Sample records for aligned dna sequences

  1. The number of reduced alignments between two DNA sequences

    PubMed Central

    2014-01-01

    Background In this study we consider DNA sequences as mathematical strings. Total and reduced alignments between two DNA sequences have been considered in the literature to measure their similarity. Results for explicit representations of some alignments have been already obtained. Results We present exact, explicit and computable formulas for the number of different possible alignments between two DNA sequences and a new formula for a class of reduced alignments. Conclusions A unified approach for a wide class of alignments between two DNA sequences has been provided. The formula is computable and, if complemented by software development, will provide a deeper insight into the theory of sequence alignment and give rise to new comparison methods. AMS Subject Classification Primary 92B05, 33C20, secondary 39A14, 65Q30 PMID:24684679

  2. Local alignment of two-base encoded DNA sequence

    PubMed Central

    Homer, Nils; Merriman, Barry; Nelson, Stanley F

    2009-01-01

    Background DNA sequence comparison is based on optimal local alignment of two sequences using a similarity score. However, some new DNA sequencing technologies do not directly measure the base sequence, but rather an encoded form, such as the two-base encoding considered here. In order to compare such data to a reference sequence, the data must be decoded into sequence. The decoding is deterministic, but the possibility of measurement errors requires searching among all possible error modes and resulting alignments to achieve an optimal balance of fewer errors versus greater sequence similarity. Results We present an extension of the standard dynamic programming method for local alignment, which simultaneously decodes the data and performs the alignment, maximizing a similarity score based on a weighted combination of errors and edits, and allowing an affine gap penalty. We also present simulations that demonstrate the performance characteristics of our two base encoded alignment method and contrast those with standard DNA sequence alignment under the same conditions. Conclusion The new local alignment algorithm for two-base encoded data has substantial power to properly detect and correct measurement errors while identifying underlying sequence variants, and facilitating genome re-sequencing efforts based on this form of sequence data. PMID:19508732

  3. Spreadsheet-based program for alignment of overlapping DNA sequences.

    PubMed

    Anbazhagan, R; Gabrielson, E

    1999-06-01

    Molecular biology laboratories frequently face the challenge of aligning small overlapping DNA sequences derived from a long DNA segment. Here, we present a short program that can be used to adapt Excel spreadsheets as a tool for aligning DNA sequences, regardless of their orientation. The program runs on any Windows or Macintosh operating system computer with Excel 97 or Excel 98. The program is available for use as an Excel file, which can be downloaded from the BioTechniques Web site. Upon execution, the program opens a specially designed customized workbook and is capable of identifying overlapping regions between two sequence fragments and displaying the sequence alignment. It also performs a number of specialized functions such as recognition of restriction enzyme cutting sites and CpG island mapping without costly specialized software.

  4. DNA sequence alignment by microhomology sampling during homologous recombination

    PubMed Central

    Qi, Zhi; Redding, Sy; Lee, Ja Yil; Gibb, Bryan; Kwon, YoungHo; Niu, Hengyao; Gaines, William A.; Sung, Patrick

    2015-01-01

    Summary Homologous recombination (HR) mediates the exchange of genetic information between sister or homologous chromatids. During HR, members of the RecA/Rad51 family of recombinases must somehow search through vast quantities of DNA sequence to align and pair ssDNA with a homologous dsDNA template. Here we use single-molecule imaging to visualize Rad51 as it aligns and pairs homologous DNA sequences in real-time. We show that Rad51 uses a length-based recognition mechanism while interrogating dsDNA, enabling robust kinetic selection of 8-nucleotide (nt) tracts of microhomology, which kinetically confines the search to sites with a high probability of being a homologous target. Successful pairing with a 9th nucleotide coincides with an additional reduction in binding free energy and subsequent strand exchange occurs in precise 3-nt steps, reflecting the base triplet organization of the presynaptic complex. These findings provide crucial new insights into the physical and evolutionary underpinnings of DNA recombination. PMID:25684365

  5. DNA Multiple Sequence Alignment Guided by Protein Domains: The MSA-PAD 2.0 Method.

    PubMed

    Balech, Bachir; Monaco, Alfonso; Perniola, Michele; Santamaria, Monica; Donvito, Giacinto; Vicario, Saverio; Maggi, Giorgio; Pesole, Graziano

    2018-01-01

    Multiple sequence alignment (MSA) is a fundamental component in many DNA sequence analyses including metagenomics studies and phylogeny inference. When guided by protein profiles, DNA multiple alignments assume a higher precision and robustness. Here we present details of the use of the upgraded version of MSA-PAD (2.0), which is a DNA multiple sequence alignment framework able to align DNA sequences coding for single/multiple protein domains guided by PFAM or user-defined annotations. MSA-PAD has two alignment strategies, called "Gene" and "Genome," accounting for coding domains order and genomic rearrangements, respectively. Novel options were added to the present version, where the MSA can be guided by protein profiles provided by the user. This allows MSA-PAD 2.0 to run faster and to add custom protein profiles sometimes not present in PFAM database according to the user's interest. MSA-PAD 2.0 is currently freely available as a Web application at https://recasgateway.cloud.ba.infn.it/ .

  6. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.

  7. Multiple DNA and protein sequence alignment on a workstation and a supercomputer.

    PubMed

    Tajima, K

    1988-11-01

    This paper describes a multiple alignment method using a workstation and supercomputer. The method is based on the alignment of a set of aligned sequences with the new sequence, and uses a recursive procedure of such alignment. The alignment is executed in a reasonable computation time on diverse levels from a workstation to a supercomputer, from the viewpoint of alignment results and computational speed by parallel processing. The application of the algorithm is illustrated by several examples of multiple alignment of 12 amino acid and DNA sequences of HIV (human immunodeficiency virus) env genes. Colour graphic programs on a workstation and parallel processing on a supercomputer are discussed.

  8. Phylo-VISTA: Interactive visualization of multiple DNA sequence alignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Nameeta; Couronne, Olivier; Pennacchio, Len A.

    The power of multi-sequence comparison for biological discovery is well established. The need for new capabilities to visualize and compare cross-species alignment data is intensified by the growing number of genomic sequence datasets being generated for an ever-increasing number of organisms. To be efficient these visualization algorithms must support the ability to accommodate consistently a wide range of evolutionary distances in a comparison framework based upon phylogenetic relationships. Results: We have developed Phylo-VISTA, an interactive tool for analyzing multiple alignments by visualizing a similarity measure for multiple DNA sequences. The complexity of visual presentation is effectively organized using a frameworkmore » based upon interspecies phylogenetic relationships. The phylogenetic organization supports rapid, user-guided interspecies comparison. To aid in navigation through large sequence datasets, Phylo-VISTA leverages concepts from VISTA that provide a user with the ability to select and view data at varying resolutions. The combination of multiresolution data visualization and analysis, combined with the phylogenetic framework for interspecies comparison, produces a highly flexible and powerful tool for visual data analysis of multiple sequence alignments. Availability: Phylo-VISTA is available at http://www-gsd.lbl. gov/phylovista. It requires an Internet browser with Java Plugin 1.4.2 and it is integrated into the global alignment program LAGAN at http://lagan.stanford.edu« less

  9. Application of Quaternion in improving the quality of global sequence alignment scores for an ambiguous sequence target in Streptococcus pneumoniae DNA

    NASA Astrophysics Data System (ADS)

    Lestari, D.; Bustamam, A.; Novianti, T.; Ardaneswari, G.

    2017-07-01

    DNA sequence can be defined as a succession of letters, representing the order of nucleotides within DNA, using a permutation of four DNA base codes including adenine (A), guanine (G), cytosine (C), and thymine (T). The precise code of the sequences is determined using DNA sequencing methods and technologies, which have been developed since the 1970s and currently become highly developed, advanced and highly throughput sequencing technologies. So far, DNA sequencing has greatly accelerated biological and medical research and discovery. However, in some cases DNA sequencing could produce any ambiguous and not clear enough sequencing results that make them quite difficult to be determined whether these codes are A, T, G, or C. To solve these problems, in this study we can introduce other representation of DNA codes namely Quaternion Q = (PA, PT, PG, PC), where PA, PT, PG, PC are the probability of A, T, G, C bases that could appear in Q and PA + PT + PG + PC = 1. Furthermore, using Quaternion representations we are able to construct the improved scoring matrix for global sequence alignment processes, by applying a dot product method. Moreover, this scoring matrix produces better and higher quality of the match and mismatch score between two DNA base codes. In implementation, we applied the Needleman-Wunsch global sequence alignment algorithm using Octave, to analyze our target sequence which contains some ambiguous sequence data. The subject sequences are the DNA sequences of Streptococcus pneumoniae families obtained from the Genebank, meanwhile the target DNA sequence are received from our collaborator database. As the results we found the Quaternion representations improve the quality of the sequence alignment score and we can conclude that DNA sequence target has maximum similarity with Streptococcus pneumoniae.

  10. DNAAlignEditor: DNA alignment editor tool

    PubMed Central

    Sanchez-Villeda, Hector; Schroeder, Steven; Flint-Garcia, Sherry; Guill, Katherine E; Yamasaki, Masanori; McMullen, Michael D

    2008-01-01

    Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism. PMID:18366684

  11. Genomic signal processing methods for computation of alignment-free distances from DNA sequences.

    PubMed

    Borrayo, Ernesto; Mendizabal-Ruiz, E Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P; Morales, J Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments.

  12. Genomic Signal Processing Methods for Computation of Alignment-Free Distances from DNA Sequences

    PubMed Central

    Borrayo, Ernesto; Mendizabal-Ruiz, E. Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P.; Morales, J. Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments. PMID:25393409

  13. High-speed all-optical DNA local sequence alignment based on a three-dimensional artificial neural network.

    PubMed

    Maleki, Ehsan; Babashah, Hossein; Koohi, Somayyeh; Kavehvash, Zahra

    2017-07-01

    This paper presents an optical processing approach for exploring a large number of genome sequences. Specifically, we propose an optical correlator for global alignment and an extended moiré matching technique for local analysis of spatially coded DNA, whose output is fed to a novel three-dimensional artificial neural network for local DNA alignment. All-optical implementation of the proposed 3D artificial neural network is developed and its accuracy is verified in Zemax. Thanks to its parallel processing capability, the proposed structure performs local alignment of 4 million sequences of 150 base pairs in a few seconds, which is much faster than its electrical counterparts, such as the basic local alignment search tool.

  14. Studying long 16S rDNA sequences with ultrafast-metagenomic sequence classification using exact alignments (Kraken).

    PubMed

    Valenzuela-González, Fabiola; Martínez-Porchas, Marcel; Villalpando-Canchola, Enrique; Vargas-Albores, Francisco

    2016-03-01

    Ultrafast-metagenomic sequence classification using exact alignments (Kraken) is a novel approach to classify 16S rDNA sequences. The classifier is based on mapping short sequences to the lowest ancestor and performing alignments to form subtrees with specific weights in each taxon node. This study aimed to evaluate the classification performance of Kraken with long 16S rDNA random environmental sequences produced by cloning and then Sanger sequenced. A total of 480 clones were isolated and expanded, and 264 of these clones formed contigs (1352 ± 153 bp). The same sequences were analyzed using the Ribosomal Database Project (RDP) classifier. Deeper classification performance was achieved by Kraken than by the RDP: 73% of the contigs were classified up to the species or variety levels, whereas 67% of these contigs were classified no further than the genus level by the RDP. The results also demonstrated that unassembled sequences analyzed by Kraken provide similar or inclusively deeper information. Moreover, sequences that did not form contigs, which are usually discarded by other programs, provided meaningful information when analyzed by Kraken. Finally, it appears that the assembly step for Sanger sequences can be eliminated when using Kraken. Kraken cumulates the information of both sequence senses, providing additional elements for the classification. In conclusion, the results demonstrate that Kraken is an excellent choice for use in the taxonomic assignment of sequences obtained by Sanger sequencing or based on third generation sequencing, of which the main goal is to generate larger sequences. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. JavaScript DNA translator: DNA-aligned protein translations.

    PubMed

    Perry, William L

    2002-12-01

    There are many instances in molecular biology when it is necessary to identify ORFs in a DNA sequence. While programs exist for displaying protein translations in multiple ORFs in alignment with a DNA sequence, they are often expensive, exist as add-ons to software that must be purchased, or are only compatible with a particular operating system. JavaScript DNA Translator is a shareware application written in JavaScript, a scripting language interpreted by the Netscape Communicator and Internet Explorer Web browsers, which makes it compatible with several different operating systems. While the program uses a familiar Web page interface, it requires no connection to the Internet since calculations are performed on the user's own computer. The program analyzes one or multiple DNA sequences and generates translations in up to six reading frames aligned to a DNA sequence, in addition to displaying translations as separate sequences in FASTA format. ORFs within a reading frame can also be displayed as separate sequences. Flexible formatting options are provided, including the ability to hide ORFs below a minimum size specified by the user. The program is available free of charge at the BioTechniques Software Library (www.Biotechniques.com).

  16. SP-Designer: a user-friendly program for designing species-specific primer pairs from DNA sequence alignments.

    PubMed

    Villard, Pierre; Malausa, Thibaut

    2013-07-01

    SP-Designer is an open-source program providing a user-friendly tool for the design of specific PCR primer pairs from a DNA sequence alignment containing sequences from various taxa. SP-Designer selects PCR primer pairs for the amplification of DNA from a target species on the basis of several criteria: (i) primer specificity, as assessed by interspecific sequence polymorphism in the annealing regions, (ii) the biochemical characteristics of the primers and (iii) the intended PCR conditions. SP-Designer generates tables, detailing the primer pair and PCR characteristics, and a FASTA file locating the primer sequences in the original sequence alignment. SP-Designer is Windows-compatible and freely available from http://www2.sophia.inra.fr/urih/sophia_mart/sp_designer/info_sp_designer.php. © 2013 John Wiley & Sons Ltd.

  17. DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.

    PubMed

    Ma, Wenxiu; Yang, Lin; Rohs, Remo; Noble, William Stafford

    2017-10-01

    Transcription factors (TFs) bind to specific DNA sequence motifs. Several lines of evidence suggest that TF-DNA binding is mediated in part by properties of the local DNA shape: the width of the minor groove, the relative orientations of adjacent base pairs, etc. Several methods have been developed to jointly account for DNA sequence and shape properties in predicting TF binding affinity. However, a limitation of these methods is that they typically require a training set of aligned TF binding sites. We describe a sequence + shape kernel that leverages DNA sequence and shape information to better understand protein-DNA binding preference and affinity. This kernel extends an existing class of k-mer based sequence kernels, based on the recently described di-mismatch kernel. Using three in vitro benchmark datasets, derived from universal protein binding microarrays (uPBMs), genomic context PBMs (gcPBMs) and SELEX-seq data, we demonstrate that incorporating DNA shape information improves our ability to predict protein-DNA binding affinity. In particular, we observe that (i) the k-spectrum + shape model performs better than the classical k-spectrum kernel, particularly for small k values; (ii) the di-mismatch kernel performs better than the k-mer kernel, for larger k; and (iii) the di-mismatch + shape kernel performs better than the di-mismatch kernel for intermediate k values. The software is available at https://bitbucket.org/wenxiu/sequence-shape.git. rohs@usc.edu or william-noble@uw.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  18. Optimization of sequence alignment for simple sequence repeat regions.

    PubMed

    Jighly, Abdulqader; Hamwieh, Aladdin; Ogbonnaya, Francis C

    2011-07-20

    Microsatellites, or simple sequence repeats (SSRs), are tandemly repeated DNA sequences, including tandem copies of specific sequences no longer than six bases, that are distributed in the genome. SSR has been used as a molecular marker because it is easy to detect and is used in a range of applications, including genetic diversity, genome mapping, and marker assisted selection. It is also very mutable because of slipping in the DNA polymerase during DNA replication. This unique mutation increases the insertion/deletion (INDELs) mutation frequency to a high ratio - more than other types of molecular markers such as single nucleotide polymorphism (SNPs).SNPs are more frequent than INDELs. Therefore, all designed algorithms for sequence alignment fit the vast majority of the genomic sequence without considering microsatellite regions, as unique sequences that require special consideration. The old algorithm is limited in its application because there are many overlaps between different repeat units which result in false evolutionary relationships. To overcome the limitation of the aligning algorithm when dealing with SSR loci, a new algorithm was developed using PERL script with a Tk graphical interface. This program is based on aligning sequences after determining the repeated units first, and the last SSR nucleotides positions. This results in a shifting process according to the inserted repeated unit type.When studying the phylogenic relations before and after applying the new algorithm, many differences in the trees were obtained by increasing the SSR length and complexity. However, less distance between different linage had been observed after applying the new algorithm. The new algorithm produces better estimates for aligning SSR loci because it reflects more reliable evolutionary relations between different linages. It reduces overlapping during SSR alignment, which results in a more realistic phylogenic relationship.

  19. RAMICS: trainable, high-speed and biologically relevant alignment of high-throughput sequencing reads to coding DNA

    PubMed Central

    Wright, Imogen A.; Travers, Simon A.

    2014-01-01

    The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. PMID:24861618

  20. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner.

    PubMed

    Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan; Brent, Michael R

    2009-07-01

    The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than heuristics. We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners. To validate these results with natural sequences, we performed cross-species alignment using orthologous transcripts from human, mouse and rat. We found that aligner accuracy is heavily dependent on sequence identity. For sequences with 100% identity, Pairagon achieved accuracy levels of >99.6%, with one quarter of the errors of any other aligner. Furthermore, for human/mouse alignments, which are only 85% identical, Pairagon achieved 87% accuracy, higher than any other aligner. Pairagon source and executables are freely available at http://mblab.wustl.edu/software/pairagon/

  1. Minimap2: pairwise alignment for nucleotide sequences.

    PubMed

    Li, Heng

    2018-05-10

    Recent advances in sequencing technologies promise ultra-long reads of ∼100 kilo bases (kb) in average, full-length mRNA or cDNA reads in high throughput and genomic contigs over 100 mega bases (Mb) in length. Existing alignment programs are unable or inefficient to process such data at scale, which presses for the development of new alignment algorithms. Minimap2 is a general-purpose alignment program to map DNA or long mRNA sequences against a large reference database. It works with accurate short reads of ≥ 100bp in length, ≥1kb genomic reads at error rate ∼15%, full-length noisy Direct RNA or cDNA reads, and assembly contigs or closely related full chromosomes of hundreds of megabases in length. Minimap2 does split-read alignment, employs concave gap cost for long insertions and deletions (INDELs) and introduces new heuristics to reduce spurious alignments. It is 3-4 times as fast as mainstream short-read mappers at comparable accuracy, and is ≥30 times faster than long-read genomic or cDNA mappers at higher accuracy, surpassing most aligners specialized in one type of alignment. https://github.com/lh3/minimap2. hengli@broadinstitute.org.

  2. cljam: a library for handling DNA sequence alignment/map (SAM) with parallel processing.

    PubMed

    Takeuchi, Toshiki; Yamada, Atsuo; Aoki, Takashi; Nishimura, Kunihiro

    2016-01-01

    Next-generation sequencing can determine DNA bases and the results of sequence alignments are generally stored in files in the Sequence Alignment/Map (SAM) format and the compressed binary version (BAM) of it. SAMtools is a typical tool for dealing with files in the SAM/BAM format. SAMtools has various functions, including detection of variants, visualization of alignments, indexing, extraction of parts of the data and loci, and conversion of file formats. It is written in C and can execute fast. However, SAMtools requires an additional implementation to be used in parallel with, for example, OpenMP (Open Multi-Processing) libraries. For the accumulation of next-generation sequencing data, a simple parallelization program, which can support cloud and PC cluster environments, is required. We have developed cljam using the Clojure programming language, which simplifies parallel programming, to handle SAM/BAM data. Cljam can run in a Java runtime environment (e.g., Windows, Linux, Mac OS X) with Clojure. Cljam can process and analyze SAM/BAM files in parallel and at high speed. The execution time with cljam is almost the same as with SAMtools. The cljam code is written in Clojure and has fewer lines than other similar tools.

  3. RAMICS: trainable, high-speed and biologically relevant alignment of high-throughput sequencing reads to coding DNA.

    PubMed

    Wright, Imogen A; Travers, Simon A

    2014-07-01

    The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Aptaligner: automated software for aligning pseudorandom DNA X-aptamers from next-generation sequencing data.

    PubMed

    Lu, Emily; Elizondo-Riojas, Miguel-Angel; Chang, Jeffrey T; Volk, David E

    2014-06-10

    Next-generation sequencing results from bead-based aptamer libraries have demonstrated that traditional DNA/RNA alignment software is insufficient. This is particularly true for X-aptamers containing specialty bases (W, X, Y, Z, ...) that are identified by special encoding. Thus, we sought an automated program that uses the inherent design scheme of bead-based X-aptamers to create a hypothetical reference library and Markov modeling techniques to provide improved alignments. Aptaligner provides this feature as well as length error and noise level cutoff features, is parallelized to run on multiple central processing units (cores), and sorts sequences from a single chip into projects and subprojects.

  5. Integrating alignment-based and alignment-free sequence similarity measures for biological sequence classification.

    PubMed

    Borozan, Ivan; Watt, Stuart; Ferretti, Vincent

    2015-05-01

    Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. ivan.borozan@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  6. Integrating alignment-based and alignment-free sequence similarity measures for biological sequence classification

    PubMed Central

    Borozan, Ivan; Watt, Stuart; Ferretti, Vincent

    2015-01-01

    Motivation: Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Results: Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. Availability and implementation: All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. Contact: ivan.borozan@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573913

  7. CMSA: a heterogeneous CPU/GPU computing system for multiple similar RNA/DNA sequence alignment.

    PubMed

    Chen, Xi; Wang, Chen; Tang, Shanjiang; Yu, Ce; Zou, Quan

    2017-06-24

    The multiple sequence alignment (MSA) is a classic and powerful technique for sequence analysis in bioinformatics. With the rapid growth of biological datasets, MSA parallelization becomes necessary to keep its running time in an acceptable level. Although there are a lot of work on MSA problems, their approaches are either insufficient or contain some implicit assumptions that limit the generality of usage. First, the information of users' sequences, including the sizes of datasets and the lengths of sequences, can be of arbitrary values and are generally unknown before submitted, which are unfortunately ignored by previous work. Second, the center star strategy is suited for aligning similar sequences. But its first stage, center sequence selection, is highly time-consuming and requires further optimization. Moreover, given the heterogeneous CPU/GPU platform, prior studies consider the MSA parallelization on GPU devices only, making the CPUs idle during the computation. Co-run computation, however, can maximize the utilization of the computing resources by enabling the workload computation on both CPU and GPU simultaneously. This paper presents CMSA, a robust and efficient MSA system for large-scale datasets on the heterogeneous CPU/GPU platform. It performs and optimizes multiple sequence alignment automatically for users' submitted sequences without any assumptions. CMSA adopts the co-run computation model so that both CPU and GPU devices are fully utilized. Moreover, CMSA proposes an improved center star strategy that reduces the time complexity of its center sequence selection process from O(mn 2 ) to O(mn). The experimental results show that CMSA achieves an up to 11× speedup and outperforms the state-of-the-art software. CMSA focuses on the multiple similar RNA/DNA sequence alignment and proposes a novel bitmap based algorithm to improve the center star strategy. We can conclude that harvesting the high performance of modern GPU is a promising approach to

  8. Efficient alignment-free DNA barcode analytics.

    PubMed

    Kuksa, Pavel; Pavlovic, Vladimir

    2009-11-10

    In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient species classification, but also opens possibility for accurate clustering analysis of putative species barcodes and identification of critical within-barcode loci distinguishing barcodes of different sample groups. New alignment-free methods provide highly accurate and fast DNA barcode-based identification and classification of species with substantial improvements in accuracy and speed over state-of-the-art barcode analysis methods. We evaluate our methods on problems of species classification and identification using barcodes, important and relevant analytical tasks in many practical applications (adverse species movement monitoring, sampling surveys for unknown or pathogenic species identification, biodiversity assessment, etc.) On several benchmark barcode datasets, including ACG, Astraptes, Hesperiidae, Fish larvae, and Birds of North America, proposed alignment-free methods considerably improve prediction accuracy compared to prior results. We also observe significant running time improvements over the state-of-the-art methods. Our results show that newly developed alignment-free methods for DNA barcoding can efficiently and with high accuracy identify specimens by examining only few barcode features, resulting in increased scalability and interpretability of current computational approaches to barcoding.

  9. Efficient alignment-free DNA barcode analytics

    PubMed Central

    Kuksa, Pavel; Pavlovic, Vladimir

    2009-01-01

    Background In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient species classification, but also opens possibility for accurate clustering analysis of putative species barcodes and identification of critical within-barcode loci distinguishing barcodes of different sample groups. Results New alignment-free methods provide highly accurate and fast DNA barcode-based identification and classification of species with substantial improvements in accuracy and speed over state-of-the-art barcode analysis methods. We evaluate our methods on problems of species classification and identification using barcodes, important and relevant analytical tasks in many practical applications (adverse species movement monitoring, sampling surveys for unknown or pathogenic species identification, biodiversity assessment, etc.) On several benchmark barcode datasets, including ACG, Astraptes, Hesperiidae, Fish larvae, and Birds of North America, proposed alignment-free methods considerably improve prediction accuracy compared to prior results. We also observe significant running time improvements over the state-of-the-art methods. Conclusion Our results show that newly developed alignment-free methods for DNA barcoding can efficiently and with high accuracy identify specimens by examining only few barcode features, resulting in increased scalability and interpretability of current computational approaches to barcoding. PMID:19900305

  10. An optimized and low-cost FPGA-based DNA sequence alignment--a step towards personal genomics.

    PubMed

    Shah, Hurmat Ali; Hasan, Laiq; Ahmad, Nasir

    2013-01-01

    DNA sequence alignment is a cardinal process in computational biology but also is much expensive computationally when performing through traditional computational platforms like CPU. Of many off the shelf platforms explored for speeding up the computation process, FPGA stands as the best candidate due to its performance per dollar spent and performance per watt. These two advantages make FPGA as the most appropriate choice for realizing the aim of personal genomics. The previous implementation of DNA sequence alignment did not take into consideration the price of the device on which optimization was performed. This paper presents optimization over previous FPGA implementation that increases the overall speed-up achieved as well as the price incurred by the platform that was optimized. The optimizations are (1) The array of processing elements is made to run on change in input value and not on clock, so eliminating the need for tight clock synchronization, (2) the implementation is unrestrained by the size of the sequences to be aligned, (3) the waiting time required for the sequences to load to FPGA is reduced to the minimum possible and (4) an efficient method is devised to store the output matrix that make possible to save the diagonal elements to be used in next pass, in parallel with the computation of output matrix. Implemented on Spartan3 FPGA, this implementation achieved 20 times performance improvement in terms of CUPS over GPP implementation.

  11. Sequence analysis of Leukemia DNA

    NASA Astrophysics Data System (ADS)

    Nacong, Nasria; Lusiyanti, Desy; Irawan, Muhammad. Isa

    2018-03-01

    Cancer is a very deadly disease, one of which is leukemia disease or better known as blood cancer. The cancer cell can be detected by taking DNA in laboratory test. This study focused on local alignment of leukemia and non leukemia data resulting from NCBI in the form of DNA sequences by using Smith-Waterman algorithm. SmithWaterman algorithm was invented by TF Smith and MS Waterman in 1981. These algorithms try to find as much as possible similarity of a pair of sequences, by giving a negative value to the unequal base pair (mismatch), and positive values on the same base pair (match). So that will obtain the maximum positive value as the end of the alignment, and the minimum value as the initial alignment. This study will use sequences of leukemia and 3 sequences of non leukemia.

  12. Fast single-pass alignment and variant calling using sequencing data

    USDA-ARS?s Scientific Manuscript database

    Sequencing research requires efficient computation. Few programs use already known information about DNA variants when aligning sequence data to the reference map. New program findmap.f90 reads the previous variant list before aligning sequence, calling variant alleles, and summing the allele counts...

  13. Simultaneous phylogeny reconstruction and multiple sequence alignment

    PubMed Central

    Yue, Feng; Shi, Jian; Tang, Jijun

    2009-01-01

    Background A phylogeny is the evolutionary history of a group of organisms. To date, sequence data is still the most used data type for phylogenetic reconstruction. Before any sequences can be used for phylogeny reconstruction, they must be aligned, and the quality of the multiple sequence alignment has been shown to affect the quality of the inferred phylogeny. At the same time, all the current multiple sequence alignment programs use a guide tree to produce the alignment and experiments showed that good guide trees can significantly improve the multiple alignment quality. Results We devise a new algorithm to simultaneously align multiple sequences and search for the phylogenetic tree that leads to the best alignment. We also implemented the algorithm as a C program package, which can handle both DNA and protein data and can take simple cost model as well as complex substitution matrices, such as PAM250 or BLOSUM62. The performance of the new method are compared with those from other popular multiple sequence alignment tools, including the widely used programs such as ClustalW and T-Coffee. Experimental results suggest that this method has good performance in terms of both phylogeny accuracy and alignment quality. Conclusion We present an algorithm to align multiple sequences and reconstruct the phylogenies that minimize the alignment score, which is based on an efficient algorithm to solve the median problems for three sequences. Our extensive experiments suggest that this method is very promising and can produce high quality phylogenies and alignments. PMID:19208110

  14. DNA Translator and Aligner: HyperCard utilities to aid phylogenetic analysis of molecules.

    PubMed

    Eernisse, D J

    1992-04-01

    DNA Translator and Aligner are molecular phylogenetics HyperCard stacks for Macintosh computers. They manipulate sequence data to provide graphical gene mapping, conversions, translations and manual multiple-sequence alignment editing. DNA Translator is able to convert documented GenBank or EMBL documented sequences into linearized, rescalable gene maps whose gene sequences are extractable by clicking on the corresponding map button or by selection from a scrolling list. Provided gene maps, complete with extractable sequences, consist of nine metazoan, one yeast, and one ciliate mitochondrial DNAs and three green plant chloroplast DNAs. Single or multiple sequences can be manipulated to aid in phylogenetic analysis. Sequences can be translated between nucleic acids and proteins in either direction with flexible support of alternate genetic codes and ambiguous nucleotide symbols. Multiple aligned sequence output from diverse sources can be converted to Nexus, Hennig86 or PHYLIP format for subsequent phylogenetic analysis. Input or output alignments can be examined with Aligner, a convenient accessory stack included in the DNA Translator package. Aligner is an editor for the manual alignment of up to 100 sequences that toggles between display of matched characters and normal unmatched sequences. DNA Translator also generates graphic displays of amino acid coding and codon usage frequency relative to all other, or only synonymous, codons for approximately 70 select organism-organelle combinations. Codon usage data is compatible with spreadsheet or UWGCG formats for incorporation of additional molecules of interest. The complete package is available via anonymous ftp and is free for non-commercial uses.

  15. BarraCUDA - a fast short read sequence aligner using graphics processing units

    PubMed Central

    2012-01-01

    Background With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http://seqbarracuda.sf.net PMID:22244497

  16. High-throughput sequence alignment using Graphics Processing Units

    PubMed Central

    Schatz, Michael C; Trapnell, Cole; Delcher, Arthur L; Varshney, Amitabh

    2007-01-01

    Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs) in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA) from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU. PMID:18070356

  17. Fast discovery and visualization of conserved regions in DNA sequences using quasi-alignment

    PubMed Central

    2013-01-01

    Background Next Generation Sequencing techniques are producing enormous amounts of biological sequence data and analysis becomes a major computational problem. Currently, most analysis, especially the identification of conserved regions, relies heavily on Multiple Sequence Alignment and its various heuristics such as progressive alignment, whose run time grows with the square of the number and the length of the aligned sequences and requires significant computational resources. In this work, we present a method to efficiently discover regions of high similarity across multiple sequences without performing expensive sequence alignment. The method is based on approximating edit distance between segments of sequences using p-mer frequency counts. Then, efficient high-throughput data stream clustering is used to group highly similar segments into so called quasi-alignments. Quasi-alignments have numerous applications such as identifying species and their taxonomic class from sequences, comparing sequences for similarities, and, as in this paper, discovering conserved regions across related sequences. Results In this paper, we show that quasi-alignments can be used to discover highly similar segments across multiple sequences from related or different genomes efficiently and accurately. Experiments on a large number of unaligned 16S rRNA sequences obtained from the Greengenes database show that the method is able to identify conserved regions which agree with known hypervariable regions in 16S rRNA. Furthermore, the experiments show that the proposed method scales well for large data sets with a run time that grows only linearly with the number and length of sequences, whereas for existing multiple sequence alignment heuristics the run time grows super-linearly. Conclusion Quasi-alignment-based algorithms can detect highly similar regions and conserved areas across multiple sequences. Since the run time is linear and the sequences are converted into a compact clustering

  18. Fast discovery and visualization of conserved regions in DNA sequences using quasi-alignment.

    PubMed

    Nagar, Anurag; Hahsler, Michael

    2013-01-01

    Next Generation Sequencing techniques are producing enormous amounts of biological sequence data and analysis becomes a major computational problem. Currently, most analysis, especially the identification of conserved regions, relies heavily on Multiple Sequence Alignment and its various heuristics such as progressive alignment, whose run time grows with the square of the number and the length of the aligned sequences and requires significant computational resources. In this work, we present a method to efficiently discover regions of high similarity across multiple sequences without performing expensive sequence alignment. The method is based on approximating edit distance between segments of sequences using p-mer frequency counts. Then, efficient high-throughput data stream clustering is used to group highly similar segments into so called quasi-alignments. Quasi-alignments have numerous applications such as identifying species and their taxonomic class from sequences, comparing sequences for similarities, and, as in this paper, discovering conserved regions across related sequences. In this paper, we show that quasi-alignments can be used to discover highly similar segments across multiple sequences from related or different genomes efficiently and accurately. Experiments on a large number of unaligned 16S rRNA sequences obtained from the Greengenes database show that the method is able to identify conserved regions which agree with known hypervariable regions in 16S rRNA. Furthermore, the experiments show that the proposed method scales well for large data sets with a run time that grows only linearly with the number and length of sequences, whereas for existing multiple sequence alignment heuristics the run time grows super-linearly. Quasi-alignment-based algorithms can detect highly similar regions and conserved areas across multiple sequences. Since the run time is linear and the sequences are converted into a compact clustering model, we are able to

  19. MSuPDA: A Memory Efficient Algorithm for Sequence Alignment.

    PubMed

    Khan, Mohammad Ibrahim; Kamal, Md Sarwar; Chowdhury, Linkon

    2016-03-01

    Space complexity is a million dollar question in DNA sequence alignments. In this regard, memory saving under pushdown automata can help to reduce the occupied spaces in computer memory. Our proposed process is that anchor seed (AS) will be selected from given data set of nucleotide base pairs for local sequence alignment. Quick splitting techniques will separate the AS from all the DNA genome segments. Selected AS will be placed to pushdown automata's (PDA) input unit. Whole DNA genome segments will be placed into PDA's stack. AS from input unit will be matched with the DNA genome segments from stack of PDA. Match, mismatch and indel of nucleotides will be popped from the stack under the control unit of pushdown automata. During the POP operation on stack, it will free the memory cell occupied by the nucleotide base pair.

  20. A Novel Partial Sequence Alignment Tool for Finding Large Deletions

    PubMed Central

    Aruk, Taner; Ustek, Duran; Kursun, Olcay

    2012-01-01

    Finding large deletions in genome sequences has become increasingly more useful in bioinformatics, such as in clinical research and diagnosis. Although there are a number of publically available next generation sequencing mapping and sequence alignment programs, these software packages do not correctly align fragments containing deletions larger than one kb. We present a fast alignment software package, BinaryPartialAlign, that can be used by wet lab scientists to find long structural variations in their experiments. For BinaryPartialAlign, we make use of the Smith-Waterman (SW) algorithm with a binary-search-based approach for alignment with large gaps that we called partial alignment. BinaryPartialAlign implementation is compared with other straight-forward applications of SW. Simulation results on mtDNA fragments demonstrate the effectiveness (runtime and accuracy) of the proposed method. PMID:22566777

  1. Widespread recombination in published animal mtDNA sequences.

    PubMed

    Tsaousis, A D; Martin, D P; Ladoukakis, E D; Posada, D; Zouros, E

    2005-04-01

    Mitochondrial DNA (mtDNA) recombination has been observed in several animal species, but there are doubts as to whether it is common or only occurs under special circumstances. Animal mtDNA sequences retrieved from public databases were unambiguously aligned and rigorously tested for evidence of recombination. At least 30 recombination events were detected among 186 alignments examined. Recombinant sequences were found in invertebrates and vertebrates, including primates. It appears that mtDNA recombination may occur regularly in the animal cell but rarely produces new haplotypes because of homoplasmy. Common animal mtDNA recombination would necessitate a reexamination of phylogenetic and biohistorical inference based on the assumption of clonal mtDNA transmission. Recombination may also have an important role in producing and purging mtDNA mutations and thus in mtDNA-based diseases and senescence.

  2. MSuPDA: A memory efficient algorithm for sequence alignment.

    PubMed

    Khan, Mohammad Ibrahim; Kamal, Md Sarwar; Chowdhury, Linkon

    2015-01-16

    Space complexity is a million dollar question in DNA sequence alignments. In this regards, MSuPDA (Memory Saving under Pushdown Automata) can help to reduce the occupied spaces in computer memory. Our proposed process is that Anchor Seed (AS) will be selected from given data set of Nucleotides base pairs for local sequence alignment. Quick Splitting (QS) techniques will separate the Anchor Seed from all the DNA genome segments. Selected Anchor Seed will be placed to pushdown Automata's (PDA) input unit. Whole DNA genome segments will be placed into PDA's stack. Anchor Seed from input unit will be matched with the DNA genome segments from stack of PDA. Whatever matches, mismatches or Indel, of Nucleotides will be POP from the stack under the control of control unit of Pushdown Automata. During the POP operation on stack it will free the memory cell occupied by the Nucleotide base pair.

  3. AlignMe—a membrane protein sequence alignment web server

    PubMed Central

    Stamm, Marcus; Staritzbichler, René; Khafizov, Kamil; Forrest, Lucy R.

    2014-01-01

    We present a web server for pair-wise alignment of membrane protein sequences, using the program AlignMe. The server makes available two operational modes of AlignMe: (i) sequence to sequence alignment, taking two sequences in fasta format as input, combining information about each sequence from multiple sources and producing a pair-wise alignment (PW mode); and (ii) alignment of two multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode). For the PW sequence alignment mode, four different optimized parameter sets are provided, each suited to pairs of sequences with a specific similarity level. These settings utilize different types of inputs: (position-specific) substitution matrices, secondary structure predictions and transmembrane propensities from transmembrane predictions or hydrophobicity scales. In the second (HP) mode, each input multiple sequence alignment is converted into a hydrophobicity profile averaged over the provided set of sequence homologs; the two profiles are then aligned. The HP mode enables qualitative comparison of transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server provides user-friendly access to a set of tools for analysis and comparison of membrane protein sequences. Access is available at http://www.bioinfo.mpg.de/AlignMe PMID:24753425

  4. Coval: Improving Alignment Quality and Variant Calling Accuracy for Next-Generation Sequencing Data

    PubMed Central

    Kosugi, Shunichi; Natsume, Satoshi; Yoshida, Kentaro; MacLean, Daniel; Cano, Liliana; Kamoun, Sophien; Terauchi, Ryohei

    2013-01-01

    Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads that remained in alignments after local realignment and error correction of mismatched reads. The error correction is executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample. We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in ‘targeted’ alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel identification. Coval is available at http://sourceforge.net/projects/coval105/. PMID:24116042

  5. Pairwise Sequence Alignment Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Daily, PNNL

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, amore » novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.« less

  6. Alignment of high-throughput sequencing data inside in-memory databases.

    PubMed

    Firnkorn, Daniel; Knaup-Gregori, Petra; Lorenzo Bermejo, Justo; Ganzinger, Matthias

    2014-01-01

    In times of high-throughput DNA sequencing techniques, performance-capable analysis of DNA sequences is of high importance. Computer supported DNA analysis is still an intensive time-consuming task. In this paper we explore the potential of a new In-Memory database technology by using SAP's High Performance Analytic Appliance (HANA). We focus on read alignment as one of the first steps in DNA sequence analysis. In particular, we examined the widely used Burrows-Wheeler Aligner (BWA) and implemented stored procedures in both, HANA and the free database system MySQL, to compare execution time and memory management. To ensure that the results are comparable, MySQL has been running in memory as well, utilizing its integrated memory engine for database table creation. We implemented stored procedures, containing exact and inexact searching of DNA reads within the reference genome GRCh37. Due to technical restrictions in SAP HANA concerning recursion, the inexact matching problem could not be implemented on this platform. Hence, performance analysis between HANA and MySQL was made by comparing the execution time of the exact search procedures. Here, HANA was approximately 27 times faster than MySQL which means, that there is a high potential within the new In-Memory concepts, leading to further developments of DNA analysis procedures in the future.

  7. CombAlign: a code for generating a one-to-many sequence alignment from a set of pairwise structure-based sequence alignments.

    PubMed

    Zhou, Carol L Ecale

    2015-01-01

    In order to better define regions of similarity among related protein structures, it is useful to identify the residue-residue correspondences among proteins. Few codes exist for constructing a one-to-many multiple sequence alignment derived from a set of structure or sequence alignments, and a need was evident for creating such a tool for combining pairwise structure alignments that would allow for insertion of gaps in the reference structure. This report describes a new Python code, CombAlign, which takes as input a set of pairwise sequence alignments (which may be structure based) and generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA). The use and utility of CombAlign was demonstrated by generating gapped MSSAs using sets of pairwise structure-based sequence alignments between structure models of the matrix protein (VP40) and pre-small/secreted glycoprotein (sGP) of Reston Ebolavirus and the corresponding proteins of several other filoviruses. The gapped MSSAs revealed structure-based residue-residue correspondences, which enabled identification of structurally similar versus differing regions in the Reston proteins compared to each of the other corresponding proteins. CombAlign is a new Python code that generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA) given a set of pairwise sequence alignments (which may be structure based). CombAlign has utility in assisting the user in distinguishing structurally conserved versus divergent regions on a reference protein structure relative to other closely related proteins. CombAlign was developed in Python 2.6, and the source code is available for download from the GitHub code repository.

  8. Ancient DNA sequence revealed by error-correcting codes.

    PubMed

    Brandão, Marcelo M; Spoladore, Larissa; Faria, Luzinete C B; Rocha, Andréa S L; Silva-Filho, Marcio C; Palazzo, Reginaldo

    2015-07-10

    A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code.

  9. Ancient DNA sequence revealed by error-correcting codes

    PubMed Central

    Brandão, Marcelo M.; Spoladore, Larissa; Faria, Luzinete C. B.; Rocha, Andréa S. L.; Silva-Filho, Marcio C.; Palazzo, Reginaldo

    2015-01-01

    A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code. PMID:26159228

  10. Score distributions of gapped multiple sequence alignments down to the low-probability tail

    NASA Astrophysics Data System (ADS)

    Fieth, Pascal; Hartmann, Alexander K.

    2016-08-01

    Assessing the significance of alignment scores of optimally aligned DNA or amino acid sequences can be achieved via the knowledge of the score distribution of random sequences. But this requires obtaining the distribution in the biologically relevant high-scoring region, where the probabilities are exponentially small. For gapless local alignments of infinitely long sequences this distribution is known analytically to follow a Gumbel distribution. Distributions for gapped local alignments and global alignments of finite lengths can only be obtained numerically. To obtain result for the small-probability region, specific statistical mechanics-based rare-event algorithms can be applied. In previous studies, this was achieved for pairwise alignments. They showed that, contrary to results from previous simple sampling studies, strong deviations from the Gumbel distribution occur in case of finite sequence lengths. Here we extend the studies to multiple sequence alignments with gaps, which are much more relevant for practical applications in molecular biology. We study the distributions of scores over a large range of the support, reaching probabilities as small as 10-160, for global and local (sum-of-pair scores) multiple alignments. We find that even after suitable rescaling, eliminating the sequence-length dependence, the distributions for multiple alignment differ from the pairwise alignment case. Furthermore, we also show that the previously discussed Gaussian correction to the Gumbel distribution needs to be refined, also for the case of pairwise alignments.

  11. Improvements on a privacy-protection algorithm for DNA sequences with generalization lattices.

    PubMed

    Li, Guang; Wang, Yadong; Su, Xiaohong

    2012-10-01

    When developing personal DNA databases, there must be an appropriate guarantee of anonymity, which means that the data cannot be related back to individuals. DNA lattice anonymization (DNALA) is a successful method for making personal DNA sequences anonymous. However, it uses time-consuming multiple sequence alignment and a low-accuracy greedy clustering algorithm. Furthermore, DNALA is not an online algorithm, and so it cannot quickly return results when the database is updated. This study improves the DNALA method. Specifically, we replaced the multiple sequence alignment in DNALA with global pairwise sequence alignment to save time, and we designed a hybrid clustering algorithm comprised of a maximum weight matching (MWM)-based algorithm and an online algorithm. The MWM-based algorithm is more accurate than the greedy algorithm in DNALA and has the same time complexity. The online algorithm can process data quickly when the database is updated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. StructAlign, a Program for Alignment of Structures of DNA-Protein Complexes.

    PubMed

    Popov, Ya V; Galitsyna, A A; Alexeevski, A V; Karyagina, A S; Spirin, S A

    2015-11-01

    Comparative analysis of structures of complexes of homologous proteins with DNA is important in the analysis of DNA-protein recognition. Alignment is a necessary stage of the analysis. An alignment is a matching of amino acid residues and nucleotides of one complex to residues and nucleotides of the other. Currently, there are no programs available for aligning structures of DNA-protein complexes. We present the program StructAlign, which should fill this gap. The program inputs a pair of complexes of DNA double helix with proteins and outputs an alignment of DNA chains corresponding to the best spatial fit of the protein chains.

  13. Design Pattern Mining Using Distributed Learning Automata and DNA Sequence Alignment

    PubMed Central

    Esmaeilpour, Mansour; Naderifar, Vahideh; Shukur, Zarina

    2014-01-01

    Context Over the last decade, design patterns have been used extensively to generate reusable solutions to frequently encountered problems in software engineering and object oriented programming. A design pattern is a repeatable software design solution that provides a template for solving various instances of a general problem. Objective This paper describes a new method for pattern mining, isolating design patterns and relationship between them; and a related tool, DLA-DNA for all implemented pattern and all projects used for evaluation. DLA-DNA achieves acceptable precision and recall instead of other evaluated tools based on distributed learning automata (DLA) and deoxyribonucleic acid (DNA) sequences alignment. Method The proposed method mines structural design patterns in the object oriented source code and extracts the strong and weak relationships between them, enabling analyzers and programmers to determine the dependency rate of each object, component, and other section of the code for parameter passing and modular programming. The proposed model can detect design patterns better that available other tools those are Pinot, PTIDEJ and DPJF; and the strengths of their relationships. Results The result demonstrate that whenever the source code is build standard and non-standard, based on the design patterns, then the result of the proposed method is near to DPJF and better that Pinot and PTIDEJ. The proposed model is tested on the several source codes and is compared with other related models and available tools those the results show the precision and recall of the proposed method, averagely 20% and 9.6% are more than Pinot, 27% and 31% are more than PTIDEJ and 3.3% and 2% are more than DPJF respectively. Conclusion The primary idea of the proposed method is organized in two following steps: the first step, elemental design patterns are identified, while at the second step, is composed to recognize actual design patterns. PMID:25243670

  14. Design pattern mining using distributed learning automata and DNA sequence alignment.

    PubMed

    Esmaeilpour, Mansour; Naderifar, Vahideh; Shukur, Zarina

    2014-01-01

    Over the last decade, design patterns have been used extensively to generate reusable solutions to frequently encountered problems in software engineering and object oriented programming. A design pattern is a repeatable software design solution that provides a template for solving various instances of a general problem. This paper describes a new method for pattern mining, isolating design patterns and relationship between them; and a related tool, DLA-DNA for all implemented pattern and all projects used for evaluation. DLA-DNA achieves acceptable precision and recall instead of other evaluated tools based on distributed learning automata (DLA) and deoxyribonucleic acid (DNA) sequences alignment. The proposed method mines structural design patterns in the object oriented source code and extracts the strong and weak relationships between them, enabling analyzers and programmers to determine the dependency rate of each object, component, and other section of the code for parameter passing and modular programming. The proposed model can detect design patterns better that available other tools those are Pinot, PTIDEJ and DPJF; and the strengths of their relationships. The result demonstrate that whenever the source code is build standard and non-standard, based on the design patterns, then the result of the proposed method is near to DPJF and better that Pinot and PTIDEJ. The proposed model is tested on the several source codes and is compared with other related models and available tools those the results show the precision and recall of the proposed method, averagely 20% and 9.6% are more than Pinot, 27% and 31% are more than PTIDEJ and 3.3% and 2% are more than DPJF respectively. The primary idea of the proposed method is organized in two following steps: the first step, elemental design patterns are identified, while at the second step, is composed to recognize actual design patterns.

  15. Viewing multiple sequence alignments with the JavaScript Sequence Alignment Viewer (JSAV)

    PubMed Central

    Martin, Andrew C. R.

    2014-01-01

    The JavaScript Sequence Alignment Viewer (JSAV) is designed as a simple-to-use JavaScript component for displaying sequence alignments on web pages. The display of sequences is highly configurable with options to allow alternative coloring schemes, sorting of sequences and ’dotifying’ repeated amino acids. An option is also available to submit selected sequences to another web site, or to other JavaScript code. JSAV is implemented purely in JavaScript making use of the JQuery and JQuery-UI libraries. It does not use any HTML5-specific options to help with browser compatibility. The code is documented using JSDOC and is available from http://www.bioinf.org.uk/software/jsav/. PMID:25653836

  16. Viewing multiple sequence alignments with the JavaScript Sequence Alignment Viewer (JSAV).

    PubMed

    Martin, Andrew C R

    2014-01-01

    The JavaScript Sequence Alignment Viewer (JSAV) is designed as a simple-to-use JavaScript component for displaying sequence alignments on web pages. The display of sequences is highly configurable with options to allow alternative coloring schemes, sorting of sequences and 'dotifying' repeated amino acids. An option is also available to submit selected sequences to another web site, or to other JavaScript code. JSAV is implemented purely in JavaScript making use of the JQuery and JQuery-UI libraries. It does not use any HTML5-specific options to help with browser compatibility. The code is documented using JSDOC and is available from http://www.bioinf.org.uk/software/jsav/.

  17. Designing universal primers for the isolation of DNA sequences encoding Proanthocyanidins biosynthetic enzymes in Crataegus aronia

    PubMed Central

    2012-01-01

    Background Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs) and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Findings Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. Conclusion To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants. PMID:22883984

  18. Designing universal primers for the isolation of DNA sequences encoding Proanthocyanidins biosynthetic enzymes in Crataegus aronia.

    PubMed

    Zuiter, Afnan Saeid; Sawwan, Jammal; Al Abdallat, Ayed

    2012-08-10

    Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs) and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants.

  19. Extracting DNA words based on the sequence features: non-uniform distribution and integrity.

    PubMed

    Li, Zhi; Cao, Hongyan; Cui, Yuehua; Zhang, Yanbo

    2016-01-25

    DNA sequence can be viewed as an unknown language with words as its functional units. Given that most sequence alignment algorithms such as the motif discovery algorithms depend on the quality of background information about sequences, it is necessary to develop an ab initio algorithm for extracting the "words" based only on the DNA sequences. We considered that non-uniform distribution and integrity were two important features of a word, based on which we developed an ab initio algorithm to extract "DNA words" that have potential functional meaning. A Kolmogorov-Smirnov test was used for consistency test of uniform distribution of DNA sequences, and the integrity was judged by the sequence and position alignment. Two random base sequences were adopted as negative control, and an English book was used as positive control to verify our algorithm. We applied our algorithm to the genomes of Saccharomyces cerevisiae and 10 strains of Escherichia coli to show the utility of the methods. The results provide strong evidences that the algorithm is a promising tool for ab initio building a DNA dictionary. Our method provides a fast way for large scale screening of important DNA elements and offers potential insights into the understanding of a genome.

  20. Palindromic Sequence Artifacts Generated during Next Generation Sequencing Library Preparation from Historic and Ancient DNA

    PubMed Central

    Star, Bastiaan; Nederbragt, Alexander J.; Hansen, Marianne H. S.; Skage, Morten; Gilfillan, Gregor D.; Bradbury, Ian R.; Pampoulie, Christophe; Stenseth, Nils Chr; Jakobsen, Kjetill S.; Jentoft, Sissel

    2014-01-01

    Degradation-specific processes and variation in laboratory protocols can bias the DNA sequence composition from samples of ancient or historic origin. Here, we identify a novel artifact in sequences from historic samples of Atlantic cod (Gadus morhua), which forms interrupted palindromes consisting of reverse complementary sequence at the 5′ and 3′-ends of sequencing reads. The palindromic sequences themselves have specific properties – the bases at the 5′-end align well to the reference genome, whereas extensive misalignments exists among the bases at the terminal 3′-end. The terminal 3′ bases are artificial extensions likely caused by the occurrence of hairpin loops in single stranded DNA (ssDNA), which can be ligated and amplified in particular library creation protocols. We propose that such hairpin loops allow the inclusion of erroneous nucleotides, specifically at the 3′-end of DNA strands, with the 5′-end of the same strand providing the template. We also find these palindromes in previously published ancient DNA (aDNA) datasets, albeit at varying and substantially lower frequencies. This artifact can negatively affect the yield of endogenous DNA in these types of samples and introduces sequence bias. PMID:24608104

  1. Multiple alignment-free sequence comparison

    PubMed Central

    Ren, Jie; Song, Kai; Sun, Fengzhu; Deng, Minghua; Reinert, Gesine

    2013-01-01

    Motivation: Recently, a range of new statistics have become available for the alignment-free comparison of two sequences based on k-tuple word content. Here, we extend these statistics to the simultaneous comparison of more than two sequences. Our suite of statistics contains, first, and , extensions of statistics for pairwise comparison of the joint k-tuple content of all the sequences, and second, , and , averages of sums of pairwise comparison statistics. The two tasks we consider are, first, to identify sequences that are similar to a set of target sequences, and, second, to measure the similarity within a set of sequences. Results: Our investigation uses both simulated data as well as cis-regulatory module data where the task is to identify cis-regulatory modules with similar transcription factor binding sites. We find that although for real data, all of our statistics show a similar performance, on simulated data the Shepp-type statistics are in some instances outperformed by star-type statistics. The multiple alignment-free statistics are more sensitive to contamination in the data than the pairwise average statistics. Availability: Our implementation of the five statistics is available as R package named ‘multiAlignFree’ at be http://www-rcf.usc.edu/∼fsun/Programs/multiAlignFree/multiAlignFreemain.html. Contact: reinert@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23990418

  2. Googling DNA sequences on the World Wide Web.

    PubMed

    Hajibabaei, Mehrdad; Singer, Gregory A C

    2009-11-10

    New web-based technologies provide an excellent opportunity for sharing and accessing information and using web as a platform for interaction and collaboration. Although several specialized tools are available for analyzing DNA sequence information, conventional web-based tools have not been utilized for bioinformatics applications. We have developed a novel algorithm and implemented it for searching species-specific genomic sequences, DNA barcodes, by using popular web-based methods such as Google. We developed an alignment independent character based algorithm based on dividing a sequence library (DNA barcodes) and query sequence to words. The actual search is conducted by conventional search tools such as freely available Google Desktop Search. We implemented our algorithm in two exemplar packages. We developed pre and post-processing software to provide customized input and output services, respectively. Our analysis of all publicly available DNA barcode sequences shows a high accuracy as well as rapid results. Our method makes use of conventional web-based technologies for specialized genetic data. It provides a robust and efficient solution for sequence search on the web. The integration of our search method for large-scale sequence libraries such as DNA barcodes provides an excellent web-based tool for accessing this information and linking it to other available categories of information on the web.

  3. Accurate multiple sequence-structure alignment of RNA sequences using combinatorial optimization.

    PubMed

    Bauer, Markus; Klau, Gunnar W; Reinert, Knut

    2007-07-27

    The discovery of functional non-coding RNA sequences has led to an increasing interest in algorithms related to RNA analysis. Traditional sequence alignment algorithms, however, fail at computing reliable alignments of low-homology RNA sequences. The spatial conformation of RNA sequences largely determines their function, and therefore RNA alignment algorithms have to take structural information into account. We present a graph-based representation for sequence-structure alignments, which we model as an integer linear program (ILP). We sketch how we compute an optimal or near-optimal solution to the ILP using methods from combinatorial optimization, and present results on a recently published benchmark set for RNA alignments. The implementation of our algorithm yields better alignments in terms of two published scores than the other programs that we tested: This is especially the case with an increasing number of input sequences. Our program LARA is freely available for academic purposes from http://www.planet-lisa.net.

  4. The twilight zone of cis element alignments.

    PubMed

    Sebastian, Alvaro; Contreras-Moreira, Bruno

    2013-02-01

    Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein-DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein-DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments.

  5. Heuristics for multiobjective multiple sequence alignment.

    PubMed

    Abbasi, Maryam; Paquete, Luís; Pereira, Francisco B

    2016-07-15

    Aligning multiple sequences arises in many tasks in Bioinformatics. However, the alignments produced by the current software packages are highly dependent on the parameters setting, such as the relative importance of opening gaps with respect to the increase of similarity. Choosing only one parameter setting may provide an undesirable bias in further steps of the analysis and give too simplistic interpretations. In this work, we reformulate multiple sequence alignment from a multiobjective point of view. The goal is to generate several sequence alignments that represent a trade-off between maximizing the substitution score and minimizing the number of indels/gaps in the sum-of-pairs score function. This trade-off gives to the practitioner further information about the similarity of the sequences, from which she could analyse and choose the most plausible alignment. We introduce several heuristic approaches, based on local search procedures, that compute a set of sequence alignments, which are representative of the trade-off between the two objectives (substitution score and indels). Several algorithm design options are discussed and analysed, with particular emphasis on the influence of the starting alignment and neighborhood search definitions on the overall performance. A perturbation technique is proposed to improve the local search, which provides a wide range of high-quality alignments. The proposed approach is tested experimentally on a wide range of instances. We performed several experiments with sequences obtained from the benchmark database BAliBASE 3.0. To evaluate the quality of the results, we calculate the hypervolume indicator of the set of score vectors returned by the algorithms. The results obtained allow us to identify reasonably good choices of parameters for our approach. Further, we compared our method in terms of correctly aligned pairs ratio and columns correctly aligned ratio with respect to reference alignments. Experimental results show

  6. Paging through history: parchment as a reservoir of ancient DNA for next generation sequencing

    PubMed Central

    Teasdale, M. D.; van Doorn, N. L.; Fiddyment, S.; Webb, C. C.; O'Connor, T.; Hofreiter, M.; Collins, M. J.; Bradley, D. G.

    2015-01-01

    Parchment represents an invaluable cultural reservoir. Retrieving an additional layer of information from these abundant, dated livestock-skins via the use of ancient DNA (aDNA) sequencing has been mooted by a number of researchers. However, prior PCR-based work has indicated that this may be challenged by cross-individual and cross-species contamination, perhaps from the bulk parchment preparation process. Here we apply next generation sequencing to two parchments of seventeenth and eighteenth century northern English provenance. Following alignment to the published sheep, goat, cow and human genomes, it is clear that the only genome displaying substantial unique homology is sheep and this species identification is confirmed by collagen peptide mass spectrometry. Only 4% of sequence reads align preferentially to a different species indicating low contamination across species. Moreover, mitochondrial DNA sequences suggest an upper bound of contamination at 5%. Over 45% of reads aligned to the sheep genome, and even this limited sequencing exercise yield 9 and 7% of each sampled sheep genome post filtering, allowing the mapping of genetic affinity to modern British sheep breeds. We conclude that parchment represents an excellent substrate for genomic analyses of historical livestock. PMID:25487331

  7. The twilight zone of cis element alignments

    PubMed Central

    Sebastian, Alvaro; Contreras-Moreira, Bruno

    2013-01-01

    Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein–DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein–DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments. PMID:23268451

  8. Interpreting the biological relevance of bioinformatic analyses with T-DNA sequence for protein allergenicity.

    PubMed

    Harper, B; McClain, S; Ganko, E W

    2012-08-01

    Global regulatory agencies require bioinformatic sequence analysis as part of their safety evaluation for transgenic crops. Analysis typically focuses on encoded proteins and adjacent endogenous flanking sequences. Recently, regulatory expectations have expanded to include all reading frames of the inserted DNA. The intent is to provide biologically relevant results that can be used in the overall assessment of safety. This paper evaluates the relevance of assessing the allergenic potential of all DNA reading frames found in common food genes using methods considered for the analysis of T-DNA sequences used in transgenic crops. FASTA and BLASTX algorithms were used to compare genes from maize, rice, soybean, cucumber, melon, watermelon, and tomato using international regulatory guidance. Results show that BLASTX for maize yielded 7254 alignments that exceeded allergen similarity thresholds and 210,772 alignments that matched eight or more consecutive amino acids with an allergen; other crops produced similar results. This analysis suggests that each nontransgenic crop has a much greater potential for allergenic risk than what has been observed clinically. We demonstrate that a meaningful safety assessment is unlikely to be provided by using methods with inherently high frequencies of false positive alignments when broadly applied to all reading frames of DNA sequence. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. QUASAR--scoring and ranking of sequence-structure alignments.

