Science.gov

Sample records for aligned breakup deformation

  1. Deformation and secondary breakup of drops

    NASA Astrophysics Data System (ADS)

    Hsiang, L.-P.; Faeth, G. M.

    1993-01-01

    Drop properties during and after secondary breakup in the bag, multimode and shear breakup regimes were observed for shock wave initiated disturbances in air at normal temperature and pressure. Test liquids included water, n-heptane, ethyl alcohol and glycerol mixtures to yield Weber numbers of 15-600. Ohnesorge numbers of 0.0025-0.039, liquid/gas density ratios of 579-985 and Reynolds numbers of 1060-15080. Measurements included pulsed shadowgraphy and double-pulsed holography to find drop sizes and velocities after breakup. Drop size distributions after breakup satisfied Simmons' universal root normal distribution in all three breakup regimes, after removing the core (or drop-forming) drop from the drop population for shear breakup. The size and velocity of the core drop after shear breakup then was correlated successfully based on the observation that the end of drop stripping corresponded to a constant Eotvos number. The relative velocities of the drop liquid were significantly reduced during secondary breakup, due both to large drag coefficients during the drop deformation stage and reduced relaxation times of smaller drops. These effects were correlated successfully based on a simplified phenomenological theory.

  2. Projectile deformation effects in the breakup of 37Mg

    NASA Astrophysics Data System (ADS)

    Shubhchintak; Chatterjee, R.; Shyam, R.

    2016-05-01

    We study the breakup of 37Mg on Pb at 244MeV/u with the recently developed extended theory of Coulomb breakup within the postform finite range distorted wave Born approximation that includes deformation of the projectile. Comparing our calculated cross section with the available Coulomb breakup data we determine the possible ground state configuration of 37Mg.

  3. Drop breakup and deformation in sudden onset strong flows

    NASA Astrophysics Data System (ADS)

    Marks, Charles Raphael

    This work characterizes the deformation and breakup of a single drop subjected to a sudden onset shear flow. The drop is immersed in a second fluid (the matrix) with which it is immiscible. A cylindrical couette device is used to create a flow field which, in the absence of the drop, would constitute a close approximation of simple shear flow. The magnitude of the imposed shear rate was greater than that which would be necessary to just break the drop. The experiments conducted were limited to matrix fluid viscosities above 7Pa˙ s and shear rates below 15/s, ensuring that the flows considered were inertialess. The matrix fluid was a corn syrup solution. The drop fluids were polybutadiene, paraffin oil and silicone oil, leading to a range of interfacial tensions. At the shear rates used in these experiments the fluids used Newtonian. Viscosity ratios (drop/matrix) ranging from 0.01 to 1 were considered. Two breakup mechanisms were observed to contribute to the dispersion of the original drop. In all cases elongative end pinching, defined by this study, caused the ends of a stretching drop to break off and form daughter drops. Breakup due to elongative end pinching was always the first breakup observed. The daughter drops formed by elongative end pinching were always the largest daughter drops formed. In cases when the experimental conditions were sufficiently stronger than the critical conditions (needed to just barely break up the drop), a second type of breakup, capillary wave breakup, was also observed. Measurement of the characteristic time scales and length scales were made of each type of breakup. The lengths (a) were found to scale as capillary numbers: Ca=a mg/s. The times (t) were found to scale as strains: s=t g. A qualitative explanation for the capillary number scaling is presented and quantitatively compared to predictions based on small deformation analysis. Additionally the daughter drop size distributions resulting from drop breakup is characterized

  4. Drop deformation and breakup in flows with and without shear

    NASA Astrophysics Data System (ADS)

    Kékesi, Tímea; Amberg, Gustav; Prahl Wittberg, Lisa

    2015-11-01

    The deformation and breakup of liquid drops in gaseous flows are studied numerically using the Volume of Fluid method. Fragmentation of fuel drops has a key role in combustion, determining the rate of mixing and the efficiency of the process. It is common to refer to Weber number 12 as the onset of breakup, and to define breakup mode regimes as a function of Weber number. These definitions are established for simple flows and do not take density and viscosity ratios into account. The main objective of this work is the dynamics of the drop leading to breakup. Fully developed uniform flows and flows with various shear rates are considered. A Weber number of 20, Reynolds numbers 20-200, density ratios 20-80, and viscosity ratios 0.5-50 were used. Results for uniform flows are presented in Kékesi T. et al. (2014). The final aim of the project is to extend existing atomization models for fuel sprays by accounting for density and viscosity ratios in addition to the Reynolds and Weber numbers already present in current models. Estimations for the lifetime of the drop are provided; furthermore, the history of the drag coefficient is compared for several cases. Examples of the observed phenomena and ideas for possible model modifications will be presented. This work is supported by the Swedish Research Council and the Linné FLOW Centre.

  5. Droplet Deformation Prediction With the Droplet Deformation and Breakup Model (DDB)

    NASA Technical Reports Server (NTRS)

    Vargas, Mario

    2012-01-01

    The Droplet Deformation and Breakup Model was used to predict deformation of droplets approaching the leading edge stagnation line of an airfoil. The quasi-steady model was solved for each position along the droplet path. A program was developed to solve the non-linear, second order, ordinary differential equation that governs the model. A fourth order Runge-Kutta method was used to solve the equation. Experimental slip velocities from droplet breakup studies were used as input to the model which required slip velocity along the particle path. The center of mass displacement predictions were compared to the experimental measurements from the droplet breakup studies for droplets with radii in the range of 200 to 700 mm approaching the airfoil at 50 and 90 m/sec. The model predictions were good for the displacement of the center of mass for small and medium sized droplets. For larger droplets the model predictions did not agree with the experimental results.

  6. Deformation and breakup of viscoelastic droplets in confined shear flow

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Sbragaglia, M.

    2014-08-01

    The deformation and breakup of Newtonian and viscoelastic droplets are studied in confined shear flow. Our numerical approach is based on a combination of lattice-Boltzmann models and finite difference schemes, the former used to model two immiscible fluids with variable viscosity ratio and the latter used to model the polymer dynamics. The kinetics of the polymers is introduced using constitutive equations for viscoelastic fluids with finitely extensible nonlinear elastic dumbbells with Peterlin's closure. We quantify the droplet response by changing the polymer relaxation time τP, the maximum extensibility L of the polymers, and the degree of confinement, i.e., the ratio of the droplet diameter to wall separation. In unconfined shear flow, the effects of droplet viscoelasticity on the critical capillary number Cacr for breakup are moderate in all cases studied. However, in confined conditions a different behavior is observed: The critical capillary number of a viscoelastic droplet increases or decreases, depending on the maximum elongation of the polymers, the latter affecting the extensional viscosity of the polymeric solution. Force balance is monitored in the numerical simulations to validate the physical picture.

  7. Experimental constraints on the deformation and breakup of injected magma

    NASA Astrophysics Data System (ADS)

    Hodge, Kirsten F.; Carazzo, Guillaume; Jellinek, A. Mark

    2012-04-01

    The injection, breakup and stirring of dikes entering convecting silicic magma chambers can govern how they grow and differentiate, as well as influence their potential for eruption at the surface. Enclaves observed in plutons may preserve a record of this process and, thus, identifying and understanding the physical processes underlying their formation is a crucial issue in volcanology. We use laboratory experiments and scaling theory to investigate the mechanical and rheological conditions leading to the deformation and breakup of analog crystal-rich dikes injected as discrete plumes that descend into an underlying imposed shear flow. To scale the experiments and map the results across a wide range of natural conditions we define the ratio S of the timescale for the growth of a gravitational Rayleigh-Taylor (R-T) instability of the sheared, injected material to the timescale for settling through the fluid layer and the ratio Y of the timescales for shearing and lateral disaggregation of the particle-fluid mixture (yielding). At low S (< 3) and high Y (> 40), descending plumes are stretched and tilted before undergoing R-T instability, forming drips with a wavelength that is comparable to the initial diameter of the injection. At low Y (< 40) and S values that increase from ∼ 3 as Y → 0, an injection yields in tension before a R-T instability can grow, forming discrete particle-fluid blobs that are much smaller than the initial injection diameter and separated by thin filaments of the original mixture. At high S (> 3) and high Y (> 40), injections remain intact as they settle through the layer and pond at the floor. Applied to magma chambers, our results do not support the production of a continuum of enclave sizes. Indeed, from scaling analyses we expect the two breakup regimes to form distinct size populations: Whereas enclaves formed in the R-T regime will be comparable to the injection size, those formed in the tension regime will be much smaller. We show

  8. Constraining Lithosphere Deformation Modes during Continental Breakup for the Iberia-Newfoundland Conjugate Margins

    NASA Astrophysics Data System (ADS)

    Jeanniot, L.; Kusznir, N. J.; Mohn, G.; Manatschal, G.

    2014-12-01

    How the lithosphere and asthenosphere deforms during continental rifting leading to breakup and sea-floor spreading initiation is poorly understood. Observations at present-day and fossil analogue rifted margins show a complex OCT architecture which cannot be explained by a single simplistic lithosphere deformation modes. This OCT complexity includes hyper-extended continental crust and lithosphere, detachments faults, exhumed mantle, continental slivers and scattered embryonic oceanic crust. We use a coupled kinematic-dynamic model of lithosphere and asthenosphere deformation to determine the sequence of lithosphere deformation modes leading to continental breakup for Iberia-Newfoundland conjugate margin profiles. We quantitatively calibrate the models using observed present-day water loaded subsidence and crustal thickness, together with subsidence history and the age of melt generation. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FE-Margin), and used to advect lithosphere and asthenosphere temperature and material. FE-Margin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling below. Buoyancy enhanced upwelling (Braun et al. 2000) is also kinematically included. Melt generation by decompressional melting is predicted using the methodology of Katz et al., 2003. The extension magnitudes used in the lithosphere deformation models are taken from Sutra et al (2013). The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require (i) an initial broad region of lithosphere deformation and passive upwelling, (ii) lateral migration of deformation, (iii) an increase in extension rate with time, (iv) focussing of deformation and (v) buoyancy induced upwelling. The preferred calibrated models predict faster extension rates and earlier continental crustal rupture and

  9. Deformation, wave phenomena, and breakup outcomes of round nonturbulent liquid jets in uniform gaseous crossflow

    NASA Astrophysics Data System (ADS)

    Ng, Chee-Loon

    Scope and method of study. An experimental and computational research is performed to study the deformation and breakup of round nonturbulent liquid jets in uniform gaseous crossflow. Pulsed photography and shadow graphy in conjunction with high-speed imaging were used to study the wave phenomena and the droplets properties/transport dynamics of a nonturbulent liquid jet injected into a uniform crossflow within the bag breakup regime. The computational study extended the previous two-dimensional study by adding the third dimension, allowing the wave properties to be modeled. The computational simulation employed the Volume of Fluid (VOF) formulation of FLUENT, and was run on a 3-processors parallel Linux cluster and P4 desktops. The validated, time-accurate, CFD simulation analyzes the surface properties of the liquid jets within the column, bag, and shear breakup regimes by considering the effects of surface tension, liquid viscosity, and crossflow Weber number at large liquid/gas density ratios (>500) and small Ohnesorge numbers (<0.1). Findings and conclusions. Present experimental results show that the column waves along the liquid jet are attributed to Rayleigh-Taylor instabilities and the nodes layout per bag affected the breakup mechanisms of the bags. Three distinctive sizes of droplets were produced in the bag breakup regime. The size of bag-droplets normalized by the nozzle exit diameter was constant. The different trajectories for bag- and node-droplets suggested that separation of bag- and node-droplets is possible. The computational results included jet deformations, jet cross-sectional area, jet velocity, wake velocity defect, wake width, and wavelengths of column and surface waves. Present computational results yielded a similarity solution for the inner wake region. In bag breakup, the lower pressure along the sides of the jet pulled the liquid away from both the upwind and downwind surfaces of the liquid cross-section. In shear breakup, the

  10. Deformation, breakup and motion of a perfect dielectric drop in a quadrupole electric field

    NASA Astrophysics Data System (ADS)

    Deshmukh, Shivraj. D.; Thaokar, Rochish. M.

    2012-03-01

    A detailed nonlinear analysis of the deformation and breakup of a perfect dielectric (PD) drop, suspended in another perfect dielectric fluid, in the presence of a quadrupole electric field is presented using analytical (asymptotic) and numerical (boundary integral) methods. The quadrupole field is the simplest kind of an axisymmetric non-uniform electric field. A drop, when placed at the center of such a field, does not translate, thus allowing systematic investigation of the effect of non-uniformity of the electric field. The deformation of a drop under a quadrupole field for PD-PD systems exhibits several novel features as compared to that of a drop under a uniform electric field. The first order analysis predicts oblate deformation for a PD-PD system when the dielectric constant of the suspending medium is larger than that of the drop (Q = ɛi/ɛe < 1). This is in sharp contrast to uniform electric fields where oblate shapes are observed only in leaky dielectric systems. Prolate shapes are observed for Q > 1, and the deformation is larger than that for uniform fields for similar electric capillary numbers. The steady state shapes are defined by higher harmonics as compared to the uniform field. At large capillary numbers, prolate deformations (Q > 1) show breakup whereas oblate deformations (Q < 1) do not. Positive and negative dielectrophoresis is observed when the drop is placed off center, and its translation and simultaneous deformation under quadrupole fields is also investigated. The electro-hydrostatics is unaffected by the viscosity ratio. However, the breakup of the drop and the dielectrophoretic motion and deformation strongly depend upon the viscosity ratio.

  11. Theory of the deformation of aligned polyethylene

    PubMed Central

    Hammad, A.; Swinburne, T. D.; Hasan, H.; Del Rosso, S.; Iannucci, L.; Sutton, A. P.

    2015-01-01

    Solitons are proposed as the agents of plastic and viscoelastic deformation in aligned polyethylene. Interactions between straight, parallel molecules are mapped rigorously onto the Frenkel–Kontorova model. It is shown that these molecular interactions distribute an applied load between molecules, with a characteristic transfer length equal to the soliton width. Load transfer leads to the introduction of tensile and compressive solitons at the chain ends to mark the onset of plasticity at a well-defined yield stress, which is much less than the theoretical pull-out stress. Interaction energies between solitons and an equation of motion for solitons are derived. The equation of motion is based on Langevin dynamics and the fluctuation–dissipation theorem and it leads to the rigorous definition of an effective mass for solitons. It forms the basis of a soliton dynamics in direct analogy to dislocation dynamics. Close parallels are drawn between solitons in aligned polymers and dislocations in crystals, including the configurational force on a soliton. The origins of the strain rate and temperature dependencies of the viscoelastic behaviour are discussed in terms of the formation energy of solitons. A failure mechanism is proposed involving soliton condensation under a tensile load. PMID:26339196

  12. Deformation and breakup of a liquid droplet past a solid circular cylinder: a lattice Boltzmann study.

    PubMed

    Li, Qiuxiang; Chai, Zhenhua; Shi, Baochang; Liang, Hong

    2014-10-01

    In this paper, we present a numerical study on the deformation and breakup behavior of liquid droplet past a solid circular cylinder by using an improved interparticle-potential lattice Boltzmann method. The effects of the eccentric ratio β, viscosity ratio λ between the droplet and the surrounding fluid, surface wettability, and Bond number (Bo) on the dynamic behavior of the liquid droplet are considered. The parameter β represents the degree that the solid cylinder deviates from the center line, and Bo is the ratio between the inertial force and capillary force. Numerical results show that there are two typical patterns, i.e., breakup and no breakup, which are greatly influenced by the aforementioned parameters. When β increases to a critical value βc, the droplet can pass the circular cylinder without a breakup, otherwise, the breakup phenomenon occurs. The critical eccentric ratio βc increases significantly with increasing Bo for case with λ>1, while for the case with λ<1, the viscosity effects on the βc is not obvious when Bo is large. For the breakup case, the amount of deposited liquid on the tip of the circular cylinder is almost unaffected by β. In addition, the results also show that the viscosity ratio and wettability affect the deformation and breakup process of the droplet. For case with λ<1, the viscosity ratio plays a minor role in the thickness variations of the deposited liquid, which decreases to a nonzero constant eventually; while for λ>1, the increase of the viscosity ratio significantly accelerates the decrease of the deposited liquid, and finally no fluid deposits on the cylinder. In term of the wettability, there occurs continuous gas phase trapped by the wetting droplet, but this does not happen for nonwetting droplet. Besides, for λ<1, the time required to pass the cylinder (tp) decreases monotonically with decreasing contact angle, while a nonmonotonic decrease appears for λ>1. It is also found that tp decreases

  13. Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating

    NASA Astrophysics Data System (ADS)

    Pathak, Binita; Basu, Saptarshi

    2016-03-01

    Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (<70 % by volume) is shown by using an appropriate time scale obtained from force balance. Continuous caving leads to the formation of a liquid membrane-type structure which undergoes radial extension due to inertia gained during the precursor phase. The membrane subsequently closes at the rim and the kinetic energy leads to ligament formation and growth. Subsequent ligament breakup is primarily Rayleigh-Plateau type. The breakup mode shifts to diffusional entrapment-induced boiling with an increase in concentration of the volatile component (benzene >70 % by volume). The findings are portable to any similar bicomponent systems with differential volatility.

  14. Deformation and Break-up of Suspension Droplets Sheared in an Immiscible Fluid

    NASA Astrophysics Data System (ADS)

    Desse, Melinda; Hill, Sandra E.; Mitchell, John R.; Wolf, Bettina; Budtova, Tatiana

    2008-07-01

    The deformation and break-up behaviour of suspension droplets immersed in an immiscible fluid has not been widely studied albeit such systems are frequently encountered in every day multiphase products such as foods and cosmetics. Starch is a common thickener used in the food industry. Starch suspensions have shown to offer better flavour perception than polymer thickened solutions; a better understanding of their behaviour under flow would be beneficial in terms of advancement on product formulation. Deformation and break-up of a droplet of swollen-in-water starch granules placed in high viscosity silicon oil was visualised using a counter-rotating parallel-plate shear cell. The silicon oil had a high viscosity to induce shear stresses high enough to deform the droplet; it is also transparent and inert towards the studied system. The starch suspension was prepared to have a volume fraction of 100% swollen granules, i.e. that all water was bound within the swollen starch granules. The shear flow behaviour of this starch suspension is characterised by an apparent yield stress, shear-thinning and first normal stress differences. The rheo-optical experiments were conducted as start-up flow experiments applying shear stresses above the apparent yield stress. A constant shear stress throughout the experiment allows a constant viscosity of the droplet and therefore rules out the shear thinning aspect. Analysis showed droplet break-up at critical Capillary numbers close to those reported for Newtonian fluids. The results demonstrate that the droplet break-up behaviour in a complex emulsion system submitted to shear flow may not be fully described by the rheology of the individual phases alone but may require a microstructure component.

  15. Mantle exhumation and OCT architecture dependency on lithosphere deformation modes during continental breakup: Numerical experiments

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Cowie, Leanne

    2013-04-01

    The initiation of sea-floor spreading, during the continental breakup process, requires both the rupture of the continental crust and the initiation of decompression melting. This process results in mantle upwelling and at some point decompressional melting which creates new oceanic crust. Using numerical experiments, we investigate how the deformation mode of continental lithosphere thinning and stretching controls the rupture of continental crust and lithospheric mantle, the onset of decompression melting, their relative timing, and the circumstances under which mantle exhumation may occur. We assume that the topmost continental and ocean lithosphere, corresponding to the cooler brittle seismogenic layer, deforms by extensional faulting (pure-shear deformation) and magmatic intrusion, consistent with the observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). We assume that deformation beneath this topmost lithosphere layer (approximately 15-20 km thick) occurs in response to passive upwelling and thermal and melt buoyancy driven small-scale convection. We use a 2D finite element viscous flow model (FeMargin) to describe lithosphere and asthenosphere deformation. This flow field is used to advect lithosphere and asthenosphere temperature and material. The finite element model is kinematically driven by Vx for the topmost upper crust inducing passive upwelling beneath that layer. A vertical velocity Vz is defined for buoyancy enhanced upwelling as predicted by Braun et al. (2000). Melt generation is predicted by decompression melting using the parameterization and methodology of Katz et al. (2003). Numerical experiments have been used to investigate the dependency of continental crust and lithosphere rupture, decompression melt initiation, rifted margin ocean-continent transition architecture and subsidence history on the half-spreading rate Vx, buoyancy driven upwelling rate Vz, the relative contribution of these deformation

  16. How does the lithosphere deformation mode during continental breakup affect mantle exhumation and subsidence history?

    NASA Astrophysics Data System (ADS)

    Jeanniot, L.; Kusznir, N.; Manatschal, G.

    2012-04-01

    Mantle exhumation at magma-poor rifted continental margin requires that continental crust ruptures prior to the onset of significant decompression melting. Both the relative timing of crustal rupture and melting, and therefore mantle exhumation, and rifted margin subsidence are dependent on the deformation mode of the continental lithosphere stretching and thinning leading to breakup. Fletcher et al. (2009) showed that for the Iberia-Newfoundland rifted margin, modelling of continental lithosphere stretching and thinning by pure-shear resulted in decompression melt initiation before continental crustal-rupture, while stretching and thinning by upwelling-divergent "corner flow" resulted in crustal-rupture before melt initiation. Observations at rifted continental margins (including Iberia-Newfoundland rifted margin) suggest a complex rifting evolution that cannot be explained by simplistic end-member pure-shear or "corner flow" deformation modes of lithosphere thinning and stretching (Péron-Pinvidic and Manatschal, 2009). By analogy with the deformation processes occurring at slow spreading ocean-ridges (Cannat, 1996), a more realistic lithosphere deformation mode for magma-poor continental breakup is extensional faulting for the colder brittle upper 12-15km above upwelling-divergent "corner flow" for the remaining lithosphere and asthenosphere. We use a kinematic numerical model of continental lithosphere thinning and stretching to examine decompression melt initiation, continental crustal rupture and subsidence for such a hybrid lithosphere deformation model represented by pure-shear deformation in the topmost brittle lithosphere above upwelling-divergent flow. We explore the relative contributions of pure-shear and upwelling-divergent "corner flow" deformation and its sensitivity to deformation rate, pure-shear half-width, the "corner flow" Vz/Vx ration and mantle potential temperature. The kinematic numerical model that we use represents lithosphere and

  17. Constraining lithosphere deformation modes during continental breakup for the Iberia-Newfoundland conjugate rifted margins

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Mohn, Geoffroy; Manatschal, Gianreto; Cowie, Leanne

    2016-06-01

    A kinematic model of lithosphere and asthenosphere deformation has been used to investigate lithosphere stretching and thinning modes during continental rifting leading to breakup and seafloor spreading. The model has been applied to two conjugate profiles across the Iberia-Newfoundland rifted margins and quantitatively calibrated using observed present-day water loaded subsidence and crustal thickness, together with observed mantle exhumation, subsidence and melting generation histories. The kinematic model uses an evolving prescribed flow-field to deform the lithosphere and asthenosphere leading to lithospheric breakup from which continental crustal thinning, lithosphere thermal evolution, decompression melt initiation and subsidence are predicted. We explore the sensitivity of model predictions to extension rate history, deformation migration and buoyancy induced upwelling. The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require; (1) an initial broad region of lithosphere deformation with passive upwelling, (2) lateral migration of deformation, (3) an increase in extension rate with time, (4) focussing of the deformation and (5) buoyancy induced upwelling. The model prediction of exhumed mantle at the Iberia-Newfoundland margins, as observed, requires a critical threshold of melting to be exceeded before melt extraction. The preferred calibrated models predict faster extension rates and earlier continental crustal separation and mantle exhumation for the Iberia Abyssal Plain-Flemish Pass conjugate margin profile than for the Galicia Bank-Flemish Cap profile to the north. The predicted N-S differences in the deformation evolution give insights into the 3D evolution of Iberia-Newfoundland margin crustal separation.

  18. Drop deformation and breakup in a partially filled horizontal rotating cylinder

    NASA Astrophysics Data System (ADS)

    White, Andrew; Pereira, Caroline; Hyacinthe, Hyaquino; Ward, Thomas

    2014-11-01

    Drop deformation and breakup due to shear flow has been studied extensively in Couette devices as well as in gravity-driven flows. In these cases shear is generated either by the moving wall or the drop's motion. For such flows the drop shape remains unperturbed at low capillary number (Ca), deforms at moderate Ca , and can experience breakup as Ca --> 1 and larger. Here single drops of NaOH(aq) will be placed in a horizontal cylindrical rotating tank partially filled with vegetable oil resulting in 10-2 < Ca <101 . It will be shown that the reactive vegetable oil-NaOH(aq) system, where surfactants are produced in situ by saponification, can yield lower minimum surface tensions and faster adsorption than non-reactive surfactant systems. Oil films between the wall and drop as well as drop shape will be observed as rotation rates and NaOH(aq) concentration are varied. Results will be presented in the context of previous work on bubble and drop shapes and breakup. NSF CBET #1262718.

  19. Deformation and breakup of liquid drops in a gas stream at nearly critical Weber numbers

    NASA Astrophysics Data System (ADS)

    Wierzba, A.

    1990-04-01

    Experimentally determined values of the critical Weber number available from the literature are scattered over a very wide range of W(e)sub c from 2.2 to 99.6. To study one possible source of these discrepancies an experimental investigation was made of the deformation and breakup of water droplets at nearly critical Weber numbers. Experiments were conducted in a small horizontal wind tunnel. A continuous stream of uniform water droplets was allowed to fall perpendicularly to the continuous stream of air. The time histories of water droplets were recorded by using a high-speed camera. Five different basic behaviors of water droplets were recorded in the range of W(e) = 11 to 14. It was found that an increase in the Weber number in this region resulted in an increased percentage of droplets with regular bag type breakup.

  20. Rotating Rig Development for Droplet Deformation/Breakup and Impact Induced by Aerodynamic Surfaces

    NASA Technical Reports Server (NTRS)

    Feo, A.; Vargas, M.; Sor, A.

    2012-01-01

    This work presents the development of a Rotating Rig Facility by the Instituto Nacional de Tecnica Aeroespacial (INTA) in cooperation with the NASA Glenn Research Center. The facility is located at the INTA installations near Madrid, Spain. It has been designed to study the deformation, breakup and impact of large droplets induced by aerodynamic bodies. The importance of these physical phenomena is related to the effects of Supercooled Large Droplets in icing clouds on the impinging efficiency of the droplets on the body, that may change should these phenomena not be taken into account. The important variables and the similarity parameters that enter in this problem are presented. The facility's components are described and some possible set-ups are explained. Application examples from past experiments are presented in order to indicate the capabilities of the new facility.

  1. Interpretation of Coulomb breakup of Ne31 in terms of deformation

    NASA Astrophysics Data System (ADS)

    Hamamoto, Ikuko

    2010-02-01

    The recent experimental data on Coulomb breakup of the nucleus Ne31 are interpreted in terms of deformation. The measured large one-neutron removal cross section indicates that the ground state of Ne31 is either an s halo or a p halo. The data can be most easily interpreted as the spin of the ground state being 3/2- coming from either the Nilsson level [3301/2] or the Nilsson level [3213/2] depending on the neutron separation energy Sn. However, the possibility of 1/2+ coming from [2001/2] is not excluded. It is suggested that if the large ambiguity in the measured value of Sn of Ne31, 0.29±1.64 MeV, can be reduced by an order of magnitude, say to be ±100 keV, one may get a clear picture of the spin-parity of the halo ground state.

  2. Electrolytic drops in an electric field: A numerical study of drop deformation and breakup.

    PubMed

    Pillai, R; Berry, J D; Harvie, D J E; Davidson, M R

    2015-07-01

    The deformation and breakup of an axisymmetric, conducting drop suspended in a nonconducting medium and subjected to an external electric field is numerically investigated here using an electrokinetic model. This model uses a combined level set-volume of fluid formulation of the deformable surfaces, along with a multiphase implementation of the Nernst-Planck equation for transport of ions, that allows for varying conductivity inside the drop. A phase diagram, based on a parametric study, is used to characterize the stability conditions. Stable drops with lower ion concentration are characterized by longer drop shapes than those achieved at higher ion concentrations. For higher drop ion concentration, greater charge accumulation is observed at drop tips. Consequently, such drops break up by pinching off rather than tip streaming. The charge contained in droplets released from unstable drops is shown to increase with drop ion concentration. These dynamic drop behaviors depend on the strength of the electric field and the concentration of ions in the drop and result from the interplay between the electric forces arising from the permittivity jump at the drop interface and the ions in the bulk. PMID:26274270

  3. Effects of insoluble surfactants on the nonlinear deformation and breakup of stretching liquid bridges

    NASA Astrophysics Data System (ADS)

    Ambravaneswaran, Bala; Basaran, Osman A.

    1999-05-01

    During the emission of single drops and the atomization of a liquid from a nozzle, threads of liquid are stretched and broken. A convenient setup for studying in a controlled manner the dynamics of liquid threads is the so-called liquid bridge, which is created by holding captive a volume of liquid between two solid disks and pulling apart the two disks at a constant velocity. Although the stability of static bridges and the dynamics of stretching bridges of pure liquids have been extensively studied, even a rudimentary understanding of the dynamics of the stretching and breakup of bridges of surfactant-laden liquids is lacking. In this work, the dynamics of a bridge of a Newtonian liquid containing an insoluble surfactant are analyzed by solving numerically a one-dimensional set of equations that results from a slender-jet approximation of the Navier-Stokes system that governs fluid flow and the convection-diffusion equation that governs surfactant transport. The computational technique is based on the method-of-lines, and uses finite elements for discretization in space and finite differences for discretization in time. The computational results reveal that the presence of an insoluble surfactant can drastically alter the physics of bridge deformation and breakup compared to the situation in which the bridge is surfactant free. They also make clear how the distribution of surfactant along the free surface varies with stretching velocity, bridge geometry, and bulk and surface properties of the liquid bridge. Gradients in surfactant concentration along the interface give rise to Marangoni stresses which can either retard or accelerate the breakup of the liquid bridge. For example, a high-viscosity bridge being stretched at a low velocity is stabilized by the presence of a surfactant of low surface diffusivity (high Peclet number) because of the favorable influence of Marangoni stresses on delaying the rupture of the bridge. This effect, however, can be lessened or

  4. Field and experimental constraints on the deformation and break-up up of injected magma (Invited)

    NASA Astrophysics Data System (ADS)

    Hodge, K. F.; Carazzo, G.; Jellinek, M.

    2010-12-01

    ), the injected tube is too stiff and does not go unstable or breakup. Initial field observations of migrating tubes (Paterson 2009) in the TIS suggest that the break-up of these features can be linked to the yield strength of the magma during deformation. Here, we present a field investigation that includes detailed mapping of ~100 migrating tubes in the Cathedral Peak Granite (along with some tubes in the Half Dome granite). Preliminary results suggest that a few long tubes appear to have been broken up into regularly spaced sections. Interestingly, the majority of the mapped tubes (specifically where they occur in large clusters) are located near a contact with either host rock or another intrusive unit in the TIS and are oriented roughly perpendicular to that contact. The preserved length scales of deformation are compared to experimental regimes in which tubes break up into blobs.

  5. Experimental Observations on the Deformation and Breakup of Water Droplets Near the Leading Edge of an Airfoil

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Feo, Alex

    2011-01-01

    This work presents the results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model placed at the end of the rotating arm was moved at speeds of 50 to 90 m/sec. A monosize droplet generator was employed to produce droplets that were allowed to fall from above, perpendicular to the path of the airfoil at a given location. High speed imaging was employed to observe the interaction between the droplets and the airfoil. The high speed imaging allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. A tracking software program was used to measure from the high speed movies the horizontal and vertical displacement of the droplet against time. The velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of a given droplet from beginning of deformation to breakup and/or hitting the airfoil. Results are presented for droplets with a diameter of 490 micrometers at airfoil speeds of 50, 60, 70, 80 and 90 m/sec

  6. Using crustal thickness and subsidence history on the Iberia-Newfoundland margins to constrain lithosphere deformation modes during continental breakup

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy

    2014-05-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history during continental breakup and seafloor spreading initiation leading to complex OCT architecture with hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust and continental slivers. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events for two profiles across the present-day conjugate Iberia-Newfoundland margins, using forward modelling of continental breakup and seafloor spreading initiation calibrated against observations of crustal basement thickness and subsidence. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling beneath that layer; extensional faulting and magmatic intrusions deform the topmost upper lithosphere, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling, as predicted by Braun et al. (2000) is also kinematically included in the lithosphere deformation model. Melt generation by decompressional melting is predicted using the parameterization and methodology of Katz et al. (2003). The distribution of lithosphere deformation, the

  7. Dependency of continental crustal rupture, decompression melt initiation and OCT architecture on lithosphere deformation modes during continental breakup: Numerical experiments

    NASA Astrophysics Data System (ADS)

    Jeanniot, L.; Kusznir, N. J.; Manatschal, G.

