugues; Delord, Bruno

    2013-09-18

    Homeostatic intrinsic plasticity (HIP) is a ubiquitous cellular mechanism regulating neuronal activity, cardinal for the proper functioning of nervous systems. In invertebrates, HIP is critical for orchestrating stereotyped activity patterns. The functional impact of HIP remains more obscure in vertebrate networks, where higher order cognitive processes rely on complex neural dynamics. The hypothesis has emerged that HIP might control the complexity of activity dynamics in recurrent networks, with important computational consequences. However, conflicting results about the causal relationships between cellular HIP, network dynamics, and computational performance have arisen from machine-learning studies. Here, we assess how cellular HIP effects translate into collective dynamics and computational properties in biological recurrent networks. We develop a realistic multiscale model including a generic HIP rule regulating the neuronal threshold with actual molecular signaling pathways kinetics, Dale's principle, sparse connectivity, synaptic balance, and Hebbian synaptic plasticity (SP). Dynamic mean-field analysis and simulations unravel that HIP sets a working point at which inputs are transduced by large derivative ranges of the transfer function. This cellular mechanism ensures increased network dynamics complexity, robust balance with SP at the edge of chaos, and improved input separability. Although critically dependent upon balanced excitatory and inhibitory drives, these effects display striking robustness to changes in network architecture, learning rates, and input features. Thus, the mechanism we unveil might represent a ubiquitous cellular basis for complex dynamics in neural networks. Understanding this robustness is an important challenge to unraveling principles underlying self-organization around criticality in biological recurrent neural networks. PMID:24048833

  5. CAUSAL INFERENCE IN BIOLOGY NETWORKS WITH INTEGRATED BELIEF PROPAGATION

    PubMed Central

    CHANG, RUI; KARR, JONATHAN R; SCHADT, ERIC E

    2014-01-01

    Inferring causal relationships among molecular and higher order phenotypes is a critical step in elucidating the complexity of living systems. Here we propose a novel method for inferring causality that is no longer constrained by the conditional dependency arguments that limit the ability of statistical causal inference methods to resolve causal relationships within sets of graphical models that are Markov equivalent. Our method utilizes Bayesian belief propagation to infer the responses of perturbation events on molecular traits given a hypothesized graph structure. A distance measure between the inferred response distribution and the observed data is defined to assess the ‘fitness’ of the hypothesized causal relationships. To test our algorithm, we infer causal relationships within equivalence classes of gene networks in which the form of the functional interactions that are possible are assumed to be nonlinear, given synthetic microarray and RNA sequencing data. We also apply our method to infer causality in real metabolic network with v-structure and feedback loop. We show that our method can recapitulate the causal structure and recover the feedback loop only from steady-state data which conventional method cannot. PMID:25592596

  6. Data Integration through Proximity-Based Networks Provides Biological Principles of Organization across Scales[W

    PubMed Central

    Kleessen, Sabrina; Klie, Sebastian; Nikoloski, Zoran

    2013-01-01

    Plant behaviors across levels of cellular organization, from biochemical components to tissues and organs, relate and reflect growth habitats. Quantification of the relationship between behaviors captured in various phenotypic characteristics and growth habitats can help reveal molecular mechanisms of plant adaptation. The aim of this article is to introduce the power of using statistics originally developed in the field of geographic variability analysis together with prominent network models in elucidating principles of biological organization. We provide a critical systematic review of the existing statistical and network-based approaches that can be employed to determine patterns of covariation from both uni- and multivariate phenotypic characteristics in plants. We demonstrate that parameter-independent network-based approaches result in robust insights about phenotypic covariation. These insights can be quantified and tested by applying well-established statistics combining the network structure with the phenotypic characteristics. We show that the reviewed network-based approaches are applicable from the level of genes to the study of individuals in a population of Arabidopsis thaliana. Finally, we demonstrate that the patterns of covariation can be generalized to quantifiable biological principles of organization. Therefore, these network-based approaches facilitate not only interpretation of large-scale data sets, but also prediction of biochemical and biological behaviors based on measurable characteristics. PMID:23749845

  7. FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks.

    PubMed

    Wang, Ting; Ren, Zhao; Ding, Ying; Fang, Zhou; Sun, Zhe; MacDonald, Matthew L; Sweet, Robert A; Wang, Jieru; Chen, Wei