    PubMed

    Birzele, Fabian; Gewehr, Jan E; Zimmer, Ralf

    2005-12-15

    Sequence-structure alignments are a common means for protein structure prediction in the fields of fold recognition and homology modeling, and there is a broad variety of programs that provide such alignments based on sequence similarity, secondary structure or contact potentials. Nevertheless, finding the best sequence-structure alignment in a pool of alignments remains a difficult problem. QUASAR (quality of sequence-structure alignments ranking) provides a unifying framework for scoring sequence-structure alignments that aids finding well-performing combinations of well-known and custom-made scoring schemes. Those scoring functions can be benchmarked against widely accepted quality scores like MaxSub, TMScore, Touch and APDB, thus enabling users to test their own alignment scores against 'standard-of-truth' structure-based scores. Furthermore, individual score combinations can be optimized with respect to benchmark sets based on known structural relationships using QUASAR's in-built optimization routines.

  10. Spatio-temporal alignment of pedobarographic image sequences.

    PubMed

    Oliveira, Francisco P M; Sousa, Andreia; Santos, Rubim; Tavares, João Manuel R S

    2011-07-01

    This article presents a methodology to align plantar pressure image sequences simultaneously in time and space. The spatial position and orientation of a foot in a sequence are changed to match the foot represented in a second sequence. Simultaneously with the spatial alignment, the temporal scale of the first sequence is transformed with the aim of synchronizing the two input footsteps. Consequently, the spatial correspondence of the foot regions along the sequences as well as the temporal synchronizing is automatically attained, making the study easier and more straightforward. In terms of spatial alignment, the methodology can use one of four possible geometric transformation models: rigid, similarity, affine, or projective. In the temporal alignment, a polynomial transformation up to the 4th degree can be adopted in order to model linear and curved time behaviors. Suitable geometric and temporal transformations are found by minimizing the mean squared error (MSE) between the input sequences. The methodology was tested on a set of real image sequences acquired from a common pedobarographic device. When used in experimental cases generated by applying geometric and temporal control transformations, the methodology revealed high accuracy. In addition, the intra-subject alignment tests from real plantar pressure image sequences showed that the curved temporal models produced better MSE results (P < 0.001) than the linear temporal model. This article represents an important step forward in the alignment of pedobarographic image data, since previous methods can only be applied on static images.

  11. Alignment-Annotator web server: rendering and annotating sequence alignments

    PubMed Central

    Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas

    2014-01-01

    Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. Availability: http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. PMID:24813445

  12. MANGO: a new approach to multiple sequence alignment.

    PubMed

    Zhang, Zefeng; Lin, Hao; Li, Ming

    2007-01-01

    Multiple sequence alignment is a classical and challenging task for biological sequence analysis. The problem is NP-hard. The full dynamic programming takes too much time. The progressive alignment heuristics adopted by most state of the art multiple sequence alignment programs suffer from the 'once a gap, always a gap' phenomenon. Is there a radically new way to do multiple sequence alignment? This paper introduces a novel and orthogonal multiple sequence alignment method, using multiple optimized spaced seeds and new algorithms to handle these seeds efficiently. Our new algorithm processes information of all sequences as a whole, avoiding problems caused by the popular progressive approaches. Because the optimized spaced seeds are provably significantly more sensitive than the consecutive k-mers, the new approach promises to be more accurate and reliable. To validate our new approach, we have implemented MANGO: Multiple Alignment with N Gapped Oligos. Experiments were carried out on large 16S RNA benchmarks showing that MANGO compares favorably, in both accuracy and speed, against state-of-art multiple sequence alignment methods, including ClustalW 1.83, MUSCLE 3.6, MAFFT 5.861, Prob-ConsRNA 1.11, Dialign 2.2.1, DIALIGN-T 0.2.1, T-Coffee 4.85, POA 2.0 and Kalign 2.0.

  13. Comparative modeling without implicit sequence alignments.

    PubMed

    Kolinski, Andrzej; Gront, Dominik

    2007-10-01

    The number of known protein sequences is about thousand times larger than the number of experimentally solved 3D structures. For more than half of the protein sequences a close or distant structural analog could be identified. The key starting point in a classical comparative modeling is to generate the best possible sequence alignment with a template or templates. With decreasing sequence similarity, the number of errors in the alignments increases and these errors are the main causes of the decreasing accuracy of the molecular models generated. Here we propose a new approach to comparative modeling, which does not require the implicit alignment - the model building phase explores geometric, evolutionary and physical properties of a template (or templates). The proposed method requires prior identification of a template, although the initial sequence alignment is ignored. The model is built using a very efficient reduced representation search engine CABS to find the best possible superposition of the query protein onto the template represented as a 3D multi-featured scaffold. The criteria used include: sequence similarity, predicted secondary structure consistency, local geometric features and hydrophobicity profile. For more difficult cases, the new method qualitatively outperforms existing schemes of comparative modeling. The algorithm unifies de novo modeling, 3D threading and sequence-based methods. The main idea is general and could be easily combined with other efficient modeling tools as Rosetta, UNRES and others.

  14. ProfileGrids: a sequence alignment visualization paradigm that avoids the limitations of Sequence Logos.

    PubMed

    Roca, Alberto I

    2014-01-01

    The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org.

  15. Dna Sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  16. Sequence Diversity Diagram for comparative analysis of multiple sequence alignments.

    PubMed

    Sakai, Ryo; Aerts, Jan

    2014-01-01

    The sequence logo is a graphical representation of a set of aligned sequences, commonly used to depict conservation of amino acid or nucleotide sequences. Although it effectively communicates the amount of information present at every position, this visual representation falls short when the domain task is to compare between two or more sets of aligned sequences. We present a new visual presentation called a Sequence Diversity Diagram and validate our design choices with a case study. Our software was developed using the open-source program called Processing. It loads multiple sequence alignment FASTA files and a configuration file, which can be modified as needed to change the visualization. The redesigned figure improves on the visual comparison of two or more sets, and it additionally encodes information on sequential position conservation. In our case study of the adenylate kinase lid domain, the Sequence Diversity Diagram reveals unexpected patterns and new insights, for example the identification of subgroups within the protein subfamily. Our future work will integrate this visual encoding into interactive visualization tools to support higher level data exploration tasks.

  17. ProfileGrids: a sequence alignment visualization paradigm that avoids the limitations of Sequence Logos

    PubMed Central

    2014-01-01

    Background The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. Results The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. Conclusions The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org. PMID:25237393

  18. Alignment-Annotator web server: rendering and annotating sequence alignments.

    PubMed

    Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas

    2014-07-01

    Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. DNA Barcode Sequence Identification Incorporating Taxonomic Hierarchy and within Taxon Variability

    PubMed Central

    Little, Damon P.

    2011-01-01

    For DNA barcoding to succeed as a scientific endeavor an accurate and expeditious query sequence identification method is needed. Although a global multiple–sequence alignment can be generated for some barcoding markers (e.g. COI, rbcL), not all barcoding markers are as structurally conserved (e.g. matK). Thus, algorithms that depend on global multiple–sequence alignments are not universally applicable. Some sequence identification methods that use local pairwise alignments (e.g. BLAST) are unable to accurately differentiate between highly similar sequences and are not designed to cope with hierarchic phylogenetic relationships or within taxon variability. Here, I present a novel alignment–free sequence identification algorithm–BRONX–that accounts for observed within taxon variability and hierarchic relationships among taxa. BRONX identifies short variable segments and corresponding invariant flanking regions in reference sequences. These flanking regions are used to score variable regions in the query sequence without the production of a global multiple–sequence alignment. By incorporating observed within taxon variability into the scoring procedure, misidentifications arising from shared alleles/haplotypes are minimized. An explicit treatment of more inclusive terminals allows for separate identifications to be made for each taxonomic level and/or for user–defined terminals. BRONX performs better than all other methods when there is imperfect overlap between query and reference sequences (e.g. mini–barcode queries against a full–length barcode database). BRONX consistently produced better identifications at the genus–level for all query types. PMID:21857897

  20. Are special read alignment strategies necessary and cost-effective when handling sequencing reads from patient-derived tumor xenografts?

    PubMed

    Tso, Kai-Yuen; Lee, Sau Dan; Lo, Kwok-Wai; Yip, Kevin Y

    2014-12-23

    Patient-derived tumor xenografts in mice are widely used in cancer research and have become important in developing personalized therapies. When these xenografts are subject to DNA sequencing, the samples could contain various amounts of mouse DNA. It has been unclear how the mouse reads would affect data analyses. We conducted comprehensive simulations to compare three alignment strategies at different mutation rates, read lengths, sequencing error rates, human-mouse mixing ratios and sequenced regions. We also sequenced a nasopharyngeal carcinoma xenograft and a cell line to test how the strategies work on real data. We found the "filtering" and "combined reference" strategies performed better than aligning reads directly to human reference in terms of alignment and variant calling accuracies. The combined reference strategy was particularly good at reducing false negative variants calls without significantly increasing the false positive rate. In some scenarios the performance gain of these two special handling strategies was too small for special handling to be cost-effective, but it was found crucial when false non-synonymous SNVs should be minimized, especially in exome sequencing. Our study systematically analyzes the effects of mouse contamination in the sequencing data of human-in-mouse xenografts. Our findings provide information for designing data analysis pipelines for these data.

  1. CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment

    PubMed Central

    Manavski, Svetlin A; Valle, Giorgio

    2008-01-01

    Background Searching for similarities in protein and DNA databases has become a routine procedure in Molecular Biology. The Smith-Waterman algorithm has been available for more than 25 years. It is based on a dynamic programming approach that explores all the possible alignments between two sequences; as a result it returns the optimal local alignment. Unfortunately, the computational cost is very high, requiring a number of operations proportional to the product of the length of two sequences. Furthermore, the exponential growth of protein and DNA databases makes the Smith-Waterman algorithm unrealistic for searching similarities in large sets of sequences. For these reasons heuristic approaches such as those implemented in FASTA and BLAST tend to be preferred, allowing faster execution times at the cost of reduced sensitivity. The main motivation of our work is to exploit the huge computational power of commonly available graphic cards, to develop high performance solutions for sequence alignment. Results In this paper we present what we believe is the fastest solution of the exact Smith-Waterman algorithm running on commodity hardware. It is implemented in the recently released CUDA programming environment by NVidia. CUDA allows direct access to the hardware primitives of the last-generation Graphics Processing Units (GPU) G80. Speeds of more than 3.5 GCUPS (Giga Cell Updates Per Second) are achieved on a workstation running two GeForce 8800 GTX. Exhaustive tests have been done to compare our implementation to SSEARCH and BLAST, running on a 3 GHz Intel Pentium IV processor. Our solution was also compared to a recently published GPU implementation and to a Single Instruction Multiple Data (SIMD) solution. These tests show that our implementation performs from 2 to 30 times faster than any other previous attempt available on commodity hardware. Conclusions The results show that graphic cards are now sufficiently advanced to be used as efficient hardware

  2. Iterative refinement of structure-based sequence alignments by Seed Extension

    PubMed Central

    Kim, Changhoon; Tai, Chin-Hsien; Lee, Byungkook

    2009-01-01

    Background Accurate sequence alignment is required in many bioinformatics applications but, when sequence similarity is low, it is difficult to obtain accurate alignments based on sequence similarity alone. The accuracy improves when the structures are available, but current structure-based sequence alignment procedures still mis-align substantial numbers of residues. In order to correct such errors, we previously explored the possibility of replacing the residue-based dynamic programming algorithm in structure alignment procedures with the Seed Extension algorithm, which does not use a gap penalty. Here, we describe a new procedure called RSE (Refinement with Seed Extension) that iteratively refines a structure-based sequence alignment. Results RSE uses SE (Seed Extension) in its core, which is an algorithm that we reported recently for obtaining a sequence alignment from two superimposed structures. The RSE procedure was evaluated by comparing the correctly aligned fractions of residues before and after the refinement of the structure-based sequence alignments produced by popular programs. CE, DaliLite, FAST, LOCK2, MATRAS, MATT, TM-align, SHEBA and VAST were included in this analysis and the NCBI's CDD root node set was used as the reference alignments. RSE improved the average accuracy of sequence alignments for all programs tested when no shift error was allowed. The amount of improvement varied depending on the program. The average improvements were small for DaliLite and MATRAS but about 5% for CE and VAST. More substantial improvements have been seen in many individual cases. The additional computation times required for the refinements were negligible compared to the times taken by the structure alignment programs. Conclusion RSE is a computationally inexpensive way of improving the accuracy of a structure-based sequence alignment. It can be used as a standalone procedure following a regular structure-based sequence alignment or to replace the traditional

  3. Spreadsheet macros for coloring sequence alignments.

    PubMed

    Haygood, M G

    1993-12-01

    This article describes a set of Microsoft Excel macros designed to color amino acid and nucleotide sequence alignments for review and preparation of visual aids. The colored alignments can then be modified to emphasize features of interest. Procedures for importing and coloring sequences are described. The macro file adds a new menu to the menu bar containing sequence-related commands to enable users unfamiliar with Excel to use the macros more readily. The macros were designed for use with Macintosh computers but will also run with the DOS version of Excel.

  4. Sequence and Structure Dependent DNA-DNA Interactions

    NASA Astrophysics Data System (ADS)

    Kopchick, Benjamin; Qiu, Xiangyun

    Molecular forces between dsDNA strands are largely dominated by electrostatics and have been extensively studied. Quantitative knowledge has been accumulated on how DNA-DNA interactions are modulated by varied biological constituents such as ions, cationic ligands, and proteins. Despite its central role in biology, the sequence of DNA has not received substantial attention and ``random'' DNA sequences are typically used in biophysical studies. However, ~50% of human genome is composed of non-random-sequence DNAs, particularly repetitive sequences. Furthermore, covalent modifications of DNA such as methylation play key roles in gene functions. Such DNAs with specific sequences or modifications often take on structures other than the canonical B-form. Here we present series of quantitative measurements of the DNA-DNA forces with the osmotic stress method on different DNA sequences, from short repeats to the most frequent sequences in genome, and to modifications such as bromination and methylation. We observe peculiar behaviors that appear to be strongly correlated with the incurred structural changes. We speculate the causalities in terms of the differences in hydration shell and DNA surface structures.

  5. G-Anchor: a novel approach for whole-genome comparative mapping utilizing evolutionary conserved DNA sequences.

    PubMed

    Lenis, Vasileios Panagiotis E; Swain, Martin; Larkin, Denis M

    2018-05-01

    Cross-species whole-genome sequence alignment is a critical first step for genome comparative analyses, ranging from the detection of sequence variants to studies of chromosome evolution. Animal genomes are large and complex, and whole-genome alignment is a computationally intense process, requiring expensive high-performance computing systems due to the need to explore extensive local alignments. With hundreds of sequenced animal genomes available from multiple projects, there is an increasing demand for genome comparative analyses. Here, we introduce G-Anchor, a new, fast, and efficient pipeline that uses a strictly limited but highly effective set of local sequence alignments to anchor (or map) an animal genome to another species' reference genome. G-Anchor makes novel use of a databank of highly conserved DNA sequence elements. We demonstrate how these elements may be aligned to a pair of genomes, creating anchors. These anchors enable the rapid mapping of scaffolds from a de novo assembled genome to chromosome assemblies of a reference species. Our results demonstrate that G-Anchor can successfully anchor a vertebrate genome onto a phylogenetically related reference species genome using a desktop or laptop computer within a few hours and with comparable accuracy to that achieved by a highly accurate whole-genome alignment tool such as LASTZ. G-Anchor thus makes whole-genome comparisons accessible to researchers with limited computational resources. G-Anchor is a ready-to-use tool for anchoring a pair of vertebrate genomes. It may be used with large genomes that contain a significant fraction of evolutionally conserved DNA sequences and that are not highly repetitive, polypoid, or excessively fragmented. G-Anchor is not a substitute for whole-genome aligning software but can be used for fast and accurate initial genome comparisons. G-Anchor is freely available and a ready-to-use tool for the pairwise comparison of two genomes.

  6. A novel approach to multiple sequence alignment using hadoop data grids.

    PubMed

    Sudha Sadasivam, G; Baktavatchalam, G

    2010-01-01

    Multiple alignment of protein sequences helps to determine evolutionary linkage and to predict molecular structures. The factors to be considered while aligning multiple sequences are speed and accuracy of alignment. Although dynamic programming algorithms produce accurate alignments, they are computation intensive. In this paper we propose a time efficient approach to sequence alignment that also produces quality alignment. The dynamic nature of the algorithm coupled with data and computational parallelism of hadoop data grids improves the accuracy and speed of sequence alignment. The principle of block splitting in hadoop coupled with its scalability facilitates alignment of very large sequences.

  7. Training alignment parameters for arbitrary sequencers with LAST-TRAIN.

    PubMed

    Hamada, Michiaki; Ono, Yukiteru; Asai, Kiyoshi; Frith, Martin C

    2017-03-15

    LAST-TRAIN improves sequence alignment accuracy by inferring substitution and gap scores that fit the frequencies of substitutions, insertions, and deletions in a given dataset. We have applied it to mapping DNA reads from IonTorrent and PacBio RS, and we show that it reduces reference bias for Oxford Nanopore reads. the source code is freely available at http://last.cbrc.jp/. mhamada@waseda.jp or mcfrith@edu.k.u-tokyo.ac.jp. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  8. Robust temporal alignment of multimodal cardiac sequences

    NASA Astrophysics Data System (ADS)

    Perissinotto, Andrea; Queirós, Sandro; Morais, Pedro; Baptista, Maria J.; Monaghan, Mark; Rodrigues, Nuno F.; D'hooge, Jan; Vilaça, João. L.; Barbosa, Daniel

    2015-03-01

    Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized cross-correlation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates different temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1.6 +/- 1.9% and 4.0 +/- 4.2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.

  9. AlignMiner: a Web-based tool for detection of divergent regions in multiple sequence alignments of conserved sequences

    PubMed Central

    2010-01-01

    Background Multiple sequence alignments are used to study gene or protein function, phylogenetic relations, genome evolution hypotheses and even gene polymorphisms. Virtually without exception, all available tools focus on conserved segments or residues. Small divergent regions, however, are biologically important for specific quantitative polymerase chain reaction, genotyping, molecular markers and preparation of specific antibodies, and yet have received little attention. As a consequence, they must be selected empirically by the researcher. AlignMiner has been developed to fill this gap in bioinformatic analyses. Results AlignMiner is a Web-based application for detection of conserved and divergent regions in alignments of conserved sequences, focusing particularly on divergence. It accepts alignments (protein or nucleic acid) obtained using any of a variety of algorithms, which does not appear to have a significant impact on the final results. AlignMiner uses different scoring methods for assessing conserved/divergent regions, Entropy being the method that provides the highest number of regions with the greatest length, and Weighted being the most restrictive. Conserved/divergent regions can be generated either with respect to the consensus sequence or to one master sequence. The resulting data are presented in a graphical interface developed in AJAX, which provides remarkable user interaction capabilities. Users do not need to wait until execution is complete and can.even inspect their results on a different computer. Data can be downloaded onto a user disk, in standard formats. In silico and experimental proof-of-concept cases have shown that AlignMiner can be successfully used to designing specific polymerase chain reaction primers as well as potential epitopes for antibodies. Primer design is assisted by a module that deploys several oligonucleotide parameters for designing primers "on the fly". Conclusions AlignMiner can be used to reliably detect

  10. High-speed multiple sequence alignment on a reconfigurable platform.

    PubMed

    Oliver, Tim; Schmidt, Bertil; Maskell, Douglas; Nathan, Darran; Clemens, Ralf

    2006-01-01

    Progressive alignment is a widely used approach to compute multiple sequence alignments (MSAs). However, aligning several hundred sequences by popular progressive alignment tools requires hours on sequential computers. Due to the rapid growth of sequence databases biologists have to compute MSAs in a far shorter time. In this paper we present a new approach to MSA on reconfigurable hardware platforms to gain high performance at low cost. We have constructed a linear systolic array to perform pairwise sequence distance computations using dynamic programming. This results in an implementation with significant runtime savings on a standard FPGA.

  11. Sequence Alignment to Predict Across Species Susceptibility ...

    EPA Pesticide Factsheets

    Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to simplify, streamline, and quantitatively assess protein sequence/structural similarity across taxonomic groups as a means to predict relative intrinsic susceptibility. The intent of the tool is to allow for evaluation of any potential protein target, so it is amenable to variable degrees of protein characterization, depending on available information about the chemical/protein interaction and the molecular target itself. To allow for flexibility in the analysis, a layered strategy was adopted for the tool. The first level of the SeqAPASS analysis compares primary amino acid sequences to a query sequence, calculating a metric for sequence similarity (including detection of candidate orthologs), the second level evaluates sequence similarity within selected domains (e.g., ligand-binding domain, DNA binding domain), and the third level of analysis compares individual amino acid residue positions identified as being of importance for protein conformation and/or ligand binding upon chemical perturbation. Each level of the SeqAPASS analysis provides increasing evidence to apply toward rapid, screening-level assessments of probable cross species susceptibility. Such analyses can support prioritization of chemicals for further ev

  12. Using structure to explore the sequence alignment space of remote homologs.

    PubMed

    Kuziemko, Andrew; Honig, Barry; Petrey, Donald

    2011-10-01

    Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP) are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.

  13. PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences

    PubMed Central

    Mirarab, Siavash; Nguyen, Nam; Guo, Sheng; Wang, Li-San; Kim, Junhyong

    2015-01-01

    Abstract We introduce PASTA, a new multiple sequence alignment algorithm. PASTA uses a new technique to produce an alignment given a guide tree that enables it to be both highly scalable and very accurate. We present a study on biological and simulated data with up to 200,000 sequences, showing that PASTA produces highly accurate alignments, improving on the accuracy and scalability of the leading alignment methods (including SATé). We also show that trees estimated on PASTA alignments are highly accurate—slightly better than SATé trees, but with substantial improvements relative to other methods. Finally, PASTA is faster than SATé, highly parallelizable, and requires relatively little memory. PMID:25549288

  14. PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences.

    PubMed

    Mirarab, Siavash; Nguyen, Nam; Guo, Sheng; Wang, Li-San; Kim, Junhyong; Warnow, Tandy

    2015-05-01

    We introduce PASTA, a new multiple sequence alignment algorithm. PASTA uses a new technique to produce an alignment given a guide tree that enables it to be both highly scalable and very accurate. We present a study on biological and simulated data with up to 200,000 sequences, showing that PASTA produces highly accurate alignments, improving on the accuracy and scalability of the leading alignment methods (including SATé). We also show that trees estimated on PASTA alignments are highly accurate--slightly better than SATé trees, but with substantial improvements relative to other methods. Finally, PASTA is faster than SATé, highly parallelizable, and requires relatively little memory.

  15. Sequence verification of synthetic DNA by assembly of sequencing reads

    PubMed Central

    Wilson, Mandy L.; Cai, Yizhi; Hanlon, Regina; Taylor, Samantha; Chevreux, Bastien; Setubal, João C.; Tyler, Brett M.; Peccoud, Jean

    2013-01-01

    Gene synthesis attempts to assemble user-defined DNA sequences with base-level precision. Verifying the sequences of construction intermediates and the final product of a gene synthesis project is a critical part of the workflow, yet one that has received the least attention. Sequence validation is equally important for other kinds of curated clone collections. Ensuring that the physical sequence of a clone matches its published sequence is a common quality control step performed at least once over the course of a research project. GenoREAD is a web-based application that breaks the sequence verification process into two steps: the assembly of sequencing reads and the alignment of the resulting contig with a reference sequence. GenoREAD can determine if a clone matches its reference sequence. Its sophisticated reporting features help identify and troubleshoot problems that arise during the sequence verification process. GenoREAD has been experimentally validated on thousands of gene-sized constructs from an ORFeome project, and on longer sequences including whole plasmids and synthetic chromosomes. Comparing GenoREAD results with those from manual analysis of the sequencing data demonstrates that GenoREAD tends to be conservative in its diagnostic. GenoREAD is available at www.genoread.org. PMID:23042248

  16. Kraken: ultrafast metagenomic sequence classification using exact alignments

    PubMed Central

    2014-01-01

    Kraken is an ultrafast and highly accurate program for assigning taxonomic labels to metagenomic DNA sequences. Previous programs designed for this task have been relatively slow and computationally expensive, forcing researchers to use faster abundance estimation programs, which only classify small subsets of metagenomic data. Using exact alignment of k-mers, Kraken achieves classification accuracy comparable to the fastest BLAST program. In its fastest mode, Kraken classifies 100 base pair reads at a rate of over 4.1 million reads per minute, 909 times faster than Megablast and 11 times faster than the abundance estimation program MetaPhlAn. Kraken is available at http://ccb.jhu.edu/software/kraken/. PMID:24580807

  17. Fast alignment-free sequence comparison using spaced-word frequencies.

    PubMed

    Leimeister, Chris-Andre; Boden, Marcus; Horwege, Sebastian; Lindner, Sebastian; Morgenstern, Burkhard

    2014-07-15

    Alignment-free methods for sequence comparison are increasingly used for genome analysis and phylogeny reconstruction; they circumvent various difficulties of traditional alignment-based approaches. In particular, alignment-free methods are much faster than pairwise or multiple alignments. They are, however, less accurate than methods based on sequence alignment. Most alignment-free approaches work by comparing the word composition of sequences. A well-known problem with these methods is that neighbouring word matches are far from independent. To reduce the statistical dependency between adjacent word matches, we propose to use 'spaced words', defined by patterns of 'match' and 'don't care' positions, for alignment-free sequence comparison. We describe a fast implementation of this approach using recursive hashing and bit operations, and we show that further improvements can be achieved by using multiple patterns instead of single patterns. To evaluate our approach, we use spaced-word frequencies as a basis for fast phylogeny reconstruction. Using real-world and simulated sequence data, we demonstrate that our multiple-pattern approach produces better phylogenies than approaches relying on contiguous words. Our program is freely available at http://spaced.gobics.de/. © The Author 2014. Published by Oxford University Press.

  18. Biclustering as a method for RNA local multiple sequence alignment.

    PubMed

    Wang, Shu; Gutell, Robin R; Miranker, Daniel P

    2007-12-15

    Biclustering is a clustering method that simultaneously clusters both the domain and range of a relation. A challenge in multiple sequence alignment (MSA) is that the alignment of sequences is often intended to reveal groups of conserved functional subsequences. Simultaneously, the grouping of the sequences can impact the alignment; precisely the kind of dual situation biclustering is intended to address. We define a representation of the MSA problem enabling the application of biclustering algorithms. We develop a computer program for local MSA, BlockMSA, that combines biclustering with divide-and-conquer. BlockMSA simultaneously finds groups of similar sequences and locally aligns subsequences within them. Further alignment is accomplished by dividing both the set of sequences and their contents. The net result is both a multiple sequence alignment and a hierarchical clustering of the sequences. BlockMSA was tested on the subsets of the BRAliBase 2.1 benchmark suite that display high variability and on an extension to that suite to larger problem sizes. Also, alignments were evaluated of two large datasets of current biological interest, T box sequences and Group IC1 Introns. The results were compared with alignments computed by ClustalW, MAFFT, MUCLE and PROBCONS alignment programs using Sum of Pairs (SPS) and Consensus Count. Results for the benchmark suite are sensitive to problem size. On problems of 15 or greater sequences, BlockMSA is consistently the best. On none of the problems in the test suite are there appreciable differences in scores among BlockMSA, MAFFT and PROBCONS. On the T box sequences, BlockMSA does the most faithful job of reproducing known annotations. MAFFT and PROBCONS do not. On the Intron sequences, BlockMSA, MAFFT and MUSCLE are comparable at identifying conserved regions. BlockMSA is implemented in Java. Source code and supplementary datasets are available at http://aug.csres.utexas.edu/msa/

  19. Introducing difference recurrence relations for faster semi-global alignment of long sequences.

    PubMed

    Suzuki, Hajime; Kasahara, Masahiro

    2018-02-19

    The read length of single-molecule DNA sequencers is reaching 1 Mb. Popular alignment software tools widely used for analyzing such long reads often take advantage of single-instruction multiple-data (SIMD) operations to accelerate calculation of dynamic programming (DP) matrices in the Smith-Waterman-Gotoh (SWG) algorithm with a fixed alignment start position at the origin. Nonetheless, 16-bit or 32-bit integers are necessary for storing the values in a DP matrix when sequences to be aligned are long; this situation hampers the use of the full SIMD width of modern processors. We proposed a faster semi-global alignment algorithm, "difference recurrence relations," that runs more rapidly than the state-of-the-art algorithm by a factor of 2.1. Instead of calculating and storing all the values in a DP matrix directly, our algorithm computes and stores mainly the differences between the values of adjacent cells in the matrix. Although the SWG algorithm and our algorithm can output exactly the same result, our algorithm mainly involves 8-bit integer operations, enabling us to exploit the full width of SIMD operations (e.g., 32) on modern processors. We also developed a library, libgaba, so that developers can easily integrate our algorithm into alignment programs. Our novel algorithm and optimized library implementation will facilitate accelerating nucleotide long-read analysis algorithms that use pairwise alignment stages. The library is implemented in the C programming language and available at https://github.com/ocxtal/libgaba .

  20. HAlign-II: efficient ultra-large multiple sequence alignment and phylogenetic tree reconstruction with distributed and parallel computing.

    PubMed

    Wan, Shixiang; Zou, Quan

    2017-01-01

    Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phylogenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large biological sequence alignment approaches for coping with different sequence types. Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment and phylogenetic tree construction. The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high memory efficiency and scales well with increases in computing resource. THAlign-II provides a user-friendly web server based on our distributed computing infrastructure. HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.

  1. Revisiting the phylogeny of Zoanthidea (Cnidaria: Anthozoa): Staggered alignment of hypervariable sequences improves species tree inference.

    PubMed

    Swain, Timothy D

    2018-01-01

    The recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea. Spanish language abstract available in Text S1. Translation by L. O. Swain, DePaul University, Chicago, Illinois, 60604, USA. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. B-MIC: An Ultrafast Three-Level Parallel Sequence Aligner Using MIC.

    PubMed

    Cui, Yingbo; Liao, Xiangke; Zhu, Xiaoqian; Wang, Bingqiang; Peng, Shaoliang

    2016-03-01

    Sequence alignment is the central process for sequence analysis, where mapping raw sequencing data to reference genome. The large amount of data generated by NGS is far beyond the process capabilities of existing alignment tools. Consequently, sequence alignment becomes the bottleneck of sequence analysis. Intensive computing power is required to address this challenge. Intel recently announced the MIC coprocessor, which can provide massive computing power. The Tianhe-2 is the world's fastest supercomputer now equipped with three MIC coprocessors each compute node. A key feature of sequence alignment is that different reads are independent. Considering this property, we proposed a MIC-oriented three-level parallelization strategy to speed up BWA, a widely used sequence alignment tool, and developed our ultrafast parallel sequence aligner: B-MIC. B-MIC contains three levels of parallelization: firstly, parallelization of data IO and reads alignment by a three-stage parallel pipeline; secondly, parallelization enabled by MIC coprocessor technology; thirdly, inter-node parallelization implemented by MPI. In this paper, we demonstrate that B-MIC outperforms BWA by a combination of those techniques using Inspur NF5280M server and the Tianhe-2 supercomputer. To the best of our knowledge, B-MIC is the first sequence alignment tool to run on Intel MIC and it can achieve more than fivefold speedup over the original BWA while maintaining the alignment precision.

  3. A putative peroxidase cDNA from turnip and analysis of the encoded protein sequence.

    PubMed

    Romero-Gómez, S; Duarte-Vázquez, M A; García-Almendárez, B E; Mayorga-Martínez, L; Cervantes-Avilés, O; Regalado, C

    2008-12-01

    A putative peroxidase cDNA was isolated from turnip roots (Brassica napus L. var. purple top white globe) by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). Total RNA extracted from mature turnip roots was used as a template for RT-PCR, using a degenerated primer designed to amplify the highly conserved distal motif of plant peroxidases. The resulting partial sequence was used to design the rest of the specific primers for 5' and 3' RACE. Two cDNA fragments were purified, sequenced, and aligned with the partial sequence from RT-PCR, and a complete overlapping sequence was obtained and labeled as BbPA (Genbank Accession No. AY423440, named as podC). The full length cDNA is 1167bp long and contains a 1077bp open reading frame (ORF) encoding a 358 deduced amino acid peroxidase polypeptide. The putative peroxidase (BnPA) showed a calculated Mr of 34kDa, and isoelectric point (pI) of 4.5, with no significant identity with other reported turnip peroxidases. Sequence alignment showed that only three peroxidases have a significant identity with BnPA namely AtP29a (84%), and AtPA2 (81%) from Arabidopsis thaliana, and HRPA2 (82%) from horseradish (Armoracia rusticana). Work is in progress to clone this gene into an adequate host to study the specific role and possible biotechnological applications of this alternative peroxidase source.

  4. CAFE: aCcelerated Alignment-FrEe sequence analysis.

    PubMed

    Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A; Waterman, Michael S; Sun, Fengzhu

    2017-07-03

    Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, $d_2^*$ and $d_2^S$ are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Differential evolution-simulated annealing for multiple sequence alignment

    NASA Astrophysics Data System (ADS)

    Addawe, R. C.; Addawe, J. M.; Sueño, M. R. K.; Magadia, J. C.

    2017-10-01

    Multiple sequence alignments (MSA) are used in the analysis of molecular evolution and sequence structure relationships. In this paper, a hybrid algorithm, Differential Evolution - Simulated Annealing (DESA) is applied in optimizing multiple sequence alignments (MSAs) based on structural information, non-gaps percentage and totally conserved columns. DESA is a robust algorithm characterized by self-organization, mutation, crossover, and SA-like selection scheme of the strategy parameters. Here, the MSA problem is treated as a multi-objective optimization problem of the hybrid evolutionary algorithm, DESA. Thus, we name the algorithm as DESA-MSA. Simulated sequences and alignments were generated to evaluate the accuracy and efficiency of DESA-MSA using different indel sizes, sequence lengths, deletion rates and insertion rates. The proposed hybrid algorithm obtained acceptable solutions particularly for the MSA problem evaluated based on the three objectives.

  6. A Lossy Compression Technique Enabling Duplication-Aware Sequence Alignment

    PubMed Central

    Freschi, Valerio; Bogliolo, Alessandro

    2012-01-01

    In spite of the recognized importance of tandem duplications in genome evolution, commonly adopted sequence comparison algorithms do not take into account complex mutation events involving more than one residue at the time, since they are not compliant with the underlying assumption of statistical independence of adjacent residues. As a consequence, the presence of tandem repeats in sequences under comparison may impair the biological significance of the resulting alignment. Although solutions have been proposed, repeat-aware sequence alignment is still considered to be an open problem and new efficient and effective methods have been advocated. The present paper describes an alternative lossy compression scheme for genomic sequences which iteratively collapses repeats of increasing length. The resulting approximate representations do not contain tandem duplications, while retaining enough information for making their comparison even more significant than the edit distance between the original sequences. This allows us to exploit traditional alignment algorithms directly on the compressed sequences. Results confirm the validity of the proposed approach for the problem of duplication-aware sequence alignment. PMID:22518086

  7. FASMA: a service to format and analyze sequences in multiple alignments.

    PubMed

    Costantini, Susan; Colonna, Giovanni; Facchiano, Angelo M

    2007-12-01

    Multiple sequence alignments are successfully applied in many studies for under- standing the structural and functional relations among single nucleic acids and protein sequences as well as whole families. Because of the rapid growth of sequence databases, multiple sequence alignments can often be very large and difficult to visualize and analyze. We offer a new service aimed to visualize and analyze the multiple alignments obtained with different external algorithms, with new features useful for the comparison of the aligned sequences as well as for the creation of a final image of the alignment. The service is named FASMA and is available at http://bioinformatica.isa.cnr.it/FASMA/.

  8. Indel detection from DNA and RNA sequencing data with transIndel.

    PubMed

    Yang, Rendong; Van Etten, Jamie L; Dehm, Scott M

    2018-04-19

    Insertions and deletions (indels) are a major class of genomic variation associated with human disease. Indels are primarily detected from DNA sequencing (DNA-seq) data but their transcriptional consequences remain unexplored due to challenges in discriminating medium-sized and large indels from splicing events in RNA-seq data. Here, we developed transIndel, a splice-aware algorithm that parses the chimeric alignments predicted by a short read aligner and reconstructs the mid-sized insertions and large deletions based on the linear alignments of split reads from DNA-seq or RNA-seq data. TransIndel exhibits competitive or superior performance over eight state-of-the-art indel detection tools on benchmarks using both synthetic and real DNA-seq data. Additionally, we applied transIndel to DNA-seq and RNA-seq datasets from 333 primary prostate cancer patients from The Cancer Genome Atlas (TCGA) and 59 metastatic prostate cancer patients from AACR-PCF Stand-Up- To-Cancer (SU2C) studies. TransIndel enhanced the taxonomy of DNA- and RNA-level alterations in prostate cancer by identifying recurrent FOXA1 indels as well as exitron splicing in genes implicated in disease progression. Our study demonstrates that transIndel is a robust tool for elucidation of medium- and large-sized indels from DNA-seq and RNA-seq data. Including RNA-seq in indel discovery efforts leads to significant improvements in sensitivity for identification of med-sized and large indels missed by DNA-seq, and reveals non-canonical RNA-splicing events in genes associated with disease pathology.

  9. A generalized global alignment algorithm.

    PubMed

    Huang, Xiaoqiu; Chao, Kun-Mao

    2003-01-22

    Homologous sequences are sometimes similar over some regions but different over other regions. Homologous sequences have a much lower global similarity if the different regions are much longer than the similar regions. We present a generalized global alignment algorithm for comparing sequences with intermittent similarities, an ordered list of similar regions separated by different regions. A generalized global alignment model is defined to handle sequences with intermittent similarities. A dynamic programming algorithm is designed to compute an optimal general alignment in time proportional to the product of sequence lengths and in space proportional to the sum of sequence lengths. The algorithm is implemented as a computer program named GAP3 (Global Alignment Program Version 3). The generalized global alignment model is validated by experimental results produced with GAP3 on both DNA and protein sequences. The GAP3 program extends the ability of standard global alignment programs to recognize homologous sequences of lower similarity. The GAP3 program is freely available for academic use at http://bioinformatics.iastate.edu/aat/align/align.html.

  10. SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees.

    PubMed

    Liu, Kevin; Warnow, Tandy J; Holder, Mark T; Nelesen, Serita M; Yu, Jiaye; Stamatakis, Alexandros P; Linder, C Randal

    2012-01-01

    Highly accurate estimation of phylogenetic trees for large data sets is difficult, in part because multiple sequence alignments must be accurate for phylogeny estimation methods to be accurate. Coestimation of alignments and trees has been attempted but currently only SATé estimates reasonably accurate trees and alignments for large data sets in practical time frames (Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564). Here, we present a modification to the original SATé algorithm that improves upon SATé (which we now call SATé-I) in terms of speed and of phylogenetic and alignment accuracy. SATé-II uses a different divide-and-conquer strategy than SATé-I and so produces smaller more closely related subsets than SATé-I; as a result, SATé-II produces more accurate alignments and trees, can analyze larger data sets, and runs more efficiently than SATé-I. Generally, SATé is a metamethod that takes an existing multiple sequence alignment method as an input parameter and boosts the quality of that alignment method. SATé-II-boosted alignment methods are significantly more accurate than their unboosted versions, and trees based upon these improved alignments are more accurate than trees based upon the original alignments. Because SATé-I used maximum likelihood (ML) methods that treat gaps as missing data to estimate trees and because we found a correlation between the quality of tree/alignment pairs and ML scores, we explored the degree to which SATé's performance depends on using ML with gaps treated as missing data to determine the best tree/alignment pair. We present two lines of evidence that using ML with gaps treated as missing data to optimize the alignment and tree produces very poor results. First, we show that the optimization problem where a set of unaligned DNA sequences is given and the output is the tree and alignment of

  11. Sequence alignment visualization in HTML5 without Java.

    PubMed

    Gille, Christoph; Birgit, Weyand; Gille, Andreas

    2014-01-01

    Java has been extensively used for the visualization of biological data in the web. However, the Java runtime environment is an additional layer of software with an own set of technical problems and security risks. HTML in its new version 5 provides features that for some tasks may render Java unnecessary. Alignment-To-HTML is the first HTML-based interactive visualization for annotated multiple sequence alignments. The server side script interpreter can perform all tasks like (i) sequence retrieval, (ii) alignment computation, (iii) rendering, (iv) identification of a homologous structural models and (v) communication with BioDAS-servers. The rendered alignment can be included in web pages and is displayed in all browsers on all platforms including touch screen tablets. The functionality of the user interface is similar to legacy Java applets and includes color schemes, highlighting of conserved and variable alignment positions, row reordering by drag and drop, interlinked 3D visualization and sequence groups. Novel features are (i) support for multiple overlapping residue annotations, such as chemical modifications, single nucleotide polymorphisms and mutations, (ii) mechanisms to quickly hide residue annotations, (iii) export to MS-Word and (iv) sequence icons. Alignment-To-HTML, the first interactive alignment visualization that runs in web browsers without additional software, confirms that to some extend HTML5 is already sufficient to display complex biological data. The low speed at which programs are executed in browsers is still the main obstacle. Nevertheless, we envision an increased use of HTML and JavaScript for interactive biological software. Under GPL at: http://www.bioinformatics.org/strap/toHTML/.

  12. Interactive software tool to comprehend the calculation of optimal sequence alignments with dynamic programming.

    PubMed

    Ibarra, Ignacio L; Melo, Francisco

    2010-07-01

    Dynamic programming (DP) is a general optimization strategy that is successfully used across various disciplines of science. In bioinformatics, it is widely applied in calculating the optimal alignment between pairs of protein or DNA sequences. These alignments form the basis of new, verifiable biological hypothesis. Despite its importance, there are no interactive tools available for training and education on understanding the DP algorithm. Here, we introduce an interactive computer application with a graphical interface, for the purpose of educating students about DP. The program displays the DP scoring matrix and the resulting optimal alignment(s), while allowing the user to modify key parameters such as the values in the similarity matrix, the sequence alignment algorithm version and the gap opening/extension penalties. We hope that this software will be useful to teachers and students of bioinformatics courses, as well as researchers who implement the DP algorithm for diverse applications. The software is freely available at: http:/melolab.org/sat. The software is written in the Java computer language, thus it runs on all major platforms and operating systems including Windows, Mac OS X and LINUX. All inquiries or comments about this software should be directed to Francisco Melo at fmelo@bio.puc.cl.

  13. ABI Base Recall: Automatic Correction and Ends Trimming of DNA Sequences.

    PubMed

    Elyazghi, Zakaria; Yazouli, Loubna El; Sadki, Khalid; Radouani, Fouzia

    2017-12-01

    Automated DNA sequencers produce chromatogram files in ABI format. When viewing chromatograms, some ambiguities are shown at various sites along the DNA sequences, because the program implemented in the sequencing machine and used to call bases cannot always precisely determine the right nucleotide, especially when it is represented by either a broad peak or a set of overlaying peaks. In such cases, a letter other than A, C, G, or T is recorded, most commonly N. Thus, DNA sequencing chromatograms need manual examination: checking for mis-calls and truncating the sequence when errors become too frequent. The purpose of this paper is to develop a program allowing the automatic correction of these ambiguities. This application is a Web-based program powered by Shiny and runs under R platform for an easy exploitation. As a part of the interface, we added the automatic ends clipping option, alignment against reference sequences, and BLAST. To develop and test our tool, we collected several bacterial DNA sequences from different laboratories within Institut Pasteur du Maroc and performed both manual and automatic correction. The comparison between the two methods was carried out. As a result, we note that our program, ABI base recall, accomplishes good correction with a high accuracy. Indeed, it increases the rate of identity and coverage and minimizes the number of mismatches and gaps, hence it provides solution to sequencing ambiguities and saves biologists' time and labor.

  14. SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly

    PubMed Central

    Wala, Jeremiah; Beroukhim, Rameen

    2017-01-01

    Abstract We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. Availability and Implementation: SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. Contact: jwala@broadinstitue.org; rameen@broadinstitute.org PMID:28011768

  15. Sequence harmony: detecting functional specificity from alignments

    PubMed Central

    Feenstra, K. Anton; Pirovano, Walter; Krab, Klaas; Heringa, Jaap

    2007-01-01

    Multiple sequence alignments are often used for the identification of key specificity-determining residues within protein families. We present a web server implementation of the Sequence Harmony (SH) method previously introduced. SH accurately detects subfamily specific positions from a multiple alignment by scoring compositional differences between subfamilies, without imposing conservation. The SH web server allows a quick selection of subtype specific sites from a multiple alignment given a subfamily grouping. In addition, it allows the predicted sites to be directly mapped onto a protein structure and displayed. We demonstrate the use of the SH server using the family of plant mitochondrial alternative oxidases (AOX). In addition, we illustrate the usefulness of combining sequence and structural information by showing that the predicted sites are clustered into a few distinct regions in an AOX homology model. The SH web server can be accessed at www.ibi.vu.nl/programs/seqharmwww. PMID:17584793

  16. HIA: a genome mapper using hybrid index-based sequence alignment.

    PubMed

    Choi, Jongpill; Park, Kiejung; Cho, Seong Beom; Chung, Myungguen

    2015-01-01

    A number of alignment tools have been developed to align sequencing reads to the human reference genome. The scale of information from next-generation sequencing (NGS) experiments, however, is increasing rapidly. Recent studies based on NGS technology have routinely produced exome or whole-genome sequences from several hundreds or thousands of samples. To accommodate the increasing need of analyzing very large NGS data sets, it is necessary to develop faster, more sensitive and accurate mapping tools. HIA uses two indices, a hash table index and a suffix array index. The hash table performs direct lookup of a q-gram, and the suffix array performs very fast lookup of variable-length strings by exploiting binary search. We observed that combining hash table and suffix array (hybrid index) is much faster than the suffix array method for finding a substring in the reference sequence. Here, we defined the matching region (MR) is a longest common substring between a reference and a read. And, we also defined the candidate alignment regions (CARs) as a list of MRs that is close to each other. The hybrid index is used to find candidate alignment regions (CARs) between a reference and a read. We found that aligning only the unmatched regions in the CAR is much faster than aligning the whole CAR. In benchmark analysis, HIA outperformed in mapping speed compared with the other aligners, without significant loss of mapping accuracy. Our experiments show that the hybrid of hash table and suffix array is useful in terms of speed for mapping NGS sequencing reads to the human reference genome sequence. In conclusion, our tool is appropriate for aligning massive data sets generated by NGS sequencing.

  17. Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae).

    PubMed

    Zhao, Ya-E; Xu, Ji-Ru; Hu, Li; Wu, Li-Ping; Wang, Zheng-Hang

    2012-05-01

    The study for the first time attempted to accomplish 18S ribosomal DNA (rDNA) complete sequence amplification and analysis for three Demodex species (Demodex folliculorum, Demodex brevis and Demodex canis) based on gDNA extraction from individual mites. The mites were treated by DNA Release Additive and Hot Start II DNA Polymerase so as to promote mite disruption and increase PCR specificity. Determination of D. folliculorum gDNA showed that the gDNA yield reached the highest at 1 mite, tending to descend with the increase of mite number. The individual mite gDNA was successfully used for 18S rDNA fragment (about 900 bp) amplification examination. The alignments of 18S rDNA complete sequences of individual mite samples and those of pooled mite samples ( ≥ 1000mites/sample) showed over 97% identities for each species, indicating that the gDNA extracted from a single individual mite was as satisfactory as that from pooled mites for PCR amplification. Further pairwise sequence analyses showed that average divergence, genetic distance, transition/transversion or phylogenetic tree could not effectively identify the three Demodex species, largely due to the differentiation in the D. canis isolates. It can be concluded that the individual Demodex mite gDNA can satisfy the molecular study of Demodex. 18S rDNA complete sequence is suitable for interfamily identification in Cheyletoidea, but whether it is suitable for intrafamily identification cannot be confirmed until the ascertainment of the types of Demodex mites parasitizing in dogs. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Bellerophon: A program to detect chimeric sequences in multiple sequence alignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Thomas; Faulkner, Geoffrey; Hugenholtz, Philip

    2003-12-23

    Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments.

  19. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud.

    PubMed

    Weissensteiner, Hansi; Forer, Lukas; Fuchsberger, Christian; Schöpf, Bernd; Kloss-Brandstätter, Anita; Specht, Günther; Kronenberg, Florian; Schönherr, Sebastian

    2016-07-08

    Next generation sequencing (NGS) allows investigating mitochondrial DNA (mtDNA) characteristics such as heteroplasmy (i.e. intra-individual sequence variation) to a higher level of detail. While several pipelines for analyzing heteroplasmies exist, issues in usability, accuracy of results and interpreting final data limit their usage. Here we present mtDNA-Server, a scalable web server for the analysis of mtDNA studies of any size with a special focus on usability as well as reliable identification and quantification of heteroplasmic variants. The mtDNA-Server workflow includes parallel read alignment, heteroplasmy detection, artefact or contamination identification, variant annotation as well as several quality control metrics, often neglected in current mtDNA NGS studies. All computational steps are parallelized with Hadoop MapReduce and executed graphically with Cloudgene. We validated the underlying heteroplasmy and contamination detection model by generating four artificial sample mix-ups on two different NGS devices. Our evaluation data shows that mtDNA-Server detects heteroplasmies and artificial recombinations down to the 1% level with perfect specificity and outperforms existing approaches regarding sensitivity. mtDNA-Server is currently able to analyze the 1000G Phase 3 data (n = 2,504) in less than 5 h and is freely accessible at https://mtdna-server.uibk.ac.at. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. SSR_pipeline--computer software for the identification of microsatellite sequences from paired-end Illumina high-throughput DNA sequence data

    USGS Publications Warehouse

    Miller, Mark P.; Knaus, Brian J.; Mullins, Thomas D.; Haig, Susan M.

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (SSRs; for example, microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains three analysis modules along with a fourth control module that can be used to automate analyses of large volumes of data. The modules are used to (1) identify the subset of paired-end sequences that pass quality standards, (2) align paired-end reads into a single composite DNA sequence, and (3) identify sequences that possess microsatellites conforming to user specified parameters. Each of the three separate analysis modules also can be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc). All modules are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, Windows). The program suite relies on a compiled Python extension module to perform paired-end alignments. Instructions for compiling the extension from source code are provided in the documentation. Users who do not have Python installed on their computers or who do not have the ability to compile software also may choose to download packaged executable files. These files include all Python scripts, a copy of the compiled extension module, and a minimal installation of Python in a single binary executable. See program documentation for more information.

  1. Enhanced spatio-temporal alignment of plantar pressure image sequences using B-splines.

    PubMed

    Oliveira, Francisco P M; Tavares, João Manuel R S

    2013-03-01

    This article presents an enhanced methodology to align plantar pressure image sequences simultaneously in time and space. The temporal alignment of the sequences is accomplished using B-splines in the time modeling, and the spatial alignment can be attained using several geometric transformation models. The methodology was tested on a dataset of 156 real plantar pressure image sequences (3 sequences for each foot of the 26 subjects) that was acquired using a common commercial plate during barefoot walking. In the alignment of image sequences that were synthetically deformed both in time and space, an outstanding accuracy was achieved with the cubic B-splines. This accuracy was significantly better (p < 0.001) than the one obtained using the best solution proposed in our previous work. When applied to align real image sequences with unknown transformation involved, the alignment based on cubic B-splines also achieved superior results than our previous methodology (p < 0.001). The consequences of the temporal alignment on the dynamic center of pressure (COP) displacement was also assessed by computing the intraclass correlation coefficients (ICC) before and after the temporal alignment of the three image sequence trials of each foot of the associated subject at six time instants. The results showed that, generally, the ICCs related to the medio-lateral COP displacement were greater when the sequences were temporally aligned than the ICCs of the original sequences. Based on the experimental findings, one can conclude that the cubic B-splines are a remarkable solution for the temporal alignment of plantar pressure image sequences. These findings also show that the temporal alignment can increase the consistency of the COP displacement on related acquired plantar pressure image sequences.

  2. [Cloning and sequence analysis of full-length cDNA of secoisolariciresinol dehydrogenase of Dysosma versipellis].

    PubMed

    Xu, Li; Ding, Zhi-Shan; Zhou, Yun-Kai; Tao, Xue-Fen

    2009-06-01

    To obtain the full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene from Dysosma versipellis by RACE PCR,then investigate the character of Secoisolariciresinol Dehydrogenase gene. The full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene was obtained by 3'-RACE and 5'-RACE from Dysosma versipellis. We first reported the full cDNA sequences of Secoisolariciresinol Dehydrogenase in Dysosma versipellis. The acquired gene was 991bp in full length, including 5' untranslated region of 42bp, 3' untranslated region of 112bp with Poly (A). The open reading frame (ORF) encoding 278 amino acid with molecular weight 29253.3 Daltons and isolectric point 6.328. The gene accession nucleotide sequence number in GeneBank was EU573789. Semi-quantitative RT-PCR analysis revealed that the Secoisolariciresinol Dehydrogenase gene was highly expressed in stem. Alignment of the amino acid sequence of Secoisolariciresinol Dehydrogenase indicated there may be some significant amino acid sequence difference among different species. Obtain the full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene from Dysosma versipellis.

  3. SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly.

    PubMed

    Wala, Jeremiah; Beroukhim, Rameen

    2017-03-01

    We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. jwala@broadinstitue.org ; rameen@broadinstitute.org. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  4. i-rDNA: alignment-free algorithm for rapid in silico detection of ribosomal gene fragments from metagenomic sequence data sets.

    PubMed

    Mohammed, Monzoorul Haque; Ghosh, Tarini Shankar; Chadaram, Sudha; Mande, Sharmila S

    2011-11-30

    Obtaining accurate estimates of microbial diversity using rDNA profiling is the first step in most metagenomics projects. Consequently, most metagenomic projects spend considerable amounts of time, money and manpower for experimentally cloning, amplifying and sequencing the rDNA content in a metagenomic sample. In the second step, the entire genomic content of the metagenome is extracted, sequenced and analyzed. Since DNA sequences obtained in this second step also contain rDNA fragments, rapid in silico identification of these rDNA fragments would drastically reduce the cost, time and effort of current metagenomic projects by entirely bypassing the experimental steps of primer based rDNA amplification, cloning and sequencing. In this study, we present an algorithm called i-rDNA that can facilitate the rapid detection of 16S rDNA fragments from amongst millions of sequences in metagenomic data sets with high detection sensitivity. Performance evaluation with data sets/database variants simulating typical metagenomic scenarios indicates the significantly high detection sensitivity of i-rDNA. Moreover, i-rDNA can process a million sequences in less than an hour on a simple desktop with modest hardware specifications. In addition to the speed of execution, high sensitivity and low false positive rate, the utility of the algorithmic approach discussed in this paper is immense given that it would help in bypassing the entire experimental step of primer-based rDNA amplification, cloning and sequencing. Application of this algorithmic approach would thus drastically reduce the cost, time and human efforts invested in all metagenomic projects. A web-server for the i-rDNA algorithm is available at http://metagenomics.atc.tcs.com/i-rDNA/

  5. Terminal region sequence variations in variola virus DNA.

    PubMed

    Massung, R F; Loparev, V N; Knight, J C; Totmenin, A V; Chizhikov, V E; Parsons, J M; Safronov, P F; Gutorov, V V; Shchelkunov, S N; Esposito, J J

    1996-07-15

    Genome DNA terminal region sequences were determined for a Brazilian alastrim variola minor virus strain Garcia-1966 that was associated with an 0.8% case-fatality rate and African smallpox strains Congo-1970 and Somalia-1977 associated with variola major (9.6%) and minor (0.4%) mortality rates, respectively. A base sequence identity of > or = 98.8% was determined after aligning 30 kb of the left- or right-end region sequences with cognate sequences previously determined for Asian variola major strains India-1967 (31% death rate) and Bangladesh-1975 (18.5% death rate). The deduced amino acid sequences of putative proteins of > or = 65 amino acids also showed relatively high identity, although the Asian and African viruses were clearly more related to each other than to alastrim virus. Alastrim virus contained only 10 of 70 proteins that were 100% identical to homologs in Asian strains, and 7 alastrim-specific proteins were noted.

  6. Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search

    NASA Technical Reports Server (NTRS)

    Wheeler, Ward C.

    2003-01-01

    A method to align sequence data based on parsimonious synapomorphy schemes generated by direct optimization (DO; earlier termed optimization alignment) is proposed. DO directly diagnoses sequence data on cladograms without an intervening multiple-alignment step, thereby creating topology-specific, dynamic homology statements. Hence, no multiple-alignment is required to generate cladograms. Unlike general and globally optimal multiple-alignment procedures, the method described here, implied alignment (IA), takes these dynamic homologies and traces them back through a single cladogram, linking the unaligned sequence positions in the terminal taxa via DO transformation series. These "lines of correspondence" link ancestor-descendent states and, when displayed as linearly arrayed columns without hypothetical ancestors, are largely indistinguishable from standard multiple alignment. Since this method is based on synapomorphy, the treatment of certain classes of insertion-deletion (indel) events may be different from that of other alignment procedures. As with all alignment methods, results are dependent on parameter assumptions such as indel cost and transversion:transition ratios. Such an IA could be used as a basis for phylogenetic search, but this would be questionable since the homologies derived from the implied alignment depend on its natal cladogram and any variance, between DO and IA + Search, due to heuristic approach. The utility of this procedure in heuristic cladogram searches using DO and the improvement of heuristic cladogram cost calculations are discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.

  7. Simple chained guide trees give high-quality protein multiple sequence alignments

    PubMed Central

    Boyce, Kieran; Sievers, Fabian; Higgins, Desmond G.

    2014-01-01

    Guide trees are used to decide the order of sequence alignment in the progressive multiple sequence alignment heuristic. These guide trees are often the limiting factor in making large alignments, and considerable effort has been expended over the years in making these quickly or accurately. In this article we show that, at least for protein families with large numbers of sequences that can be benchmarked with known structures, simple chained guide trees give the most accurate alignments. These also happen to be the fastest and simplest guide trees to construct, computationally. Such guide trees have a striking effect on the accuracy of alignments produced by some of the most widely used alignment packages. There is a marked increase in accuracy and a marked decrease in computational time, once the number of sequences goes much above a few hundred. This is true, even if the order of sequences in the guide tree is random. PMID:25002495

  8. A novel class of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences

    PubMed Central

    Nagano, Yukio; Furuhashi, Hirofumi; Inaba, Takehito; Sasaki, Yukiko

    2001-01-01

    Complementary DNA encoding a DNA-binding protein, designated PLATZ1 (plant AT-rich sequence- and zinc-binding protein 1), was isolated from peas. The amino acid sequence of the protein is similar to those of other uncharacterized proteins predicted from the genome sequences of higher plants. However, no paralogous sequences have been found outside the plant kingdom. Multiple alignments among these paralogous proteins show that several cysteine and histidine residues are invariant, suggesting that these proteins are a novel class of zinc-dependent DNA-binding proteins with two distantly located regions, C-x2-H-x11-C-x2-C-x(4–5)-C-x2-C-x(3–7)-H-x2-H and C-x2-C-x(10–11)-C-x3-C. In an electrophoretic mobility shift assay, the zinc chelator 1,10-o-phenanthroline inhibited DNA binding, and two distant zinc-binding regions were required for DNA binding. A protein blot with 65ZnCl2 showed that both regions are required for zinc-binding activity. The PLATZ1 protein non-specifically binds to A/T-rich sequences, including the upstream region of the pea GTPase pra2 and plastocyanin petE genes. Expression of the PLATZ1 repressed those of the reporter constructs containing the coding sequence of luciferase gene driven by the cauliflower mosaic virus (CaMV) 35S90 promoter fused to the tandem repeat of the A/T-rich sequences. These results indicate that PLATZ1 is a novel class of plant-specific zinc-dependent DNA-binding protein responsible for A/T-rich sequence-mediated transcriptional repression. PMID:11600698

  9. Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences.