    2012-12-01

    During the continental breakup process, the initiation of sea-floor spreading requires both the rupture of the continental crust and the initiation of decompression melting. Using numerical experiments, we investigate how the deformation mode of continental lithosphere thinning and stretching controls the rupture of continental crust and lithospheric mantle, the onset of decompression melting and their relative timing. We use a two dimensional finite element viscous flow model to describe lithosphere and asthenosphere deformation. This flow field is used to advect lithosphere and asthenosphere material and temperature. Decompression melting is predicted using the parameterization scheme of Katz et al. (2003). Consistent with the observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996), we assume that the topmost continental and oceanic lithosphere, corresponding to the cooler brittle seismogenic layer, deforms by extensional faulting (which we approximate to pure-shear deformation) and magmatic intrusion. Beneath this topmost lithosphere layer approximately 15-20 km thick, we assume that deformation occurs in response to passive upwelling and thermal and melt buoyancy driven small-scale convection. The relative contribution of these deformation components is parameterised by the ratio Vz/Vx, where Vx is the half spreading rate applied to the topmost lithosphere deformation and Vz is the upwelling velocity associated with the small scale convection. We use a series of numerical experiments to investigate the dependency of continental crust and lithosphere rupture, decompression melt initiation, rifted margin ocean-continent transition architecture and subsidence history on the half-spreading rate Vx, buoyancy driven upwelling rate Vz, the ratio Vz/Vx and upper lithosphere pure-shear width W. Based on the numerical experiment results we explore a polyphase evolution of deformation modes leading to continental breakup, sea

  8. Finite element method for a class of viscoelastic flows in deforming domains applied to jet breakup

    NASA Astrophysics Data System (ADS)

    Keunings, R.

    1984-05-01

    A numerical method for solving a class of transient viscoelastic flows in domains with free boundaries which is based on a Galerkin finite element technique combined with a predictor/corrector scheme that allows for the prediction of stress field, velocity field and flow domain as a function of time is presented. The numerical procedure is applied to the analysis of surface tension driven breakup of liquid jets. The nonlinear growth of a periodic disturbance imposed on an infinitely long jet and leading to breakup was studied. It is predicted that in the Newtonian case the birth of satellite drops when inertia forces are present. It is shown that elasticity accelerates the breakup process at short times for an Oldroyd fluid which is consistent with linear stability analyses. This tendency however, is reversed at later times when a pattern of drops connected by stable filaments is obtained. The stabilizing effect of elastic forces, known experimentally for any years, and are predicted shown it is that the breakup mechanism of a viscoelastic jet cannot be described by linearized dynamics.

  9. Finite element method for a class of viscoelastic flows in deforming domains applied to jet breakup

    SciTech Connect

    Keunings, R.

    1984-05-01

    A numerical method for solving a class of transient viscoelastic flows in domains with free boundaries is based on a Galerkin/Finite Element technique combined with a predictor-corrector scheme that allows for the prediction of stress field, velocity field and flow domain as a function of time. The numerical procedure is applied to the analysis of surface-tension-driven breakup of liquid jets. We study the nonlinear growth of a periodic disturbance imposed on an infinitely long jet and leading to breakup. In the Newtonian case, we predict the birth of satellite drops when inertia forces are present. Results for an Oldroyd fluid show that elasticity accelerates the breakup process at short times which is consistent with linear stability analyses. However, this tendency is dramatically reversed at later times when a pattern of drops connected by remarkably stable filaments is obtained. We thus predict the stabilizing effect of elastic forces, known experimentally for many years, and show that the breakup mechanism of a viscoelastic jet cannot be described by linearized dynamics.

  10. Modeling of drop breakup in the bag breakup regime

    NASA Astrophysics Data System (ADS)

    Wang, C.; Chang, S.; Wu, H.; Xu, J.

    2014-04-01

    Several analytic models for predicting the drop deformation and breakup have been developed over the last three decades, but modeling drop breakup in the bag-type regime is less reported. In this Letter, a breakup model has been proposed to predict the drop deformation length and breakup time in the bag-type breakup regime in a more accurate manner. In the present model, the drop deformation which is approximately as the displacement of the centre of mass (c. m.) along the axis located at the centre of the drop, and the movement of c. m. is obtained by solving the pressure balance equation. The effects of the drop deformation on the drop external aerodynamic force are considered in this model. Drop breakup occurs when the deformation length reaches the maximum value and the maximum deformation length is a function of Weber number. The performance and applicability of the proposed breakup model are tested against the published experimental data.

  11. The optical manifestation of dispersive field-aligned bursts in auroral breakup arcs

    NASA Astrophysics Data System (ADS)

    Dahlgren, H.; Semeter, J. L.; Marshall, R. A.; Zettergren, M.

    2013-07-01

    High-resolution optical observations of a substorm expansion show dynamic auroral rays with surges of luminosity traveling up the magnetic field lines. Observed in ground-based imagers, this phenomenon has been termed auroral flames, whereas the rocket signatures of the corresponding energy dispersions are more commonly known as field-aligned bursts. In this paper, observations of auroral flames obtained at 50 frames/s with a scientific-grade Complementary Metal Oxide Semiconductor (CMOS) sensor (30° × 30° field of view, 30 m resolution at 120 km) are used to provide insight into the nature of the precipitating electrons similar to high-resolution particle detectors. Thanks to the large field of view and high spatial resolution of this system, it is possible to obtain a first-order estimate of the temporal evolution in altitude of the volume emission rate from a single sensor. The measured volume emission rates are compared with the sum of modeled eigenprofiles obtained for a finite set of electron beams with varying energy provided by the TRANSCAR auroral flux tube model. The energy dispersion signatures within each auroral ray can be analyzed in detail during a fraction of a second. The evolution of energy and flux of the precipitation shows precipitation spanning over a large range of energies, with the characteristic energy dropping from 2.1 keV to 0.87 keV over 0.2 s. Oscillations at 2.4 Hz in the magnetic zenith correspond to the period of the auroral flames, and the acceleration is believed to be due to Alfvenic wave interaction with electrons above the ionosphere.

  12. Observation of the spread of slow deformation in Greece following the breakup of the slab

    NASA Astrophysics Data System (ADS)

    Durand, Virginie; Bouchon, Michel; Floyd, Michael A.; Theodulidis, Nikos; Marsan, David; Karabulut, Hayrullah; Schmittbuhl, Jean

    2014-10-01

    Over the past two decades, geophysical observations have shown that earthquakes can trigger other earthquakes, raising the possibility that earthquake interaction plays an important role in the earth's deformation. We analyze here a "storm" of earthquakes in Greece and show that their interaction provides remarkable insight into the mechanics of one of the fastest deforming continental region in the world. A rupture of the African slab initiates a cascade of large earthquakes and a long episode of slow slip marking the downward plunge of the slab, the concomitant rollback of the subduction, and the subsequent detachment of southern Greece from the Eurasian plate. Intense crustal deformation, indicative of the resulting plate stretching, follows. This slow deformation which spreads in a few months over more than 500 km lasts ~3 years and triggers earthquakes. The observations also show that the retreat of the African subduction is the motor of the Aegean deformation.

  13. Aligned breakup of heavy nuclear systems as a new type of deep inelastic collisions at small impact parameters

    SciTech Connect

    Wilczynski, J.; Swiderski, L.; Pagano, A.; Cardella, G.; De Filippo, E.; La Guidara, E.; Papa, M.; Pirrone, S.; Amorini, F.; Anzalone, A.; Cavallaro, S.; Colonna, M.; Di Toro, M.; Maiolino, C.; Porto, F.; Rizzo, F.; Russotto, P.; Auditore, L.

    2010-06-15

    An interesting process of violent reseparation of a heavy nuclear system into three or four fragments of comparable size was recently observed in {sup 197}Au+{sup 197}Au collisions at 15 MeV/nucleon. Combined analysis of the binary deep inelastic events and the ternary and quaternary breakup events demonstrates that the newly observed ternary and quaternary reactions belong to the same wide class of deep inelastic collisions as the conventional (binary) damped reactions. It is shown that the ternary and quaternary breakup reactions occur at extremely inelastic collisions corresponding to small impact parameters, while more peripheral collisions lead to well-known binary deep inelastic reactions.

  14. Effect of surface alignment layer and polymer network on the Helfrich deformation in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Nemati, H.; Yang, D.-K.; Cheng, K.-L.; Liang, C.-C.; Shiu, J.-W.; Tsai, C.-C.; Zola, R. S.

    2012-12-01

    We show that the Helfrich deformation can be used for fast response time, low driving voltage reflective displays by using cholesteric liquid crystals under short voltage pulses (˜10 ms). Rather than turning planar domains into focal conic domains through a nucleation process, as used in bistable modes, the fast voltage pulse only deforms the cholesteric planar layers to form wrinkled layers. Since the deformed state is formed through a homogeneous process, quick response times and low operating voltage can be achieved. We studied the effects of alignment layer and dispersed polymer on the stability of the Helfrich deformed cholesteric layers, and found that homogeneous alignment layer and polymer network can inhibit the nucleation process responsible for breaking the layers.

  15. Using crustal thickness, subsidence and P-T-t history on the Iberia-Newfoundland & Alpine Tethys margins to constrain lithosphere deformation modes during continental breakup

    NASA Astrophysics Data System (ADS)

    Jeanniot, L.; Kusznir, N. J.; Manatschal, G.; Mohn, G.; Beltrando, M.

    2013-12-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history and OCT architecture, resulting in hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust before continental breakup and seafloor spreading. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single kinematic lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events, using forward modelling of crustal thickness, subsidence and P-T-t history calibrated against observations on the present-day Iberia-Newfoundland and the fossil analogue Alpine Tethys margins. Lithosphere deformation modes, represented by flow fields, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the topmost upper lithosphere inducing passive upwelling beneath that layer; the upper lithosphere is assumed to deform by extensional faulting and magmatic intrusions, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling is also included in the kinematic model as predicted by Braun et al (2000). We predict melt generation by decompressional melting using the parameterization and methodology of Katz et al., 2003. We use a series of numerical experiments, tested and calibrated against crustal thicknesses and subsidence observations, to determine the distribution of lithosphere

  16. Experimental validation of a numerical model for predicting the trajectory of blood drops in typical crime scene conditions, including droplet deformation and breakup, with a study of the effect of indoor air currents and wind on typical spatter drop trajectories.

    PubMed

    Kabaliuk, N; Jermy, M C; Williams, E; Laber, T L; Taylor, M C

    2014-12-01

    Bloodstain Pattern Analysis (BPA) provides information about events during an assault, e.g. location of participants, weapon type and number of blows. To extract the maximum information from spatter stains, the size, velocity and direction of the drop that produces each stain, and forces acting during flight, must be known. A numerical scheme for accurate modeling of blood drop flight, in typical crime scene conditions, including droplet oscillation, deformation and in-flight disintegration, was developed and validated against analytical and experimental data including passive blood drop oscillations, deformation at terminal velocity, cast-off and impact drop deformation and breakup features. 4th order Runge-Kutta timestepping was used with the Taylor Analogy Breakup (TAB) model and Pilch and Erdman's (1987) expression for breakup time. Experimental data for terminal velocities, oscillations, and deformation was obtained via digital high-speed imaging. A single model was found to describe drop behavior accurately in passive, cast off and impact scenarios. Terminal velocities of typical passive drops falling up to 8m, distances and times required to reach them were predicted within 5%. Initial oscillations of passive blood drops with diameters of 1mmdeformation. Blood drops with diameter 0.4-4mm and velocity 1-15m/s cast-off from a rotating disk showed low deformation levels (Weber number<3). Drops formed by blunt impact 0.1-2mm in diameter at velocities of 14-25m/s were highly deformed (aspect ratios down to 0.4) and the larger impact blood drops (∼1-1.5mm in diameter) broke up at critical Weber numbers of 12-14. Most break-ups occurred within 10-20cm of the impact point. The model predicted deformation

  17. The Breakup

    ERIC Educational Resources Information Center

    Lum, Lydia

    2011-01-01

    This article reports on the breakup between Texas Southmost College (TSC) and the upper-division University of Texas at Brownsville (UTB). The split marks the official end of an unusual 20-year partnership between TSC and the University of Texas System that, for the first time, ushered four-year university education into overwhelmingly Latino…

  18. Using subsidence and P-T-t history on the Alpine Tethys margin to constrain lithosphere deformation modes during continental breakup

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy; Beltrando, Marco

    2014-05-01

    Mantle exhumation and hyper-extended crust, as observed on the Iberia-Newfoundland conjugate margins, are key components of both present-day and fossil analogue magma-poor rifted margins. Conceptual models of the Alpine Tethys paleogeography evolution show a complex subsidence history, determined by the nature and composition of sedimentary, crustal and mantle rocks in the Alpine domains (Mohn et al., 2010). The relative timing of crustal rupture and decompressional melt initiation and inherited mantle composition control whether mantle exhumation may occur; the presence or absence of exhumed mantle therefore provides useful information on the timing of these events and constraints on lithosphere deformation modes and composition. A single mode of lithosphere deformation leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation modes for the fossil Alpine Tethys margin using a numerical model of the temporal and spatial evolution of lithosphere deformation; the model has been calibrated against observations of subsidence and P-T-t history for the Alpine Tethys margin. A 2D finite element viscous flow model (FeMargin) is used to generate flow fields for a sequence of lithosphere deformation modes, which are used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the topmost 15-20 km of the lithosphere inducing passive upwelling beneath that layer; the upper lithosphere is assumed to deform by extensional faulting and magmatic intrusions, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). We also include buoyancy enhanced upwelling in the kinematic model as proposed by Braun et al. (2000). We generate melt by decompressional melting using the parameterization and methodology of Katz et al. (2003). In the modelling of the Alpine Tethys margin

  19. Light modulation in planar aligned short-pitch deformed-helix ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Kotova, Svetlana P.; Samagin, Sergey A.; Pozhidaev, Evgeny P.; Kiselev, Alexei D.

    2015-12-01

    We study both experimentally and theoretically modulation of light in a planar aligned deformed-helix ferroelectric liquid crystal (DHFLC) cell with subwavelength helix pitch, which is also known as a short-pitch DHFLC. In our experiments, the azimuthal angle of the in-plane optical axis and electrically controlled parts of the principal in-plane refractive indices are measured as a function of voltage applied across the cell. Theoretical results giving the effective optical tensor of a short-pitch DHFLC expressed in terms of the smectic tilt angle and the refractive indices of the ferroelectric liquid crystal (FLC) are used to fit the experimental data. The optical anisotropy of the FLC material is found to be weakly biaxial. For both the transmissive and reflective modes, the results of fitting are applied to model the phase and amplitude modulation of light in the DHFLC cell. We demonstrate that if the thickness of the DHFLC layer is about 50 μ m , the detrimental effect of field-induced rotation of the in-plane optical axes on the characteristics of an axicon designed using the DHFLC spatial light modulator in the reflective mode is negligible.

  20. Light modulation in planar aligned short-pitch deformed-helix ferroelectric liquid crystals.

    PubMed

    Kotova, Svetlana P; Samagin, Sergey A; Pozhidaev, Evgeny P; Kiselev, Alexei D

    2015-12-01

    We study both experimentally and theoretically modulation of light in a planar aligned deformed-helix ferroelectric liquid crystal (DHFLC) cell with subwavelength helix pitch, which is also known as a short-pitch DHFLC. In our experiments, the azimuthal angle of the in-plane optical axis and electrically controlled parts of the principal in-plane refractive indices are measured as a function of voltage applied across the cell. Theoretical results giving the effective optical tensor of a short-pitch DHFLC expressed in terms of the smectic tilt angle and the refractive indices of the ferroelectric liquid crystal (FLC) are used to fit the experimental data. The optical anisotropy of the FLC material is found to be weakly biaxial. For both the transmissive and reflective modes, the results of fitting are applied to model the phase and amplitude modulation of light in the DHFLC cell. We demonstrate that if the thickness of the DHFLC layer is about 50μm, the detrimental effect of field-induced rotation of the in-plane optical axes on the characteristics of an axicon designed using the DHFLC spatial light modulator in the reflective mode is negligible. PMID:26764706

  1. A patient alignment solution for lung SBRT setups based on a deformable registration technique

    SciTech Connect

    Lu Bo; Mittauer, Kathryn; Li, Jonathan; Samant, Sanjiv; Dagan, Roi; Okunieff, Paul; Kahler, Darren; Liu, Chihray

    2012-12-15

    Purpose: In this work, the authors propose a novel registration strategy for translation-only correction scenarios of lung stereotactic body radiation therapy setups, which can achieve optimal dose coverage for tumors as well as preserve the consistency of registrations with minimal human interference. Methods: The proposed solution (centroid-to-centroidor CTC solution) uses the average four-dimensional CT (A4DCT) as the reference CT. The cone-beam CT (CBCT) is deformed to acquire a new centroid for the internal target volume (ITV) on the CBCT. The registration is then accomplished by simply aligning the centroids of the ITVs between the A4DCT and the CBCT. Sixty-seven cases using 64 patients (each case is associated with separate isocenters) have been investigated with the CTC method and compared with the conventional gray-value (G) mode and bone (B) mode registration methods. Dosimetric effects among the tree methods were demonstrated by 18 selected cases. The uncertainty of the CTC method has also been studied. Results: The registration results demonstrate the superiority of the CTC method over the other two methods. The differences in the D99 and D95 ITV dose coverage between the CTC method and the original plan is small (within 5%) for all of the selected cases except for one for which the tumor presented significant growth during the period between the CT scan and the treatment. Meanwhile, the dose coverage differences between the original plan and the registration results using either the B or G method are significant, as tumor positions varied dramatically, relative to the rib cage, from their positions on the original CT. The largest differences between the D99 and D95 dose coverage of the ITV using the B or G method versus the original plan are as high as 50%. The D20 differences between any of the methods versus the original plan are all less than 2%. Conclusions: The CTC method can generate optimal dose coverage to tumors with much better consistency

  2. Surviving Atmospheric Spacecraft Breakup

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; Conley, Catharine A.

    2003-01-01

    In essence, to survival a spacecraft breakup an animal must not experience a lethal event. Much as with surviving aircraft breakup, dissipation of lethal forces via breakup of the craft around the organism is likely to greatly increase the odds of survival. As spacecraft can travel higher and faster than aircraft, it is often assumed that spacecraft breakup is not a survivable event. Similarly, the belief that aircraft breakup or crashes are not survivable events is still prevalent in the general population. As those of us involved in search and rescue know, it is possible to survive both aircraft breakup and crashes. Here we make the first report of an animal, C. elegans, surviving atmospheric breakup of the spacecraft supporting it and discuss both the lethal events these animals had to escape and the implications implied for search and rescue following spacecraft breakup.

  3. Satellite Breakup Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Leleux, Darrin P.; Smith, Jason T.

    2006-01-01

    Many satellite breakups occur as a result of an explosion of stored energy on-board spacecraft or rocket-bodies. These breakups generate a cloud of tens or possibly hundreds of thousands of debris fragments which may pose a transient elevated threat to spaceflight crews and vehicles. Satellite breakups pose a unique threat because the majority of the debris fragments are too small to be tracked from the ground. The United States Human Spaceflight Program is currently implementing a risk mitigation strategy that includes modeling breakup events, establishing action thresholds, and prescribing corresponding mitigation actions in response to satellite breakups.

  4. Cell-generated traction forces and the resulting matrix deformation modulate microvascular alignment and growth during angiogenesis

    PubMed Central

    Underwood, Clayton J.; Edgar, Lowell T.; Hoying, James B.

    2014-01-01

    The details of the mechanical factors that modulate angiogenesis remain poorly understood. Previous in vitro studies of angiogenesis using microvessel fragments cultured within collagen constructs demonstrated that neovessel alignment can be induced via mechanical constraint of the boundaries (i.e., boundary conditions). The objective of this study was to investigate the role of mechanical boundary conditions in the regulation of angiogenic alignment and growth in an in vitro model of angiogenesis. Angiogenic microvessels within three-dimensional constructs were subjected to different boundary conditions, thus producing different stress and strain fields during growth. Neovessel outgrowth and orientation were quantified from confocal image data after 6 days. Vascularity and branching decreased as the amount of constraint imposed on the culture increased. In long-axis constrained hexahedral constructs, microvessels aligned parallel to the constrained axis. In contrast, constructs that were constrained along the short axis had random microvessel orientation. Finite element models were used to simulate the contraction of gels under the various boundary conditions and to predict the local strain field experienced by microvessels. Results from the experiments and simulations demonstrated that microvessels aligned perpendicular to directions of compressive strain. Alignment was due to anisotropic deformation of the matrix from cell-generated traction forces interacting with the mechanical boundary conditions. These findings demonstrate that boundary conditions and thus the effective stiffness of the matrix regulate angiogenesis. This study offers a potential explanation for the oriented vascular beds that occur in native tissues and provides the basis for improved control of tissue vascularization in both native tissues and tissue-engineered constructs. PMID:24816262

  5. Surviving atmospheric spacecraft breakup

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; McLamb, William

    2005-01-01

    Spacecraft travel higher and faster than aircraft, making breakup potentially less survivable. As with aircraft breakup, the dissipation of lethal forces via spacecraft breakup around an organism is likely to greatly increase the odds of survival. By employing a knowledge of space and aviation physiology, comparative physiology, and search-and-rescue techniques, we were able to correctly predict and execute the recovery of live animals following the breakup of the space shuttle Columbia. In this study, we make what is, to our knowledge, the first report of an animal, Caenorhabditis elegans, surviving the atmospheric breakup of the spacecraft that was supporting it and discuss both the lethal events these animals had to escape and the implications for search and rescue following spacecraft breakup.

  6. Treatment of chronic low back pain in patients with spinal deformities using a sagittal re-alignment brace

    PubMed Central

    Weiss, Hans-Rudolf; Werkmann, Mario

    2009-01-01

    Background For adult scoliosis patients with chronic low back pain bracing is initially indicated before spinal surgery is considered. Until recently there has been a lack of research into the effect upon pain reductions in the mid and long-term. Promising results have been documented in short-term studies for the application of a sagittal re-alignment brace in patients with spinal deformities and along with pain; however mid-term and long-term results are not yet available. The purpose of this study is to investigate the mid-term effects of this brace with respect to pain control. Materials and methods 67 patients (58 females and 9 males) with chronic low back pain (> 24 months) and the diagnosis of scoliosis or hyperkyphosis were treated with a sagittal re-alignment brace (physio-logic brace™) between January 2006 and July 2007. The indication for this kind of brace treatment was derived from a positive sagittal re-alignment test (SRT) and the exclusion of successful conservative treatment during the last 24 months. The aim of this type of conservative intervention was to avoid surgery for chronic low back pain. Results The average pain intensity was measured on the Roland and Morris VRS (5 steps) before treatment. This was 3.3 (t1), at the time of brace adjustment it was 2.7 (t2) and after at an average observation time of 18 months it was 2.0 (t3). The differences were highly significant in the Wilcoxon test. Discussion Short-term measurements showed that a significant pain reduction is possible in chronic postural low back pain using a sagittal re-alignment brace inducing lumbar re-lordosation. In a preliminary report at adjustment (t2), highly significant improvements of pain intensity have also been demonstrated. At 6 months of treatment however, no improvement was measured. The improvement of the mid-term effects (18 months) found in this study compared to the preliminary report may be due to the changed approach to compliance: whilst the bracing standard

  7. Atmospheric breakup of meteoroids

    NASA Astrophysics Data System (ADS)

    El-Dasher, Bassem; Swift, Damian; Remington, Bruce; Mulford, Roberta; Milathianaki, Despina; Chen, Laura; Eakins, Daniel

    2013-06-01

    When meteoroids enter a planetary atmosphere, breakup is governed by the Rayleigh-Taylor instability, mitigated by the strength of the meteoritic material. Particle sizes in the breakup cascade depend on the perturbation length scales exhibiting growth. The physics of meteoroid entry is thus related closely to experiments where strength at high pressure is inferred from the Rayleigh-Taylor growth of perturbations. There are significant discrepancies between predicted and observed breakup altitudes of meteoroids, which in turn reduce the accuracy of assessments of the impact threat from asteroids. Simulations, validated by laboratory experiments of instability growth, can play a role in understanding the breakup of meteoroids and thus the threat from asteroids. Continuum dynamics simulations provide more rigorous stress distribution than are usually used in breakup analyses, and can be used to calibrate compact expressions describing the breakup conditions. We have measured the strength of samples from Fe-rich meteorites using indentation and shock-loading experiments, and found them to be significantly stronger than was previously realized. This, together with the more accurate stress analysis, removes the altitude discrepancy for Fe-rich meteorites. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Photo-Induced Anomalous Deformation of Poly(N-Isopropylacrylamide) Gel Hybridized with an Inorganic Nanosheet Liquid Crystal Aligned by Electric Field.

    PubMed

    Inadomi, Takumi; Ikeda, Shogo; Okumura, Yasushi; Kikuchi, Hirotsugu; Miyamoto, Nobuyoshi

    2014-09-16

    Poly-(N-isopropylacrylamide) (PNIPA) hydrogel films doped with uniaxially aligned liquid crystalline (LC) nanosheets adsorbed with a dye are synthesized and its anomalous photothermal deformation is demonstrated. The alignment of the nanosheet LC at the cm-scale is easily achieved by the application of an in-plane or out-of-plane AC electric field during photo-polymerization. A photoresponsive pattern is printable onto the gel with μm-scale resolution by adsorption of the dye through a pattern-holed silicone rubber. When the gel is irradiated with light, only the colored part is photothermally deformed. Interestingly, the photo-irradiated gel shows temporal expansion along one direction followed by anisotropic shrinkage, which is an anomalous behavior for a conventional PNIPA gel. PMID:25228493

  9. Description of Jet Breakup

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.

    1996-01-01

    In this article we review recent results on the breakup of cylindrical jets of a Newtonian fluid. Capillary forces provide the main driving mechanism and our interest is in the description of the flow as the jet pinches to form drops. The approach is to describe such topological singularities by constructing local (in time and space) similarity solutions from the governing equations. This is described for breakup according to the Euler, Stokes or Navier-Stokes equations. It is found that slender jet theories can be applied when viscosity is present, but for inviscid jets the local shape of the jet at breakup is most likely of a non-slender geometry. Systems of one-dimensional models of the governing equations are solved numerically in order to illustrate these differences.

  10. Coulomb Breakup Problem

    SciTech Connect

    Kadyrov, A. S.; Bray, I.; Stelbovics, A. T.; Mukhamedzhanov, A. M.

    2008-12-05

    We formulate scattering theory in the framework of a surface-integral approach utilizing analytically known asymptotic forms of the three-body wave functions. This formulation is valid for both short-range and Coulombic potentials. The post and prior forms of the breakup amplitude are derived without any reference to renormalization procedures.

  11. Selective breakup of lipid vesicles under acoustic microstreaming flow

    NASA Astrophysics Data System (ADS)

    Pommella, Angelo; Garbin, Valeria

    2014-11-01

    The dynamics of lipid vesicles under small deformation in simple shear flow is well characterized: complex behaviors such as tumbling, breathing, and tank-treading are observed depending on the viscosity contrast between inner and outer fluid, vesicle excess area, membrane viscosity, and bending modulus. In contrast, phenomena upon large deformation are still poorly understood, in particular vesicle breakup. Simple shear flow geometries do not allow to reach the large stresses necessary to cause vesicle breakup. We use the acoustic microstreaming flow generated by an oscillating microbubble to study the large deformation and breakup of giant unilamellar vesicles. The deformation is governed by a capillary number based on the membrane elasticity K : Ca = ηγ˙a / K where η is the viscosity of the outer fluid, a the vesicle radius, and γ˙ the shear rate. We explore the effect of the mechanical properties of the membrane, and demonstrated selective breakup of vesicles based on the difference in membrane elasticity. The results reveal the influence of membrane mechanical properties in shear-induced vesicle breakup and the possibility to control in a quantitative way the selectivity of the process, with potential applications in biomedical technologies. The authors acknowledge funding from EU/FP7 Grant Number 618333.

  12. Cervical compensatory alignment changes following correction of adult thoracic deformity: a multicenter experience in 57 patients with a 2-year follow-up.

    PubMed

    Oh, Taemin; Scheer, Justin K; Eastlack, Robert; Smith, Justin S; Lafage, Virginie; Protopsaltis, Themistocles S; Klineberg, Eric; Passias, Peter G; Deviren, Vedat; Hostin, Richard; Gupta, Munish; Bess, Shay; Schwab, Frank; Shaffrey, Christopher I; Ames, Christopher P

    2015-06-01

    OBJECT Alignment changes in the cervical spine that occur following surgical correction for thoracic deformity remain poorly understood. The purpose of this study was to evaluate such changes in a cohort of adults with thoracic deformity treated surgically. METHODS The authors conducted a multicenter retrospective analysis of consecutive patients with thoracic deformity. Inclusion criteria for this study were as follows: corrective osteotomy for thoracic deformity, upper-most instrumented vertebra (UIV) between T-1 and T-4, lower-most instrumented vertebra (LIV) at or above L-5 (LIV ≥ L-5) or at the ilium (LIV-ilium), and a minimum radiographic follow-up of 2 years. Sagittal radiographic parameters were assessed preoperatively as well as at 3 months and 2 years postoperatively, including the C-7 sagittal vertical axis (SVA), C2-7 cervical lordosis (CL), C2-7 SVA, T-1 slope (T1S), T1S minus CL (T1S-CL), T2-12 thoracic kyphosis (TK), apical TK, lumbar lordosis (LL), pelvic incidence (PI), PI-LL, pelvic tilt (PT), and sacral slope (SS). RESULTS Fifty-seven patients with a mean age of 49.1 ± 14.6 years met the study inclusion criteria. The preoperative prevalence of increased CL (CL > 15°) was 48.9%. Both 3-month and 2-year apical TK improved from baseline (p < 0.05, statistically significant). At the 2-year follow-up, only the C2-7 SVA increased significantly from baseline (p = 0.01), whereas LL decreased from baseline (p < 0.01). The prevalence of increased CL was 35.3% at 3 months and 47.8% at 2 years, which did not represent a significant change. Postoperative cervical alignment changes were not significantly different from preoperative values regardless of the LIV (LIV ≥ L-5 or LIV-ilium, p > 0.05 for both). In a subset of patients with a maximum TK ≥ 60° (35 patients) and 3-column osteotomy (38 patients), no significant postoperative cervical changes were seen. CONCLUSION Increased CL is common in adult spinal deformity patients with thoracic deformities

  13. Air induced breakup of drops.

    NASA Astrophysics Data System (ADS)

    Han, Jaehoon; Tryggvason, Gretar

    1997-11-01

    The deformation and breakup of drops subject to both sudden and gradual acceleration is examined by axisymmetric inviscid and full numerical simulations. In the full simulations, the Navier Stokes equations are solved for the fluid inside and outside of the drop by a Front Tracking/Finite Difference Method. In the limit of small density stratification, inviscid simulations show the formation of a toroidal drop for small surface tension and the formation of skirts as the surface tension is increased. The viscous computations show a similar transition plus a RbagS break up for a relatively high surface tension, but not high enough so that the drop reaches a steady state deformation. The RbagS break up mode appears when the drop slows down due to viscous dissipation after most of its fluid has accumulated in the rim, forming a torous connected by a thin film. A RbagS is formed when the rim starts to fall faster than the film. The various break up modes, as a function of the Ohnesorge and Weber (or Eotvos) numbers as well as property ratios is discussed. Supported by AFOSR.

  14. Quantitative analysis of tissue deformation dynamics reveals three characteristic growth modes and globally aligned anisotropic tissue deformation during chick limb development

    PubMed Central

    Morishita, Yoshihiro; Kuroiwa, Atsushi; Suzuki, Takayuki

    2015-01-01

    Tissue-level characterization of deformation dynamics is crucial for understanding organ morphogenetic mechanisms, especially the interhierarchical links among molecular activities, cellular behaviors and tissue/organ morphogenetic processes. Limb development is a well-studied topic in vertebrate organogenesis. Nevertheless, there is still little understanding of tissue-level deformation relative to molecular and cellular dynamics. This is mainly because live recording of detailed cell behaviors in whole tissues is technically difficult. To overcome this limitation, by applying a recently developed Bayesian approach, we here constructed tissue deformation maps for chick limb development with high precision, based on snapshot lineage tracing using dye injection. The precision of the constructed maps was validated with a clear statistical criterion. From the geometrical analysis of the map, we identified three characteristic tissue growth modes in the limb and showed that they are consistent with local growth factor activity and cell cycle length. In particular, we report that SHH signaling activity changes dynamically with developmental stage and strongly correlates with the dynamic shift in the tissue growth mode. We also found anisotropic tissue deformation along the proximal-distal axis. Morphogenetic simulation and experimental studies suggested that this directional tissue elongation, and not local growth, has the greatest impact on limb shaping. This result was supported by the novel finding that anisotropic tissue elongation along the proximal-distal axis occurs independently of cell proliferation. Our study marks a pivotal point for multi-scale system understanding in vertebrate development. PMID:25858459

  15. An auroral breakup mechanism

    NASA Technical Reports Server (NTRS)

    Maggs, J. E.