    2016-02-01

    Biological networks provide additional information for the analysis of human diseases, beyond the traditional analysis that focuses on single variables. Gaussian graphical model (GGM), a probability model that characterizes the conditional dependence structure of a set of random variables by a graph, has wide applications in the analysis of biological networks, such as inferring interaction or comparing differential networks. However, existing approaches are either not statistically rigorous or are inefficient for high-dimensional data that include tens of thousands of variables for making inference. In this study, we propose an efficient algorithm to implement the estimation of GGM and obtain p-value and confidence interval for each edge in the graph, based on a recent proposal by Ren et al., 2015. Through simulation studies, we demonstrate that the algorithm is faster by several orders of magnitude than the current implemented algorithm for Ren et al. without losing any accuracy. Then, we apply our algorithm to two real data sets: transcriptomic data from a study of childhood asthma and proteomic data from a study of Alzheimer's disease. We estimate the global gene or protein interaction networks for the disease and healthy samples. The resulting networks reveal interesting interactions and the differential networks between cases and controls show functional relevance to the diseases. In conclusion, we provide a computationally fast algorithm to implement a statistically sound procedure for constructing Gaussian graphical model and making inference with high-dimensional biological data. The algorithm has been implemented in an R package named "FastGGM". PMID:26872036

  8. Reducing complexity: An iterative strategy for parameter determination in biological networks

    NASA Astrophysics Data System (ADS)

    Binder, Sebastian C.; Hernandez-Vargas, Esteban A.; Meyer-Hermann, Michael

    2015-05-01

    The dynamics of biological networks are fundamental to a variety of processes in many areas of biology and medicine. Understanding of such networks on a systemic level is facilitated by mathematical models describing these networks. However, since mathematical models of signalling networks commonly aim to describe several highly connected biological quantities and many model parameters cannot be measured directly, quantitative dynamic models often present challenges with respect to model calibration. Here, we propose an iterative fitting routine to decompose the problem of fitting a system of coupled ordinary differential equations describing a signalling network into smaller subproblems. Parameters for each differential equation are estimated separately using a Differential Evolution algorithm while all other dynamic quantities in the model are treated as input to the system. The performance of this algorithm is evaluated on artificial networks with known structure and known model parameters and compared to a conventional optimisation procedure for the same problem. Our analysis indicates that the procedure results in a significantly higher quality of fit and more efficient reconstruction of the true parameters than the conventional algorithm.

  9. Systems Biology Approaches to the Study of Biological Networks Underlying Alzheimer's Disease: Role of miRNAs.

    PubMed

    Roth, Wera; Hecker, David; Fava, Eugenio

    2016-01-01

    MicroRNAs (miRNAs) are emerging as significant regulators of mRNA complexity in the human central nervous system (CNS) thereby controlling distinct gene expression profiles in a spatio-temporal manner during development, neuronal plasticity, aging and (age-related) neurodegeneration, including Alzheimer's disease (AD). Increasing effort is expended towards dissecting and deciphering the molecular and genetic mechanisms of neurobiological and pathological functions of these brain-enriched miRNAs. Along these lines, recent data pinpoint distinct miRNAs and miRNA networks being linked to APP splicing, processing and Aβ pathology (Lukiw et al., Front Genet 3:327, 2013), and furthermore, to the regulation of tau and its cellular subnetworks (Lau et al., EMBO Mol Med 5:1613, 2013), altogether underlying the onset and propagation of Alzheimer's disease. MicroRNA profiling studies in Alzheimer's disease suffer from poor consensus which is an acknowledged concern in the field, and constitutes one of the current technical challenges. Hence, a strong demand for experimental and computational systems biology approaches arises, to incorporate and integrate distinct levels of information and scientific knowledge into a complex system of miRNA networks in the context of the transcriptome, proteome and metabolome in a given cellular environment. Here, we will discuss the state-of-the-art technologies and computational approaches on hand that may lead to a deeper understanding of the complex biological networks underlying the pathogenesis of Alzheimer's disease. PMID:26235078

  10. ezBioNet: A modeling and simulation system for analyzing biological reaction networks

    NASA Astrophysics Data System (ADS)

    Yu, Seok Jong; Tung, Thai Quang; Park, Junho; Lim, Jongtae; Yoo, Jaesoo

    2012-10-01

    To achieve robustness against living environments, a living organism is composed of complicated regulatory mechanisms ranging from gene regulations to signal transduction. If such life phenomena are to be understand, an integrated analysis tool that should have modeling and simulation functions for biological reactions, as well as new experimental methods for measuring biological phenomena, is fundamentally required. We have designed and implemented modeling and simulation software (ezBioNet) for analyzing biological reaction networks. The software can simultaneously perform an integrated modeling of various responses occurring in cells, ranging from gene expressions to signaling processes. To support massive analysis of biological networks, we have constructed a server-side simulation system (VCellSim) that can perform ordinary differential equations (ODE) analysis, sensitivity analysis, and parameter estimates. ezBioNet integrates the BioModel database by connecting the european bioinformatics institute (EBI) servers through Web services APIs and supports the handling of systems biology markup language (SBML) files. In addition, we employed eclipse RCP (rich client platform) which is a powerful modularity framework allowing various functional expansions. ezBioNet is intended to be an easy-to-use modeling tool, as well as a simulation system, to understand the control mechanism by monitoring the change of each component in a biological network. A researcher may perform the kinetic modeling and execute the simulation. The simulation result can be managed and visualized on ezBioNet, which is freely available at http://ezbionet.cbnu.ac.kr.