    PubMed

    Bergman, C M; Kreitman, M

    2001-08-01

    Comparative genomic approaches to gene and cis-regulatory prediction are based on the principle that differential DNA sequence conservation reflects variation in functional constraint. Using this principle, we analyze noncoding sequence conservation in Drosophila for 40 loci with known or suspected cis-regulatory function encompassing >100 kb of DNA. We estimate the fraction of noncoding DNA conserved in both intergenic and intronic regions and describe the length distribution of ungapped conserved noncoding blocks. On average, 22%-26% of noncoding sequences surveyed are conserved in Drosophila, with median block length approximately 19 bp. We show that point substitution in conserved noncoding blocks exhibits transition bias as well as lineage effects in base composition, and occurs more than an order of magnitude more frequently than insertion/deletion (indel) substitution. Overall, patterns of noncoding DNA structure and evolution differ remarkably little between intergenic and intronic conserved blocks, suggesting that the effects of transcription per se contribute minimally to the constraints operating on these sequences. The results of this study have implications for the development of alignment and prediction algorithms specific to noncoding DNA, as well as for models of cis-regulatory DNA sequence evolution.

  10. Embedding strategies for effective use of information from multiple sequence alignments.

    PubMed Central

    Henikoff, S.; Henikoff, J. G.

    1997-01-01

    We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain. PMID:9070452

  11. DIALIGN P: fast pair-wise and multiple sequence alignment using parallel processors.

    PubMed

    Schmollinger, Martin; Nieselt, Kay; Kaufmann, Michael; Morgenstern, Burkhard

    2004-09-09

    Parallel computing is frequently used to speed up computationally expensive tasks in Bioinformatics. Herein, a parallel version of the multi-alignment program DIALIGN is introduced. We propose two ways of dividing the program into independent sub-routines that can be run on different processors: (a) pair-wise sequence alignments that are used as a first step to multiple alignment account for most of the CPU time in DIALIGN. Since alignments of different sequence pairs are completely independent of each other, they can be distributed to multiple processors without any effect on the resulting output alignments. (b) For alignments of large genomic sequences, we use a heuristics by splitting up sequences into sub-sequences based on a previously introduced anchored alignment procedure. For our test sequences, this combined approach reduces the program running time of DIALIGN by up to 97%. By distributing sub-routines to multiple processors, the running time of DIALIGN can be crucially improved. With these improvements, it is possible to apply the program in large-scale genomics and proteomics projects that were previously beyond its scope.

  12. CAFE: aCcelerated Alignment-FrEe sequence analysis

    PubMed Central

    Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A.; Waterman, Michael S.

    2017-01-01

    Abstract Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$d_2^*$\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$d_2^S$\\end{document} are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. PMID:28472388

  13. Modular and configurable optimal sequence alignment software: Cola.

    PubMed

    Zamani, Neda; Sundström, Görel; Höppner, Marc P; Grabherr, Manfred G

    2014-01-01

    The fundamental challenge in optimally aligning homologous sequences is to define a scoring scheme that best reflects the underlying biological processes. Maximising the overall number of matches in the alignment does not always reflect the patterns by which nucleotides mutate. Efficiently implemented algorithms that can be parameterised to accommodate more complex non-linear scoring schemes are thus desirable. We present Cola, alignment software that implements different optimal alignment algorithms, also allowing for scoring contiguous matches of nucleotides in a nonlinear manner. The latter places more emphasis on short, highly conserved motifs, and less on the surrounding nucleotides, which can be more diverged. To illustrate the differences, we report results from aligning 14,100 sequences from 3' untranslated regions of human genes to 25 of their mammalian counterparts, where we found that a nonlinear scoring scheme is more consistent than a linear scheme in detecting short, conserved motifs. Cola is freely available under LPGL from https://github.com/nedaz/cola.

  14. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes.

    PubMed

    Pruesse, Elmar; Peplies, Jörg; Glöckner, Frank Oliver

    2012-07-15

    In the analysis of homologous sequences, computation of multiple sequence alignments (MSAs) has become a bottleneck. This is especially troublesome for marker genes like the ribosomal RNA (rRNA) where already millions of sequences are publicly available and individual studies can easily produce hundreds of thousands of new sequences. Methods have been developed to cope with such numbers, but further improvements are needed to meet accuracy requirements. In this study, we present the SILVA Incremental Aligner (SINA) used to align the rRNA gene databases provided by the SILVA ribosomal RNA project. SINA uses a combination of k-mer searching and partial order alignment (POA) to maintain very high alignment accuracy while satisfying high throughput performance demands. SINA was evaluated in comparison with the commonly used high throughput MSA programs PyNAST and mothur. The three BRAliBase III benchmark MSAs could be reproduced with 99.3, 97.6 and 96.1 accuracy. A larger benchmark MSA comprising 38 772 sequences could be reproduced with 98.9 and 99.3% accuracy using reference MSAs comprising 1000 and 5000 sequences. SINA was able to achieve higher accuracy than PyNAST and mothur in all performed benchmarks. Alignment of up to 500 sequences using the latest SILVA SSU/LSU Ref datasets as reference MSA is offered at http://www.arb-silva.de/aligner. This page also links to Linux binaries, user manual and tutorial. SINA is made available under a personal use license.

  15. IVisTMSA: Interactive Visual Tools for Multiple Sequence Alignments.

    PubMed

    Pervez, Muhammad Tariq; Babar, Masroor Ellahi; Nadeem, Asif; Aslam, Naeem; Naveed, Nasir; Ahmad, Sarfraz; Muhammad, Shah; Qadri, Salman; Shahid, Muhammad; Hussain, Tanveer; Javed, Maryam

    2015-01-01

    IVisTMSA is a software package of seven graphical tools for multiple sequence alignments. MSApad is an editing and analysis tool. It can load 409% more data than Jalview, STRAP, CINEMA, and Base-by-Base. MSA comparator allows the user to visualize consistent and inconsistent regions of reference and test alignments of more than 21-MB size in less than 12 seconds. MSA comparator is 5,200% efficient and more than 40% efficient as compared to BALiBASE c program and FastSP, respectively. MSA reconstruction tool provides graphical user interfaces for four popular aligners and allows the user to load several sequence files at a time. FASTA generator converts seven formats of alignments of unlimited size into FASTA format in a few seconds. MSA ID calculator calculates identity matrix of more than 11,000 sequences with a sequence length of 2,696 base pairs in less than 100 seconds. Tree and Distance Matrix calculation tools generate phylogenetic tree and distance matrix, respectively, using neighbor joining% identity and BLOSUM 62 matrix.

  16. The sequence specificity of UV-induced DNA damage in a systematically altered DNA sequence.

    PubMed

    Khoe, Clairine V; Chung, Long H; Murray, Vincent

    2018-06-01

    The sequence specificity of UV-induced DNA damage was investigated in a specifically designed DNA plasmid using two procedures: end-labelling and linear amplification. Absorption of UV photons by DNA leads to dimerisation of pyrimidine bases and produces two major photoproducts, cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). A previous study had determined that two hexanucleotide sequences, 5'-GCTC*AC and 5'-TATT*AA, were high intensity UV-induced DNA damage sites. The UV clone plasmid was constructed by systematically altering each nucleotide of these two hexanucleotide sequences. One of the main goals of this study was to determine the influence of single nucleotide alterations on the intensity of UV-induced DNA damage. The sequence 5'-GCTC*AC was designed to examine the sequence specificity of 6-4PPs and the highest intensity 6-4PP damage sites were found at 5'-GTTC*CC nucleotides. The sequence 5'-TATT*AA was devised to investigate the sequence specificity of CPDs and the highest intensity CPD damage sites were found at 5'-TTTT*CG nucleotides. It was proposed that the tetranucleotide DNA sequence, 5'-YTC*Y (where Y is T or C), was the consensus sequence for the highest intensity UV-induced 6-4PP adduct sites; while it was 5'-YTT*C for the highest intensity UV-induced CPD damage sites. These consensus tetranucleotides are composed entirely of consecutive pyrimidines and must have a DNA conformation that is highly productive for the absorption of UV photons. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  17. Resolution of model Holliday junctions by yeast endonuclease: effect of DNA structure and sequence.

    PubMed Central

    Parsons, C A; Murchie, A I; Lilley, D M; West, S C

    1989-01-01

    The resolution of Holliday junctions in DNA involves specific cleavage at or close to the site of the junction. A nuclease from Saccharomyces cerevisiae cleaves model Holliday junctions in vitro by the introduction of nicks in regions of duplex DNA adjacent to the crossover point. In previous studies [Parsons and West (1988) Cell, 52, 621-629] it was shown that cleavage occurred within homologous arm sequences with precise symmetry across the junction. In contrast, junctions with heterologous arm sequences were cleaved asymmetrically. In this work, we have studied the effect of sequence changes and base modification upon the site of cleavage. It is shown that the specificity of cleavage is unchanged providing that perfect homology is maintained between opposing arm sequences. However, in the absence of homology, cleavage depends upon sequence context and is affected by minor changes such as base modification. These data support the proposed mechanism for cleavage of a Holliday junction, which requires homologous alignment of arm sequences in an enzyme--DNA complex as a prerequisite for symmetrical cleavage by the yeast endonuclease. Images PMID:2653810

  18. SAM: String-based sequence search algorithm for mitochondrial DNA database queries

    PubMed Central

    Röck, Alexander; Irwin, Jodi; Dür, Arne; Parsons, Thomas; Parson, Walther

    2011-01-01

    The analysis of the haploid mitochondrial (mt) genome has numerous applications in forensic and population genetics, as well as in disease studies. Although mtDNA haplotypes are usually determined by sequencing, they are rarely reported as a nucleotide string. Traditionally they are presented in a difference-coded position-based format relative to the corrected version of the first sequenced mtDNA. This convention requires recommendations for standardized sequence alignment that is known to vary between scientific disciplines, even between laboratories. As a consequence, database searches that are vital for the interpretation of mtDNA data can suffer from biased results when query and database haplotypes are annotated differently. In the forensic context that would usually lead to underestimation of the absolute and relative frequencies. To address this issue we introduce SAM, a string-based search algorithm that converts query and database sequences to position-free nucleotide strings and thus eliminates the possibility that identical sequences will be missed in a database query. The mere application of a BLAST algorithm would not be a sufficient remedy as it uses a heuristic approach and does not address properties specific to mtDNA, such as phylogenetically stable but also rapidly evolving insertion and deletion events. The software presented here provides additional flexibility to incorporate phylogenetic data, site-specific mutation rates, and other biologically relevant information that would refine the interpretation of mitochondrial DNA data. The manuscript is accompanied by freeware and example data sets that can be used to evaluate the new software (http://stringvalidation.org). PMID:21056022

  19. GATA: A graphic alignment tool for comparative sequenceanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nix, David A.; Eisen, Michael B.

    2005-01-01

    Several problems exist with current methods used to align DNA sequences for comparative sequence analysis. Most dynamic programming algorithms assume that conserved sequence elements are collinear. This assumption appears valid when comparing orthologous protein coding sequences. Functional constraints on proteins provide strong selective pressure against sequence inversions, and minimize sequence duplications and feature shuffling. For non-coding sequences this collinearity assumption is often invalid. For example, enhancers contain clusters of transcription factor binding sites that change in number, orientation, and spacing during evolution yet the enhancer retains its activity. Dotplot analysis is often used to estimate non-coding sequence relatedness. Yet dotmore » plots do not actually align sequences and thus cannot account well for base insertions or deletions. Moreover, they lack an adequate statistical framework for comparing sequence relatedness and are limited to pairwise comparisons. Lastly, dot plots and dynamic programming text outputs fail to provide an intuitive means for visualizing DNA alignments.« less

  20. CloudAligner: A fast and full-featured MapReduce based tool for sequence mapping.

    PubMed

    Nguyen, Tung; Shi, Weisong; Ruden, Douglas

    2011-06-06

    Research in genetics has developed rapidly recently due to the aid of next generation sequencing (NGS). However, massively-parallel NGS produces enormous amounts of data, which leads to storage, compatibility, scalability, and performance issues. The Cloud Computing and MapReduce framework, which utilizes hundreds or thousands of shared computers to map sequencing reads quickly and efficiently to reference genome sequences, appears to be a very promising solution for these issues. Consequently, it has been adopted by many organizations recently, and the initial results are very promising. However, since these are only initial steps toward this trend, the developed software does not provide adequate primary functions like bisulfite, pair-end mapping, etc., in on-site software such as RMAP or BS Seeker. In addition, existing MapReduce-based applications were not designed to process the long reads produced by the most recent second-generation and third-generation NGS instruments and, therefore, are inefficient. Last, it is difficult for a majority of biologists untrained in programming skills to use these tools because most were developed on Linux with a command line interface. To urge the trend of using Cloud technologies in genomics and prepare for advances in second- and third-generation DNA sequencing, we have built a Hadoop MapReduce-based application, CloudAligner, which achieves higher performance, covers most primary features, is more accurate, and has a user-friendly interface. It was also designed to be able to deal with long sequences. The performance gain of CloudAligner over Cloud-based counterparts (35 to 80%) mainly comes from the omission of the reduce phase. In comparison to local-based approaches, the performance gain of CloudAligner is from the partition and parallel processing of the huge reference genome as well as the reads. The source code of CloudAligner is available at http://cloudaligner.sourceforge.net/ and its web version is at http

  1. ExprAlign - the identification of ESTs in non-model species by alignment of cDNA microarray expression profiles

    PubMed Central

    2009-01-01

    Background Sequence identification of ESTs from non-model species offers distinct challenges particularly when these species have duplicated genomes and when they are phylogenetically distant from sequenced model organisms. For the common carp, an environmental model of aquacultural interest, large numbers of ESTs remained unidentified using BLAST sequence alignment. We have used the expression profiles from large-scale microarray experiments to suggest gene identities. Results Expression profiles from ~700 cDNA microarrays describing responses of 7 major tissues to multiple environmental stressors were used to define a co-expression landscape. This was based on the Pearsons correlation coefficient relating each gene with all other genes, from which a network description provided clusters of highly correlated genes as 'mountains'. We show that these contain genes with known identities and genes with unknown identities, and that the correlation constitutes evidence of identity in the latter. This procedure has suggested identities to 522 of 2701 unknown carp ESTs sequences. We also discriminate several common carp genes and gene isoforms that were not discriminated by BLAST sequence alignment alone. Precision in identification was substantially improved by use of data from multiple tissues and treatments. Conclusion The detailed analysis of co-expression landscapes is a sensitive technique for suggesting an identity for the large number of BLAST unidentified cDNAs generated in EST projects. It is capable of detecting even subtle changes in expression profiles, and thereby of distinguishing genes with a common BLAST identity into different identities. It benefits from the use of multiple treatments or contrasts, and from the large-scale microarray data. PMID:19939286

  2. DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode.

    PubMed

    Fayazfar, H; Afshar, A; Dolati, M; Dolati, A

    2014-07-11

    For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended DNA concentration range, the change of charge transfer resistance was found to have a linear relationship in respect to the logarithm of the complementary oligonucleotides sequence concentrations in the wide range of 1.0×10(-15)-1.0×10(-7)M, with a detection limit of 1.0×10(-17)M (S/N=3). The prepared sensor also showed good stability (14 days), reproducibility (RSD=2.1%) and could be conveniently regenerated via dehybridization in hot water. The significant improvement in sensitivity illustrates that combining gold nanoparticles with the on-site fabricated aligned MWCNT array represents a promising platform for achieving sensitive biosensor for fast mutation screening related to most human cancer types. Copyright © 2014. Published by Elsevier B.V.

  3. Chromosome specific repetitive DNA sequences

    DOEpatents

    Moyzis, Robert K.; Meyne, Julianne

    1991-01-01

    A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  4. Vertical decomposition with Genetic Algorithm for Multiple Sequence Alignment

    PubMed Central

    2011-01-01

    Background Many Bioinformatics studies begin with a multiple sequence alignment as the foundation for their research. This is because multiple sequence alignment can be a useful technique for studying molecular evolution and analyzing sequence structure relationships. Results In this paper, we have proposed a Vertical Decomposition with Genetic Algorithm (VDGA) for Multiple Sequence Alignment (MSA). In VDGA, we divide the sequences vertically into two or more subsequences, and then solve them individually using a guide tree approach. Finally, we combine all the subsequences to generate a new multiple sequence alignment. This technique is applied on the solutions of the initial generation and of each child generation within VDGA. We have used two mechanisms to generate an initial population in this research: the first mechanism is to generate guide trees with randomly selected sequences and the second is shuffling the sequences inside such trees. Two different genetic operators have been implemented with VDGA. To test the performance of our algorithm, we have compared it with existing well-known methods, namely PRRP, CLUSTALX, DIALIGN, HMMT, SB_PIMA, ML_PIMA, MULTALIGN, and PILEUP8, and also other methods, based on Genetic Algorithms (GA), such as SAGA, MSA-GA and RBT-GA, by solving a number of benchmark datasets from BAliBase 2.0. Conclusions The experimental results showed that the VDGA with three vertical divisions was the most successful variant for most of the test cases in comparison to other divisions considered with VDGA. The experimental results also confirmed that VDGA outperformed the other methods considered in this research. PMID:21867510

  5. DNApod: DNA polymorphism annotation database from next-generation sequence read archives.

    PubMed

    Mochizuki, Takako; Tanizawa, Yasuhiro; Fujisawa, Takatomo; Ohta, Tazro; Nikoh, Naruo; Shimizu, Tokurou; Toyoda, Atsushi; Fujiyama, Asao; Kurata, Nori; Nagasaki, Hideki; Kaminuma, Eli; Nakamura, Yasukazu

    2017-01-01

    With the rapid advances in next-generation sequencing (NGS), datasets for DNA polymorphisms among various species and strains have been produced, stored, and distributed. However, reliability varies among these datasets because the experimental and analytical conditions used differ among assays. Furthermore, such datasets have been frequently distributed from the websites of individual sequencing projects. It is desirable to integrate DNA polymorphism data into one database featuring uniform quality control that is distributed from a single platform at a single place. DNA polymorphism annotation database (DNApod; http://tga.nig.ac.jp/dnapod/) is an integrated database that stores genome-wide DNA polymorphism datasets acquired under uniform analytical conditions, and this includes uniformity in the quality of the raw data, the reference genome version, and evaluation algorithms. DNApod genotypic data are re-analyzed whole-genome shotgun datasets extracted from sequence read archives, and DNApod distributes genome-wide DNA polymorphism datasets and known-gene annotations for each DNA polymorphism. This new database was developed for storing genome-wide DNA polymorphism datasets of plants, with crops being the first priority. Here, we describe our analyzed data for 679, 404, and 66 strains of rice, maize, and sorghum, respectively. The analytical methods are available as a DNApod workflow in an NGS annotation system of the DNA Data Bank of Japan and a virtual machine image. Furthermore, DNApod provides tables of links of identifiers between DNApod genotypic data and public phenotypic data. To advance the sharing of organism knowledge, DNApod offers basic and ubiquitous functions for multiple alignment and phylogenetic tree construction by using orthologous gene information.

  6. DNApod: DNA polymorphism annotation database from next-generation sequence read archives

    PubMed Central

    Mochizuki, Takako; Tanizawa, Yasuhiro; Fujisawa, Takatomo; Ohta, Tazro; Nikoh, Naruo; Shimizu, Tokurou; Toyoda, Atsushi; Fujiyama, Asao; Kurata, Nori; Nagasaki, Hideki; Kaminuma, Eli; Nakamura, Yasukazu

    2017-01-01

    With the rapid advances in next-generation sequencing (NGS), datasets for DNA polymorphisms among various species and strains have been produced, stored, and distributed. However, reliability varies among these datasets because the experimental and analytical conditions used differ among assays. Furthermore, such datasets have been frequently distributed from the websites of individual sequencing projects. It is desirable to integrate DNA polymorphism data into one database featuring uniform quality control that is distributed from a single platform at a single place. DNA polymorphism annotation database (DNApod; http://tga.nig.ac.jp/dnapod/) is an integrated database that stores genome-wide DNA polymorphism datasets acquired under uniform analytical conditions, and this includes uniformity in the quality of the raw data, the reference genome version, and evaluation algorithms. DNApod genotypic data are re-analyzed whole-genome shotgun datasets extracted from sequence read archives, and DNApod distributes genome-wide DNA polymorphism datasets and known-gene annotations for each DNA polymorphism. This new database was developed for storing genome-wide DNA polymorphism datasets of plants, with crops being the first priority. Here, we describe our analyzed data for 679, 404, and 66 strains of rice, maize, and sorghum, respectively. The analytical methods are available as a DNApod workflow in an NGS annotation system of the DNA Data Bank of Japan and a virtual machine image. Furthermore, DNApod provides tables of links of identifiers between DNApod genotypic data and public phenotypic data. To advance the sharing of organism knowledge, DNApod offers basic and ubiquitous functions for multiple alignment and phylogenetic tree construction by using orthologous gene information. PMID:28234924

  7. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments.

    PubMed

    Huber, Thomas; Faulkner, Geoffrey; Hugenholtz, Philip

    2004-09-22

    Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments. Bellerophon is available as an interactive web server at http://foo.maths.uq.edu.au/~huber/bellerophon.pl

  8. Spiking of contemporary human template DNA with ancient DNA extracts induces mutations under PCR and generates nonauthentic mitochondrial sequences.

    PubMed

    Pusch, Carsten M; Bachmann, Lutz

    2004-05-01

    Proof of authenticity is the greatest challenge in palaeogenetic research, and many safeguards have become standard routine in laboratories specialized on ancient DNA research. Here we describe an as-yet unknown source of artifacts that will require special attention in the future. We show that ancient DNA extracts on their own can have an inhibitory and mutagenic effect under PCR. We have spiked PCR reactions including known human test DNA with 14 selected ancient DNA extracts from human and nonhuman sources. We find that the ancient DNA extracts inhibit the amplification of large fragments to different degrees, suggesting that the usual control against contaminations, i.e., the absence of long amplifiable fragments, is not sufficient. But even more important, we find that the extracts induce mutations in a nonrandom fashion. We have amplified a 148-bp stretch of the mitochondrial HVRI from contemporary human template DNA in spiked PCR reactions. Subsequent analysis of 547 sequences from cloned amplicons revealed that the vast majority (76.97%) differed from the correct sequence by single nucleotide substitutions and/or indels. In total, 34 positions of a 103-bp alignment are affected, and most mutations occur repeatedly in independent PCR amplifications. Several of the induced mutations occur at positions that have previously been detected in studies of ancient hominid sequences, including the Neandertal sequences. Our data imply that PCR-induced mutations are likely to be an intrinsic and general problem of PCR amplifications of ancient templates. Therefore, ancient DNA sequences should be considered with caution, at least as long as the molecular basis for the extract-induced mutations is not understood.

  9. Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling

    PubMed Central

    Chang, Chun-Tien; Tsai, Chi-Neu; Tang, Chuan Yi; Chen, Chun-Houh; Lian, Jang-Hau; Hu, Chi-Yu; Tsai, Chia-Lung; Chao, Angel; Lai, Chyong-Huey; Wang, Tzu-Hao; Lee, Yun-Shien

    2012-01-01

    The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs), insertion-deletions (indels), short tandem repeats (STRs), and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR), which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i) physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii) predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS); (iii) determine human papilloma virus (HPV) genotypes by searching current viral databases in cases of double infections; (iv) estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4) and its paralog HSPDP3. PMID:22778697

  10. Evolutionary profiles from the QR factorization of multiple sequence alignments

    PubMed Central

    Sethi, Anurag; O'Donoghue, Patrick; Luthey-Schulten, Zaida

    2005-01-01

    We present an algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of the homologous group. The method, based on the multidimensional QR factorization of numerically encoded multiple sequence alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. We observe a general trend that these smaller, more evolutionarily balanced profiles have comparable and, in many cases, better performance in database searches than conventional profiles containing hundreds of sequences, constructed in an iterative and computationally intensive procedure. For more diverse families or superfamilies, with sequence identity <30%, structural alignments, based purely on the geometry of the protein structures, provide better alignments than pure sequence-based methods. Merging the structure and sequence information allows the construction of accurate profiles for distantly related groups. These structure-based profiles outperformed other sequence-based methods for finding distant homologs and were used to identify a putative class II cysteinyl-tRNA synthetase (CysRS) in several archaea that eluded previous annotation studies. Phylogenetic analysis showed the putative class II CysRSs to be a monophyletic group and homology modeling revealed a constellation of active site residues similar to that in the known class I CysRS. PMID:15741270

  11. Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW.

    PubMed

    Oliver, Tim; Schmidt, Bertil; Nathan, Darran; Clemens, Ralf; Maskell, Douglas

    2005-08-15

    Aligning hundreds of sequences using progressive alignment tools such as ClustalW requires several hours on state-of-the-art workstations. We present a new approach to compute multiple sequence alignments in far shorter time using reconfigurable hardware. This results in an implementation of ClustalW with significant runtime savings on a standard off-the-shelf FPGA.

  12. Progressive structure-based alignment of homologous proteins: Adopting sequence comparison strategies.

    PubMed

    Joseph, Agnel Praveen; Srinivasan, Narayanaswamy; de Brevern, Alexandre G

    2012-09-01

    Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Heuristic reusable dynamic programming: efficient updates of local sequence alignment.

    PubMed

    Hong, Changjin; Tewfik, Ahmed H

    2009-01-01

    Recomputation of the previously evaluated similarity results between biological sequences becomes inevitable when researchers realize errors in their sequenced data or when the researchers have to compare nearly similar sequences, e.g., in a family of proteins. We present an efficient scheme for updating local sequence alignments with an affine gap model. In principle, using the previous matching result between two amino acid sequences, we perform a forward-backward alignment to generate heuristic searching bands which are bounded by a set of suboptimal paths. Given a correctly updated sequence, we initially predict a new score of the alignment path for each contour to select the best candidates among them. Then, we run the Smith-Waterman algorithm in this confined space. Furthermore, our heuristic alignment for an updated sequence shows that it can be further accelerated by using reusable dynamic programming (rDP), our prior work. In this study, we successfully validate "relative node tolerance bound" (RNTB) in the pruned searching space. Furthermore, we improve the computational performance by quantifying the successful RNTB tolerance probability and switch to rDP on perturbation-resilient columns only. In our searching space derived by a threshold value of 90 percent of the optimal alignment score, we find that 98.3 percent of contours contain correctly updated paths. We also find that our method consumes only 25.36 percent of the runtime cost of sparse dynamic programming (sDP) method, and to only 2.55 percent of that of a normal dynamic programming with the Smith-Waterman algorithm.

  14. Biosensors for DNA sequence detection

    NASA Technical Reports Server (NTRS)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  15. "First generation" automated DNA sequencing technology.

    PubMed

    Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M

    2011-10-01

    Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.

  16. DEMO: Sequence Alignment to Predict Across Species Susceptibility

    EPA Science Inventory

    The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility tool (SeqAPASS; https://seqapass.epa.gov/seqapass/) was developed to comparatively evaluate protein sequence and structural similarity across species as a means to extrapolate toxic...

  17. A novel model for DNA sequence similarity analysis based on graph theory.

    PubMed

    Qi, Xingqin; Wu, Qin; Zhang, Yusen; Fuller, Eddie; Zhang, Cun-Quan

    2011-01-01

    Determination of sequence similarity is one of the major steps in computational phylogenetic studies. As we know, during evolutionary history, not only DNA mutations for individual nucleotide but also subsequent rearrangements occurred. It has been one of major tasks of computational biologists to develop novel mathematical descriptors for similarity analysis such that various mutation phenomena information would be involved simultaneously. In this paper, different from traditional methods (eg, nucleotide frequency, geometric representations) as bases for construction of mathematical descriptors, we construct novel mathematical descriptors based on graph theory. In particular, for each DNA sequence, we will set up a weighted directed graph. The adjacency matrix of the directed graph will be used to induce a representative vector for DNA sequence. This new approach measures similarity based on both ordering and frequency of nucleotides so that much more information is involved. As an application, the method is tested on a set of 0.9-kb mtDNA sequences of twelve different primate species. All output phylogenetic trees with various distance estimations have the same topology, and are generally consistent with the reported results from early studies, which proves the new method's efficiency; we also test the new method on a simulated data set, which shows our new method performs better than traditional global alignment method when subsequent rearrangements happen frequently during evolutionary history.

  18. A distributed system for fast alignment of next-generation sequencing data.

    PubMed

    Srimani, Jaydeep K; Wu, Po-Yen; Phan, John H; Wang, May D

    2010-12-01

    We developed a scalable distributed computing system using the Berkeley Open Interface for Network Computing (BOINC) to align next-generation sequencing (NGS) data quickly and accurately. NGS technology is emerging as a promising platform for gene expression analysis due to its high sensitivity compared to traditional genomic microarray technology. However, despite the benefits, NGS datasets can be prohibitively large, requiring significant computing resources to obtain sequence alignment results. Moreover, as the data and alignment algorithms become more prevalent, it will become necessary to examine the effect of the multitude of alignment parameters on various NGS systems. We validate the distributed software system by (1) computing simple timing results to show the speed-up gained by using multiple computers, (2) optimizing alignment parameters using simulated NGS data, and (3) computing NGS expression levels for a single biological sample using optimal parameters and comparing these expression levels to that of a microarray sample. Results indicate that the distributed alignment system achieves approximately a linear speed-up and correctly distributes sequence data to and gathers alignment results from multiple compute clients.

  19. A Probabilistic Model of Local Sequence Alignment That Simplifies Statistical Significance Estimation

    PubMed Central

    Eddy, Sean R.

    2008-01-01

    Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (λ) requires time-consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that integrate over alignment uncertainty (“Forward” scores), but the expected distribution of Forward scores remains unknown. Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores (“Viterbi” scores) are Gumbel-distributed with constant λ = log 2, and the high scoring tail of Forward scores is exponential with the same constant λ. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318 profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation values (E-values) for both Viterbi and Forward scores for probabilistic local alignments. PMID:18516236

  20. Phylogenetics of Pinus (Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences.

    PubMed

    Liston, A; Robinson, W A; Piñero, D; Alvarez-Buylla, E R

    1999-02-01

    A 650-bp portion of the nuclear ribosomal DNA internal transcribed spacer region was sequenced in 47 species of Pinus, representing all recognized subsections of the genus, and 2 species of Picea and Cathaya as outgroups. Parsimony analyses of these length variable sequences were conducted using a manual alignment, 13 different automated alignments, elision of the automated alignments, and exclusion of all alignment ambiguous sites. High and moderately supported clades were consistently resolved across the different analyses, while poorly supported clades were inconsistently recovered. Comparison of the topologies highlights taxa of particularly problematic placement including Pinus nelsonii and P. aristata. Within subgenus Pinus, there is moderate support for the monophyly of a narrowly circumscribed subsect. Pinus (=subsect. Sylvestres) and strong support for a clade of North and Central American hard pines. The Himalayan P. roxburghii may be sister species to these "New World hard pines," which have two well-supported subgroups, subsect. Ponderosae and a clade of the remaining five subsections. The position of subsect. Contortae conflicts with its placement in a chloroplast DNA restriction site study. Within subgenus Strobus there is consistent support for the monophyly of a broadly circumscribed subsect. Strobi (including P. krempfii and a polyphyletic subsect. Cembrae) derived from a paraphyletic grade of the remaining soft pines. Relationships among subsects. Gerardianae, Cembroides, and Balfourianae are poorly resolved. Support for the monophyly of subgenus Pinus and subgenus Strobus is not consistently obtained. Copyright 1999 Academic Press.

  1. MUSCLE: multiple sequence alignment with high accuracy and high throughput.

    PubMed

    Edgar, Robert C

    2004-01-01

    We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.

  2. ChromatoGate: A Tool for Detecting Base Mis-Calls in Multiple Sequence Alignments by Semi-Automatic Chromatogram Inspection

    PubMed Central

    Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros

    2013-01-01

    Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors. PMID:24688709

  3. ChromatoGate: A Tool for Detecting Base Mis-Calls in Multiple Sequence Alignments by Semi-Automatic Chromatogram Inspection.

    PubMed

    Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros

    2013-01-01

    Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors.

  4. Is multiple-sequence alignment required for accurate inference of phylogeny?

    PubMed

    Höhl, Michael; Ragan, Mark A

    2007-04-01

    The process of inferring phylogenetic trees from molecular sequences almost always starts with a multiple alignment of these sequences but can also be based on methods that do not involve multiple sequence alignment. Very little is known about the accuracy with which such alignment-free methods recover the correct phylogeny or about the potential for increasing their accuracy. We conducted a large-scale comparison of ten alignment-free methods, among them one new approach that does not calculate distances and a faster variant of our pattern-based approach; all distance-based alignment-free methods are freely available from http://www.bioinformatics.org.au (as Python package decaf+py). We show that most methods exhibit a higher overall reconstruction accuracy in the presence of high among-site rate variation. Under all conditions that we considered, variants of the pattern-based approach were significantly better than the other alignment-free methods. The new pattern-based variant achieved a speed-up of an order of magnitude in the distance calculation step, accompanied by a small loss of tree reconstruction accuracy. A method of Bayesian inference from k-mers did not improve on classical alignment-free (and distance-based) methods but may still offer other advantages due to its Bayesian nature. We found the optimal word length k of word-based methods to be stable across various data sets, and we provide parameter ranges for two different alphabets. The influence of these alphabets was analyzed to reveal a trade-off in reconstruction accuracy between long and short branches. We have mapped the phylogenetic accuracy for many alignment-free methods, among them several recently introduced ones, and increased our understanding of their behavior in response to biologically important parameters. In all experiments, the pattern-based approach emerged as superior, at the expense of higher resource consumption. Nonetheless, no alignment-free method that we examined recovers

  5. Phylo: A Citizen Science Approach for Improving Multiple Sequence Alignment

    PubMed Central

    Kam, Alfred; Kwak, Daniel; Leung, Clarence; Wu, Chu; Zarour, Eleyine; Sarmenta, Luis; Blanchette, Mathieu; Waldispühl, Jérôme

    2012-01-01

    Background Comparative genomics, or the study of the relationships of genome structure and function across different species, offers a powerful tool for studying evolution, annotating genomes, and understanding the causes of various genetic disorders. However, aligning multiple sequences of DNA, an essential intermediate step for most types of analyses, is a difficult computational task. In parallel, citizen science, an approach that takes advantage of the fact that the human brain is exquisitely tuned to solving specific types of problems, is becoming increasingly popular. There, instances of hard computational problems are dispatched to a crowd of non-expert human game players and solutions are sent back to a central server. Methodology/Principal Findings We introduce Phylo, a human-based computing framework applying “crowd sourcing” techniques to solve the Multiple Sequence Alignment (MSA) problem. The key idea of Phylo is to convert the MSA problem into a casual game that can be played by ordinary web users with a minimal prior knowledge of the biological context. We applied this strategy to improve the alignment of the promoters of disease-related genes from up to 44 vertebrate species. Since the launch in November 2010, we received more than 350,000 solutions submitted from more than 12,000 registered users. Our results show that solutions submitted contributed to improving the accuracy of up to 70% of the alignment blocks considered. Conclusions/Significance We demonstrate that, combined with classical algorithms, crowd computing techniques can be successfully used to help improving the accuracy of MSA. More importantly, we show that an NP-hard computational problem can be embedded in casual game that can be easily played by people without significant scientific training. This suggests that citizen science approaches can be used to exploit the billions of “human-brain peta-flops” of computation that are spent every day playing games. Phylo is

  6. A statistical physics perspective on alignment-independent protein sequence comparison.

    PubMed

    Chattopadhyay, Amit K; Nasiev, Diar; Flower, Darren R

    2015-08-01

    Within bioinformatics, the textual alignment of amino acid sequences has long dominated the determination of similarity between proteins, with all that implies for shared structure, function and evolutionary descent. Despite the relative success of modern-day sequence alignment algorithms, so-called alignment-free approaches offer a complementary means of determining and expressing similarity, with potential benefits in certain key applications, such as regression analysis of protein structure-function studies, where alignment-base similarity has performed poorly. Here, we offer a fresh, statistical physics-based perspective focusing on the question of alignment-free comparison, in the process adapting results from 'first passage probability distribution' to summarize statistics of ensemble averaged amino acid propensity values. In this article, we introduce and elaborate this approach. © The Author 2015. Published by Oxford University Press.

  7. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats

    PubMed Central

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-01-01

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. PMID:26481363

  8. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, S.K.

    1998-03-24

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example, the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei. 25 figs.

  9. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, Stefan K.

    1998-01-01

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei.

  10. Statistical properties of DNA sequences

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Simons, M.; Stanley, H. E.

    1995-01-01

    We review evidence supporting the idea that the DNA sequence in genes containing non-coding regions is correlated, and that the correlation is remarkably long range--indeed, nucleotides thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationarity" feature of the sequence of base pairs by applying a new algorithm called detrended fluctuation analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and non-coding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to every DNA sequence (33301 coding and 29453 non-coding) in the entire GenBank database. Finally, we describe briefly some recent work showing that the non-coding sequences have certain statistical features in common with natural and artificial languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts. These statistical properties of non-coding sequences support the possibility that non-coding regions of DNA may carry biological information.

  11. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments.

    PubMed

    Daily, Jeff

    2016-02-10

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. A faster intra-sequence local pairwise alignment implementation is described and benchmarked, including new global and semi-global variants. Using a 375 residue query sequence a speed of 136 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon E5-2670 24-core processor system, the highest reported for an implementation based on Farrar's 'striped' approach. Rognes's SWIPE optimal database search application is still generally the fastest available at 1.2 to at best 2.4 times faster than Parasail for sequences shorter than 500 amino acids. However, Parasail was faster for longer sequences. For global alignments, Parasail's prefix scan implementation is generally the fastest, faster even than Farrar's 'striped' approach, however the opal library is faster for single-threaded applications. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. Applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.

  12. Flexible, fast and accurate sequence alignment profiling on GPGPU with PaSWAS.

    PubMed

    Warris, Sven; Yalcin, Feyruz; Jackson, Katherine J L; Nap, Jan Peter

    2015-01-01

    To obtain large-scale sequence alignments in a fast and flexible way is an important step in the analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW) algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate due to statistical issues. Current SW implementations that run on graphics hardware do not report the alignment details necessary for further analysis. With the Parallel SW Alignment Software (PaSWAS) it is possible (a) to have easy access to the computational power of NVIDIA-based general purpose graphics processing units (GPGPUs) to perform high-speed sequence alignments, and (b) retrieve relevant information such as score, number of gaps and mismatches. The software reports multiple hits per alignment. The added value of the new SW implementation is demonstrated with two test cases: (1) tag recovery in next generation sequence data and (2) isotype assignment within an immunoglobulin 454 sequence data set. Both cases show the usability and versatility of the new parallel Smith-Waterman implementation.

  13. SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics.

    PubMed

    Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf

    2015-08-01

    RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of [Formula: see text]. Subsequently, numerous faster 'Sankoff-style' approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity ([Formula: see text] quartic time). Breaking this barrier, we introduce the novel Sankoff-style algorithm 'sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)', which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff's original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. © The Author 2015. Published by Oxford University Press.

  14. A survey and evaluations of histogram-based statistics in alignment-free sequence comparison.

    PubMed

    Luczak, Brian B; James, Benjamin T; Girgis, Hani Z

    2017-12-06

    Since the dawn of the bioinformatics field, sequence alignment scores have been the main method for comparing sequences. However, alignment algorithms are quadratic, requiring long execution time. As alternatives, scientists have developed tens of alignment-free statistics for measuring the similarity between two sequences. We surveyed tens of alignment-free k-mer statistics. Additionally, we evaluated 33 statistics and multiplicative combinations between the statistics and/or their squares. These statistics are calculated on two k-mer histograms representing two sequences. Our evaluations using global alignment scores revealed that the majority of the statistics are sensitive and capable of finding similar sequences to a query sequence. Therefore, any of these statistics can filter out dissimilar sequences quickly. Further, we observed that multiplicative combinations of the statistics are highly correlated with the identity score. Furthermore, combinations involving sequence length difference or Earth Mover's distance, which takes the length difference into account, are always among the highest correlated paired statistics with identity scores. Similarly, paired statistics including length difference or Earth Mover's distance are among the best performers in finding the K-closest sequences. Interestingly, similar performance can be obtained using histograms of shorter words, resulting in reducing the memory requirement and increasing the speed remarkably. Moreover, we found that simple single statistics are sufficient for processing next-generation sequencing reads and for applications relying on local alignment. Finally, we measured the time requirement of each statistic. The survey and the evaluations will help scientists with identifying efficient alternatives to the costly alignment algorithm, saving thousands of computational hours. The source code of the benchmarking tool is available as Supplementary Materials. © The Author 2017. Published by Oxford

  15. Resolving the multiple sequence alignment problem using biogeography-based optimization with multiple populations.

    PubMed

    Zemali, El-Amine; Boukra, Abdelmadjid

    2015-08-01

    The multiple sequence alignment (MSA) is one of the most challenging problems in bioinformatics, it involves discovering similarity between a set of protein or DNA sequences. This paper introduces a new method for the MSA problem called biogeography-based optimization with multiple populations (BBOMP). It is based on a recent metaheuristic inspired from the mathematics of biogeography named biogeography-based optimization (BBO). To improve the exploration ability of BBO, we have introduced a new concept allowing better exploration of the search space. It consists of manipulating multiple populations having each one its own parameters. These parameters are used to build up progressive alignments allowing more diversity. At each iteration, the best found solution is injected in each population. Moreover, to improve solution quality, six operators are defined. These operators are selected with a dynamic probability which changes according to the operators efficiency. In order to test proposed approach performance, we have considered a set of datasets from Balibase 2.0 and compared it with many recent algorithms such as GAPAM, MSA-GA, QEAMSA and RBT-GA. The results show that the proposed approach achieves better average score than the previously cited methods.

  16. BLAST and FASTA similarity searching for multiple sequence alignment.

    PubMed

    Pearson, William R

    2014-01-01

    BLAST, FASTA, and other similarity searching programs seek to identify homologous proteins and DNA sequences based on excess sequence similarity. If two sequences share much more similarity than expected by chance, the simplest explanation for the excess similarity is common ancestry-homology. The most effective similarity searches compare protein sequences, rather than DNA sequences, for sequences that encode proteins, and use expectation values, rather than percent identity, to infer homology. The BLAST and FASTA packages of sequence comparison programs provide programs for comparing protein and DNA sequences to protein databases (the most sensitive searches). Protein and translated-DNA comparisons to protein databases routinely allow evolutionary look back times from 1 to 2 billion years; DNA:DNA searches are 5-10-fold less sensitive. BLAST and FASTA can be run on popular web sites, but can also be downloaded and installed on local computers. With local installation, target databases can be customized for the sequence data being characterized. With today's very large protein databases, search sensitivity can also be improved by searching smaller comprehensive databases, for example, a complete protein set from an evolutionarily neighboring model organism. By default, BLAST and FASTA use scoring strategies target for distant evolutionary relationships; for comparisons involving short domains or queries, or searches that seek relatively close homologs (e.g. mouse-human), shallower scoring matrices will be more effective. Both BLAST and FASTA provide very accurate statistical estimates, which can be used to reliably identify protein sequences that diverged more than 2 billion years ago.

  17. Kilo-sequencing: an ordered strategy for rapid DNA sequence data acquisition.

    PubMed Central

    Barnes, W M; Bevan, M

    1983-01-01

    A strategy for rapid DNA sequence acquisition in an ordered, nonrandom manner, while retaining all of the conveniences of the dideoxy method with M13 transducing phage DNA template, is described. Target DNA 3 to 14 kb in size can be stably carried by our M13 vectors. Suitable targets are stretches of DNA which lack an enzyme recognition site which is unique on our cloning vectors and adjacent to the sequencing primer; current sites that are so useful when lacking are Pst, Xba, HindIII, BglII, EcoRI. By an in vitro procedure, we cut RF DNA once randomly and once specifically, to create thousands of deletions which start at the unique restriction site adjacent to the dideoxy sequencing primer and extend various distances across the target DNA. Phage carrying a desired size of deletions, whose DNA as template will give rise to DNA sequence data in a desired location along the target DNA, may be purified by electrophoresis alive on agarose gels. Phage running in the same location on the agarose gel thus conveniently give rise to nucleotide sequence data from the same kilobase of target DNA. Images PMID:6298723

  18. SARA-Coffee web server, a tool for the computation of RNA sequence and structure multiple alignments

    PubMed Central

    Di Tommaso, Paolo; Bussotti, Giovanni; Kemena, Carsten; Capriotti, Emidio; Chatzou, Maria; Prieto, Pablo; Notredame, Cedric

    2014-01-01

    This article introduces the SARA-Coffee web server; a service allowing the online computation of 3D structure based multiple RNA sequence alignments. The server makes it possible to combine sequences with and without known 3D structures. Given a set of sequences SARA-Coffee outputs a multiple sequence alignment along with a reliability index for every sequence, column and aligned residue. SARA-Coffee combines SARA, a pairwise structural RNA aligner with the R-Coffee multiple RNA aligner in a way that has been shown to improve alignment accuracy over most sequence aligners when enough structural data is available. The server can be accessed from http://tcoffee.crg.cat/apps/tcoffee/do:saracoffee. PMID:24972831

  19. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  20. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments

    DOE PAGES

    Daily, Jeffrey A.

    2016-02-10

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less

  1. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Jeffrey A.

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less

  2. SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics

    PubMed Central

    Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf

    2015-01-01

    Motivation: RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of O(n6). Subsequently, numerous faster ‘Sankoff-style’ approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity (≥ quartic time). Results: Breaking this barrier, we introduce the novel Sankoff-style algorithm ‘sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)’, which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff’s original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. Availability and implementation: SPARSE is freely available at http://www.bioinf.uni-freiburg.de/Software/SPARSE. Contact: backofen@informatik.uni-freiburg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25838465

  3. Diversity Measures in Environmental Sequences Are Highly Dependent on Alignment Quality—Data from ITS and New LSU Primers Targeting Basidiomycetes

    PubMed Central

    Fischer, Christiane; Daniel, Rolf; Wubet, Tesfaye

    2012-01-01

    The ribosomal DNA comprised of the ITS1-5.8S-ITS2 regions is widely used as a fungal marker in molecular ecology and systematics but cannot be aligned with confidence across genetically distant taxa. In order to study the diversity of Agaricomycotina in forest soils, we designed primers targeting the more alignable 28S (LSU) gene, which should be more useful for phylogenetic analyses of the detected taxa. This paper compares the performance of the established ITS1F/4B primer pair, which targets basidiomycetes, to that of two new pairs. Key factors in the comparison were the diversity covered, off-target amplification, rarefaction at different Operational Taxonomic Unit (OTU) cutoff levels, sensitivity of the method used to process the alignment to missing data and insecure positional homology, and the congruence of monophyletic clades with OTU assignments and BLAST-derived OTU names. The ITS primer pair yielded no off-target amplification but also exhibited the least fidelity to the expected phylogenetic groups. The LSU primers give complementary pictures of diversity, but were more sensitive to modifications of the alignment such as the removal of difficult-to align stretches. The LSU primers also yielded greater numbers of singletons but also had a greater tendency to produce OTUs containing sequences from a wider variety of species as judged by BLAST similarity. We introduced some new parameters to describe alignment heterogeneity based on Shannon entropy and the extent and contents of the OTUs in a phylogenetic tree space. Our results suggest that ITS should not be used when calculating phylogenetic trees from genetically distant sequences obtained from environmental DNA extractions and that it is inadvisable to define OTUs on the basis of very heterogeneous alignments. PMID:22363808

  4. Generic accelerated sequence alignment in SeqAn using vectorization and multi-threading.

    PubMed

    Rahn, René; Budach, Stefan; Costanza, Pascal; Ehrhardt, Marcel; Hancox, Jonny; Reinert, Knut

    2018-05-03

    Pairwise sequence alignment is undoubtedly a central tool in many bioinformatics analyses. In this paper, we present a generically accelerated module for pairwise sequence alignments applicable for a broad range of applications. In our module, we unified the standard dynamic programming kernel used for pairwise sequence alignments and extended it with a generalized inter-sequence vectorization layout, such that many alignments can be computed simultaneously by exploiting SIMD (Single Instruction Multiple Data) instructions of modern processors. We then extended the module by adding two layers of thread-level parallelization, where we a) distribute many independent alignments on multiple threads and b) inherently parallelize a single alignment computation using a work stealing approach producing a dynamic wavefront progressing along the minor diagonal. We evaluated our alignment vectorization and parallelization on different processors, including the newest Intel® Xeon® (Skylake) and Intel® Xeon Phi™ (KNL) processors, and use cases. The instruction set AVX512-BW (Byte and Word), available on Skylake processors, can genuinely improve the performance of vectorized alignments. We could run single alignments 1600 times faster on the Xeon Phi™ and 1400 times faster on the Xeon® than executing them with our previous sequential alignment module. The module is programmed in C++ using the SeqAn (Reinert et al., 2017) library and distributed with version 2.4. under the BSD license. We support SSE4, AVX2, AVX512 instructions and included UME::SIMD, a SIMD-instruction wrapper library, to extend our module for further instruction sets. We thoroughly test all alignment components with all major C++ compilers on various platforms. rene.rahn@fu-berlin.de.

  5. An accurate algorithm for the detection of DNA fragments from dilution pool sequencing experiments.

    PubMed

    Bansal, Vikas

    2018-01-01

    The short read lengths of current high-throughput sequencing technologies limit the ability to recover long-range haplotype information. Dilution pool methods for preparing DNA sequencing libraries from high molecular weight DNA fragments enable the recovery of long DNA fragments from short sequence reads. These approaches require computational methods for identifying the DNA fragments using aligned sequence reads and assembling the fragments into long haplotypes. Although a number of computational methods have been developed for haplotype assembly, the problem of identifying DNA fragments from dilution pool sequence data has not received much attention. We formulate the problem of detecting DNA fragments from dilution pool sequencing experiments as a genome segmentation problem and develop an algorithm that uses dynamic programming to optimize a likelihood function derived from a generative model for the sequence reads. This algorithm uses an iterative approach to automatically infer the mean background read depth and the number of fragments in each pool. Using simulated data, we demonstrate that our method, FragmentCut, has 25-30% greater sensitivity compared with an HMM based method for fragment detection and can also detect overlapping fragments. On a whole-genome human fosmid pool dataset, the haplotypes assembled using the fragments identified by FragmentCut had greater N50 length, 16.2% lower switch error rate and 35.8% lower mismatch error rate compared with two existing methods. We further demonstrate the greater accuracy of our method using two additional dilution pool datasets. FragmentCut is available from https://bansal-lab.github.io/software/FragmentCut. vibansal@ucsd.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  6. Exact calculation of distributions on integers, with application to sequence alignment.

    PubMed

    Newberg, Lee A; Lawrence, Charles E

    2009-01-01

    Computational biology is replete with high-dimensional discrete prediction and inference problems. Dynamic programming recursions can be applied to several of the most important of these, including sequence alignment, RNA secondary-structure prediction, phylogenetic inference, and motif finding. In these problems, attention is frequently focused on some scalar quantity of interest, a score, such as an alignment score or the free energy of an RNA secondary structure. In many cases, score is naturally defined on integers, such as a count of the number of pairing differences between two sequence alignments, or else an integer score has been adopted for computational reasons, such as in the test of significance of motif scores. The probability distribution of the score under an appropriate probabilistic model is of interest, such as in tests of significance of motif scores, or in calculation of Bayesian confidence limits around an alignment. Here we present three algorithms for calculating the exact distribution of a score of this type; then, in the context of pairwise local sequence alignments, we apply the approach so as to find the alignment score distribution and Bayesian confidence limits.

  7. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats.

    PubMed

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-11-16

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Phylo-mLogo: an interactive and hierarchical multiple-logo visualization tool for alignment of many sequences

    PubMed Central

    Shih, Arthur Chun-Chieh; Lee, DT; Peng, Chin-Lin; Wu, Yu-Wei

    2007-01-01

    Background When aligning several hundreds or thousands of sequences, such as epidemic virus sequences or homologous/orthologous sequences of some big gene families, to reconstruct the epidemiological history or their phylogenies, how to analyze and visualize the alignment results of many sequences has become a new challenge for computational biologists. Although there are several tools available for visualization of very long sequence alignments, few of them are applicable to the alignments of many sequences. Results A multiple-logo alignment visualization tool, called Phylo-mLogo, is presented in this paper. Phylo-mLogo calculates the variabilities and homogeneities of alignment sequences by base frequencies or entropies. Different from the traditional representations of sequence logos, Phylo-mLogo not only displays the global logo patterns of the whole alignment of multiple sequences, but also demonstrates their local homologous logos for each clade hierarchically. In addition, Phylo-mLogo also allows the user to focus only on the analysis of some important, structurally or functionally constrained sites in the alignment selected by the user or by built-in automatic calculation. Conclusion With Phylo-mLogo, the user can symbolically and hierarchically visualize hundreds of aligned sequences simultaneously and easily check the changes of their amino acid sites when analyzing many homologous/orthologous or influenza virus sequences. More information of Phylo-mLogo can be found at URL . PMID:17319966

  9. DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants.

    PubMed

    Sucher, Nikolaus J; Hennell, James R; Carles, Maria C

    2012-01-01

    DNA fingerprinting of plants has become an invaluable tool in forensic, scientific, and industrial laboratories all over the world. PCR has become part of virtually every variation of the plethora of approaches used for DNA fingerprinting today. DNA sequencing is increasingly used either in combination with or as a replacement for traditional DNA fingerprinting techniques. A prime example is the use of short, standardized regions of the genome as taxon barcodes for biological identification of plants. Rapid advances in "next generation sequencing" (NGS) technology are driving down the cost of sequencing and bringing large-scale sequencing projects into the reach of individual investigators. We present an overview of recent publications that demonstrate the use of "NGS" technology for DNA fingerprinting and DNA barcoding applications.

  10. Cost-effective sequencing of full-length cDNA clones powered by a de novo-reference hybrid assembly.

    PubMed

    Kuroshu, Reginaldo M; Watanabe, Junichi; Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka; Kasahara, Masahiro

    2010-05-07

    Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence approximately 800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only approximately US$3 per clone, demonstrating a significant advantage over previous approaches.

  11. Nanofabricated Racks of Aligned and Anchored DNA Substrates for Single-Molecule Imaging

    PubMed Central

    2009-01-01

    Single-molecule studies of biological macromolecules can benefit from new experimental platforms that facilitate experimental design and data acquisition. Here we develop new strategies to construct curtains of DNA in which the molecules are aligned with respect to one another and maintained in an extended configuration by anchoring both ends of the DNA to the surface of a microfluidic sample chamber that is otherwise coated with an inert lipid bilayer. This “double-tethered” DNA substrate configuration is established through the use of nanofabricated rack patterns comprised of two distinct functional elements: linear barriers to lipid diffusion that align DNA molecules anchored by one end to the bilayer and antibody-coated pentagons that provide immobile anchor points for the opposite ends of the DNA. These devices enable the alignment and anchoring of thousands of individual DNA molecules, which can then be visualized using total internal reflection fluorescence microscopy under conditions that do not require continuous application of buffer flow to stretch the DNA. This unique strategy offers the potential for studying protein−DNA interactions on large DNA substrates without compromising measurements through application of hydrodynamic force. We provide a proof-of-principle demonstration that double-tethered DNA curtains made with nanofabricated rack patterns can be used in a one-dimensional diffusion assay that monitors the motion of quantum dot-tagged proteins along DNA. PMID:19736980

  12. Nanofabricated racks of aligned and anchored DNA substrates for single-molecule imaging.

    PubMed

    Gorman, Jason; Fazio, Teresa; Wang, Feng; Wind, Shalom; Greene, Eric C

    2010-01-19

    Single-molecule studies of biological macromolecules can benefit from new experimental platforms that facilitate experimental design and data acquisition. Here we develop new strategies to construct curtains of DNA in which the molecules are aligned with respect to one another and maintained in an extended configuration by anchoring both ends of the DNA to the surface of a microfluidic sample chamber that is otherwise coated with an inert lipid bilayer. This "double-tethered" DNA substrate configuration is established through the use of nanofabricated rack patterns comprised of two distinct functional elements: linear barriers to lipid diffusion that align DNA molecules anchored by one end to the bilayer and antibody-coated pentagons that provide immobile anchor points for the opposite ends of the DNA. These devices enable the alignment and anchoring of thousands of individual DNA molecules, which can then be visualized using total internal reflection fluorescence microscopy under conditions that do not require continuous application of buffer flow to stretch the DNA. This unique strategy offers the potential for studying protein-DNA interactions on large DNA substrates without compromising measurements through application of hydrodynamic force. We provide a proof-of-principle demonstration that double-tethered DNA curtains made with nanofabricated rack patterns can be used in a one-dimensional diffusion assay that monitors the motion of quantum dot-tagged proteins along DNA.

  13. Design of multiple sequence alignment algorithms on parallel, distributed memory supercomputers.

    PubMed

    Church, Philip C; Goscinski, Andrzej; Holt, Kathryn; Inouye, Michael; Ghoting, Amol; Makarychev, Konstantin; Reumann, Matthias

    2011-01-01

    The challenge of comparing two or more genomes that have undergone recombination and substantial amounts of segmental loss and gain has recently been addressed for small numbers of genomes. However, datasets of hundreds of genomes are now common and their sizes will only increase in the future. Multiple sequence alignment of hundreds of genomes remains an intractable problem due to quadratic increases in compute time and memory footprint. To date, most alignment algorithms are designed for commodity clusters without parallelism. Hence, we propose the design of a multiple sequence alignment algorithm on massively parallel, distributed memory supercomputers to enable research into comparative genomics on large data sets. Following the methodology of the sequential progressiveMauve algorithm, we design data structures including sequences and sorted k-mer lists on the IBM Blue Gene/P supercomputer (BG/P). Preliminary results show that we can reduce the memory footprint so that we can potentially align over 250 bacterial genomes on a single BG/P compute node. We verify our results on a dataset of E.coli, Shigella and S.pneumoniae genomes. Our implementation returns results matching those of the original algorithm but in 1/2 the time and with 1/4 the memory footprint for scaffold building. In this study, we have laid the basis for multiple sequence alignment of large-scale datasets on a massively parallel, distributed memory supercomputer, thus enabling comparison of hundreds instead of a few genome sequences within reasonable time.

  14. Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.

    PubMed

    Rani, R Ranjani; Ramyachitra, D

    2016-12-01

    Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. PFAAT version 2.0: a tool for editing, annotating, and analyzing multiple sequence alignments.