    1973-01-01

    A purely growing electrostatic drift instability driven by the electron temperature gradient at the inner edge of the plasma sheet can grow for large enough values of the temperature gradient. The parallel electric field associated with the instability is localized near the magnetic equator. The growth of the drift instability leads to enhanced whistler noise and increased electron pitch angle diffusion. If the current limit is exceeded in the ionosphere while the parallel electric field of the drift instability exists along the field line, rapid electron precipitation (the auroral breakup) can result.

  16. Development of a droplet breakup model considering aerodynamic and droplet collision effects

    NASA Technical Reports Server (NTRS)

    Wert, K. L.; Jacobs, H. R.

    1993-01-01

    A model is currently under development to predict the occurrence and outcome of spray droplet breakup induced by aerodynamic forces and droplet collisions. It is speculated that these phenomena may be significant in determining the droplet size distribution in a spray subjected to acoustic velocity fluctuations. The goal is to integrate this breakup model into a larger spray model in order to examine the effects of combustion instabilities on liquid rocket motor fuel sprays. The model is composed of three fundamental components: a dynamic equation governing the deformation of the droplet, a criterion for breakage based on the amount of deformation energy stored in the droplet and an energy balance based equation to predict the Sauter mean diameter of the fragments resulting from breakup. Comparison with published data for aerodynamic breakup indicates good agreement in terms of predicting the occurrence of breakup. However, the model significantly over predicts the size of the resulting fragments. This portion of the model is still under development.

  17. Development of a droplet breakup model considering aerodynamic and droplet collision effects

    NASA Astrophysics Data System (ADS)

    Wert, K. L.; Jacobs, H. R.

    1993-11-01

    A model is currently under development to predict the occurrence and outcome of spray droplet breakup induced by aerodynamic forces and droplet collisions. It is speculated that these phenomena may be significant in determining the droplet size distribution in a spray subjected to acoustic velocity fluctuations. The goal is to integrate this breakup model into a larger spray model in order to examine the effects of combustion instabilities on liquid rocket motor fuel sprays. The model is composed of three fundamental components: a dynamic equation governing the deformation of the droplet, a criterion for breakage based on the amount of deformation energy stored in the droplet and an energy balance based equation to predict the Sauter mean diameter of the fragments resulting from breakup. Comparison with published data for aerodynamic breakup indicates good agreement in terms of predicting the occurrence of breakup. However, the model significantly over predicts the size of the resulting fragments. This portion of the model is still under development.

  18. On the breakup of tectonic plates by polar wandering

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1974-01-01

    The equations for the stresses in a homogeneous shell of uniform thickness caused by a shift of the axis of rotation are derived. The magnitude of these stresses reaches a maximum value of the order of 10 to the 9th power dyn/sq cm, which is sufficient for explaining a tectonic breakup. In order to deduce the fracture pattern according to which the breakup of tectonic plates can be expected the theory of plastic deformation of shells is applied. The analysis of this pattern gives an explanation of the existing boundary systems of the major tectonic plates as described by Morgan (1968), LePichon (1968) and Isacks et al. (1968).

  19. Spontaneous Periodic Deformations in Nonchiral Planar-Aligned Bimesogens with a Nematic-Nematic Transition and a Negative Elastic Constant

    NASA Astrophysics Data System (ADS)

    Panov, V. P.; Nagaraj, M.; Vij, J. K.; Panarin, Yu. P.; Kohlmeier, A.; Tamba, M. G.; Lewis, R. A.; Mehl, G. H.

    2010-10-01

    Hydrocarbon linked mesogenic dimers are found to exhibit an additional nematic phase below the conventional uniaxial nematic phase as confirmed by x-ray diffraction. The phase produces unusual periodic stripe domains in planar cells. The stripes are found to be parallel to the rubbing direction (in rubbed cells) with a well-defined period equal to double the cell gap. The stripes appear without external electromagnetic field, temperature or thickness gradients, rubbing or hybrid alignment treatments. Simple modeling proposes a negative sign for at least one of the two elastic constants: splay and twist, as a necessary condition for the observed pattern.

  20. Elastic Coulomb breakup of 34Na

    NASA Astrophysics Data System (ADS)

    Singh, G.; Shubhchintak, Chatterjee, R.

    2016-08-01

    Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our

  1. The role of magnetic flux tube deformation and magnetosheath plasma beta in the saturation of the Region 1 field-aligned current system

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Eriksson, S.; Wiltberger, M.

    2015-03-01

    The phenomena of cross polar cap potential (CPCP) and ionospheric field-aligned current (FAC) saturation remain largely unexplained. In the present study, we expand upon the Alfvén wing model of CPCP saturation by investigating its impact on the magnetosphere-ionosphere current system, particularly the Region 1 FAC input into the polar cap. Our hypothesis is that the ability of open flux tubes to deform in response to applied fluid stress from the magnetosheath is governed by the magnetosheath plasma beta, which in turn governs the Maxwell stress imposed on ionospheric plasma from the magnetosphere. We performed 32 MHD simulations with varying solar wind density and interplanetary magnetic field strength and show that the plasma beta does govern the deformation of open field lines, as well as the nonlinear response of the Region 1 FAC system to increasingly southward interplanetary magnetic field. Further, we show that the current-voltage relationship in the ionosphere also shows a dependence on the plasma beta in the magnetosheath, with the ionosphere becoming more resistive at lower beta.

  2. The Role of Polar Cap Flux Tube Deformation and Magnetosheath Plasma Beta in the Saturation of the Region 1 Field-Aligned Current System

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Eriksson, S.; Wiltberger, M. J.

    2014-12-01

    The phenomena of cross-polar cap potential (CPCP) and ionospheric field-aligned current (FAC) saturation remains largely unexplained. In this study, we expand upon the Alfvén Wing model of CPCP saturation by investigating its impact on the magnetosphere-ionosphere current system, particularly the Region 1 FAC input into the polar cap. Our hypothesis is that the ability of open flux tubes to deform in response to applied fluid stress from the magnetosheath is governed by the magnetosheath plasma beta, which in turn governs the Maxwell stress imposed on ionospheric plasma from the magnetosphere. This leads both the Region 1 FAC input as well as the ionospheric convection strength, as represented by the CPCP, to saturate in response to the interplanetary magnetic field (IMF) driving. We perform 32 simulations using the Lyon-Fedder-Mobarry (LFM) Magnetohydrodynamic (MHD) model with varying solar wind density and IMF strength, and demonstrate that the plasma beta does govern the deformation of polar cap and lobe field lines, as well as the non-linear response of the Region 1 FAC system to increasingly southward IMF. Further, we show that the current-voltage relationship in the ionosphere also shows a dependence on the plasma beta in the magnetosheath, with the ionosphere becoming more resistive at lower beta.

  3. Breakup modes of fluid drops in confined shear flows

    NASA Astrophysics Data System (ADS)

    Barai, Nilkamal; Mandal, Nibir

    2016-07-01

    Using a conservative level set method we investigate the deformation behavior of isolated spherical fluid drops in a fluid channel subjected to simple shear flows, accounting the following three non-dimensional parameters: (1) degree of confinement (Wc = 2a/h, where a is the drop radius and h is the channel thickness); (2) viscosity ratio between the two fluids (λ = μd/μm, where μd is the drop viscosity and μm is the matrix viscosity); and (3) capillary number (Ca). For a given Wc, a drop steadily deforms to attain a stable geometry (Taylor number and inclination of its long axis to the shear direction) when Ca < 0.3. For Ca > 0.3, the deformation behavior turns to be unsteady, leading to oscillatory variations of both its shape and orientation with progressive shear. This kind of unsteady deformation also occurs in a condition of high viscosity ratios (λ > 2). Here we present a detailed parametric analysis of the drop geometry with increasing shear as a function of Wc, Ca, and λ. Under a threshold condition, deforming drops become unstable, resulting in their breakup into smaller droplets. We recognize three principal modes of breakup: Mode I (mid-point pinching), Mode II (edge breakup), and Mode III (homogeneous breakup). Each of these modes is shown to be most effective in the specific field defined by Ca and λ. Our study also demonstrates the role of channel confinement (Wc) in controlling the transition of Mode I to III. Finally, we discuss implications of the three modes in determining characteristic drop size distributions in multiphase flows.

  4. Experimental study of submillimeter droplets dynamics and breakup in continuous supersonic flow terminated by shock wave

    NASA Astrophysics Data System (ADS)

    Gobyzov, Oleg; Lozhkin, Yuriy; Ryabov, Mikhail; Markovich, Dmitriy

    2016-03-01

    The present paper reports an application of optical methods, namely PIV, background-oriented-schlieren (BOS) and high-magnification imaging with background illumination to study of dynamics and breakup of 10-100 μm size droplets in continuous supersonic flow terminated by a normal shock wave. Flow diagnostics was performed by means of BOS and PIV. Shadow photography allowed to specify velocity ranges for different droplet sizes and to visualize droplets dynamics and breakup modes. Features of the experimental setup and certain details of implemented measurement system are considered. Results of velocity measurements and droplets behavior, including deformation and breakup, are presented and analysis of experimental conditions and dimensionless parameters affecting the droplets behavior is performed. Distinctive features of deformation and breakup processes of submillimeter scale droplets are revealed.

  5. Correction of static axial alignment in children with knee varus or valgus deformities through guided growth: Does it also correct dynamic frontal plane moments during walking?

    PubMed

    Böhm, Harald; Stief, Felix; Sander, Klaus; Hösl, Matthias; Döderlein, Leonhard

    2015-09-01

    Malaligned knees are predisposed to the development and progression of unicompartmental degenerations because of the excessive load placed on one side of the knee. Therefore, guided growth in skeletally immature patients is recommended. Indication for correction of varus/valgus deformities are based on static weight bearing radiographs. However, the dynamic knee abduction moment during walking showed only a weak correlation to malalignment determined by static radiographs. Therefore, the aim of the study was to measure the effects of guided growth on the normalization of frontal plane knee joint moments during walking. 15 legs of 8 patients (11-15 years) with idiopathic axial varus or valgus malalignment were analyzed. 16 typically developed peers served as controls. Instrumented gait analysis and clinical assessment were performed the day before implantation and explantation of eight-plates. Correlation between static mechanical tibiofemoral axis angle (MAA) and dynamic frontal plane knee joint moments and their change by guided growth were performed. The changes in dynamic knee moment in the frontal plane following guided growth showed high and significant correlation to the changes in static MAA (R=0.97, p<0.001). Contrary to the correlation of the changes, there was no correlation between static and dynamic measures in both sessions. In consequence two patients that had a natural knee moment before treatment showed a more pathological one after treatment. In conclusion, the changes in the dynamic load situation during walking can be predicted from the changes in static alignment. If pre-surgical gait analysis reveals a natural load situation, despite a static varus or valgus deformity, the intervention must be critically discussed. PMID:26159802

  6. Fusion and Breakup of Weakly Bound Nuclei

    SciTech Connect

    Gomes, P. R. S.; Lubian, J.; Padron, I.; Crema, E.; Chamon, L. C.; Hussein, M. S.; Canto, L. F.

    2006-08-14

    We discuss the influence of the breakup process of weakly bound nuclei on the fusion cross section. The complete fusion for heavy targets is found to be suppressed due to the incomplete fusion following the breakup, whereas this effect is negligible for light targets. The total fusion cross sections for stable projectiles are not affected by the breakup process, whereas it is suppressed for halo projectiles. The non capture breakup is the dominant process at sub-barrier energies.

  7. Mechanism of Water Droplet Breakup Near the Leading Edge of an Airfoil

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida, Garcia

    2012-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. The airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Droplet deformation is defined and studied against main parameters. The high speed imaging allowed observation of the actual mechanism of breakup and identification of the sequence of configurations from the initiation of the breakup to the disintegration of the droplet. Results and comparisons are presented for droplets of diameters in the range of 500 to 1800 microns, and airfoil velocities of 70 and 90 m/sec.

  8. Mechanism of Water Droplet Breakup near the Leading Edge of an Airfoil

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida Garcia

    2012-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de T cnica Aeroespacial (INTA) in Madrid, Spain. The airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Droplet deformation is defined and studied against main parameters. The high speed imaging allowed observation of the actual mechanism of breakup and identification of the sequence of configurations from the initiation of the breakup to the disintegration of the droplet. Results and comparisons are presented for droplets of diameters in the range of 500 to 1800 micrometers, and airfoil velocities of 70 and 90 meters/second.

  9. Droplet Breakup Mechanisms in Air-blast Atomizers

    NASA Astrophysics Data System (ADS)

    Aliabadi, Amir Abbas; Taghavi, Seyed Mohammad; Lim, Kelly

    2011-11-01

    Atomization processes are encountered in many natural and man-made phenomena. Examples are pollen release by plants, human cough or sneeze, engine fuel injectors, spray paint and many more. The physics governing the atomization of liquids is important in understanding and utilizing atomization processes in both natural and industrial processes. We have observed the governing physics of droplet breakup in an air-blast water atomizer using a high magnification, high speed, and high resolution LASER imaging technique. The droplet breakup mechanisms are investigated in three major categories. First, the liquid drops are flattened to form an oblate ellipsoid (lenticular deformation). Subsequent deformation depends on the magnitude of the internal forces relative to external forces. The ellipsoid is converted into a torus that becomes stretched and disintegrates into smaller drops. Second, the drops become elongated to form a long cylindrical thread or ligament that break up into smaller drops (Cigar-shaped deformation). Third, local deformation on the drop surface creates bulges and protuberances that eventually detach themselves from the parent drop to form smaller drops.

  10. Collision, Coalescence and Breakup of Raindrops. Part I: Experimentally Established Coalescence Efficiencies and Fragment Size Distributions in Breakup.

    NASA Astrophysics Data System (ADS)

    Low, T. B.; List, Roland

    1982-07-01

    The collision, coalescence and breakup of single raindrop pairs were studied at terminal velocities and laboratory pressure (100 kPa) in 761 collision experiments (out of 14 000 attempts). Six size combinations were used with drop pair diameters of [0.18;.0.0395 cm], [0.40; 0.0395 cm], [0.44; 0.0395 cm], [0.18; 0.0715 cm], [0.18; 0.10 cm] and [0.30; 0.10 cm]. For averaging purposes the experiments were repeated over one hundred times for each pair.The new coalescence efficiencies and fragment size distributions in breakup turned out to be consistent with those of McTaggart-Cowan and List (1975b) and permitted the combination of the two data sets into a single data bank spanning essentially the entire range of raindrop sizes.The analysis addressed three main geometric shapes formed by the drops after initial contact, namely, filaments, sheets and disks, and the fragment size distributions after breakup. Significant collisional growth, i.e., coalescence, occurred only when drops <0.06 cm in diameter were struck by larger ones. An empirical equation involving collision kinetic (CKE) and surface tension energies was developed to approximate the observed coalescence efficiencies.Breakup fragment size distributions normally show two or three peaks, one close to the size of the large drop of the collision pair, one at times (for filaments) reflecting the small drop, and the third centered at sizes below the small drop diameter. At high energy collisions involving larger drops the mechanism most favorable for coalescence was the disk shape because with its high deformation it is able to dissipate the most energy either through air drag or by internal viscosity through oscillations. The lowest collision energy for breakup is required for filaments; more is needed for sheets and most for disks.

  11. Beam breakup calculations for the second axis of DARHT

    SciTech Connect

    Fawley, William M.; Chen, Y.-J.; Houck, T.L.

    1999-08-20

    The accelerator for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility will produce a 4-kA, 20-MeV, 2-{micro}s output electron beam with a design goal of less than 1000 {pi} mm-mrad normalized transverse emittance and less than 0.5-mm beam centroid motion. In order to meet this goal, the beam transport must have excellent optics and the beam breakup instability (BBU) must be limited in growth. Using a number of simulation codes such as AMOS and BREAKUP, we have modeled the transverse impedances of the DARHT-II accelerator cells and the electron beam response to different transverse excitations such as injector RF noise, magnetic dipole fields arising from the 90-degree bend between the cathode stalk and insulator column, and downstream solenoid alignment errors. The very low Q ({approx}2) predicted for the most important TM dipole modes has prompted us to extend the BREAKUP code to be able to use the dipole wakefields calculated by AMOS in addition to the most usual discrete frequency BBU mode model. We present results for the predicted BBU growth and the empirical sensitivity to various machine parameters.

  12. Orbital debris from upper-stage breakup

    NASA Technical Reports Server (NTRS)

    Loftus, Joseph P., Jr. (Editor)

    1989-01-01

    The present conference on the effects of launch vehicle upper-stage breakup on the orbital debris scenario discusses an analysis of the SPOT 1 Ariane third stage, the explosive fragmentation of orbiting propellant tanks, albedo estimates for debris, Ariane-related debris in deep-space orbit, and the relationship of hypervelocity impacts to upper-stage breakups. Also discussed are the prospects for and the economics of the future removal of orbital debris, collision probabilities in GEO, current operational practices for Delta second stage breakup prevention, breakup-precluding modifications to the Ariane third stage, and the safing of the H-1 second stage after spacecraft separation.

  13. Coalescence and breakup of large droplets in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Scarbolo, Luca; Bianco, Federico; Soldati, Alfredo

    2015-07-01

    Coalescence and breakup of large deformable droplets dispersed in a wall-bounded turbulent flow are investigated. Droplets much larger than the Kolmogorov length scale and characterized by a broad range of surface tension values are considered. The turbulent field is a channel flow computed with pseudo-spectral direct numerical simulations, while phase interactions are described with a phase field model. Within this physically consistent framework, the motion of the interfaces, the capillary effects, and the complex topological changes experienced by the droplets are simulated in detail. An oil-water emulsion is mimicked: the fluids are considered of same density and viscosity for a range of plausible values of surface tension, resulting in a simplified system that sets a benchmark for further analysis. In the present conditions, the Weber number (We), that is, the ratio between inertia and surface tension, is a primary factor for determining the droplets coalescence rate and the occurrence of breakups. Depending on the value of We, two different regimes are observed: when We is smaller than a threshold value (We < 1 in our simulations), coalescence dominates until droplet-droplet interactions are prevented by geometric separation; when We is larger than the threshold value (We > 1), a permanent dynamic equilibrium between coalescence and breakup events is established.

  14. The Breakup of Water Cylinders Behind Normal Shocks

    NASA Astrophysics Data System (ADS)

    Meng, J. C.; Colonius, T.

    2012-11-01

    We simulate the drift and breakup of a water cylinder in the flow behind a normal shock. The unsteady Euler equations, closed using the stiffened-gas equation of state, are solved with a compressible, multicomponent, shock- and interface-capturing algorithm. The effects of surface tension and viscosity are negligible at early times compared to the larger shear forces. Computed drift velocities are in good agreement with experiments. For the high- speed flow regimes considered, the breakup mode is stripping. Pressure gradients arise on the cylinder's surface causing it to deform laterally. As the cylinder is flattened, sheets of liquid are drawn off the periphery and break up further downstream. Unsteady vortex shedding is observed in the wake of the disintegrating cylinder. As the shock Mach number is increased, higher airflow velocities result in faster breakup and greater cylinder accelerations. These accelerations are subject to fluctuations that grow with shock strength. Qualitative features of the flow are compared to images from experiments on cylinders and drops.

  15. Antimisting fuel breakup and flammability

    NASA Technical Reports Server (NTRS)

    Parikh, P.; Fleeter, R.; Sarohia, V.

    1983-01-01

    The breakup behavior and flammability of antimisting turbine fuels subjected to aerodynamic shear are investigated. Fuels tested were Jet A containing 0.3% FM-9 polymer at various levels of degradation ranging from virgin AMK to neat Jet A. The misting behavior of the fuels was quantified by droplet size distribution measurements. A technique based on high resolution laser photography and digital image processing of photographic records for rapid determination of droplet size distribution was developed. The flammability of flowing droplet-air mixtures was quantified by direct measurements of temperature rise in a flame established in the wake of a continuous ignition source. The temperature rise measurements were correlated with droplet size measurements. The flame anchoring phenomenon associated with the breakup of a liquid fuel in the wake of bluff body was shown to be important in the context of a survivable crash scenario. A pass/fail criterion for flammability testing of antimisting fuels, based on this flame-anchoring phenomenon, was proposed. The role of various ignition sources and their intensity in ignition and post-ignition behavior of antimisting fuels was also investigated.

  16. Beam breakup in superconducting recirculating linacs

    SciTech Connect

    Joseph J. Bisognano

    1988-05-01

    The performance and operational flexibility of superconducting recirculating linacs can be limited by a variety of collective phenomena which are grouped under the name beam breakup. In this note the various beam breakup phenomena found in recirculating superconducting radio frequency linacs are described and appraised relative to beam performance.

  17. Exclusive breakup measurements for {sup 9}Be

    SciTech Connect

    Fulton, B.R.; Cowin, R.L.; Woolliscroft, R.J.; Clarke, N.M.; Donadille, L.; Freer, M.; Leask, P.J.; Singer, S.M.; Nicoli, M.P.; Benoit, B.; Hanappe, F.; Ninane, A.; Orr, N.A.; Tillier, J.; Stuttge, L.

    2004-10-01

    The first exclusive breakup measurements for the nucleus {sup 9}Be are presented. Breakup via several discrete states is observed following scattering off {sup 12}C and {sup 208}Pb. The results support the prediction of a recent microscopic cluster calculation for a strong n+{sup 8}Be(2{sup +}) state component in the second excited state.

  18. Bag breakup of low viscosity drops in the presence of a continuous air jet

    SciTech Connect

    Kulkarni, V. Sojka, P. E.

    2014-07-15

    This work examines the breakup of a single drop of various low viscosity fluids as it deforms in the presence of continuous horizontal air jet. Such a fragmentation typically occurs after the bulk liquid has disintegrated upon exiting the atomizer and is in the form of an ensemble of drops which undergo further breakup. The drop deformation and its eventual disintegration is important in evaluating the efficacy of a particular industrial process, be it combustion in automobile engines or pesticide spraying in agricultural applications. The interplay between competing influences of surface tension and aerodynamic disruptive forces is represented by the Weber number, We, and Ohnesorge number, Oh, and used to describe the breakup morphology. The breakup pattern considered in our study corresponds to that of a bag attached to a toroidal ring which occurs from ∼12 < We < ∼16. We aim to address several issues connected with this breakup process and their dependence on We and Oh which have been hitherto unexplored. The We boundary at which breakup begins is theoretically determined and the expression obtained, We=12(1+2/3Oh{sup 2}), is found to match well with experimental data ([L.-P. Hsiang and G. M. Faeth, Int. J. Multiphase Flow 21(4), 545–560 (1995)] and [R. S. Brodkey, “Formation of drops and bubbles,” in The Phenomena of Fluid Motions (Addison-Wesley, Reading, 1967)]). An exponential growth in the radial extent of the deformed drop and the streamline dimension of the bag is predicted by a theoretical model and confirmed by experimental findings. These quantities are observed to strongly depend on We. However, their dependence on Oh is weak.

  19. Droplet Breakup in Expansion-contraction Microchannels

    NASA Astrophysics Data System (ADS)

    Zhu, Pingan; Kong, Tiantian; Lei, Leyan; Tian, Xiaowei; Kang, Zhanxiao; Wang, Liqiu

    2016-02-01

    We investigate the influences of expansion-contraction microchannels on droplet breakup in capillary microfluidic devices. With variations in channel dimension, local shear stresses at the injection nozzle and focusing orifice vary, significantly impacting flow behavior including droplet breakup locations and breakup modes. We observe transition of droplet breakup location from focusing orifice to injection nozzle, and three distinct types of recently-reported tip-multi-breaking modes. By balancing local shear stresses and interfacial tension effects, we determine the critical condition for breakup location transition, and characterize the tip-multi-breaking mode quantitatively. In addition, we identify the mechanism responsible for the periodic oscillation of inner fluid tip in tip-multi-breaking mode. Our results offer fundamental understanding of two-phase flow behaviors in expansion-contraction microstructures, and would benefit droplet generation, manipulation and design of microfluidic devices.

  20. Droplet Breakup in Expansion-contraction Microchannels.

    PubMed

    Zhu, Pingan; Kong, Tiantian; Lei, Leyan; Tian, Xiaowei; Kang, Zhanxiao; Wang, Liqiu

    2016-01-01

    We investigate the influences of expansion-contraction microchannels on droplet breakup in capillary microfluidic devices. With variations in channel dimension, local shear stresses at the injection nozzle and focusing orifice vary, significantly impacting flow behavior including droplet breakup locations and breakup modes. We observe transition of droplet breakup location from focusing orifice to injection nozzle, and three distinct types of recently-reported tip-multi-breaking modes. By balancing local shear stresses and interfacial tension effects, we determine the critical condition for breakup location transition, and characterize the tip-multi-breaking mode quantitatively. In addition, we identify the mechanism responsible for the periodic oscillation of inner fluid tip in tip-multi-breaking mode. Our results offer fundamental understanding of two-phase flow behaviors in expansion-contraction microstructures, and would benefit droplet generation, manipulation and design of microfluidic devices. PMID:26899018

  1. Droplet Breakup in Expansion-contraction Microchannels

    PubMed Central

    Zhu, Pingan; Kong, Tiantian; Lei, Leyan; Tian, Xiaowei; Kang, Zhanxiao; Wang, Liqiu

    2016-01-01

    We investigate the influences of expansion-contraction microchannels on droplet breakup in capillary microfluidic devices. With variations in channel dimension, local shear stresses at the injection nozzle and focusing orifice vary, significantly impacting flow behavior including droplet breakup locations and breakup modes. We observe transition of droplet breakup location from focusing orifice to injection nozzle, and three distinct types of recently-reported tip-multi-breaking modes. By balancing local shear stresses and interfacial tension effects, we determine the critical condition for breakup location transition, and characterize the tip-multi-breaking mode quantitatively. In addition, we identify the mechanism responsible for the periodic oscillation of inner fluid tip in tip-multi-breaking mode. Our results offer fundamental understanding of two-phase flow behaviors in expansion-contraction microstructures, and would benefit droplet generation, manipulation and design of microfluidic devices. PMID:26899018

  2. Intrusive Thoughts: A Primary Variable in Breakup Distress

    ERIC Educational Resources Information Center

    Field, Tiffany; Diego, Miguel; Pelaez, Martha; Deeds, Osvelia; Delgado, Jeannette

    2013-01-01

    University students who were high versus low on breakup distress scores were given self-report measures to assess their intrusive thoughts about the romantic breakup and their somatic symptoms that followed the breakup as well as their extracurricular activities and social support that might alleviate their breakup distress. In a regression…

  3. Negative Emotions and Behaviors are Markers of Breakup Distress

    ERIC Educational Resources Information Center

    Field, Tiffany; Diego, Miguel; Pelaez, Martha; Deeds, Osvelia; Delgado, Jeanette

    2013-01-01

    Method: University students who experienced a recent romantic breakup were given several self-report measures and were then divided into high versus low breakup distress groups. Results: The high breakup distress versus the low breakup distress groups had higher scores on negative emotions scales including depression, anxiety and anger and…

  4. Electrostatic breakup in a misty plasma.

    PubMed

    Coppins, M

    2010-02-12

    A misty plasma is defined as a plasma containing small liquid droplets. In such a system, the droplets will undergo total electrostatic breakup if their charge exceeds the well-known Rayleigh limit. This imposes a minimum size on the droplets. Electrostatic breakup is a significant mechanism limiting droplet survival in a wide range of plasma applications, including plasma-enhanced chemical vapor deposition and fusion tokamaks. PMID:20366826

  5. Electrostatic Breakup in a Misty Plasma

    SciTech Connect

    Coppins, M.

    2010-02-12

    A misty plasma is defined as a plasma containing small liquid droplets. In such a system, the droplets will undergo total electrostatic breakup if their charge exceeds the well-known Rayleigh limit. This imposes a minimum size on the droplets. Electrostatic breakup is a significant mechanism limiting droplet survival in a wide range of plasma applications, including plasma-enhanced chemical vapor deposition and fusion tokamaks.

  6. Supercontinent Breakup and the Deep Earth

    NASA Astrophysics Data System (ADS)

    Torsvik, T. H.

    2014-12-01

    As many as five supercontinents have been proposed and the deep Earth probably holds the key to understand their breakup. The African and Pacific large low shear-wave velocity provinces (LLSVPs) have been stable for the entire Phanerozoic and possibly much longer. Their edges are the dominant source of deep plumes which travel from the base of the mantle to the surface where episodic large igneous province (LIP) activity has punctuated plate tectonics by creating and modifying plate boundaries. Pangea, the best-documented supercontinent, formed at the end of the Carboniferous (320 Ma) by fusing Gondwana and Laurussia. The Panjal Traps (289 Ma) probably assisted in an early Pangea breakup phase (opening of the Neotethys) but the most important phase of breakup started when the Central Atlantic Ocean opened at around 195 Ma. Perhaps not coincidentally, the region where the Atlantic spreading started was preceded by the emplacement of the Central Atlantic Magmatic Province (201 Ma), one of the largest LIPs. The Karoo LIP (183 Ma) heralded the Jurassic breakup of Pangea (separation of East and West Gondwana) whereas Paraná-Etendeka LIP activity (134 Ma) preceded South Atlantic break-up by a few million years. The North Atlantic realm experienced prolonged Late Palaeozoic to Cenozoic extension and sedimentary basin formation but the final Early Eocene break-up occurred shortly after a massive episode of volcanism and LIP formation (North Atlantic Igneous Province, 62 Ma) as in most Pangea breakup examples. All LIPs assisting Pangea breakup were sourced by plumes from the margin of the African LLSVP.

  7. On the breakup of viscous liquid threads

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.

    1995-01-01

    A one-dimensional model evolution equation is used to describe the nonlinear dynamics that can lead to the breakup of a cylindrical thread of Newtonian fluid when capillary forces drive the motion. The model is derived from the Stokes equations by use of rational asymptotic expansions and under a slender jet approximation. The equations are solved numerically and the jet radius is found to vanish after a finite time yielding breakup. The slender jet approximation is valid throughout the evolution leading to pinching. The model admits self-similar pinching solutions which yield symmetric shapes at breakup. These solutions are shown to be the ones selected by the initial boundary value problem, for general initial conditions. Further more, the terminal state of the model equation is shown to be identical to that predicted by a theory which looks for singular pinching solutions directly from the Stokes equations without invoking the slender jet approximation throughout the evolution. It is shown quantitatively, therefore, that the one-dimensional model gives a consistent terminal state with the jet shape being locally symmetric at breakup. The asymptotic expansion scheme is also extended to include unsteady and inerticial forces in the momentum equations to derive an evolution system modelling the breakup of Navier-Stokes jets. The model is employed in extensive simulations to compute breakup times for different initial conditions; satellite drop formation is also supported by the model and the dependence of satellite drop volumes on initial conditions is studied.

  8. Final Rifting and Continental Breakup in the South China Sea

    NASA Astrophysics Data System (ADS)

    Franke, D.; Savva, D.; Pubellier, M. F.; Steuer, S.; Mouly, B.; Auxietre, J. L.; Meresse, F.; Chamot-Rooke, N. R. A.

    2014-12-01

    The magma-poor or intermediate magmatic South China Sea basin shows a triangular shape with a SW pointing apex, which manifests a preceding propagating rift. The earliest phase of rifting started in the Early Paleocene when a Mesozoic convergent margin changed to extension. After about 30 Myrs of rifting, breakup in the major eastern subbasin of the SCS occurred in the Early Oligocene and subsequent breakup of the southwest subbasin took place in the Late Oligocene. Seismic reflection data imaging conjugate crustal sections result in a conceptual model for rift-evolution at conjugate margins in time and space. Distinct are regular undulations in the crust-mantle boundary. Individual rift basins are bounded to crustal blocks by listric normal faults on either side. Moho uplifts are distinct beneath major rift basins, while the Moho is downbended beneath crustal blocks. Most of the basin-bounding faults sole out within the middle crust. At the distal margins, detachment faults are located at a mid-crustal level where a weak zone decouples crust and mantle lithosphere during rifting. The lower crust in contrast is interpreted as being strong. Only in the region within about 50 km from the oceanic domain we suggest that normal faults reach the mantle, enabling potentially a coupling between the crust and the mantle. Here, at the proximal margins detachment fault dip either seaward or landward. Largely symmetric structures result from the initial rifting stage. At the future breakup position either of the rift basin bounding faults subsequently penetrates the entire crust, resulting in asymmetry at this location. However, asymmetric deformation which is controlled by large scale detachment faulting is confined to narrow areas and does not result in a margin-wide simple-shear model. Rather considerable along-margin variations are suggested resulting in alternating "upper and lower plate" margins.