    PubMed

    Caffrey, Daniel R; Dana, Paul H; Mathur, Vidhya; Ocano, Marco; Hong, Eun-Jong; Wang, Yaoyu E; Somaroo, Shyamal; Caffrey, Brian E; Potluri, Shobha; Huang, Enoch S

    2007-10-11

    By virtue of their shared ancestry, homologous sequences are similar in their structure and function. Consequently, multiple sequence alignments are routinely used to identify trends that relate to function. This type of analysis is particularly productive when it is combined with structural and phylogenetic analysis. Here we describe the release of PFAAT version 2.0, a tool for editing, analyzing, and annotating multiple sequence alignments. Support for multiple annotations is a key component of this release as it provides a framework for most of the new functionalities. The sequence annotations are accessible from the alignment and tree, where they are typically used to label sequences or hyperlink them to related databases. Sequence annotations can be created manually or extracted automatically from UniProt entries. Once a multiple sequence alignment is populated with sequence annotations, sequences can be easily selected and sorted through a sophisticated search dialog. The selected sequences can be further analyzed using statistical methods that explicitly model relationships between the sequence annotations and residue properties. Residue annotations are accessible from the alignment viewer and are typically used to designate binding sites or properties for a particular residue. Residue annotations are also searchable, and allow one to quickly select alignment columns for further sequence analysis, e.g. computing percent identities. Other features include: novel algorithms to compute sequence conservation, mapping conservation scores to a 3D structure in Jmol, displaying secondary structure elements, and sorting sequences by residue composition. PFAAT provides a framework whereby end-users can specify knowledge for a protein family in the form of annotation. The annotations can be combined with sophisticated analysis to test hypothesis that relate to sequence, structure and function.

  16. GateKeeper: a new hardware architecture for accelerating pre-alignment in DNA short read mapping.

    PubMed

    Alser, Mohammed; Hassan, Hasan; Xin, Hongyi; Ergin, Oguz; Mutlu, Onur; Alkan, Can

    2017-11-01

    High throughput DNA sequencing (HTS) technologies generate an excessive number of small DNA segments -called short reads- that cause significant computational burden. To analyze the entire genome, each of the billions of short reads must be mapped to a reference genome based on the similarity between a read and 'candidate' locations in that reference genome. The similarity measurement, called alignment, formulated as an approximate string matching problem, is the computational bottleneck because: (i) it is implemented using quadratic-time dynamic programming algorithms and (ii) the majority of candidate locations in the reference genome do not align with a given read due to high dissimilarity. Calculating the alignment of such incorrect candidate locations consumes an overwhelming majority of a modern read mapper's execution time. Therefore, it is crucial to develop a fast and effective filter that can detect incorrect candidate locations and eliminate them before invoking computationally costly alignment algorithms. We propose GateKeeper, a new hardware accelerator that functions as a pre-alignment step that quickly filters out most incorrect candidate locations. GateKeeper is the first design to accelerate pre-alignment using Field-Programmable Gate Arrays (FPGAs), which can perform pre-alignment much faster than software. When implemented on a single FPGA chip, GateKeeper maintains high accuracy (on average >96%) while providing, on average, 90-fold and 130-fold speedup over the state-of-the-art software pre-alignment techniques, Adjacency Filter and Shifted Hamming Distance (SHD), respectively. The addition of GateKeeper as a pre-alignment step can reduce the verification time of the mrFAST mapper by a factor of 10. https://github.com/BilkentCompGen/GateKeeper. mohammedalser@bilkent.edu.tr or onur.mutlu@inf.ethz.ch or calkan@cs.bilkent.edu.tr. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press

  17. Forensic strategy to ensure the quality of sequencing data of mitochondrial DNA in highly degraded samples.

    PubMed

    Adachi, Noboru; Umetsu, Kazuo; Shojo, Hideki

    2014-01-01

    Mitochondrial DNA (mtDNA) is widely used for DNA analysis of highly degraded samples because of its polymorphic nature and high number of copies in a cell. However, as endogenous mtDNA in deteriorated samples is scarce and highly fragmented, it is not easy to obtain reliable data. In the current study, we report the risks of direct sequencing mtDNA in highly degraded material, and suggest a strategy to ensure the quality of sequencing data. It was observed that direct sequencing data of the hypervariable segment (HVS) 1 by using primer sets that generate an amplicon of 407 bp (long-primer sets) was different from results obtained by using newly designed primer sets that produce an amplicon of 120-139 bp (mini-primer sets). The data aligned with the results of mini-primer sets analysis in an amplicon length-dependent manner; the shorter the amplicon, the more evident the endogenous sequence became. Coding region analysis using multiplex amplified product-length polymorphisms revealed the incongruence of single nucleotide polymorphisms between the coding region and HVS 1 caused by contamination with exogenous mtDNA. Although the sequencing data obtained using long-primer sets turned out to be erroneous, it was unambiguous and reproducible. These findings suggest that PCR primers that produce amplicons shorter than those currently recognized should be used for mtDNA analysis in highly degraded samples. Haplogroup motif analysis of the coding region and HVS should also be performed to improve the reliability of forensic mtDNA data. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Rapid detection, classification and accurate alignment of up to a million or more related protein sequences.

    PubMed

    Neuwald, Andrew F

    2009-08-01

    The patterns of sequence similarity and divergence present within functionally diverse, evolutionarily related proteins contain implicit information about corresponding biochemical similarities and differences. A first step toward accessing such information is to statistically analyze these patterns, which, in turn, requires that one first identify and accurately align a very large set of protein sequences. Ideally, the set should include many distantly related, functionally divergent subgroups. Because it is extremely difficult, if not impossible for fully automated methods to align such sequences correctly, researchers often resort to manual curation based on detailed structural and biochemical information. However, multiply-aligning vast numbers of sequences in this way is clearly impractical. This problem is addressed using Multiply-Aligned Profiles for Global Alignment of Protein Sequences (MAPGAPS). The MAPGAPS program uses a set of multiply-aligned profiles both as a query to detect and classify related sequences and as a template to multiply-align the sequences. It relies on Karlin-Altschul statistics for sensitivity and on PSI-BLAST (and other) heuristics for speed. Using as input a carefully curated multiple-profile alignment for P-loop GTPases, MAPGAPS correctly aligned weakly conserved sequence motifs within 33 distantly related GTPases of known structure. By comparison, the sequence- and structurally based alignment methods hmmalign and PROMALS3D misaligned at least 11 and 23 of these regions, respectively. When applied to a dataset of 65 million protein sequences, MAPGAPS identified, classified and aligned (with comparable accuracy) nearly half a million putative P-loop GTPase sequences. A C++ implementation of MAPGAPS is available at http://mapgaps.igs.umaryland.edu. Supplementary data are available at Bioinformatics online.

  19. DNA Sequencing apparatus

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1992-01-01

    An automated DNA sequencing apparatus having a reactor for providing at least two series of DNA products formed from a single primer and a DNA strand, each DNA product of a series differing in molecular weight and having a chain terminating agent at one end; separating means for separating the DNA products to form a series bands, the intensity of substantially all nearby bands in a different series being different, band reading means for determining the position an This invention was made with government support including a grant from the U.S. Public Health Service, contract number AI-06045. The U.S. government has certain rights in the invention.

  20. Method for sequencing DNA base pairs

    DOEpatents

    Sessler, Andrew M.; Dawson, John

    1993-01-01

    The base pairs of a DNA structure are sequenced with the use of a scanning tunneling microscope (STM). The DNA structure is scanned by the STM probe tip, and, as it is being scanned, the DNA structure is separately subjected to a sequence of infrared radiation from four different sources, each source being selected to preferentially excite one of the four different bases in the DNA structure. Each particular base being scanned is subjected to such sequence of infrared radiation from the four different sources as that particular base is being scanned. The DNA structure as a whole is separately imaged for each subjection thereof to radiation from one only of each source.

  1. Method for sequencing DNA base pairs

    DOEpatents

    Sessler, A.M.; Dawson, J.

    1993-12-14

    The base pairs of a DNA structure are sequenced with the use of a scanning tunneling microscope (STM). The DNA structure is scanned by the STM probe tip, and, as it is being scanned, the DNA structure is separately subjected to a sequence of infrared radiation from four different sources, each source being selected to preferentially excite one of the four different bases in the DNA structure. Each particular base being scanned is subjected to such sequence of infrared radiation from the four different sources as that particular base is being scanned. The DNA structure as a whole is separately imaged for each subjection thereof to radiation from one only of each source. 6 figures.

  2. Analysing the performance of personal computers based on Intel microprocessors for sequence aligning bioinformatics applications.

    PubMed

    Nair, Pradeep S; John, Eugene B

    2007-01-01

    Aligning specific sequences against a very large number of other sequences is a central aspect of bioinformatics. With the widespread availability of personal computers in biology laboratories, sequence alignment is now often performed locally. This makes it necessary to analyse the performance of personal computers for sequence aligning bioinformatics benchmarks. In this paper, we analyse the performance of a personal computer for the popular BLAST and FASTA sequence alignment suites. Results indicate that these benchmarks have a large number of recurring operations and use memory operations extensively. It seems that the performance can be improved with a bigger L1-cache.

  3. Low-Energy Electron-Induced Strand Breaks in Telomere-Derived DNA Sequences-Influence of DNA Sequence and Topology.

    PubMed

    Rackwitz, Jenny; Bald, Ilko

    2018-03-26

    During cancer radiation therapy high-energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low-energy (<20 eV) electrons, which are able to damage DNA very efficiently by dissociative electron attachment. Recently, it was suggested that low-energy electron-induced DNA strand breaks strongly depend on the specific DNA sequence with a high sensitivity of G-rich sequences. Here, we use DNA origami platforms to expose G-rich telomere sequences to low-energy (8.8 eV) electrons to determine absolute cross sections for strand breakage and to study the influence of sequence modifications and topology of telomeric DNA on the strand breakage. We find that the telomeric DNA 5'-(TTA GGG) 2 is more sensitive to low-energy electrons than an intermixed sequence 5'-(TGT GTG A) 2 confirming the unique electronic properties resulting from G-stacking. With increasing length of the oligonucleotide (i.e., going from 5'-(GGG ATT) 2 to 5'-(GGG ATT) 4 ), both the variety of topology and the electron-induced strand break cross sections increase. Addition of K + ions decreases the strand break cross section for all sequences that are able to fold G-quadruplexes or G-intermediates, whereas the strand break cross section for the intermixed sequence remains unchanged. These results indicate that telomeric DNA is rather sensitive towards low-energy electron-induced strand breakage suggesting significant telomere shortening that can also occur during cancer radiation therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Method for Preparing DNA Sequencing Templates Using a DNA-Binding Microplate

    PubMed Central

    Yang, Yu; Hebron, Haroun R.; Hang, Jun

    2009-01-01

    A DNA-binding matrix was immobilized on the surface of a 96-well microplate and used for plasmid DNA preparation for DNA sequencing. The same DNA-binding plate was used for bacterial growth, cell lysis, DNA purification, and storage. In a single step using one buffer, bacterial cells were lysed by enzymes, and released DNA was captured on the plate simultaneously. After two wash steps, DNA was eluted and stored in the same plate. Inclusion of phosphates in the culture medium was found to enhance the yield of plasmid significantly. Purified DNA samples were used successfully in DNA sequencing with high consistency and reproducibility. Eleven vectors and nine libraries were tested using this method. In 10 μl sequencing reactions using 3 μl sample and 0.25 μl BigDye Terminator v3.1, the results from a 3730xl sequencer gave a success rate of 90–95% and read-lengths of 700 bases or more. The method is fully automatable and convenient for manual operation as well. It enables reproducible, high-throughput, rapid production of DNA with purity and yields sufficient for high-quality DNA sequencing at a substantially reduced cost. PMID:19568455

  5. Complexity: an internet resource for analysis of DNA sequence complexity

    PubMed Central

    Orlov, Y. L.; Potapov, V. N.

    2004-01-01

    The search for DNA regions with low complexity is one of the pivotal tasks of modern structural analysis of complete genomes. The low complexity may be preconditioned by strong inequality in nucleotide content (biased composition), by tandem or dispersed repeats or by palindrome-hairpin structures, as well as by a combination of all these factors. Several numerical measures of textual complexity, including combinatorial and linguistic ones, together with complexity estimation using a modified Lempel–Ziv algorithm, have been implemented in a software tool called ‘Complexity’ (http://wwwmgs.bionet.nsc.ru/mgs/programs/low_complexity/). The software enables a user to search for low-complexity regions in long sequences, e.g. complete bacterial genomes or eukaryotic chromosomes. In addition, it estimates the complexity of groups of aligned sequences. PMID:15215465

  6. Application of discrete Fourier inter-coefficient difference for assessing genetic sequence similarity.

    PubMed

    King, Brian R; Aburdene, Maurice; Thompson, Alex; Warres, Zach

    2014-01-01

    Digital signal processing (DSP) techniques for biological sequence analysis continue to grow in popularity due to the inherent digital nature of these sequences. DSP methods have demonstrated early success for detection of coding regions in a gene. Recently, these methods are being used to establish DNA gene similarity. We present the inter-coefficient difference (ICD) transformation, a novel extension of the discrete Fourier transformation, which can be applied to any DNA sequence. The ICD method is a mathematical, alignment-free DNA comparison method that generates a genetic signature for any DNA sequence that is used to generate relative measures of similarity among DNA sequences. We demonstrate our method on a set of insulin genes obtained from an evolutionarily wide range of species, and on a set of avian influenza viral sequences, which represents a set of highly similar sequences. We compare phylogenetic trees generated using our technique against trees generated using traditional alignment techniques for similarity and demonstrate that the ICD method produces a highly accurate tree without requiring an alignment prior to establishing sequence similarity.

  7. enoLOGOS: a versatile web tool for energy normalized sequence logos

    PubMed Central

    Workman, Christopher T.; Yin, Yutong; Corcoran, David L.; Ideker, Trey; Stormo, Gary D.; Benos, Panayiotis V.

    2005-01-01

    enoLOGOS is a web-based tool that generates sequence logos from various input sources. Sequence logos have become a popular way to graphically represent DNA and amino acid sequence patterns from a set of aligned sequences. Each position of the alignment is represented by a column of stacked symbols with its total height reflecting the information content in this position. Currently, the available web servers are able to create logo images from a set of aligned sequences, but none of them generates weighted sequence logos directly from energy measurements or other sources. With the advent of high-throughput technologies for estimating the contact energy of different DNA sequences, tools that can create logos directly from binding affinity data are useful to researchers. enoLOGOS generates sequence logos from a variety of input data, including energy measurements, probability matrices, alignment matrices, count matrices and aligned sequences. Furthermore, enoLOGOS can represent the mutual information of different positions of the consensus sequence, a unique feature of this tool. Another web interface for our software, C2H2-enoLOGOS, generates logos for the DNA-binding preferences of the C2H2 zinc-finger transcription factor family members. enoLOGOS and C2H2-enoLOGOS are accessible over the web at . PMID:15980495

  8. Measuring the distance between multiple sequence alignments.

    PubMed

    Blackburne, Benjamin P; Whelan, Simon

    2012-02-15

    Multiple sequence alignment (MSA) is a core method in bioinformatics. The accuracy of such alignments may influence the success of downstream analyses such as phylogenetic inference, protein structure prediction, and functional prediction. The importance of MSA has lead to the proliferation of MSA methods, with different objective functions and heuristics to search for the optimal MSA. Different methods of inferring MSAs produce different results in all but the most trivial cases. By measuring the differences between inferred alignments, we may be able to develop an understanding of how these differences (i) relate to the objective functions and heuristics used in MSA methods, and (ii) affect downstream analyses. We introduce four metrics to compare MSAs, which include the position in a sequence where a gap occurs or the location on a phylogenetic tree where an insertion or deletion (indel) event occurs. We use both real and synthetic data to explore the information given by these metrics and demonstrate how the different metrics in combination can yield more information about MSA methods and the differences between them. MetAl is a free software implementation of these metrics in Haskell. Source and binaries for Windows, Linux and Mac OS X are available from http://kumiho.smith.man.ac.uk/whelan/software/metal/.

  9. Alignment of Gold Nanoparticle-Decorated DNA Origami Nanotubes: Substrate Prepatterning versus Molecular Combing.

    PubMed

    Teschome, Bezu; Facsko, Stefan; Gothelf, Kurt V; Keller, Adrian

    2015-11-24

    DNA origami has become an established technique for designing well-defined nanostructures with any desired shape and for the controlled arrangement of functional nanostructures with few nanometer resolution. These unique features make DNA origami nanostructures promising candidates for use as scaffolds in nanoelectronics and nanophotonics device fabrication. Consequently, a number of studies have shown the precise organization of metallic nanoparticles on various DNA origami shapes. In this work, we fabricated large arrays of aligned DNA origami decorated with a high density of gold nanoparticles (AuNPs). To this end, we first demonstrate the high-yield assembly of high-density AuNP arrangements on DNA origami adsorbed to Si surfaces with few unbound background nanoparticles by carefully controlling the concentrations of MgCl2 and AuNPs in the hybridization buffer and the hybridization time. Then, we evaluate two methods, i.e., hybridization to prealigned DNA origami and molecular combing in a receding meniscus, with respect to their potential to yield large arrays of aligned AuNP-decorated DNA origami nanotubes. Because of the comparatively low MgCl2 concentration required for the efficient immobilization of the AuNPs, the prealigned DNA origami become mobile and displaced from their original positions, thereby decreasing the alignment yield. This increased mobility, on the other hand, makes the adsorbed origami susceptible to molecular combing, and a total alignment yield of 86% is obtained in this way.

  10. Cost-Effective Sequencing of Full-Length cDNA Clones Powered by a De Novo-Reference Hybrid Assembly

    PubMed Central

    Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka

    2010-01-01

    Background Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. Methodology We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence ∼800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. Conclusions The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only ∼US$3 per clone, demonstrating a significant advantage over previous approaches. PMID:20479877

  11. Biological nanopore MspA for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Manrao, Elizabeth A.

    Unlocking the information hidden in the human genome provides insight into the inner workings of complex biological systems and can be used to greatly improve health-care. In order to allow for widespread sequencing, new technologies are required that provide fast and inexpensive readings of DNA. Nanopore sequencing is a third generation DNA sequencing technology that is currently being developed to fulfill this need. In nanopore sequencing, a voltage is applied across a small pore in an electrolyte solution and the resulting ionic current is recorded. When DNA passes through the channel, the ionic current is partially blocked. If the DNA bases uniquely modulate the ionic current flowing through the channel, the time trace of the current can be related to the sequence of DNA passing through the pore. There are two main challenges to realizing nanopore sequencing: identifying a pore with sensitivity to single nucleotides and controlling the translocation of DNA through the pore so that the small single nucleotide current signatures are distinguishable from background noise. In this dissertation, I explore the use of Mycobacterium smegmatis porin A (MspA) for nanopore sequencing. In order to determine MspA's sensitivity to single nucleotides, DNA strands of various compositions are held in the pore as the resulting ionic current is measured. DNA is immobilized in MspA by attaching it to a large molecule which acts as an anchor. This technique confirms the single nucleotide resolution of the pore and additionally shows that MspA is sensitive to epigenetic modifications and single nucleotide polymorphisms. The forces from the electric field within MspA, the effective charge of nucleotides, and elasticity of DNA are estimated using a Freely Jointed Chain model of single stranded DNA. These results offer insight into the interactions of DNA within the pore. With the nucleotide sensitivity of MspA confirmed, a method is introduced to controllably pass DNA through the pore

  12. [An intriguing model for 5S rDNA sequences dispersion in the genome of freshwater stingray Potamotrygon motoro (Chondrichthyes: Potamotrygonidae)].

    PubMed

    Cruz, V P; Oliveira, C; Foresti, F

    2015-01-01

    5S rDNA genes of the stingray Potamotrygon motoro were PCR replicated, purified, cloned and sequenced. Two distinct classes of segments of different sizes were obtained. The smallest, with 342 bp units, was classified as class I, and the largest, with 1900 bp units, was designated as class II. Alignment with the consensus sequences for both classes showed changes in a few bases in the 5S rDNA genes. TATA-like sequences were detected in the nontranscribed spacer (NTS) regions of class I and a microsatellite (GCT) 10 sequence was detected in the NTS region of class II. The results obtained can help to understand the molecular organization of ribosomal genes and the mechanism of gene dispersion.

  13. pyPaSWAS: Python-based multi-core CPU and GPU sequence alignment.

    PubMed

    Warris, Sven; Timal, N Roshan N; Kempenaar, Marcel; Poortinga, Arne M; van de Geest, Henri; Varbanescu, Ana L; Nap, Jan-Peter

    2018-01-01

    Our previously published CUDA-only application PaSWAS for Smith-Waterman (SW) sequence alignment of any type of sequence on NVIDIA-based GPUs is platform-specific and therefore adopted less than could be. The OpenCL language is supported more widely and allows use on a variety of hardware platforms. Moreover, there is a need to promote the adoption of parallel computing in bioinformatics by making its use and extension more simple through more and better application of high-level languages commonly used in bioinformatics, such as Python. The novel application pyPaSWAS presents the parallel SW sequence alignment code fully packed in Python. It is a generic SW implementation running on several hardware platforms with multi-core systems and/or GPUs that provides accurate sequence alignments that also can be inspected for alignment details. Additionally, pyPaSWAS support the affine gap penalty. Python libraries are used for automated system configuration, I/O and logging. This way, the Python environment will stimulate further extension and use of pyPaSWAS. pyPaSWAS presents an easy Python-based environment for accurate and retrievable parallel SW sequence alignments on GPUs and multi-core systems. The strategy of integrating Python with high-performance parallel compute languages to create a developer- and user-friendly environment should be considered for other computationally intensive bioinformatics algorithms.

  14. Protein alignment algorithms with an efficient backtracking routine on multiple GPUs.

    PubMed

    Blazewicz, Jacek; Frohmberg, Wojciech; Kierzynka, Michal; Pesch, Erwin; Wojciechowski, Pawel

    2011-05-20

    Pairwise sequence alignment methods are widely used in biological research. The increasing number of sequences is perceived as one of the upcoming challenges for sequence alignment methods in the nearest future. To overcome this challenge several GPU (Graphics Processing Unit) computing approaches have been proposed lately. These solutions show a great potential of a GPU platform but in most cases address the problem of sequence database scanning and computing only the alignment score whereas the alignment itself is omitted. Thus, the need arose to implement the global and semiglobal Needleman-Wunsch, and Smith-Waterman algorithms with a backtracking procedure which is needed to construct the alignment. In this paper we present the solution that performs the alignment of every given sequence pair, which is a required step for progressive multiple sequence alignment methods, as well as for DNA recognition at the DNA assembly stage. Performed tests show that the implementation, with performance up to 6.3 GCUPS on a single GPU for affine gap penalties, is very efficient in comparison to other CPU and GPU-based solutions. Moreover, multiple GPUs support with load balancing makes the application very scalable. The article shows that the backtracking procedure of the sequence alignment algorithms may be designed to fit in with the GPU architecture. Therefore, our algorithm, apart from scores, is able to compute pairwise alignments. This opens a wide range of new possibilities, allowing other methods from the area of molecular biology to take advantage of the new computational architecture. Performed tests show that the efficiency of the implementation is excellent. Moreover, the speed of our GPU-based algorithms can be almost linearly increased when using more than one graphics card.

  15. Reconstructing evolutionary trees in parallel for massive sequences.

    PubMed

    Zou, Quan; Wan, Shixiang; Zeng, Xiangxiang; Ma, Zhanshan Sam

    2017-12-14

    Building the evolutionary trees for massive unaligned DNA sequences is challenging and crucial. However, reconstructing evolutionary tree for ultra-large sequences is hard. Massive multiple sequence alignment is also challenging and time/space consuming. Hadoop and Spark are developed recently, which bring spring light for the classical computational biology problems. In this paper, we tried to solve the multiple sequence alignment and evolutionary reconstruction in parallel. HPTree, which is developed in this paper, can deal with big DNA sequence files quickly. It works well on the >1GB files, and gets better performance than other evolutionary reconstruction tools. Users could use HPTree for reonstructing evolutioanry trees on the computer clusters or cloud platform (eg. Amazon Cloud). HPTree could help on population evolution research and metagenomics analysis. In this paper, we employ the Hadoop and Spark platform and design an evolutionary tree reconstruction software tool for unaligned massive DNA sequences. Clustering and multiple sequence alignment are done in parallel. Neighbour-joining model was employed for the evolutionary tree building. We opened our software together with source codes via http://lab.malab.cn/soft/HPtree/ .

  16. TRX-LOGOS - a graphical tool to demonstrate DNA information content dependent upon backbone dynamics in addition to base sequence.

    PubMed

    Fortin, Connor H; Schulze, Katharina V; Babbitt, Gregory A

    2015-01-01

    It is now widely-accepted that DNA sequences defining DNA-protein interactions functionally depend upon local biophysical features of DNA backbone that are important in defining sites of binding interaction in the genome (e.g. DNA shape, charge and intrinsic dynamics). However, these physical features of DNA polymer are not directly apparent when analyzing and viewing Shannon information content calculated at single nucleobases in a traditional sequence logo plot. Thus, sequence logos plots are severely limited in that they convey no explicit information regarding the structural dynamics of DNA backbone, a feature often critical to binding specificity. We present TRX-LOGOS, an R software package and Perl wrapper code that interfaces the JASPAR database for computational regulatory genomics. TRX-LOGOS extends the traditional sequence logo plot to include Shannon information content calculated with regard to the dinucleotide-based BI-BII conformation shifts in phosphate linkages on the DNA backbone, thereby adding a visual measure of intrinsic DNA flexibility that can be critical for many DNA-protein interactions. TRX-LOGOS is available as an R graphics module offered at both SourceForge and as a download supplement at this journal. To demonstrate the general utility of TRX logo plots, we first calculated the information content for 416 Saccharomyces cerevisiae transcription factor binding sites functionally confirmed in the Yeastract database and matched to previously published yeast genomic alignments. We discovered that flanking regions contain significantly elevated information content at phosphate linkages than can be observed at nucleobases. We also examined broader transcription factor classifications defined by the JASPAR database, and discovered that many general signatures of transcription factor binding are locally more information rich at the level of DNA backbone dynamics than nucleobase sequence. We used TRX-logos in combination with MEGA 6.0 software

  17. SHARAKU: an algorithm for aligning and clustering read mapping profiles of deep sequencing in non-coding RNA processing.

    PubMed

    Tsuchiya, Mariko; Amano, Kojiro; Abe, Masaya; Seki, Misato; Hase, Sumitaka; Sato, Kengo; Sakakibara, Yasubumi

    2016-06-15

    Deep sequencing of the transcripts of regulatory non-coding RNA generates footprints of post-transcriptional processes. After obtaining sequence reads, the short reads are mapped to a reference genome, and specific mapping patterns can be detected called read mapping profiles, which are distinct from random non-functional degradation patterns. These patterns reflect the maturation processes that lead to the production of shorter RNA sequences. Recent next-generation sequencing studies have revealed not only the typical maturation process of miRNAs but also the various processing mechanisms of small RNAs derived from tRNAs and snoRNAs. We developed an algorithm termed SHARAKU to align two read mapping profiles of next-generation sequencing outputs for non-coding RNAs. In contrast with previous work, SHARAKU incorporates the primary and secondary sequence structures into an alignment of read mapping profiles to allow for the detection of common processing patterns. Using a benchmark simulated dataset, SHARAKU exhibited superior performance to previous methods for correctly clustering the read mapping profiles with respect to 5'-end processing and 3'-end processing from degradation patterns and in detecting similar processing patterns in deriving the shorter RNAs. Further, using experimental data of small RNA sequencing for the common marmoset brain, SHARAKU succeeded in identifying the significant clusters of read mapping profiles for similar processing patterns of small derived RNA families expressed in the brain. The source code of our program SHARAKU is available at http://www.dna.bio.keio.ac.jp/sharaku/, and the simulated dataset used in this work is available at the same link. Accession code: The sequence data from the whole RNA transcripts in the hippocampus of the left brain used in this work is available from the DNA DataBank of Japan (DDBJ) Sequence Read Archive (DRA) under the accession number DRA004502. yasu@bio.keio.ac.jp Supplementary data are available

  18. A Next Generation Semiconductor Based Sequencing Approach for the Identification of Meat Species in DNA Mixtures

    PubMed Central

    Bertolini, Francesca; Ghionda, Marco Ciro; D’Alessandro, Enrico; Geraci, Claudia; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine) for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon) as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43%) in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97) and lower for avian species (0.70). PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures. PMID:25923709

  19. A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures.

    PubMed

    Bertolini, Francesca; Ghionda, Marco Ciro; D'Alessandro, Enrico; Geraci, Claudia; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine) for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon) as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43%) in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97) and lower for avian species (0.70). PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures.

  20. Transposon facilitated DNA sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, D.E.; Berg, C.M.; Huang, H.V.

    1990-01-01

    The purpose of this research is to investigate and develop methods that exploit the power of bacterial transposable elements for large scale DNA sequencing: Our premise is that the use of transposons to put primer binding sites randomly in target DNAs should provide access to all portions of large DNA fragments, without the inefficiencies of methods involving random subcloning and attendant repetitive sequencing, or of sequential synthesis of many oligonucleotide primers that are used to match systematically along a DNA molecule. Two unrelated bacterial transposons, Tn5 and {gamma}{delta}, are being used because they have both proven useful for molecular analyses,more » and because they differ sufficiently in mechanism and specificity of transposition to merit parallel development.« less

  1. A method of alignment masking for refining the phylogenetic signal of multiple sequence alignments.

    PubMed

    Rajan, Vaibhav

    2013-03-01

    Inaccurate inference of positional homologies in multiple sequence alignments and systematic errors introduced by alignment heuristics obfuscate phylogenetic inference. Alignment masking, the elimination of phylogenetically uninformative or misleading sites from an alignment before phylogenetic analysis, is a common practice in phylogenetic analysis. Although masking is often done manually, automated methods are necessary to handle the much larger data sets being prepared today. In this study, we introduce the concept of subsplits and demonstrate their use in extracting phylogenetic signal from alignments. We design a clustering approach for alignment masking where each cluster contains similar columns-similarity being defined on the basis of compatible subsplits; our approach then identifies noisy clusters and eliminates them. Trees inferred from the columns in the retained clusters are found to be topologically closer to the reference trees. We test our method on numerous standard benchmarks (both synthetic and biological data sets) and compare its performance with other methods of alignment masking. We find that our method can eliminate sites more accurately than other methods, particularly on divergent data, and can improve the topologies of the inferred trees in likelihood-based analyses. Software available upon request from the author.

  2. New Powerful Statistics for Alignment-free Sequence Comparison Under a Pattern Transfer Model

    PubMed Central

    Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S.; Sun, Fengzhu

    2011-01-01

    Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D2∗ and D2s showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D2∗ and D2s by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. PMID:21723298

  3. Sequence periodicity in nucleosomal DNA and intrinsic curvature.

    PubMed

    Nair, T Murlidharan

    2010-05-17

    Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.

  4. Sequence periodicity in nucleosomal DNA and intrinsic curvature

    PubMed Central

    2010-01-01

    Background Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Results Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. Conclusions The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA. PMID:20487515

  5. Osmylated DNA, a novel concept for sequencing DNA using nanopores

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia

    2015-03-01

    Saenger sequencing has led the advances in molecular biology, while faster and cheaper next generation technologies are urgently needed. A newer approach exploits nanopores, natural or solid-state, set in an electrical field, and obtains base sequence information from current variations due to the passage of a ssDNA molecule through the pore. A hurdle in this approach is the fact that the four bases are chemically comparable to each other which leads to small differences in current obstruction. ‘Base calling’ becomes even more challenging because most nanopores sense a short sequence and not individual bases. Perhaps sequencing DNA via nanopores would be more manageable, if only the bases were two, and chemically very different from each other; a sequence of 1s and 0s comes to mind. Osmylated DNA comes close to such a sequence of 1s and 0s. Osmylation is the addition of osmium tetroxide bipyridine across the C5-C6 double bond of the pyrimidines. Osmylation adds almost 400% mass to the reactive base, creates a sterically and electronically notably different molecule, labeled 1, compared to the unreactive purines, labeled 0. If osmylated DNA were successfully sequenced, the result would be a sequence of osmylated pyrimidines (1), and purines (0), and not of the actual nucleobases. To solve this problem we studied the osmylation reaction with short oligos and with M13mp18, a long ssDNA, developed a UV-vis assay to measure extent of osmylation, and designed two protocols. Protocol A uses mild conditions and yields osmylated thymidines (1), while leaving the other three bases (0) practically intact. Protocol B uses harsher conditions and effectively osmylates both pyrimidines, but not the purines. Applying these two protocols also to the complementary of the target polynucleotide yields a total of four osmylated strands that collectively could define the actual base sequence of the target DNA.

  6. K2 and K2*: efficient alignment-free sequence similarity measurement based on Kendall statistics.

    PubMed

    Lin, Jie; Adjeroh, Donald A; Jiang, Bing-Hua; Jiang, Yue

    2018-05-15

    Alignment-free sequence comparison methods can compute the pairwise similarity between a huge number of sequences much faster than sequence-alignment based methods. We propose a new non-parametric alignment-free sequence comparison method, called K2, based on the Kendall statistics. Comparing to the other state-of-the-art alignment-free comparison methods, K2 demonstrates competitive performance in generating the phylogenetic tree, in evaluating functionally related regulatory sequences, and in computing the edit distance (similarity/dissimilarity) between sequences. Furthermore, the K2 approach is much faster than the other methods. An improved method, K2*, is also proposed, which is able to determine the appropriate algorithmic parameter (length) automatically, without first considering different values. Comparative analysis with the state-of-the-art alignment-free sequence similarity methods demonstrates the superiority of the proposed approaches, especially with increasing sequence length, or increasing dataset sizes. The K2 and K2* approaches are implemented in the R language as a package and is freely available for open access (http://community.wvu.edu/daadjeroh/projects/K2/K2_1.0.tar.gz). yueljiang@163.com. Supplementary data are available at Bioinformatics online.

  7. Using hidden Markov models to align multiple sequences.

    PubMed

    Mount, David W

    2009-07-01

    A hidden Markov model (HMM) is a probabilistic model of a multiple sequence alignment (msa) of proteins. In the model, each column of symbols in the alignment is represented by a frequency distribution of the symbols (called a "state"), and insertions and deletions are represented by other states. One moves through the model along a particular path from state to state in a Markov chain (i.e., random choice of next move), trying to match a given sequence. The next matching symbol is chosen from each state, recording its probability (frequency) and also the probability of going to that state from a previous one (the transition probability). State and transition probabilities are multiplied to obtain a probability of the given sequence. The hidden nature of the HMM is due to the lack of information about the value of a specific state, which is instead represented by a probability distribution over all possible values. This article discusses the advantages and disadvantages of HMMs in msa and presents algorithms for calculating an HMM and the conditions for producing the best HMM.

  8. Analyses of deep mammalian sequence alignments and constraint predictions for 1% of the human genome

    PubMed Central

    Margulies, Elliott H.; Cooper, Gregory M.; Asimenos, George; Thomas, Daryl J.; Dewey, Colin N.; Siepel, Adam; Birney, Ewan; Keefe, Damian; Schwartz, Ariel S.; Hou, Minmei; Taylor, James; Nikolaev, Sergey; Montoya-Burgos, Juan I.; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Brown, James B.; Bickel, Peter; Holmes, Ian; Mullikin, James C.; Ureta-Vidal, Abel; Paten, Benedict; Stone, Eric A.; Rosenbloom, Kate R.; Kent, W. James; Bouffard, Gerard G.; Guan, Xiaobin; Hansen, Nancy F.; Idol, Jacquelyn R.; Maduro, Valerie V.B.; Maskeri, Baishali; McDowell, Jennifer C.; Park, Morgan; Thomas, Pamela J.; Young, Alice C.; Blakesley, Robert W.; Muzny, Donna M.; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Jiang, Huaiyang; Weinstock, George M.; Gibbs, Richard A.; Graves, Tina; Fulton, Robert; Mardis, Elaine R.; Wilson, Richard K.; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B.; Chang, Jean L.; Lindblad-Toh, Kerstin; Lander, Eric S.; Hinrichs, Angie; Trumbower, Heather; Clawson, Hiram; Zweig, Ann; Kuhn, Robert M.; Barber, Galt; Harte, Rachel; Karolchik, Donna; Field, Matthew A.; Moore, Richard A.; Matthewson, Carrie A.; Schein, Jacqueline E.; Marra, Marco A.; Antonarakis, Stylianos E.; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross; Haussler, David; Miller, Webb; Pachter, Lior; Green, Eric D.; Sidow, Arend

    2007-01-01

    A key component of the ongoing ENCODE project involves rigorous comparative sequence analyses for the initially targeted 1% of the human genome. Here, we present orthologous sequence generation, alignment, and evolutionary constraint analyses of 23 mammalian species for all ENCODE targets. Alignments were generated using four different methods; comparisons of these methods reveal large-scale consistency but substantial differences in terms of small genomic rearrangements, sensitivity (sequence coverage), and specificity (alignment accuracy). We describe the quantitative and qualitative trade-offs concomitant with alignment method choice and the levels of technical error that need to be accounted for in applications that require multisequence alignments. Using the generated alignments, we identified constrained regions using three different methods. While the different constraint-detecting methods are in general agreement, there are important discrepancies relating to both the underlying alignments and the specific algorithms. However, by integrating the results across the alignments and constraint-detecting methods, we produced constraint annotations that were found to be robust based on multiple independent measures. Analyses of these annotations illustrate that most classes of experimentally annotated functional elements are enriched for constrained sequences; however, large portions of each class (with the exception of protein-coding sequences) do not overlap constrained regions. The latter elements might not be under primary sequence constraint, might not be constrained across all mammals, or might have expendable molecular functions. Conversely, 40% of the constrained sequences do not overlap any of the functional elements that have been experimentally identified. Together, these findings demonstrate and quantify how many genomic functional elements await basic molecular characterization. PMID:17567995

  9. Compressing DNA sequence databases with coil.

    PubMed

    White, W Timothy J; Hendy, Michael D

    2008-05-20

    Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip) compression - an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression - the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST) data. Finally, coil can efficiently encode incremental additions to a sequence database. coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  10. On the Impact of Widening Vector Registers on Sequence Alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Jeffrey A.; Kalyanaraman, Anantharaman; Krishnamoorthy, Sriram

    2016-09-22

    Vector extensions, such as SSE, have been part of the x86 since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. In this paper, we demonstrate that the trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based onmore » striped data layouts. We present a practically efficient SIMD implementation of a parallel scan based sequence alignment algorithm that can better exploit wider SIMD units. We conduct comprehensive workload and use case analyses to characterize the relative behavior of the striped and scan approaches and identify the best choice of algorithm based on input length and SIMD width.« less

  11. TaxI: a software tool for DNA barcoding using distance methods

    PubMed Central

    Steinke, Dirk; Vences, Miguel; Salzburger, Walter; Meyer, Axel

    2005-01-01

    DNA barcoding is a promising approach to the diagnosis of biological diversity in which DNA sequences serve as the primary key for information retrieval. Most existing software for evolutionary analysis of DNA sequences was designed for phylogenetic analyses and, hence, those algorithms do not offer appropriate solutions for the rapid, but precise analyses needed for DNA barcoding, and are also unable to process the often large comparative datasets. We developed a flexible software tool for DNA taxonomy, named TaxI. This program calculates sequence divergences between a query sequence (taxon to be barcoded) and each sequence of a dataset of reference sequences defined by the user. Because the analysis is based on separate pairwise alignments this software is also able to work with sequences characterized by multiple insertions and deletions that are difficult to align in large sequence sets (i.e. thousands of sequences) by multiple alignment algorithms because of computational restrictions. Here, we demonstrate the utility of this approach with two datasets of fish larvae and juveniles from Lake Constance and juvenile land snails under different models of sequence evolution. Sets of ribosomal 16S rRNA sequences, characterized by multiple indels, performed as good as or better than cox1 sequence sets in assigning sequences to species, demonstrating the suitability of rRNA genes for DNA barcoding. PMID:16214755

  12. A microfabricated hybrid device for DNA sequencing.

    PubMed

    Liu, Shaorong

    2003-11-01

    We have created a hybrid device of a microfabricated round-channel twin-T injector incorporated with a separation capillary in order to extend the straight separation distance for high speed and long readlength DNA sequencing. Semicircular grooves on glass wafers are obtained using a photomask with a narrow line-width and a standard isotropic photolithographic etching process. Round channels are made when two etched wafers are face-to-face aligned and bonded. A two-mask fabrication process has been developed to make channels of two different diameters. The twin-T injector is formed by the smaller channels whose diameter matches the bore of the separation capillary, and the "usual" separation channel, now called the connection channel, is formed by the larger ones whose diameter matches the outer diameter of the separation capillary. The separation capillary is inserted through the connection channel all the way to the twin-T injector to allow the capillary bore flush with the twin-T injector channels. The total dead-volume of the connection is estimated to be approximately 5 pL. To demonstrate the efficiency of this hybrid device, we have performed four-color DNA sequencing on it. Using a 200 microm twin-T injector coupled with a separation capillary of 20 cm effective separation distance, we have obtained readlengths of 800 plus bases at an accuracy of 98.5% in 56 min, compared to about 650 bases in 100 min on a conventional 40 cm long capillary sequencing machine under similar conditions. At an increased separation field strength and using a diluted sieving matrix, the separation time has been reduced to 20 min with a readlength of 700 bases at 98.5% base-calling accuracy.

  13. High Resolution Size Analysis of Fetal DNA in the Urine of Pregnant Women by Paired-End Massively Parallel Sequencing

    PubMed Central

    Tsui, Nancy B. Y.; Jiang, Peiyong; Chow, Katherine C. K.; Su, Xiaoxi; Leung, Tak Y.; Sun, Hao; Chan, K. C. Allen; Chiu, Rossa W. K.; Lo, Y. M. Dennis

    2012-01-01

    Background Fetal DNA in maternal urine, if present, would be a valuable source of fetal genetic material for noninvasive prenatal diagnosis. However, the existence of fetal DNA in maternal urine has remained controversial. The issue is due to the lack of appropriate technology to robustly detect the potentially highly degraded fetal DNA in maternal urine. Methodology We have used massively parallel paired-end sequencing to investigate cell-free DNA molecules in maternal urine. Catheterized urine samples were collected from seven pregnant women during the third trimester of pregnancies. We detected fetal DNA by identifying sequenced reads that contained fetal-specific alleles of the single nucleotide polymorphisms. The sizes of individual urinary DNA fragments were deduced from the alignment positions of the paired reads. We measured the fractional fetal DNA concentration as well as the size distributions of fetal and maternal DNA in maternal urine. Principal Findings Cell-free fetal DNA was detected in five of the seven maternal urine samples, with the fractional fetal DNA concentrations ranged from 1.92% to 4.73%. Fetal DNA became undetectable in maternal urine after delivery. The total urinary cell-free DNA molecules were less intact when compared with plasma DNA. Urinary fetal DNA fragments were very short, and the most dominant fetal sequences were between 29 bp and 45 bp in length. Conclusions With the use of massively parallel sequencing, we have confirmed the existence of transrenal fetal DNA in maternal urine, and have shown that urinary fetal DNA was heavily degraded. PMID:23118982

  14. Nucleotide Sequence Database Comparison for Routine Dermatophyte Identification by Internal Transcribed Spacer 2 Genetic Region DNA Barcoding.

    PubMed

    Normand, A C; Packeu, A; Cassagne, C; Hendrickx, M; Ranque, S; Piarroux, R

    2018-05-01

    Conventional dermatophyte identification is based on morphological features. However, recent studies have proposed to use the nucleotide sequences of the rRNA internal transcribed spacer (ITS) region as an identification barcode of all fungi, including dermatophytes. Several nucleotide databases are available to compare sequences and thus identify isolates; however, these databases often contain mislabeled sequences that impair sequence-based identification. We evaluated five of these databases on a clinical isolate panel. We selected 292 clinical dermatophyte strains that were prospectively subjected to an ITS2 nucleotide sequence analysis. Sequences were analyzed against the databases, and the results were compared to clusters obtained via DNA alignment of sequence segments. The DNA tree served as the identification standard throughout the study. According to the ITS2 sequence identification, the majority of strains (255/292) belonged to the genus Trichophyton , mainly T. rubrum complex ( n = 184), T. interdigitale ( n = 40), T. tonsurans ( n = 26), and T. benhamiae ( n = 5). Other genera included Microsporum (e.g., M. canis [ n = 21], M. audouinii [ n = 10], Nannizzia gypsea [ n = 3], and Epidermophyton [ n = 3]). Species-level identification of T. rubrum complex isolates was an issue. Overall, ITS DNA sequencing is a reliable tool to identify dermatophyte species given that a comprehensive and correctly labeled database is consulted. Since many inaccurate identification results exist in the DNA databases used for this study, reference databases must be verified frequently and amended in line with the current revisions of fungal taxonomy. Before describing a new species or adding a new DNA reference to the available databases, its position in the phylogenetic tree must be verified. Copyright © 2018 American Society for Microbiology.

  15. AntiClustal: Multiple Sequence Alignment by antipole clustering and linear approximate 1-median computation.

    PubMed

    Di Pietro, C; Di Pietro, V; Emmanuele, G; Ferro, A; Maugeri, T; Modica, E; Pigola, G; Pulvirenti, A; Purrello, M; Ragusa, M; Scalia, M; Shasha, D; Travali, S; Zimmitti, V

    2003-01-01

    In this paper we present a new Multiple Sequence Alignment (MSA) algorithm called AntiClusAl. The method makes use of the commonly use idea of aligning homologous sequences belonging to classes generated by some clustering algorithm, and then continue the alignment process ina bottom-up way along a suitable tree structure. The final result is then read at the root of the tree. Multiple sequence alignment in each cluster makes use of the progressive alignment with the 1-median (center) of the cluster. The 1-median of set S of sequences is the element of S which minimizes the average distance from any other sequence in S. Its exact computation requires quadratic time. The basic idea of our proposed algorithm is to make use of a simple and natural algorithmic technique based on randomized tournaments which has been successfully applied to large size search problems in general metric spaces. In particular a clustering algorithm called Antipole tree and an approximate linear 1-median computation are used. Our algorithm compared with Clustal W, a widely used tool to MSA, shows a better running time results with fully comparable alignment quality. A successful biological application showing high aminoacid conservation during evolution of Xenopus laevis SOD2 is also cited.

  16. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    PubMed

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  17. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai.

  18. High-Throughput Block Optical DNA Sequence Identification.

    PubMed

    Sagar, Dodderi Manjunatha; Korshoj, Lee Erik; Hanson, Katrina Bethany; Chowdhury, Partha Pratim; Otoupal, Peter Britton; Chatterjee, Anushree; Nagpal, Prashant

    2018-01-01

    Optical techniques for molecular diagnostics or DNA sequencing generally rely on small molecule fluorescent labels, which utilize light with a wavelength of several hundred nanometers for detection. Developing a label-free optical DNA sequencing technique will require nanoscale focusing of light, a high-throughput and multiplexed identification method, and a data compression technique to rapidly identify sequences and analyze genomic heterogeneity for big datasets. Such a method should identify characteristic molecular vibrations using optical spectroscopy, especially in the "fingerprinting region" from ≈400-1400 cm -1 . Here, surface-enhanced Raman spectroscopy is used to demonstrate label-free identification of DNA nucleobases with multiplexed 3D plasmonic nanofocusing. While nanometer-scale mode volumes prevent identification of single nucleobases within a DNA sequence, the block optical technique can identify A, T, G, and C content in DNA k-mers. The content of each nucleotide in a DNA block can be a unique and high-throughput method for identifying sequences, genes, and other biomarkers as an alternative to single-letter sequencing. Additionally, coupling two complementary vibrational spectroscopy techniques (infrared and Raman) can improve block characterization. These results pave the way for developing a novel, high-throughput block optical sequencing method with lossy genomic data compression using k-mer identification from multiplexed optical data acquisition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. New powerful statistics for alignment-free sequence comparison under a pattern transfer model.

    PubMed

    Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S; Sun, Fengzhu

    2011-09-07

    Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D*2 and D(s)2 showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D*2 and D(s)2 by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Direct Detection and Sequencing of Damaged DNA Bases

    PubMed Central

    2011-01-01

    Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications. PMID:22185597

  1. Direct detection and sequencing of damaged DNA bases.

    PubMed

    Clark, Tyson A; Spittle, Kristi E; Turner, Stephen W; Korlach, Jonas

    2011-12-20

    Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications.

  2. Evolution of biological sequences implies an extreme value distribution of type I for both global and local pairwise alignment scores.

    PubMed

    Bastien, Olivier; Maréchal, Eric

    2008-08-07

    Confidence in pairwise alignments of biological sequences, obtained by various methods such as Blast or Smith-Waterman, is critical for automatic analyses of genomic data. Two statistical models have been proposed. In the asymptotic limit of long sequences, the Karlin-Altschul model is based on the computation of a P-value, assuming that the number of high scoring matching regions above a threshold is Poisson distributed. Alternatively, the Lipman-Pearson model is based on the computation of a Z-value from a random score distribution obtained by a Monte-Carlo simulation. Z-values allow the deduction of an upper bound of the P-value (1/Z-value2) following the TULIP theorem. Simulations of Z-value distribution is known to fit with a Gumbel law. This remarkable property was not demonstrated and had no obvious biological support. We built a model of evolution of sequences based on aging, as meant in Reliability Theory, using the fact that the amount of information shared between an initial sequence and the sequences in its lineage (i.e., mutual information in Information Theory) is a decreasing function of time. This quantity is simply measured by a sequence alignment score. In systems aging, the failure rate is related to the systems longevity. The system can be a machine with structured components, or a living entity or population. "Reliability" refers to the ability to operate properly according to a standard. Here, the "reliability" of a sequence refers to the ability to conserve a sufficient functional level at the folded and maturated protein level (positive selection pressure). Homologous sequences were considered as systems 1) having a high redundancy of information reflected by the magnitude of their alignment scores, 2) which components are the amino acids that can independently be damaged by random DNA mutations. From these assumptions, we deduced that information shared at each amino acid position evolved with a constant rate, corresponding to the

  3. HBLAST: Parallelised sequence similarity--A Hadoop MapReducable basic local alignment search tool.

    PubMed

    O'Driscoll, Aisling; Belogrudov, Vladislav; Carroll, John; Kropp, Kai; Walsh, Paul; Ghazal, Peter; Sleator, Roy D

    2015-04-01

    The recent exponential growth of genomic databases has resulted in the common task of sequence alignment becoming one of the major bottlenecks in the field of computational biology. It is typical for these large datasets and complex computations to require cost prohibitive High Performance Computing (HPC) to function. As such, parallelised solutions have been proposed but many exhibit scalability limitations and are incapable of effectively processing "Big Data" - the name attributed to datasets that are extremely large, complex and require rapid processing. The Hadoop framework, comprised of distributed storage and a parallelised programming framework known as MapReduce, is specifically designed to work with such datasets but it is not trivial to efficiently redesign and implement bioinformatics algorithms according to this paradigm. The parallelisation strategy of "divide and conquer" for alignment algorithms can be applied to both data sets and input query sequences. However, scalability is still an issue due to memory constraints or large databases, with very large database segmentation leading to additional performance decline. Herein, we present Hadoop Blast (HBlast), a parallelised BLAST algorithm that proposes a flexible method to partition both databases and input query sequences using "virtual partitioning". HBlast presents improved scalability over existing solutions and well balanced computational work load while keeping database segmentation and recompilation to a minimum. Enhanced BLAST search performance on cheap memory constrained hardware has significant implications for in field clinical diagnostic testing; enabling faster and more accurate identification of pathogenic DNA in human blood or tissue samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Optimal word sizes for dissimilarity measures and estimation of the degree of dissimilarity between DNA sequences.

    PubMed

    Wu, Tiee-Jian; Huang, Ying-Hsueh; Li, Lung-An

    2005-11-15

    Several measures of DNA sequence dissimilarity have been developed. The purpose of this paper is 3-fold. Firstly, we compare the performance of several word-based or alignment-based methods. Secondly, we give a general guideline for choosing the window size and determining the optimal word sizes for several word-based measures at different window sizes. Thirdly, we use a large-scale simulation method to simulate data from the distribution of SK-LD (symmetric Kullback-Leibler discrepancy). These simulated data can be used to estimate the degree of dissimilarity beta between any pair of DNA sequences. Our study shows (1) for whole sequence similiarity/dissimilarity identification the window size taken should be as large as possible, but probably not >3000, as restricted by CPU time in practice, (2) for each measure the optimal word size increases with window size, (3) when the optimal word size is used, SK-LD performance is superior in both simulation and real data analysis, (4) the estimate beta of beta based on SK-LD can be used to filter out quickly a large number of dissimilar sequences and speed alignment-based database search for similar sequences and (5) beta is also applicable in local similarity comparison situations. For example, it can help in selecting oligo probes with high specificity and, therefore, has potential in probe design for microarrays. The algorithm SK-LD, estimate beta and simulation software are implemented in MATLAB code, and are available at http://www.stat.ncku.edu.tw/tjwu

  5. Estimation of a Killer Whale (Orcinus orca) Population's Diet Using Sequencing Analysis of DNA from Feces.

    PubMed

    Ford, Michael J; Hempelmann, Jennifer; Hanson, M Bradley; Ayres, Katherine L; Baird, Robin W; Emmons, Candice K; Lundin, Jessica I; Schorr, Gregory S; Wasser, Samuel K; Park, Linda K

    2016-01-01

    Estimating diet composition is important for understanding interactions between predators and prey and thus illuminating ecosystem function. The diet of many species, however, is difficult to observe directly. Genetic analysis of fecal material collected in the field is therefore a useful tool for gaining insight into wild animal diets. In this study, we used high-throughput DNA sequencing to quantitatively estimate the diet composition of an endangered population of wild killer whales (Orcinus orca) in their summer range in the Salish Sea. We combined 175 fecal samples collected between May and September from five years between 2006 and 2011 into 13 sample groups. Two known DNA composition control groups were also created. Each group was sequenced at a ~330bp segment of the 16s gene in the mitochondrial genome using an Illumina MiSeq sequencing system. After several quality controls steps, 4,987,107 individual sequences were aligned to a custom sequence database containing 19 potential fish prey species and the most likely species of each fecal-derived sequence was determined. Based on these alignments, salmonids made up >98.6% of the total sequences and thus of the inferred diet. Of the six salmonid species, Chinook salmon made up 79.5% of the sequences, followed by coho salmon (15%). Over all years, a clear pattern emerged with Chinook salmon dominating the estimated diet early in the summer, and coho salmon contributing an average of >40% of the diet in late summer. Sockeye salmon appeared to be occasionally important, at >18% in some sample groups. Non-salmonids were rarely observed. Our results are consistent with earlier results based on surface prey remains, and confirm the importance of Chinook salmon in this population's summer diet.

  6. Silicene nanoribbon as a new DNA sequencing device

    NASA Astrophysics Data System (ADS)

    Alesheikh, Sara; Shahtahmassebi, Nasser; Roknabadi, Mahmood Rezaee; Pilevar Shahri, Raheleh

    2018-02-01

    The importance of applying DNA sequencing in different fields, results in looking for fast and cheap methods. Nanotechnology helps this development by introducing nanostructures used for DNA sequencing. In this work we study the interaction between zigzag silicene nanoribbon and DNA nucleobases using DFT and non equilibrium Green's function approach, to investigate the possibility of using zigzag silicene nanoribbons as a biosensor for DNA sequencing.

  7. Linking GPS and travel diary data using sequence alignment in a study of children's independent mobility

    PubMed Central

    2011-01-01

    Background Global positioning systems (GPS) are increasingly being used in health research to determine the location of study participants. Combining GPS data with data collected via travel/activity diaries allows researchers to assess where people travel in conjunction with data about trip purpose and accompaniment. However, linking GPS and diary data is problematic and to date the only method has been to match the two datasets manually, which is time consuming and unlikely to be practical for larger data sets. This paper assesses the feasibility of a new sequence alignment method of linking GPS and travel diary data in comparison with the manual matching method. Methods GPS and travel diary data obtained from a study of children's independent mobility were linked using sequence alignment algorithms to test the proof of concept. Travel diaries were assessed for quality by counting the number of errors and inconsistencies in each participant's set of diaries. The success of the sequence alignment method was compared for higher versus lower quality travel diaries, and for accompanied versus unaccompanied trips. Time taken and percentage of trips matched were compared for the sequence alignment method and the manual method. Results The sequence alignment method matched 61.9% of all trips. Higher quality travel diaries were associated with higher match rates in both the sequence alignment and manual matching methods. The sequence alignment method performed almost as well as the manual method and was an order of magnitude faster. However, the sequence alignment method was less successful at fully matching trips and at matching unaccompanied trips. Conclusions Sequence alignment is a promising method of linking GPS and travel diary data in large population datasets, especially if limitations in the trip detection algorithm are addressed. PMID:22142322

  8. The sequence of sequencers: The history of sequencing DNA

    PubMed Central

    Heather, James M.; Chain, Benjamin

    2016-01-01

    Determining the order of nucleic acid residues in biological samples is an integral component of a wide variety of research applications. Over the last fifty years large numbers of researchers have applied themselves to the production of techniques and technologies to facilitate this feat, sequencing DNA and RNA molecules. This time-scale has witnessed tremendous changes, moving from sequencing short oligonucleotides to millions of bases, from struggling towards the deduction of the coding sequence of a single gene to rapid and widely available whole genome sequencing. This article traverses those years, iterating through the different generations of sequencing technology, highlighting some of the key discoveries, researchers, and sequences along the way. PMID:26554401

  9. Compressing DNA sequence databases with coil

    PubMed Central

    White, W Timothy J; Hendy, Michael D

    2008-01-01

    Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip) compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST) data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work. PMID:18489794

  10. Applications of alignment-free methods in epigenomics.

    PubMed

    Pinello, Luca; Lo Bosco, Giosuè; Yuan, Guo-Cheng

    2014-05-01

    Epigenetic mechanisms play an important role in the regulation of cell type-specific gene activities, yet how epigenetic patterns are established and maintained remains poorly understood. Recent studies have supported a role of DNA sequences in recruitment of epigenetic regulators. Alignment-free methods have been applied to identify distinct sequence features that are associated with epigenetic patterns and to predict epigenomic profiles. Here, we review recent advances in such applications, including the methods to map DNA sequence to feature space, sequence comparison and prediction models. Computational studies using these methods have provided important insights into the epigenetic regulatory mechanisms.

  11. Internet-accessible DNA sequence database for identifying fusaria from human and animal infections.

    PubMed

    O'Donnell, Kerry; Sutton, Deanna A; Rinaldi, Michael G; Sarver, Brice A J; Balajee, S Arunmozhi; Schroers, Hans-Josef; Summerbell, Richard C; Robert, Vincent A R G; Crous, Pedro W; Zhang, Ning; Aoki, Takayuki; Jung, Kyongyong; Park, Jongsun; Lee, Yong-Hwan; Kang, Seogchan; Park, Bongsoo; Geiser, David M

    2010-10-01

    Because less than one-third of clinically relevant fusaria can be accurately identified to species level using phenotypic data (i.e., morphological species recognition), we constructed a three-locus DNA sequence database to facilitate molecular identification of the 69 Fusarium species associated with human or animal mycoses encountered in clinical microbiology laboratories. The database comprises partial sequences from three nuclear genes: translation elongation factor 1α (EF-1α), the largest subunit of RNA polymerase (RPB1), and the second largest subunit of RNA polymerase (RPB2). These three gene fragments can be amplified by PCR and sequenced using primers that are conserved across the phylogenetic breadth of Fusarium. Phylogenetic analyses of the combined data set reveal that, with the exception of two monotypic lineages, all clinically relevant fusaria are nested in one of eight variously sized and strongly supported species complexes. The monophyletic lineages have been named informally to facilitate communication of an isolate's clade membership and genetic diversity. To identify isolates to the species included within the database, partial DNA sequence data from one or more of the three genes can be used as a BLAST query against the database which is Web accessible at FUSARIUM-ID (http://isolate.fusariumdb.org) and the Centraalbureau voor Schimmelcultures (CBS-KNAW) Fungal Biodiversity Center (http://www.cbs.knaw.nl/fusarium). Alternatively, isolates can be identified via phylogenetic analysis by adding sequences of unknowns to the DNA sequence alignment, which can be downloaded from the two aforementioned websites. The utility of this database should increase significantly as members of the clinical microbiology community deposit in internationally accessible culture collections (e.g., CBS-KNAW or the Fusarium Research Center) cultures of novel mycosis-associated fusaria, along with associated, corrected sequence chromatograms and data, so that the

  12. MISTICA: Minimum Spanning Tree-based Coarse Image Alignment for Microscopy Image Sequences

    PubMed Central

    Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T.