  9. The condition of the resonant break-up of a gas bubble subjected to an acoustic wave in liquid

    NASA Astrophysics Data System (ADS)

    Vanovskiy, V. V.; Petrov, A. G.

    2015-12-01

    The problem of a gas bubble break-up in liquid is considered in the conditions of the frequencies resonance of the radial and nth axially symmetric deformational mode 2:1. The nonlinear energy transfer between the modes is described using an efficient Krylov-Bogolyubov averaging technique. It is shown that the deformational mode magnitude can be some orders larger than the radial mode magnitude which is damped by the thermal, viscous and acoustic dissipation. The estimative criterion of bubble break-up is obtained in the cases of slow and fast acoustic wave start. The obtained pressure magnitudes in the wave for break-up are very small and the mechanism can have strong medical and technical applications.

  10. Evidence for a Battle Mountain-Eureka crustal fault zone, north-central Nevada, and its relation to Neoproterozoic-Early Paleozoic continental breakup

    USGS Publications Warehouse

    Grauch, V.J.S.; Rodriguez, B.D.; Bankey, V.; Wooden, J.L.

    2003-01-01

    Combined evidence from gravity, radiogenic isotope, and magnetotelluric (MT) data indicates a crustal fault zone that coincides with the northwest-trending Battle Mountain-Eureka (BME) mineral trend in north-central Nevada, USA. The BME crustal fault zone likely originated during Neoproterozoic-Early Paleozoic rifting of the continent and had a large influence on subsequent tectonic events, such as emplacement of allochthons and episodic deformation, magmatism, and mineralization throughout the Phanerozoic. MT models show the fault zone is about 10 km wide, 130-km long, and extends from 1 to 5 km below the surface to deep crustal levels. Isotope data and gravity models imply the fault zone separates crust of fundamentally different character. Geophysical evidence for such a long-lived structure, likely inherited from continental breakup, defies conventional wisdom that structures this old have been destroyed by Cenozoic extensional processes. Moreover, the coincidence with the alignment of mineral deposits supports the assertion by many economic geologists that these alignments are indicators of buried regional structures.

  11. Shear stabilization of the capillary breakup of a cylindrical interface

    NASA Technical Reports Server (NTRS)

    Russo, Mathew J.; Steen, Paul H.

    1989-01-01

    A cylindrical interface containing a viscous liquid set into axial motion is subject to a capillary and to a surface-wave instability. Clues from previous studies suggest that, even though both mechanisms separately are destabilizing, under certain circumstances their mutual interaction can lead to a stable interface; shear can stabilize capillary breakup. Here, an axial flow through an annular cross section bounded on the inside by a rigid rod and on the outside by a deformable interface is considered. The competition between the two mechanisms is studied through the temporal growth of infinitesimal axisymmetric and nonaxisymmetric disturbances. This examination of temporal stability shows that, indeed, for geometries corresponding to thin annular layers both instabilities can be completely suppressed (disturbances of all wavelengths decay).

  12. Development of orbital debris spacecraft breakup models

    NASA Astrophysics Data System (ADS)

    Tedeschi, William J.; Connell, John C.; McKnight, Darren S.

    1991-08-01

    The Defense Nuclear Agency has initiated an Orbital Debris Spacecraft Breakup Modeling Program to improve the accuracy and usefulness of satellite breakup models with an emphasis on collision-induced events. Empirical, semianalytic, and complex approaches are used in the modeling. Current results from the modeling effort are presented and discussed along with data from associated hypervelocity impact test programs. It is shown that major improvements in modeling have been made but that milestones must be achieved before the models will routinely provide accurate predictions for a wide range of collision scenarios.

  13. Breakup branches of Borromean beryllium-9

    SciTech Connect

    Smith, R. Freer, M.; Wheldon, C.; Curtis, N.; Ashwood, N. I.; Barr, M.; Kokalova, Tz.; Malcolm, J. D.; Ziman, V. A.; Almaraz-Calderon, S.; Aprahamian, A.; Bucher, B.; Couder, M.; Fang, X.; Jung, F.; Lu, W.; Roberts, A.; Tan, W. P.; Copp, P.; Lesher, S. R.; and others

    2015-10-15

    The breakup reaction {sup 9}Be({sup 4}He, 3α)n was measured using an array of four double-sided silicon strip detectors at beam energies of 22 and 26 MeV. Excited states in {sup 9}Be up to 12 MeV were populated and reconstructed through the measurement of the charged reaction products. It is proposed that limits on the spins and parities of the states can be derived from the way that they decay. Various breakup paths for excited states in {sup 9}Be have been explored including the {sup 8}Be{sub g.s.} + n, {sup 8}Be{sub 2{sup +}} + n and {sup 5}He{sub g.s.} + {sup 4}He channels. By imposing the condition that the breakup proceeded via the {sup 8}Be ground state, clean excitation spectra for {sup 9}Be were reconstructed. The remaining two breakup channels were found to possess strongly-overlapping kinematic signatures and more sophisticated methods (referenced) are required to completely disentangle these other possibilities. Emphasis is placed on the development of the experimental analysis and the usefulness of Monte-Carlo simulations for this purpose.

  14. Renormalization for breakup of invariant tori

    NASA Astrophysics Data System (ADS)

    Apte, A.; Wurm, A.; Morrison, P. J.

    2005-01-01

    We present renormalization group operators for the breakup of invariant tori with winding numbers that are quadratic irrationals. We find the simple fixed points of these operators and interpret the map pairs with critical invariant tori as critical fixed points. Coordinate transformations on the space of maps relate these fixed points, and also induce conjugacies between the corresponding operators.

  15. Computational modelling of microfluidic capillary breakup phenomena

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Sprittles, James; Oliver, Jim

    2013-11-01

    Capillary breakup phenomena occur in microfluidic flows when liquid volumes divide. The fundamental process of breakup is a key factor in the functioning of a number of microfluidic devices such as 3D-Printers or Lab-on-Chip biomedical technologies. It is well known that the conventional model of breakup is singular as pinch-off is approached, but, despite this, theoretical predictions of the global flow on the millimetre-scale appear to agree well with experimental data, at least until the topological change. However, as one approaches smaller scales, where interfacial effects become more dominant, it is likely that such unphysical singularities will influence the global dynamics of the drop formation process. In this talk we develop a computational framework based on the finite element method capable of resolving diverse spatio-temporal scales for the axisymmetric breakup of a liquid jet, so that the pinch-off dynamics can be accurately captured. As well as the conventional model, we discuss the application of the interface formation model to this problem, which allows the pinch-off to be resolved singularity-free, and has already been shown to produce improved flow predictions for related ``singular'' capillary flows.

  16. Breakup branches of Borromean beryllium-9

    NASA Astrophysics Data System (ADS)

    Smith, R.; Freer, M.; Wheldon, C.; Curtis, N.; Almaraz-Calderon, S.; Aprahamian, A.; Ashwood, N. I.; Barr, M.; Bucher, B.; Copp, P.; Couder, M.; Fang, X.; Goldring, G.; Jung, F.; Kokalova, Tz.; Lesher, S. R.; Lu, W.; Malcolm, J. D.; Roberts, A.; Tan, W. P.; Ziman, V. A.

    2015-10-01

    The breakup reaction 9Be(4He, 3α)n was measured using an array of four double-sided silicon strip detectors at beam energies of 22 and 26 MeV. Excited states in 9Be up to 12 MeV were populated and reconstructed through the measurement of the charged reaction products. It is proposed that limits on the spins and parities of the states can be derived from the way that they decay. Various breakup paths for excited states in 9Be have been explored including the 8Beg.s. + n, 8Be2+ + n and 5Heg.s. + 4He channels. By imposing the condition that the breakup proceeded via the 8Be ground state, clean excitation spectra for 9Be were reconstructed. The remaining two breakup channels were found to possess strongly-overlapping kinematic signatures and more sophisticated methods (referenced) are required to completely disentangle these other possibilities. Emphasis is placed on the development of the experimental analysis and the usefulness of Monte-Carlo simulations for this purpose.

  17. Supercontinent break-up: Causes and consequences

    NASA Astrophysics Data System (ADS)

    Li, Z. X.

    2014-12-01

    Supercontinent break-up has most commonly been linked to plume or superplume events, and/or supercontinent thermal insulation, but precise mechanisms are yet to be worked out. Even less know is if and what roles other factors may play. Key factors likely include gravitational force due to the continental superswell driven by both the lower-mantle superplume and continental thermal insulation, mental convention driven by the superplume and individual plumes atop the superplume, assisted by thermal/magmatic weakening of the supercontinent interior (both plume heat and thermal insulation heat). In addition, circum-supercontinent slab downwelling may not only drive the formation of the antipodal superplumes (thus the break-up of the supercontinent), the likely roll-back of the subduction system would also create extension within the supercontinent, facilitating supercontinent break-up. Consequences of supercontinent break-up include long-term sea-level rise, climatic changes due to changes in ocean circulation pattern and carbon cycle, and biodiversification. It has long been demonstrated that the existence of the supercontinent Pangea corresponds to a long-term sea-level drop, whereas the break-up of the supercontinent corresponds to a long-term sea-level rise (170 m higher than it is today). A recent analysis of Neoproterozoic sedimentary facies illustrates that the time of Neoproterozoic supercontinent Rodinia corresponds to a low in the percentage of deep marine facies occurrence, whereas the time of Rodinia break-up corresponds to a significantly higher percentage of deep marine facies occurrence. The long-tern sea-level drop during supercontinent times were likely caused by both plume/superplume dynamic topography and an older mean age of the oceanic crust, whereas long-tern sea-level rise during supercontinent break-up (720-580 Ma for Rodinia and Late Jurassic-Cretaceous for Pangea) likely corresponds to an younger mean age of the oceanic crust, massive plume

  18. Entrainment instability and vertical motion as causes of stratocumulus breakup

    NASA Technical Reports Server (NTRS)

    Weaver, C. J.; Pearson, R., Jr.

    1990-01-01

    Entrainment instability is thought to be a cause of stratocumulus breakup. At the interface between the cloud and the overlying air, mixtures may form which are negatively buoyant because of cloud droplet evaporation. Quantities devised to predict breakup are obtained from aircraft observations and are tested against cloud observations from satellite. Often, the parameters indicate that breakup should occur but the clouds remain, sometimes for several days. One possible explanation for breakup is vertical motion from passing synoptic cyclones. Several cases suggest that breakup is associated with the downward vertical motion from the cold air advected behind an eastward moving cyclone.

  19. The break-up of continents and the formation of new ocean basins.

    PubMed

    Minshull, T A

    2002-12-15

    Rifted continental margins are the product of stretching, thinning and ultimate break-up of a continental plate into smaller fragments, and the rocks lying beneath them store a record of this rifting process. Earth scientists can read this record by careful sampling and with remote geophysical techniques. These experimental studies have been complemented by theoretical analyses of continental extension and associated magmatism. Some rifted margins show evidence for extensive volcanic activity and uplift during rifting; at these margins, the record of the final stages of rifting is removed by erosion and obscured by the thick volcanic cover. Other margins were underwater throughout their formation and showed rather little volcanic activity; here the ongoing deposition of sediment provides a clearer record. During the last decade, vast areas of exhumed mantle rocks have been discovered at such margins between continental and oceanic crust. This observation conflicts with the well-established idea that the mantle melts to produce new crust when it is brought close to the Earth's surface. In contrast to the steeply dipping faults commonly seen in zones of extension within continental interiors, faults with very shallow dips play a key role in the deformation immediately preceding continental break-up. Future progress in the study of continental break-up will depend on studies of pairs of margins which were once joined and on the development of computer models which can handle rigorously the complex transition from distributed continental deformation to sea-floor spreading focused at a mid-ocean ridge. PMID:12626269

  20. Influence of surfactant on the drop bag breakup in a continuous air jet stream

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhang, Wen-Bin; Xu, Jian-Liang; Li, Wei-Feng; Liu, Hai-Feng

    2016-05-01

    The deformation and breakup of surfactant-laden drops is a common phenomenon in nature and numerous practical applications. We investigate influence of surfactant on the drop bag breakup in a continuous air jet stream. The airflow would induce the advection diffusion of surfactant between interface and bulk of drop. Experiments indicate that the convective motions of deforming drop would induce the non-equilibrium distribution of surfactant, which leads to the change of surface tension. When the surfactant concentration is smaller than critical micelle concentration (CMC), with the increase of surface area of drop, the surface tension of liquid-air interface and the critical Weber number will increase. When the surfactant concentration is bigger than CMC, the micelle can be considered as the source term, which can supply the monomers. So in the presence of surfactant, there would be the significant nonlinear variation on the critical Weber number of bag breakup. We build the dynamic non-monotonic relationship between concentrations of surfactant and critical Weber number theoretically. In the range of parameters studied, the experimental results are consistent with the model estimates.

  1. Rifting and breakup in the South China Sea

    NASA Astrophysics Data System (ADS)

    Franke, Dieter; Savva, Dimitri; Pubellier, Manuel; Steuer, Stephan; Mouly, Benoit; Auxietre, Jean-Luc; Meresse, Florian; Chamot-Rooke, Nicolas

    2014-05-01

    The magma-poor or intermediate magmatic South China Sea is a natural laboratory for studying rifting and breakup. The basin shows an irregular triangular shape with a SW pointing apex, which manifests a preceding propagating rift. The earliest phase of rifting started in the Early Paleocene when a Mesozoic convergent margin changed to extension. After about 30 Million years of rifting, breakup in the major eastern subbasin of the SCS occurred in the Early Oligocene but rifting continued and subsequent breakup of the southwest subbasin took place in the Late Oligocene. The wide Early Cenozoic South China Sea rift preserves the initial rift architecture at the distal margins. Seismic reflection data imaging conjugate crustal sections at the South China Sea margins result in a conceptual model for rift-evolution at conjugate magma-poor margins in time and space. Most distinct are regular undulations in the crust-mantle boundary. Individual rift basins are bounded to crustal blocks by listric normal faults on either side. Moho uplifts are distinct beneath major rift basins, while the Moho is downbended beneath crustal blocks, with a wavelength of undulations in the crust-mantle boundary that approximately equals the thickness of the continental crust. Most of the basin-bounding faults sole out within the middle crust. At the distal margins, detachment faults are located at a mid-crustal level where a weak zone decouples crust and mantle lithosphere during rifting. The lower crust in contrast is interpreted as being strong. Only in the region within about 50 km from the continent-ocean transition (COT) we suggest that normal faults reach the mantle, enabling potentially a coupling between the crust and the mantle. Here, at the proximal margins detachment fault dip either seaward or landward. This may indicate the presence of exhumed mantle bordering the continental margins. Post-rift shallow-water platform carbonates indicate a delay in subsidence during rifting in the

  2. Post-breakup Basin Evolution along the South-Atlantic Margins

    NASA Astrophysics Data System (ADS)

    Strozyk, Frank; Back, Stefan; Kukla, Peter

    2014-05-01

    The post-breakup tectono-stratigraphic evolution of large offshore basins along the South American and African continental margins record strongly varying post-rift sedimentary successions. The northernmost segment of the South Atlantic rift and salt basins is characterized by a pronounced asymmetry, with the Brazilian margin comprising narrower and deeper rift basins with less salt in comparison to the Congo-Gabon conjugate margin. Another important observation is that multiple phases of uplift and subsidence are recorded after the break-up of the southern South Atlantic on both sides of the Florianopolis-Walvis Ridge volcanic complex, features that are regarded as atypical when compared to published examples of other post-breakup margin successions. A regional comparison based on tectonic-stratigraphic analysis of selected seismic transects between the large basins offshore southern Brazil (Espirito Santo Basin, Campos Basin, Santos Basin, Pelotas Basin) and southwest Africa (Lower Congo Basin, Kwanza Basin, Namibe Basin, Walvis Basin) provides a comprehensive basin-to-basin documentation of the key geological parameters controlling ocean and continental margin development. This comparison includes the margin configuration, subsidence development through time, sediment influx and storage patterns, type of basin fill (e.g. salt vs. non-salt systems; carbonate-rich vs. clastics-dominated systems) and finally major tectonic and magmatic events. Data from the salt basins indicate that salt-related tectonic deformation is amongst the prime controls for the non-uniform post-rift margin development. The diversity in the stratigraphic architecture of the conjugate margins offshore southern Brazil, Namibia and Angola reflects variations in the interplay of a number of controlling factors, of which the most important are (a) the structural configuration of each margin segment at the time of break-up, (b) the post break-up subsidence history of the respective margin segment

  3. Microfluidic study on CNT dispersion during breakup of aqueous alginic acid drop in continuous PDMS phase

    NASA Astrophysics Data System (ADS)

    Choi, Jae Hong; Nam, Young Woo; Hong, Joung Sook

    2013-02-01

    Microfluidic study is performed to investigate how multi-walled carbon nanotube (CNTs) aggregates disperse in blend system during morphology evolution. As the dispersed phase, a drop containing CNT is generated at the flow focusing and it deforms through a contraction channel (gap and width of contraction ˜ 100 μm). When an aqueous polymeric drop (2 wt% alginic acid) with CNT (0.05 wt% or 0.5 wt%) is stretched through a 4:1 contraction channel, CNT aggregates enhances breakup of the stretched drop. Also, small droplets including CNTs are pinched off during relaxation of the stretched drop. Based on these observations, it is found that CNTs disperse in a multiphase system by repetitive breakup process during mixing rather than migration driven by chemical affinity.

  4. Alignment validation

    SciTech Connect

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  5. Coupled map lattice model of jet breakup

    SciTech Connect

    Minich, R W; Schwartz, A J; Baker, E L

    2001-01-25

    An alternative approach is described to evaluate the statistical nature of the breakup of shaped charge liners. Experimental data from ductile and brittle copper jets are analyzed in terms of velocity gradient, deviation of {Delta}V from linearity, R/S analysis, and the Hurst exponent within the coupled map lattice model. One-dimensional simulations containing 600 zones of equal mass and using distinctly different force-displacement curves are generated to simulate ductile and brittle behavior. A particle separates from the stretching jet when an element of material reaches the failure criterion. A simple model of a stretching rod using brittle, semi-brittle, and ductile force-displacement curves is in agreement with the experimental results for the Hurst exponent and the phase portraits and indicates that breakup is a correlated phenomenon.

  6. Ice breakup: Observations of the acoustic signal

    NASA Astrophysics Data System (ADS)

    Waddell, S. R.; Farmer, D. M.

    1988-03-01

    We describe observations of ambient sound beneath landfast ice in the Canadian Arctic Archipelago and interpret its evolution over the period June-August in terms of ice cracking and disintegration. The data were recorded on six bands between 50 and 14,500 Hz for the period April 2 to August 7, 1986, in Dolphin and Union Strait. The frequency dependence of the attenuation of sound in water allows separation of distant and local noise sources. In conjunction with satellite imagery and meteorological data, it is shown that strong signals in the acoustic time series are associated with major breakup events. The acoustic signal can provide predictive information about ice conditions and the approach of breakup.

  7. Confinement and viscosity ratio effect on droplet break-up in a concentrated emulsion flowing through a narrow constriction.

    PubMed

    Gai, Ya; Khor, Jian Wei; Tang, Sindy K Y

    2016-08-21

    This paper describes the dimensionless groups that determine the break-up probability of droplets in a concentrated emulsion during its flow in a tapered microchannel consisting of a narrow constriction. Such channel geometry is commonly used in droplet microfluidics to investigate the content of droplets from a concentrated emulsion. In contrast to solid wells in multi-well plates, drops are metastable, and are prone to break-up which compromises the accuracy and the throughput of the assay. Unlike single drops, the break-up process in a concentrated emulsion is stochastic. Analysis of the behavior of a large number of drops (N > 5000) shows that the probability of break-up increases with applied flow rate, the size of the drops relative to the size of the constriction, and the viscosity ratio of the emulsion. This paper shows that the break-up probability collapses into a single curve when plotted as a function of the product of capillary number, viscosity ratio, and confinement factor defined as the un-deformed radius of the drop relative to the hydraulic radius of the constriction. Fundamentally, the results represent a critical step towards the understanding of the physics governing instability in concentrated emulsions. Practically, the results provide a direct guide for the rational design of microchannels and the choice of operation parameters to increase the throughput of the droplet interrogation step while preserving droplet integrity and assay accuracy. PMID:27194099

  8. The Break-up and Drifting of the Continental Plates in 2D Models of Convecting Mantle

    NASA Astrophysics Data System (ADS)

    Dal Zilio, L.; Faccenda, M.; Capitanio, F. A.

    2014-12-01

    Since the early theory of Wegener, the break-up and drift of continents have been controversial and hotly debated topics. To assist the interpretation of the break-up and drift mechanisms and its relation with mantle circulation patterns, we carried out a 2D numerical modelling of the dynamics of these processes. Different regimes of upper plate deformation are studied as consequence of stress coupling with convection patterns. Subduction of the oceanic plate and induced mantle flow propagate basal tractions to the upper plate. This mantle drag forces (FMD) can be subdivided in two types: (1) active mantle drag occurring when the flow drives plate motion (FAD), and (2) passive mantle drag (FPD), when the asthenosphere resists plate motion. The active traction generated by the convective cell is counterbalanced by passive mantle viscous drag away from it and therefore tension is generated within the continental plate. The shear stress profiles indicate that break-up conditions are met where the gradient of the basal shear stress is maximised, however the break-up location varies largely depending on the convection style primarily controlled by slab stagnation on the transition zone, avalanching through or subduction in the lower mantle. We found good correspondence between our models and the evolution of convergent margins on Earth, giving precious insights into the break-up and drifting mechanisms of some continental plates, such as the North and South American plates, Calabria and the Japan Arc.

  9. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  10. The Beam Break-Up Numerical Simulator

    SciTech Connect

    Travish, G.A.

    1989-11-01

    Beam Break-Up (BBU) is a severe constraint in accelerator design, limiting beam current and quality. The control of BBU has become the focus of much research in the design of the next generation collider, recirculating and linear induction accelerators and advanced accelerators. Determining the effect on BBU of modifications to cavities, the focusing elements or the beam is frequently beyond the ability of current analytic models. A computer code was written to address this problem. The Beam Break-Up Numerical Simulator (BBUNS) was designed to numerically solve for beam break-up (BBU) due to an arbitrary transverse wakefield. BBUNS was developed to be as user friendly as possible on the Cray computer series. The user is able to control all aspects of input and output by using a single command file. In addition, the wakefield is specified by the user and read in as a table. The program can model energy variations along and within the beam, focusing magnetic field profiles can be specified, and the graphical output can be tailored. In this note we discuss BBUNS, its structure and application. Included are detailed instructions, examples and a sample session of BBUNS. This program is available for distribution. 50 refs., 18 figs., 5 tabs.

  11. Dynamics of polymeric drop breakup in microchannels

    NASA Astrophysics Data System (ADS)

    Arratia, Paulo; Gollub, Jerry; Durian, Douglas

    2006-11-01

    The dynamics of drop formation of sheared polymeric and Newtonian fluids are investigated in a 50 μm microchannel. Inverse emulsions are obtained in a cross-like geometry by impinging a continuous oil phase (with surfactant) onto either a polymeric or a Newtonian aqueous solution. The viscosity ratio between the continuous and dispersed phases is kept close to unity, and both flow rates are varied. Solutions containing small amounts (100 ppm) of flexible polymers strongly affect the filament and drop breakup processes when compared to a Newtonian solution of similar viscosity. We find that the thinning of the filament for the Newtonian case is characterized by linear decline followed by a rapid approach to breakup. The polymeric case shows an initial Newtonian-like thinning followed by a slower, elasticity- dominated thinning. Consequently, the filament breakup time and length are considerably increased for the polymeric solutions. Also, larger primary drops and beads-on-string phenomena are found for the polymer solutions.

  12. Beam Breakup Effects in Dielectric Based Accelerators

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Jing, C.; Kustov, A.; Altmark, A.; Power, J. G.; Gai, W.

    2009-01-22

    The dynamics of the beam in structure-based wakefield accelerators leads to beam stability issues not ordinarily found in other machines. In particular, the high current drive beam in an efficient wakefield accelerator loses a large fraction of its energy in the decelerator structure, resulting in physical emittance growth, increased energy spread, and the possibility of head-tail instability for an off axis beam, all of which can lead to severe reduction of beam intensity. Beam breakup (BBU) effects resulting from parasitic wakefields provide a potentially serious limitation to the performance of dielectric structure based wakefield accelerators as well. We report on experimental and numerical investigation of BBU and its mitigation. The experimental program focuses on BBU measurements at the AWA facility in a number of high gradient and high transformer ratio wakefield devices. New pickup-based beam diagnostics will provide methods for studying parasitic wakefields that are currently unavailable. The numerical part of this research is based on a particle-Green's function beam breakup code we are developing that allows rapid, efficient simulation of beam breakup effects in advanced linear accelerators. The goal of this work is to be able to compare the results of detailed experimental measurements with the accurate numerical results and to design an external FODO channel for the control of the beam in the presence of strong transverse wakefields.

  13. Ice multiplication by mechanical breakup and lightning

    NASA Astrophysics Data System (ADS)

    Phillips, Vaughan; Yano, Jun-Ichi

    2016-04-01

    Laboratory studies have proven the existence of several pathways for fragmentation of ice. One of these is the rime-splintering of graupel or hail in the -3 to -8 degC region (the Hallett-Mossop process). In some clouds, however, the cloud-base is too cold for this process to be active. Instead, breakup can occur by fragmentation of ice mechanically in re-bounding collisions between crystals, snow, graupel or hail. A new theoretical formulation of this mechanical breakup process of multiplication is presented for these types of ice. A numerical scheme is derived by simulation of published laboratory experiments. The role of such breakup in clouds is quantified by 3D simulations with a cloud-resolving aerosol-cloud model with emulated bin microphysics, detailed treatment of ice morphology and 7 chemical species of aerosol. Graupel-graupel collisions are predicted to produce copious numbers of ice crystals in the cold-base convective cloud simulated over Kansas. Implications for lightning from such multiplication, also simulated numerically, are discussed.

  14. Force Required to Breakup a Continent: Implications on Rifting Localization and Migration

    NASA Astrophysics Data System (ADS)

    Svartman Dias, A. E.; Lavier, L. L.; Hayman, N. W.

    2014-12-01

    The maximum force from ridge push available is about 5 TN/m, lower than that required by 2D and 3D numerical experiments to rift the lithosphere in the absence of magmatic input. We carry out 2D numerical experiments without any magmatic input to study the extensional force necessary to start a rift basin and to breakup a continent. We assume a range of initial temperature structure, crust and mantle initial thicknesses and composition. In a first step, we use velocity boundary conditions (1cm/yr) and we monitor the force necessary to breakup the continent. Results can be classified in two groups according to the amount of force needed to rift through time: (1) The initial force builds up rapidly to 12-20 TN/m within 0.4-1.0 Myr. This is followed by an exponential decrease due to early strain localization and lithospheric weakening. The force is < 5TN/m after 4.4-7.0 Myr of extension. Continental breakup occurs approximately 10 Myr after the onset of extension forming narrow conjugate margins. This group encompasses experiments with initial Tmoho < 650oC and crustal thicknesses ≤ 35 km, where crust and mantle deformation are coupled from the early stages of rifting. (2) The initial build-up is more discrete, from < 3 TN/m to 4-6.5 TN/m in the first 0.1 Myr, followed by a decrease to a nearly constant value of 3-5 TN/m from 0.4 Myr to 10 Myr, when strain starts localizing. The constant force through time reflects lithosphere strengthening and migration of the deformation. This rift migration forms a wide basin (> 250 km wide) that may evolve to form very asymmetric conjugate margins. Breakup occurs 18 Myr after the onset of rifting or later. This second group corresponds to experiments with initial Tmoho > 650 km and crustal thicknesses ≥ 35 km. High bending stresses result in upper crust brittle failure and on enhancement of lower crust lateral flow. Interaction between ductile failure in the lower crust and brittle failure in the upper crust controls the

  15. Transfer involving deformed nuclei

    SciTech Connect

    Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.

    1985-03-01

    Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs.

  16. Rapid three-dimensional passive rotation micromixer using the breakup process

    NASA Astrophysics Data System (ADS)

    Park, Sung-Jin; Kim, Jung Kyung; Park, Junha; Chung, Seok; Chung, Chanil; Chang, Jun Keun

    2004-01-01

    Stretching and folding, diffusion, and breakup are three basic processes that occur while mixing fluids. Although stretching and folding the interface of two fluids by rotation enables the mixing at microscale level in both low and high Reynolds number flows, rotation is not as effective at a low Reynolds number as at a high Reynolds number. Therefore, developing a rapid micromixer for microfluidic systems that can be used at a low Reynolds number is a challenging task, because it can demonstrate the full potential of microfluidic systems in commercial markets. Here, to enhance the mixing efficiency of a micromixer based on passive rotation, we present a breakup method. The breakup method not only generates interface actively but also enhances the diffusion process at the interface. With our novel design, over 70% mixing can be achieved only after passing through a 4 mm long microchannel. In this work, the mixer was easily fabricated with polydimethylsiloxane by soft lithography and a self-aligned bonding method with methanol. We analyzed the flow in the micromixer using the computational fluid dynamics method. Also, we conducted quantitative analyses using a confocal scanning microscope and image processing.

  17. Breakup locations: Intertwining effects of nuclear structure and reaction dynamics

    NASA Astrophysics Data System (ADS)

    Dasgupta, M.; Simpson, E. C.; Luong, D. H.; Kalkal, Sunil; Cook, K. J.; Carter, I. P.; Hinde, D. J.; Williams, E.

    2016-05-01

    Studies at the Australian National University aim to distinguish breakup of the projectile like-nucleus that occurs when approaching the target from that when receding from the target. Helped by breakup simulations, observables have been found that are sensitive to the breakup location, and thus to the mean-lives of unbound states; sensitivity to even sub-zeptosecond lifetime is found. These results provide insights to understand the reaction dynamics of weakly bound nuclei at near barrier energies.

  18. Alignment fixture

    DOEpatents

    Bell, Grover C.; Gibson, O. Theodore

    1980-01-01

    A part alignment fixture is provided which may be used for precise variable lateral and tilt alignment relative to the fixture base of various shaped parts. The fixture may be used as a part holder for machining or inspection of parts or alignment of parts during assembly and the like. The fixture includes a precisely machined diameter disc-shaped hub adapted to receive the part to be aligned. The hub is nested in a guide plate which is adapted to carry two oppositely disposed pairs of positioning wedges so that the wedges may be reciprocatively positioned by means of respective micrometer screws. The sloping faces of the wedges contact the hub at respective quadrants of the hub periphery. The lateral position of the hub relative to the guide plate is adjusted by positioning the wedges with the associated micrometer screws. The tilt of the part is adjusted relative to a base plate, to which the guide plate is pivotally connected by means of a holding plate. Two pairs of oppositely disposed wedges are mounted for reciprocative lateral positioning by means of separate micrometer screws between flanges of the guide plate and the base plate. Once the wedges are positioned to achieve the proper tilt of the part or hub on which the part is mounted relative to the base plate, the fixture may be bolted to a machining, inspection, or assembly device.

  19. Recent Breakups in the Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Nesvorny, D.

    2005-08-01

    Much of what we see in the asteroid belt today is a consequence of past collisions, which shaped the size-frequency distribution of asteroids and led to their heavily-cratered surfaces. Perhaps the most remarkable features of the belt are the asteroid families [1]. An asteroid family is a group of asteroid fragments with similar orbits and spectra produced by a collisional breakup of a large parent body. More than fifty families have been identified to date in the main belt [2]. These structures, when properly analyzed, hold important clues to the interior structure of asteroids, the physics of large scale collisions, and the overall evolution of the main belt since its formation [3]. Most of the known families are very old and thus have experienced significant dynamical and collisional erosion since their formation. This makes it difficult to clearly distinguish between features produced by the original breakup and those produced by on-going processes. Recent dynamical studies, however, have identified several asteroid families that are extremely young: the Iannini, Karin and Veritas families apparently formed at <5, 5.8 and 8.3 Ma, respectively [4,5]. These families represent nearly pristine examples of ejected fragments produced by disruptive asteroid collisions, because the observed remnants of recent breakups have apparently suffered limited dynamical and collisional erosion. Here we will discuss how studies of young asteroid families help us glean insights into the physics of large scale collisions, dynamical processes that affect small bodies in the Solar System, and the surface and interior properties of asteroids. [1] Hirayama, 1918, AJ 31, 185--188. [2] Zappala et al., 2002, In Asteroids III, pp. 619-629. [3] Bottke et al., 2005, Icarus, 175, 111-140. [4] Nesvorny et al., 2002, Nature 417, 720--722. [5] Nesvorny et al., 2003, ApJ 591, 486--497.