    2016-01-01

    Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to re-order the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries. PMID:26415193

  13. MISTICA: Minimum Spanning Tree-Based Coarse Image Alignment for Microscopy Image Sequences.

    PubMed

    Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T

    2016-11-01

    Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to reorder the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by the way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries.

  14. Identification of a Divergent Environmental DNA Sequence Clade Using the Phylogeny of Gregarine Parasites (Apicomplexa) from Crustacean Hosts

    PubMed Central

    Rueckert, Sonja; Simdyanov, Timur G.; Aleoshin, Vladimir V.; Leander, Brian S.

    2011-01-01

    Background Environmental SSU rDNA surveys have significantly improved our understanding of microeukaryotic diversity. Many of the sequences acquired using this approach are closely related to lineages previously characterized at both morphological and molecular levels, making interpretation of these data relatively straightforward. Some sequences, by contrast, appear to be phylogenetic orphans and are sometimes inferred to represent “novel lineages” of unknown cellular identity. Consequently, interpretation of environmental DNA surveys of cellular diversity rely on an adequately comprehensive database of DNA sequences derived from identified species. Several major taxa of microeukaryotes, however, are still very poorly represented in these databases, and this is especially true for diverse groups of single-celled parasites, such as gregarine apicomplexans. Methodology/Principal Findings This study attempts to address this paucity of DNA sequence data by characterizing four different gregarine species, isolated from the intestines of crustaceans, at both morphological and molecular levels: Thiriotia pugettiae sp. n. from the graceful kelp crab (Pugettia gracilis), Cephaloidophora cf. communis from two different species of barnacles (Balanus glandula and B. balanus), Heliospora cf. longissima from two different species of freshwater amphipods (Eulimnogammarus verrucosus and E. vittatus), and Heliospora caprellae comb. n. from a skeleton shrimp (Caprella alaskana). SSU rDNA sequences were acquired from isolates of these gregarine species and added to a global apicomplexan alignment containing all major groups of gregarines characterized so far. Molecular phylogenetic analyses of these data demonstrated that all of the gregarines collected from crustacean hosts formed a very strongly supported clade with 48 previously unidentified environmental DNA sequences. Conclusions/Significance This expanded molecular phylogenetic context enabled us to establish a major clade

  15. Cloning and sequence analysis of a cDNA clone coding for the mouse GM2 activator protein.

    PubMed Central

    Bellachioma, G; Stirling, J L; Orlacchio, A; Beccari, T

    1993-01-01

    A cDNA (1.1 kb) containing the complete coding sequence for the mouse GM2 activator protein was isolated from a mouse macrophage library using a cDNA for the human protein as a probe. There was a single ATG located 12 bp from the 5' end of the cDNA clone followed by an open reading frame of 579 bp. Northern blot analysis of mouse macrophage RNA showed that there was a single band with a mobility corresponding to a size of 2.3 kb. We deduce from this that the mouse mRNA, in common with the mRNA for the human GM2 activator protein, has a long 3' untranslated sequence of approx. 1.7 kb. Alignment of the mouse and human deduced amino acid sequences showed 68% identity overall and 75% identity for the sequence on the C-terminal side of the first 31 residues, which in the human GM2 activator protein contains the signal peptide. Hydropathicity plots showed great similarity between the mouse and human sequences even in regions of low sequence similarity. There is a single N-glycosylation site in the mouse GM2 activator protein sequence (Asn151-Phe-Thr) which differs in its location from the single site reported in the human GM2 activator protein sequence (Asn63-Val-Thr). Images Figure 1 PMID:7689829

  16. DNA Sequencing by Capillary Electrophoresis

    PubMed Central

    Karger, Barry L.; Guttman, Andras

    2009-01-01

    Sequencing of human and other genomes has been at the center of interest in the biomedical field over the past several decades and is now leading toward an era of personalized medicine. During this time, DNA sequencing methods have evolved from the labor intensive slab gel electrophoresis, through automated multicapillary electrophoresis systems using fluorophore labeling with multispectral imaging, to the “next generation” technologies of cyclic array, hybridization based, nanopore and single molecule sequencing. Deciphering the genetic blueprint and follow-up confirmatory sequencing of Homo sapiens and other genomes was only possible by the advent of modern sequencing technologies that was a result of step by step advances with a contribution of academics, medical personnel and instrument companies. While next generation sequencing is moving ahead at break-neck speed, the multicapillary electrophoretic systems played an essential role in the sequencing of the Human Genome, the foundation of the field of genomics. In this prospective, we wish to overview the role of capillary electrophoresis in DNA sequencing based in part of several of our articles in this journal. PMID:19517496

  17. Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Version 3.0 User Guide

    EPA Science Inventory

    User Guide to describe the complete functionality of the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Version 3.0 online tool. The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility tool (SeqAPASS; https://seqa...

  18. Improving transmission efficiency of large sequence alignment/map (SAM) files.

    PubMed

    Sakib, Muhammad Nazmus; Tang, Jijun; Zheng, W Jim; Huang, Chin-Tser

    2011-01-01

    Research in bioinformatics primarily involves collection and analysis of a large volume of genomic data. Naturally, it demands efficient storage and transfer of this huge amount of data. In recent years, some research has been done to find efficient compression algorithms to reduce the size of various sequencing data. One way to improve the transmission time of large files is to apply a maximum lossless compression on them. In this paper, we present SAMZIP, a specialized encoding scheme, for sequence alignment data in SAM (Sequence Alignment/Map) format, which improves the compression ratio of existing compression tools available. In order to achieve this, we exploit the prior knowledge of the file format and specifications. Our experimental results show that our encoding scheme improves compression ratio, thereby reducing overall transmission time significantly.

  19. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1987-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:3575113

  20. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1990-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2333227

  1. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1988-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:3368330

  2. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1989-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2654889

  3. MethVisual - visualization and exploratory statistical analysis of DNA methylation profiles from bisulfite sequencing.

    PubMed

    Zackay, Arie; Steinhoff, Christine

    2010-12-15

    Exploration of DNA methylation and its impact on various regulatory mechanisms has become a very active field of research. Simultaneously there is an arising need for tools to process and analyse the data together with statistical investigation and visualisation. MethVisual is a new application that enables exploratory analysis and intuitive visualization of DNA methylation data as is typically generated by bisulfite sequencing. The package allows the import of DNA methylation sequences, aligns them and performs quality control comparison. It comprises basic analysis steps as lollipop visualization, co-occurrence display of methylation of neighbouring and distant CpG sites, summary statistics on methylation status, clustering and correspondence analysis. The package has been developed for methylation data but can be also used for other data types for which binary coding can be inferred. The application of the package, as well as a comparison to existing DNA methylation analysis tools and its workflow based on two datasets is presented in this paper. The R package MethVisual offers various analysis procedures for data that can be binarized, in particular for bisulfite sequenced methylation data. R/Bioconductor has become one of the most important environments for statistical analysis of various types of biological and medical data. Therefore, any data analysis within R that allows the integration of various data types as provided from different technological platforms is convenient. It is the first and so far the only specific package for DNA methylation analysis, in particular for bisulfite sequenced data available in R/Bioconductor enviroment. The package is available for free at http://methvisual.molgen.mpg.de/ and from the Bioconductor Consortium http://www.bioconductor.org.

  4. MethVisual - visualization and exploratory statistical analysis of DNA methylation profiles from bisulfite sequencing

    PubMed Central

    2010-01-01

    Background Exploration of DNA methylation and its impact on various regulatory mechanisms has become a very active field of research. Simultaneously there is an arising need for tools to process and analyse the data together with statistical investigation and visualisation. Findings MethVisual is a new application that enables exploratory analysis and intuitive visualization of DNA methylation data as is typically generated by bisulfite sequencing. The package allows the import of DNA methylation sequences, aligns them and performs quality control comparison. It comprises basic analysis steps as lollipop visualization, co-occurrence display of methylation of neighbouring and distant CpG sites, summary statistics on methylation status, clustering and correspondence analysis. The package has been developed for methylation data but can be also used for other data types for which binary coding can be inferred. The application of the package, as well as a comparison to existing DNA methylation analysis tools and its workflow based on two datasets is presented in this paper. Conclusions The R package MethVisual offers various analysis procedures for data that can be binarized, in particular for bisulfite sequenced methylation data. R/Bioconductor has become one of the most important environments for statistical analysis of various types of biological and medical data. Therefore, any data analysis within R that allows the integration of various data types as provided from different technological platforms is convenient. It is the first and so far the only specific package for DNA methylation analysis, in particular for bisulfite sequenced data available in R/Bioconductor enviroment. The package is available for free at http://methvisual.molgen.mpg.de/ and from the Bioconductor Consortium http://www.bioconductor.org. PMID:21159174

  5. Aligner optimization increases accuracy and decreases compute times in multi-species sequence data.

    PubMed

    Robinson, Kelly M; Hawkins, Aziah S; Santana-Cruz, Ivette; Adkins, Ricky S; Shetty, Amol C; Nagaraj, Sushma; Sadzewicz, Lisa; Tallon, Luke J; Rasko, David A; Fraser, Claire M; Mahurkar, Anup; Silva, Joana C; Dunning Hotopp, Julie C

    2017-09-01

    As sequencing technologies have evolved, the tools to analyze these sequences have made similar advances. However, for multi-species samples, we observed important and adverse differences in alignment specificity and computation time for bwa- mem (Burrows-Wheeler aligner-maximum exact matches) relative to bwa-aln. Therefore, we sought to optimize bwa-mem for alignment of data from multi-species samples in order to reduce alignment time and increase the specificity of alignments. In the multi-species cases examined, there was one majority member (i.e. Plasmodium falciparum or Brugia malayi ) and one minority member (i.e. human or the Wolbachia endosymbiont w Bm) of the sequence data. Increasing bwa-mem seed length from the default value reduced the number of read pairs from the majority sequence member that incorrectly aligned to the reference genome of the minority sequence member. Combining both source genomes into a single reference genome increased the specificity of mapping, while also reducing the central processing unit (CPU) time. In Plasmodium , at a seed length of 18 nt, 24.1 % of reads mapped to the human genome using 1.7±0.1 CPU hours, while 83.6 % of reads mapped to the Plasmodium genome using 0.2±0.0 CPU hours (total: 107.7 % reads mapping; in 1.9±0.1 CPU hours). In contrast, 97.1 % of the reads mapped to a combined Plasmodium- human reference in only 0.7±0.0 CPU hours. Overall, the results suggest that combining all references into a single reference database and using a 23 nt seed length reduces the computational time, while maximizing specificity. Similar results were found for simulated sequence reads from a mock metagenomic data set. We found similar improvements to computation time in a publicly available human-only data set.

  6. Representation of DNA sequences with virtual potentials and their processing by (SEQREP) Kohonen self-organizing maps.

    PubMed

    Aires-de-Sousa, João; Aires-de-Sousa, Luisa

    2003-01-01

    We propose representing individual positions in DNA sequences by virtual potentials generated by other bases of the same sequence. This is a compact representation of the neighbourhood of a base. The distribution of the virtual potentials over the whole sequence can be used as a representation of the entire sequence (SEQREP code). It is a flexible code, with a length independent of the sequence size, does not require previous alignment, and is convenient for processing by neural networks or statistical techniques. To evaluate its biological significance, the SEQREP code was used for training Kohonen self-organizing maps (SOMs) in two applications: (a) detection of Alu sequences, and (b) classification of sequences encoding for HIV-1 envelope glycoprotein (env) into subtypes A-G. It was demonstrated that SOMs clustered sequences belonging to different classes into distinct regions. For independent test sets, very high rates of correct predictions were obtained (97% in the first application, 91% in the second). Possible areas of application of SEQREP codes include functional genomics, phylogenetic analysis, detection of repetitions, database retrieval, and automatic alignment. Software for representing sequences by SEQREP code, and for training Kohonen SOMs is made freely available from http://www.dq.fct.unl.pt/qoa/jas/seqrep. Supplementary material is available at http://www.dq.fct.unl.pt/qoa/jas/seqrep/bioinf2002

  7. The sequence of sequencers: The history of sequencing DNA.

    PubMed

    Heather, James M; Chain, Benjamin

    2016-01-01

    Determining the order of nucleic acid residues in biological samples is an integral component of a wide variety of research applications. Over the last fifty years large numbers of researchers have applied themselves to the production of techniques and technologies to facilitate this feat, sequencing DNA and RNA molecules. This time-scale has witnessed tremendous changes, moving from sequencing short oligonucleotides to millions of bases, from struggling towards the deduction of the coding sequence of a single gene to rapid and widely available whole genome sequencing. This article traverses those years, iterating through the different generations of sequencing technology, highlighting some of the key discoveries, researchers, and sequences along the way. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. AlexSys: a knowledge-based expert system for multiple sequence alignment construction and analysis

    PubMed Central

    Aniba, Mohamed Radhouene; Poch, Olivier; Marchler-Bauer, Aron; Thompson, Julie Dawn

    2010-01-01

    Multiple sequence alignment (MSA) is a cornerstone of modern molecular biology and represents a unique means of investigating the patterns of conservation and diversity in complex biological systems. Many different algorithms have been developed to construct MSAs, but previous studies have shown that no single aligner consistently outperforms the rest. This has led to the development of a number of ‘meta-methods’ that systematically run several aligners and merge the output into one single solution. Although these methods generally produce more accurate alignments, they are inefficient because all the aligners need to be run first and the choice of the best solution is made a posteriori. Here, we describe the development of a new expert system, AlexSys, for the multiple alignment of protein sequences. AlexSys incorporates an intelligent inference engine to automatically select an appropriate aligner a priori, depending only on the nature of the input sequences. The inference engine was trained on a large set of reference multiple alignments, using a novel machine learning approach. Applying AlexSys to a test set of 178 alignments, we show that the expert system represents a good compromise between alignment quality and running time, making it suitable for high throughput projects. AlexSys is freely available from http://alnitak.u-strasbg.fr/∼aniba/alexsys. PMID:20530533

  9. The Dynamics of DNA Sequencing.

    ERIC Educational Resources Information Center

    Morvillo, Nancy

    1997-01-01

    Describes a paper-and-pencil activity that helps students understand DNA sequencing and expands student understanding of DNA structure, replication, and gel electrophoresis. Appropriate for advanced biology students who are familiar with the Sanger method. (DDR)

  10. Exploring Dance Movement Data Using Sequence Alignment Methods

    PubMed Central

    Chavoshi, Seyed Hossein; De Baets, Bernard; Neutens, Tijs; De Tré, Guy; Van de Weghe, Nico

    2015-01-01

    Despite the abundance of research on knowledge discovery from moving object databases, only a limited number of studies have examined the interaction between moving point objects in space over time. This paper describes a novel approach for measuring similarity in the interaction between moving objects. The proposed approach consists of three steps. First, we transform movement data into sequences of successive qualitative relations based on the Qualitative Trajectory Calculus (QTC). Second, sequence alignment methods are applied to measure the similarity between movement sequences. Finally, movement sequences are grouped based on similarity by means of an agglomerative hierarchical clustering method. The applicability of this approach is tested using movement data from samba and tango dancers. PMID:26181435

  11. On site DNA barcoding by nanopore sequencing

    PubMed Central

    Menegon, Michele; Cantaloni, Chiara; Rodriguez-Prieto, Ana; Centomo, Cesare; Abdelfattah, Ahmed; Rossato, Marzia; Bernardi, Massimo; Xumerle, Luciano; Loader, Simon; Delledonne, Massimo

    2017-01-01

    Biodiversity research is becoming increasingly dependent on genomics, which allows the unprecedented digitization and understanding of the planet’s biological heritage. The use of genetic markers i.e. DNA barcoding, has proved to be a powerful tool in species identification. However, full exploitation of this approach is hampered by the high sequencing costs and the absence of equipped facilities in biodiversity-rich countries. In the present work, we developed a portable sequencing laboratory based on the portable DNA sequencer from Oxford Nanopore Technologies, the MinION. Complementary laboratory equipment and reagents were selected to be used in remote and tough environmental conditions. The performance of the MinION sequencer and the portable laboratory was tested for DNA barcoding in a mimicking tropical environment, as well as in a remote rainforest of Tanzania lacking electricity. Despite the relatively high sequencing error-rate of the MinION, the development of a suitable pipeline for data analysis allowed the accurate identification of different species of vertebrates including amphibians, reptiles and mammals. In situ sequencing of a wild frog allowed us to rapidly identify the species captured, thus confirming that effective DNA barcoding in the field is possible. These results open new perspectives for real-time-on-site DNA sequencing thus potentially increasing opportunities for the understanding of biodiversity in areas lacking conventional laboratory facilities. PMID:28977016

  12. MACSIMS : multiple alignment of complete sequences information management system

    PubMed Central

    Thompson, Julie D; Muller, Arnaud; Waterhouse, Andrew; Procter, Jim; Barton, Geoffrey J; Plewniak, Frédéric; Poch, Olivier

    2006-01-01

    Background In the post-genomic era, systems-level studies are being performed that seek to explain complex biological systems by integrating diverse resources from fields such as genomics, proteomics or transcriptomics. New information management systems are now needed for the collection, validation and analysis of the vast amount of heterogeneous data available. Multiple alignments of complete sequences provide an ideal environment for the integration of this information in the context of the protein family. Results MACSIMS is a multiple alignment-based information management program that combines the advantages of both knowledge-based and ab initio sequence analysis methods. Structural and functional information is retrieved automatically from the public databases. In the multiple alignment, homologous regions are identified and the retrieved data is evaluated and propagated from known to unknown sequences with these reliable regions. In a large-scale evaluation, the specificity of the propagated sequence features is estimated to be >99%, i.e. very few false positive predictions are made. MACSIMS is then used to characterise mutations in a test set of 100 proteins that are known to be involved in human genetic diseases. The number of sequence features associated with these proteins was increased by 60%, compared to the features available in the public databases. An XML format output file allows automatic parsing of the MACSIM results, while a graphical display using the JalView program allows manual analysis. Conclusion MACSIMS is a new information management system that incorporates detailed analyses of protein families at the structural, functional and evolutionary levels. MACSIMS thus provides a unique environment that facilitates knowledge extraction and the presentation of the most pertinent information to the biologist. A web server and the source code are available at . PMID:16792820

  13. Winnowing DNA for Rare Sequences: Highly Specific Sequence and Methylation Based Enrichment

    PubMed Central

    Thompson, Jason D.; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre

    2012-01-01

    Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue. PMID:22355378

  14. Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.

    PubMed

    Thompson, Jason D; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre

    2012-01-01

    Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.

  15. Highly multiplexed targeted DNA sequencing from single nuclei.

    PubMed

    Leung, Marco L; Wang, Yong; Kim, Charissa; Gao, Ruli; Jiang, Jerry; Sei, Emi; Navin, Nicholas E

    2016-02-01

    Single-cell DNA sequencing methods are challenged by poor physical coverage, high technical error rates and low throughput. To address these issues, we developed a single-cell DNA sequencing protocol that combines flow-sorting of single nuclei, time-limited multiple-displacement amplification (MDA), low-input library preparation, DNA barcoding, targeted capture and next-generation sequencing (NGS). This approach represents a major improvement over our previous single nucleus sequencing (SNS) Nature Protocols paper in terms of generating higher-coverage data (>90%), thereby enabling the detection of genome-wide variants in single mammalian cells at base-pair resolution. Furthermore, by pooling 48-96 single-cell libraries together for targeted capture, this approach can be used to sequence many single-cell libraries in parallel in a single reaction. This protocol greatly reduces the cost of single-cell DNA sequencing, and it can be completed in 5-6 d by advanced users. This single-cell DNA sequencing protocol has broad applications for studying rare cells and complex populations in diverse fields of biological research and medicine.

  16. Rényi continuous entropy of DNA sequences.

    PubMed

    Vinga, Susana; Almeida, Jonas S

    2004-12-07

    Entropy measures of DNA sequences estimate their randomness or, inversely, their repeatability. L-block Shannon discrete entropy accounts for the empirical distribution of all length-L words and has convergence problems for finite sequences. A new entropy measure that extends Shannon's formalism is proposed. Renyi's quadratic entropy calculated with Parzen window density estimation method applied to CGR/USM continuous maps of DNA sequences constitute a novel technique to evaluate sequence global randomness without some of the former method drawbacks. The asymptotic behaviour of this new measure was analytically deduced and the calculation of entropies for several synthetic and experimental biological sequences was performed. The results obtained were compared with the distributions of the null model of randomness obtained by simulation. The biological sequences have shown a different p-value according to the kernel resolution of Parzen's method, which might indicate an unknown level of organization of their patterns. This new technique can be very useful in the study of DNA sequence complexity and provide additional tools for DNA entropy estimation. The main MATLAB applications developed and additional material are available at the webpage . Specialized functions can be obtained from the authors.

  17. A parallel approach of COFFEE objective function to multiple sequence alignment

    NASA Astrophysics Data System (ADS)

    Zafalon, G. F. D.; Visotaky, J. M. V.; Amorim, A. R.; Valêncio, C. R.; Neves, L. A.; de Souza, R. C. G.; Machado, J. M.

    2015-09-01

    The computational tools to assist genomic analyzes show even more necessary due to fast increasing of data amount available. With high computational costs of deterministic algorithms for sequence alignments, many works concentrate their efforts in the development of heuristic approaches to multiple sequence alignments. However, the selection of an approach, which offers solutions with good biological significance and feasible execution time, is a great challenge. Thus, this work aims to show the parallelization of the processing steps of MSA-GA tool using multithread paradigm in the execution of COFFEE objective function. The standard objective function implemented in the tool is the Weighted Sum of Pairs (WSP), which produces some distortions in the final alignments when sequences sets with low similarity are aligned. Then, in studies previously performed we implemented the COFFEE objective function in the tool to smooth these distortions. Although the nature of COFFEE objective function implies in the increasing of execution time, this approach presents points, which can be executed in parallel. With the improvements implemented in this work, we can verify the execution time of new approach is 24% faster than the sequential approach with COFFEE. Moreover, the COFFEE multithreaded approach is more efficient than WSP, because besides it is slightly fast, its biological results are better.

  18. DNA Sequencing Using capillary Electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linkedmore » polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  19. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities

    PubMed Central

    2011-01-01

    Background Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. Results The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. Conclusions PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/. PMID:21385349

  20. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities.

    PubMed

    Troshin, Peter V; Postis, Vincent Lg; Ashworth, Denise; Baldwin, Stephen A; McPherson, Michael J; Barton, Geoffrey J

    2011-03-07

    Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/.

  1. Sequence dependence of electron-induced DNA strand breakage revealed by DNA nanoarrays

    PubMed Central

    Keller, Adrian; Rackwitz, Jenny; Cauët, Emilie; Liévin, Jacques; Körzdörfer, Thomas; Rotaru, Alexandru; Gothelf, Kurt V.; Besenbacher, Flemming; Bald, Ilko

    2014-01-01

    The electronic structure of DNA is determined by its nucleotide sequence, which is for instance exploited in molecular electronics. Here we demonstrate that also the DNA strand breakage induced by low-energy electrons (18 eV) depends on the nucleotide sequence. To determine the absolute cross sections for electron induced single strand breaks in specific 13 mer oligonucleotides we used atomic force microscopy analysis of DNA origami based DNA nanoarrays. We investigated the DNA sequences 5′-TT(XYX)3TT with X = A, G, C and Y = T, BrU 5-bromouracil and found absolute strand break cross sections between 2.66 · 10−14 cm2 and 7.06 · 10−14 cm2. The highest cross section was found for 5′-TT(ATA)3TT and 5′-TT(ABrUA)3TT, respectively. BrU is a radiosensitizer, which was discussed to be used in cancer radiation therapy. The replacement of T by BrU into the investigated DNA sequences leads to a slight increase of the absolute strand break cross sections resulting in sequence-dependent enhancement factors between 1.14 and 1.66. Nevertheless, the variation of strand break cross sections due to the specific nucleotide sequence is considerably higher. Thus, the present results suggest the development of targeted radiosensitizers for cancer radiation therapy. PMID:25487346

  2. Estimation of a Killer Whale (Orcinus orca) Population’s Diet Using Sequencing Analysis of DNA from Feces

    PubMed Central

    Ford, Michael J.; Hempelmann, Jennifer; Hanson, M. Bradley; Ayres, Katherine L.; Baird, Robin W.; Emmons, Candice K.; Lundin, Jessica I.; Schorr, Gregory S.; Wasser, Samuel K.; Park, Linda K.

    2016-01-01

    Estimating diet composition is important for understanding interactions between predators and prey and thus illuminating ecosystem function. The diet of many species, however, is difficult to observe directly. Genetic analysis of fecal material collected in the field is therefore a useful tool for gaining insight into wild animal diets. In this study, we used high-throughput DNA sequencing to quantitatively estimate the diet composition of an endangered population of wild killer whales (Orcinus orca) in their summer range in the Salish Sea. We combined 175 fecal samples collected between May and September from five years between 2006 and 2011 into 13 sample groups. Two known DNA composition control groups were also created. Each group was sequenced at a ~330bp segment of the 16s gene in the mitochondrial genome using an Illumina MiSeq sequencing system. After several quality controls steps, 4,987,107 individual sequences were aligned to a custom sequence database containing 19 potential fish prey species and the most likely species of each fecal-derived sequence was determined. Based on these alignments, salmonids made up >98.6% of the total sequences and thus of the inferred diet. Of the six salmonid species, Chinook salmon made up 79.5% of the sequences, followed by coho salmon (15%). Over all years, a clear pattern emerged with Chinook salmon dominating the estimated diet early in the summer, and coho salmon contributing an average of >40% of the diet in late summer. Sockeye salmon appeared to be occasionally important, at >18% in some sample groups. Non-salmonids were rarely observed. Our results are consistent with earlier results based on surface prey remains, and confirm the importance of Chinook salmon in this population’s summer diet. PMID:26735849

  3. Entropic fluctuations in DNA sequences

    NASA Astrophysics Data System (ADS)

    Thanos, Dimitrios; Li, Wentian; Provata, Astero

    2018-03-01

    The Local Shannon Entropy (LSE) in blocks is used as a complexity measure to study the information fluctuations along DNA sequences. The LSE of a DNA block maps the local base arrangement information to a single numerical value. It is shown that despite this reduction of information, LSE allows to extract meaningful information related to the detection of repetitive sequences in whole chromosomes and is useful in finding evolutionary differences between organisms. More specifically, large regions of tandem repeats, such as centromeres, can be detected based on their low LSE fluctuations along the chromosome. Furthermore, an empirical investigation of the appropriate block sizes is provided and the relationship of LSE properties with the structure of the underlying repetitive units is revealed by using both computational and mathematical methods. Sequence similarity between the genomic DNA of closely related species also leads to similar LSE values at the orthologous regions. As an application, the LSE covariance function is used to measure the evolutionary distance between several primate genomes.

  4. Nanopore Kinetic Proofreading of DNA Sequences

    NASA Astrophysics Data System (ADS)

    Ling, Xinsheng Sean

    The concept of DNA sequencing using the time dependence of the nanopore ionic current was proposed in 1996 by Kasianowicz, Brandin, Branton, and Deamer (KBBD). The KBBD concept has generated tremendous amount interests in recent decade. In this talk, I will review the current understanding of the DNA ``translocation'' dynamics and how it can be described by Schrodinger's 1915 paper on first-passage-time distribution function. Schrodinger's distribution function can be used to give a rigorous criterion for achieving nanopore DNA sequencing which turns out to be identical to that of gel electrophoresis used by Sanger in the first-generation Sanger method. A nanopore DNA sequencing technology also requires discrimination of bases with high accuracies. I will describe a solid-state nanopore sandwich structure that can function as a proofreading device capable of discriminating between correct and incorrect hybridization probes with an accuracy rivaling that of high-fidelity DNA polymerases. The latest results from Nanjing will be presented. This work is supported by China 1000-Talent Program at Southeast University, Nanjing, China.

  5. A Novel Center Star Multiple Sequence Alignment Algorithm Based on Affine Gap Penalty and K-Band

    NASA Astrophysics Data System (ADS)

    Zou, Quan; Shan, Xiao; Jiang, Yi

    Multiple sequence alignment is one of the most important topics in computational biology, but it cannot deal with the large data so far. As the development of copy-number variant(CNV) and Single Nucleotide Polymorphisms(SNP) research, many researchers want to align numbers of similar sequences for detecting CNV and SNP. In this paper, we propose a novel multiple sequence alignment algorithm based on affine gap penalty and k-band. It can align more quickly and accurately, that will be helpful for mining CNV and SNP. Experiments prove the performance of our algorithm.

  6. Cloning and sequence analysis of a cDNA encoding the alpha-subunit of mouse beta-N-acetylhexosaminidase and comparison with the human enzyme.

    PubMed Central

    Beccari, T; Hoade, J; Orlacchio, A; Stirling, J L

    1992-01-01

    cDNAs encoding the mouse beta-N-acetylhexosaminidase alpha-subunit were isolated from a mouse testis library. The longest of these (1.7 kb) was sequenced and showed 83% similarity with the human alpha-subunit cDNA sequence. The 5' end of the coding sequence was obtained from a genomic DNA clone. Alignment of the human and mouse sequences showed that all three putative N-glycosylation sites are conserved, but that the mouse alpha-subunit has an additional site towards the C-terminus. All eight cysteines in the human sequence are conserved in the mouse. There are an additional two cysteines in the mouse alpha-subunit signal peptide. All amino acids affected in Tay-Sachs-disease mutations are conserved in the mouse. Images Fig. 1. PMID:1379046

  7. DNA Replication Profiling Using Deep Sequencing.

    PubMed

    Saayman, Xanita; Ramos-Pérez, Cristina; Brown, Grant W

    2018-01-01

    Profiling of DNA replication during progression through S phase allows a quantitative snap-shot of replication origin usage and DNA replication fork progression. We present a method for using deep sequencing data to profile DNA replication in S. cerevisiae.

  8. Effects of sequence on DNA wrapping around histones

    NASA Astrophysics Data System (ADS)

    Ortiz, Vanessa

    2011-03-01

    A central question in biophysics is whether the sequence of a DNA strand affects its mechanical properties. In epigenetics, these are thought to influence nucleosome positioning and gene expression. Theoretical and experimental attempts to answer this question have been hindered by an inability to directly resolve DNA structure and dynamics at the base-pair level. In our previous studies we used a detailed model of DNA to measure the effects of sequence on the stability of naked DNA under bending. Sequence was shown to influence DNA's ability to form kinks, which arise when certain motifs slide past others to form non-native contacts. Here, we have now included histone-DNA interactions to see if the results obtained for naked DNA are transferable to the problem of nucleosome positioning. Different DNA sequences interacting with the histone protein complex are studied, and their equilibrium and mechanical properties are compared among themselves and with the naked case. NLM training grant to the Computation and Informatics in Biology and Medicine Training Program (NLM T15LM007359).

  9. Nanopore Technology: A Simple, Inexpensive, Futuristic Technology for DNA Sequencing.

    PubMed

    Gupta, P D

    2016-10-01

    In health care, importance of DNA sequencing has been fully established. Sanger's Capillary Electrophoresis DNA sequencing methodology is time consuming, cumbersome, hence become more expensive. Lately, because of its versatility DNA sequencing became house hold name, and therefore, there is an urgent need of simple, fast, inexpensive, DNA sequencing technology. In the beginning of this century efforts were made, and Nanopore DNA sequencing technology was developed; still it is infancy, nevertheless, it is the futuristic technology.

  10. Molecular design of sequence specific DNA alkylating agents.

    PubMed

    Minoshima, Masafumi; Bando, Toshikazu; Shinohara, Ken-ichi; Sugiyama, Hiroshi

    2009-01-01

    Sequence-specific DNA alkylating agents have great interest for novel approach to cancer chemotherapy. We designed the conjugates between pyrrole (Py)-imidazole (Im) polyamides and DNA alkylating chlorambucil moiety possessing at different positions. The sequence-specific DNA alkylation by conjugates was investigated by using high-resolution denaturing polyacrylamide gel electrophoresis (PAGE). The results showed that polyamide chlorambucil conjugates alkylate DNA at flanking adenines in recognition sequences of Py-Im polyamides, however, the reactivities and alkylation sites were influenced by the positions of conjugation. In addition, we synthesized conjugate between Py-Im polyamide and another alkylating agent, 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI). DNA alkylation reactivies by both alkylating polyamides were almost comparable. In contrast, cytotoxicities against cell lines differed greatly. These comparative studies would promote development of appropriate sequence-specific DNA alkylating polyamides against specific cancer cells.

  11. Hiding message into DNA sequence through DNA coding and chaotic maps.

    PubMed

    Liu, Guoyan; Liu, Hongjun; Kadir, Abdurahman

    2014-09-01

    The paper proposes an improved reversible substitution method to hide data into deoxyribonucleic acid (DNA) sequence, and four measures have been taken to enhance the robustness and enlarge the hiding capacity, such as encode the secret message by DNA coding, encrypt it by pseudo-random sequence, generate the relative hiding locations by piecewise linear chaotic map, and embed the encoded and encrypted message into a randomly selected DNA sequence using the complementary rule. The key space and the hiding capacity are analyzed. Experimental results indicate that the proposed method has a better performance compared with the competing methods with respect to robustness and capacity.

  12. Cloning and sequencing of the cDNA species for mammalian dimeric dihydrodiol dehydrogenases.

    PubMed Central

    Arimitsu, E; Aoki, S; Ishikura, S; Nakanishi, K; Matsuura, K; Hara, A

    1999-01-01

    Cynomolgus and Japanese monkey kidneys, dog and pig livers and rabbit lens contain dimeric dihydrodiol dehydrogenase (EC 1.3.1.20) associated with high carbonyl reductase activity. Here we have isolated cDNA species for the dimeric enzymes by reverse transcriptase-PCR from human intestine in addition to the above five animal tissues. The amino acid sequences deduced from the monkey, pig and dog cDNA species perfectly matched the partial sequences of peptides digested from the respective enzymes of these animal tissues, and active recombinant proteins were expressed in a bacterial system from the monkey and human cDNA species. Northern blot analysis revealed the existence of a single 1.3 kb mRNA species for the enzyme in these animal tissues. The human enzyme shared 94%, 85%, 84% and 82% amino acid identity with the enzymes of the two monkey strains (their sequences were identical), the dog, the pig and the rabbit respectively. The sequences of the primate enzymes consisted of 335 amino acid residues and lacked one amino acid compared with the other animal enzymes. In contrast with previous reports that other types of dihydrodiol dehydrogenase, carbonyl reductases and enzymes with either activity belong to the aldo-keto reductase family or the short-chain dehydrogenase/reductase family, dimeric dihydrodiol dehydrogenase showed no sequence similarity with the members of the two protein families. The dimeric enzyme aligned with low degrees of identity (14-25%) with several prokaryotic proteins, in which 47 residues are strictly or highly conserved. Thus dimeric dihydrodiol dehydrogenase has a primary structure distinct from the previously known mammalian enzymes and is suggested to constitute a novel protein family with the prokaryotic proteins. PMID:10477285

  13. SSR_pipeline: a bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data

    USGS Publications Warehouse

    Miller, Mark P.; Knaus, Brian J.; Mullins, Thomas D.; Haig, Susan M.

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (e.g., microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains 3 analysis modules along with a fourth control module that can automate analyses of large volumes of data. The modules are used to 1) identify the subset of paired-end sequences that pass Illumina quality standards, 2) align paired-end reads into a single composite DNA sequence, and 3) identify sequences that possess microsatellites (both simple and compound) conforming to user-specified parameters. The microsatellite search algorithm is extremely efficient, and we have used it to identify repeats with motifs from 2 to 25bp in length. Each of the 3 analysis modules can also be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc.). We demonstrate use of the program with data from the brine fly Ephydra packardi (Diptera: Ephydridae) and provide empirical timing benchmarks to illustrate program performance on a common desktop computer environment. We further show that the Illumina platform is capable of identifying large numbers of microsatellites, even when using unenriched sample libraries and a very small percentage of the sequencing capacity from a single DNA sequencing run. All modules from SSR_pipeline are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, and Windows).

  14. SSR_pipeline: a bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data.

    PubMed

    Miller, Mark P; Knaus, Brian J; Mullins, Thomas D; Haig, Susan M

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (e.g., microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains 3 analysis modules along with a fourth control module that can automate analyses of large volumes of data. The modules are used to 1) identify the subset of paired-end sequences that pass Illumina quality standards, 2) align paired-end reads into a single composite DNA sequence, and 3) identify sequences that possess microsatellites (both simple and compound) conforming to user-specified parameters. The microsatellite search algorithm is extremely efficient, and we have used it to identify repeats with motifs from 2 to 25 bp in length. Each of the 3 analysis modules can also be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc.). We demonstrate use of the program with data from the brine fly Ephydra packardi (Diptera: Ephydridae) and provide empirical timing benchmarks to illustrate program performance on a common desktop computer environment. We further show that the Illumina platform is capable of identifying large numbers of microsatellites, even when using unenriched sample libraries and a very small percentage of the sequencing capacity from a single DNA sequencing run. All modules from SSR_pipeline are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, and Windows).

  15. Adenine specific DNA chemical sequencing reaction.

    PubMed Central

    Iverson, B L; Dervan, P B

    1987-01-01

    Reaction of DNA with K2PdCl4 at pH 2.0 followed by a piperidine workup produces specific cleavage at adenine (A) residues. Product analysis revealed the K2PdCl4 reaction involves selective depurination at adenine, affording an excision reaction analogous to the other chemical DNA sequencing reactions. Adenine residues methylated at the exocyclic amine (N6) react with lower efficiency than unmethylated adenine in an identical sequence. This simple protocol specific for A may be a useful addition to current chemical sequencing reactions. Images PMID:3671067

  16. GibbsCluster: unsupervised clustering and alignment of peptide sequences.

    PubMed

    Andreatta, Massimo; Alvarez, Bruno; Nielsen, Morten

    2017-07-03

    Receptor interactions with short linear peptide fragments (ligands) are at the base of many biological signaling processes. Conserved and information-rich amino acid patterns, commonly called sequence motifs, shape and regulate these interactions. Because of the properties of a receptor-ligand system or of the assay used to interrogate it, experimental data often contain multiple sequence motifs. GibbsCluster is a powerful tool for unsupervised motif discovery because it can simultaneously cluster and align peptide data. The GibbsCluster 2.0 presented here is an improved version incorporating insertion and deletions accounting for variations in motif length in the peptide input. In basic terms, the program takes as input a set of peptide sequences and clusters them into meaningful groups. It returns the optimal number of clusters it identified, together with the sequence alignment and sequence motif characterizing each cluster. Several parameters are available to customize cluster analysis, including adjustable penalties for small clusters and overlapping groups and a trash cluster to remove outliers. As an example application, we used the server to deconvolute multiple specificities in large-scale peptidome data generated by mass spectrometry. The server is available at http://www.cbs.dtu.dk/services/GibbsCluster-2.0. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Multiple tag labeling method for DNA sequencing

    DOEpatents

    Mathies, R.A.; Huang, X.C.; Quesada, M.A.

    1995-07-25

    A DNA sequencing method is described which uses single lane or channel electrophoresis. Sequencing fragments are separated in the lane and detected using a laser-excited, confocal fluorescence scanner. Each set of DNA sequencing fragments is separated in the same lane and then distinguished using a binary coding scheme employing only two different fluorescent labels. Also described is a method of using radioisotope labels. 5 figs.

  18. Multiple tag labeling method for DNA sequencing

    DOEpatents

    Mathies, Richard A.; Huang, Xiaohua C.; Quesada, Mark A.

    1995-01-01

    A DNA sequencing method described which uses single lane or channel electrophoresis. Sequencing fragments are separated in said lane and detected using a laser-excited, confocal fluorescence scanner. Each set of DNA sequencing fragments is separated in the same lane and then distinguished using a binary coding scheme employing only two different fluorescent labels. Also described is a method of using radio-isotope labels.

  19. Detection of DNA Methylation by Whole-Genome Bisulfite Sequencing.

    PubMed

    Li, Qing; Hermanson, Peter J; Springer, Nathan M

    2018-01-01

    DNA methylation plays an important role in the regulation of the expression of transposons and genes. Various methods have been developed to assay DNA methylation levels. Bisulfite sequencing is considered to be the "gold standard" for single-base resolution measurement of DNA methylation levels. Coupled with next-generation sequencing, whole-genome bisulfite sequencing (WGBS) allows DNA methylation to be evaluated at a genome-wide scale. Here, we described a protocol for WGBS in plant species with large genomes. This protocol has been successfully applied to assay genome-wide DNA methylation levels in maize and barley. This protocol has also been successfully coupled with sequence capture technology to assay DNA methylation levels in a targeted set of genomic regions.

  20. Sequence-Dependent Persistence Length of Long DNA

    NASA Astrophysics Data System (ADS)

    Chuang, Hui-Min; Reifenberger, Jeffrey G.; Cao, Han; Dorfman, Kevin D.

    2017-12-01

    Using a high-throughput genome-mapping approach, we obtained circa 50 million measurements of the extension of internal human DNA segments in a 41 nm ×41 nm nanochannel. The underlying DNA sequences, obtained by mapping to the reference human genome, are 2.5-393 kilobase pairs long and contain percent GC contents between 32.5% and 60%. Using Odijk's theory for a channel-confined wormlike chain, these data reveal that the DNA persistence length increases by almost 20% as the percent GC content increases. The increased persistence length is rationalized by a model, containing no adjustable parameters, that treats the DNA as a statistical terpolymer with a sequence-dependent intrinsic persistence length and a sequence-independent electrostatic persistence length.

  1. Dynamics and control of DNA sequence amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marimuthu, Karthikeyan; Chakrabarti, Raj, E-mail: raj@pmc-group.com, E-mail: rajc@andrew.cmu.edu; Division of Fundamental Research, PMC Advanced Technology, Mount Laurel, New Jersey 08054

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reactionmore » are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.« less

  2. Affordable hands-on DNA sequencing and genotyping: an exercise for teaching DNA analysis to undergraduates.

    PubMed

    Shah, Kushani; Thomas, Shelby; Stein, Arnold

    2013-01-01

    In this report, we describe a 5-week laboratory exercise for undergraduate biology and biochemistry students in which students learn to sequence DNA and to genotype their DNA for selected single nucleotide polymorphisms (SNPs). Students use miniaturized DNA sequencing gels that require approximately 8 min to run. The students perform G, A, T, C Sanger sequencing reactions. They prepare and run the gels, perform Southern blots (which require only 10 min), and detect sequencing ladders using a colorimetric detection system. Students enlarge their sequencing ladders from digital images of their small nylon membranes, and read the sequence manually. They compare their reads with the actual DNA sequence using BLAST2. After mastering the DNA sequencing system, students prepare their own DNA from a cheek swab, polymerase chain reaction-amplify a region of their DNA that encompasses a SNP of interest, and perform sequencing to determine their genotype at the SNP position. A family pedigree can also be constructed. The SNP chosen by the instructor was rs17822931, which is in the ABCC11 gene and is the determinant of human earwax type. Genotypes at the rs178229931 site vary in different ethnic populations. © 2013 by The International Union of Biochemistry and Molecular Biology.

  3. Sequence comparison alignment-free approach based on suffix tree and L-words frequency.

    PubMed

    Soares, Inês; Goios, Ana; Amorim, António

    2012-01-01

    The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions). In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L-L-words--in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.

  4. Mapping DNA polymerase errors by single-molecule sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, David F.; Lu, Jenny; Chang, Seungwoo

    Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less

  5. Mapping DNA polymerase errors by single-molecule sequencing

    DOE PAGES

    Lee, David F.; Lu, Jenny; Chang, Seungwoo; ...

    2016-05-16

    Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less

  6. Slider--maximum use of probability information for alignment of short sequence reads and SNP detection.

    PubMed

    Malhis, Nawar; Butterfield, Yaron S N; Ester, Martin; Jones, Steven J M

    2009-01-01

    A plethora of alignment tools have been created that are designed to best fit different types of alignment conditions. While some of these are made for aligning Illumina Sequence Analyzer reads, none of these are fully utilizing its probability (prb) output. In this article, we will introduce a new alignment approach (Slider) that reduces the alignment problem space by utilizing each read base's probabilities given in the prb files. Compared with other aligners, Slider has higher alignment accuracy and efficiency. In addition, given that Slider matches bases with probabilities other than the most probable, it significantly reduces the percentage of base mismatches. The result is that its SNP predictions are more accurate than other SNP prediction approaches used today that start from the most probable sequence, including those using base quality.

  7. DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing.

    PubMed

    Parson, W; Gusmão, L; Hares, D R; Irwin, J A; Mayr, W R; Morling, N; Pokorak, E; Prinz, M; Salas, A; Schneider, P M; Parsons, T J

    2014-11-01

    The DNA Commission of the International Society of Forensic Genetics (ISFG) regularly publishes guidelines and recommendations concerning the application of DNA polymorphisms to the question of human identification. Previous recommendations published in 2000 addressed the analysis and interpretation of mitochondrial DNA (mtDNA) in forensic casework. While the foundations set forth in the earlier recommendations still apply, new approaches to the quality control, alignment and nomenclature of mitochondrial sequences, as well as the establishment of mtDNA reference population databases, have been developed. Here, we describe these developments and discuss their application to both mtDNA casework and mtDNA reference population databasing applications. While the generation of mtDNA for forensic casework has always been guided by specific standards, it is now well-established that data of the same quality are required for the mtDNA reference population data used to assess the statistical weight of the evidence. As a result, we introduce guidelines regarding sequence generation, as well as quality control measures based on the known worldwide mtDNA phylogeny, that can be applied to ensure the highest quality population data possible. For both casework and reference population databasing applications, the alignment and nomenclature of haplotypes is revised here and the phylogenetic alignment proffered as acceptable standard. In addition, the interpretation of heteroplasmy in the forensic context is updated, and the utility of alignment-free database searches for unbiased probability estimates is highlighted. Finally, we discuss statistical issues and define minimal standards for mtDNA database searches. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Initial steps towards a production platform for DNA sequence analysis on the grid.

    PubMed

    Luyf, Angela C M; van Schaik, Barbera D C; de Vries, Michel; Baas, Frank; van Kampen, Antoine H C; Olabarriaga, Silvia D

    2010-12-14

    Bioinformatics is confronted with a new data explosion due to the availability of high throughput DNA sequencers. Data storage and analysis becomes a problem on local servers, and therefore it is needed to switch to other IT infrastructures. Grid and workflow technology can help to handle the data more efficiently, as well as facilitate collaborations. However, interfaces to grids are often unfriendly to novice users. In this study we reused a platform that was developed in the VL-e project for the analysis of medical images. Data transfer, workflow execution and job monitoring are operated from one graphical interface. We developed workflows for two sequence alignment tools (BLAST and BLAT) as a proof of concept. The analysis time was significantly reduced. All workflows and executables are available for the members of the Dutch Life Science Grid and the VL-e Medical virtual organizations All components are open source and can be transported to other grid infrastructures. The availability of in-house expertise and tools facilitates the usage of grid resources by new users. Our first results indicate that this is a practical, powerful and scalable solution to address the capacity and collaboration issues raised by the deployment of next generation sequencers. We currently adopt this methodology on a daily basis for DNA sequencing and other applications. More information and source code is available via http://www.bioinformaticslaboratory.nl/

  9. Laser Desorption Mass Spectrometry for DNA Sequencing and Analysis

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Golovlev, V. V.; Isola, N. R.; Allman, S. L.

    1998-03-01

    Rapid DNA sequencing and/or analysis is critically important for biomedical research. In the past, gel electrophoresis has been the primary tool to achieve DNA analysis and sequencing. However, gel electrophoresis is a time-consuming and labor-extensive process. Recently, we have developed and used laser desorption mass spectrometry (LDMS) to achieve sequencing of ss-DNA longer than 100 nucleotides. With LDMS, we succeeded in sequencing DNA in seconds instead of hours or days required by gel electrophoresis. In addition to sequencing, we also applied LDMS for the detection of DNA probes for hybridization LDMS was also used to detect short tandem repeats for forensic applications. Clinical applications for disease diagnosis such as cystic fibrosis caused by base deletion and point mutation have also been demonstrated. Experimental details will be presented in the meeting. abstract.

  10. Isolation and characterization of 5S rDNA sequences in catfishes genome (Heptapteridae and Pseudopimelodidae): perspectives for rDNA studies in fish by C0t method.

    PubMed

    Gouveia, Juceli Gonzalez; Wolf, Ivan Rodrigo; de Moraes-Manécolo, Vivian Patrícia Oliveira; Bardella, Vanessa Belline; Ferracin, Lara Munique; Giuliano-Caetano, Lucia; da Rosa, Renata; Dias, Ana Lúcia

    2016-12-01

    Sequences of 5S ribosomal RNA (rRNA) are extensively used in fish cytogenomic studies, once they have a flexible organization at the chromosomal level, showing inter- and intra-specific variation in number and position in karyotypes. Sequences from the genome of Imparfinis schubarti (Heptapteridae) were isolated, aiming to understand the organization of 5S rDNA families in the fish genome. The isolation of 5S rDNA from the genome of I. schubarti was carried out by reassociation kinetics (C 0 t) and PCR amplification. The obtained sequences were cloned for the construction of a micro-library. The obtained clones were sequenced and hybridized in I. schubarti and Microglanis cottoides (Pseudopimelodidae) for chromosome mapping. An analysis of the sequence alignments with other fish groups was accomplished. Both methods were effective when using 5S rDNA for hybridization in I. schubarti genome. However, the C 0 t method enabled the use of a complete 5S rRNA gene, which was also successful in the hybridization of M. cottoides. Nevertheless, this gene was obtained only partially by PCR. The hybridization results and sequence analyses showed that intact 5S regions are more appropriate for the probe operation, due to conserved structure and motifs. This study contributes to a better understanding of the organization of multigene families in catfish's genomes.

  11. Phylogenetic relationships within the cyst-forming nematodes (Nematoda, Heteroderidae) based on analysis of sequences from the ITS regions of ribosomal DNA.

    PubMed

    Subbotin, S A; Vierstraete, A; De Ley, P; Rowe, J; Waeyenberge, L; Moens, M; Vanfleteren, J R

    2001-10-01

    The ITS1, ITS2, and 5.8S gene sequences of nuclear ribosomal DNA from 40 taxa of the family Heteroderidae (including the genera Afenestrata, Cactodera, Heterodera, Globodera, Punctodera, Meloidodera, Cryphodera, and Thecavermiculatus) were sequenced and analyzed. The ITS regions displayed high levels of sequence divergence within Heteroderinae and compared to outgroup taxa. Unlike recent findings in root knot nematodes, ITS sequence polymorphism does not appear to complicate phylogenetic analysis of cyst nematodes. Phylogenetic analyses with maximum-parsimony, minimum-evolution, and maximum-likelihood methods were performed with a range of computer alignments, including elision and culled alignments. All multiple alignments and phylogenetic methods yielded similar basic structure for phylogenetic relationships of Heteroderidae. The cyst-forming nematodes are represented by six main clades corresponding to morphological characters and host specialization, with certain clades assuming different positions depending on alignment procedure and/or method of phylogenetic inference. Hypotheses of monophyly of Punctoderinae and Heteroderinae are, respectively, strongly and moderately supported by the ITS data across most alignments. Close relationships were revealed between the Avenae and the Sacchari groups and between the Humuli group and the species H. salixophila within Heteroderinae. The Goettingiana group occupies a basal position within this subfamily. The validity of the genera Afenestrata and Bidera was tested and is discussed based on molecular data. We conclude that ITS sequence data are appropriate for studies of relationships within the different species groups and less so for recovery of more ancient speciations within Heteroderidae. Copyright 2001 Academic Press.

  12. Multiplexed Sequence Encoding: A Framework for DNA Communication

    PubMed Central

    Zakeri, Bijan; Carr, Peter A.; Lu, Timothy K.

    2016-01-01

    Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encoding and transfer of complete sets of information. Here, we explore the use of DNA for the communication of short messages that are fragmented across multiple distinct DNA molecules. We identified three pivotal points in a communication—data encoding, data transfer & data extraction—and developed novel tools to enable communication via molecules of DNA. To address data encoding, we designed DNA-based individualized keyboards (iKeys) to convert plaintext into DNA, while reducing the occurrence of DNA homopolymers to improve synthesis and sequencing processes. To address data transfer, we implemented a secret-sharing system—Multiplexed Sequence Encoding (MuSE)—that conceals messages between multiple distinct DNA molecules, requiring a combination key to reveal messages. To address data extraction, we achieved the first instance of chromatogram patterning through multiplexed sequencing, thereby enabling a new method for data extraction. We envision these approaches will enable more widespread communication of information via DNA. PMID:27050646

  13. Multiplexed Sequence Encoding: A Framework for DNA Communication.

    PubMed

    Zakeri, Bijan; Carr, Peter A; Lu, Timothy K

    2016-01-01

    Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encoding and transfer of complete sets of information. Here, we explore the use of DNA for the communication of short messages that are fragmented across multiple distinct DNA molecules. We identified three pivotal points in a communication-data encoding, data transfer & data extraction-and developed novel tools to enable communication via molecules of DNA. To address data encoding, we designed DNA-based individualized keyboards (iKeys) to convert plaintext into DNA, while reducing the occurrence of DNA homopolymers to improve synthesis and sequencing processes. To address data transfer, we implemented a secret-sharing system-Multiplexed Sequence Encoding (MuSE)-that conceals messages between multiple distinct DNA molecules, requiring a combination key to reveal messages. To address data extraction, we achieved the first instance of chromatogram patterning through multiplexed sequencing, thereby enabling a new method for data extraction. We envision these approaches will enable more widespread communication of information via DNA.

  14. DNA sequence analysis with droplet-based microfluidics

    PubMed Central

    Abate, Adam R.; Hung, Tony; Sperling, Ralph A.; Mary, Pascaline; Rotem, Assaf; Agresti, Jeremy J.; Weiner, Michael A.; Weitz, David A.

    2014-01-01

    Droplet-based microfluidic techniques can form and process micrometer scale droplets at thousands per second. Each droplet can house an individual biochemical reaction, allowing millions of reactions to be performed in minutes with small amounts of total reagent. This versatile approach has been used for engineering enzymes, quantifying concentrations of DNA in solution, and screening protein crystallization conditions. Here, we use it to read the sequences of DNA molecules with a FRET-based assay. Using probes of different sequences, we interrogate a target DNA molecule for polymorphisms. With a larger probe set, additional polymorphisms can be interrogated as well as targets of arbitrary sequence. PMID:24185402

  15. Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.

    PubMed

    Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo

    2016-07-19

    Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .

  16. An evolution based biosensor receptor DNA sequence generation algorithm.

    PubMed

    Kim, Eungyeong; Lee, Malrey; Gatton, Thomas M; Lee, Jaewan; Zang, Yupeng

    2010-01-01

    A biosensor is composed of a bioreceptor, an associated recognition molecule, and a signal transducer that can selectively detect target substances for analysis. DNA based biosensors utilize receptor molecules that allow hybridization with the target analyte. However, most DNA biosensor research uses oligonucleotides as the target analytes and does not address the potential problems of real samples. The identification of recognition molecules suitable for real target analyte samples is an important step towards further development of DNA biosensors. This study examines the characteristics of DNA used as bioreceptors and proposes a hybrid evolution-based DNA sequence generating algorithm, based on DNA computing, to identify suitable DNA bioreceptor recognition molecules for stable hybridization with real target substances. The Traveling Salesman Problem (TSP) approach is applied in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences. This approach improves efficiency and stability for enhanced and variable-length DNA sequence generation and allows extension to generation of variable-length DNA sequences with diverse receptor recognition requirements.

  17. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.

    PubMed

    Adhikari, Badri; Hou, Jie; Cheng, Jianlin

    2018-03-01

    In this study, we report the evaluation of the residue-residue contacts predicted by our three different methods in the CASP12 experiment, focusing on studying the impact of multiple sequence alignment, residue coevolution, and machine learning on contact prediction. The first method (MULTICOM-NOVEL) uses only traditional features (sequence profile, secondary structure, and solvent accessibility) with deep learning to predict contacts and serves as a baseline. The second method (MULTICOM-CONSTRUCT) uses our new alignment algorithm to generate deep multiple sequence alignment to derive coevolution-based features, which are integrated by a neural network method to predict contacts. The third method (MULTICOM-CLUSTER) is a consensus combination of the predictions of the first two methods. We evaluated our methods on 94 CASP12 domains. On a subset of 38 free-modeling domains, our methods achieved an average precision of up to 41.7% for top L/5 long-range contact predictions. The comparison of the three methods shows that the quality and effective depth of multiple sequence alignments, coevolution-based features, and machine learning integration of coevolution-based features and traditional features drive the quality of predicted protein contacts. On the full CASP12 dataset, the coevolution-based features alone can improve the average precision from 28.4% to 41.6%, and the machine learning integration of all the features further raises the precision to 56.3%, when top L/5 predicted long-range contacts are evaluated. And the correlation between the precision of contact prediction and the logarithm of the number of effective sequences in alignments is 0.66. © 2017 Wiley Periodicals, Inc.

  18. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities.

    PubMed

    Goris, Johan; Konstantinidis, Konstantinos T; Klappenbach, Joel A; Coenye, Tom; Vandamme, Peter; Tiedje, James M

    2007-01-01

    DNA-DNA hybridization (DDH) values have been used by bacterial taxonomists since the 1960s to determine relatedness between strains and are still the most important criterion in the delineation of bacterial species. Since the extent of hybridization between a pair of strains is ultimately governed by their respective genomic sequences, we examined the quantitative relationship between DDH values and genome sequence-derived parameters, such as the average nucleotide identity (ANI) of common genes and the percentage of conserved DNA. A total of 124 DDH values were determined for 28 strains for which genome sequences were available. The strains belong to six important and diverse groups of bacteria for which the intra-group 16S rRNA gene sequence identity was greater than 94 %. The results revealed a close relationship between DDH values and ANI and between DNA-DNA hybridization and the percentage of conserved DNA for each pair of strains. The recommended cut-off point of 70 % DDH for species delineation corresponded to 95 % ANI and 69 % conserved DNA. When the analysis was restricted to the protein-coding portion of the genome, 70 % DDH corresponded to 85 % conserved genes for a pair of strains. These results reveal extensive gene diversity within the current concept of "species". Examination of reciprocal values indicated that the level of experimental error associated with the DDH method is too high to reveal the subtle differences in genome size among the strains sampled. It is concluded that ANI can accurately replace DDH values for strains for which genome sequences are available.

  19. Opsin cDNA sequences of a UV and green rhodopsin of the satyrine butterfly Bicyclus anynana.

    PubMed

    Vanhoutte, K J A; Eggen, B J L; Janssen, J J M; Stavenga, D G

    2002-11-01

    The cDNAs of an ultraviolet (UV) and long-wavelength (LW) (green) absorbing rhodopsin of the bush brown Bicyclus anynana were partially identified. The UV sequence, encoding 377 amino acids, is 76-79% identical to the UV sequences of the papilionids Papilio glaucus and Papilio xuthus and the moth Manduca sexta. A dendrogram derived from aligning the amino acid sequences reveals an equidistant position of Bicyclus between Papilio and Manduca. The sequence of the green opsin cDNA fragment, which encodes 242 amino acids, represents six of the seven transmembrane regions. At the amino acid level, this fragment is more than 80% identical to the corresponding LW opsin sequences of Dryas, Heliconius, Papilio (rhodopsin 2) and Manduca. Whereas three LW absorbing rhodopsins were identified in the papilionid butterflies, only one green opsin was found in B. anynana.

  20. Secondary structure prediction for complete rDNA sequences (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, and comparison of divergent domains structures across Acari.

    PubMed

    Zhao, Ya-E; Wang, Zheng-Hang; Xu, Yang; Wu, Li-Ping; Hu, Li

    2013-10-01

    According to base pairing, the rRNA folds into corresponding secondary structures, which contain additional phylogenetic information. On the basis of sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2 and 28S rDNA) of Demodex, we predicted the secondary structure of the complete rDNA sequence (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, which was in concordance with that of the main arthropod lineages in past studies. And together with the sequence data from GenBank, we also predicted the secondary structures of divergent domains in SSU rRNA of 51 species and in LSU rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea and Ixodoidea). The multiple alignment among the four superfamilies in Acari showed that, insertions from Tetranychoidea SSU rRNA formed two newly proposed helixes, and helix c3-2b of LSU rRNA was absent in Demodex (Cheyletoidea) taxa. Generally speaking, LSU rRNA presented more remarkable differences than SSU rRNA did, mainly in D2, D3, D5, D7a, D7b, D8 and D10. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Ovine mitochondrial DNA sequence variation and its association with production and reproduction traits within an Afec-Assaf flock.