  20. Multipass Beam Breakup in Energy Recovery Linacs

    SciTech Connect

    Eduard Pozdeyev; Christopher Tennant; Joseph Bisognano; M Sawamura; R. Hajima; T.I. Smith

    2005-03-19

    This paper is a compilation of several presentations on multipass beam breakup (BBU) in energy recovery linacs (ERL) given at the 32nd Advanced ICFA Beam Workshop on ERLs. The goal of this paper is to summarize the progress achieved in analytical, numerical, and experimental studies of the instability and outline available and proposed BBU mitigation techniques. In this paper, a simplified theory of multipass BBU in recirculating linacs is presented. Several BBU suppression techniques and their working principles are discussed. The paper presents an overview of available BBU codes. Results of experimental studies of multipass BBU at the Jefferson Laboratory (JLab) FEL Upgrade are described.

  1. Pangea formation and break-up

    NASA Astrophysics Data System (ADS)

    Torsvik, Trond

    2013-04-01

    The Palaeozoic was dominated by the great continent Gondwana. Other continents included Laurentia and Baltica that fused (together with Avalonia), forming Laurussia after the closure of the Iapetus Ocean, making the second largest continental entity in the Silurian. By the Carboniferous at around 320 Ma, Gondwana and Laurussia amalgamated, forming Pangea that was surrounded by the Panthalassa and Paleotethys Oceans. Pangea did not include all continental crust. For example, the South and North China Blocks were not part of Pangea at any given time and also during the Early Permian phase of Pangea assembly, the Neotethys opened, and Cimmerian terranes drifted away from the NE Gondwana margin while the Paleotethys was being subducted beneath Eurasia. An additional, unresolved question is whether Siberia was fully joined to Pangea before the eruption of the Siberian Traps (251 Ma). Practically all Permian Pangea reconstructions using palaeomagnetic data result in considerable overlap between Laurussia and Gondwana, as both are straddling the equator, and thus Gondwana must be moved sideways to avoid this overlap, and at a younger time displaced dextrally to achieve the well established starting point for Pangea break-up in the Jurassic. Octupole contributions can eliminate this overlap, but just by changing the internal fits within Laurussia and correcting all detrital sedimentary poles for inclination shallowing using a use a benchmark flattening (f) value of 0.6 (unless previously corrected using either the inclination-elongation method or anisotropy of magnetic susceptibility information) lead to an almost perfect Pangea-A type fit. Pangea break-up profoundly changed our planet, and the most important phase of break-up started when the Central Atlantic Ocean opened (ca. 195 Ma). Perhaps not coincidentally, the region where the Atlantic spreading started was preceded by the emplacement of the Central Atlantic Magmatic Province, one of the largest large igneous

  2. Breakup of Liquid Sheets and Jets

    NASA Astrophysics Data System (ADS)

    Lin, S. P.

    2003-09-01

    This book is an exposition of what we know about the physics underlying the onset of instability in liquid sheets and jets. Wave motion and breakup phenomena subsequent to the onset of instability are also carefully explained. Physical concepts are established through mathematics, accurate numerical analysis and comparison of theory with experiments. Exercises are provided for students new to the subject. Researchers interested in topics ranging from transition to turbulence, hydrodynamic stability or combustion will find this book a useful resource, whether their background lies in engineering, physics, chemistry, biology, medicine or applied mathematics.

  3. Reentry Breakup Recorder: An Innovative Device for Collecting Data during Breakup of Reentering Objects

    NASA Astrophysics Data System (ADS)

    Ailor, W. H.; Weaver, M. A.

    2012-01-01

    More than 40 large, human-made, uncontrolled objects reenter the earth's atmosphere every year, and some fraction of the mass of each object survives to impact the ground or water. Some of these surviving objects are sizable and potentially hazardous. Recognizing this fact, space agencies are developing regulations and standards to limit ground hazards. Unfortunately, detailed information on how objects respond to the severe heating and loads environment is not available due to the difficulty in recording and broadcasting data during reentry and breakup. The Reentry Breakup Recorder (REBR) was developed using a different paradigm - rather than broadcasting data during the breakup event, record the data and broadcast it after the reentry has effectively ended, but before the data recorder actually impacts the Earth's surface. The paper describes how this approach minimizes the weight of the recording device and the overall cost of data recovery. The first flight tests of the REBR device were conducted in 2011; a REBR was inside the Japanese HTV2 and the European ATV-2 vehicles when they were deorbited into the Pacific Ocean. The paper presents a summary of the results of those tests and gives an overview of how future versions of REBR will revolutionize our understanding of reentry breakup and might be used to prototype "black box" systems for space transportation vehicles.

  4. Role of Weber number in the primary breakup of liquid jets in crossflow

    NASA Astrophysics Data System (ADS)

    Pai, Madhusudan; Bermejo-Moreno, I.; Desjardins, Olivier; Pitsch, Heinz

    2009-11-01

    Atomization of liquid fuel controls the combustion efficiency and pollutant emissions from internal combustion engines and gas turbines. A liquid jet injected into a crossflow breaks up by developing liquid surface instabilities and deformations due to aerodynamic sources and liquid jet turbulence, among other causes. There is a pressing need to understand the origin and role of these instabilities in the breakup of a liquid jet. These instabilities can be accurately quantified in detailed numerical simulations of liquid jets. A spectrally-refined interface (SRI) tracking scheme for interface transport coupled to an accurate and robust Navier-Stokes/Ghost-fluid method gas-phase solver is employed to perform large-scale detailed numerical simulations of liquid jets in a laminar crossflow. The liquid Weber number controls the tendency of a liquid jet to break up, while the liquid Reynolds number controls the range of length scales in the liquid jet turbulence. The interplay and role of these phenomena in the primary breakup of liquid jets is quantified through a parametric study. Existing models for turbulent primary breakup of liquid jets in crossflow are reviewed based on the numerical results.

  5. An Ellipsoidal Model for Secondary Breakup of Spray Droplets

    NASA Astrophysics Data System (ADS)

    Lundgren, T. S.

    1998-11-01

    In sprays of liquid drops dynamic interaction with the gas can cause drops to breakup into daughter drops. To analyse this situation it is assumed that the drop has the shape of a deformable ellipsoid of revolution. When placed in a stream the high stagnation pressure at the symmetry axis, coupled with Bernoulli suction around the equator tends to squeeze the drop into a lenticular shape. This is resisted by the inertia of the liquid and surface tension forces. This problem has been solved by matching together two exact potential flow solutions, allowing slip along the interface. The external flow is the solution for flow around an ellipsoidal body when it is moving with relative velocity into the gas. The internal flow of the liquid is an exact solution for flow inside a deforming ellipsoid, a uniform flow plus a uniaxial strain flow (a stagnation point flow). The boundary condition which matches the solutions at the interface, the balance of normal stresses with surface tension, is imposed only at the upstream axis and along the equator. The resulting equations give a second order differential equation for the aspect ratio of the drop. This is similar to the TAB model but nonlinear. A nonlinear oscillator. For small enough (constant) Weber number there is a stable solution at a certain aspect ratio; the drop can oscillate about this shape. When the Weber number is larger than a critical value the stable critical point disapears and the drop becomes unstable, with the equatorial radius growing until unbounded; the drop breaks.

  6. Relating Breakup and Incomplete Fusion of Weakly Bound Nuclei through a Classical Trajectory Model with Stochastic Breakup

    SciTech Connect

    Diaz-Torres, A.; Hinde, D. J.; Dasgupta, M.; Gasques, L. R.; Tostevin, J. A.

    2007-04-13

    A classical dynamical model that treats breakup stochastically is presented for low energy reactions of weakly bound nuclei. The three-dimensional model allows a consistent calculation of breakup, incomplete, and complete fusion cross sections. The model is assessed by comparing the breakup observables with continuum discretized coupled-channel quantum mechanical predictions, which are found to be in reasonable agreement. Through the model, it is demonstrated that the breakup probability of the projectile as a function of its distance from the target is of primary importance for understanding complete and incomplete fusion at energies near the Coulomb barrier.

  7. The cometary breakup hypothesis re-examined

    NASA Astrophysics Data System (ADS)

    La Violette, P. A.

    1987-02-01

    The theory that a Chiron-like progenitor of both Comet Encke and the Tunguska cosmic body may have fragmented beginning around 22,000 years BP and that debris from this breakup was responsible for producing the high heavy metal concentrations observed in the Late Wisconin stage polar ice is shown to be incorrectly founded. This paper reexamines the geochemical comparison which Clube and Napier (1984) make between the composition of the Tunguska cosmic body and elemental abundances previously reported for a sample of Sn-rich dust retrieved from the Wisconsin section of the Camp Century ice core. No evidence is found that would link these two sources to a common origin. Thus the hypothesis that a cometary breakup was responsible for modulating the earth's climate and perpetuating the last ice age is unfounded. On the other hand, evidence is presented indicating that debris from the Tunguska explosion may be present in a firm layer at Dome C, East Antarctica. Analysis of the geochemical data for this stratum leads to an estimate of 10 to the 6th to 10 to the 7th t for the mass of the Tunguska body, in approximate agreement with previous determinations.

  8. ALIGNING JIG

    DOEpatents

    Culver, J.S.; Tunnell, W.C.

    1958-08-01

    A jig or device is described for setting or aligning an opening in one member relative to another member or structure, with a predetermined offset, or it may be used for measuring the amount of offset with which the parts have previously been sct. This jig comprises two blocks rabbeted to each other, with means for securing thc upper block to the lower block. The upper block has fingers for contacting one of the members to be a1igmed, the lower block is designed to ride in grooves within the reference member, and calibration marks are provided to determine the amount of offset. This jig is specially designed to align the collimating slits of a mass spectrometer.

  9. Image alignment

    DOEpatents

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  10. Breakup Effects on University Students' Perceived Academic Performance

    ERIC Educational Resources Information Center

    Field, Tiffany; Diego, Miguel; Pelaez, Martha; Deeds, Osvelia; Delgado, Jeannette

    2012-01-01

    The Problem: Problems that might be expected to affect perceived academic performance were studied in a sample of 283 university students. Results: Breakup Distress Scale scores, less time since the breakup and no new relationship contributed to 16% of the variance on perceived academic performance. Variables that were related to academic…

  11. Modeling of Turbulence Effects on Liquid Jet Atomization and Breakup

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Chen, C. P.

    2005-01-01

    Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. Two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O Rourke et al, are further extended to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size formed from this breakup regime is estimated based on the energy balance before and after the breakup occurrence. This paper describes theoretical development of the current models, called "T-blob" and "T-TAB", for primary and secondary breakup respectivety. Several assessment studies are also presented in this paper.

  12. MUSE alignment onto VLT

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dupuy, Christophe; Jarno, Aurélien; Lizon, Jean-Louis; Migniau, Jean-Emmanuel; Nicklas, Harald; Piqueras, Laure

    2014-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph developed for the European Southern Observatory (ESO). It combines a 1' x 1' field of view sampled at 0.2 arcsec for its Wide Field Mode (WFM) and a 7.5"x7.5" field of view for its Narrow Field Mode (NFM). Both modes will operate with the improved spatial resolution provided by GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), that will use the VLT deformable secondary mirror and 4 Laser Guide Stars (LGS) foreseen in 2015. MUSE operates in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transported, fully aligned and without any optomechanical dismounting, onto VLT telescope where the first light was overcame the 7th of February, 2014. This paper describes the alignment procedure of the whole MUSE instrument with respect to the Very Large Telescope (VLT). It describes how 6 tons could be move with accuracy better than 0.025mm and less than 0.25 arcmin in order to reach alignment requirements. The success

  13. Mapping the evolving strain field during continental breakup from crustal anisotropy in the Afar Depression

    PubMed Central

    Keir, Derek; Belachew, M.; Ebinger, C.J.; Kendall, J.-M.; Hammond, J.O.S.; Stuart, G.W.; Ayele, A.; Rowland, J.V.

    2011-01-01

    Rifting of the continents leading to plate rupture occurs by a combination of mechanical deformation and magma intrusion, yet the spatial and temporal scales over which these alternate mechanisms localize extensional strain remain controversial. Here we quantify anisotropy of the upper crust across the volcanically active Afar Triple Junction using shear-wave splitting from local earthquakes to evaluate the distribution and orientation of strain in a region of continental breakup. The pattern of S-wave splitting in Afar is best explained by anisotropy from deformation-related structures, with the dramatic change in splitting parameters into the rift axis from the increased density of dyke-induced faulting combined with a contribution from oriented melt pockets near volcanic centres. The lack of rift-perpendicular anisotropy in the lithosphere, and corroborating geoscientific evidence of extension dominated by dyking, provide strong evidence that magma intrusion achieves the majority of plate opening in this zone of incipient plate rupture. PMID:21505441

  14. Mapping the evolving strain field during continental breakup from crustal anisotropy in the Afar Depression.

    PubMed

    Keir, Derek; Belachew, M; Ebinger, C J; Kendall, J-M; Hammond, J O S; Stuart, G W; Ayele, A; Rowland, J V

    2011-01-01

    Rifting of the continents leading to plate rupture occurs by a combination of mechanical deformation and magma intrusion, yet the spatial and temporal scales over which these alternate mechanisms localize extensional strain remain controversial. Here we quantify anisotropy of the upper crust across the volcanically active Afar Triple Junction using shear-wave splitting from local earthquakes to evaluate the distribution and orientation of strain in a region of continental breakup. The pattern of S-wave splitting in Afar is best explained by anisotropy from deformation-related structures, with the dramatic change in splitting parameters into the rift axis from the increased density of dyke-induced faulting combined with a contribution from oriented melt pockets near volcanic centres. The lack of rift-perpendicular anisotropy in the lithosphere, and corroborating geoscientific evidence of extension dominated by dyking, provide strong evidence that magma intrusion achieves the majority of plate opening in this zone of incipient plate rupture. PMID:21505441

  15. Condition of resonant break-up of gas bubbles by an acoustic wave in liquid

    NASA Astrophysics Data System (ADS)

    Vanovskiy, V. V.; Petrov, A. G.

    2016-07-01

    The linear theory of damping of radial vibrations of a bubble in a liquid is constructed by taking into account the key dissipative mechanisms: thermal, viscous, and acoustic. The basic approximation of homobaricity made helps to obtain the results in a convenient and simple form. The results obtained for damping are used further in the description of the forced resonant oscillations of a bubble in an acoustic wave with the frequency equal to the eigenfrequency of the radial oscillation mode and twice as high as the frequency of the deformation oscillation mode (resonance 2:2:1). It is shown that the amplitude of deformation oscillations, which is reasonably large for breaking, is developed at a relatively small pressure amplitude of the exciting acoustic wave, and subharmonics arise in the acoustic-emission spectrum. The condition of bubble break-up is obtained for a fast and slow start of the acoustic wave.

  16. Impacts, tillites, and the breakup of Gondwanaland

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Marshall, John R.; Aggarwal, Hans

    1993-01-01

    Mathematical analysis demonstrates that substantial impact crater deposits should have been produced during the last 2 Gy of Earth's history. Textures of impact deposits are shown to resemble textures of tillites and diamictites of Precambrian and younger ages. The calculated thickness distribution for impact crater deposits produced during 2 Gy is similar to that of tillites and diamictites of 2 Ga or younger. We suggest, therefore, that some tillites/diamictites could be of impact origin. Extensive tillite/diamictite deposits predated continental flood basalts on the interior of Gondwanaland. Significantly, other investigators have already associated impact cratering with flood basalt volcanism and continental rifting. Thus, it is proposed that the breakup of Gondwanaland could have been initiated by crustal fracturing from impacts.

  17. Electrohydrodynamic (EHD) stimulation of jet breakup

    NASA Technical Reports Server (NTRS)

    Crowley, J. M.

    1982-01-01

    Electrohydrodynamic (EHD) excitation of liquid jets offers an alternative to piezoelectric excitation without the complex frequency response caused by piezoelectric and mechanical resonances. In an EHD exciter, an electrode near the nozzle applies an alternating Coulomb force to the jet surface, generating a disturbance which grows until a drop breaks off downstream. This interaction is modelled quite well by a linear, long wave model of the jet together with a cylindrical electric field. The breakup length, measured on a 33 micrometer jet, agrees quite well with that predicted by the theory, and increases with the square of the applied voltage, as expected. In addition, the frequency response is very smooth, with pronounced nulls occurring only at frequencies related to the time which the jet spends inside the exciter.

  18. Comment on breakup densities of hot nuclei

    NASA Astrophysics Data System (ADS)

    Viola, V. E.; Kwiatkowski, K.; Yennello, S. J.; Natowitz, J. B.

    2006-06-01

    In [V.E. Viola et al., Phys. Rev. Lett. 93 (2004) 132701, D.S. Bracken et al., Phys. Rev. C 69 (2004) 034612] the observed decrease in spectral peak energies of IMFs emitted from hot nuclei was interpreted in terms of a breakup density that decreased with increasing excitation energy. Subsequently, Raduta et al. [Ad. Raduta et al., Phys. Lett. B 623 (2005) 43] performed MMM simulations that showed decreasing spectral peaks could be obtained at constant density. In this Letter we point out that this apparent inconsistency is due to a selective comparison of theory and data that overlooks the evolution of the fragment multiplicities as a function of excitation energy.

  19. Dynamics of associative polymer solutions: Capillary break-up, jetting and rheology

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Serdy, James G.; Threfall-Holmes, Phil; McKinley, Gareth H.

    2011-11-01

    Associative polymer solutions are used in extensively in the formulations for water-borne paints, food, inks, cosmetics, etc to control the rheology and processing behavior of multi-component dispersions. These complex dispersions are processed and used over a broad range of shear and extensional rates. Furthermore, the commercially relevant formulations use dilute solutions of associative polymers, which have low viscosity and short relaxation times, and hence their non-Newtonian response is not apparent in a conventional rheometer. In this talk, we explore several methods for systematically exploring the linear and nonlinear solution rheology of associative polymer dispersions, including: fractional model description of physical gelation, high frequency oscillatory tests at frequencies up to 10 kHz, microfluidic shear rheometry at deformation rates up to 1000000 /s and the influence of transient extensional rheology in the jet breakup. We show that high deformation rates can be obtained in jetting flows, and the growth and evolution of instability during jetting and break-up of these viscoelastic fluids shows the influence of both elasticity and extensibility.

  20. Calculating Beam Breakup in Superconducting Linear Accelerators

    SciTech Connect

    Geoffrey Krafft; Joseph Bisognano; Sharon Laubach

    1990-02-09

    As the intensity of a particle beam passing through a linear accelerator is raised, interactions between particles play an increasingly prominent role in determining the overall dynamics of the beam. These many body effects, known collectively as beam breakup, tend to degrade the quality of the transported beam, and hence they must be calculated to accurately predict the evolution of the beam as it traverses the accelerator. Several codes which compute various collective effects have been developed and used to simulate the dynamics of beams passing through superconducting accelerator structures. All the codes use the same basic algorithm: the beam is tracked through elements giving the focusing forces on the particles, and at the appropriate locations in the linac, localized forces are impressed on the particles which model the electromagnetic interactions. Here, a difficulty is that the usual ''Coulomb'' interaction between particles is changed by the electromagnetic environment of the accelerator. By such calculations it has been shown that recirculating linear accelerators such as the one being built at the Continuous Electron Beam Accelerator Facility (CEBAF) should remain stable against multipass beam breakup instability as long as the average current does not exceed about 20 mA, that the beam quality at CEBAF will be degraded when the single bunch charge approaches 10{sup 9} electrons, and that the beam quality of superconducting linacs that are optimized for high current transport begins to decrease at around 10{sup 10} electrons per bunch. The latter result is of interest to individuals who would use superconducting linacs as beam sources for free electron lasers or for superconducting colliders for high energy physics research.

  1. Team formation and breakup in multiagent systems

    NASA Astrophysics Data System (ADS)

    Rao, Venkatesh Guru

    The goal of this dissertation is to pose and solve problems involving team formation and breakup in two specific multiagent domains: formation travel and space-based interferometric observatories. The methodology employed comprises elements drawn from control theory, scheduling theory and artificial intelligence (AI). The original contribution of the work comprises three elements. The first contribution, the partitioned state-space approach is a technique for formulating and solving co-ordinated motion problem using calculus of variations techniques. The approach is applied to obtain optimal two-agent formation travel trajectories on graphs. The second contribution is the class of MixTeam algorithms, a class of team dispatchers that extends classical dispatching by accommodating team formation and breakup and exploration/exploitation learning. The algorithms are applied to observation scheduling and constellation geometry design for interferometric space telescopes. The use of feedback control for team scheduling is also demonstrated with these algorithms. The third contribution is the analysis of the optimality properties of greedy, or myopic, decision-making for a simple class of team dispatching problems. This analysis represents a first step towards the complete analysis of complex team schedulers such as the MixTeam algorithms. The contributions represent an extension to the literature on team dynamics in control theory. The broad conclusions that emerge from this research are that greedy or myopic decision-making strategies for teams perform well when specific parameters in the domain are weakly affected by an agent's actions, and that intelligent systems require a closer integration of domain knowledge in decision-making functions.

  2. The Mesozoic breakup of the Weddell Sea

    NASA Astrophysics Data System (ADS)

    KöNig, Matthias; Jokat, Wilfried

    2006-12-01

    A new set of rotations is presented that describes a refined model for the early opening of the Weddell Sea between South America and Antarctica and the Mesozoic breakup of Gondwana. Published high-resolution aeromagnetic data from the eastern Weddell Sea and additional track data farther west in the Weddell Sea were used to constrain the new model for the opening of the Weddell Sea. Rotation parameters derived for the South America-Antarctica spreading regime were combined with constraints on the South America-Africa and Africa-Antarctica spreading systems to calculate a refined model for the Mesozoic breakup of Gondwana. Thereafter, at the time when the north-south oriented separation between Africa and Antarctica is initiated by rifting in the Somali and Mozambique basins (˜167 Ma), stretching and extension takes place in a basin comprising continental crust of the Filchner-Ronne Shelf, the Falkland Island block and the Maurice Ewing Bank. The first true ocean floor in the Weddell Sea is formed at about 147 Ma, after rifting between the Antarctic Peninsula and southernmost South America occurred. This is about 15-20 Myr later than previously estimated. Separation between South America and Antarctica takes place at slow spreading rates (14-12 mm/yr half rate) from 147 to 122 Ma and after 122 Ma (M2) at ultraslow spreading rates (˜8 mm/yr half rate) with little change in the NNW spreading direction throughout this time. A revised age range is proposed for the formation of the Explora Wedge (150-138 Ma), which is more than 30 Myr later than previously published (˜183 Ma).

  3. IUS prerelease alignment

    NASA Technical Reports Server (NTRS)

    Evans, F. A.

    1978-01-01

    Space shuttle orbiter/IUS alignment transfer was evaluated. Although the orbiter alignment accuracy was originally believed to be the major contributor to the overall alignment transfer error, it was shown that orbiter alignment accuracy is not a factor affecting IUS alignment accuracy, if certain procedures are followed. Results are reported of alignment transfer accuracy analysis.

  4. Trends of ice breakup date in south-central Ontario

    NASA Astrophysics Data System (ADS)

    Fu, Congsheng; Yao, Huaxia

    2015-09-01

    Large-scale ice phenology studies have revealed overall patterns of later freeze, earlier breakup, and shorter duration of ice in the Northern Hemisphere. However, there have been few studies regarding the trends, including their spatial patterns, in ice phenology for individual waterbodies on a local or small regional scale, although the coherence of ice phenology has been shown to decline rapidly in the first few hundred kilometers. In this study, we extracted trends, analyzed affecting factors, and investigated relevant spatial patterns for ice breakup date time series at 10 locations with record length ≥90 years in south-central Ontario, Canada. Wavelet methods, including the multiresolution analysis (MRA) method for nonlinear trend extraction and the wavelet coherence (WTC) method for identifying the teleconnections between large-scale climate modes and ice breakup date, are proved to be effective in ice phenology analysis. Using MRA method, the overall trend of ice breakup date time series (1905-1991) varied from earlier ice breakup to later ice breakup, then to earlier breakup again from south to north in south-central Ontario. Ice breakup date is closely correlated with air temperature during certain winter/spring months, as well as the last day with snow on the ground and number of snow-on-ground days. The influences of solar activity and Pacific North American on ice breakup were comparatively uniform across south-central Ontario, while those of El Niño-Southern Oscillation, North Atlantic Oscillation, and Arctic Oscillation on ice phenology changed with distance of 50-100 km in the north-south direction.

  5. The TAB method for numerical calculation of spray droplet breakup

    NASA Astrophysics Data System (ADS)

    Orourke, P. J.; Amsden, A. A.

    A short history is given of the major milestones in the development of the stochastic particle method for calculating liquid fuel sprays. The most recent advance has been the discovery of the importance of drop breakup in engine sprays. A new method, called TAB, for calculating drop breakup is presented. Some theoretical properties of the method are derived; its numerical implementation in the computer program KIVA is described; and comparisons are presented between TAB-method calculations and experiments and calculations using another breakup model.

  6. The oil body formation and breakup in the compound vortex

    NASA Astrophysics Data System (ADS)

    Chaplina, T. O.; Stepanova, E. V.

    2012-04-01

    The flows in the Ocean and Atmosphere combine different types of motion: streams, jets, wakes, vortices and waves. When flows transport solid bodies or immiscible admixtures picturesque flow patterns are revealed and indicated the type of flow. Different spiral patterns visualize vortex flow structure. In experiments is studied the transport of finite volumes of immiscible admixture introduced on the free surface of water drawn into the vortex motion in the vertical cylindrical container. The basic medium was tap water, preliminary degasified to make the visualization less difficult. The fixed volume of immiscible admixture (castor or sunflower oil) is introduced on the quiescent free surface of water inside the cylindrical container. The generation of compound vortex in the cylindrical container started after all the disturbances caused by deposition of the oil volume are damped. In compound vortex the flow oil patch with smooth boundary placed onto free surface is transformed into a set of spiral arms and separate drops contacting with the central oil volume. The droplets are separated from the central spot and slowly travel towards the container sidewall. With time, the spot is transformed into pronounced spiral arms. The most part of oil under the influence of vortex flow is gathered into the central volume contacting with the free surface. This volume is called "the oil body". On the lower frequencies of disk rotation and respectively slow flow gyration the oil body has smooth boundaries with water and air. The growth of disk rotation frequency leads to more pronounced deformation of the contact surface between liquid and air, the boundary of the oil body and water then is covered by small pimples. At the further increase of disk rotation frequency the oil body comes to the breakup, the water-oil boundary become irregular and on the lowest part of the oil body the analog of foam appears (the water-oil emulsion). The work is supported by Ministry of Education

  7. Post-breakup Basin Evolution along the South-Atlantic Margins in Brazil and Angola/Namibia

    NASA Astrophysics Data System (ADS)

    Kukla, P. A.; Strozyk, F.; Back, S.

    2013-12-01

    The post-breakup tectono-stratigraphic evolution of large offshore basins along the South American and African continental margins record strongly varying post-rift sedimentary successions. The northernmost segment of the South Atlantic rift and salt basins is characterized by a pronounced asymmetry, with the Brazilian margin comprising narrower and deeper rift basins with less salt in comparison to the Congo-Gabon conjugate margin. Another important observation is that multiple phases of uplift and subsidence are recorded after the break-up of the southern South Atlantic on both sides of the Florianopolis-Walvis Ridge volcanic complex, features that are regarded as atypical when compared to published examples of other post-breakup margin successions. A regional comparison based on tectonic-stratigraphic analysis of selected seismic transects between the large basins offshore southern Brazil (Espirito Santo Basin, Campos Basin, Santos Basin, Pelotas Basin) and southwest Africa (Lower Congo Basin, Kwanza Basin, Namibe Basin, Walvis Basin) provides a comprehensive basin-to-basin documentation of the key geological parameters controlling ocean and continental margin development. This comparison includes the margin configuration, subsidence development through time, sediment influx and storage patterns, type of basin fill (e.g. salt vs. non-salt systems; carbonate-rich vs. clastics-dominated systems) and finally major tectonic and magmatic events. Data from the salt basins indicate that salt-related tectonic deformation is amongst the prime controls for the non-uniform post-rift margin development. The diversity in the stratigraphic architecture of the conjugate margins offshore southern Brazil, Namibia and Angola reflects variations in the interplay of a number of controlling factors, of which the most important are (a) the structural configuration of each margin segment at the time of break-up, (b) the post break-up subsidence history of the respective margin segment

  8. Field-aligned electron flux oscillations that produce flickering aurora

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. P.; Carlson, C. W.; Boehm, M. H.; Hallinan, T. J.

    1987-01-01

    Measurements of energetic electrons that produce flickering aurora were made by a pair of sounding rockets, launched during a slowly evolving auroral breakup. Both payloads passed through a broad inverted-V structure. A component of the electron distribution function was closely aligned with the magnetic field over a broad energy range that extended from low energies up to the inverted-V differential energy flux peak. Measurements of the field-aligned component showed the presence of order of magnitude coherent flux oscillations. Source altitudes between 4000 and 8000 km were derived from velocity dispersion of the flux oscillations.

  9. ISS Update: ATV-3 ReEntry Breakup Recorder

    NASA Video Gallery

    ISS Update Commentator Pat Ryan talks with Dr. William Ailor, Principal Investigator for the ReEntry Breakup Recorder (REBR) for The Aerospace Corporation. Ailor talks about capturing data as Europ...

  10. Investigation of the intermediate-energy deuteron breakup reaction

    SciTech Connect

    Divadeenam, M.; Ward, T.E.; Mustafa, M.G.; Udagawa, T.; Tamura, T.

    1989-01-01

    The Udagawa-Tamura formalism is employed to calculate the proton singles both in the bound and unbound regions. Both the Elastic-Breakup (EB) and the Breakup-Fusion (BF) processes are considered to calculate the doubly-differential cross section for light and intermediate mass nuclei. The calculated spectra for 25 and 56 MeV deuterons reproduce the experimental spectra very well except for the spectra at large angle and at low energies, of the outgoing particle. Contributions due to precompound and evaporation processes are estimated to supplement the spectral results based on the Elastic-Breakup and Breakup-Fusion mechanisms. An extension of the model calculations to higher deuteron energies is being made to test the (EB + BF) model limitations. 5 refs., 1 fig.

  11. Breakup of 87 MeV [sup 11]B

    SciTech Connect

    Wolfs, F.L.H.; White, C.A.; Bryan, D.C.; Freeman, C.G.; Herrick, D.M.; Kurz, K.L.; Mathews, D.H.; Perera, P.A.A.; Zanni, M.T. )

    1994-05-01

    A segmented focal plane detector has been used to study the breakup of 87 MeV [sup 11]B ions incident on a [sup 12]C target into [sup 4]He and [sup 7]Li fragments at relative energies between 0 and 4 MeV. The relative energy spectra are dominated by sequential breakup of the 9.28 MeV, 10.26+10.33 MeV, and 10.60 MeV excited states in [sup 11]B. The measured breakup yields decrease with increasing center-of-mass scattering angle, consistent with predictions made using single-step inelastic distorted wave Born approximation calculations. Applications of this technique to study the breakup of [sup 16]O at low relative energies will be discussed.

  12. Description of the four-nucleon collisions by including breakup

    NASA Astrophysics Data System (ADS)

    Lazauskas, Rimantas

    2016-03-01

    Four-nucleon reactions above the breakup threshold are described by solving Faddeev-Yakubovsky equations for the realistic nuclear Hamiltonians. Complex-scaling method is applied in order to simplify the boundary conditions.

  13. Degenerative Spinal Deformity.

    PubMed

    Ailon, Tamir; Smith, Justin S; Shaffrey, Christopher I; Lenke, Lawrence G; Brodke, Darrel; Harrop, James S; Fehlings, Michael; Ames, Christopher P

    2015-10-01

    Degenerative spinal deformity afflicts a significant portion of the elderly and is increasing in prevalence. Recent evidence has revealed sagittal plane malalignment to be a key driver of pain and disability in this population and has led to a significant shift toward a more evidence-based management paradigm. In this narrative review, we review the recent literature on the epidemiology, evaluation, management, and outcomes of degenerative adult spinal deformity (ASD). ASD is increasing in prevalence in North America due to an aging population and demographic shifts. It results from cumulative degenerative changes focused in the intervertebral discs and facet joints that occur asymmetrically to produce deformity. Deformity correction focuses on restoration of global alignment, especially in the sagittal plane, and decompression of the neural elements. General realignment goals have been established, including sagittal vertical axis <50 mm, pelvic tilt <22°, and lumbopelvic mismatch <±9°; however, these should be tailored to the patient. Operative management, in carefully selected patients, yields satisfactory outcomes that appear to be superior to nonoperative strategies. ASD is characterized by malalignment in the sagittal and/or coronal plane and, in adults, presents with pain and disability. Nonoperative management is recommended for patients with mild, nonprogressive symptoms; however, evidence of its efficacy is limited. Surgery aims to restore global spinal alignment, decompress neural elements, and achieve fusion with minimal complications. The surgical approach should balance the desired correction with the increased risk of more aggressive maneuvers. In well-selected patients, surgery yields excellent outcomes. PMID:26378361

  14. Tiny Traces of a Big Asteroid Breakup

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2004-03-01

    Ancient geologic conditions in southern Sweden were ideal to preserve meteorites that fell to Earth about half a billion years ago. Researcher Birger Schmitz (working as a visiting professor at Rice University and now at the University of Lund, Sweden) and his colleagues in Goteborg, Sweden have analyzed over 40 of these rare fossil meteorites along with relict chromite grains collected from sites in a 250,000-square-kilometer area of 480-million-year-old limestone. They attribute the abundance and wide distribution of this space debris to a meteorite influx at least one hundred times more intense than the influx today. Rather than a smorgasbord of different types, cosmochemical evidence shows that the fossil meteorites are L or LL chondrites leading the team to conclude that these meteorites and chromite grains derived from a major collision in the asteroid belt. The age of the limestone is very close to the impact age of many L chondrites suggesting that this major collision was the breakup of the L chondrite parent body, possibly the largest impact in the asteroid belt in the last few billion years.

  15. The breakup of (16)O and its astrophysical implications

    NASA Astrophysics Data System (ADS)

    Bryan, Diane Carol

    1998-07-01

    The feasibility of using the breakup of 16O to obtain information about the 12C(/alpha,/gamma)16O radiative capture reaction has been studied in a series of experiments performed at the Nuclear Structure Research Laboratory at the University of Rochester. The 16O breakup fragments-12C and 4He-were identified using a new focal-plane detector capable of identifying these fragments down to a relative energy of 50 keV. The relative energy spectra obtained from 16O breakup on a 58Ni target are dominated by sequential breakup from 9.85 MeV, and 10.36 MeV excited states in 16O. There is also some evidence of breakup at relative energies below 1 MeV. Interpretation of this low energy yield in terms of E2 Coulomb excitation leads to a value of SE2=346 keV b at Erel=0.828 MeV after making a correction for the contribution due to nuclear breakup. This suggests that the rate of the 12C(/alpha,/gamma)16O reaction at astrophysical energies is much higher than is presently accepted, which would have an enormous impact on stellar nucleosynthesis.

  16. A new model for auroral breakup during substorms

    SciTech Connect

    Rothwell, P.L.; Block, L.P.; Falthammar, C.G.; Silevitch, M.B.

    1989-04-01

    A model for substorm breakup is developed, based on the relaxation of stretched (closed) dipolar field lines, and the formation of an incipient current wedge within a single arc structure. It is argued that the establishment of a coupled current structure within a single arc leads to a quasi-stable system; i.e., the pre-breakup regime. Perturbation of the pre-breakup structure leads to an instability criterion. It is found, consistent with observations, that narrower auroral arcs at lower L shells undergo the most explosive poleward expansion. According to this model, the precise location at which breakup occurs depends on the O/sup +/ density in the plasma sheet, the level of magnetic activity (K/sub p/), and the intensity of the substorm westward electrojet in the ionosphere. An enhancement of any of these features will cause breakup to occur at lower L shells. Comparison of our model with the Heppner-Maynard polar-cap potential model indicates that breakup is restricted to the west of the Harang discontinuity consistent with recent observations from the Viking satellite.

  17. Droplet size distributions in turbulent emulsions: breakup criteria and surfactant effects from direct numerical simulations.

    PubMed

    Skartlien, R; Sollum, E; Schumann, H

    2013-11-01

    Lattice Boltzmann simulations of water-in-oil (W/O) type emulsions of moderate viscosity ratio (≃1/3) and with oil soluble amphiphilic surfactant were used to study the droplet size distribution in forced, steady, homogeneous turbulence, at a water volume fraction of 20%. The viscous stresses internal to the droplets were comparable to the interfacial stress (interfacial tension), and the droplet size distribution (DSD) equilibrated near the Kolmogorov scale with droplet populations in both the viscous and inertial subranges. These results were consistent with known breakup criteria for W/O and oil-in-water emulsions, showing that the maximum stable droplet diameter is proportional to the Kolmogorov scale when viscous stresses are important (in contrast to the inviscid Hinze-limit where energy loss by viscous deformation in the droplet is negligible). The droplet size distribution in the inertial subrange scaled with the known power law ~d(-10/3), as a consequence of breakup by turbulent stress fluctuations external to the droplets. When the turbulent kinetic energy was sufficiently large (with interfacial Péclet numbers above unity), we found that turbulence driven redistribution of surfactant on the interface inhibited the Marangoni effect that is otherwise induced by film draining during coalescence in more quiescent flow. The coalescence rates were therefore not sensitive to varying surfactant activity in the range we considered, and for the given turbulent kinetic energies. Furthermore, internal viscous stresses strongly influenced the breakup rates. These two effects resulted in a DSD that was insensitive to varying surfactant activity. PMID:24206328

  18. Droplet size distributions in turbulent emulsions: Breakup criteria and surfactant effects from direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Skartlien, R.; Sollum, E.; Schumann, H.

    2013-11-01

    Lattice Boltzmann simulations of water-in-oil (W/O) type emulsions of moderate viscosity ratio (≃1/3) and with oil soluble amphiphilic surfactant were used to study the droplet size distribution in forced, steady, homogeneous turbulence, at a water volume fraction of 20%. The viscous stresses internal to the droplets were comparable to the interfacial stress (interfacial tension), and the droplet size distribution (DSD) equilibrated near the Kolmogorov scale with droplet populations in both the viscous and inertial subranges. These results were consistent with known breakup criteria for W/O and oil-in-water emulsions, showing that the maximum stable droplet diameter is proportional to the Kolmogorov scale when viscous stresses are important (in contrast to the inviscid Hinze-limit where energy loss by viscous deformation in the droplet is negligible). The droplet size distribution in the inertial subrange scaled with the known power law ˜d-10/3, as a consequence of breakup by turbulent stress fluctuations external to the droplets. When the turbulent kinetic energy was sufficiently large (with interfacial Péclet numbers above unity), we found that turbulence driven redistribution of surfactant on the interface inhibited the Marangoni effect that is otherwise induced by film draining during coalescence in more quiescent flow. The coalescence rates were therefore not sensitive to varying surfactant activity in the range we considered, and for the given turbulent kinetic energies. Furthermore, internal viscous stresses strongly influenced the breakup rates. These two effects resulted in a DSD that was insensitive to varying surfactant activity.

  19. Haglund's Deformity

    MedlinePlus

    ... Is Haglund’s Deformity? Haglund’s deformity is a bony enlargement on the back of the heel. The soft ... the Achilles tendon becomes irritated when the bony enlargement rubs against shoes. This often leads to painful ...

  20. Bubble Rise and Break-Up in Volcanic Conduits

    NASA Astrophysics Data System (ADS)

    Soldati, A.; Cashman, K. V.; Rust, A.; Rosi, M.

    2013-12-01

    The continual passive degassing occurring at open-vent mafic volcanoes is often punctuated by bursts of active degassing. The latter are generally thought to be the result of slug flow: large, conduit-filling bubbles periodically rising up the feeder conduit and bursting at the magma-air interface. Existing models of volcanic degassing systems make the simplifying assumption that the conduit is cylindrical; however, while this may be true at shallow levels, a flaring probably connects it to a dyke-like geometry at depth. The overall goal of this research is to assess the influence of conduit geometry on the speed and stability of bubbles rising in open-vent systems, and ultimately to devise a model to infer conduit shape from emerging bubbles size. In order to do that an analogue experimental approach was used. All of the experiments were two-phase (melt+volatiles); the analogue materials of choice were golden syrup-water mixtures ranging in viscosity from 10-1 to 104 Pa*s and air. Two experimental apparatuses were used: a bi-dimensional and a tri-dimensional one. The bi-dimensional set-up is a cell made of two flat transparent PVC plates (44x23cm) 10mm or 5mm apart (the front one having a hole at the bottom permitting bubble injection) containing a variety of parallelepipeds apt to outline different plumbing system geometries. The tri-dimensional one consists of a cylindrical tube (r=1,5cm; l=7cm) allowing bubble injection through the bottom rubber tap and terminating into a square tank (l=22cm). Results indicate that conduit geometry directly controls the slug rise velocity and the surrounding liquid descending speed, which in turn control the slug stability. Small enough bubbles simply deform as they go through the flaring, while bigger ones split into two daughter bubbles. A regime diagram has been constructed, illustrating the bubble break-up threshold dependence on the flare geometry and initial slug size, the two main controlling factors. The phenomenon of

  1. Breakup and vaporization of droplets under locally supersonic conditions

    NASA Astrophysics Data System (ADS)

    Kim, YoungJun; Hermanson, James C.

    2012-07-01

    The disruption and vaporization of simulated fuel droplets in an accelerating supersonic flow was examined experimentally in a draw-down supersonic wind tunnel. The droplets achieved supersonic velocities relative to the surrounding air to give relative Mach numbers of up to 1.8 and Weber numbers of up to 300. Mono-disperse, 100 μm-diameter fluid droplets were generated using a droplet-on-demand generator upstream of the tunnel entrance. Direct close-up single- and multiple-exposure imaging was used to examine the features of droplet breakup and to determine the droplet velocities. Laser-induced fluorescence (LIF) imaging of the disrupting droplets was performed using acetone fluorescence to determine the dispersion of the expelled vapor. Three test liquids were employed: 2-propanol and tetraethylene glycol dimethyl ether as non-volatile fluids and a 50/50 hexanol-pentane mixture (Hex-Pen 50/50). The vapor pressure of the Hex-Pen 50/50 was sufficiently high to cause the droplet fluid to potentially become superheated in the decreased static pressure of the supersonic stream. The dynamics for 2-propanol and Hex-Pen 50/50 droplets were similar up to the point of disruption, which occurred more rapidly for the more volatile Hex-Pen 50/50. A 1D dynamic droplet model was developed to provide a first estimate of the expected droplet acceleration and velocity. The actual droplet velocities were in reasonable agreement with the model up to the point at which significant droplet disruption and mass loss commenced. The droplet deformation and breakup patterns for these supersonic flow conditions can be classified into four different flow regions characterized by changes in the Weber number with downstream distance as the droplets accelerate, however, those flow regimes and Weber number ranges were different than those seen for droplets disrupting in shock tubes. The disruption patterns were seen to be generally similar for the different fluids, though droplet disruption

  2. DNA Align Editor: DNA Alignment Editor Tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The SNPAlignEditor is a DNA sequence alignment editor that runs on Windows platforms. The purpose of the program is to provide an intuitive, user-friendly tool for manual editing of multiple sequence alignments by providing functions for input, editing, and output of nucleotide sequence alignments....

  3. Madelung Deformity.

    PubMed

    Kozin, Scott H; Zlotolow, Dan A

    2015-10-01

    Madelung deformity of the wrist is more common in females and is often associated with Leri Weill dyschondrosteosis, a mesomelic form of dwarfism. Patients with Madelung deformity often report wrist deformity resulting from the prominence of the relatively long ulna. The typical Madelung deformity is associated with a Vickers ligament that creates a tether across the volar-ulnar radial physis that restricts growth across this segment. The distal radius deforms in the coronal (increasing radial inclination) and the sagittal (increasing volar tilt) planes. There is lunate subsidence and the proximal carpal row adapts to the deformity by forming an upside-down pyramid shape or triangle. Treatment depends on the age at presentation, degree of deformity, and magnitude of symptoms. Mild asymptomatic deformity warrants a period of nonsurgical management with serial x-ray examinations because the natural history is unpredictable. Many patients never require surgical intervention. Progressive deformity in the young child with considerable growth potential remaining requires release of Vickers ligament and radial physiolysis to prevent ongoing deterioration Concomitant ulnar epiphysiodesis may be necessary. Advanced asymptomatic deformity in older children with an unacceptable-appearing wrist or symptomatic deformity are indications for surgery. A dome osteotomy of the radius allows 3-dimensional correction of the deformity. Positive radiographic and clinical results after dome osteotomy have been reported. PMID:26341718

  4. Micro-scale extensional rheometry using hyperbolic converging/diverging channels and jet breakup.

    PubMed

    Keshavarz, Bavand; McKinley, Gareth H

    2016-07-01

    Understanding the elongational rheology of dilute polymer solutions plays an important role in many biological and industrial applications ranging from microfluidic lab-on-a-chip diagnostics to phenomena such as fuel atomization and combustion. Making quantitative measurements of the extensional viscosity for dilute viscoelastic fluids is a long-standing challenge and it motivates developments in microfluidic fabrication techniques and high speed/strobe imaging of millifluidic capillary phenomena in order to develop new classes of instruments. In this paper, we study the elongational rheology of a family of dilute polymeric solutions in two devices: first, steady pressure-driven flow through a hyperbolic microfluidic contraction/expansion and, second, the capillary driven breakup of a thin filament formed from a small diameter jet ([Formula: see text]). The small length scale of the device allows very large deformation rates to be achieved. Our results show that in certain limits of low viscosity and elasticity, jet breakup studies offer significant advantages over the hyperbolic channel measurements despite the more complex implementation. Using our results, together with scaling estimates of the competing viscous, elastic, inertial and capillary timescales that control the dynamics, we construct a dimensionless map or nomogram summarizing the operating space for each instrument. PMID:27375824

  5. Dynamics of associative polymer solutions: Capillary break-up, jetting and rheology

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Serdy, James G.; Threfall-Holmes, Phil; McKinley, Gareth H.

    2010-03-01

    Associative polymer solutions are used in extensively in the formulations for water-borne paints, food, inks, cosmetics, etc to control the rheology and processing behavior of multi-component dispersions. The commercially relevant formulations use dilute solutions of associative polymers, which have low viscosity and short relaxation times, and hence their non-Newtonian response is not apparent in a conventional rheometer. In this talk, we explore several methods for systematically exploring the linear and nonlinear solution rheology of associative polymer dispersions, including: high frequency oscillatory tests at frequencies up to 10 kHz, microfluidic shear rheometry at deformation rates up to 10^6 s-1 and the influence of transientextensional rheology in the jet breakup. The presence of inertial, elastic and viscous effects typically leads to complex dynamics in a necking fluid thread. We show that by carefully controlling the excitation frequency, it is possible to drive the break-up in a particularly simple and symmetric mode, which can be used to extract extensional viscosity information using capillary thinning analysis.

  6. The breakup mechanism of biomolecular and colloidal aggregates in a shear flow

    NASA Astrophysics Data System (ADS)

    Ó Conchúir, Breanndán; Zaccone, Alessio

    2014-03-01

    The theory of self-assembly of colloidal particles in shear flow is incomplete. Previous analytical approaches have failed to capture the microscopic interplay between diffusion, shear and intermolecular interactions which controls the aggregates fate in shear. In this work we analytically solved the drift-diffusion equation for the breakup rate of a dimer in flow. Then applying rigidity percolation theory, we found that the lifetime of a generic cluster formed under shear is controlled by the typical lifetime of a single bond in its interior, which in turn depends on the efficiency of the stress transmitted from other bonds in the cluster. We showed that aggregate breakup is a thermally-activated process where the activation energy is controlled by the interplay between intermolecular forces and the shear drift, and where structural parameters determine whether cluster fragmentation or surface erosion prevails. In our latest work, we analyzed floppy modes and nonaffine deformations to derive a lower bound on the fractal dimension df below which aggregates are mechanically unstable, ie. for large aggregates df ~= 2.4. This theoretical framework is in quantitative agreement with experiments and can be used for population balance modeling of colloidal and protein aggregation.

  7. Breakup of Droplets in an Accelerating Gas Flow

    NASA Technical Reports Server (NTRS)

    Dickerson, R. A.; Coultas, T. A.

    1966-01-01

    A study of droplet breakup phenomena by an accelerating gas flow is described. The phenomena are similar to what propellant droplets experience when exposed to accelerating combustion gas flow in a rocket engine combustion zone. Groups of several dozen droplets in the 100-10 750-micron-diameter range were injected into a flowing inert gas in a transparent rectangular nozzle. Motion photography of the behavior of the droplets at various locations in the accelerating gas flow has supplied quantitative and qualitative data on the breakup phenomena which occur under conditions similar to those found in large rocket engine combustors. A blowgun injection device, used to inject very small amounts of liquid at velocities of several hundred feet per second into a moving gas stream, is described. The injection device was used to inject small amounts of liquid RP-1 and water into the gas stream at a velocity essentially equal to the gas velocity where the group of droplets was allowed to stabilize its formation in a constant area section before entering the convergent section of the transparent nozzle. Favorable comparison with the work of previous investigators who have used nonaccelerating gas flow is found with the data obtained from this study with accelerating gas flow. The criterion for the conditions of minimum severity required to produce shear-type droplet breakup in an accelerating gas flow is found to agree well with the criterion previously established at Rocketdyne for breakup in nonaccelerating flow. An extension of the theory of capillary surface wave effects during droplet breakup is also presented. Capillary surface waves propagating in the surface of the droplet, according to classical hydrodynamical laws, are considered. The waves propagate tangentially over the surface of the droplet from the forward stagnation point to the major diameter. Consideration of the effects of relative gas velocity on the amplitude growth of these waves allows conclusions to be

  8. Hard breakup of two nucleons from the He3 nucleus

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak M.; Granados, Carlos

    2009-07-01

    We investigate a large angle photodisintegration of two nucleons from the He3 nucleus within the framework of the hard rescattering model (HRM). In the HRM a quark of one nucleon knocked out by an incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with large relative momentum. Assuming the dominance of the quark-interchange mechanism in a hard nucleon-nucleon scattering, the HRM allows the expression of the amplitude of a two-nucleon breakup reaction through the convolution of photon-quark scattering, NN hard scattering amplitude, and nuclear spectral function, which can be calculated using a nonrelativistic He3 wave function. The photon-quark scattering amplitude can be explicitly calculated in the high energy regime, whereas for NN scattering one uses the fit of the available experimental data. The HRM predicts several specific features for the hard breakup reaction. First, the cross section will approximately scale as s-11. Second, the s11 weighted cross section will have the shape of energy dependence similar to that of s10 weighted NN elastic scattering cross section. Also one predicts an enhancement of the pp breakup relative to the pn breakup cross section as compared to the results from low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn breakup cross sections. This is due to the fact that the same-helicity pp-component is strongly suppressed in the ground state wave function of He3. Because of this suppression the HRM predicts significantly different asymmetries for the cross section of polarization transfer NN breakup reactions for circularly polarized photons. For the pp breakup this asymmetry is predicted to be zero while for the pn it is close to (2)/(3).

  9. Middle-high latitude N2O distributions related to the arctic vortex breakup

    NASA Astrophysics Data System (ADS)

    Zhou, L. B.; Zou, H.; Gao, Y. Q.

    2006-03-01

    The relationship of N2O distributions with the Arctic vortex breakup is first analyzed with a probability distribution function (PDF) analysis. The N2O concentration shows different distributions between the early and late vortex breakup years. In the early breakup years, the N2O concentration shows low values and large dispersions after the vortex breakup, which is related to the inhomogeneity in the vertical advection in the middle and high latitude lower stratosphere. The horizontal diffusion coefficient (K,,) shows a larger value accordingly. In the late breakup years, the N2O concentration shows high values and more uniform distributions than in the early years after the vortex breakup, with a smaller vertical advection and K,, after the vortex breakup. It is found that the N2O distributions are largely affected by the Arctic vortex breakup time but the dynamically defined vortex breakup time is not the only factor.

  10. Morphological classification of low viscosity drop bag breakup in a continuous air jet stream

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Liu, Hai-Feng; Li, Wei-Feng; Xu, Jian-Liang

    2010-11-01

    To investigate the effect of Rayleigh-Taylor wave number in the region of maximum cross stream dimension (NRT) on drop breakup morphology, the breakup properties of accelerating low viscosity liquid drops (water and ethanol drops, diameter=1.2-6.6 mm, Weber number=10-80) were investigated using high-speed digital photography. The results of morphological analysis show a good correlation of the observed breakup type with NRT; bag breakup occurred when NRT was 1/√3 -1, bag-stamen breakup at 1-2, and dual-bag breakup at 2-3. The number of nodes in bag breakup, bag-stamen breakup, and dual-bag breakup all increased with Weber number. The experimental results are consistent with the model estimates and in good agreement with those reported in the literature.

  11. Current reduction in a pseudo-breakup event: THEMIS observations

    NASA Astrophysics Data System (ADS)

    Yao, Z. H.; Pu, Z. Y.; Owen, C. J.; Fu, S. Y.; Chu, X. N.; Liu, J.; Angelopoulos, V.; Rae, I. J.; Yue, C.; Zhou, X.-Z.; Zong, Q.-G.; Cao, X.; Shi, Q. Q.; Forsyth, C.; Du, A. M.

    2014-10-01

    Pseudo-breakup events are thought to be generated by the same physical processes as substorms. This paper reports on the cross-tail current reduction in an isolated pseudo-breakup observed by three of the THEMIS probes (THEMIS A (THA), THEMIS D (THD), and THEMIS E (THE)) on 22 March 2010. During this pseudo-breakup, several localized auroral intensifications were seen by ground-based observatories. Using the unique spatial configuration of the three THEMIS probes, we have estimated the inertial and diamagnetic currents in the near-Earth plasma sheet associated with flow braking and diversion. We found the diamagnetic current to be the major contributor to the current reduction in this pseudo-breakup event. During flow braking, the plasma pressure was reinforced, and a weak electrojet and an auroral intensification appeared. After flow braking/diversion, the electrojet was enhanced, and a new auroral intensification was seen. The peak current intensity of the electrojet estimated from ground-based magnetometers, ~0.7 × 105 A, was about 1 order of magnitude lower than that in a typical substorm. We suggest that this pseudo-breakup event involved two dynamical processes: a current-reduction associated with plasma compression ahead of the earthward flow and a current-disruption related to the flow braking/diversion. Both processes are closely connected to the fundamental interaction between fast flows, the near-Earth ambient plasma, and the magnetic field.

  12. Breakup of {sup 11}B at low relative energies

    SciTech Connect

    Bryan, D.C.; White, C.A.; Wolfs, F.L.H.

    1993-04-01

    The authors have used the segmented focal plane detector of the Rochester Enge split-pole spectrograph to study the breakup of 87 MeV {sup 11}B ions incident on a {sup 12}C target into {sup 4}He and {sup 7}Li fragments at relative energies between 0 MeV and 4 MeV and at laboratory angles between 7.5{degrees} and 25{degrees}. The total kinetic energy spectra of the breakup fragments is dominated by elastic breakup (all reaction products are left in their ground state). The reconstructed relative energy spectra for elastic breakup are dominated by sequential breakup of {sup 11}B via the 9.27 MeV, 10.26 MeV, and 10.60 MeV excited states in {sup 11}B. The measured yields are compared with the calculated cross sections of exciting these states, using DWBA calculations and B(EL) values obtained from radiative capture measurements of {sup 4}He and {sup 7}Li.

  13. Dynamics of bubble breakup at a T junction.

    PubMed

    Lu, Yutao; Fu, Taotao; Zhu, Chunying; Ma, Youguang; Li, Huai Z

    2016-02-01

    The gas-liquid interfacial dynamics of bubble breakup in a T junction was investigated. Four regimes were observed for a bubble passing through the T junction. It was identified by the stop flow that a critical width of the bubble neck existed: if the minimum width of the bubble neck was less than the critical value, the breakup was irreversible and fast; while if the minimum width of the bubble neck was larger than the critical value, the breakup was reversible and slow. The fast breakup was driven by the surface tension and liquid inertia and is independent of the operating conditions. The minimum width of the bubble neck could be scaled with the remaining time as a power law with an exponent of 0.22 in the beginning and of 0.5 approaching the final fast pinch-off. The slow breakup was driven by the continuous phase and the gas-liquid interface was in the equilibrium stage. Before the appearance of the tunnel, the width of the depression region could be scaled with the time as a power law with an exponent of 0.75; while after that, the width of the depression was a logarithmic function with the time. PMID:26986389

  14. Dynamics of bubble breakup at a T junction

    NASA Astrophysics Data System (ADS)

    Lu, Yutao; Fu, Taotao; Zhu, Chunying; Ma, Youguang; Li, Huai Z.

    2016-02-01

    The gas-liquid interfacial dynamics of bubble breakup in a T junction was investigated. Four regimes were observed for a bubble passing through the T junction. It was identified by the stop flow that a critical width of the bubble neck existed: if the minimum width of the bubble neck was less than the critical value, the breakup was irreversible and fast; while if the minimum width of the bubble neck was larger than the critical value, the breakup was reversible and slow. The fast breakup was driven by the surface tension and liquid inertia and is independent of the operating conditions. The minimum width of the bubble neck could be scaled with the remaining time as a power law with an exponent of 0.22 in the beginning and of 0.5 approaching the final fast pinch-off. The slow breakup was driven by the continuous phase and the gas-liquid interface was in the equilibrium stage. Before the appearance of the tunnel, the width of the depression region could be scaled with the time as a power law with an exponent of 0.75; while after that, the width of the depression was a logarithmic function with the time.

  15. Breakup Reactions of Neutron Drip Line Nuclei Near N=20

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    2011-09-01

    Coulomb breakup at intermediate energies is a useful experimental tool for investigating the microscopic structure of neutron drip-line nuclei. Here, results from the inclusive Coulomb breakup experiment of 31Ne on a lead target at RIBF(RI Beam Factory) at RIKEN are presented. The experiment was performed as one of day-one campaign experiments at RIBF, using a 48Ca primary beam at 345 MeV/nucleon. A unique feature of a halo nucleus is the enhanced electric dipole strength of the order of 1 W.u.(Weisskopf unit) at very low excitation energies around 1 MeV (soft E1 excitation). Owing to high sensitivity of the Coulomb breakup to the soft E1 excitation, a measurement of inclusive Coulomb breakup cross section can be used to identify the halo structure of a certain drip-line nucleus. We have indeed observed a strong enhancement of the Coulomb breakup cross section of 540(70) mb for 31Ne on Pb at 230 MeV/nucleon, nearly as high as that for the known halo nucleus 19C, thereby giving evidence of the halo structure in 31Ne. The finding of a new halo structure for such a heavy system, compared to the known halo nuclei, is the first step for the understanding of halo phenomena along the neutron drip line towards heavier nuclei. We discuss also the change of shell structure in 31Ne, as a nucleus in the island of inversion.

  16. History of satellite break-ups in space

    NASA Technical Reports Server (NTRS)

    Gabbard, J.

    1985-01-01

    By 28 June 1961 the 1st Aerospace Control Squadron had cataloged 115 Earth orbiting satellites from data supplied by a rather diverse collection of radar and optical sensors. On 29 June 1961, the Able Star rocket of the 1961 Omicron launch exploded causing a quantum jump in the number of Earth orbiting objects. Since that time there have been 69 Earth orbiting satellites break up in space whose debris remained in orbit long enough for orbital elements to be developed. A list of the 69 breakups is provided. The debris from some of the lower altitude breakups has all decayed. Among the 69 breakups, 44 have cataloged debris remaining in orbit. As of 1 July 1982, the size of the cataloged orbiting population was exactly 4700. Forty-nine percent of these objects are fragments of the forty-four breakups. For each breakup the various orbits of its debris represent a family of orbits that are related in characteristics due to their common impulse launch. A few examples are shown of how the families are oriented in space.

  17. Capillary break-up, gelation and extensional rheology of hydrophobically modified cellulose ethers

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Haward, Simon; Pessinet, Olivia; Soderlund, Asa; Threlfall-Holmes, Phil; McKinley, Gareth

    2012-02-01

    Cellulose derivatives containing associating hydrophobic groups along their hydrophilic polysaccharide backbone are used extensively in the formulations for inks, water-borne paints, food, nasal sprays, cosmetics, insecticides, fertilizers and bio-assays to control the rheology and processing behavior of multi-component dispersions. These complex dispersions are processed and used over a broad range of shear and extensional rates. The presence of hydrophobic stickers influences the linear and nonlinear rheology of cellulose ether solutions. In this talk, we systematically contrast the difference in the shear and extensional rheology of a cellulose ether: ethy-hydroxyethyl-cellulose (EHEC) and its hydrophobically-modified analog (HMEHEC) using microfluidic shear rheometry at deformation rates up to 10^6 inverse seconds, cross-slot flow extensional rheometry and capillary break-up during jetting as a rheometric technique. Additionally, we provide a constitutive model based on fractional calculus to describe the physical gelation in HMEHEC solutions.

  18. 3D Dynamics of Oblique Rift Systems: Fault Evolution from Rift to Break-up

    NASA Astrophysics Data System (ADS)

    Brune, S.

    2014-12-01

    Rift evolution and passive margin formation has been thoroughly investigated using conceptual and numerical models in two dimensions. However, the 2D assumption that the extension direction is perpendicular to the rift trend is often invalid. In fact, the majority of rift systems that lead to continental break-up during the last 150 My involved moderate to high rift obliquity. Yet, the degree to which oblique lithospheric extension affects first-order rift and passive margin properties like surface stress pattern, fault azimuths, and basin geometry, is still not entirely clear. This contribution provides insight in crustal stress patterns and fault orientations by applying a 3D numerical rift model to oblique extensional settings. The presented forward experiments cover the whole spectrum of oblique extension (i.e. rift-orthogonal extension, low obliquity, high obliquity, strike-slip deformation) from initial deformation to breakup. They are conducted using an elasto-visco-plastic finite element model and involve crustal and mantle layers accounting for self-consistent necking of the lithosphere. Even though the model setup is very simple (horizontally layered, no inherited faults), its evolution exhibits a variety of fault orientations that are solely caused by the interaction of far-field stresses with rift-intrinsic buoyancy and strength. Depending on rift obliquity, these orientations involve rift-parallel, extension-orthogonal, and intermediate normal fault directions as well as strike-slip faults. Allowing new insights on fault patterns of the proximal and distal margins, the model shows that individual fault populations are activated in a characteristic multi-phase evolution driven by lateral density variations of the evolving rift system. Model results are in very good agreement with inferences from the well-studied Gulf of Aden and provide testable predictions for other rifts and passive margins worldwide.

  19. Modeling Tear Film Evaporation and Breakup with Duplex Films

    NASA Astrophysics Data System (ADS)

    Stapf, Michael; Braun, Richard; Begley, Carolyn; Driscoll, Tobin; King-Smith, Peter Ewen

    2015-11-01

    Tear film thinning, hyperosmolarity, and breakup can irritate and damage the ocular surface. Recent research hypothesizes deficiencies in the lipid layer may cause locally increased evaporation, inducing conditions for breakup. We consider a model for team film evolution incorporating two mobile fluid layers, the aqueous and lipid layers. In addition, we include the effects of salt concentration, osmosis, evaporation as modified by the lipid layer, and the polar portion of the lipid layer. Numerically solving the resulting model, we explore the conditions for tear film breakup and analyze the response of the system to changes in our parameters. Our studies indicate sufficiently fast peak values or sufficiently wide areas of evaporation promote TBU, as does diffusion of solutes. In addition, the Marangoni effect representing polar lipids dominates viscous dissipation from the non-polar lipid layer in the model. This work was supported in part by NSF grant 1412085 and NIH grant 1R01EY021794.

  20. Effect of boiling regime on melt stream breakup in water

    SciTech Connect

    Spencer, B.W.; Gabor, J.D.; Cassulo, J.C.