    PubMed

    Reicher, S; Seroussi, E; Weller, J I; Rosov, A; Gootwine, E

    2012-07-01

    Polymorphisms in mitochondrial DNA (mtDNA) protein- and tRNA-coding genes were shown to be associated with various diseases in humans as well as with production and reproduction traits in livestock. Alignment of full length mitochondria sequences from the 5 known ovine haplogroups: HA (n = 3), HB (n = 5), HC (n = 3), HD (n = 2), and HE (n = 2; GenBank accession nos. HE577847-50 and 11 published complete ovine mitochondria sequences) revealed sequence variation in 10 out of the 13 protein coding mtDNA sequences. Twenty-six of the 245 variable sites found in the protein coding sequences represent non-synonymous mutations. Sequence variation was observed also in 8 out of the 22 tRNA mtDNA sequences. On the basis of the mtDNA control region and cytochrome b partial sequences along with information on maternal lineages within an Afec-Assaf flock, 1,126 Afec-Assaf ewes were assigned to mitochondrial haplogroups HA, HB, and HC, with frequencies of 0.43, 0.43, and 0.14, respectively. Analysis of birth weight and growth rate records of lamb (n = 1286) and productivity from 4,993 lambing records revealed no association between mitochondrial haplogroup affiliation and female longevity, lambs perinatal survival rate, birth weight, and daily growth rate of lambs up to 150 d that averaged 1,664 d, 88.3%, 4.5 kg, and 320 g/d, respectively. However, significant (P < 0.0001) differences among the haplogroups were found for prolificacy of ewes, with prolificacies (mean ± SE) of 2.14 ± 0.04, 2.25 ± 0.04, and 2.30 ± 0.06 lamb born/ewe lambing for the HA, HB, and the HC haplogroups, respectively. Our results highlight the ovine mitogenome genetic variation in protein- and tRNA coding genes and suggest that sequence variation in ovine mtDNA is associated with variation in ewe prolificacy.

  2. Human Chromosome 7: DNA Sequence and Biology

    PubMed Central

    Scherer, Stephen W.; Cheung, Joseph; MacDonald, Jeffrey R.; Osborne, Lucy R.; Nakabayashi, Kazuhiko; Herbrick, Jo-Anne; Carson, Andrew R.; Parker-Katiraee, Layla; Skaug, Jennifer; Khaja, Razi; Zhang, Junjun; Hudek, Alexander K.; Li, Martin; Haddad, May; Duggan, Gavin E.; Fernandez, Bridget A.; Kanematsu, Emiko; Gentles, Simone; Christopoulos, Constantine C.; Choufani, Sanaa; Kwasnicka, Dorota; Zheng, Xiangqun H.; Lai, Zhongwu; Nusskern, Deborah; Zhang, Qing; Gu, Zhiping; Lu, Fu; Zeesman, Susan; Nowaczyk, Malgorzata J.; Teshima, Ikuko; Chitayat, David; Shuman, Cheryl; Weksberg, Rosanna; Zackai, Elaine H.; Grebe, Theresa A.; Cox, Sarah R.; Kirkpatrick, Susan J.; Rahman, Nazneen; Friedman, Jan M.; Heng, Henry H. Q.; Pelicci, Pier Giuseppe; Lo-Coco, Francesco; Belloni, Elena; Shaffer, Lisa G.; Pober, Barbara; Morton, Cynthia C.; Gusella, James F.; Bruns, Gail A. P.; Korf, Bruce R.; Quade, Bradley J.; Ligon, Azra H.; Ferguson, Heather; Higgins, Anne W.; Leach, Natalia T.; Herrick, Steven R.; Lemyre, Emmanuelle; Farra, Chantal G.; Kim, Hyung-Goo; Summers, Anne M.; Gripp, Karen W.; Roberts, Wendy; Szatmari, Peter; Winsor, Elizabeth J. T.; Grzeschik, Karl-Heinz; Teebi, Ahmed; Minassian, Berge A.; Kere, Juha; Armengol, Lluis; Pujana, Miguel Angel; Estivill, Xavier; Wilson, Michael D.; Koop, Ben F.; Tosi, Sabrina; Moore, Gudrun E.; Boright, Andrew P.; Zlotorynski, Eitan; Kerem, Batsheva; Kroisel, Peter M.; Petek, Erwin; Oscier, David G.; Mould, Sarah J.; Döhner, Hartmut; Döhner, Konstanze; Rommens, Johanna M.; Vincent, John B.; Venter, J. Craig; Li, Peter W.; Mural, Richard J.; Adams, Mark D.; Tsui, Lap-Chee

    2010-01-01

    DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate genes for developmental diseases including autism. PMID:12690205

  3. AlignerBoost: A Generalized Software Toolkit for Boosting Next-Gen Sequencing Mapping Accuracy Using a Bayesian-Based Mapping Quality Framework.

    PubMed

    Zheng, Qi; Grice, Elizabeth A

    2016-10-01

    Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost's algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost.

  4. AlignerBoost: A Generalized Software Toolkit for Boosting Next-Gen Sequencing Mapping Accuracy Using a Bayesian-Based Mapping Quality Framework

    PubMed Central

    Zheng, Qi; Grice, Elizabeth A.

    2016-01-01

    Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost’s algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost. PMID:27706155

  5. Sequence evaluation of four specific cDNA libraries for developmental genomics of sunflower.

    PubMed

    Tamborindeguy, C; Ben, C; Liboz, T; Gentzbittel, L

    2004-04-01

    Four different cDNA libraries were constructed from sunflower protoplasts growing under embryogenic and non-embryogenic conditions: one standard library from each condition and two subtractive libraries in opposite sense. A total of 22,876 cDNA clones were obtained and 4800 ESTs were sequenced, giving rise to 2479 high quality ESTs representing an unigene set of 1502 sequences. This set was compared with ESTs represented in public databases using the programs BLASTN and BLASTX, and its members were classified according to putative function using the catalog in the Kyoto Encyclopedia of Genes and Genomes (KEGG). Some 33% of sequences failed to align with existing plant ESTs and therefore represent putative novel genes. The libraries show a low level of redundancy and, on average, 50% of the present ESTs have not been previously reported for sunflower. Several potentially interesting genes were identified, based on their homology with genes involved in animal zygotic division or plant embryogenesis. We also identified two ESTs that show significantly different levels of expression under embryogenic and non-embryogenic conditions. The libraries described here represent an original and valuable resource for the discovery of yet unknown genes putatively involved in dicot embryogenesis and improving our knowledge of the mechanisms involved in polarity acquisition by plant embryos.

  6. DNA Nucleotide Sequence Restricted by the RI Endonuclease

    PubMed Central

    Hedgpeth, Joe; Goodman, Howard M.; Boyer, Herbert W.

    1972-01-01

    The sequence of DNA base pairs adjacent to the phosphodiester bonds cleaved by the RI restriction endonuclease in unmodified DNA from coliphage λ has been determined. The 5′-terminal nucleotide labeled with 32P and oligonucleotides up to the heptamer were analyzed from a pancreatic DNase digest. The following sequence of nucleotides adjacent to the RI break made in λ DNA was deduced from these data and from the 3′-dinucleotide sequence and nearest-neighbor analysis obtained from repair synthesis with the DNA polymerase of Rous sarcoma virus [Formula: see text] The RI endonuclease cleavage of the phosphodiester bonds (indicated by arrows) generates 5′-phosphoryls and short cohesive termini of four nucleotides, pApApTpT. The most striking feature of the sequence is its symmetry. PMID:4343974

  7. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, Karin D.; Chu, Tun-Jen; Pitt, William G.

    1992-01-01

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through said smino groups contained on the surface thereof. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to said target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membrances may be reprobed numerous times.

  8. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, K.D.; Chu, T.J.; Pitt, W.G.

    1992-05-12

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through amino groups contained on the surface. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to the target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membranes may be reprobed numerous times. No Drawings

  9. DNA Shape Dominates Sequence Affinity in Nucleosome Formation

    NASA Astrophysics Data System (ADS)

    Freeman, Gordon S.; Lequieu, Joshua P.; Hinckley, Daniel M.; Whitmer, Jonathan K.; de Pablo, Juan J.

    2014-10-01

    Nucleosomes provide the basic unit of compaction in eukaryotic genomes, and the mechanisms that dictate their position at specific locations along a DNA sequence are of central importance to genetics. In this Letter, we employ molecular models of DNA and proteins to elucidate various aspects of nucleosome positioning. In particular, we show how DNA's histone affinity is encoded in its sequence-dependent shape, including subtle deviations from the ideal straight B-DNA form and local variations of minor groove width. By relying on high-precision simulations of the free energy of nucleosome complexes, we also demonstrate that, depending on DNA's intrinsic curvature, histone binding can be dominated by bending interactions or electrostatic interactions. More generally, the results presented here explain how sequence, manifested as the shape of the DNA molecule, dominates molecular recognition in the problem of nucleosome positioning.

  10. Short, interspersed, and repetitive DNA sequences in Spiroplasma species.

    PubMed

    Nur, I; LeBlanc, D J; Tully, J G

    1987-03-01

    Small fragments of DNA from an 8-kbp plasmid, pRA1, from a plant pathogenic strain of Spiroplasma citri were shown previously to be present in the chromosomal DNA of at least two species of Spiroplasma. We describe here the shot-gun cloning of chromosomal DNA from S. citri Maroc and the identification of two distinct sequences exhibiting homology to pRA1. Further subcloning experiments provided specific molecular probes for the identification of these two sequences in chromosomal DNA from three distinct plant pathogenic species of Spiroplasma. The results of Southern blot hybridization indicated that each of the pRA1-associated sequences is present as multiple copies in short, dispersed, and repetitive sequences in the chromosomes of these three strains. None of the sequences was detectable in chromosomal DNA from an additional nine Spiroplasma strains examined.

  11. An extended sequence specificity for UV-induced DNA damage.

    PubMed

    Chung, Long H; Murray, Vincent

    2018-01-01

    The sequence specificity of UV-induced DNA damage was determined with a higher precision and accuracy than previously reported. UV light induces two major damage adducts: cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). Employing capillary electrophoresis with laser-induced fluorescence and taking advantages of the distinct properties of the CPDs and 6-4PPs, we studied the sequence specificity of UV-induced DNA damage in a purified DNA sequence using two approaches: end-labelling and a polymerase stop/linear amplification assay. A mitochondrial DNA sequence that contained a random nucleotide composition was employed as the target DNA sequence. With previous methodology, the UV sequence specificity was determined at a dinucleotide or trinucleotide level; however, in this paper, we have extended the UV sequence specificity to a hexanucleotide level. With the end-labelling technique (for 6-4PPs), the consensus sequence was found to be 5'-GCTC*AC (where C* is the breakage site); while with the linear amplification procedure, it was 5'-TCTT*AC. With end-labelling, the dinucleotide frequency of occurrence was highest for 5'-TC*, 5'-TT* and 5'-CC*; whereas it was 5'-TT* for linear amplification. The influence of neighbouring nucleotides on the degree of UV-induced DNA damage was also examined. The core sequences consisted of pyrimidine nucleotides 5'-CTC* and 5'-CTT* while an A at position "1" and C at position "2" enhanced UV-induced DNA damage. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  12. Few mitochondrial DNA sequences are inserted into the turkey (Meleagris gallopavo) nuclear genome: evolutionary analyses and informativity in the domestic lineage.

    PubMed

    Schiavo, G; Strillacci, M G; Ribani, A; Bovo, S; Roman-Ponce, S I; Cerolini, S; Bertolini, F; Bagnato, A; Fontanesi, L

    2018-06-01

    Mitochondrial DNA (mtDNA) insertions have been detected in the nuclear genome of many eukaryotes. These sequences are pseudogenes originated by horizontal transfer of mtDNA fragments into the nuclear genome, producing nuclear DNA sequences of mitochondrial origin (numt). In this study we determined the frequency and distribution of mtDNA-originated pseudogenes in the turkey (Meleagris gallopavo) nuclear genome. The turkey reference genome (Turkey_2.01) was aligned with the reference linearized mtDNA sequence using last. A total of 32 numt sequences (corresponding to 18 numt regions derived by unique insertional events) were identified in the turkey nuclear genome (size ranging from 66 to 1415 bp; identity against the modern turkey mtDNA corresponding region ranging from 62% to 100%). Numts were distributed in nine chromosomes and in one scaffold. They derived from parts of 10 mtDNA protein-coding genes, ribosomal genes, the control region and 10 tRNA genes. Seven numt regions reported in the turkey genome were identified in orthologues positions in the Gallus gallus genome and therefore were present in the ancestral genome that in the Cretaceous originated the lineages of the modern crown Galliformes. Five recently integrated turkey numts were validated by PCR in 168 turkeys of six different domestic populations. None of the analysed numts were polymorphic (i.e. absence of the inserted sequence, as reported in numts of recent integration in other species), suggesting that the reticulate speciation model is not useful for explaining the origin of the domesticated turkey lineage. © 2018 Stichting International Foundation for Animal Genetics.

  13. Conserved Sequences at the Origin of Adenovirus DNA Replication

    PubMed Central

    Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.

    1982-01-01

    The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575

  14. Sequences of multiple bacterial genomes and a Chlamydia trachomatis genotype from direct sequencing of DNA derived from a vaginal swab diagnostic specimen.

    PubMed

    Andersson, P; Klein, M; Lilliebridge, R A; Giffard, P M

    2013-09-01

    Ultra-deep Illumina sequencing was performed on whole genome amplified DNA derived from a Chlamydia trachomatis-positive vaginal swab. Alignment of reads with reference genomes allowed robust SNP identification from the C. trachomatis chromosome and plasmid. This revealed that the C. trachomatis in the specimen was very closely related to the sequenced urogenital, serovar F, clade T1 isolate F-SW4. In addition, high genome-wide coverage was obtained for Prevotella melaninogenica, Gardnerella vaginalis, Clostridiales genomosp. BVAB3 and Mycoplasma hominis. This illustrates the potential of metagenome data to provide high resolution bacterial typing data from multiple taxa in a diagnostic specimen. ©2013 The Authors Clinical Microbiology and Infection ©2013 European Society of Clinical Microbiology and Infectious Diseases.

  15. Sequence-dependent DNA deformability studied using molecular dynamics simulations.

    PubMed

    Fujii, Satoshi; Kono, Hidetoshi; Takenaka, Shigeori; Go, Nobuhiro; Sarai, Akinori

    2007-01-01

    Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.

  16. Nanopore-CMOS Interfaces for DNA Sequencing

    PubMed Central

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-01-01

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529

  17. Nanopore-CMOS Interfaces for DNA Sequencing.

    PubMed

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-08-06

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces.

  18. Real-Time DNA Sequencing in the Antarctic Dry Valleys Using the Oxford Nanopore Sequencer

    PubMed Central

    Johnson, Sarah S.; Zaikova, Elena; Goerlitz, David S.; Bai, Yu; Tighe, Scott W.

    2017-01-01

    The ability to sequence DNA outside of the laboratory setting has enabled novel research questions to be addressed in the field in diverse areas, ranging from environmental microbiology to viral epidemics. Here, we demonstrate the application of offline DNA sequencing of environmental samples using a hand-held nanopore sequencer in a remote field location: the McMurdo Dry Valleys, Antarctica. Sequencing was performed using a MK1B MinION sequencer from Oxford Nanopore Technologies (ONT; Oxford, United Kingdom) that was equipped with software to operate without internet connectivity. One-direction (1D) genomic libraries were prepared using portable field techniques on DNA isolated from desiccated microbial mats. By adequately insulating the sequencer and laptop, it was possible to run the sequencing protocol for up to 2½ h under arduous conditions. PMID:28337073

  19. Sequencing of adenine in DNA by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki; Taniguchi, Masateru

    2017-08-01

    The development of DNA sequencing technology utilizing the detection of a tunnel current is important for next-generation sequencer technologies based on single-molecule analysis technology. Using a scanning tunneling microscope, we previously reported that dI/dV measurements and dI/dV mapping revealed that the guanine base (purine base) of DNA adsorbed onto the Cu(111) surface has a characteristic peak at V s = -1.6 V. If, in addition to guanine, the other purine base of DNA, namely, adenine, can be distinguished, then by reading all the purine bases of each single strand of a DNA double helix, the entire base sequence of the original double helix can be determined due to the complementarity of the DNA base pair. Therefore, the ability to read adenine is important from the viewpoint of sequencing. Here, we report on the identification of adenine by STM topographic and spectroscopic measurements using a synthetic DNA oligomer and viral DNA.

  20. The Value of DNA Sequencing - TCGA

    Cancer.gov

    DNA sequencing: what it tells us about DNA changes in cancer, how looking across many tumors will help to identify meaningful changes and potential drug targets, and how genomics is changing the way we think about cancer.

  1. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Chung, C. N.; Allman, S. L.

    1997-05-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, we recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Sanger's enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. Our preliminary results indicate laser mass spectrometry can possible be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, we applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  2. Machine Learned Replacement of N-Labels for Basecalled Sequences in DNA Barcoding.

    PubMed

    Ma, Eddie Y T; Ratnasingham, Sujeevan; Kremer, Stefan C

    2018-01-01

    This study presents a machine learning method that increases the number of identified bases in Sanger Sequencing. The system post-processes a KB basecalled chromatogram. It selects a recoverable subset of N-labels in the KB-called chromatogram to replace with basecalls (A,C,G,T). An N-label correction is defined given an additional read of the same sequence, and a human finished sequence. Corrections are added to the dataset when an alignment determines the additional read and human agree on the identity of the N-label. KB must also rate the replacement with quality value of in the additional read. Corrections are only available during system training. Developing the system, nearly 850,000 N-labels are obtained from Barcode of Life Datasystems, the premier database of genetic markers called DNA Barcodes. Increasing the number of correct bases improves reference sequence reliability, increases sequence identification accuracy, and assures analysis correctness. Keeping with barcoding standards, our system maintains an error rate of percent. Our system only applies corrections when it estimates low rate of error. Tested on this data, our automation selects and recovers: 79 percent of N-labels from COI (animal barcode); 80 percent from matK and rbcL (plant barcodes); and 58 percent from non-protein-coding sequences (across eukaryotes).

  3. Complete cpDNA genome sequence of Smilax china and phylogenetic placement of Liliales--influences of gene partitions and taxon sampling.

    PubMed

    Liu, Juan; Qi, Zhe-Chen; Zhao, Yun-Peng; Fu, Cheng-Xin; Jenny Xiang, Qiu-Yun

    2012-09-01

    The complete nucleotide sequence of the chloroplast genome (cpDNA) of Smilax china L. (Smilacaceae) is reported. It is the first complete cp genome sequence in Liliales. Genomic analyses were conducted to examine the rate and pattern of cpDNA genome evolution in Smilax relative to other major lineages of monocots. The cpDNA genomic sequences were combined with those available for Lilium to evaluate the phylogenetic position of Liliales and to investigate the influence of taxon sampling, gene sampling, gene function, natural selection, and substitution rate on phylogenetic inference in monocots. Phylogenetic analyses using sequence data of gene groups partitioned according to gene function, selection force, and total substitution rate demonstrated evident impacts of these factors on phylogenetic inference of monocots and the placement of Liliales, suggesting potential evolutionary convergence or adaptation of some cpDNA genes in monocots. Our study also demonstrated that reduced taxon sampling reduced the bootstrap support for the placement of Liliales in the cpDNA phylogenomic analysis. Analyses of sequences of 77 protein genes with some missing data and sequences of 81 genes (all protein genes plus the rRNA genes) support a sister relationship of Liliales to the commelinids-Asparagales clade, consistent with the APG III system. Analyses of 63 cpDNA protein genes for 32 taxa with few missing data, however, support a sister relationship of Liliales (represented by Smilax and Lilium) to Dioscoreales-Pandanales. Topology tests indicated that these two alignments do not significantly differ given any of these three cpDNA genomic sequence data sets. Furthermore, we found no saturation effect of the data, suggesting that the cpDNA genomic sequence data used in the study are appropriate for monocot phylogenetic study and long-branch attraction is unlikely to be the cause to explain the result of two well-supported, conflict placements of Liliales. Further analyses using

  4. Apparatus for improved DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1996-05-07

    This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection. 18 figs.

  5. Apparatus for improved DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1996-01-01

    This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection.

  6. Alignment-free Transcriptomic and Metatranscriptomic Comparison Using Sequencing Signatures with Variable Length Markov Chains.

    PubMed

    Liao, Weinan; Ren, Jie; Wang, Kun; Wang, Shun; Zeng, Feng; Wang, Ying; Sun, Fengzhu

    2016-11-23

    The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com.

  7. Biomolecule Sequencer: Next-Generation DNA Sequencing Technology for In-Flight Environmental Monitoring, Research, and Beyond

    NASA Technical Reports Server (NTRS)

    Smith, David J.; Burton, Aaron; Castro-Wallace, Sarah; John, Kristen; Stahl, Sarah E.; Dworkin, Jason Peter; Lupisella, Mark L.

    2016-01-01

    On the International Space Station (ISS), technologies capable of rapid microbial identification and disease diagnostics are not currently available. NASA still relies upon sample return for comprehensive, molecular-based sample characterization. Next-generation DNA sequencing is a powerful approach for identifying microorganisms in air, water, and surfaces onboard spacecraft. The Biomolecule Sequencer payload, manifested to SpaceX-9 and scheduled on the Increment 4748 research plan (June 2016), will assess the functionality of a commercially-available next-generation DNA sequencer in the microgravity environment of ISS. The MinION device from Oxford Nanopore Technologies (Oxford, UK) measures picoamp changes in electrical current dependent on nucleotide sequences of the DNA strand migrating through nanopores in the system. The hardware is exceptionally small (9.5 x 3.2 x 1.6 cm), lightweight (120 grams), and powered only by a USB connection. For the ISS technology demonstration, the Biomolecule Sequencer will be powered by a Microsoft Surface Pro3. Ground-prepared samples containing lambda bacteriophage, Escherichia coli, and mouse genomic DNA, will be launched and stored frozen on the ISS until experiment initiation. Immediately prior to sequencing, a crew member will collect and thaw frozen DNA samples, connect the sequencer to the Surface Pro3, inject thawed samples into a MinION flow cell, and initiate sequencing. At the completion of the sequencing run, data will be downlinked for ground analysis. Identical, synchronous ground controls will be used for data comparisons to determine sequencer functionality, run-time sequence, current dynamics, and overall accuracy. We will present our latest results from the ISS flight experiment the first time DNA has ever been sequenced in space and discuss the many potential applications of the Biomolecule Sequencer for environmental monitoring, medical diagnostics, higher fidelity and more adaptable Space Biology Human

  8. Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees.

    PubMed

    Kück, Patrick; Meusemann, Karen; Dambach, Johannes; Thormann, Birthe; von Reumont, Björn M; Wägele, Johann W; Misof, Bernhard

    2010-03-31

    Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine application of alignment masking. In this study, we compared the effects on tree reconstructions of the most commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain threshold which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of parameter space and therefore more objective. ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The sliding window approach was less sensitive to different alignments of identical data sets and performed equally well on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets. Correspondingly, Neighbor-Net analyses showed the most decrease in conflict. Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking should routinely be used to

  9. Attomole-level Genomics with Single-molecule Direct DNA, cDNA and RNA Sequencing Technologies.

    PubMed

    Ozsolak, Fatih

    2016-01-01

    With the introduction of next-generation sequencing (NGS) technologies in 2005, the domination of microarrays in genomics quickly came to an end due to NGS's superior technical performance and cost advantages. By enabling genetic analysis capabilities that were not possible previously, NGS technologies have started to play an integral role in all areas of biomedical research. This chapter outlines the low-quantity DNA and cDNA sequencing capabilities and applications developed with the Helicos single molecule DNA sequencing technology.

  10. A Bioluminometric Method of DNA Sequencing

    NASA Technical Reports Server (NTRS)

    Ronaghi, Mostafa; Pourmand, Nader; Stolc, Viktor; Arnold, Jim (Technical Monitor)

    2001-01-01

    Pyrosequencing is a bioluminometric single-tube DNA sequencing method that takes advantage of co-operativity between four enzymes to monitor DNA synthesis. In this sequencing-by-synthesis method, a cascade of enzymatic reactions yields detectable light, which is proportional to incorporated nucleotides. Pyrosequencing has the advantages of accuracy, flexibility and parallel processing. It can be easily automated. Furthermore, the technique dispenses with the need for labeled primers, labeled nucleotides and gel-electrophoresis. In this chapter, the use of this technique for different applications is discussed.

  11. RBT-GA: a novel metaheuristic for solving the Multiple Sequence Alignment problem.

    PubMed

    Taheri, Javid; Zomaya, Albert Y

    2009-07-07

    Multiple Sequence Alignment (MSA) has always been an active area of research in Bioinformatics. MSA is mainly focused on discovering biologically meaningful relationships among different sequences or proteins in order to investigate the underlying main characteristics/functions. This information is also used to generate phylogenetic trees. This paper presents a novel approach, namely RBT-GA, to solve the MSA problem using a hybrid solution methodology combining the Rubber Band Technique (RBT) and the Genetic Algorithm (GA) metaheuristic. RBT is inspired by the behavior of an elastic Rubber Band (RB) on a plate with several poles, which is analogues to locations in the input sequences that could potentially be biologically related. A GA attempts to mimic the evolutionary processes of life in order to locate optimal solutions in an often very complex landscape. RBT-GA is a population based optimization algorithm designed to find the optimal alignment for a set of input protein sequences. In this novel technique, each alignment answer is modeled as a chromosome consisting of several poles in the RBT framework. These poles resemble locations in the input sequences that are most likely to be correlated and/or biologically related. A GA-based optimization process improves these chromosomes gradually yielding a set of mostly optimal answers for the MSA problem. RBT-GA is tested with one of the well-known benchmarks suites (BALiBASE 2.0) in this area. The obtained results show that the superiority of the proposed technique even in the case of formidable sequences.

  12. RBT-GA: a novel metaheuristic for solving the multiple sequence alignment problem

    PubMed Central

    Taheri, Javid; Zomaya, Albert Y

    2009-01-01

    Background Multiple Sequence Alignment (MSA) has always been an active area of research in Bioinformatics. MSA is mainly focused on discovering biologically meaningful relationships among different sequences or proteins in order to investigate the underlying main characteristics/functions. This information is also used to generate phylogenetic trees. Results This paper presents a novel approach, namely RBT-GA, to solve the MSA problem using a hybrid solution methodology combining the Rubber Band Technique (RBT) and the Genetic Algorithm (GA) metaheuristic. RBT is inspired by the behavior of an elastic Rubber Band (RB) on a plate with several poles, which is analogues to locations in the input sequences that could potentially be biologically related. A GA attempts to mimic the evolutionary processes of life in order to locate optimal solutions in an often very complex landscape. RBT-GA is a population based optimization algorithm designed to find the optimal alignment for a set of input protein sequences. In this novel technique, each alignment answer is modeled as a chromosome consisting of several poles in the RBT framework. These poles resemble locations in the input sequences that are most likely to be correlated and/or biologically related. A GA-based optimization process improves these chromosomes gradually yielding a set of mostly optimal answers for the MSA problem. Conclusion RBT-GA is tested with one of the well-known benchmarks suites (BALiBASE 2.0) in this area. The obtained results show that the superiority of the proposed technique even in the case of formidable sequences. PMID:19594869

  13. Obtaining a more resolute teleost growth hormone phylogeny by the introduction of gaps in sequence alignment.

    PubMed

    Rubin, D A; Dores, R M

    1995-06-01

    In order to obtain a more resolute phylogeny of teleosts based on growth hormone (GH) sequences, phylogenetic analyses were performed in which deletions (gaps), which appear to be order specific, were upheld to maintain GH's structural information. Sequences were analyzed at 194 amino acid positions. In addition, the two closest genealogically related groups to the teleosts, Amia calva and Acipenser guldenstadti, were used as outgroups. Modified sequence alignments were also analyzed to determine clade stability. Analyses indicated, in the most parsimonious cladogram, that molecular and morphological relationships for the orders of fishes are congruent. With GH molecular sequence data it was possible to resolve all clades at the familial level. Analyses of the primary sequence data indicate that: (a) the halecomorphean and chondrostean GH sequences are the appropriate outgroups for generating the most parsimonious cladogram for teleosts; (b) proper alignment of teleost GH sequence by the inclusion of gaps is necessary for resolution of the Percomorpha; and (c) removal of sequence information by deleting improperly aligned sequence decreases the phylogenetic signal obtained.

  14. Authentication of an endangered herb Changium smyrnioides from different producing areas based on rDNA ITS sequences and allele-specific PCR.

    PubMed

    Sun, Xiaoqin; Wei, Yanglian; Qin, Minjian; Guo, Qiaosheng; Guo, Jianlin; Zhou, Yifeng; Hang, Yueyu

    2012-03-01

    The rDNA ITS region of 18 samples of Changium smyrnioides from 7 areas and of 2 samples of Chuanminshen violaceum were sequenced and analyzed. The amplified ITS region of the samples, including a partial sequence of ITS1 and complete sequences of 5.8S and ITS2, had a total length of 555 bp. After complete alignment, there were 49 variable sites, of which 45 were informative, when gaps were treated as missing data. Samples of C. smyrnioides from different locations could be identified exactly based on the variable sites. The maximum parsimony (MP) and neighbor joining (NJ) tree constructed from the ITS sequences based on Kumar's two-parameter model showed that the genetic distances of the C. smyrnioides samples from different locations were not always related to their geographical distances. A specific primer set for Allele-specific PCR authentication of C. violaceum from Jurong of Jiangsu was designed based on the SNP in the ITS sequence alignment. C. violaceum from the major genuine producing area in Jurong of Jiangsu could be identified exactly and quickly by Allele-specific PCR.

  15. Accuracy Estimation and Parameter Advising for Protein Multiple Sequence Alignment

    PubMed Central

    DeBlasio, Dan

    2013-01-01

    Abstract We develop a novel and general approach to estimating the accuracy of multiple sequence alignments without knowledge of a reference alignment, and use our approach to address a new task that we call parameter advising: the problem of choosing values for alignment scoring function parameters from a given set of choices to maximize the accuracy of a computed alignment. For protein alignments, we consider twelve independent features that contribute to a quality alignment. An accuracy estimator is learned that is a polynomial function of these features; its coefficients are determined by minimizing its error with respect to true accuracy using mathematical optimization. Compared to prior approaches for estimating accuracy, our new approach (a) introduces novel feature functions that measure nonlocal properties of an alignment yet are fast to evaluate, (b) considers more general classes of estimators beyond linear combinations of features, and (c) develops new regression formulations for learning an estimator from examples; in addition, for parameter advising, we (d) determine the optimal parameter set of a given cardinality, which specifies the best parameter values from which to choose. Our estimator, which we call Facet (for “feature-based accuracy estimator”), yields a parameter advisor that on the hardest benchmarks provides more than a 27% improvement in accuracy over the best default parameter choice, and for parameter advising significantly outperforms the best prior approaches to assessing alignment quality. PMID:23489379

  16. Fluorogenic DNA Sequencing in PDMS Microreactors

    PubMed Central

    Sims, Peter A.; Greenleaf, William J.; Duan, Haifeng; Xie, X. Sunney

    2012-01-01

    We have developed a multiplex sequencing-by-synthesis method combining terminal-phosphate labeled fluorogenic nucleotides (TPLFNs) and resealable microreactors. In the presence of phosphatase, the incorporation of a non-fluorescent TPLFN into a DNA primer by DNA polymerase results in a fluorophore. We immobilize DNA templates within polydimethylsiloxane (PDMS) microreactors, sequentially introduce one of the four identically labeled TPLFNs, seal the microreactors, allow template-directed TPLFN incorporation, and measure the signal from the fluorophores trapped in the microreactors. This workflow allows sequencing in a manner akin to pyrosequencing but without constant monitoring of each microreactor. With cycle times of <10 minutes, we demonstrate 30 base reads with ∼99% raw accuracy. “Fluorogenic pyrosequencing” combines benefits of pyrosequencing, such as rapid turn-around, native DNA generation, and single-color detection, with benefits of fluorescence-based approaches, such as highly sensitive detection and simple parallelization. PMID:21666670

  17. Long-range correlations and charge transport properties of DNA sequences

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-liang; Ren, Yi; Xie, Qiong-tao; Deng, Chao-sheng; Xu, Hui

    2010-04-01

    By using Hurst's analysis and transfer approach, the rescaled range functions and Hurst exponents of human chromosome 22 and enterobacteria phage lambda DNA sequences are investigated and the transmission coefficients, Landauer resistances and Lyapunov coefficients of finite segments based on above genomic DNA sequences are calculated. In a comparison with quasiperiodic and random artificial DNA sequences, we find that λ-DNA exhibits anticorrelation behavior characterized by a Hurst exponent 0.5sequence displays a transition from correlation behavior to anticorrelation behavior. The resonant peaks of the transmission coefficient in genomic sequences can survive in longer sequence length than in random sequences but in shorter sequence length than in quasiperiodic sequences. It is shown that the genomic sequences have long-range correlation properties to some extent but the correlations are not strong enough to maintain the scale invariance properties.

  18. SATCHMO-JS: a webserver for simultaneous protein multiple sequence alignment and phylogenetic tree construction.

    PubMed

    Hagopian, Raffi; Davidson, John R; Datta, Ruchira S; Samad, Bushra; Jarvis, Glen R; Sjölander, Kimmen

    2010-07-01

    We present the jump-start simultaneous alignment and tree construction using hidden Markov models (SATCHMO-JS) web server for simultaneous estimation of protein multiple sequence alignments (MSAs) and phylogenetic trees. The server takes as input a set of sequences in FASTA format, and outputs a phylogenetic tree and MSA; these can be viewed online or downloaded from the website. SATCHMO-JS is an extension of the SATCHMO algorithm, and employs a divide-and-conquer strategy to jump-start SATCHMO at a higher point in the phylogenetic tree, reducing the computational complexity of the progressive all-versus-all HMM-HMM scoring and alignment. Results on a benchmark dataset of 983 structurally aligned pairs from the PREFAB benchmark dataset show that SATCHMO-JS provides a statistically significant improvement in alignment accuracy over MUSCLE, Multiple Alignment using Fast Fourier Transform (MAFFT), ClustalW and the original SATCHMO algorithm. The SATCHMO-JS webserver is available at http://phylogenomics.berkeley.edu/satchmo-js. The datasets used in these experiments are available for download at http://phylogenomics.berkeley.edu/satchmo-js/supplementary/.

  19. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  20. Quantum-Sequencing: Fast electronic single DNA molecule sequencing

    NASA Astrophysics Data System (ADS)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free, high-throughput and cost-effective, single-molecule sequencing method. Here, we present the first demonstration of unique ``electronic fingerprint'' of all nucleotides (A, G, T, C), with single-molecule DNA sequencing, using Quantum-tunneling Sequencing (Q-Seq) at room temperature. We show that the electronic state of the nucleobases shift depending on the pH, with most distinct states identified at acidic pH. We also demonstrate identification of single nucleotide modifications (methylation here). Using these unique electronic fingerprints (or tunneling data), we report a partial sequence of beta lactamase (bla) gene, which encodes resistance to beta-lactam antibiotics, with over 95% success rate. These results highlight the potential of Q-Seq as a robust technique for next-generation sequencing.

  1. Advances in high throughput DNA sequence data compression.

    PubMed

    Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz

    2016-06-01

    Advances in high throughput sequencing technologies and reduction in cost of sequencing have led to exponential growth in high throughput DNA sequence data. This growth has posed challenges such as storage, retrieval, and transmission of sequencing data. Data compression is used to cope with these challenges. Various methods have been developed to compress genomic and sequencing data. In this article, we present a comprehensive review of compression methods for genome and reads compression. Algorithms are categorized as referential or reference free. Experimental results and comparative analysis of various methods for data compression are presented. Finally, key challenges and research directions in DNA sequence data compression are highlighted.

  2. Profiling Nematode Communities in Unmanaged Flowerbed and Agricultural Field Soils in Japan by DNA Barcode Sequencing

    PubMed Central

    Morise, Hisashi; Miyazaki, Erika; Yoshimitsu, Shoko; Eki, Toshihiko

    2012-01-01

    Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU) rDNA fragments were directly amplified from each of 68 (flowerbed samples) and 48 (field samples) isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs) were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs) were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds) in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI) gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs), indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis. PMID:23284767

  3. Sequencing intractable DNA to close microbial genomes.

    PubMed

    Hurt, Richard A; Brown, Steven D; Podar, Mircea; Palumbo, Anthony V; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  4. JVM: Java Visual Mapping tool for next generation sequencing read.

    PubMed

    Yang, Ye; Liu, Juan

    2015-01-01

    We developed a program JVM (Java Visual Mapping) for mapping next generation sequencing read to reference sequence. The program is implemented in Java and is designed to deal with millions of short read generated by sequence alignment using the Illumina sequencing technology. It employs seed index strategy and octal encoding operations for sequence alignments. JVM is useful for DNA-Seq, RNA-Seq when dealing with single-end resequencing. JVM is a desktop application, which supports reads capacity from 1 MB to 10 GB.

  5. A direct method for computing extreme value (Gumbel) parameters for gapped biological sequence alignments.

    PubMed

    Quinn, Terrance; Sinkala, Zachariah

    2014-01-01

    We develop a general method for computing extreme value distribution (Gumbel, 1958) parameters for gapped alignments. Our approach uses mixture distribution theory to obtain associated BLOSUM matrices for gapped alignments, which in turn are used for determining significance of gapped alignment scores for pairs of biological sequences. We compare our results with parameters already obtained in the literature.

  6. MaxAlign: maximizing usable data in an alignment.

    PubMed

    Gouveia-Oliveira, Rodrigo; Sackett, Peter W; Pedersen, Anders G

    2007-08-28

    The presence of gaps in an alignment of nucleotide or protein sequences is often an inconvenience for bioinformatical studies. In phylogenetic and other analyses, for instance, gapped columns are often discarded entirely from the alignment. MaxAlign is a program that optimizes the alignment prior to such analyses. Specifically, it maximizes the number of nucleotide (or amino acid) symbols that are present in gap-free columns - the alignment area - by selecting the optimal subset of sequences to exclude from the alignment. MaxAlign can be used prior to phylogenetic and bioinformatical analyses as well as in other situations where this form of alignment improvement is useful. In this work we test MaxAlign's performance in these tasks and compare the accuracy of phylogenetic estimates including and excluding gapped columns from the analysis, with and without processing with MaxAlign. In this paper we also introduce a new simple measure of tree similarity, Normalized Symmetric Similarity (NSS) that we consider useful for comparing tree topologies. We demonstrate how MaxAlign is helpful in detecting misaligned or defective sequences without requiring manual inspection. We also show that it is not advisable to exclude gapped columns from phylogenetic analyses unless MaxAlign is used first. Finally, we find that the sequences removed by MaxAlign from an alignment tend to be those that would otherwise be associated with low phylogenetic accuracy, and that the presence of gaps in any given sequence does not seem to disturb the phylogenetic estimates of other sequences. The MaxAlign web-server is freely available online at http://www.cbs.dtu.dk/services/MaxAlign where supplementary information can also be found. The program is also freely available as a Perl stand-alone package.

  7. SNP discovery through de novo deep sequencing using the next generation of DNA sequencers

    USDA-ARS?s Scientific Manuscript database

    The production of high volumes of DNA sequence data using new technologies has permitted more efficient identification of single nucleotide polymorphisms in vertebrate genomes. This chapter presented practical methodology for production and analysis of DNA sequence data for SNP discovery....

  8. DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio

    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less

  9. DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis

    DOE PAGES

    Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio; ...

    2016-03-09

    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less

  10. [Cloning and sequencing of KIR2DL1 framework gene cDNA and identification of a novel allele].

    PubMed

    Sun, Ge; Wang, Chang; Zhen, Jianxin; Zhang, Guobin; Xu, Yunping; Deng, Zhihui

    2016-10-01

    To develop an assay for cDNA cloning and haplotype sequencing of KIR2DL1 framework gene and determine the genotype of an ethnic Han from southern China. Total RNA was isolated from peripheral blood sample, and complementary DNA (cDNA) transcript was synthesized by RT-PCR. The entire coding sequence of the KIR2DL1 framework gene was amplified with a pair of KIR2DL1-specific PCR primers. The PCR products with a length of approximately 1.2 kb were then subjected to cloning and haplotype sequencing. A specific target fragment of the KIR2DL1 framework gene was obtained. Following allele separation, a wild-type KIR2DL1*00302 allele and a novel variant allele, KIR2DL1*031, were identified. Sequence alignment with KIR2DL1 alleles from the IPD-KIR Database showed that the novel allele KIR2DL1*031 has differed from the closest allele KIR2DL1*00302 by a non-synonymous mutation at CDS nt 188A>G (codon 42 GAG>GGG) in exon 4, which has caused an amino acid change Glu42Gly. The sequence of the novel allele KIR2DL1*031 was submitted to GenBank under the accession number KP025960 and to the IPD-KIR Database under the submission number IWS40001982. A name KIR2DL1*031 has been officially assigned by the World Health Organization (WHO) Nomenclature Committee. An assay for cDNA cloning and haplotype sequencing of KIR2DL1 has been established, which has a broad applications in KIR studies at allelic level.

  11. Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA

    PubMed Central

    Oberstrass, Florian C.; Fernandes, Louis E.; Bryant, Zev

    2012-01-01

    B-DNA becomes unstable under superhelical stress and is able to adopt a wide range of alternative conformations including strand-separated DNA and Z-DNA. Localized sequence-dependent structural transitions are important for the regulation of biological processes such as DNA replication and transcription. To directly probe the effect of sequence on structural transitions driven by torque, we have measured the torsional response of a panel of DNA sequences using single molecule assays that employ nanosphere rotational probes to achieve high torque resolution. The responses of Z-forming d(pGpC)n sequences match our predictions based on a theoretical treatment of cooperative transitions in helical polymers. “Bubble” templates containing 50–100 bp mismatch regions show cooperative structural transitions similar to B-DNA, although less torque is required to disrupt strand–strand interactions. Our mechanical measurements, including direct characterization of the torsional rigidity of strand-separated DNA, establish a framework for quantitative predictions of the complex torsional response of arbitrary sequences in their biological context. PMID:22474350

  12. Introducing W.A.T.E.R.S.: a workflow for the alignment, taxonomy, and ecology of ribosomal sequences.

    PubMed

    Hartman, Amber L; Riddle, Sean; McPhillips, Timothy; Ludäscher, Bertram; Eisen, Jonathan A

    2010-06-12

    For more than two decades microbiologists have used a highly conserved microbial gene as a phylogenetic marker for bacteria and archaea. The small-subunit ribosomal RNA gene, also known as 16 S rRNA, is encoded by ribosomal DNA, 16 S rDNA, and has provided a powerful comparative tool to microbial ecologists. Over time, the microbial ecology field has matured from small-scale studies in a select number of environments to massive collections of sequence data that are paired with dozens of corresponding collection variables. As the complexity of data and tool sets have grown, the need for flexible automation and maintenance of the core processes of 16 S rDNA sequence analysis has increased correspondingly. We present WATERS, an integrated approach for 16 S rDNA analysis that bundles a suite of publicly available 16 S rDNA analysis software tools into a single software package. The "toolkit" includes sequence alignment, chimera removal, OTU determination, taxonomy assignment, phylogentic tree construction as well as a host of ecological analysis and visualization tools. WATERS employs a flexible, collection-oriented 'workflow' approach using the open-source Kepler system as a platform. By packaging available software tools into a single automated workflow, WATERS simplifies 16 S rDNA analyses, especially for those without specialized bioinformatics, programming expertise. In addition, WATERS, like some of the newer comprehensive rRNA analysis tools, allows researchers to minimize the time dedicated to carrying out tedious informatics steps and to focus their attention instead on the biological interpretation of the results. One advantage of WATERS over other comprehensive tools is that the use of the Kepler workflow system facilitates result interpretation and reproducibility via a data provenance sub-system. Furthermore, new "actors" can be added to the workflow as desired and we see WATERS as an initial seed for a sizeable and growing repository of interoperable

  13. DNA-based watermarks using the DNA-Crypt algorithm.

    PubMed

    Heider, Dominik; Barnekow, Angelika

    2007-05-29

    The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  14. DNA-based watermarks using the DNA-Crypt algorithm

    PubMed Central

    Heider, Dominik; Barnekow, Angelika

    2007-01-01

    Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434

  15. Recent patents of nanopore DNA sequencing technology: progress and challenges.

    PubMed

    Zhou, Jianfeng; Xu, Bingqian

    2010-11-01

    DNA sequencing techniques witnessed fast development in the last decades, primarily driven by the Human Genome Project. Among the proposed new techniques, Nanopore was considered as a suitable candidate for the single DNA sequencing with ultrahigh speed and very low cost. Several fabrication and modification techniques have been developed to produce robust and well-defined nanopore devices. Many efforts have also been done to apply nanopore to analyze the properties of DNA molecules. By comparing with traditional sequencing techniques, nanopore has demonstrated its distinctive superiorities in main practical issues, such as sample preparation, sequencing speed, cost-effective and read-length. Although challenges still remain, recent researches in improving the capabilities of nanopore have shed a light to achieve its ultimate goal: Sequence individual DNA strand at single nucleotide level. This patent review briefly highlights recent developments and technological achievements for DNA analysis and sequencing at single molecule level, focusing on nanopore based methods.

  16. Statistical and linguistic features of DNA sequences

    NASA Technical Reports Server (NTRS)

    Havlin, S.; Buldyrev, S. V.; Goldberger, A. L.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1995-01-01

    We present evidence supporting the idea that the DNA sequence in genes containing noncoding regions is correlated, and that the correlation is remarkably long range--indeed, base pairs thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationary" feature of the sequence of base pairs by applying a new algorithm called Detrended Fluctuation Analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and noncoding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to all eukaryotic DNA sequences (33 301 coding and 29 453 noncoding) in the entire GenBank database. We describe a simple model to account for the presence of long-range power-law correlations which is based upon a generalization of the classic Levy walk. Finally, we describe briefly some recent work showing that the noncoding sequences have certain statistical features in common with natural languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts, and the Shannon approach to quantifying the "redundancy" of a linguistic text in terms of a measurable entropy function. We suggest that noncoding regions in plants and invertebrates may display a smaller entropy and larger redundancy than coding regions, further supporting the possibility that noncoding regions of DNA may carry biological information.

  17. Sequence Dependent Interactions Between DNA and Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Roxbury, Daniel

    It is known that single-stranded DNA adopts a helical wrap around a single-walled carbon nanotube (SWCNT), forming a water-dispersible hybrid molecule. The ability to sort mixtures of SWCNTs based on chirality (electronic species) has recently been demonstrated using special short DNA sequences that recognize certain matching SWCNTs of specific chirality. This thesis investigates the intricacies of DNA-SWCNT sequence-specific interactions through both experimental and molecular simulation studies. The DNA-SWCNT binding strengths were experimentally quantified by studying the kinetics of DNA replacement by a surfactant on the surface of particular SWCNTs. Recognition ability was found to correlate strongly with measured binding strength, e.g. DNA sequence (TAT)4 was found to bind 20 times stronger to the (6,5)-SWCNT than sequence (TAT)4T. Next, using replica exchange molecular dynamics (REMD) simulations, equilibrium structures formed by (a) single-strands and (b) multiple-strands of 12-mer oligonucleotides adsorbed on various SWCNTs were explored. A number of structural motifs were discovered in which the DNA strand wraps around the SWCNT and 'stitches' to itself via hydrogen bonding. Great variability among equilibrium structures was observed and shown to be directly influenced by DNA sequence and SWCNT type. For example, the (6,5)-SWCNT DNA recognition sequence, (TAT)4, was found to wrap in a tight single-stranded right-handed helical conformation. In contrast, DNA sequence T12 forms a beta-barrel left-handed structure on the same SWCNT. These are the first theoretical indications that DNA-based SWCNT selectivity can arise on a molecular level. In a biomedical collaboration with the Mayo Clinic, pathways for DNA-SWCNT internalization into healthy human endothelial cells were explored. Through absorbance spectroscopy, TEM imaging, and confocal fluorescence microscopy, we showed that intracellular concentrations of SWCNTs far exceeded those of the incubation

  18. Assessing the Fidelity of Ancient DNA Sequences Amplified From Nuclear Genes

    PubMed Central

    Binladen, Jonas; Wiuf, Carsten; Gilbert, M. Thomas P.; Bunce, Michael; Barnett, Ross; Larson, Greger; Greenwood, Alex D.; Haile, James; Ho, Simon Y. W.; Hansen, Anders J.; Willerslev, Eske

    2006-01-01

    To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can lead to the generation of artifactual sequences. However, as yet no one has thoroughly investigated the damage spectrum in ancient nuDNA. By comparing clone sequences from 23 fossil specimens, recovered from environments ranging from permafrost to desert, we demonstrate the presence of miscoding lesion damage in both the mtDNA and nuDNA, resulting in insertion of erroneous bases during amplification. Interestingly, no significant differences in the frequency of miscoding lesion damage are recorded between mtDNA and nuDNA despite great differences in cellular copy numbers. For both mtDNA and nuDNA, we find significant positive correlations between total sequence heterogeneity and the rates of type 1 transitions (adenine → guanine and thymine → cytosine) and type 2 transitions (cytosine → thymine and guanine → adenine), respectively. Type 2 transitions are by far the most dominant and increase relative to those of type 1 with damage load. The results suggest that the deamination of cytosine (and 5-methyl cytosine) to uracil (and thymine) is the main cause of miscoding lesions in both ancient mtDNA and nuDNA sequences. We argue that the problems presented by postmortem damage, as well as problems with contamination from exogenous sources of conserved nuclear genes, allelic variation, and the reliance on single nucleotide polymorphisms, call for great caution in studies relying on ancient nuDNA sequences. PMID:16299392

  19. Mitochondrial DNA sequence variation and phylogeography of the scarlet kingsnake (Lampropeltis elapsoides).

    PubMed

    Friedman, Michael; Schaffer, Les

    2011-02-01

    BACKGROUND AND AIMS. With the goal of assessing population structure and geographic distribution of haplotype lineages among Lampropeltis elapsoides, we sequenced the ND4 mitochondrial DNA locus from 96 specimens of this snake across its area of distribution. MATERIALS AND METHODS. We relied heavily on formalin-fixed museum specimens to accomplish this analysis. RESULTS. The sequence alignment consisted of 491 bp of the selected gene, with 28% missing data. A simulation used to assess the effect of missing data on population genetic and phylogenetic resolution indicated increased character conflict, but with minimal loss of phylogenetic structure. CONCLUSION. This limited dataset suggests that L. elapsoides constitutes a largely unstructured population, with both widespread haplotypes and large number of private haplotypes, a moderate level of nucleotide diversity, and a low, but significant, degree of north-south population differentiation. Haplotype structure and frequency, nucleotide frequency, and values for Tajima's D and Fu's F(S) indicate a recent range or population expansion following a historic bottleneck.

  20. An Optimal Seed Based Compression Algorithm for DNA Sequences

    PubMed Central

    Gopalakrishnan, Gopakumar; Karunakaran, Muralikrishnan

    2016-01-01

    This paper proposes a seed based lossless compression algorithm to compress a DNA sequence which uses a substitution method that is similar to the LempelZiv compression scheme. The proposed method exploits the repetition structures that are inherent in DNA sequences by creating an offline dictionary which contains all such repeats along with the details of mismatches. By ensuring that only promising mismatches are allowed, the method achieves a compression ratio that is at par or better than the existing lossless DNA sequence compression algorithms. PMID:27555868

  1. Novel numerical and graphical representation of DNA sequences and proteins.

    PubMed

    Randić, M; Novic, M; Vikić-Topić, D; Plavsić, D

    2006-12-01

    We have introduced novel numerical and graphical representations of DNA, which offer a simple and unique characterization of DNA sequences. The numerical representation of a DNA sequence is given as a sequence of real numbers derived from a unique graphical representation of the standard genetic code. There is no loss of information on the primary structure of a DNA sequence associated with this numerical representation. The novel representations are illustrated with the coding sequences of the first exon of beta-globin gene of half a dozen species in addition to human. The method can be extended to proteins as is exemplified by humanin, a 24-aa peptide that has recently been identified as a specific inhibitor of neuronal cell death induced by familial Alzheimer's disease mutant genes.

  2. A DNA sequence analysis package for the IBM personal computer.

    PubMed Central

    Lagrimini, L M; Brentano, S T; Donelson, J E

    1984-01-01

    We present here a collection of DNA sequence analysis programs, called "PC Sequence" (PCS), which are designed to run on the IBM Personal Computer (PC). These programs are written in IBM PC compiled BASIC and take full advantage of the IBM PC's speed, error handling, and graphics capabilities. For a modest initial expense in hardware any laboratory can use these programs to quickly perform computer analysis on DNA sequences. They are written with the novice user in mind and require very little training or previous experience with computers. Also provided are a text editing program for creating and modifying DNA sequence files and a communications program which enables the PC to communicate with and collect information from mainframe computers and DNA sequence databases. PMID:6546433

  3. Brain Connectivity as a DNA Sequencing Problem

    NASA Astrophysics Data System (ADS)

    Zador, Anthony

    The mammalian cortex consists of millions or billions of neurons, each connected to thousands of other neurons. Traditional methods for determining the brain connectivity rely on microscopy to visualize neuronal connections, but such methods are slow, labor-intensive and often lack single neuron resolution. We have recently developed a new method, MAPseq, to recast the determination of brain wiring into a form that can exploit the tremendous recent advances in high-throughput DNA sequencing. DNA sequencing technology has outpaced even Moore's law, so that the cost of sequencing the human genome has dropped from a billion dollars in 2001 to below a thousand dollars today. MAPseq works by introducing random sequences of DNA-``barcodes''-to tag neurons uniquely. With MAPseq, we can determine the connectivity of over 50K single neurons in a single mouse cortex in about a week, an unprecedented throughput, ushering in the era of ``big data'' for brain wiring. We are now developing analytical tools and algorithms to make sense of these novel data sets.

  4. The complete DNA sequence of lymphocystis disease virus.

    PubMed

    Tidona, C A; Darai, G

    1997-04-14

    Lymphocystis disease virus (LCDV) is the causative agent of lymphocystis disease, which has been reported to occur in over 100 different fish species worldwide. LCDV is a member of the family Iridoviridae and the type species of the genus Lymphocystivirus. The virions contain a single linear double-stranded DNA molecule, which is circularly permuted, terminally redundant, and heavily methylated at cytosines in CpG sequences. The complete nucleotide sequence of LCDV-1 (flounder isolate) was determined by automated cycle sequencing and primer walking. The genome of LCDV-1 is 102.653 bp in length and contains 195 open reading frames with coding capacities ranging from 40 to 1199 amino acids. Computer-assisted analyses of the deduced amino acid sequences led to the identification of several putative gene products with significant homologies to entries in protein data banks, such as the two major subunits of the viral DNA-dependent RNA polymerase, DNA polymerase, several protein kinases, two subunits of the ribonucleoside diphosphate reductase, DNA methyltransferase, the viral major capsid protein, insulin-like growth factor, and tumor necrosis factor receptor homolog.

  5. MSAViewer: interactive JavaScript visualization of multiple sequence alignments

    PubMed Central

    Yachdav, Guy; Wilzbach, Sebastian; Rauscher, Benedikt; Sheridan, Robert; Sillitoe, Ian; Procter, James; Lewis, Suzanna E.; Rost, Burkhard; Goldberg, Tatyana

    2016-01-01

    Summary: The MSAViewer is a quick and easy visualization and analysis JavaScript component for Multiple Sequence Alignment data of any size. Core features include interactive navigation through the alignment, application of popular color schemes, sorting, selecting and filtering. The MSAViewer is ‘web ready’: written entirely in JavaScript, compatible with modern web browsers and does not require any specialized software. The MSAViewer is part of the BioJS collection of components. Availability and Implementation: The MSAViewer is released as open source software under the Boost Software License 1.0. Documentation, source code and the viewer are available at http://msa.biojs.net/. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: msa@bio.sh PMID:27412096

  6. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.

    PubMed

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.

  7. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis

    PubMed Central

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. Availability http://www.cemb.edu.pk/sw.html Abbreviations RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language. PMID:23055611

  8. DNA motif alignment by evolving a population of Markov chains.

    PubMed

    Bi, Chengpeng

    2009-01-30

    Deciphering cis-regulatory elements or de novo motif-finding in genomes still remains elusive although much algorithmic effort has been expended. The Markov chain Monte Carlo (MCMC) method such as Gibbs motif samplers has been widely employed to solve the de novo motif-finding problem through sequence local alignment. Nonetheless, the MCMC-based motif samplers still suffer from local maxima like EM. Therefore, as a prerequisite for finding good local alignments, these motif algorithms are often independently run a multitude of times, but without information exchange between different chains. Hence it would be worth a new algorithm design enabling such information exchange. This paper presents a novel motif-finding algorithm by evolving a population of Markov chains with information exchange (PMC), each of which is initialized as a random alignment and run by the Metropolis-Hastings sampler (MHS). It is progressively updated through a series of local alignments stochastically sampled. Explicitly, the PMC motif algorithm performs stochastic sampling as specified by a population-based proposal distribution rather than individual ones, and adaptively evolves the population as a whole towards a global maximum. The alignment information exchange is accomplished by taking advantage of the pooled motif site distributions. A distinct method for running multiple independent Markov chains (IMC) without information exchange, or dubbed as the IMC motif algorithm, is also devised to compare with its PMC counterpart. Experimental studies demonstrate that the performance could be improved if pooled information were used to run a population of motif samplers. The new PMC algorithm was able to improve the convergence and outperformed other popular algorithms tested using simulated and biological motif sequences.

  9. Affordable Hands-On DNA Sequencing and Genotyping: An Exercise for Teaching DNA Analysis to Undergraduates

    ERIC Educational Resources Information Center

    Shah, Kushani; Thomas, Shelby; Stein, Arnold

    2013-01-01

    In this report, we describe a 5-week laboratory exercise for undergraduate biology and biochemistry students in which students learn to sequence DNA and to genotype their DNA for selected single nucleotide polymorphisms (SNPs). Students use miniaturized DNA sequencing gels that require approximately 8 min to run. The students perform G, A, T, C…

  10. Identification of true EST alignments for recognising transcribed regions.

    PubMed

    Ma, Chuang; Wang, Jia; Li, Lun; Duan, Mo-Jie; Zhou, Yan-Hong

    2011-01-01

    Transcribed regions can be determined by aligning Expressed Sequence Tags (ESTs) with genome sequences. The kernel of this strategy is to effectively distinguish true EST alignments from spurious ones. In this study, three measures including Direction Check, Identity Check and Terminal Check were introduced to more effectively eliminate spurious EST alignments. On the basis of these introduced measures and other widely used measures, a computational tool, named ESTCleanser, has been developed to identify true EST alignments for obtaining reliable transcribed regions. The performance of ESTCleanser has been evaluated on the well-annotated human ENCyclopedia of DNA Elements (ENCODE) regions using human ESTs in the dbEST database. The evaluation results show that the accuracy of ESTCleanser at exon and intron levels is more remarkably enhanced than that of UCSC-spliced EST alignments. This work would be helpful to EST-based researches on finding new genes, complementing genome annotation, recognising alternative splicing events and Single Nucleotide Polymorphisms (SNPs), etc.