    1986-01-01

    A study has been performed examining the breakup and mixing behavior of an initially coherent stream of high-density melt as it flows downward through water. This work has application to the quenching of molten core materials as they drain downward during a postulated severe reactor accident. The study has included examination of various models of breakup distances based upon interfacial instabilities dominated either by liquid-liquid contact or by liquid-vapor contact. A series of experiments was performed to provide a data base for assessment of the various modeling approaches. The experiments involved Wood's metal (T/sub m/ = 73/sup 0/C, rho = 9.2 g/cm/sup 3/, d/sub j/ = 20 mm) poured into a deep pool of water. The temperature of the water and wood's metal were varied to span the range from single-phase, liquid-liquid contact to the film boiling regime. Experiment results showed that breakup occurred largely as a result of the spreading and entrainment from the leading edge of the jet. However, for streams of sufficient lengths a breakup length could be discerned at which there was no longer a coherent central core of the jet to feed the leading edge region. The erosion of the vertical trailing column is by Kelvin-Helmoltz instabilities and related disengagement of droplets from the jet into the surrounding fluid. For conditions of liquid-liquid contact, the breakup length has been found to be about 20 jet diameters; when substantial vapor is produced at the interface due to heat transfer from the jet to the water, the breakup distance was found to range to as high as 50 jet diameters. The former values are close to the analytical prediction of Taylor, whereas the latter values are better predicted by the model of Epstein and Fauske.

  1. Universality for the breakup of invariant tori in Hamiltonian flows

    NASA Astrophysics Data System (ADS)

    Chandre, C.; Govin, M.; Jauslin, H. R.; Koch, H.

    1998-06-01

    In this article, we describe a new renormalization-group scheme for analyzing the breakup of invariant tori for Hamiltonian systems with two degrees of freedom. The transformation, which acts on Hamiltonians that are quadratic in the action variables, combines a rescaling of phase space and a partial elimination of irrelevant (nonresonant) frequencies. It is implemented numerically for the case applying to golden invariant tori. We find a nontrivial fixed point and compute the corresponding scaling and critical indices. If one compares flows to maps in the canonical way, our results are consistent with existing data on the breakup of golden invariant circles for area-preserving maps.

  2. On Slater's criterion for the breakup of invariant curves

    NASA Astrophysics Data System (ADS)

    Abud, C. V.; Caldas, I. L.

    2015-07-01

    We numerically explore Slater's theorem in the context of dynamical systems to study the breakup of invariant curves. Slater's theorem states that an irrational translation over a circle returns to an arbitrary interval in at most three different recurrence times expressible by the continued fraction expansion of the related irrational number. The hypothesis considered in this paper is that Slater's theorem can be also verified in the dynamics of invariant curves. Hence, we use Slater's theorem to develop a qualitative and quantitative numerical approach to determine the breakup of invariant curves in the phase space of area-preserving maps.

  3. Deformation studies of near single-crystal triblock copolymers

    SciTech Connect

    Honeker, C.; Villar, M.A.; Thomas, E.L.

    1993-12-31

    The mechanical behavior of block copolymers is being studied in order to determine the evolution of the microphase-separation morphologies with deformation. To facilitate analysis a novel processing technique termed {open_quotes}roll-casting{close_quotes} is used to orient the copolymers. Large, near single-crystal macroscopically oriented films are produced by applying a shear field on a homogeneous solution and allowing the solvent to evaporate until the copolymer has microphase separated. Deformation behavior is studied with in situ small angle x-ray diffraction and TEM studies of films deformed up to 700% extension. Initial studies on poly(styrene-butadiene-styrene) triblock copolymers with a cylindrical morphology indicate a break-up of the morphology at low deformations and a development of a characteristic 4 point pattern at high deformations. Hysteresis is observed in deformation directions of 0 and 90 degrees.

  4. Asymptotic and near-target direct breakup of 6Li and 7Li

    NASA Astrophysics Data System (ADS)

    Kalkal, Sunil; Simpson, E. C.; Luong, D. H.; Cook, K. J.; Dasgupta, M.; Hinde, D. J.; Carter, I. P.; Jeung, D. Y.; Mohanto, G.; Palshetkar, C. S.; Prasad, E.; Rafferty, D. C.; Simenel, C.; Vo-Phuoc, K.; Williams, E.; Gasques, L. R.; Gomes, P. R. S.; Linares, R.

    2016-04-01

    Background: Li,76 and 9Be are weakly bound against breakup into their cluster constituents. Breakup location is important for determining the role of breakup in above-barrier complete fusion suppression. Recent works have pointed out that experimental observables can be used to separate near-target and asymptotic breakup. Purpose: Our purpose is to distinguish near-target and asymptotic direct breakup of Li,76 in reactions with nuclei in different mass regions. Method: Charged particle coincidence measurements are carried out with pulsed Li,76 beams on 58Ni and 64Zn targets at sub-barrier energies and compared with previous measurements using 208Pb and 209Bi targets. A detector array providing a large angular coverage is used, along with time-of-flight information to give definitive particle identification of the direct breakup fragments. Results: In interactions of 6Li with 58Ni and 64Zn, direct breakup occurs only asymptotically far away from the target. However, in interactions with 208Pb and 209Bi, near-target breakup occurs in addition to asymptotic breakup. Direct breakup of 7Li into α -t is not observed in interactions with 58Ni and 64Zn. However, near-target dominated direct breakup was observed in measurements with 208Pb and 209Bi. A modified version of the Monte Carlo classical trajectory model code platypus, which explicitly takes into account lifetimes associated with unbound states, is used to simulate sub-barrier breakup reactions. Conclusions: Near-target breakup in interactions with Li,76 is an important mechanism only for the heavy targets 208Pb and 209Bi. There is insignificant near-target direct breakup of 6Li and no direct breakup of 7Li in reactions with 58Ni and 64Zn. Therefore, direct breakup is unlikely to suppress the above-barrier fusion cross section in reactions of Li,76 with 58Ni and 64Zn nuclei.

  5. Breakup of three particles within the adiabatic expansion method

    NASA Astrophysics Data System (ADS)

    Garrido, E.; Kievsky, A.; Viviani, M.

    2014-07-01

    General expressions for the breakup cross sections in the laboratory frame for 1+2 reactions are given in terms of the hyperspherical adiabatic basis. The three-body wave function is expanded in this basis and the corresponding hyperradial functions are obtained by solving a set of second order differential equations. The S matrix is computed by using two recently derived integral relations. Even though the method is shown to be well suited to describe 1+2 processes, there are particular configurations in the breakup channel (for example, those in which two particles move away close to each other in a relative zero-energy state) that need a huge number of basis states. This pathology manifests itself in the extremely slow convergence of the breakup amplitude in terms of the hyperspherical harmonic basis used to construct the adiabatic channels. To overcome this difficulty the breakup amplitude is extracted from an integral relation as well. For the sake of illustration, we consider neutron-deuteron scattering. The results are compared to the available benchmark calculations.

  6. A Cure for Multipass Beam Breakup in Recirculating Linacs

    SciTech Connect

    Byung C. Yunn

    2004-07-02

    We investigate a method to control the multipass dipole beam breakup instability in a recirculating linac including energy recovery. Effectiveness of an external feedback system for such a goal is shown clearly in a simplified model. We also verify the theoretical result with a simulation study.

  7. A METHOD TO CONTROL MULTIPASS BEAM BREAKUP IN RECIRCULATING LINACS

    SciTech Connect

    Byung Yunn

    2003-05-01

    We investigate a method to control the multipass dipole beam breakup instability in a recirculating linac including energy recovery. Effectiveness of an external feedback system for such a goal is shown clearly in a simplified model. We also verify the theoretical result with a simulation study.

  8. 24 CFR 982.315 - Family break-up.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Family break-up. 982.315 Section 982.315 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR PUBLIC AND INDIAN HOUSING, DEPARTMENT OF HOUSING AND URBAN...

  9. Armor breakup and reformation in a degradational laboratory experiment

    NASA Astrophysics Data System (ADS)

    Orrú, Clara; Blom, Astrid; Uijttewaal, Wim S. J.

    2016-06-01

    Armor breakup and reformation was studied in a laboratory experiment using a trimodal mixture composed of a 1 mm sand fraction and two gravel fractions (6 and 10 mm). The initial bed was characterized by a stepwise downstream fining pattern (trimodal reach) and a downstream sand reach, and the experiment was conducted under conditions without sediment supply. In the initial stage of the experiment an armor formed over the trimodal reach. The formation of the armor under partial transport conditions led to an abrupt spatial transition in the bed slope and in the mean grain size of the bed surface, as such showing similar results to a previous laboratory experiment conducted with a bimodal mixture. The focus of the current analysis is to study the mechanisms of armor breakup. After an increase in flow rate the armor broke up and a new coarser armor quickly formed. The breakup initially induced a bed surface fining due to the exposure of the finer substrate, which was accompanied by a sudden increase in the sediment transport rate, followed by the formation of an armor that was coarser than the initial one. The reformation of the armor was enabled by the supply of coarse material from the upstream degrading reach and the presence of gravel in the original substrate sediment. Here armor breakup and reformation enabled slope adjustment such that the new steady state was closer to normal flow conditions.

  10. 24 CFR 982.315 - Family break-up.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... an occurrence of domestic violence, dating violence, or stalking as provided in 24 CFR part 5... provided in 24 CFR part 5, subpart L, and whether the abuser is still in the household. (5) Other factors... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Family break-up. 982.315...

  11. 24 CFR 982.315 - Family break-up.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... an occurrence of domestic violence, dating violence, or stalking as provided in 24 CFR part 5... provided in 24 CFR part 5, subpart L, and whether the abuser is still in the household. (5) Other factors... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Family break-up. 982.315...

  12. 24 CFR 982.315 - Family break-up.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... an occurrence of domestic violence, dating violence, or stalking as provided in 24 CFR part 5... provided in 24 CFR part 5, subpart L, and whether the abuser is still in the household. (5) Other factors... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Family break-up. 982.315...

  13. 24 CFR 982.315 - Family break-up.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... an occurrence of domestic violence, dating violence, or stalking as provided in 24 CFR part 5... provided in 24 CFR part 5, subpart L, and whether the abuser is still in the household. (5) Other factors... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Family break-up. 982.315...

  14. Breakup of New Orleans Households after Hurricane Katrina

    ERIC Educational Resources Information Center

    Rendall, Michael S.

    2011-01-01

    Theory and evidence on disaster-induced population displacement have focused on individual and population-subgroup characteristics. Less is known about impacts on households. I estimate excess incidence of household breakup resulting from Hurricane Katrina by comparing a probability sample of pre-Katrina New Orleans resident adult household heads…

  15. Modelling magnetically deformed neutron stars

    NASA Astrophysics Data System (ADS)

    Haskell, B.; Samuelsson, L.; Glampedakis, K.; Andersson, N.

    2008-03-01

    Rotating deformed neutron stars are important potential sources for ground-based gravitational wave interferometers such as LIGO, GEO600 and VIRGO. One mechanism that may lead to significant non-asymmetries is the internal magnetic field. It is well known that a magnetic star will not be spherical and, if the magnetic axis is not aligned with the spin axis, the deformation will lead to the emission of gravitational waves. The aim of this paper is to develop a formalism that would allow us to model magnetically deformed stars, using both realistic equations of state and field configurations. As a first step, we consider a set of simplified model problems. Focusing on dipolar fields, we determine the internal magnetic field which is consistent with a given neutron star model and calculate the associated deformation. We discuss the relevance of our results for current gravitational wave detectors and future prospects.

  16. The role of deep subduction in supercontinent breakup

    NASA Astrophysics Data System (ADS)

    Capitanio, Fabio; Dal Zilio, Luca; Faccenda, Manuele

    2016-04-01

    The breakup of continents is a crucial stage of the episodic aggregation and dispersal of tectonic plates. In particular, the transition from a stable supercontinent to its rifting, breakup and subsequent drifting is one of the least understood aspects of plate tectonics. Over the last decades, several works have highlighted the potential role of pre-existing weaknesses or that of raising mantle plumes in assisting the localization of strain. However, to sustain large-scale divergent regime over geological time, extensional stresses are strictly required. Here we present results from 2-D thermo-mechanical numerical experiments and we show that rifting and drifting of continents result from lithospheric subduction at convergent margins, when this extends to lower mantle depths. We quantify the drag exerted by subduction-induced mantle flow along the basal surface of continental plates, comparing models where lithospheric slabs stagnate above the upper-lower mantle boundary with those where slabs penetrate into the lower mantle. When subduction is upper mantle-confined, divergent basal tractions localize at distances comparable to the effective upper mantle thickness (~500 km), causing the breakup of a microcontinent and opening of a marginal basin. Instead, when the descending lithosphere subducts deeper, extensional stresses localize at greater distances from the trench (≥ 2900 km), are higher and are sustained over a longer time. Although relatively low, basal shear stresses integrated over large plates generate tension forces that may exceed the strength of the continental lithosphere, eventually leading to breakup and opening of an intervening distal basin. The models illustrate that the mechanism leading to the formation of back-arc basins above upper mantle-confined subduction provides a viable explanation for the opening of larger basins above deeper subduction. Examples include the Atlantic Ocean formation and the South and North American plates drifting

  17. Nearest Alignment Space Termination

    Energy Science and Technology Software Center (ESTSC)

    2006-07-13

    Near Alignment Space Termination (NAST) is the Greengenes algorithm that matches up submitted sequences with the Greengenes database to look for similarities and align the submitted sequences based on those similarities.

  18. Shiva automatic pinhole alignment

    SciTech Connect

    Suski, G.J.

    1980-09-05

    This paper describes a computer controlled closed loop alignment subsystem for Shiva, which represents the first use of video sensors for large laser alignment at LLNL. The techniques used on this now operational subsystem are serving as the basis for all closed loop alignment on Nova, the 200 terawatt successor to Shiva.

  19. Fast statistical alignment.

    PubMed

    Bradley, Robert K; Roberts, Adam; Smoot, Michael; Juvekar, Sudeep; Do, Jaeyoung; Dewey, Colin; Holmes, Ian; Pachter, Lior

    2009-05-01

    We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every column and character of the alignment--previously available only with alignment programs which use computationally-expensive Markov Chain Monte Carlo approaches--yet can align thousands of long sequences. Moreover, FSA utilizes an unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.sourceforge.net/. PMID:19478997

  20. Droplet Deformation Prediction with the Droplet Deormation and Break Up Model (DDB)

    NASA Technical Reports Server (NTRS)

    Vargas, Mario

    2012-01-01

    The Droplet Deformation and Breakup Model was used to predict deformation of droplets approaching the leading edge stagnation line of an airfoil. The quasi-steady model was solved for each position along the droplet path. A program was developed to solve the non-linear, second order, ordinary differential equation that governs the model. A fourth order Runge-Kutta method was used to solve the equation. Experimental slip velocities from droplet breakup studies were used as input to the model which required slip velocity along the particle path. The center of mass displacement predictions were compared to the experimental measurements from the droplet breakup studies for droplets with radii in the range of 200 to 700 mm approaching the airfoil at 50 and 90 m/sec. The model predictions were good for the displacement of the center of mass for small and medium sized droplets. For larger droplets the model predictions did not agree with the experimental results.

  1. Similarity between the primary and secondary air-assisted liquid jet breakup mechanisms.

    PubMed

    Wang, Yujie; Im, Kyoung-Su; Fezzaa, Kamel

    2008-04-18

    We report an ultrafast synchrotron x-ray phase-contrast imaging study of the primary breakup mechanism of a coaxial air-assisted water jet. There exist great similarities between the primary (jet) and the secondary (drop) breakup, and in the primary breakup on different length scales. A transition from a ligament- to a membrane-mediated breakup is identified around an effective Weber number We' approximately 13. This observation reveals the critical role an effective Weber number plays in determining the atomization process and strongly supports the cascade breakup model. PMID:18518113

  2. Breakup characteristics of a liquid jet in subsonic crossflow

    NASA Astrophysics Data System (ADS)

    Gopala, Yogish

    This thesis describes an experimental investigation of the breakup processes involved in the formation of a spray created by a liquid jet injected into a gaseous crossflow. This work is motivated by the utilization of this method to inject fuel in combustors and afterburners of airplane engines. This study aims to develop a better understanding of the spray breakup processes and to provide better experimental inputs to improve the fidelity of numerical models. A review of the literature in this field identified the fundamental physical processes involved in the breakup of the spray and the dependence of spray properties on operating conditions. The time taken for the liquid column to break up into ligaments and droplets, the primary breakup time and the effect of injector geometry on the spray formation processes and spray properties as the key research areas in which research done so far has been inadequate. Determination of the location where the liquid column broke up was made difficult by the presence of a large number of droplets surrounding it. This study utilizes the liquid jet light guiding technique that enables accurate measurements of this location for a wide range of operating conditions. Prior to this study, the primary breakup time was thought to be a function the density ratio of the liquid and the gas, the diameter of the orifice and the air velocity. This study found that the time to breakup of the liquid column depends on the Reynolds number of the liquid jet. This suggests that the breakup of a turbulent liquid jet is influenced by both the aerodynamic breakup processes and the turbulent breakup processes. Observations of the phenomenon of the liquid jet splitting up into two or more jets were made at some operating conditions with the aid of the new visualization technique. Finally, this thesis investigates the effect of injector geometry on spray characteristics. One injector was a round edged orifice with a length to diameter ratio of 1 and a

  3. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis. PMID:3786010

  4. Mechanisms and systematics of breakup in reactions of {sup 9}Be at near-barrier energies

    SciTech Connect

    Rafiei, R.; Rietz, R. du; Luong, D. H.; Hinde, D. J.; Dasgupta, M.; Evers, M.; Diaz-Torres, A.

    2010-02-15

    Below-barrier no-capture breakup measurements of the weakly bound {sup 9}Be nucleus, incident on targets ranging in atomic number from 62 to 83, have been carried out using a large-area high-resolution back-angle detector array. It is shown that the three-body reconstructed reaction Q-value and relative energy of the breakup fragments together reveal the full dynamics of the breakup mechanism, identifying all physical processes that lead to the breakup of the projectile-like nucleus. Contrasting with the simple expectation of direct breakup into the most energetically favored clusters, the data show that breakup following n-transfer dominates the total breakup yield. Breakup from long-lived states in the projectile-like nucleus, which on the reaction time scale may be considered stable, has been isolated from the prompt breakup yield. It has been shown that the prompt breakup probability essentially depends on the surface separation of the interacting nuclei. The measured prompt breakup probability functions for each target have been used together with a classical trajectory model to predict the above-barrier suppression of complete fusion. The suppression factor, expressed as the fraction of incomplete fusion, is nearly independent of target charge.

  5. The Davie Ridge: a Marginal Transform Ridge not Formed During Continental Breakup

    NASA Astrophysics Data System (ADS)

    Phethean, J. J. J.; Van Hunen, J.; McCaffrey, K. J. W.; Davies, R. J.

    2014-12-01

    The breakup of Gondwana translated Madagascar southwards relative to Africa along the Davie Fracture Zone (DFZ). This fracture zone now forms the Transform Passive Continental Margin (TPCM) from Kenya to Mozambique. The Davie Ridge (DR), a transform marginal ridge, has formed along the DFZ between 5 and 2°S and 22 and 11°S, but with little expression in-between. It has been proposed that this marginal ridge was formed by the thermal effects of a passing Mid Ocean Ridge (MOR) during the separation of Gondwana. Plate kinematic reconstructions, however, constrained by ocean magnetic anomalies, show that the MOR only passed between the north and south expressions of the DR. Therefore the positive linear gravity anomalies of the DR cannot be attributed to the effects of a passing MOR, and some other mechanism must be found to explain their formation. Interpretation of seismic reflection profiles along the DR shows that the gravity highs occur adjacent to large basin structures. In the north this correlates with a basin-bounding basement high of ~Albian age, and in the south with the rift flank uplifts of the currently active Quirimbas graben. This suggests that the northern and southern DR segments are instead shoulder uplifts resulting from two separate extensional episodes during different stress regimes. These are the Cretaceous NE-SW extension during the breakup of the south Atlantic, and the E-W extension of the Neogene-recent Afar-East Africa rift system, respectfully. The lack of deformation and DR formation along the region of the TPCM passed by the MOR suggests it has been coupled by thermal effects and/or the injection of magma.

  6. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem.

    PubMed

    Ren, Yong; Liu, Zhou; Shum, Ho Cheung

    2015-01-01

    The breakup dynamics in non-Newtonian multiphase microsystems is associated with a variety of industrial applications such as food production and biomedical engineering. In this study, we numerically and experimentally characterize the dripping-to-jetting transition under various flow conditions in a Newtonian/shear-thinning multiphase microsystem. Our work can help to predict the formation of undesirable satellite droplets, which is one of the challenges in dispensing non-Newtonian fluids. We also demonstrate the variations in breakup dynamics between shear-thinning and Newtonian fluids under the same flow conditions. For shear-thinning fluids, the droplet size increases when the capillary number is smaller than a critical value, while it decreases when the capillary number is beyond the critical value. The variations highlight the importance of rheological effects in flows with a non-Newtonian fluid. The viscosity of shear-thinning fluids significantly affects the control over the droplet size, therefore necessitating the manipulation of the shear rate through adjusting the flow rate and the dimensions of the nozzle. Consequently, the droplet size can be tuned in a controlled manner. Our findings can guide the design of novel microdevices for generating droplets of shear-thinning fluids with a predetermined droplet size. This enhances the ability to fabricate functional particles using an emulsion-templated approach. Moreover, elastic effects are also investigated experimentally using a model shear-thinning fluid that also exhibits elastic behaviors: droplets are increasingly deformed with increasing elasticity of the continuous phase. The overall understanding in the model multiphase microsystem will facilitate the use of a droplet-based approach for non-Newtonian multiphase applications ranging from energy to biomedical sciences. PMID:25316203

  7. Girder Alignment Plan

    SciTech Connect

    Wolf, Zackary; Ruland, Robert; LeCocq, Catherine; Lundahl, Eric; Levashov, Yurii; Reese, Ed; Rago, Carl; Poling, Ben; Schafer, Donald; Nuhn, Heinz-Dieter; Wienands, Uli; /SLAC

    2010-11-18

    The girders for the LCLS undulator system contain components which must be aligned with high accuracy relative to each other. The alignment is one of the last steps before the girders go into the tunnel, so the alignment must be done efficiently, on a tight schedule. This note documents the alignment plan which includes efficiency and high accuracy. The motivation for girder alignment involves the following considerations. Using beam based alignment, the girder position will be adjusted until the beam goes through the center of the quadrupole and beam finder wire. For the machine to work properly, the undulator axis must be on this line and the center of the undulator beam pipe must be on this line. The physics reasons for the undulator axis and undulator beam pipe axis to be centered on the beam are different, but the alignment tolerance for both are similar. In addition, the beam position monitor must be centered on the beam to preserve its calibration. Thus, the undulator, undulator beam pipe, quadrupole, beam finder wire, and beam position monitor axes must all be aligned to a common line. All relative alignments are equally important, not just, for example, between quadrupole and undulator. We begin by making the common axis the nominal beam axis in the girder coordinate system. All components will be initially aligned to this axis. A more accurate alignment will then position the components relative to each other, without incorporating the girder itself.

  8. Core transitions in the breakup of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Summers, N. C.; Nunes, F. M.; Thompson, I. J.

    2006-03-01

    An interesting physical process has been unveiled: Dynamical core excitation during a breakup reaction of loosely bound core+N systems. These reactions are typically used to extract spectroscopic information and/or astrophysical information. A new method, the eXtended Continuum Discretized Coupled Channel (XCDCC) method, was developed to incorporate, in a consistent way and to all orders, core excitation in the bound and scattering states of the projectile, as well as dynamical excitation of the core as it interacts with the target. The model predicts cross sections to specific states of the core. It is applied to the breakup of Be11 on Be9 at 60 MeV/nucleon, and the calculated cross sections are in improved agreement with the data. The distribution of the cross section amongst the various core states is shown to depend on the reaction model used, and not simply on the ground state spectroscopic factors.

  9. Recent results of invariant torus breakup in nontwist maps

    NASA Astrophysics Data System (ADS)

    Wurm, Alexander; Fuchss, Kathrin; Morrison, P. J.

    2006-10-01

    As simple models for degenerate Hamiltonian systems, nontwist maps have been used to describe, e.g., magnetic field lines in toroidal plasma devices with reversed magnetic shear profiles. Of particular interest in these maps are the so-called shearless invariant tori which correspond to transport barries in the physical system. We investigate the breakup of shearless tori in several maps and with several different winding numbers, in order to understand the dependence of the details of the breakup on the winding number and on the symmetries of the map model. Here we report on recent results of this investigation.[1][1] K. Fuchss, A. Wurm, A. Apte, and P.J. Morrison, to appear in Chaos (2006); K. Fuchss, A. Wurm, and P.J. Morrison, preprint/submitted to PRL (2006).

  10. Elastic breakup cross sections of well-bound nucleons

    NASA Astrophysics Data System (ADS)

    Wimmer, K.; Bazin, D.; Gade, A.; Tostevin, J. A.; Baugher, T.; Chajecki, Z.; Coupland, D.; Famiano, M. A.; Ghosh, T. K.; Grinyer, G. F.; Howard, M. E.; Kilburn, M.; Lynch, W. G.; Manning, B.; Meierbachtol, K.; Quarterman, P.; Ratkiewicz, A.; Sanetullaev, A.; Showalter, R. H.; Stroberg, S. R.; Tsang, M. B.; Weisshaar, D.; Winkelbauer, J.; Winkler, R.; Youngs, M.

    2014-12-01

    The 9Be(28Mg,27Na ) one-proton removal reaction with a large proton separation energy of Sp(28Mg ) =16.79 MeV is studied at intermediate beam energy. Coincidences of the bound 27Na residues with protons and other light charged particles are measured. These data are analyzed to determine the percentage contributions to the proton removal cross section from the elastic and inelastic nucleon removal mechanisms. These deduced contributions are compared with the eikonal reaction model predictions and with the previously measured data for reactions involving the removal of more weakly bound protons from lighter nuclei. The role of transitions of the proton between different bound single-particle configurations upon the elastic breakup cross section is also quantified in this well-bound case. The measured and calculated elastic breakup fractions are found to be in good agreement.

  11. High Energy Break-Up of Few-Nucleon Systems

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak

    2008-03-01

    We discus recent developments in theory of high energy two-body break-up reactions of few-nucleon systems. The characteristics of these reactions are such that the hard two-body quasielastic subprocess can be clearly separated from the accompanying soft subprocesses. We discuss in details the hard rescattering model (HRM) in which hard photodisintegration develops in two stages. At first, photon knocks-out an energetic quark which rescatters subsequently with a quark of the other nucleon. The latter provides a mechanism of sharing the initial high momentum of the photon by the outgoing two nucleons. Within HRM we discuss hard break-up reactions involving 2D and 3He targets. Another development of HRM is the prediction of new helicity selection mechanism for hard two-body reactions, which was apparently confirmed in the recent JLab experiment.

  12. Dynamics of Cold-Air Pool Breakup: Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Lareau, N.; Horel, J.

    2013-12-01

    Persistent cold-air pools (CAPs) impact urban mountain valleys during the winter leading to prolonged episodes of unhealthy air quality. One associated scientific challenge is accurately forecasting the breakup of these CAPs. For example, there is often uncertainty regarding the interaction of passing weather systems with the stratification within a valley. Will the disturbance be sufficient to destroy the CAP, or will the CAP persist for many more days bringing continued elevated levels of pollution? To address these questions this study examines the dynamical processes that affect the time scale and character of CAP breakup. To do so we use idealized large eddy simulations (LES) to examine the sensitivity of CAP removal to variations in wind, topography, and stratification. The simulations are based on field observations from the Persistent Cold-Air Pool Study (PCAPS). Results indicate that the upstream terrain-flow interaction is important in controlling both the timescale and structure of the CAP breakup. For example, when the flow plunges over the confining topography it leads to enhanced turbulent mixing, CAP displacement, and shorter timescales for complete CAP removal. In contrast, when no mountain wave is present the upstream edge of the CAP remains sheltered from the wind-driven mixing and the break-up is first observed over downstream portions of the basin. Meanwhile, changes in the CAP stratification impact internal circulations that develop in response to the imposed wind forcing. These circulations have significance for the distribution of pollution within CAPs. A concise summary of these results will be presented. Snapshot from a simulation of strong winds disrupting a CAP confined between two ridges. Potential temperature (a), vertical velocity (b), and wind speed (c).

  13. Radial electron-beam-breakup transit-time oscillator

    SciTech Connect

    Mostrom, M.A.; Kwan, T.J.T.

    1995-01-01

    A new radially-driven electron-beam-breakup transit-time oscillator has been investigated analytically and through computer simulation as a compact low-impedance high-power microwave generator. In a 1MV, 50kA device 35cm in radius and 15cm long, with no external magnetic field, 5GW of extracted power and a growth rate of 0.26/ns have been observed. Theoretical maximum efficiencies are several times higher.

  14. The Effect of Crustal Strength on Volcanism During Continental Breakup

    NASA Astrophysics Data System (ADS)

    Armitage, J. J.; Petersen, K. D.; Perez-Gussinye, M.; Collier, J.; Pik, R.

    2015-12-01

    Segmentation is a fundamental property of rifted margins which is thought to be inherited from pre-breakup lithospheric structure. The volume of melt emplaced during rifting typically varies across these segments. Notable examples are the Gulf of California, break-up in the South Atlantic, and the Afar depression. For example in Afar there is a clear north south transition from break-up in the Erta Ale segment, where there is localised young (<1 Ma) volcanism, to the Dabbahu segment where there is the 4-1 Ma Stratoid volcanic series and distributed faulting. Along the Namibian and conjugate Argentinian margin there is evidence that surface area of seaward dipping reflectors change across segments. Such lateral changes in volcanism over a relatively short spatial scale are hard to explain by change in mantle temperature. We will demonstrate that crustal strength places a crucial control on the volume and composition of melt generated during break-up. We have compared models of extension with a weaker and strong lower crust based on observed rock rheologies. Melt composition and volume is found to be a function of the lower crustal rheology as it effects the shape of the melt zone during extension. By comparing a suite models we find that Afar volcanism can be matched by models with both a weak or strong lower crust. If however the crust is weaker then the equivalent volume and composition is created with less crustal thinning but over a greater period of time. The difference in time required to generate significant volcanic rock may explain the change in surface area of sub-areal volcanism in both Afar, where there is a transition of strong to weak crust from Erta Ale to Dabbahu, and off-shore Namibia. Lateral variation in volcanism between segments may therefore be fundamentally controlled by the crust.

  15. Study of transfer and breakup reactions with the plastic box

    SciTech Connect

    Stokstad, R.G.; Albiston, C.R.; Bantel, M.; Chan, Y.; Countryman, P.J.; Gazes, S.; Harvey, B.G.; Homeyer, H.; Murphy, M.J.; Tserruya, I.

    1984-12-01

    The study of transfer reactions with heavy-ion projectiles is complicated by the frequent presence of three or more nuclei in the final state. One prolific source of three-body reactions is the production of a primary ejectile in an excited state above a particle threshold. A subset of transfer reactions, viz., those producing ejectiles in bound states, can be identified experimentally. This has been accomplished with a 4..pi.. detector constructed of one-millimeter-thick scintillator paddles of dimension 20 cm x 20 cm. The paddles are arranged in the form of a cube centered around the target with small entrance and exit apertures for the beam and the projectile-like fragments, (PLF). The detection of a light particle (e.g., a proton or an alpha particle) in coincidence with a PLF indicates a breakup reaction. The absence of any such coincidence indicates a reaction in which all the charge lost by the projectile was transferred to the target. With this technique we have studied the transfer and breakup reactions induced by 220 and 341 MeV /sup 20/Ne ions on a gold target. Ejectiles from Li to Ne have been measured at several scattering angles. The absolute cross sections, angular distributions and energy spectra for the transfer and breakup reactions are presented. Relatively large cross sections are observed for the complete transfer of up to seven units of charge (i.e., a nitrogen nucleus). The relatively large probabilities for ejectiles to be produced in particle-bound states suggest that on the average, most of the excitation energy in a collision resides in the heavy fragment when mass is transferred from the lighter to the heavier fragment. The gross features and trends in the energy spectra for transfer and breakup reactions are similar. 20 references.

  16. JET BREAKUP AND SPRAY FORMATION IN A DIESEL ENGINE.

    SciTech Connect

    GLIMM,J.; LI,X.; KIM,M.N.; OH,W.; MARCHESE,A.; SAMULYAK,R.; TZANOS,C.

    2003-06-17

    The breakup of injected fuel into spray is of key interest to the design of a fuel efficient, nonpolluting diesel engine. We report preliminary progress on the numerical simulation of diesel fuel injection spray with the front tracking code FronTier. Our simulation design is set to match experiments at ANL, and our present agreement is semi-quantitative. Future efforts will include mesh refinement studies, which will better model the turbulent flow.