  11. BuddySuite: Command-Line Toolkits for Manipulating Sequences, Alignments, and Phylogenetic Trees.

    PubMed

    Bond, Stephen R; Keat, Karl E; Barreira, Sofia N; Baxevanis, Andreas D

    2017-06-01

    The ability to manipulate sequence, alignment, and phylogenetic tree files has become an increasingly important skill in the life sciences, whether to generate summary information or to prepare data for further downstream analysis. The command line can be an extremely powerful environment for interacting with these resources, but only if the user has the appropriate general-purpose tools on hand. BuddySuite is a collection of four independent yet interrelated command-line toolkits that facilitate each step in the workflow of sequence discovery, curation, alignment, and phylogenetic reconstruction. Most common sequence, alignment, and tree file formats are automatically detected and parsed, and over 100 tools have been implemented for manipulating these data. The project has been engineered to easily accommodate the addition of new tools, is written in the popular programming language Python, and is hosted on the Python Package Index and GitHub to maximize accessibility. Documentation for each BuddySuite tool, including usage examples, is available at http://tiny.cc/buddysuite_wiki. All software is open source and freely available through http://research.nhgri.nih.gov/software/BuddySuite. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.

  12. SeqFIRE: a web application for automated extraction of indel regions and conserved blocks from protein multiple sequence alignments.

    PubMed

    Ajawatanawong, Pravech; Atkinson, Gemma C; Watson-Haigh, Nathan S; Mackenzie, Bryony; Baldauf, Sandra L

    2012-07-01

    Analyses of multiple sequence alignments generally focus on well-defined conserved sequence blocks, while the rest of the alignment is largely ignored or discarded. This is especially true in phylogenomics, where large multigene datasets are produced through automated pipelines. However, some of the most powerful phylogenetic markers have been found in the variable length regions of multiple alignments, particularly insertions/deletions (indels) in protein sequences. We have developed Sequence Feature and Indel Region Extractor (SeqFIRE) to enable the automated identification and extraction of indels from protein sequence alignments. The program can also extract conserved blocks and identify fast evolving sites using a combination of conservation and entropy. All major variables can be adjusted by the user, allowing them to identify the sets of variables most suited to a particular analysis or dataset. Thus, all major tasks in preparing an alignment for further analysis are combined in a single flexible and user-friendly program. The output includes a numbered list of indels, alignments in NEXUS format with indels annotated or removed and indel-only matrices. SeqFIRE is a user-friendly web application, freely available online at www.seqfire.org/.

  13. Restriction and Sequence Alterations Affect DNA Uptake Sequence-Dependent Transformation in Neisseria meningitidis

    PubMed Central

    Ambur, Ole Herman; Frye, Stephan A.; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID

  14. Sequence-Dependent Diastereospecific and Diastereodivergent Crosslinking of DNA by Decarbamoylmitomycin C.

    PubMed

    Aguilar, William; Paz, Manuel M; Vargas, Anayatzinc; Clement, Cristina C; Cheng, Shu-Yuan; Champeil, Elise

    2018-04-20

    Mitomycin C (MC), a potent antitumor drug, and decarbamoylmitomycin C (DMC), a derivative lacking the carbamoyl group, form highly cytotoxic DNA interstrand crosslinks. The major interstrand crosslink formed by DMC is the C1'' epimer of the major crosslink formed by MC. The molecular basis for the stereochemical configuration exhibited by DMC was investigated using biomimetic synthesis. The formation of DNA-DNA crosslinks by DMC is diastereospecific and diastereodivergent: Only the 1''S-diastereomer of the initially formed monoadduct can form crosslinks at GpC sequences, and only the 1''R-diastereomer of the monoadduct can form crosslinks at CpG sequences. We also show that CpG and GpC sequences react with divergent diastereoselectivity in the first alkylation step: 1"S stereochemistry is favored at GpC sequences and 1''R stereochemistry is favored at CpG sequences. Therefore, the first alkylation step results, at each sequence, in the selective formation of the diastereomer able to generate an interstrand DNA-DNA crosslink after the "second arm" alkylation. Examination of the known DNA adduct pattern obtained after treatment of cancer cell cultures with DMC indicates that the GpC sequence is the major target for the formation of DNA-DNA crosslinks in vivo by this drug. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Genomic sequencing of Pleistocene cave bears

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noonan, James P.; Hofreiter, Michael; Smith, Doug

    2005-04-01

    Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome,more » the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.« less

  16. Development of a Novel Technology for Label Free DNA Sequencing

    DTIC Science & Technology

    2012-05-21

    of the C-H bond stretch vibrations in the planes of the corresponding DNA bases , and in the higher-frequency side, sequence-identifier region is...composed of the N-H bond stretch vibrations in the planes of the corresponding DNA bases . In addition, the sequence-identifier dividing region almost...regions are localized at the corresponding DNA bases and exhibit a definable dependence on the sequence form of the codons under study. Final

  17. Accounting for uncertainty in DNA sequencing data.

    PubMed

    O'Rawe, Jason A; Ferson, Scott; Lyon, Gholson J

    2015-02-01

    Science is defined in part by an honest exposition of the uncertainties that arise in measurements and propagate through calculations and inferences, so that the reliabilities of its conclusions are made apparent. The recent rapid development of high-throughput DNA sequencing technologies has dramatically increased the number of measurements made at the biochemical and molecular level. These data come from many different DNA-sequencing technologies, each with their own platform-specific errors and biases, which vary widely. Several statistical studies have tried to measure error rates for basic determinations, but there are no general schemes to project these uncertainties so as to assess the surety of the conclusions drawn about genetic, epigenetic, and more general biological questions. We review here the state of uncertainty quantification in DNA sequencing applications, describe sources of error, and propose methods that can be used for accounting and propagating these errors and their uncertainties through subsequent calculations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The spatial alignment of time: Differences in alignment of deictic and sequence time along the sagittal and lateral axes.

    PubMed

    Walker, Esther J; Bergen, Benjamin K; Núñez, Rafael

    2017-04-01

    People use space in a variety of ways to structure their thoughts about time. The present report focuses on the different ways that space is employed when reasoning about deictic (past/future relationships) and sequence (earlier/later relationships) time. In the first study, we show that deictic and sequence time are aligned along the lateral axis in a manner consistent with previous work, with past and earlier events associated with left space and future and later events associated with right space. However, the alignment of time with space is different along the sagittal axis. Participants associated future events and earlier events-not later events-with the space in front of their body and past and later events with the space behind, consistent with the sagittal spatial terms (e.g., ahead, in front of) that we use to talk about deictic and sequence time. In the second study, we show that these associations between sequence time and sagittal space are sensitive to person-perspective. This suggests that the particular space-time associations observed in English speakers are influenced by a variety of different spatial properties, including spatial location and perspective. Copyright © 2016. Published by Elsevier B.V.

  19. Methylation patterns of repetitive DNA sequences in germ cells of Mus musculus.

    PubMed

    Sanford, J; Forrester, L; Chapman, V; Chandley, A; Hastie, N

    1984-03-26

    The major and the minor satellite sequences of Mus musculus were undermethylated in both sperm and oocyte DNAs relative to the amount of undermethylation observed in adult somatic tissue DNA. This hypomethylation was specific for satellite sequences in sperm DNA. Dispersed repetitive and low copy sequences show a high degree of methylation in sperm DNA; however, a dispersed repetitive sequence was undermethylated in oocyte DNA. This finding suggests a difference in the amount of total genomic DNA methylation between sperm and oocyte DNA. The methylation levels of the minor satellite sequences did not change during spermiogenesis, and were not associated with the onset of meiosis or a specific stage in sperm development.

  20. HLA genotyping by next-generation sequencing of complementary DNA.

    PubMed

    Segawa, Hidenobu; Kukita, Yoji; Kato, Kikuya

    2017-11-28

    Genotyping of the human leucocyte antigen (HLA) is indispensable for various medical treatments. However, unambiguous genotyping is technically challenging due to high polymorphism of the corresponding genomic region. Next-generation sequencing is changing the landscape of genotyping. In addition to high throughput of data, its additional advantage is that DNA templates are derived from single molecules, which is a strong merit for the phasing problem. Although most currently developed technologies use genomic DNA, use of cDNA could enable genotyping with reduced costs in data production and analysis. We thus developed an HLA genotyping system based on next-generation sequencing of cDNA. Each HLA gene was divided into 3 or 4 target regions subjected to PCR amplification and subsequent sequencing with Ion Torrent PGM. The sequence data were then subjected to an automated analysis. The principle of the analysis was to construct candidate sequences generated from all possible combinations of variable bases and arrange them in decreasing order of the number of reads. Upon collecting candidate sequences from all target regions, 2 haplotypes were usually assigned. Cases not assigned 2 haplotypes were forwarded to 4 additional processes: selection of candidate sequences applying more stringent criteria, removal of artificial haplotypes, selection of candidate sequences with a relaxed threshold for sequence matching, and countermeasure for incomplete sequences in the HLA database. The genotyping system was evaluated using 30 samples; the overall accuracy was 97.0% at the field 3 level and 98.3% at the G group level. With one sample, genotyping of DPB1 was not completed due to short read size. We then developed a method for complete sequencing of individual molecules of the DPB1 gene, using the molecular barcode technology. The performance of the automatic genotyping system was comparable to that of systems developed in previous studies. Thus, next-generation sequencing of

  1. MSAViewer: interactive JavaScript visualization of multiple sequence alignments.

    PubMed

    Yachdav, Guy; Wilzbach, Sebastian; Rauscher, Benedikt; Sheridan, Robert; Sillitoe, Ian; Procter, James; Lewis, Suzanna E; Rost, Burkhard; Goldberg, Tatyana

    2016-11-15

    The MSAViewer is a quick and easy visualization and analysis JavaScript component for Multiple Sequence Alignment data of any size. Core features include interactive navigation through the alignment, application of popular color schemes, sorting, selecting and filtering. The MSAViewer is 'web ready': written entirely in JavaScript, compatible with modern web browsers and does not require any specialized software. The MSAViewer is part of the BioJS collection of components. The MSAViewer is released as open source software under the Boost Software License 1.0. Documentation, source code and the viewer are available at http://msa.biojs.net/Supplementary information: Supplementary data are available at Bioinformatics online. msa@bio.sh. © The Author 2016. Published by Oxford University Press.

  2. W-curve alignments for HIV-1 genomic comparisons.

    PubMed

    Cork, Douglas J; Lembark, Steven; Tovanabutra, Sodsai; Robb, Merlin L; Kim, Jerome H

    2010-06-01

    The W-curve was originally developed as a graphical visualization technique for viewing DNA and RNA sequences. Its ability to render features of DNA also makes it suitable for computational studies. Its main advantage in this area is utilizing a single-pass algorithm for comparing the sequences. Avoiding recursion during sequence alignments offers advantages for speed and in-process resources. The graphical technique also allows for multiple models of comparison to be used depending on the nucleotide patterns embedded in similar whole genomic sequences. The W-curve approach allows us to compare large numbers of samples quickly. We are currently tuning the algorithm to accommodate quirks specific to HIV-1 genomic sequences so that it can be used to aid in diagnostic and vaccine efforts. Tracking the molecular evolution of the virus has been greatly hampered by gap associated problems predominantly embedded within the envelope gene of the virus. Gaps and hypermutation of the virus slow conventional string based alignments of the whole genome. This paper describes the W-curve algorithm itself, and how we have adapted it for comparison of similar HIV-1 genomes. A treebuilding method is developed with the W-curve that utilizes a novel Cylindrical Coordinate distance method and gap analysis method. HIV-1 C2-V5 env sequence regions from a Mother/Infant cohort study are used in the comparison. The output distance matrix and neighbor results produced by the W-curve are functionally equivalent to those from Clustal for C2-V5 sequences in the mother/infant pairs infected with CRF01_AE. Significant potential exists for utilizing this method in place of conventional string based alignment of HIV-1 genomes, such as Clustal X. With W-curve heuristic alignment, it may be possible to obtain clinically useful results in a short time-short enough to affect clinical choices for acute treatment. A description of the W-curve generation process, including a comparison technique of

  3. ESPERR: learning strong and weak signals in genomic sequence alignments to identify functional elements.

    PubMed

    Taylor, James; Tyekucheva, Svitlana; King, David C; Hardison, Ross C; Miller, Webb; Chiaromonte, Francesca

    2006-12-01

    Genomic sequence signals - such as base composition, presence of particular motifs, or evolutionary constraint - have been used effectively to identify functional elements. However, approaches based only on specific signals known to correlate with function can be quite limiting. When training data are available, application of computational learning algorithms to multispecies alignments has the potential to capture broader and more informative sequence and evolutionary patterns that better characterize a class of elements. However, effective exploitation of patterns in multispecies alignments is impeded by the vast number of possible alignment columns and by a limited understanding of which particular strings of columns may characterize a given class. We have developed a computational method, called ESPERR (evolutionary and sequence pattern extraction through reduced representations), which uses training examples to learn encodings of multispecies alignments into reduced forms tailored for the prediction of chosen classes of functional elements. ESPERR produces a greatly improved Regulatory Potential score, which can discriminate regulatory regions from neutral sites with excellent accuracy ( approximately 94%). This score captures strong signals (GC content and conservation), as well as subtler signals (with small contributions from many different alignment patterns) that characterize the regulatory elements in our training set. ESPERR is also effective for predicting other classes of functional elements, as we show for DNaseI hypersensitive sites and highly conserved regions with developmental enhancer activity. Our software, training data, and genome-wide predictions are available from our Web site (http://www.bx.psu.edu/projects/esperr).

  4. Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM)☆

    PubMed Central

    Parson, Walther; Strobl, Christina; Huber, Gabriela; Zimmermann, Bettina; Gomes, Sibylle M.; Souto, Luis; Fendt, Liane; Delport, Rhena; Langit, Reina; Wootton, Sharon; Lagacé, Robert; Irwin, Jodi

    2013-01-01

    Insights into the human mitochondrial phylogeny have been primarily achieved by sequencing full mitochondrial genomes (mtGenomes). In forensic genetics (partial) mtGenome information can be used to assign haplotypes to their phylogenetic backgrounds, which may, in turn, have characteristic geographic distributions that would offer useful information in a forensic case. In addition and perhaps even more relevant in the forensic context, haplogroup-specific patterns of mutations form the basis for quality control of mtDNA sequences. The current method for establishing (partial) mtDNA haplotypes is Sanger-type sequencing (STS), which is laborious, time-consuming, and expensive. With the emergence of Next Generation Sequencing (NGS) technologies, the body of available mtDNA data can potentially be extended much more quickly and cost-efficiently. Customized chemistries, laboratory workflows and data analysis packages could support the community and increase the utility of mtDNA analysis in forensics. We have evaluated the performance of mtGenome sequencing using the Personal Genome Machine (PGM) and compared the resulting haplotypes directly with conventional Sanger-type sequencing. A total of 64 mtGenomes (>1 million bases) were established that yielded high concordance with the corresponding STS haplotypes (<0.02% differences). About two-thirds of the differences were observed in or around homopolymeric sequence stretches. In addition, the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of alignment software would be desirable to facilitate the application of NGS in mtDNA forensic genetics. PMID:23948325

  5. [Current applications of high-throughput DNA sequencing technology in antibody drug research].

    PubMed

    Yu, Xin; Liu, Qi-Gang; Wang, Ming-Rong

    2012-03-01

    Since the publication of a high-throughput DNA sequencing technology based on PCR reaction was carried out in oil emulsions in 2005, high-throughput DNA sequencing platforms have been evolved to a robust technology in sequencing genomes and diverse DNA libraries. Antibody libraries with vast numbers of members currently serve as a foundation of discovering novel antibody drugs, and high-throughput DNA sequencing technology makes it possible to rapidly identify functional antibody variants with desired properties. Herein we present a review of current applications of high-throughput DNA sequencing technology in the analysis of antibody library diversity, sequencing of CDR3 regions, identification of potent antibodies based on sequence frequency, discovery of functional genes, and combination with various display technologies, so as to provide an alternative approach of discovery and development of antibody drugs.

  6. Detecting differential DNA methylation from sequencing of bisulfite converted DNA of diverse species.

    PubMed

    Huh, Iksoo; Wu, Xin; Park, Taesung; Yi, Soojin V

    2017-07-21

    DNA methylation is one of the most extensively studied epigenetic modifications of genomic DNA. In recent years, sequencing of bisulfite-converted DNA, particularly via next-generation sequencing technologies, has become a widely popular method to study DNA methylation. This method can be readily applied to a variety of species, dramatically expanding the scope of DNA methylation studies beyond the traditionally studied human and mouse systems. In parallel to the increasing wealth of genomic methylation profiles, many statistical tools have been developed to detect differentially methylated loci (DMLs) or differentially methylated regions (DMRs) between biological conditions. We discuss and summarize several key properties of currently available tools to detect DMLs and DMRs from sequencing of bisulfite-converted DNA. However, the majority of the statistical tools developed for DML/DMR analyses have been validated using only mammalian data sets, and less priority has been placed on the analyses of invertebrate or plant DNA methylation data. We demonstrate that genomic methylation profiles of non-mammalian species are often highly distinct from those of mammalian species using examples of honey bees and humans. We then discuss how such differences in data properties may affect statistical analyses. Based on these differences, we provide three specific recommendations to improve the power and accuracy of DML and DMR analyses of invertebrate data when using currently available statistical tools. These considerations should facilitate systematic and robust analyses of DNA methylation from diverse species, thus advancing our understanding of DNA methylation. © The Author 2017. Published by Oxford University Press.

  7. Influence of DNA sequence on the structure of minicircles under torsional stress

    PubMed Central

    Wang, Qian; Irobalieva, Rossitza N.; Chiu, Wah; Schmid, Michael F.; Fogg, Jonathan M.; Zechiedrich, Lynn

    2017-01-01

    Abstract The sequence dependence of the conformational distribution of DNA under various levels of torsional stress is an important unsolved problem. Combining theory and coarse-grained simulations shows that the DNA sequence and a structural correlation due to topology constraints of a circle are the main factors that dictate the 3D structure of a 336 bp DNA minicircle under torsional stress. We found that DNA minicircle topoisomers can have multiple bend locations under high torsional stress and that the positions of these sharp bends are determined by the sequence, and by a positive mechanical correlation along the sequence. We showed that simulations and theory are able to provide sequence-specific information about individual DNA minicircles observed by cryo-electron tomography (cryo-ET). We provided a sequence-specific cryo-ET tomogram fitting of DNA minicircles, registering the sequence within the geometric features. Our results indicate that the conformational distribution of minicircles under torsional stress can be designed, which has important implications for using minicircle DNA for gene therapy. PMID:28609782

  8. A High-Throughput Process for the Solid-Phase Purification of Synthetic DNA Sequences

    PubMed Central

    Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L.

    2017-01-01

    An efficient process for the purification of synthetic phosphorothioate and native DNA sequences is presented. The process is based on the use of an aminopropylated silica gel support functionalized with aminooxyalkyl functions to enable capture of DNA sequences through an oximation reaction with the keto function of a linker conjugated to the 5′-terminus of DNA sequences. Deoxyribonucleoside phosphoramidites carrying this linker, as a 5′-hydroxyl protecting group, have been synthesized for incorporation into DNA sequences during the last coupling step of a standard solid-phase synthesis protocol executed on a controlled pore glass (CPG) support. Solid-phase capture of the nucleobase- and phosphate-deprotected DNA sequences released from the CPG support is demonstrated to proceed near quantitatively. Shorter than full-length DNA sequences are first washed away from the capture support; the solid-phase purified DNA sequences are then released from this support upon reaction with tetra-n-butylammonium fluoride in dry dimethylsulfoxide (DMSO) and precipitated in tetrahydrofuran (THF). The purity of solid-phase-purified DNA sequences exceeds 98%. The simulated high-throughput and scalability features of the solid-phase purification process are demonstrated without sacrificing purity of the DNA sequences. PMID:28628204

  9. Sequence homology and expression profile of genes associated with DNA repair pathways in Mycobacterium leprae.

    PubMed

    Sharma, Mukul; Vedithi, Sundeep Chaitanya; Das, Madhusmita; Roy, Anindya; Ebenezer, Mannam

    2017-01-01

    Survival of Mycobacterium leprae, the causative bacteria for leprosy, in the human host is dependent to an extent on the ways in which its genome integrity is retained. DNA repair mechanisms protect bacterial DNA from damage induced by various stress factors. The current study is aimed at understanding the sequence and functional annotation of DNA repair genes in M. leprae. T he genome of M. leprae was annotated using sequence alignment tools to identify DNA repair genes that have homologs in Mycobacterium tuberculosis and Escherichia coli. A set of 96 genes known to be involved in DNA repair mechanisms in E. coli and Mycobacteriaceae were chosen as a reference. Among these, 61 were identified in M. leprae based on sequence similarity and domain architecture. The 61 were classified into 36 characterized gene products (59%), 11 hypothetical proteins (18%), and 14 pseudogenes (23%). All these genes have homologs in M. tuberculosis and 49 (80.32%) in E. coli. A set of 12 genes which are absent in E. coli were present in M. leprae and in Mycobacteriaceae. These 61 genes were further investigated for their expression profiles in the whole transcriptome microarray data of M. leprae which was obtained from the signal intensities of 60bp probes, tiling the entire genome with 10bp overlaps. It was noted that transcripts corresponding to all the 61 genes were identified in the transcriptome data with varying expression levels ranging from 0.18 to 2.47 fold (normalized with 16SrRNA). The mRNA expression levels of a representative set of seven genes ( four annotated and three hypothetical protein coding genes) were analyzed using quantitative Polymerase Chain Reaction (qPCR) assays with RNA extracted from skin biopsies of 10 newly diagnosed, untreated leprosy cases. It was noted that RNA expression levels were higher for genes involved in homologous recombination whereas the genes with a low level of expression are involved in the direct repair pathway. This study provided

  10. Dynamic programming algorithms for biological sequence comparison.

    PubMed

    Pearson, W R; Miller, W

    1992-01-01

    Efficient dynamic programming algorithms are available for a broad class of protein and DNA sequence comparison problems. These algorithms require computer time proportional to the product of the lengths of the two sequences being compared [O(N2)] but require memory space proportional only to the sum of these lengths [O(N)]. Although the requirement for O(N2) time limits use of the algorithms to the largest computers when searching protein and DNA sequence databases, many other applications of these algorithms, such as calculation of distances for evolutionary trees and comparison of a new sequence to a library of sequence profiles, are well within the capabilities of desktop computers. In particular, the results of library searches with rapid searching programs, such as FASTA or BLAST, should be confirmed by performing a rigorous optimal alignment. Whereas rapid methods do not overlook significant sequence similarities, FASTA limits the number of gaps that can be inserted into an alignment, so that a rigorous alignment may extend the alignment substantially in some cases. BLAST does not allow gaps in the local regions that it reports; a calculation that allows gaps is very likely to extend the alignment substantially. Although a Monte Carlo evaluation of the statistical significance of a similarity score with a rigorous algorithm is much slower than the heuristic approach used by the RDF2 program, the dynamic programming approach should take less than 1 hr on a 386-based PC or desktop Unix workstation. For descriptive purposes, we have limited our discussion to methods for calculating similarity scores and distances that use gap penalties of the form g = rk. Nevertheless, programs for the more general case (g = q+rk) are readily available. Versions of these programs that run either on Unix workstations, IBM-PC class computers, or the Macintosh can be obtained from either of the authors.

  11. repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects.

    PubMed

    Liu, Bin; Liu, Fule; Fang, Longyun; Wang, Xiaolong; Chou, Kuo-Chen

    2015-04-15

    In order to develop powerful computational predictors for identifying the biological features or attributes of DNAs, one of the most challenging problems is to find a suitable approach to effectively represent the DNA sequences. To facilitate the studies of DNAs and nucleotides, we developed a Python package called representations of DNAs (repDNA) for generating the widely used features reflecting the physicochemical properties and sequence-order effects of DNAs and nucleotides. There are three feature groups composed of 15 features. The first group calculates three nucleic acid composition features describing the local sequence information by means of kmers; the second group calculates six autocorrelation features describing the level of correlation between two oligonucleotides along a DNA sequence in terms of their specific physicochemical properties; the third group calculates six pseudo nucleotide composition features, which can be used to represent a DNA sequence with a discrete model or vector yet still keep considerable sequence-order information via the physicochemical properties of its constituent oligonucleotides. In addition, these features can be easily calculated based on both the built-in and user-defined properties via using repDNA. The repDNA Python package is freely accessible to the public at http://bioinformatics.hitsz.edu.cn/repDNA/. bliu@insun.hit.edu.cn or kcchou@gordonlifescience.org Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Mammalian DNA enriched for replication origins is enriched for snap-back sequences.

    PubMed

    Zannis-Hadjopoulos, M; Kaufmann, G; Martin, R G

    1984-11-15

    Using the instability of replication loops as a method for the isolation of double-stranded nascent DNA, extruded DNA enriched for replication origins was obtained and denatured. Snap-back DNA, single-stranded DNA with inverted repeats (palindromic sequences), reassociates rapidly into stem-loop structures with zero-order kinetics when conditions are changed from denaturing to renaturing, and can be assayed by chromatography on hydroxyapatite. Origin-enriched nascent DNA strands from mouse, rat and monkey cells growing either synchronously or asynchronously were purified and assayed for the presence of snap-back sequences. The results show that origin-enriched DNA is also enriched for snap-back sequences, implying that some origins for mammalian DNA replication contain or lie near palindromic sequences.

  13. Vander Lugt correlation of DNA sequence data

    NASA Astrophysics Data System (ADS)

    Christens-Barry, William A.; Hawk, James F.; Martin, James C.

    1990-12-01

    DNA, the molecule containing the genetic code of an organism, is a linear chain of subunits. It is the sequence of subunits, of which there are four kinds, that constitutes the unique blueprint of an individual. This sequence is the focus of a large number of analyses performed by an army of geneticists, biologists, and computer scientists. Most of these analyses entail searches for specific subsequences within the larger set of sequence data. Thus, most analyses are essentially pattern recognition or correlation tasks. Yet, there are special features to such analysis that influence the strategy and methods of an optical pattern recognition approach. While the serial processing employed in digital electronic computers remains the main engine of sequence analyses, there is no fundamental reason that more efficient parallel methods cannot be used. We describe an approach using optical pattern recognition (OPR) techniques based on matched spatial filtering. This allows parallel comparison of large blocks of sequence data. In this study we have simulated a Vander Lugt1 architecture implementing our approach. Searches for specific target sequence strings within a block of DNA sequence from the Co/El plasmid2 are performed.

  14. Isolation of a sex-linked DNA sequence in cranes.

    PubMed

    Duan, W; Fuerst, P A

    2001-01-01

    A female-specific DNA fragment (CSL-W; crane sex-linked DNA on W chromosome) was cloned from female whooping cranes (Grus americana). From the nucleotide sequence of CSL-W, a set of polymerase chain reaction (PCR) primers was identified which amplify a 227-230 bp female-specific fragment from all existing crane species and some other noncrane species. A duplicated versions of the DNA segment, which is found to have a larger size (231-235 bp) than CSL-W in both sexes, was also identified, and was designated CSL-NW (crane sex-linked DNA on non-W chromosome). The nucleotide similarity between the sequences of CSL-W and CSL-NW from whooping cranes was 86.3%. The CSL primers do not amplify any sequence from mammalian DNA, limiting the potential for contamination from human sources. Using the CSL primers in combination with a quick DNA extraction method allows the noninvasive identification of crane gender in less than 10 h. A test of the methodology was carried out on fully developed body feathers from 18 captive cranes and resulted in 100% successful identification.

  15. DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments.

    PubMed

    Kelly, Steven; Maini, Philip K

    2013-01-01

    The rapidly growing availability of genome information has created considerable demand for both fast and accurate phylogenetic inference algorithms. We present a novel method called DendroBLAST for reconstructing phylogenetic dendrograms/trees from protein sequences using BLAST. This method differs from other methods by incorporating a simple model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the inferred tree. Using realistic simulated sequence data we demonstrate that this method produces phylogenetic trees that are more accurate than other commonly-used distance based methods though not as accurate as maximum likelihood methods from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an approximate phylogeny of the Archaea that has both high precision and recall when compared to previously published analysis of the same dataset using conventional methods. Taken together these results demonstrate that approximate phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the DendroBLAST method is freely available for use at http://www.dendroblast.com/.

  16. In silico Analysis of 2085 Clones from a Normalized Rat Vestibular Periphery 3′ cDNA Library

    PubMed Central

    Roche, Joseph P.; Cioffi, Joseph A.; Kwitek, Anne E.; Erbe, Christy B.; Popper, Paul

    2005-01-01

    The inserts from 2400 cDNA clones isolated from a normalized Rattus norvegicus vestibular periphery cDNA library were sequenced and characterized. The Wackym-Soares vestibular 3′ cDNA library was constructed from the saccular and utricular maculae, the ampullae of all three semicircular canals and Scarpa's ganglia containing the somata of the primary afferent neurons, microdissected from 104 male and female rats. The inserts from 2400 randomly selected clones were sequenced from the 5′ end. Each sequence was analyzed using the BLAST algorithm compared to the Genbank nonredundant, rat genome, mouse genome and human genome databases to search for high homology alignments. Of the initial 2400 clones, 315 (13%) were found to be of poor quality and did not yield useful information, and therefore were eliminated from the analysis. Of the remaining 2085 sequences, 918 (44%) were found to represent 758 unique genes having useful annotations that were identified in databases within the public domain or in the published literature; these sequences were designated as known characterized sequences. 1141 sequences (55%) aligned with 1011 unique sequences had no useful annotations and were designated as known but uncharacterized sequences. Of the remaining 26 sequences (1%), 24 aligned with rat genomic sequences, but none matched previously described rat expressed sequence tags or mRNAs. No significant alignment to the rat or human genomic sequences could be found for the remaining 2 sequences. Of the 2085 sequences analyzed, 86% were singletons. The known, characterized sequences were analyzed with the FatiGO online data-mining tool (http://fatigo.bioinfo.cnio.es/) to identify level 5 biological process gene ontology (GO) terms for each alignment and to group alignments with similar or identical GO terms. Numerous genes were identified that have not been previously shown to be expressed in the vestibular system. Further characterization of the novel cDNA sequences may lead

  17. A 28,000 Years Old Cro-Magnon mtDNA Sequence Differs from All Potentially Contaminating Modern Sequences

    PubMed Central

    Caramelli, David; Milani, Lucio; Vai, Stefania; Modi, Alessandra; Pecchioli, Elena; Girardi, Matteo; Pilli, Elena; Lari, Martina; Lippi, Barbara; Ronchitelli, Annamaria; Mallegni, Francesco; Casoli, Antonella; Bertorelle, Giorgio; Barbujani, Guido

    2008-01-01

    Background DNA sequences from ancient speciments may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal) and early modern (Cro-Magnoid) Europeans. Methodology/Principal Findings We typed the mitochondrial DNA (mtDNA) hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23) and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences. Conclusions/Significance: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of early modern Europeans. PMID:18628960

  18. [Genome-scale sequence data processing and epigenetic analysis of DNA methylation].

    PubMed

    Wang, Ting-Zhang; Shan, Gao; Xu, Jian-Hong; Xue, Qing-Zhong

    2013-06-01

    A new approach recently developed for detecting cytosine DNA methylation (mC) and analyzing the genome-scale DNA methylation profiling, is called BS-Seq which is based on bisulfite conversion of genomic DNA combined with next-generation sequencing. The method can not only provide an insight into the difference of genome-scale DNA methylation among different organisms, but also reveal the conservation of DNA methylation in all contexts and nucleotide preference for different genomic regions, including genes, exons, and repetitive DNA sequences. It will be helpful to under-stand the epigenetic impacts of cytosine DNA methylation on the regulation of gene expression and maintaining silence of repetitive sequences, such as transposable elements. In this paper, we introduce the preprocessing steps of DNA methylation data, by which cytosine (C) and guanine (G) in the reference sequence are transferred to thymine (T) and adenine (A), and cytosine in reads is transferred to thymine, respectively. We also comprehensively review the main content of the DNA methylation analysis on the genomic scale: (1) the cytosine methylation under the context of different sequences; (2) the distribution of genomic methylcytosine; (3) DNA methylation context and the preference for the nucleotides; (4) DNA- protein interaction sites of DNA methylation; (5) degree of methylation of cytosine in the different structural elements of genes. DNA methylation analysis technique provides a powerful tool for the epigenome study in human and other species, and genes and environment interaction, and founds the theoretical basis for further development of disease diagnostics and therapeutics in human.

  19. Toward a Better Compression for DNA Sequences Using Huffman Encoding

    PubMed Central

    Almarri, Badar; Al Yami, Sultan; Huang, Chun-Hsi

    2017-01-01

    Abstract Due to the significant amount of DNA data that are being generated by next-generation sequencing machines for genomes of lengths ranging from megabases to gigabases, there is an increasing need to compress such data to a less space and a faster transmission. Different implementations of Huffman encoding incorporating the characteristics of DNA sequences prove to better compress DNA data. These implementations center on the concepts of selecting frequent repeats so as to force a skewed Huffman tree, as well as the construction of multiple Huffman trees when encoding. The implementations demonstrate improvements on the compression ratios for five genomes with lengths ranging from 5 to 50 Mbp, compared with the standard Huffman tree algorithm. The research hence suggests an improvement on all such DNA sequence compression algorithms that use the conventional Huffman encoding. The research suggests an improvement on all DNA sequence compression algorithms that use the conventional Huffman encoding. Accompanying software is publicly available (AL-Okaily, 2016). PMID:27960065

  20. Toward a Better Compression for DNA Sequences Using Huffman Encoding.

    PubMed

    Al-Okaily, Anas; Almarri, Badar; Al Yami, Sultan; Huang, Chun-Hsi

    2017-04-01

    Due to the significant amount of DNA data that are being generated by next-generation sequencing machines for genomes of lengths ranging from megabases to gigabases, there is an increasing need to compress such data to a less space and a faster transmission. Different implementations of Huffman encoding incorporating the characteristics of DNA sequences prove to better compress DNA data. These implementations center on the concepts of selecting frequent repeats so as to force a skewed Huffman tree, as well as the construction of multiple Huffman trees when encoding. The implementations demonstrate improvements on the compression ratios for five genomes with lengths ranging from 5 to 50 Mbp, compared with the standard Huffman tree algorithm. The research hence suggests an improvement on all such DNA sequence compression algorithms that use the conventional Huffman encoding. The research suggests an improvement on all DNA sequence compression algorithms that use the conventional Huffman encoding. Accompanying software is publicly available (AL-Okaily, 2016 ).

  1. FPGA-based protein sequence alignment : A review

    NASA Astrophysics Data System (ADS)

    Isa, Mohd. Nazrin Md.; Muhsen, Ku Noor Dhaniah Ku; Saiful Nurdin, Dayana; Ahmad, Muhammad Imran; Anuar Zainol Murad, Sohiful; Nizam Mohyar, Shaiful; Harun, Azizi; Hussin, Razaidi

    2017-11-01

    Sequence alignment have been optimized using several techniques in order to accelerate the computation time to obtain the optimal score by implementing DP-based algorithm into hardware such as FPGA-based platform. During hardware implementation, there will be performance challenges such as the frequent memory access and highly data dependent in computation process. Therefore, investigation in processing element (PE) configuration where involves more on memory access in load or access the data (substitution matrix, query sequence character) and the PE configuration time will be the main focus in this paper. There are various approaches to enhance the PE configuration performance that have been done in previous works such as by using serial configuration chain and parallel configuration chain i.e. the configuration data will be loaded into each PEs sequentially and simultaneously respectively. Some researchers have proven that the performance using parallel configuration chain has optimized both the configuration time and area.

  2. Nanopore-based fourth-generation DNA sequencing technology.

    PubMed

    Feng, Yanxiao; Zhang, Yuechuan; Ying, Cuifeng; Wang, Deqiang; Du, Chunlei

    2015-02-01

    Nanopore-based sequencers, as the fourth-generation DNA sequencing technology, have the potential to quickly and reliably sequence the entire human genome for less than $1000, and possibly for even less than $100. The single-molecule techniques used by this technology allow us to further study the interaction between DNA and protein, as well as between protein and protein. Nanopore analysis opens a new door to molecular biology investigation at the single-molecule scale. In this article, we have reviewed academic achievements in nanopore technology from the past as well as the latest advances, including both biological and solid-state nanopores, and discussed their recent and potential applications. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  3. Optimizing multiple sequence alignments using a genetic algorithm based on three objectives: structural information, non-gaps percentage and totally conserved columns.

    PubMed

    Ortuño, Francisco M; Valenzuela, Olga; Rojas, Fernando; Pomares, Hector; Florido, Javier P; Urquiza, Jose M; Rojas, Ignacio

    2013-09-01

    Multiple sequence alignments (MSAs) are widely used approaches in bioinformatics to carry out other tasks such as structure predictions, biological function analyses or phylogenetic modeling. However, current tools usually provide partially optimal alignments, as each one is focused on specific biological features. Thus, the same set of sequences can produce different alignments, above all when sequences are less similar. Consequently, researchers and biologists do not agree about which is the most suitable way to evaluate MSAs. Recent evaluations tend to use more complex scores including further biological features. Among them, 3D structures are increasingly being used to evaluate alignments. Because structures are more conserved in proteins than sequences, scores with structural information are better suited to evaluate more distant relationships between sequences. The proposed multiobjective algorithm, based on the non-dominated sorting genetic algorithm, aims to jointly optimize three objectives: STRIKE score, non-gaps percentage and totally conserved columns. It was significantly assessed on the BAliBASE benchmark according to the Kruskal-Wallis test (P < 0.01). This algorithm also outperforms other aligners, such as ClustalW, Multiple Sequence Alignment Genetic Algorithm (MSA-GA), PRRP, DIALIGN, Hidden Markov Model Training (HMMT), Pattern-Induced Multi-sequence Alignment (PIMA), MULTIALIGN, Sequence Alignment Genetic Algorithm (SAGA), PILEUP, Rubber Band Technique Genetic Algorithm (RBT-GA) and Vertical Decomposition Genetic Algorithm (VDGA), according to the Wilcoxon signed-rank test (P < 0.05), whereas it shows results not significantly different to 3D-COFFEE (P > 0.05) with the advantage of being able to use less structures. Structural information is included within the objective function to evaluate more accurately the obtained alignments. The source code is available at http://www.ugr.es/~fortuno/MOSAStrE/MO-SAStrE.zip.

  4. Multiple sequence alignment in HTML: colored, possibly hyperlinked, compact representations.

    PubMed

    Campagne, F; Maigret, B

    1998-02-01

    Protein sequence alignments are widely used in protein structure prediction, protein engineering, modeling of proteins, etc. This type of representation is useful at different stages of scientific activity: looking at previous results, working on a research project, and presenting the results. There is a need to make it available through a network (intranet or WWW), in a way that allows biologists, chemists, and noncomputer specialists to look at the data and carry on research--possibly in a collaborative research. Previous methods (text-based, Java-based) are reported and their advantages are discussed. We have developed two novel approaches to represent the alignments as colored, hyper-linked HTML pages. The first method creates an HTML page that uses efficiently the image cache mechanism of a WWW browser, thereby allowing the user to browse different alignments without waiting for the images to be loaded through the network, but only for the first viewed alignment. The generated pages can be browsed with any HTML2.0-compliant browser. The second method that we propose uses W3C-CSS1-style sheets to render alignments. This new method generates pages that require recent browsers to be viewed. We implemented these methods in the Viseur program and made a WWW service available that allows a user to convert an MSF alignment file in HTML for WWW publishing. The latter service is available at http:@www.lctn.u-nancy.fr/viseur/services.htm l.

  5. Stepwise detection of recombination breakpoints in sequence alignments.

    PubMed

    Graham, Jinko; McNeney, Brad; Seillier-Moiseiwitsch, Françoise

    2005-03-01

    We propose a stepwise approach to identify recombination breakpoints in a sequence alignment. The approach can be applied to any recombination detection method that uses a permutation test and provides estimates of breakpoints. We illustrate the approach by analyses of a simulated dataset and alignments of real data from HIV-1 and human chromosome 7. The presented simulation results compare the statistical properties of one-step and two-step procedures. More breakpoints are found with a two-step procedure than with a single application of a given method, particularly for higher recombination rates. At higher recombination rates, the additional breakpoints were located at the cost of only a slight increase in the number of falsely declared breakpoints. However, a large proportion of breakpoints still go undetected. A makefile and C source code for phylogenetic profiling and the maximum chi2 method, tested with the gcc compiler on Linux and WindowsXP, are available at http://stat-db.stat.sfu.ca/stepwise/ jgraham@stat.sfu.ca.

  6. Flow cytometry for enrichment and titration in massively parallel DNA sequencing

    PubMed Central

    Sandberg, Julia; Ståhl, Patrik L.; Ahmadian, Afshin; Bjursell, Magnus K.; Lundeberg, Joakim

    2009-01-01

    Massively parallel DNA sequencing is revolutionizing genomics research throughout the life sciences. However, the reagent costs and labor requirements in current sequencing protocols are still substantial, although improvements are continuously being made. Here, we demonstrate an effective alternative to existing sample titration protocols for the Roche/454 system using Fluorescence Activated Cell Sorting (FACS) technology to determine the optimal DNA-to-bead ratio prior to large-scale sequencing. Our method, which eliminates the need for the costly pilot sequencing of samples during titration is capable of rapidly providing accurate DNA-to-bead ratios that are not biased by the quantification and sedimentation steps included in current protocols. Moreover, we demonstrate that FACS sorting can be readily used to highly enrich fractions of beads carrying template DNA, with near total elimination of empty beads and no downstream sacrifice of DNA sequencing quality. Automated enrichment by FACS is a simple approach to obtain pure samples for bead-based sequencing systems, and offers an efficient, low-cost alternative to current enrichment protocols. PMID:19304748

  7. What's in your next-generation sequence data? An exploration of unmapped DNA and RNA sequence reads from the bovine reference individual

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Next-generation sequencing projects commonly commence by aligning reads to a reference genome assembly. While improvements in alignment algorithms and computational hardware have greatly enhanced the efficiency and accuracy of alignments, a significant percentage of reads often remain u...

  8. Recurrence time statistics: versatile tools for genomic DNA sequence analysis.

    PubMed

    Cao, Yinhe; Tung, Wen-Wen; Gao, J B

    2004-01-01

    With the completion of the human and a few model organisms' genomes, and the genomes of many other organisms waiting to be sequenced, it has become increasingly important to develop faster computational tools which are capable of easily identifying the structures and extracting features from DNA sequences. One of the more important structures in a DNA sequence is repeat-related. Often they have to be masked before protein coding regions along a DNA sequence are to be identified or redundant expressed sequence tags (ESTs) are to be sequenced. Here we report a novel recurrence time based method for sequence analysis. The method can conveniently study all kinds of periodicity and exhaustively find all repeat-related features from a genomic DNA sequence. An efficient codon index is also derived from the recurrence time statistics, which has the salient features of being largely species-independent and working well on very short sequences. Efficient codon indices are key elements of successful gene finding algorithms, and are particularly useful for determining whether a suspected EST belongs to a coding or non-coding region. We illustrate the power of the method by studying the genomes of E. coli, the yeast S. cervisivae, the nematode worm C. elegans, and the human, Homo sapiens. Computationally, our method is very efficient. It allows us to carry out analysis of genomes on the whole genomic scale by a PC.

  9. Classification and phylogeny of sika deer (Cervus nippon) subspecies based on the mitochondrial control region DNA sequence using an extended sample set.

    PubMed

    Ba, Hengxing; Yang, Fuhe; Xing, Xiumei; Li, Chunyi

    2015-06-01

    To further refine the classification and phylogeny of sika deer subspecies, the well-annotated sequences of the complete mitochondrial DNA (mtDNA) control region of 13 sika deer subspecies from GenBank were downloaded, aligned and analyzed in this study. By reconstructing the phylogenetic tree with an extended sample set, the results revealed a split between Northern and Southern Mainland Asia/Taiwan lineages, and moreover, two subspecies, C.n.mantchuricus and C.n.hortulorum, were existed in Northern Mainland Asia. Unexpectedly, Dybowskii's sika deer that was thought to originate from Northern Mainland Asia joins the Southern Mainland Asia/Taiwan lineage. The genetic divergences were ranged from 2.1% to 4.7% between Dybowskii's sika deer and all the other established subspecies at the mtDNA sequence level, which suggests that the maternal lineage of uncertain sika subspecies in Europe had been maintained until today. This study also provides a better understanding for the classification, phylogeny and phylogeographic history of sika deer subspecies.

  10. Alignment-free genetic sequence comparisons: a review of recent approaches by word analysis

    PubMed Central

    Steele, Joe; Bastola, Dhundy

    2014-01-01

    Modern sequencing and genome assembly technologies have provided a wealth of data, which will soon require an analysis by comparison for discovery. Sequence alignment, a fundamental task in bioinformatics research, may be used but with some caveats. Seminal techniques and methods from dynamic programming are proving ineffective for this work owing to their inherent computational expense when processing large amounts of sequence data. These methods are prone to giving misleading information because of genetic recombination, genetic shuffling and other inherent biological events. New approaches from information theory, frequency analysis and data compression are available and provide powerful alternatives to dynamic programming. These new methods are often preferred, as their algorithms are simpler and are not affected by synteny-related problems. In this review, we provide a detailed discussion of computational tools, which stem from alignment-free methods based on statistical analysis from word frequencies. We provide several clear examples to demonstrate applications and the interpretations over several different areas of alignment-free analysis such as base–base correlations, feature frequency profiles, compositional vectors, an improved string composition and the D2 statistic metric. Additionally, we provide detailed discussion and an example of analysis by Lempel–Ziv techniques from data compression. PMID:23904502

  11. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation

    PubMed Central

    Boedicker, James Q.; Garcia, Hernan G.; Johnson, Stephanie; Phillips, Rob

    2014-01-01

    As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution. PMID:24231252

  12. Advances in DNA sequencing technologies for high resolution HLA typing.

    PubMed

    Cereb, Nezih; Kim, Hwa Ran; Ryu, Jaejun; Yang, Soo Young

    2015-12-01

    This communication describes our experience in large-scale G group-level high resolution HLA typing using three different DNA sequencing platforms - ABI 3730 xl, Illumina MiSeq and PacBio RS II. Recent advances in DNA sequencing technologies, so-called next generation sequencing (NGS), have brought breakthroughs in deciphering the genetic information in all living species at a large scale and at an affordable level. The NGS DNA indexing system allows sequencing multiple genes for large number of individuals in a single run. Our laboratory has adopted and used these technologies for HLA molecular testing services. We found that each sequencing technology has its own strengths and weaknesses, and their sequencing performances complement each other. HLA genes are highly complex and genotyping them is quite challenging. Using these three sequencing platforms, we were able to meet all requirements for G group-level high resolution and high volume HLA typing. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  13. Mapping Base Modifications in DNA by Transverse-Current Sequencing

    NASA Astrophysics Data System (ADS)

    Alvarez, Jose R.; Skachkov, Dmitry; Massey, Steven E.; Kalitsov, Alan; Velev, Julian P.

    2018-02-01

    Sequencing DNA modifications and lesions, such as methylation of cytosine and oxidation of guanine, is even more important and challenging than sequencing the genome itself. The traditional methods for detecting DNA modifications are either insensitive to these modifications or require additional processing steps to identify a particular type of modification. Transverse-current sequencing in nanopores can potentially identify the canonical bases and base modifications in the same run. In this work, we demonstrate that the most common DNA epigenetic modifications and lesions can be detected with any predefined accuracy based on their tunneling current signature. Our results are based on simulations of the nanopore tunneling current through DNA molecules, calculated using nonequilibrium electron-transport methodology within an effective multiorbital model derived from first-principles calculations, followed by a base-calling algorithm accounting for neighbor current-current correlations. This methodology can be integrated with existing experimental techniques to improve base-calling fidelity.

  14. DNA interactions with a Methylene Blue redox indicator depend on the DNA length and are sequence specific.

    PubMed

    Farjami, Elaheh; Clima, Lilia; Gothelf, Kurt V; Ferapontova, Elena E

    2010-06-01

    A DNA molecular beacon approach was used for the analysis of interactions between DNA and Methylene Blue (MB) as a redox indicator of a hybridization event. DNA hairpin structures of different length and guanine (G) content were immobilized onto gold electrodes in their folded states through the alkanethiol linker at the 5'-end. Binding of MB to the folded hairpin DNA was electrochemically studied and compared with binding to the duplex structure formed by hybridization of the hairpin DNA to a complementary DNA strand. Variation of the electrochemical signal from the DNA-MB complex was shown to depend primarily on the DNA length and sequence used: the G-C base pairs were the preferential sites of MB binding in the duplex. For short 20 nts long DNA sequences, the increased electrochemical response from MB bound to the duplex structure was consistent with the increased amount of bound and electrochemically readable MB molecules (i.e. MB molecules that are available for the electron transfer (ET) reaction with the electrode). With longer DNA sequences, the balance between the amounts of the electrochemically readable MB molecules bound to the hairpin DNA and to the hybrid was opposite: a part of the MB molecules bound to the long-sequence DNA duplex seem to be electrochemically mute due to long ET distance. The increasing electrochemical response from MB bound to the short-length DNA hybrid contrasts with the decreasing signal from MB bound to the long-length DNA hybrid and allows an "off"-"on" genosensor development.

  15. Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle

    PubMed Central

    Westhoff, Connie M.; Uy, Jon Michael; Aguad, Maria; Smeland‐Wagman, Robin; Kaufman, Richard M.; Rehm, Heidi L.; Green, Robert C.; Silberstein, Leslie E.

    2015-01-01

    BACKGROUND There are 346 serologically defined red blood cell (RBC) antigens and 33 serologically defined platelet (PLT) antigens, most of which have known genetic changes in 45 RBC or six PLT genes that correlate with antigen expression. Polymorphic sites associated with antigen expression in the primary literature and reference databases are annotated according to nucleotide positions in cDNA. This makes antigen prediction from next‐generation sequencing data challenging, since it uses genomic coordinates. STUDY DESIGN AND METHODS The conventional cDNA reference sequences for all known RBC and PLT genes that correlate with antigen expression were aligned to the human reference genome. The alignments allowed conversion of conventional cDNA nucleotide positions to the corresponding genomic coordinates. RBC and PLT antigen prediction was then performed using the human reference genome and whole genome sequencing (WGS) data with serologic confirmation. RESULTS Some major differences and alignment issues were found when attempting to convert the conventional cDNA to human reference genome sequences for the following genes: ABO, A4GALT, RHD, RHCE, FUT3, ACKR1 (previously DARC), ACHE, FUT2, CR1, GCNT2, and RHAG. However, it was possible to create usable alignments, which facilitated the prediction of all RBC and PLT antigens with a known molecular basis from WGS data. Traditional serologic typing for 18 RBC antigens were in agreement with the WGS‐based antigen predictions, providing proof of principle for this approach. CONCLUSION Detailed mapping of conventional cDNA annotated RBC and PLT alleles can enable accurate prediction of RBC and PLT antigens from whole genomic sequencing data. PMID:26634332

  16. Fluorescent signatures for variable DNA sequences

    PubMed Central

    Rice, John E.; Reis, Arthur H.; Rice, Lisa M.; Carver-Brown, Rachel K.; Wangh, Lawrence J.

    2012-01-01

    Life abounds with genetic variations writ in sequences that are often only a few hundred nucleotides long. Rapid detection of these variations for identification of genetic diseases, pathogens and organisms has become the mainstay of molecular science and medicine. This report describes a new, highly informative closed-tube polymerase chain reaction (PCR) strategy for analysis of both known and unknown sequence variations. It combines efficient quantitative amplification of single-stranded DNA targets through LATE-PCR with sets of Lights-On/Lights-Off probes that hybridize to their target sequences over a broad temperature range. Contiguous pairs of Lights-On/Lights-Off probes of the same fluorescent color are used to scan hundreds of nucleotides for the presence of mutations. Sets of probes in different colors can be combined in the same tube to analyze even longer single-stranded targets. Each set of hybridized Lights-On/Lights-Off probes generates a composite fluorescent contour, which is mathematically converted to a sequence-specific fluorescent signature. The versatility and broad utility of this new technology is illustrated in this report by characterization of variant sequences in three different DNA targets: the rpoB gene of Mycobacterium tuberculosis, a sequence in the mitochondrial cytochrome C oxidase subunit 1 gene of nematodes and the V3 hypervariable region of the bacterial 16 s ribosomal RNA gene. We anticipate widespread use of these technologies for diagnostics, species identification and basic research. PMID:22879378

  17. A multiple-alignment based primer design algorithm for genetically highly variable DNA targets

    PubMed Central

    2013-01-01

    Background Primer design for highly variable DNA sequences is difficult, and experimental success requires attention to many interacting constraints. The advent of next-generation sequencing methods allows the investigation of rare variants otherwise hidden deep in large populations, but requires attention to population diversity and primer localization in relatively conserved regions, in addition to recognized constraints typically considered in primer design. Results Design constraints include degenerate sites to maximize population coverage, matching of melting temperatures, optimizing de novo sequence length, finding optimal bio-barcodes to allow efficient downstream analyses, and minimizing risk of dimerization. To facilitate primer design addressing these and other constraints, we created a novel computer program (PrimerDesign) that automates this complex procedure. We show its powers and limitations and give examples of successful designs for the analysis of HIV-1 populations. Conclusions PrimerDesign is useful for researchers who want to design DNA primers and probes for analyzing highly variable DNA populations. It can be used to design primers for PCR, RT-PCR, Sanger sequencing, next-generation sequencing, and other experimental protocols targeting highly variable DNA samples. PMID:23965160

  18. Inferences from structural comparison: flexibility, secondary structure wobble and sequence alignment optimization.

    PubMed

    Zhang, Gaihua; Su, Zhen

    2012-01-01

    Work on protein structure prediction is very useful in biological research. To evaluate their accuracy, experimental protein structures or their derived data are used as the 'gold standard'. However, as proteins are dynamic molecular machines with structural flexibility such a standard may be unreliable. To investigate the influence of the structure flexibility, we analysed 3,652 protein structures of 137 unique sequences from 24 protein families. The results showed that (1) the three-dimensional (3D) protein structures were not rigid: the root-mean-square deviation (RMSD) of the backbone Cα of structures with identical sequences was relatively large, with the average of the maximum RMSD from each of the 137 sequences being 1.06 Å; (2) the derived data of the 3D structure was not constant, e.g. the highest ratio of the secondary structure wobble site was 60.69%, with the sequence alignments from structural comparisons of two proteins in the same family sometimes being completely different. Proteins may have several stable conformations and the data derived from resolved structures as a 'gold standard' should be optimized before being utilized as criteria to evaluate the prediction methods, e.g. sequence alignment from structural comparison. Helix/β-sheet transition exists in normal free proteins. The coil ratio of the 3D structure could affect its resolution as determined by X-ray crystallography.

  19. Simulations Using Random-Generated DNA and RNA Sequences

    ERIC Educational Resources Information Center

    Bryce, C. F. A.

    1977-01-01

    Using a very simple computer program written in BASIC, a very large number of random-generated DNA or RNA sequences are obtained. Students use these sequences to predict complementary sequences and translational products, evaluate base compositions, determine frequencies of particular triplet codons, and suggest possible secondary structures.…

  20. Generating Models of Surgical Procedures using UMLS Concepts and Multiple Sequence Alignment

    PubMed Central

    Meng, Frank; D’Avolio, Leonard W.; Chen, Andrew A.; Taira, Ricky K.; Kangarloo, Hooshang

    2005-01-01

    Surgical procedures can be viewed as a process composed of a sequence of steps performed on, by, or with the patient’s anatomy. This sequence is typically the pattern followed by surgeons when generating surgical report narratives for documenting surgical procedures. This paper describes a methodology for semi-automatically deriving a model of conducted surgeries, utilizing a sequence of derived Unified Medical Language System (UMLS) concepts for representing surgical procedures. A multiple sequence alignment was computed from a collection of such sequences and was used for generating the model. These models have the potential of being useful in a variety of informatics applications such as information retrieval and automatic document generation. PMID:16779094

  1. Enantiospecific recognition of DNA sequences by a proflavine Tröger base.

    PubMed

    Bailly, C; Laine, W; Demeunynck, M; Lhomme, J

    2000-07-05

    The DNA interaction of a chiral Tröger base derived from proflavine was investigated by DNA melting temperature measurements and complementary biochemical assays. DNase I footprinting experiments demonstrate that the binding of the proflavine-based Tröger base is both enantio- and sequence-specific. The (+)-isomer poorly interacts with DNA in a non-sequence-selective fashion. In sharp contrast, the corresponding (-)-isomer recognizes preferentially certain DNA sequences containing both A. T and G. C base pairs, such as the motifs 5'-GTT. AAC and 5'-ATGA. TCAT. This is the first experimental demonstration that acridine-type Tröger bases can be used for enantiospecific recognition of DNA sequences. Copyright 2000 Academic Press.

  2. Two Simple and Efficient Algorithms to Compute the SP-Score Objective Function of a Multiple Sequence Alignment.

    PubMed

    Ranwez, Vincent

    2016-01-01

    Multiple sequence alignment (MSA) is a crucial step in many molecular analyses and many MSA tools have been developed. Most of them use a greedy approach to construct a first alignment that is then refined by optimizing the sum of pair score (SP-score). The SP-score estimation is thus a bottleneck for most MSA tools since it is repeatedly required and is time consuming. Given an alignment of n sequences and L sites, I introduce here optimized solutions reaching O(nL) time complexity for affine gap cost, instead of O(n2L), which are easy to implement.

  3. Substrate sequence selectivity of APOBEC3A implicates intra-DNA interactions.

    PubMed

    Silvas, Tania V; Hou, Shurong; Myint, Wazo; Nalivaika, Ellen; Somasundaran, Mohan; Kelch, Brian A; Matsuo, Hiroshi; Kurt Yilmaz, Nese; Schiffer, Celia A

    2018-05-14

    The APOBEC3 (A3) family of human cytidine deaminases is renowned for providing a first line of defense against many exogenous and endogenous retroviruses. However, the ability of these proteins to deaminate deoxycytidines in ssDNA makes A3s a double-edged sword. When overexpressed, A3s can mutate endogenous genomic DNA resulting in a variety of cancers. Although the sequence context for mutating DNA varies among A3s, the mechanism for substrate sequence specificity is not well understood. To characterize substrate specificity of A3A, a systematic approach was used to quantify the affinity for substrate as a function of sequence context, length, secondary structure, and solution pH. We identified the A3A ssDNA binding motif as (T/C)TC(A/G), which correlated with enzymatic activity. We also validated that A3A binds RNA in a sequence specific manner. A3A bound tighter to substrate binding motif within a hairpin loop compared to linear oligonucleotide, suggesting A3A affinity is modulated by substrate structure. Based on these findings and previously published A3A-ssDNA co-crystal structures, we propose a new model with intra-DNA interactions for the molecular mechanism underlying A3A sequence preference. Overall, the sequence and structural preferences identified for A3A leads to a new paradigm for identifying A3A's involvement in mutation of endogenous or exogenous DNA.

  4. DNA cross-linking by dehydromonocrotaline lacks apparent base sequence preference.

    PubMed

    Rieben, W Kurt; Coulombe, Roger A

    2004-12-01

    Pyrrolizidine alkaloids (PAs) are ubiquitous plant toxins, many of which, upon oxidation by hepatic mixed-function oxidases, become reactive bifunctional pyrrolic electrophiles that form DNA-DNA and DNA-protein cross-links. The anti-mitotic, toxic, and carcinogenic action of PAs is thought to be caused, at least in part, by these cross-links. We wished to determine whether the activated PA pyrrole dehydromonocrotaline (DHMO) exhibits base sequence preferences when cross-linked to a set of model duplex poly A-T 14-mer oligonucleotides with varying internal and/or end 5'-d(CG), 5'-d(GC), 5'-d(TA), 5'-d(CGCG), or 5'-d(GCGC) sequences. DHMO-DNA cross-links were assessed by electrophoretic mobility shift assay (EMSA) of 32P endlabeled oligonucleotides and by HPLC analysis of cross-linked DNAs enzymatically digested to their constituent deoxynucleosides. The degree of DNA cross-links depended upon the concentration of the pyrrole, but not on the base sequence of the oligonucleotide target. Likewise, HPLC chromatograms of cross-linked and digested DNAs showed no discernible sequence preference for any nucleotide. Added glutathione, tyrosine, cysteine, and aspartic acid, but not phenylalanine, threonine, serine, lysine, or methionine competed with DNA as alternate nucleophiles for cross-linking by DHMO. From these data it appears that DHMO exhibits no strong base preference when forming cross-links with DNA, and that some cellular nucleophiles can inhibit DNA cross-link formation.