  17. The Soviet Breakup and U.S. Foreign Policy.

    ERIC Educational Resources Information Center

    Lynch, Allen

    1991-01-01

    This issue of a quarterly publication on world affairs explores the historical significance of the disintegration of the Soviet Union and the implication for U.S. foreign policy. With the breakup of the USSR in 1990-91, Russia for the first time this century does not have control over the non-Russian nations of its former empire in Central Asia,…

  18. The Fragmented Manihiki Plateau - Key Region for Understanding the Break-up of the "Super" Large Igneous Province Ontong Java Nui

    NASA Astrophysics Data System (ADS)

    Hochmuth, K.; Gohl, K.; Uenzelmann-Neben, G.; Werner, R.

    2014-12-01

    The Manihiki Plateau of the western Pacific is one of the world - wide greatest Large Igneous Province (LIP) on oceanic crust. It is assumed that the Manihiki Plateau was emplaced as the centerpiece of the "Super-LIP" Ontong Java Nui by multiple volcanic phases during the Cretaceous Magnetic Quiet Period. The subsequent break-up of Ontong Java Nui led to fragmentation of the Manihiki Plateau into three sub-plateaus, which all exhibit individual relicts of the "Super-LIP" break-up. We examine two deep crustal seismic refraction/wide-angle reflection profiles crossing the two largest sub-plateaus of the Manihiki Plateau, the Western Plateaus and the High Plateau. Modeling of P- and S-wave velocities reveals surprising differences in the crustal structure between the two sub-plateaus. Whereas the High Plateau shows a constant crustal thickness of 20 km, relicts of multiple volcanic phases and break-up features at its margins, the model of the Western Plateaus reveals a crustal thickness decreasing from 17 km to only 9 km. There is only little evidence of secondary phases of volcanic activity. The main upper crustal structure on the Western Plateaus consists of fault systems and sedimentary basins. We infer that the High Plateau experienced phases of strong secondary volcanism, and that tectonic deformation was limited to its edges. The Western Plateaus, on the contrary, were deformed by crustal stretching and underwent only little to no secondary volcanism. This indicates that the two main sub-plateaus of the Manihiki Plateau experienced a different geological history and have played their individual parts in the break-up history of Ontong Java Nui.

  19. Deformation and Breakup of Stretching Liquid Bridges Held Captive Between Unequal Disks

    NASA Astrophysics Data System (ADS)

    Panditaratne, Jayanta C.; Schreiweis, Amanda L.; Basaran, Osman A.

    1999-11-01

    In industrial processes including gravure coating, liquid atomization, and pin-tools used in genomic analysis, threads of liquid are stretched and broken. A convenient setup for studying the dynamics of stretching liquid threads is the liquid bridge, which is a volume of liquid held captive between two solid disks. Although the dynamics of stretching bridges with equal disks have been extensively studied, studies of stretching bridges with unequal disks are in their infancy. This paper reports the results of a combined computational and experimental study, the aim of which is to remedy the aforementioned deficiency. The computations entail solution of both the full set of governing two-dimensional (2-d) equations and a simpler set of one-dimensional (1-d) equations based on slender-jet theory. The experiments use high-speed imaging with dual imagers that focus on both the global and local features of interface rupture. The limitations of the 1-d model are brought out by comparison of its predictions with the 2-d predictions and measurements.

  20. Breakup length of harmonically stimulated capillary jets - theory and experiments

    NASA Astrophysics Data System (ADS)

    Garcia Garcia, Francisco Javier; Gonzalez Garcia, Heliodoro; Castrejon-Pita, Jose Rafael; Castrejon-Pita, Alfonso Arturo

    2014-11-01

    A stream of liquid breaks up into several drops by the action of surface tension. Capillary breakup forms the basis of some modern digital technologies, especially inkjet printing (including 3D manufacturing). Therefore, the control and prediction of the breakup length of harmonically modulated capillary jets is of great importance, in particular in Continuous InkJet systems (CIJ). However, a theoretical model that rigorously takes into account the physical characteristics of the system, and that properly describes this phenomenon did not exist until now. In this work we present a simple transfer function, derived from first principles, that accurately predicts the experimentally obtained breakup lengths of pressure-modulated capillary jets. No fitting parameters are necessary. A detailed description of the theoretical model and experimental setup will be presented. Spanish government (FIS2011-25161), Junta de Andalucia (P09-FQM-4584 and P11-FQM-7919), EPSRC-UK (EP/H018913/1), Royal Society and John Fell Fund (OUP).

  1. The breakup of thin air films caught under impacting drops

    NASA Astrophysics Data System (ADS)

    Thoroddsen, Sigurdur; Thoraval, Marie-Jean; Takehara, Kohsei; Etoh, T. Goji

    2012-11-01

    When a drop impacts a pool at very low velocities V, an air layer cushions the impact and prevents immediate contact. This air layer is stretched into a hemispheric shape and thins to a submicron thickness. We use silicone oils, where these films are more stable than for water [Saylor & Bounds (2012), AIChE J., online: doi 10.1002/aic.13764 ]. We observe three main breakup mechanisms which are imprinted onto the micro-bubble morphology. First, for lowest V the film ruptures at isolated holes which grow rapidly, leaving bubble necklaces where their edges meet. Based on micro-bubble volumes, we show the film breaks by van der Waals, when its thickness ~ 100 nm. Secondly, for slightly larger V a ring of holes appearing a fixed depth, where the film is thinnest, producing bubble chandeliers. Finally, for larger V an air jet within the drop, ruptures it at the bottom tip, in an axisymmetric breakup. We measure the rupture speed and find that for very viscous liquids, the breakup moves faster than the capillary-viscous velocity, through the repeated ruptures. [Thoroddsen, Thoraval, Takehara & Etoh (2012), J. Fluid Mech. online: doi:10.1017/jfm.2012.319].

  2. Droplet Breakup and Other Problems Involving Surface Tension Driven Flows.

    NASA Astrophysics Data System (ADS)

    Brenner, Michael P.

    We explore several problems involving fluid flows driven by surface tension. The first part of the thesis concerns droplet breakup. The major focus is on the formation of singularities occurring when a mass of fluid breaks into two pieces. We explore this phenomena in many different physical situations, including droplet breakup in a Hele Shaw cell, rupturing of thin films on a solid surface, the breaking of Plateau borders in soap froths, and fluid dripping from a cylindrical nozzle. In most of the above examples the singularities are characterized by self similar solutions of nonlinear partial differential equations. For the dripping faucet, the similarity solution is unstable to finite (but small) amplitude perturbations; the consequence of this is that in practice the breakup of a three dimensional droplet is a nonsteady process, with new structures continually generated as the interface breaks. Through asymptotic analysis, we show that the amount of noise necessary to destabilize the similarity solution decreases rapidly as the singularity is approached. For fluids of moderate viscosity fluctuations in the interfacial shape of atomic size are sufficient to destabilize the interface when the thickness is less than one micron. The second part of the thesis addresses problems in wetting. We present an analysis of a droplet spreading on a solid surface, which results in an understanding of the experimentally observed spreading laws. Finally, we present an explanation of the mechanism for the instability that occurs when a contact line is driven by a constant force. The explanation is consistent with recent experimental data.

  3. Transverse liquid fuel jet breakup, burning, and ignition

    SciTech Connect

    Li, H.

    1990-12-31

    An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.

  4. Transverse liquid fuel jet breakup, burning, and ignition

    SciTech Connect

    Li, H.

    1990-01-01

    An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.

  5. Inverted Break-up Behaviour in Continuous Inkjet (CIJ) Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Harlen, Oliver; Morrison, Neil

    2014-11-01

    Although droplet creation during continuous jetting of Newtonian fluids has been widely studied, unsolved problems surrounding the break-up dynamics remain. Jetting through a nozzle creates a stream of liquid that is rendered unstable by surface tension. This instability creates a succession of main drops connected by thin filaments, with drop separation determined by the fastest growing wavelength. In order to control break-up and increase printing speeds, continuous inkjet (CIJ) printing exploits the effects of finite amplitude modulations in the jet velocity profile giving conditions where jet stability deviates from the usual Rayleigh behaviour. To explore these non-linear effects, we have developed a one-dimensional jetting model. In particular, we identify a modulation range for which pinching occurs upstream of the connecting filament, rather than downstream - a phenomenon we call ``inverted'' break-up. Furthermore, this behaviour can be controlled by the addition of harmonics to the initial driving signal. Our results are compared to full axisymmetric simulations in order to incorporate the effects of nozzle geometry. EPSRC Innovation in Industrial Technology.

  6. Nonlinear dynamics and breakup of free-surface flows

    SciTech Connect

    Eggers, J.

    1997-07-01

    Surface-tension-driven flows and, in particular, their tendency to decay spontaneously into drops have long fascinated naturalists, the earliest systematic experiments dating back to the beginning of the 19th century. Linear stability theory governs the onset of breakup and was developed by Rayleigh, Plateau, and Maxwell. However, only recently has attention turned to the nonlinear behavior in the vicinity of the singular point where a drop separates. The increased attention is due to a number of recent and increasingly refined experiments, as well as to a host of technological applications, ranging from printing to mixing and fiber spinning. The description of drop separation becomes possible because jet motion turns out to be effectively governed by one-dimensional equations, which still contain most of the richness of the original dynamics. In addition, an attraction for physicists lies in the fact that the separation singularity is governed by universal scaling laws, which constitute an asymptotic solution of the Navier-Stokes equation before and after breakup. The Navier-Stokes equation is thus continued uniquely through the singularity. At high viscosities, a series of noise-driven instabilities has been observed, which are a nested superposition of singularities of the same universal form. At low viscosities, there is rich scaling behavior in addition to aesthetically pleasing breakup patterns driven by capillary waves. The author reviews the theoretical development of this field alongside recent experimental work, and outlines unsolved problems. {copyright} {ital 1997} {ital The American Physical Society}

  7. FEM calculations of drop breakup beyond the first singularity

    NASA Astrophysics Data System (ADS)

    Suryo, Ronald; Basaran, Osman

    2007-11-01

    Computational analysis of drop breakup, which is of common occurrence in nature and technology, is important for advancing understanding of pinch-off singularities and developing new technologies. During drop formation from a tube, as more liquid flows from the tube into the drop, the drop elongates and thins. At the incipience of breakup, a spherical mass -- the precursor of the primary drop -- is connected to the liquid in the tube by a thin thread -- the precursor of one or more satellites. Numerical algorithms for analyzing this phenomenon at finite Reynolds number have been of two types: ones based on finite element methods (FEMs) and others based on various diffuse interface (DI) techniques. Numerical solutions must agree with scaling solutions of interface pinch-off, which are exact solutions of the nonlinear Navier-Stokes equations, and experiments. To date, the DI approach, despite its coarseness, has been more popular because it is simple and can predict the formation of several drops in sequence. Predictions made with FEM algorithms have been shown to be in excellent agreement with scaling theories and measurements but only until the instant of first breakup. Here we describe new FEM computations of unparalleled accuracy to predict the dynamics of continuous drop formation and support them with high-speed visualization experiments.

  8. Hard breakup of the deuteron into two Δ -isobars

    NASA Astrophysics Data System (ADS)

    Granados, Carlos; Sargsian, Misak

    2011-04-01

    Photodisintegration of the deuteron into two Δ-isobars at large center of mass angles is studied within the QCD hard rescattering model (HRM). According to the HRM, the reaction proceeds in three main steps: the photon knocks the quark from one of the nucleons in the deuteron; the struck quark rescatters off a quark from the other nucleon sharing the high energy of the photon; then the energetic quarks recombine into two outgoing baryons emerging at large transverse momenta. Within the HRM, the cross section is expressed through the amplitude of pn --> ΔΔ scattering which we evaluated based on the quark-interchange model of hard hadronic scattering. We predict that the cross section of the deuteron breakup to Δ++Δ- is 4-5 times larger than that of the breakup to the Δ+Δ0 channel. Also, the angular distributions for these two channels are markedly different. These can be compared with the predictions based on the assumption that two hard Δ-isobars are the result of the disintegration of initial ΔΔ components of the deuteron wave function. In this case, the angular distributions and cross sections of the breakup in both Δ++Δ- and Δ+Δ0 channels are expected to be similar. This work was supported by U.S. Department of Energy Grant under contract DE-FG02-01ER41172, and by the FIU DEA program.

  9. Hard breakup of the deuteron into two Δ isobars

    NASA Astrophysics Data System (ADS)

    Granados, Carlos G.; Sargsian, Misak M.

    2011-05-01

    We study high-energy photodisintegration of the deuteron into two Δ isobars at large center of mass angles within the QCD hard rescattering model (HRM). According to the HRM, the process develops in three main steps: the photon knocks a quark from one of the nucleons in the deuteron; the struck quark rescatters off a quark from the other nucleon sharing the high energy of the photon; then the energetic quarks recombine into two outgoing baryons which have large transverse momenta. Within the HRM, the cross section is expressed through the amplitude of pn→ΔΔ scattering which we evaluated based on the quark-interchange model of hard hadronic scattering. Calculations show that the angular distribution and the strength of the photodisintegration is mainly determined by the properties of the pn→ΔΔ scattering. We predict that the cross section of the deuteron breakup to Δ++Δ- is 4-5 times larger than that of the breakup to the Δ+Δ0 channel. Also, the angular distributions for these two channels are markedly different. These can be compared with the predictions based on the assumption that two hard Δ isobars are the result of the disintegration of the preexisting ΔΔ components of the deuteron wave function. In this case, one expects the angular distributions and cross sections of the breakup in both Δ++Δ- and Δ+Δ0 channels to be similar.

  10. Breakup of the Bell monopoly: Lessons for electric utilities

    SciTech Connect

    Piepmeier, J.M. ); Jermain, D.O. ); Egnor, T.L. )

    1993-07-01

    Technological change, not regulatory change, was the prime mover behind the Bell breakup. Now, for the first time, technology threatens to recast the economic structure of the electric utility industry as well. Previous analyses of the restructuring of the telecommunications industry, as represented by the 1984 breakup of the Bell monopoly, focus on regulatory change as the precipitator and principal agent. Technology is recognized as an important factor but not the primary trigger. This view confounds the roles of the independent and dependent variables in the economic system. The mistake is more than misperception of a single, isolated event that is now over and done with; it is fundamental and it must be corrected in order to understand the implications that restructuring holds for electric utility monopolies. Technology, not regulation, was the primary trigger in the Bell System breakup. Technology acted as a virus, infecting the monopoly economics of telecommunications and in turn driving a complete transformation of that industry. Regulatory change was the consequence, not the cause.

  11. Quaternary deformation

    SciTech Connect

    Brown, R.D. Jr.

    1990-01-01

    Displaced or deformed rock units and landforms record the past 2 m.y. of faulting, folding, uplift, and subsidence in California. Properly interpreted, such evidence provides a quantitative basis for predicting future earthquake activity and for relating many diverse structures and landforms to the 5 cm/yr of horizontal motion at the boundary between the North American and Pacific plates. Modern techniques of geologic dating and expanded research on earthquake hazards have greatly improved our knowledge of the San Andreas fault system. Much of this new knowledge has been gained since 1965, and that part which concerns crustal deformation during the past 2 m.y. is briefly summarized here.

  12. A methodology of MSL breakup analysis for Earth accidental reentry and its application to breakup analysis for Mars off-nominal entry

    NASA Technical Reports Server (NTRS)

    Salama, Ahmed; Ling, Lisa

    2005-01-01

    Vehicle breakup analysis has been performed for missions that may carry nuclear fuel for heating or power purposes to assess nuclear safety in case of launch failure leading to atmospheric reentry. Also, failure scenarios exist which could lead to breakup during Entry / Descent / Landing (EDL) at Mars due to off-nominal entries, with implications for planetary protection requirements. Since the Mars Science Laboratory (MSL) spacecraft may include a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), an analysis of breakup in case of launch failure is required. Also, breakup during Mars EDL due to off-nominal entries could release the RTG heat source that has implications for planetary protection requirements. This paper presents a methodology of MSL breakup analysis for launch failure with application to Mars off-nominal entry.

  13. Horizontal carbon nanotube alignment.

    PubMed

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  14. Orthodontics and Aligners

    MedlinePlus

    ... Repairing Chipped Teeth Teeth Whitening Tooth-Colored Fillings Orthodontics and Aligners Straighten teeth for a healthier smile. Orthodontics When consumers think about orthodontics, braces are the ...

  15. Tidal alignment of galaxies

    NASA Astrophysics Data System (ADS)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  16. Alignability of Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Beech, Russell Scott

    With the continuing drive towards higher speed, density, and functionality in electronics, electrical interconnects become inadequate. Due to optics' high speed and bandwidth, freedom from capacitive loading effects, and freedom from crosstalk, optical interconnects can meet more stringent interconnect requirements. But, an optical interconnect requires additional components, such as an optical source and detector, lenses, holographic elements, etc. Fabrication and assembly of an optical interconnect requires precise alignment of these components. The successful development and deployment of optical interconnects depend on how easily the interconnect components can be aligned and/or how tolerant the interconnect is to misalignments. In this thesis, a method of quantitatively specifying the relative difficulty of properly aligning an optical interconnect is described. Ways of using this theory of alignment to obtain design and packaging guidelines for optical interconnects are examined. The measure of the ease with which an optical interconnect can be aligned, called the alignability, uses the efficiency of power transfer as a measure of alignment quality. The alignability is related to interconnect package design through the overall cost measure, which depends upon various physical parameters of the interconnect, such as the cost of the components and the time required for fabrication and alignment. Through a mutual dependence on detector size, the relationship between an interconnect's alignability and its bandwidth, signal-to-noise ratio, and bit-error -rate is examined. The results indicate that a range of device sizes exists for which given performance threshold values are satisfied. Next, the alignability of integrated planar-optic backplanes is analyzed in detail. The resulting data show that the alignability can be optimized by varying the substrate thickness or the angle of reflection. By including the effects of crosstalk, in a multi-channel backplane, the

  17. Supercontinental inheritance and its influence on supercontinental breakup: The Central Atlantic Magmatic Province and the breakup of Pangea

    NASA Astrophysics Data System (ADS)

    Whalen, Lisa; Gazel, Esteban; Vidito, Christopher; Puffer, John; Bizimis, Michael; Henika, William; Caddick, Mark J.

    2015-10-01

    The Central Atlantic Magmatic Province (CAMP) is the large igneous province (LIP) that coincides with the breakup of the supercontinent Pangea. Major and trace element data, Sr-Nd-Pb radiogenic isotopes, and high-precision olivine chemistry were collected on primitive CAMP dikes from Virginia (VA). These new samples were used in conjunction with a global CAMP data set to elucidate different mechanisms for supercontinent breakup and LIP formation. On the Eastern North American Margin, CAMP flows are found primarily in rift basins that can be divided into northern or southern groups based on differences in tectonic evolution, rifting history, and supercontinental inheritance. Geochemical signatures of CAMP suggest an upper mantle source modified by subduction processes. We propose that the greater number of accretionary events, or metasomatism by sediment melts as opposed to fluids on the northern versus the southern Laurentian margin during the formation of Pangea led to different subduction-related signatures in the mantle source of the northern versus southern CAMP lavas. CAMP samples have elevated Ni and low Ca in olivine phenocrysts indicating a significant pyroxenite component in the source, interpreted here as a result of subduction metasomatism. Different collisional styles during the Alleghanian orogeny in the North and South may have led to the diachroneity of the rifting of Pangea. Furthermore, due to a low angle of subduction, the Rheic Plate may have underplated the lithosphere then delaminated, triggering both the breakup of Pangea and the formation of CAMP.

  18. Madelung deformity.

    PubMed

    Ghatan, Andrew C; Hanel, Douglas P

    2013-06-01

    Madelung deformity is a rare congenital anomaly of the wrist caused by asymmetric growth at the distal radial physis secondary to a partial ulnar-sided arrest. The deformity is characterized by ulnar and palmar curvature of the distal radius, positive ulnar variance, and proximal subsidence of the lunate. It more commonly occurs in females than males and typically affects both wrists. The deformity can occur in isolation or as part of a genetic syndrome. The pattern of inheritance varies, with some cases following a pseudoautosomal pattern and many others lacking a clear family history. Nonsurgical management is typically advocated in asymptomatic patients. Few studies exist on the natural history of the condition; however, extensor tendon ruptures have been reported in severe and chronic cases. Stiffness, pain, and patient concerns regarding wrist cosmesis have been cited as indications for surgery. Various techniques for surgical management of Madelung deformity have been described, but clear evidence to support the use of any single approach is lacking. PMID:23728962

  19. Heterogeneous Data Fusion via Space Alignment Using Nonmetric Multidimensional Scaling

    SciTech Connect

    Choo, Jaegul; Bohn, Shawn J.; Nakamura, Grant C.; White, Amanda M.; Park, Haesun

    2012-04-26

    Heterogeneous data sets are typically represented in different feature spaces, making it difficult to analyze relationships spanning different data sets even when they are semantically related. Data fusion via space alignment can remedy this task by integrating multiple data sets lying in different spaces into one common space. Given a set of reference correspondence data that share the same semantic meaning across different spaces, space alignment attempts to place the corresponding reference data as close together as possible, and accordingly, the entire data are aligned in a common space. Space alignment involves optimizing two potentially conflicting criteria: minimum deformation of the original relationships and maximum alignment between the different spaces. To solve this problem, we provide a novel graph embedding framework for space alignment, which converts each data set into a graph and assigns zero distance between reference correspondence pairs resulting in a single graph. We propose a graph embedding method for fusion based on nonmetric multidimensional scaling (MDS). Its criteria using the rank order rather than the distance allows nonmetric MDS to effectively handle both deformation and alignment. Experiments using parallel data sets demonstrate that our approach works well in comparison to existing methods such as constrained Laplacian eigenmaps, Procrustes analysis, and tensor decomposition. We also present standard cross-domain information retrieval tests as well as interesting visualization examples using space alignment.

  20. Correcting the beam centroid motion in an induction accelerator and reducing the beam breakup instability

    NASA Astrophysics Data System (ADS)

    Coleman, J. E.; Ekdahl, C. A.; Moir, D. C.; Sullivan, G. W.; Crawford, M. T.

    2014-09-01

    Axial beam centroid and beam breakup (BBU) measurements were conducted on an 80 ns FWHM, intense relativistic electron bunch with an injected energy of 3.8 MV and current of 2.9 kA. The intense relativistic electron bunch is accelerated and transported through a nested solenoid and ferrite induction core lattice consisting of 64 elements, exiting the accelerator with a nominal energy of 19.8 MeV. The principal objective of these experiments is to quantify the coupling of the beam centroid motion to the BBU instability and validate the theory of this coupling for the first time. Time resolved centroid measurements indicate a reduction in the BBU amplitude, ⟨ξ⟩, of 19% and a reduction in the BBU growth rate (Γ) of 4% by reducing beam centroid misalignments ˜50% throughout the accelerator. An investigation into the contribution of the misaligned elements is made. An alignment algorithm is presented in addition to a qualitative comparison of experimental and calculated results which include axial beam centroid oscillations, BBU amplitude, and growth with different dipole steering.

  1. SPEAR3 Construction Alignment

    SciTech Connect

    LeCocq, Catherine; Banuelos, Cristobal; Fuss, Brian; Gaudreault, Francis; Gaydosh, Michael; Griffin, Levirt; Imfeld, Hans; McDougal, John; Perry, Michael; Rogers, Michael; /SLAC

    2005-08-17

    An ambitious seven month shutdown of the existing SPEAR2 synchrotron radiation facility was successfully completed in March 2004 when the first synchrotron light was observed in the new SPEAR3 ring, SPEAR3 completely replaced SPEAR2 with new components aligned on a new highly-flat concrete floor. Devices such as magnets and vacuum chambers had to be fiducialized and later aligned on girder rafts that were then placed into the ring over pre-aligned support plates. Key to the success of aligning this new ring was to ensure that the new beam orbit matched the old SPEAR2 orbit so that existing experimental beamlines would not have to be reoriented. In this presentation a pictorial summary of the Alignment Engineering Group's surveying tasks for the construction of the SPEAR3 ring is provided. Details on the networking and analysis of various surveys throughout the project can be found in the accompanying paper.

  2. Bag-breakup control of surface drag in hurricanes

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Zilitinkevich, Sergej; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil

    2016-04-01

    Air-sea interaction at extreme winds is of special interest now in connection with the problem of the sea surface drag reduction at the wind speed exceeding 30-35 m/s. This phenomenon predicted by Emanuel (1995) and confirmed by a number of field (e.g., Powell, et al, 2003) and laboratory (Donelan et al, 2004) experiments still waits its physical explanation. Several papers attributed the drag reduction to spume droplets - spray turning off the crests of breaking waves (e.g., Kudryavtsev, Makin, 2011, Bao, et al, 2011). The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Herewith, it is unknown what is air-sea interface and how water is fragmented to spray at hurricane wind. Using high-speed video, we observed mechanisms of production of spume droplets at strong winds by high-speed video filming, investigated statistics and compared their efficiency. Experiments showed, that the generation of the spume droplets near the wave crest is caused by the following events: bursting of submerged bubbles, generation and breakup of "projections" and "bag breakup". Statistical analysis of results of these experiments showed that the main mechanism of spray-generation is attributed to "bag-breakup mechanism", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film. Using high-speed video, we show that at hurricane winds the main mechanism of spray production is attributed to "bag-breakup", namely, inflating and

  3. Fine structure of breakup development inferred from satellite and ground-based observations

    NASA Astrophysics Data System (ADS)

    Kornilova, T. A.; Kornilov, I. A.; Kornilov, O. I.

    2008-05-01

    More than 60 breakups, including weak activations of the pseudo-breakup type, moderate breakups, and events of very strong auroral activity, were analyzed using ground-based TV data, together with satellite auroral images. We studied the fine subvisual details of spatial and temporal dynamics of active auroral forms and surrounding diffuse luminosity, both in the longitudinal and latitudinal directions of the TV camera field of view. For all types of breakups a close interconnection of auroral activity was found across and along the auroral oval.

  4. Systematical Behavior of Breakup Effects on Complete Fusion at Energies above the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Zhao, Wei-Juan; Gomes, P. R. S.; Zhao, En-Guang; Zhou, Shan-Gui

    We investigate the systematical behavior of the breakup effects on the complete fusion (CF) cross sections at energies above the Coulomb barrier. The CF cross sections are suppressed by the prompt breakup of the projectiles. This suppression effect, expressed as the ratio of the reduced fusion function and the universal fusion function (UFF), for reactions induced by the same projectile, is independent of the target and mainly determined by the lowest energy breakup channel of the projectile. There holds a good exponential relation between the suppression factor and the energy corresponding to the lowest breakup threshold.

  5. Observations of breakup processes of liquid jets using real-time X-ray radiography

    NASA Technical Reports Server (NTRS)

    Char, J. M.; Kuo, K. K.; Hsieh, K. C.

    1988-01-01

    To unravel the liquid-jet breakup process in the nondilute region, a newly developed system of real-time X-ray radiography, an advanced digital image processor, and a high-speed video camera were used. Based upon recorded X-ray images, the inner structure of a liquid jet during breakup was observed. The jet divergence angle, jet breakup length, and fraction distributions along the axial and transverse directions of the liquid jets were determined in the near-injector region. Both wall- and free-jet tests were conducted to study the effect of wall friction on the jet breakup process.

  6. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Kaercher, P. M.; Zepeda-Alarcon, E.; Prakapenka, V.; Kanitpanyacharoen, W.; Smith, J.; Sinogeikin, S. V.; Wenk, H. R.

    2014-12-01

    The crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, yet little is known about its deformation mechanisms. Information about how stishovite deforms under stress is important for understanding subduction of quartz-bearing crustal rocks into the mantle. Particularly, stishovite is elastically anisotropic and thus development of crystallographic preferred orientation (CPO) during deformation may contribute to seismic anomalies in the mantle. We converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. Diffraction patterns were collected in situ in radial geometry at the Advanced Light Source (ALS) and the Advanced Photon Source (APS) to examine development of CPO during deformation. We find that (001) poles preferentially align with the compression direction and infer deformation mechanisms leading to the observed CPO with visco-plastic self consistent (VPSC) polycrystal plasticity models. Our results show pyramidal and basal slip are most likely active at high pressure and ambient temperature, in agreement with transmission electron microscopy (TEM) studies of rutile (TiO2) and paratellurite (TeO2), which are isostructural to stishovite. Conversely other TEM studies of stishovite done at higher temperature suggest dominant prismatic slip. This indicates that a variety of slip systems may be active in stishovite, depending on conditions. As a result, stishovite's contribution to the seismic signature in the mantle may vary as a function of pressure and temperature and thus depth.

  7. Non-rigid alignment in electron tomography in materials science.

    PubMed

    Printemps, Tony; Bernier, Nicolas; Bleuet, Pierre; Mula, Guido; Hervé, Lionel

    2016-09-01

    Electron tomography is a key technique that enables the visualization of an object in three dimensions with a resolution of about a nanometre. High-quality 3D reconstruction is possible thanks to the latest compressed sensing algorithms and/or better alignment and preprocessing of the 2D projections. Rigid alignment of 2D projections is routine in electron tomography. However, it cannot correct misalignments induced by (i) deformations of the sample due to radiation damage or (ii) drifting of the sample during the acquisition of an image in scanning transmission electron microscope mode. In both cases, those misalignments can give rise to artefacts in the reconstruction. We propose a simple-to-implement non-rigid alignment technique to correct those artefacts. This technique is particularly suited for needle-shaped samples in materials science. It is initiated by a rigid alignment of the projections and it is then followed by several rigid alignments of different parts of the projections. Piecewise linear deformations are applied to each projection to force them to simultaneously satisfy the rigid alignments of the different parts. The efficiency of this technique is demonstrated on three samples, an intermetallic sample with deformation misalignments due to a high electron dose typical to spectroscopic electron tomography, a porous silicon sample with an extremely thin end particularly sensitive to electron beam and another porous silicon sample that was drifting during image acquisitions. PMID:27018779

  8. Hard breakup of the deuteron into two {Delta} isobars

    SciTech Connect

    Granados, Carlos G.; Sargsian, Misak M.

    2011-05-15

    We study high-energy photodisintegration of the deuteron into two {Delta} isobars at large center of mass angles within the QCD hard rescattering model (HRM). According to the HRM, the process develops in three main steps: the photon knocks a quark from one of the nucleons in the deuteron; the struck quark rescatters off a quark from the other nucleon sharing the high energy of the photon; then the energetic quarks recombine into two outgoing baryons which have large transverse momenta. Within the HRM, the cross section is expressed through the amplitude of pn{yields}{Delta}{Delta} scattering which we evaluated based on the quark-interchange model of hard hadronic scattering. Calculations show that the angular distribution and the strength of the photodisintegration is mainly determined by the properties of the pn{yields}{Delta}{Delta} scattering. We predict that the cross section of the deuteron breakup to {Delta}{sup ++}{Delta}{sup -} is 4-5 times larger than that of the breakup to the {Delta}{sup +}{Delta}{sup 0} channel. Also, the angular distributions for these two channels are markedly different. These can be compared with the predictions based on the assumption that two hard {Delta} isobars are the result of the disintegration of the preexisting {Delta}{Delta} components of the deuteron wave function. In this case, one expects the angular distributions and cross sections of the breakup in both {Delta}{sup ++}{Delta}{sup -} and {Delta}{sup +}{Delta}{sup 0} channels to be similar.

  9. Cumulative beam breakup in radio-frequency linacs

    SciTech Connect

    Bohn, C.L.; Delayen, J.R.

    1990-01-01

    An analytic model of cumulative beam breakup has been developed which is applicable to both low-velocity ion and high-energy electron linear accelerators. The model includes arbitrary velocity, acceleration, focusing, initial conditions, beam-cavity resonances, and variable cavity geometry and spacing along the accelerator. The model involves a continuum approximation'' in which the transverse kicks in momentum imparted by the cavities are smoothed over the length of the linac. The resulting equation of transverse motion is solved via the WKBJ method. Specific examples are discussed which correspond to limiting cases of the solution. 16 refs.

  10. Beam Breakup Studies for New Cryo-Unit

    SciTech Connect

    S. Ahmed, I. Shin, R. Kazimi, F. Marhauser ,F. Hannon ,G. Krafft ,B. Yunn ,A. Hofler

    2011-03-01

    In this paper, we report the numerical simulations of cumulative beam breakup studies for a new cryo-unit for booster design at Jefferson lab. The system consists of two 1-cell and one 7-cell superconducting RF cavities. Combining two 1-cell into a 2-cell together with a 7-cell is also an option. Simulations have been performed using the 2-dimensional time-domain code. The 1-cell+1-cell+7-cell combination confirms beam stability, however, the arrangement 2-cell+7-cell shows instability.