  5. [Whole Genome Sequencing of Human mtDNA Based on Ion Torrent PGM™ Platform].

    PubMed

    Cao, Y; Zou, K N; Huang, J P; Ma, K; Ping, Y

    2017-08-01

    To analyze and detect the whole genome sequence of human mitochondrial DNA (mtDNA) by Ion Torrent PGM™ platform and to study the differences of mtDNA sequence in different tissues. Samples were collected from 6 unrelated individuals by forensic postmortem examination, including chest blood, hair, costicartilage, nail, skeletal muscle and oral epithelium. Amplification of whole genome sequence of mtDNA was performed by 4 pairs of primer. Libraries were constructed with Ion Shear™ Plus Reagents kit and Ion Plus Fragment Library kit. Whole genome sequencing of mtDNA was performed using Ion Torrent PGM™ platform. Sanger sequencing was used to determine the heteroplasmy positions and the mutation positions on HVⅠ region. The whole genome sequence of mtDNA from all samples were amplified successfully. Six unrelated individuals belonged to 6 different haplotypes. Different tissues in one individual had heteroplasmy difference. The heteroplasmy positions and the mutation positions on HVⅠ region were verified by Sanger sequencing. After a consistency check by the Kappa method, it was found that the results of mtDNA sequence had a high consistency in different tissues. The testing method used in present study for sequencing the whole genome sequence of human mtDNA can detect the heteroplasmy difference in different tissues, which have good consistency. The results provide guidance for the further applications of mtDNA in forensic science. Copyright© by the Editorial Department of Journal of Forensic Medicine

  6. Cloning, sequencing, and expression of cDNA for human. beta. -glucuronidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshima, A.; Kyle, J.W.; Miller, R.D.

    1987-02-01

    The authors report here the cDNA sequence for human placental ..beta..-glucuronidase (..beta..-D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) and demonstrate expression of the human enzyme in transfected COS cells. They also sequenced a partial cDNA clone from human fibroblasts that contained a 153-base-pair deletion within the coding sequence and found a second type of cDNA clone from placenta that contained the same deletion. Nuclease S1 mapping studies demonstrated two types of mRNAs in human placenta that corresponded to the two types of cDNA clones isolated. The NH/sub 2/-terminal amino acid sequence determined for human spleen ..beta..-glucuronidase agreed with that inferred from the DNAmore » sequence of the two placental clones, beginning at amino acid 23, suggesting a cleaved signal sequence of 22 amino acids. When transfected into COS cells, plasmids containing either placental clone expressed an immunoprecipitable protein that contained N-linked oligosaccharides as evidenced by sensitivity to endoglycosidase F. However, only transfection with the clone containing the 153-base-pair segment led to expression of human ..beta..-glucuronidase activity. These studies provide the sequence for the full-length cDNA for human ..beta..-glucuronidase, demonstrate the existence of two populations of mRNA for ..beta..-glucuronidase in human placenta, only one of which specifies a catalytically active enzyme, and illustrate the importance of expression studies in verifying that a cDNA is functionally full-length.« less

  7. VIP Barcoding: composition vector-based software for rapid species identification based on DNA barcoding.

    PubMed

    Fan, Long; Hui, Jerome H L; Yu, Zu Guo; Chu, Ka Hou

    2014-07-01

    Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/. © 2014 John Wiley & Sons Ltd.

  8. Probabilistic topic modeling for the analysis and classification of genomic sequences

    PubMed Central

    2015-01-01

    Background Studies on genomic sequences for classification and taxonomic identification have a leading role in the biomedical field and in the analysis of biodiversity. These studies are focusing on the so-called barcode genes, representing a well defined region of the whole genome. Recently, alignment-free techniques are gaining more importance because they are able to overcome the drawbacks of sequence alignment techniques. In this paper a new alignment-free method for DNA sequences clustering and classification is proposed. The method is based on k-mers representation and text mining techniques. Methods The presented method is based on Probabilistic Topic Modeling, a statistical technique originally proposed for text documents. Probabilistic topic models are able to find in a document corpus the topics (recurrent themes) characterizing classes of documents. This technique, applied on DNA sequences representing the documents, exploits the frequency of fixed-length k-mers and builds a generative model for a training group of sequences. This generative model, obtained through the Latent Dirichlet Allocation (LDA) algorithm, is then used to classify a large set of genomic sequences. Results and conclusions We performed classification of over 7000 16S DNA barcode sequences taken from Ribosomal Database Project (RDP) repository, training probabilistic topic models. The proposed method is compared to the RDP tool and Support Vector Machine (SVM) classification algorithm in a extensive set of trials using both complete sequences and short sequence snippets (from 400 bp to 25 bp). Our method reaches very similar results to RDP classifier and SVM for complete sequences. The most interesting results are obtained when short sequence snippets are considered. In these conditions the proposed method outperforms RDP and SVM with ultra short sequences and it exhibits a smooth decrease of performance, at every taxonomic level, when the sequence length is decreased. PMID:25916734

  9. Short-Sequence DNA Repeats in Prokaryotic Genomes

    PubMed Central

    van Belkum, Alex; Scherer, Stewart; van Alphen, Loek; Verbrugh, Henri

    1998-01-01

    Short-sequence DNA repeat (SSR) loci can be identified in all eukaryotic and many prokaryotic genomes. These loci harbor short or long stretches of repeated nucleotide sequence motifs. DNA sequence motifs in a single locus can be identical and/or heterogeneous. SSRs are encountered in many different branches of the prokaryote kingdom. They are found in genes encoding products as diverse as microbial surface components recognizing adhesive matrix molecules and specific bacterial virulence factors such as lipopolysaccharide-modifying enzymes or adhesins. SSRs enable genetic and consequently phenotypic flexibility. SSRs function at various levels of gene expression regulation. Variations in the number of repeat units per locus or changes in the nature of the individual repeat sequences may result from recombination processes or polymerase inadequacy such as slipped-strand mispairing (SSM), either alone or in combination with DNA repair deficiencies. These rather complex phenomena can occur with relative ease, with SSM approaching a frequency of 10−4 per bacterial cell division and allowing high-frequency genetic switching. Bacteria use this random strategy to adapt their genetic repertoire in response to selective environmental pressure. SSR-mediated variation has important implications for bacterial pathogenesis and evolutionary fitness. Molecular analysis of changes in SSRs allows epidemiological studies on the spread of pathogenic bacteria. The occurrence, evolution and function of SSRs, and the molecular methods used to analyze them are discussed in the context of responsiveness to environmental factors, bacterial pathogenicity, epidemiology, and the availability of full-genome sequences for increasing numbers of microorganisms, especially those that are medically relevant. PMID:9618442

  10. Mapping Simple Repeated DNA Sequences in Heterochromatin of Drosophila Melanogaster

    PubMed Central

    Lohe, A. R.; Hilliker, A. J.; Roberts, P. A.

    1993-01-01

    Heterochromatin in Drosophila has unusual genetic, cytological and molecular properties. Highly repeated DNA sequences (satellites) are the principal component of heterochromatin. Using probes from cloned satellites, we have constructed a chromosome map of 10 highly repeated, simple DNA sequences in heterochromatin of mitotic chromosomes of Drosophila melanogaster. Despite extensive sequence homology among some satellites, chromosomal locations could be distinguished by stringent in situ hybridizations for each satellite. Only two of the localizations previously determined using gradient-purified bulk satellite probes are correct. Eight new satellite localizations are presented, providing a megabase-level chromosome map of one-quarter of the genome. Five major satellites each exhibit a multichromosome distribution, and five minor satellites hybridize to single sites on the Y chromosome. Satellites closely related in sequence are often located near one another on the same chromosome. About 80% of Y chromosome DNA is composed of nine simple repeated sequences, in particular (AAGAC)(n) (8 Mb), (AAGAG)(n) (7 Mb) and (AATAT)(n) (6 Mb). Similarly, more than 70% of the DNA in chromosome 2 heterochromatin is composed of five simple repeated sequences. We have also generated a high resolution map of satellites in chromosome 2 heterochromatin, using a series of translocation chromosomes whose breakpoints in heterochromatin were ordered by N-banding. Finally, staining and banding patterns of heterochromatic regions are correlated with the locations of specific repeated DNA sequences. The basis for the cytochemical heterogeneity in banding appears to depend exclusively on the different satellite DNAs present in heterochromatin. PMID:8375654

  11. The identification of complete domains within protein sequences using accurate E-values for semi-global alignment

    PubMed Central

    Kann, Maricel G.; Sheetlin, Sergey L.; Park, Yonil; Bryant, Stephen H.; Spouge, John L.

    2007-01-01

    The sequencing of complete genomes has created a pressing need for automated annotation of gene function. Because domains are the basic units of protein function and evolution, a gene can be annotated from a domain database by aligning domains to the corresponding protein sequence. Ideally, complete domains are aligned to protein subsequences, in a ‘semi-global alignment’. Local alignment, which aligns pieces of domains to subsequences, is common in high-throughput annotation applications, however. It is a mature technique, with the heuristics and accurate E-values required for screening large databases and evaluating the screening results. Hidden Markov models (HMMs) provide an alternative theoretical framework for semi-global alignment, but their use is limited because they lack heuristic acceleration and accurate E-values. Our new tool, GLOBAL, overcomes some limitations of previous semi-global HMMs: it has accurate E-values and the possibility of the heuristic acceleration required for high-throughput applications. Moreover, according to a standard of truth based on protein structure, two semi-global HMM alignment tools (GLOBAL and HMMer) had comparable performance in identifying complete domains, but distinctly outperformed two tools based on local alignment. When searching for complete protein domains, therefore, GLOBAL avoids disadvantages commonly associated with HMMs, yet maintains their superior retrieval performance. PMID:17596268

  12. rasbhari: Optimizing Spaced Seeds for Database Searching, Read Mapping and Alignment-Free Sequence Comparison.

    PubMed

    Hahn, Lars; Leimeister, Chris-André; Ounit, Rachid; Lonardi, Stefano; Morgenstern, Burkhard

    2016-10-01

    Many algorithms for sequence analysis rely on word matching or word statistics. Often, these approaches can be improved if binary patterns representing match and don't-care positions are used as a filter, such that only those positions of words are considered that correspond to the match positions of the patterns. The performance of these approaches, however, depends on the underlying patterns. Herein, we show that the overlap complexity of a pattern set that was introduced by Ilie and Ilie is closely related to the variance of the number of matches between two evolutionarily related sequences with respect to this pattern set. We propose a modified hill-climbing algorithm to optimize pattern sets for database searching, read mapping and alignment-free sequence comparison of nucleic-acid sequences; our implementation of this algorithm is called rasbhari. Depending on the application at hand, rasbhari can either minimize the overlap complexity of pattern sets, maximize their sensitivity in database searching or minimize the variance of the number of pattern-based matches in alignment-free sequence comparison. We show that, for database searching, rasbhari generates pattern sets with slightly higher sensitivity than existing approaches. In our Spaced Words approach to alignment-free sequence comparison, pattern sets calculated with rasbhari led to more accurate estimates of phylogenetic distances than the randomly generated pattern sets that we previously used. Finally, we used rasbhari to generate patterns for short read classification with CLARK-S. Here too, the sensitivity of the results could be improved, compared to the default patterns of the program. We integrated rasbhari into Spaced Words; the source code of rasbhari is freely available at http://rasbhari.gobics.de/.

  13. Method for rapid base sequencing in DNA and RNA

    DOEpatents

    Jett, J.H.; Keller, R.A.; Martin, J.C.; Moyzis, R.K.; Ratliff, R.L.; Shera, E.B.; Stewart, C.C.

    1987-10-07

    A method is provided for the rapid base sequencing of DNA or RNA fragments wherein a single fragment of DNA or RNA is provided with identifiable bases and suspended in a moving flow stream. An exonuclease sequentially cleaves individual bases from the end of the suspended fragment. The moving flow stream maintains the cleaved bases in an orderly train for subsequent detection and identification. In a particular embodiment, individual bases forming the DNA or RNA fragments are individually tagged with a characteristic fluorescent dye. The train of bases is then excited to fluorescence with an output spectrum characteristic of the individual bases. Accordingly, the base sequence of the original DNA or RNA fragment can be reconstructed. 2 figs.

  14. Method for rapid base sequencing in DNA and RNA

    DOEpatents

    Jett, J.H.; Keller, R.A.; Martin, J.C.; Moyzis, R.K.; Ratliff, R.L.; Shera, E.B.; Stewart, C.C.

    1990-10-09

    A method is provided for the rapid base sequencing of DNA or RNA fragments wherein a single fragment of DNA or RNA is provided with identifiable bases and suspended in a moving flow stream. An exonuclease sequentially cleaves individual bases from the end of the suspended fragment. The moving flow stream maintains the cleaved bases in an orderly train for subsequent detection and identification. In a particular embodiment, individual bases forming the DNA or RNA fragments are individually tagged with a characteristic fluorescent dye. The train of bases is then excited to fluorescence with an output spectrum characteristic of the individual bases. Accordingly, the base sequence of the original DNA or RNA fragment can be reconstructed. 2 figs.

  15. Method for rapid base sequencing in DNA and RNA

    DOEpatents

    Jett, James H.; Keller, Richard A.; Martin, John C.; Moyzis, Robert K.; Ratliff, Robert L.; Shera, E. Brooks; Stewart, Carleton C.

    1990-01-01

    A method is provided for the rapid base sequencing of DNA or RNA fragments wherein a single fragment of DNA or RNA is provided with identifiable bases and suspended in a moving flow stream. An exonuclease sequentially cleaves individual bases from the end of the suspended fragment. The moving flow stream maintains the cleaved bases in an orderly train for subsequent detection and identification. In a particular embodiment, individual bases forming the DNA or RNA fragments are individually tagged with a characteristic fluorescent dye. The train of bases is then excited to fluorescence with an output spectrum characteristic of the individual bases. Accordingly, the base sequence of the original DNA or RNA fragment can be reconstructed.

  16. Acquisition of New DNA Sequences After Infection of Chicken Cells with Avian Myeloblastosis Virus

    PubMed Central

    Shoyab, M.; Baluda, M. A.; Evans, R.

    1974-01-01

    DNA-RNA hybridization studies between 70S RNA from avian myeloblastosis virus (AMV) and an excess of DNA from (i) AMV-induced leukemic chicken myeloblasts or (ii) a mixture of normal and of congenitally infected K-137 chicken embryos producing avian leukosis viruses revealed the presence of fast- and slow-hybridizing virus-specific DNA sequences. However, the leukemic cells contained twice the level of AMV-specific DNA sequences observed in normal chicken embryonic cells. The fast-reacting sequences were two to three times more numerous in leukemic DNA than in DNA from the mixed embryos. The slow-reacting sequences had a reiteration frequency of approximately 9 and 6, in the two respective systems. Both the fast- and the slow-reacting DNA sequences in leukemic cells exhibited a higher Tm (2 C) than the respective DNA sequences in normal cells. In normal and leukemic cells the slow hybrid sequences appeared to have a Tm which was 2 C higher than that of the fast hybrid sequences. Individual non-virus-producing chicken embryos, either group-specific antigen positive or negative, contained 40 to 100 copies of the fast sequences and 2 to 6 copies of the slowly hybridizing sequences per cell genome. Normal rat cells did not contain DNA that hybridized with AMV RNA, whereas non-virus-producing rat cells transformed by B-77 avian sarcoma virus contained only the slowly reacting sequences. The results demonstrate that leukemic cells transformed by AMV contain new AMV-specific DNA sequences which were not present before infection. PMID:16789139

  17. DNA sequence responsible for the amplification of adjacent genes.

    PubMed

    Pasion, S G; Hartigan, J A; Kumar, V; Biswas, D K

    1987-10-01

    A 10.3-kb DNA fragment in the 5'-flanking region of the rat prolactin (rPRL) gene was isolated from F1BGH(1)2C1, a strain of rat pituitary tumor cells (GH cells) that produces prolactin in response to 5-bromodeoxyuridine (BrdU). Following transfection and integration into genomic DNA of recipient mouse L cells, this DNA induced amplification of the adjacent thymidine kinase gene from Herpes simplex virus type 1 (HSV1TK). We confirmed the ability of this "Amplicon" sequence to induce amplification of other linked or unlinked genes in DNA-mediated gene transfer studies. When transferred into the mouse L cells with the 10.3-5'rPRL gene sequence of BrdU-responsive cells, both the human growth hormone and the HSV1TK genes are amplified in response to 5-bromodeoxyuridine. This observation is substantiated by BrdU-induced amplification of the cotransferred bacterial Neo gene. Cotransfection studies reveal that the BrdU-induced amplification capability is associated with a 4-kb DNA sequence in the 5'-flanking region of the rPRL gene of BrdU-responsive cells. These results demonstrate that genes of heterologous origin, linked or unlinked, and selected or unselected, can be coamplified when located within the amplification boundary of the Amplicon sequence.

  18. Mapping Ribonucleotides Incorporated into DNA by Hydrolytic End-Sequencing.

    PubMed

    Orebaugh, Clinton D; Lujan, Scott A; Burkholder, Adam B; Clausen, Anders R; Kunkel, Thomas A

    2018-01-01

    Ribonucleotides embedded within DNA render the DNA sensitive to the formation of single-stranded breaks under alkali conditions. Here, we describe a next-generation sequencing method called hydrolytic end sequencing (HydEn-seq) to map ribonucleotides inserted into the genome of Saccharomyce cerevisiae strains deficient in ribonucleotide excision repair. We use this method to map several genomic features in wild-type and replicase variant yeast strains.

  19. Methods for sequencing GC-rich and CCT repeat DNA templates

    DOEpatents

    Robinson, Donna L.

    2007-02-20

    The present invention is directed to a PCR-based method of cycle sequencing DNA and other polynucleotide sequences having high CG content and regions of high GC content, and includes for example DNA strands with a high Cytosine and/or Guanosine content and repeated motifs such as CCT repeats.

  20. Assessing Diversity of DNA Structure-Related Sequence Features in Prokaryotic Genomes

    PubMed Central

    Huang, Yongjie; Mrázek, Jan

    2014-01-01

    Prokaryotic genomes are diverse in terms of their nucleotide and oligonucleotide composition as well as presence of various sequence features that can affect physical properties of the DNA molecule. We present a survey of local sequence patterns which have a potential to promote non-canonical DNA conformations (i.e. different from standard B-DNA double helix) and interpret the results in terms of relationships with organisms' habitats, phylogenetic classifications, and other characteristics. Our present work differs from earlier similar surveys not only by investigating a wider range of sequence patterns in a large number of genomes but also by using a more realistic null model to assess significant deviations. Our results show that simple sequence repeats and Z-DNA-promoting patterns are generally suppressed in prokaryotic genomes, whereas palindromes and inverted repeats are over-represented. Representation of patterns that promote Z-DNA and intrinsic DNA curvature increases with increasing optimal growth temperature (OGT), and decreases with increasing oxygen requirement. Additionally, representations of close direct repeats, palindromes and inverted repeats exhibit clear negative trends with increasing OGT. The observed relationships with environmental characteristics, particularly OGT, suggest possible evolutionary scenarios of structural adaptation of DNA to particular environmental niches. PMID:24408877

  1. Alignment-free genetic sequence comparisons: a review of recent approaches by word analysis.

    PubMed

    Bonham-Carter, Oliver; Steele, Joe; Bastola, Dhundy

    2014-11-01

    Modern sequencing and genome assembly technologies have provided a wealth of data, which will soon require an analysis by comparison for discovery. Sequence alignment, a fundamental task in bioinformatics research, may be used but with some caveats. Seminal techniques and methods from dynamic programming are proving ineffective for this work owing to their inherent computational expense when processing large amounts of sequence data. These methods are prone to giving misleading information because of genetic recombination, genetic shuffling and other inherent biological events. New approaches from information theory, frequency analysis and data compression are available and provide powerful alternatives to dynamic programming. These new methods are often preferred, as their algorithms are simpler and are not affected by synteny-related problems. In this review, we provide a detailed discussion of computational tools, which stem from alignment-free methods based on statistical analysis from word frequencies. We provide several clear examples to demonstrate applications and the interpretations over several different areas of alignment-free analysis such as base-base correlations, feature frequency profiles, compositional vectors, an improved string composition and the D2 statistic metric. Additionally, we provide detailed discussion and an example of analysis by Lempel-Ziv techniques from data compression. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Acceleration of short and long DNA read mapping without loss of accuracy using suffix array.

    PubMed

    Tárraga, Joaquín; Arnau, Vicente; Martínez, Héctor; Moreno, Raul; Cazorla, Diego; Salavert-Torres, José; Blanquer-Espert, Ignacio; Dopazo, Joaquín; Medina, Ignacio

    2014-12-01

    HPG Aligner applies suffix arrays for DNA read mapping. This implementation produces a highly sensitive and extremely fast mapping of DNA reads that scales up almost linearly with read length. The approach presented here is faster (over 20× for long reads) and more sensitive (over 98% in a wide range of read lengths) than the current state-of-the-art mappers. HPG Aligner is not only an optimal alternative for current sequencers but also the only solution available to cope with longer reads and growing throughputs produced by forthcoming sequencing technologies. https://github.com/opencb/hpg-aligner. © The Author 2014. Published by Oxford University Press.

  3. eShadow: A tool for comparing closely related sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovcharenko, Ivan; Boffelli, Dario; Loots, Gabriela G.

    2004-01-15

    Primate sequence comparisons are difficult to interpret due to the high degree of sequence similarity shared between such closely related species. Recently, a novel method, phylogenetic shadowing, has been pioneered for predicting functional elements in the human genome through the analysis of multiple primate sequence alignments. We have expanded this theoretical approach to create a computational tool, eShadow, for the identification of elements under selective pressure in multiple sequence alignments of closely related genomes, such as in comparisons of human to primate or mouse to rat DNA. This tool integrates two different statistical methods and allows for the dynamic visualizationmore » of the resulting conservation profile. eShadow also includes a versatile optimization module capable of training the underlying Hidden Markov Model to differentially predict functional sequences. This module grants the tool high flexibility in the analysis of multiple sequence alignments and in comparing sequences with different divergence rates. Here, we describe the eShadow comparative tool and its potential uses for analyzing both multiple nucleotide and protein alignments to predict putative functional elements. The eShadow tool is publicly available at http://eshadow.dcode.org/« less

  4. Complementary DNA cloning and molecular evolution of opine dehydrogenases in some marine invertebrates.

    PubMed

    Kimura, Tomohiro; Nakano, Toshiki; Yamaguchi, Toshiyasu; Sato, Minoru; Ogawa, Tomohisa; Muramoto, Koji; Yokoyama, Takehiko; Kan-No, Nobuhiro; Nagahisa, Eizou; Janssen, Frank; Grieshaber, Manfred K

    2004-01-01

    The complete complementary DNA sequences of genes presumably coding for opine dehydrogenases from Arabella iricolor (sandworm), Haliotis discus hannai (abalone), and Patinopecten yessoensis (scallop) were determined, and partial cDNA sequences were derived for Meretrix lusoria (Japanese hard clam) and Spisula sachalinensis (Sakhalin surf clam). The primers ODH-9F and ODH-11R proved useful for amplifying the sequences for opine dehydrogenases from the 4 mollusk species investigated in this study. The sequence of the sandworm was obtained using primers constructed from the amino acid sequence of tauropine dehydrogenase, the main opine dehydrogenase in A. iricolor. The complete cDNA sequence of A. iricolor, H. discus hannai, and P. yessoensis encode 397, 400, and 405 amino acids, respectively. All sequences were aligned and compared with published databank sequences of Loligo opalescens, Loligo vulgaris (squid), Sepia officinalis (cuttlefish), and Pecten maximus (scallop). As expected, a high level of homology was observed for the cDNA from closely related species, such as for cephalopods or scallops, whereas cDNA from the other species showed lower-level homologies. A similar trend was observed when the deduced amino acid sequences were compared. Furthermore, alignment of these sequences revealed some structural motifs that are possibly related to the binding sites of the substrates. The phylogenetic trees derived from the nucleotide and amino acid sequences were consistent with the classification of species resulting from classical taxonomic analyses.

  5. Discovering Sequence Motifs with Arbitrary Insertions and Deletions

    PubMed Central

    Frith, Martin C.; Saunders, Neil F. W.; Kobe, Bostjan; Bailey, Timothy L.

    2008-01-01

    Biology is encoded in molecular sequences: deciphering this encoding remains a grand scientific challenge. Functional regions of DNA, RNA, and protein sequences often exhibit characteristic but subtle motifs; thus, computational discovery of motifs in sequences is a fundamental and much-studied problem. However, most current algorithms do not allow for insertions or deletions (indels) within motifs, and the few that do have other limitations. We present a method, GLAM2 (Gapped Local Alignment of Motifs), for discovering motifs allowing indels in a fully general manner, and a companion method GLAM2SCAN for searching sequence databases using such motifs. glam2 is a generalization of the gapless Gibbs sampling algorithm. It re-discovers variable-width protein motifs from the PROSITE database significantly more accurately than the alternative methods PRATT and SAM-T2K. Furthermore, it usefully refines protein motifs from the ELM database: in some cases, the refined motifs make orders of magnitude fewer overpredictions than the original ELM regular expressions. GLAM2 performs respectably on the BAliBASE multiple alignment benchmark, and may be superior to leading multiple alignment methods for “motif-like” alignments with N- and C-terminal extensions. Finally, we demonstrate the use of GLAM2 to discover protein kinase substrate motifs and a gapped DNA motif for the LIM-only transcriptional regulatory complex: using GLAM2SCAN, we identify promising targets for the latter. GLAM2 is especially promising for short protein motifs, and it should improve our ability to identify the protein cleavage sites, interaction sites, post-translational modification attachment sites, etc., that underlie much of biology. It may be equally useful for arbitrarily gapped motifs in DNA and RNA, although fewer examples of such motifs are known at present. GLAM2 is public domain software, available for download at http://bioinformatics.org.au/glam2. PMID:18437229

  6. mtDNA sequence diversity of Hazara ethnic group from Pakistan.

    PubMed

    Rakha, Allah; Fatima; Peng, Min-Sheng; Adan, Atif; Bi, Rui; Yasmin, Memona; Yao, Yong-Gang

    2017-09-01

    The present study was undertaken to investigate mitochondrial DNA (mtDNA) control region sequences of Hazaras from Pakistan, so as to generate mtDNA reference database for forensic casework in Pakistan and to analyze phylogenetic relationship of this particular ethnic group with geographically proximal populations. Complete mtDNA control region (nt 16024-576) sequences were generated through Sanger Sequencing for 319 Hazara individuals from Quetta, Baluchistan. The population sample set showed a total of 189 distinct haplotypes, belonging mainly to West Eurasian (51.72%), East & Southeast Asian (29.78%) and South Asian (18.50%) haplogroups. Compared with other populations from Pakistan, the Hazara population had a relatively high haplotype diversity (0.9945) and a lower random match probability (0.0085). The dataset has been incorporated into EMPOP database under accession number EMP00680. The data herein comprises the largest, and likely most thoroughly examined, control region mtDNA dataset from Hazaras of Pakistan. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A Simulation of DNA Sequencing Utilizing 3M Post-It[R] Notes

    ERIC Educational Resources Information Center

    Christensen, Doug

    2009-01-01

    An inexpensive and equipment free approach to teaching the technical aspects of DNA sequencing. The activity described requires an instructor with a familiarity of DNA sequencing technology but provides a straight forward method of teaching the technical aspects of sequencing in the absence of expensive sequencing equipment. The final sequence…

  8. Sequence-specific binding of counterions to B-DNA

    PubMed Central

    Denisov, Vladimir P.; Halle, Bertil

    2000-01-01

    Recent studies by x-ray crystallography, NMR, and molecular simulations have suggested that monovalent counterions can penetrate deeply into the minor groove of B form DNA. Such groove-bound ions potentially could play an important role in AT-tract bending and groove narrowing, thereby modulating DNA function in vivo. To address this issue, we report here 23Na magnetic relaxation dispersion measurements on oligonucleotides, including difference experiments with the groove-binding drug netropsin. The exquisite sensitivity of this method to ions in long-lived and intimate association with DNA allows us to detect sequence-specific sodium ion binding in the minor groove AT tract of three B-DNA dodecamers. The sodium ion occupancy is only a few percent, however, and therefore is not likely to contribute importantly to the ensemble of B-DNA structures. We also report results of ion competition experiments, indicating that potassium, rubidium, and cesium ions bind to the minor groove with similarly weak affinity as sodium ions, whereas ammonium ion binding is somewhat stronger. The present findings are discussed in the light of previous NMR and diffraction studies of sequence-specific counterion binding to DNA. PMID:10639130

  9. The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells.

    PubMed

    Murray, Vincent; Chen, Jon K; Tanaka, Mark M

    2016-07-01

    The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5'-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5'-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5'-GT*A and 5'- TGT* trinucleotide sequences, and 5'-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5'-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine-pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the -3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.

  10. Method for performing site-specific affinity fractionation for use in DNA sequencing

    DOEpatents

    Mirzabekov, Andrei Darievich; Lysov, Yuri Petrovich; Dubley, Svetlana A.

    1999-01-01

    A method for fractionating and sequencing DNA via affinity interaction is provided comprising contacting cleaved DNA to a first array of oligonucleotide molecules to facilitate hybridization between said cleaved DNA and the molecules; extracting the hybridized DNA from the molecules; contacting said extracted hybridized DNA with a second array of oligonucleotide molecules, wherein the oligonucleotide molecules in the second array have specified base sequences that are complementary to said extracted hybridized DNA; and attaching labeled DNA to the second array of oligonucleotide molecules, wherein the labeled re-hybridized DNA have sequences that are complementary to the oligomers. The invention further provides a method for performing multi-step conversions of the chemical structure of compounds comprising supplying an array of polyacrylamide vessels separated by hydrophobic surfaces; immobilizing a plurality of reactants, such as enzymes, in the vessels so that each vessel contains one reactant; contacting the compounds to each of the vessels in a predetermined sequence and for a sufficient time to convert the compounds to a desired state; and isolating the converted compounds from said array.

  11. Method for performing site-specific affinity fractionation for use in DNA sequencing

    DOEpatents

    Mirzabekov, A.D.; Lysov, Y.P.; Dubley, S.A.

    1999-05-18

    A method for fractionating and sequencing DNA via affinity interaction is provided comprising contacting cleaved DNA to a first array of oligonucleotide molecules to facilitate hybridization between the cleaved DNA and the molecules; extracting the hybridized DNA from the molecules; contacting the extracted hybridized DNA with a second array of oligonucleotide molecules, wherein the oligonucleotide molecules in the second array have specified base sequences that are complementary to the extracted hybridized DNA; and attaching labeled DNA to the second array of oligonucleotide molecules, wherein the labeled re-hybridized DNA have sequences that are complementary to the oligomers. The invention further provides a method for performing multi-step conversions of the chemical structure of compounds comprising supplying an array of polyacrylamide vessels separated by hydrophobic surfaces; immobilizing a plurality of reactants, such as enzymes, in the vessels so that each vessel contains one reactant; contacting the compounds to each of the vessels in a predetermined sequence and for a sufficient time to convert the compounds to a desired state; and isolating the converted compounds from the array. 14 figs.

  12. Cloning and sequence analysis of Hemonchus contortus HC58cDNA.

    PubMed

    Muleke, Charles I; Ruofeng, Yan; Lixin, Xu; Xinwen, Bo; Xiangrui, Li

    2007-06-01

    The complete coding sequence of Hemonchus contortus HC58cDNA was generated by rapid amplification of cDNA ends and polymerase chain reaction using primers based on the 5' and 3' ends of the parasite mRNA, accession no. AF305964. The HC58cDNA gene was 851 bp long, with open reading frame of 717 bp, precursors to 239 amino acids coding for approximately 27 kDa protein. Analysis of amino acid sequence revealed conserved residues of cysteine, histidine, asparagine, occluding loop pattern, hemoglobinase motif and glutamine of the oxyanion hole characteristic of cathepsin B like proteases (CBL). Comparison of the predicted amino acid sequences showed the protein shared 33.5-58.7% identity to cathepsin B homologues in the papain clan CA family (family C1). Phylogenetic analysis revealed close evolutionary proximity of the protein sequence to counterpart sequences in the CBL, suggesting that HC58cDNA was a member of the papain family.

  13. Local Renyi entropic profiles of DNA sequences.

    PubMed

    Vinga, Susana; Almeida, Jonas S

    2007-10-16

    In a recent report the authors presented a new measure of continuous entropy for DNA sequences, which allows the estimation of their randomness level. The definition therein explored was based on the Rényi entropy of probability density estimation (pdf) using the Parzen's window method and applied to Chaos Game Representation/Universal Sequence Maps (CGR/USM). Subsequent work proposed a fractal pdf kernel as a more exact solution for the iterated map representation. This report extends the concepts of continuous entropy by defining DNA sequence entropic profiles using the new pdf estimations to refine the density estimation of motifs. The new methodology enables two results. On the one hand it shows that the entropic profiles are directly related with the statistical significance of motifs, allowing the study of under and over-representation of segments. On the other hand, by spanning the parameters of the kernel function it is possible to extract important information about the scale of each conserved DNA region. The computational applications, developed in Matlab m-code, the corresponding binary executables and additional material and examples are made publicly available at http://kdbio.inesc-id.pt/~svinga/ep/. The ability to detect local conservation from a scale-independent representation of symbolic sequences is particularly relevant for biological applications where conserved motifs occur in multiple, overlapping scales, with significant future applications in the recognition of foreign genomic material and inference of motif structures.

  14. Local Renyi entropic profiles of DNA sequences

    PubMed Central

    Vinga, Susana; Almeida, Jonas S

    2007-01-01

    Background In a recent report the authors presented a new measure of continuous entropy for DNA sequences, which allows the estimation of their randomness level. The definition therein explored was based on the Rényi entropy of probability density estimation (pdf) using the Parzen's window method and applied to Chaos Game Representation/Universal Sequence Maps (CGR/USM). Subsequent work proposed a fractal pdf kernel as a more exact solution for the iterated map representation. This report extends the concepts of continuous entropy by defining DNA sequence entropic profiles using the new pdf estimations to refine the density estimation of motifs. Results The new methodology enables two results. On the one hand it shows that the entropic profiles are directly related with the statistical significance of motifs, allowing the study of under and over-representation of segments. On the other hand, by spanning the parameters of the kernel function it is possible to extract important information about the scale of each conserved DNA region. The computational applications, developed in Matlab m-code, the corresponding binary executables and additional material and examples are made publicly available at . Conclusion The ability to detect local conservation from a scale-independent representation of symbolic sequences is particularly relevant for biological applications where conserved motifs occur in multiple, overlapping scales, with significant future applications in the recognition of foreign genomic material and inference of motif structures. PMID:17939871

  15. A family of long intergenic non-coding RNA genes in human chromosomal region 22q11.2 carry a DNA translocation breakpoint/AT-rich sequence

    PubMed Central

    2018-01-01

    FAM230C, a long intergenic non-coding RNA (lincRNA) gene in human chromosome 13 (chr13) is a member of lincRNA genes termed family with sequence similarity 230. An analysis using bioinformatics search tools and alignment programs was undertaken to determine properties of FAM230C and its related genes. Results reveal that the DNA translocation element, the Translocation Breakpoint Type A (TBTA) sequence, which consists of satellite DNA, Alu elements, and AT-rich sequences is embedded in the FAM230C gene. Eight lincRNA genes related to FAM230C also carry the TBTA sequences. These genes were formed from a large segment of the 3’ half of the FAM230C sequence duplicated in chr22, and are specifically in regions of low copy repeats (LCR22)s, in or close to the 22q.11.2 region. 22q11.2 is a chromosomal segment that undergoes a high rate of DNA translocation and is prone to genetic deletions. FAM230C-related genes present in other chromosomes do not carry the TBTA motif and were formed from the 5’ half region of the FAM230C sequence. These findings identify a high specificity in lincRNA gene formation by gene sequence duplication in different chromosomes. PMID:29668722

  16. Enzyme sequence similarity improves the reaction alignment method for cross-species pathway comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovacik, Meric A.; Androulakis, Ioannis P., E-mail: yannis@rci.rutgers.edu; Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08854

    2013-09-15

    Pathway-based information has become an important source of information for both establishing evolutionary relationships and understanding the mode of action of a chemical or pharmaceutical among species. Cross-species comparison of pathways can address two broad questions: comparison in order to inform evolutionary relationships and to extrapolate species differences used in a number of different applications including drug and toxicity testing. Cross-species comparison of metabolic pathways is complex as there are multiple features of a pathway that can be modeled and compared. Among the various methods that have been proposed, reaction alignment has emerged as the most successful at predicting phylogeneticmore » relationships based on NCBI taxonomy. We propose an improvement of the reaction alignment method by accounting for sequence similarity in addition to reaction alignment method. Using nine species, including human and some model organisms and test species, we evaluate the standard and improved comparison methods by analyzing glycolysis and citrate cycle pathways conservation. In addition, we demonstrate how organism comparison can be conducted by accounting for the cumulative information retrieved from nine pathways in central metabolism as well as a more complete study involving 36 pathways common in all nine species. Our results indicate that reaction alignment with enzyme sequence similarity results in a more accurate representation of pathway specific cross-species similarities and differences based on NCBI taxonomy.« less

  17. Fast and sensitive alignment of microbial whole genome sequencing reads to large sequence datasets on a desktop PC: application to metagenomic datasets and pathogen identification.

    PubMed

    Pongor, Lőrinc S; Vera, Roberto; Ligeti, Balázs

    2014-01-01

    Next generation sequencing (NGS) of metagenomic samples is becoming a standard approach to detect individual species or pathogenic strains of microorganisms. Computer programs used in the NGS community have to balance between speed and sensitivity and as a result, species or strain level identification is often inaccurate and low abundance pathogens can sometimes be missed. We have developed Taxoner, an open source, taxon assignment pipeline that includes a fast aligner (e.g. Bowtie2) and a comprehensive DNA sequence database. We tested the program on simulated datasets as well as experimental data from Illumina, IonTorrent, and Roche 454 sequencing platforms. We found that Taxoner performs as well as, and often better than BLAST, but requires two orders of magnitude less running time meaning that it can be run on desktop or laptop computers. Taxoner is slower than the approaches that use small marker databases but is more sensitive due the comprehensive reference database. In addition, it can be easily tuned to specific applications using small tailored databases. When applied to metagenomic datasets, Taxoner can provide a functional summary of the genes mapped and can provide strain level identification. Taxoner is written in C for Linux operating systems. The code and documentation are available for research applications at http://code.google.com/p/taxoner.

  18. PCV: An Alignment Free Method for Finding Homologous Nucleotide Sequences and its Application in Phylogenetic Study.

    PubMed

    Kumar, Rajnish; Mishra, Bharat Kumar; Lahiri, Tapobrata; Kumar, Gautam; Kumar, Nilesh; Gupta, Rahul; Pal, Manoj Kumar

    2017-06-01

    Online retrieval of the homologous nucleotide sequences through existing alignment techniques is a common practice against the given database of sequences. The salient point of these techniques is their dependence on local alignment techniques and scoring matrices the reliability of which is limited by computational complexity and accuracy. Toward this direction, this work offers a novel way for numerical representation of genes which can further help in dividing the data space into smaller partitions helping formation of a search tree. In this context, this paper introduces a 36-dimensional Periodicity Count Value (PCV) which is representative of a particular nucleotide sequence and created through adaptation from the concept of stochastic model of Kolekar et al. (American Institute of Physics 1298:307-312, 2010. doi: 10.1063/1.3516320 ). The PCV construct uses information on physicochemical properties of nucleotides and their positional distribution pattern within a gene. It is observed that PCV representation of gene reduces computational cost in the calculation of distances between a pair of genes while being consistent with the existing methods. The validity of PCV-based method was further tested through their use in molecular phylogeny constructs in comparison with that using existing sequence alignment methods.

  19. DNA condensing effects and sequence selectivity of DNA binding of antitumor noncovalent polynuclear platinum complexes.

    PubMed

    Malina, Jaroslav; Farrell, Nicholas P; Brabec, Viktor

    2014-02-03

    The noncovalent analogues of antitumor polynuclear platinum complexes represent a structurally discrete class of platinum drugs. Their chemical and biological properties differ significantly from those of most platinum chemotherapeutics, which bind to DNA in a covalent manner by formation of Pt-DNA adducts. In spite of the fact that these noncovalent polynuclear platinum complexes contain no leaving groups, they have been shown to bind to DNA with high affinity. We report here on the DNA condensation properties of a series of noncovalent analogues of antitumor polynuclear platinum complexes described by biophysical and biochemical methods. The results demonstrate that these polynuclear platinum compounds are capable of inducing DNA condensation at more than 1 order of magnitude lower concentrations than conventional spermine. Atomic force microscopy studies of DNA condensation confined to a mica substrate have revealed that the DNA morphologies become more compact with increasing concentration of the platinum complexes. Moreover, we also found that the noncovalent polynuclear platinum complex [{Pt(NH3)3}2-μ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}](6+) (TriplatinNC-A) binds to DNA in a sequence-dependent manner, namely, to A/T-rich sequences and A-tract regions, and that noncovalent polynuclear platinum complexes protect DNA from enzymatic cleavage by DNase I. The results suggest that mechanisms of antitumor and cytotoxic activities of these complexes may be associated with their unique ability to condense DNA along with their sequence-specific DNA binding. Owing to their high cellular accumulation, it is also reasonable to suggest that their mechanism of action is based on the competition with naturally occurring DNA condensing agents, such as polyamines spermine, spermidine, and putrescine, for intracellular binding sites, resulting in the disturbance of the correct binding of regulatory proteins initiating the onset of apoptosis.

  20. R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server

    PubMed Central

    Cannone, Jamie J.; Sweeney, Blake A.; Petrov, Anton I.; Gutell, Robin R.; Zirbel, Craig L.; Leontis, Neocles

    2015-01-01

    The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa. PMID:26048960

  1. Rapid DNA Sequencing by Direct Nanoscale Reading of Nucleotide Bases on Individual DNA Chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, James Weifu; Meller, Amit

    2007-01-01

    Since the independent invention of DNA sequencing by Sanger and by Gilbert 30 years ago, it has grown from a small scale technique capable of reading several kilobase-pair of sequence per day into today's multibillion dollar industry. This growth has spurred the development of new sequencing technologies that do not involve either electrophoresis or Sanger sequencing chemistries. Sequencing by Synthesis (SBS) involves multiple parallel micro-sequencing addition events occurring on a surface, where data from each round is detected by imaging. New High Throughput Technologies for DNA Sequencing and Genomics is the second volume in the Perspectives in Bioanalysis series, whichmore » looks at the electroanalytical chemistry of nucleic acids and proteins, development of electrochemical sensors and their application in biomedicine and in the new fields of genomics and proteomics. The authors have expertly formatted the information for a wide variety of readers, including new developments that will inspire students and young scientists to create new tools for science and medicine in the 21st century. Reviews of complementary developments in Sanger and SBS sequencing chemistries, capillary electrophoresis and microdevice integration, MS sequencing and applications set the framework for the book.« less

  2. Selective DNA demethylation by fusion of TDG with a sequence-specific DNA-binding domain

    PubMed Central

    Gregory, David J.; Mikhaylova, Lyudmila; Fedulov, Alexey V.

    2012-01-01

    Our ability to selectively manipulate gene expression by epigenetic means is limited, as there is no approach for targeted reactivation of epigenetically silenced genes, in contrast to what is available for selective gene silencing. We aimed to develop a tool for selective transcriptional activation by DNA demethylation. Here we present evidence that direct targeting of thymine-DNA-glycosylase (TDG) to specific sequences in the DNA can result in local DNA demethylation at potential regulatory sequences and lead to enhanced gene induction. When TDG was fused to a well-characterized DNA-binding domain [the Rel-homology domain (RHD) of NFκB], we observed decreased DNA methylation and increased transcriptional response to unrelated stimulus of inducible nitric oxide synthase (NOS2). The effect was not seen for control genes lacking either RHD-binding sites or high levels of methylation, nor in control mock-transduced cells. Specific reactivation of epigenetically silenced genes may thus be achievable by this approach, which provides a broadly useful strategy to further our exploration of biological mechanisms and to improve control over the epigenome. PMID:22419066

  3. Nucleotide sequencing and identification of some wild mushrooms.

    PubMed

    Das, Sudip Kumar; Mandal, Aninda; Datta, Animesh K; Gupta, Sudha; Paul, Rita; Saha, Aditi; Sengupta, Sonali; Dubey, Priyanka Kumari

    2013-01-01

    The rDNA-ITS (Ribosomal DNA Internal Transcribed Spacers) fragment of the genomic DNA of 8 wild edible mushrooms (collected from Eastern Chota Nagpur Plateau of West Bengal, India) was amplified using ITS1 (Internal Transcribed Spacers 1) and ITS2 primers and subjected to nucleotide sequence determination for identification of mushrooms as mentioned. The sequences were aligned using ClustalW software program. The aligned sequences revealed identity (homology percentage from GenBank data base) of Amanita hemibapha [CN (Chota Nagpur) 1, % identity 99 (JX844716.1)], Amanita sp. [CN 2, % identity 98 (JX844763.1)], Astraeus hygrometricus [CN 3, % identity 87 (FJ536664.1)], Termitomyces sp. [CN 4, % identity 90 (JF746992.1)], Termitomyces sp. [CN 5, % identity 99 (GU001667.1)], T. microcarpus [CN 6, % identity 82 (EF421077.1)], Termitomyces sp. [CN 7, % identity 76 (JF746993.1)], and Volvariella volvacea [CN 8, % identity 100 (JN086680.1)]. Although out of 8 mushrooms 4 could be identified up to species level, the nucleotide sequences of the rest may be relevant to further characterization. A phylogenetic tree is constructed using Neighbor-Joining method showing interrelationship between/among the mushrooms. The determined nucleotide sequences of the mushrooms may provide additional information enriching GenBank database aiding to molecular taxonomy and facilitating its domestication and characterization for human benefits.

  4. Effect of Base Sequence "Defects" on the Electrostatic Potential of Dissolved DNA

    NASA Astrophysics Data System (ADS)

    Adams, Scott V.; Wagner, Katrina; Kephart, Thomas S.; Edwards, Glenn

    1997-11-01

    An analytical model of the electrostatic potential surrounding dissolved DNA has been developed. The model consists of an all-atom, mathematically helical structure for DNA, in which the atoms are arranged in infinite lines of discrete point charges on concentric cylindrical surfaces. The surrounding solvent and counterions are treated with the Debye-Huckel approximation (Wagner et al., Biophysical Journal 73, 21-30, 1997). Variation in the electrostatic potential due to structural differences between A, B, and Z conformations and homopolymer base sequence is apparent. The most recent modification to the model exploits the principle of superposition to calculate the potential of DNA with a base sequence containing `defects.' That is, the base sequence is no longer uniform along the polymer. Differences between the potential of homopolymer DNA and the potential of DNA containing base `defects' are immediately obvious. These results may aid in understanding the role of electrostatics in base-sequence specificity exhibited by DNA-binding proteins.

  5. The cDNA sequence of a neutral horseradish peroxidase.

    PubMed

    Bartonek-Roxå, E; Eriksson, H; Mattiasson, B

    1991-02-16

    A cDNA clone encoding a horseradish (Armoracia rusticana) peroxidase has been isolated and characterized. The cDNA contains 1378 nucleotides excluding the poly(A) tail and the deduced protein contains 327 amino acids which includes a 28 amino acid leader sequence. The predicted amino acid sequence is nine amino acids shorter than the major isoenzyme belonging to the horseradish peroxidase C group (HRP-C) and the sequence shows 53.7% identity with this isoenzyme. The described clone encodes nine cysteines of which eight correspond well with the cysteines found in HRP-C. Five potential N-glycosylation sites with the general sequence Asn-X-Thr/Ser are present in the deduced sequence. Compared to the earlier described HRP-C this is three glycosylation sites less. The shorter sequence and fewer N-glycosylation sites give the native isoenzyme a molecular weight of several thousands less than the horseradish peroxidase C isoenzymes. Comparison with the net charge value of HRP-C indicates that the described cDNA clone encodes a peroxidase which has either the same or a slightly less basic pI value, depending on whether the encoded protein is N-terminally blocked or not. This excludes the possibility that HRP-n could belong to either the HRP-A, -D or -E groups. The low sequence identity (53.7%) with HRP-C indicates that the described clone does not belong to the HRP-C isoenzyme group and comparison of the total amino acid composition with the HRP-B group does not place the described clone within this isoenzyme group. Our conclusion is that the described cDNA clone encodes a neutral horseradish peroxidase which belongs to a new, not earlier described, horseradish peroxidase group.

  6. A novel chaotic image encryption scheme using DNA sequence operations

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Yuan; Zhang, Ying-Qian; Bao, Xue-Mei

    2015-10-01

    In this paper, we propose a novel image encryption scheme based on DNA (Deoxyribonucleic acid) sequence operations and chaotic system. Firstly, we perform bitwise exclusive OR operation on the pixels of the plain image using the pseudorandom sequences produced by the spatiotemporal chaos system, i.e., CML (coupled map lattice). Secondly, a DNA matrix is obtained by encoding the confused image using a kind of DNA encoding rule. Then we generate the new initial conditions of the CML according to this DNA matrix and the previous initial conditions, which can make the encryption result closely depend on every pixel of the plain image. Thirdly, the rows and columns of the DNA matrix are permuted. Then, the permuted DNA matrix is confused once again. At last, after decoding the confused DNA matrix using a kind of DNA decoding rule, we obtain the ciphered image. Experimental results and theoretical analysis show that the scheme is able to resist various attacks, so it has extraordinarily high security.

  7. High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.

    PubMed

    Inagaki, Soichi; Henry, Isabelle M; Lieberman, Meric C; Comai, Luca

    2015-01-01

    Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.

  8. Structural Analysis of HMGD-DNA Complexes Reveal Influence of Intercalation on Sequence Selectivity and DNA Bending

    PubMed Central

    Churchill, Mair E.A.; Klass, Janet; Zoetewey, David L.

    2010-01-01

    The ubiquitous eukaryotic High-Mobility-Group-Box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and fifty base pairs of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1-boxA-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending. PMID:20800069

  9. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function.

    PubMed

    Mehrotra, Shweta; Goyal, Vinod

    2014-08-01

    Repetitive DNA sequences are a major component of eukaryotic genomes and may account for up to 90% of the genome size. They can be divided into minisatellite, microsatellite and satellite sequences. Satellite DNA sequences are considered to be a fast-evolving component of eukaryotic genomes, comprising tandemly-arrayed, highly-repetitive and highly-conserved monomer sequences. The monomer unit of satellite DNA is 150-400 base pairs (bp) in length. Repetitive sequences may be species- or genus-specific, and may be centromeric or subtelomeric in nature. They exhibit cohesive and concerted evolution caused by molecular drive, leading to high sequence homogeneity. Repetitive sequences accumulate variations in sequence and copy number during evolution, hence they are important tools for taxonomic and phylogenetic studies, and are known as "tuning knobs" in the evolution. Therefore, knowledge of repetitive sequences assists our understanding of the organization, evolution and behavior of eukaryotic genomes. Repetitive sequences have cytoplasmic, cellular and developmental effects and play a role in chromosomal recombination. In the post-genomics era, with the introduction of next-generation sequencing technology, it is possible to evaluate complex genomes for analyzing repetitive sequences and deciphering the yet unknown functional potential of repetitive sequences. Copyright © 2014 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  10. Micronuclear DNA of Oxytricha nova contains sequences with autonomously replicating activity in Saccharomyces cerevisiae.

    PubMed Central

    Colombo, M M; Swanton, M T; Donini, P; Prescott, D M

    1984-01-01

    Oxytricha nova is a hypotrichous ciliate with micronuclei and macronuclei. Micronuclei, which contain large, chromosomal-sized DNA, are genetically inert but undergo meiosis and exchange during cell mating. Macronuclei, which contain only small, gene-sized DNA molecules, provide all of the nuclear RNA needed to run the cell. After cell mating the macronucleus is derived from a micronucleus, a derivation that includes excision of the genes from chromosomes and elimination of the remaining DNA. The eliminated DNA includes all of the repetitious sequences and approximately 95% of the unique sequences. We cloned large restriction fragments from the micronucleus that confer replication ability on a replication-deficient plasmid in Saccharomyces cerevisiae. Sequences that confer replication ability are called autonomously replicating sequences. The frequency and effectiveness of autonomously replicating sequences in micronuclear DNA are similar to those reported for DNAs of other organisms introduced into yeast cells. Of the 12 micronuclear fragments with autonomously replicating sequence activity, 9 also showed homology to macronuclear DNA, indicating that they contain a macronuclear gene sequence. We conclude from this that autonomously replicating sequence activity is nonrandomly distributed throughout micronuclear DNA and is preferentially associated with those regions of micronuclear DNA that contain genes. Images PMID:6092934

  11. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes.

    PubMed

    Sharma, S; Raina, S N

    2005-01-01

    A major component of the plant nuclear genome is constituted by different classes of repetitive DNA sequences. The structural, functional and evolutionary aspects of the satellite repetitive DNA families, and their organization in the chromosomes is reviewed. The tandem satellite DNA sequences exhibit characteristic chromosomal locations, usually at subtelomeric and centromeric regions. The repetitive DNA family(ies) may be widely distributed in a taxonomic family or a genus, or may be specific for a species, genome or even a chromosome. They may acquire large-scale variations in their sequence and copy number over an evolutionary time-scale. These features have formed the basis of extensive utilization of repetitive sequences for taxonomic and phylogenetic studies. Hybrid polyploids have especially proven to be excellent models for studying the evolution of repetitive DNA sequences. Recent studies explicitly show that some repetitive DNA families localized at the telomeres and centromeres have acquired important structural and functional significance. The repetitive elements are under different evolutionary constraints as compared to the genes. Satellite DNA families are thought to arise de novo as a consequence of molecular mechanisms such as unequal crossing over, rolling circle amplification, replication slippage and mutation that constitute "molecular drive". Copyright 2005 S. Karger AG, Basel.

  12. Analysis of DNA Sequences by an Optical Time-Integrating Correlator: Proof-of-Concept Experiments.

    DTIC Science & Technology

    1992-05-01

    DNA ANALYSIS STRATEGY 4 2.1 Representation of DNA Bases 4 2.2 DNA Analysis Strategy 6 3.0 CUSTOM GENERATORS FOR DNA SEQUENCES 10 3.1 Hardware Design 10...of the DNA bases where each base is represented by a 7-bits long pseudorandom sequence. 5 Figure 4: Coarse analysis of a DNA sequence. 7 Figure 5: Fine...a 20-bases long database. 32 xiii LIST OF TABLES PAGE Table 1: Short representations of the DNA bases where each base is represented by 7-bits long

  13. Representation of DNA sequences in genetic codon context with applications in exon and intron prediction.

    PubMed

    Yin, Changchuan

    2015-04-01

    To apply digital signal processing (DSP) methods to analyze DNA sequences, the sequences first must be specially mapped into numerical sequences. Thus, effective numerical mappings of DNA sequences play key roles in the effectiveness of DSP-based methods such as exon prediction. Despite numerous mappings of symbolic DNA sequences to numerical series, the existing mapping methods do not include the genetic coding features of DNA sequences. We present a novel numerical representation of DNA sequences using genetic codon context (GCC) in which the numerical values are optimized by simulation annealing to maximize the 3-periodicity signal to noise ratio (SNR). The optimized GCC representation is then applied in exon and intron prediction by Short-Time Fourier Transform (STFT) approach. The results show the GCC method enhances the SNR values of exon sequences and thus increases the accuracy of predicting protein coding regions in genomes compared with the commonly used 4D binary representation. In addition, this study offers a novel way to reveal specific features of DNA sequences by optimizing numerical mappings of symbolic DNA sequences.

  14. cgDNAweb: a web interface to the cgDNA sequence-dependent coarse-grain model of double-stranded DNA.

    PubMed

    De Bruin, Lennart; Maddocks, John H

    2018-06-14

    The sequence-dependent statistical mechanical properties of fragments of double-stranded DNA is believed to be pertinent to its biological function at length scales from a few base pairs (or bp) to a few hundreds of bp, e.g. indirect read-out protein binding sites, nucleosome positioning sequences, phased A-tracts, etc. In turn, the equilibrium statistical mechanics behaviour of DNA depends upon its ground state configuration, or minimum free energy shape, as well as on its fluctuations as governed by its stiffness (in an appropriate sense). We here present cgDNAweb, which provides browser-based interactive visualization of the sequence-dependent ground states of double-stranded DNA molecules, as predicted by the underlying cgDNA coarse-grain rigid-base model of fragments with arbitrary sequence. The cgDNAweb interface is specifically designed to facilitate comparison between ground state shapes of different sequences. The server is freely available at cgDNAweb.epfl.ch with no login requirement.

  15. Sequence-based prediction of protein-binding sites in DNA: comparative study of two SVM models.

    PubMed

    Park, Byungkyu; Im, Jinyong; Tuvshinjargal, Narankhuu; Lee, Wook; Han, Kyungsook

    2014-11-01

    As many structures of protein-DNA complexes have been known in the past years, several computational methods have been developed to predict DNA-binding sites in proteins. However, its inverse problem (i.e., predicting protein-binding sites in DNA) has received much less attention. One of the reasons is that the differences between the interaction propensities of nucleotides are much smaller than those between amino acids. Another reason is that DNA exhibits less diverse sequence patterns than protein. Therefore, predicting protein-binding DNA nucleotides is much harder than predicting DNA-binding amino acids. We computed the interaction propensity (IP) of nucleotide triplets with amino acids using an extensive dataset of protein-DNA complexes, and developed two support vector machine (SVM) models that predict protein-binding nucleotides from sequence data alone. One SVM model predicts protein-binding nucleotides using DNA sequence data alone, and the other SVM model predicts protein-binding nucleotides using both DNA and protein sequences. In a 10-fold cross-validation with 1519 DNA sequences, the SVM model that uses DNA sequence data only predicted protein-binding nucleotides with an accuracy of 67.0%, an F-measure of 67.1%, and a Matthews correlation coefficient (MCC) of 0.340. With an independent dataset of 181 DNAs that were not used in training, it achieved an accuracy of 66.2%, an F-measure 66.3% and a MCC of 0.324. Another SVM model that uses both DNA and protein sequences achieved an accuracy of 69.6%, an F-measure of 69.6%, and a MCC of 0.383 in a 10-fold cross-validation with 1519 DNA sequences and 859 protein sequences. With an independent dataset of 181 DNAs and 143 proteins, it showed an accuracy of 67.3%, an F-measure of 66.5% and a MCC of 0.329. Both in cross-validation and independent testing, the second SVM model that used both DNA and protein sequence data showed better performance than the first model that used DNA sequence data. To the best of

  16. Existence of host-related DNA sequences in the schistosome genome.

    PubMed

    Iwamura, Y; Irie, Y; Kominami, R; Nara, T; Yasuraoka, K

    1991-06-01

    DNA sequences homologous to the mouse intracisternal A particle and endogenous type C retrovirus were detected in the DNAs of Schistosoma japonicum adults and S. mansoni eggs. Furthermore, other kinds of repetitive sequences in the host genome such as mouse type 1 Alu sequence (B1), mouse type 2 Alu sequence (B2) and mo-2 sequence, a mouse mini-satellite, were also detected in the DNAs from adults and eggs of S. japonicum and eggs of S. mansoni. Almost all of the sequences described above were absent in the DNAs of S. mansoni adults. The DNA fingerprints of schistosomes, using the mo-2 sequence, were indistinguishable from each other and resembled those of their murine hosts. Moreover, the mo-2 sequence was hypermethylated in the DNAs of schistosomes and its amount was variable in them. These facts indicate that host-related sequences are actually present in schistosomes and that the mo-2 repetitive sequence exists probably in extra-chromosome.

  17. DNA Sequences from Formalin-Fixed Nematodes: Integrating Molecular and Morphological Approaches to Taxonomy

    PubMed Central

    Thomas, W. Kelley; Vida, J. T.; Frisse, Linda M.; Mundo, Manuel; Baldwin, James G.

    1997-01-01

    To effectively integrate DNA sequence analysis and classical nematode taxonomy, we must be able to obtain DNA sequences from formalin-fixed specimens. Microdissected sections of nematodes were removed from specimens fixed in formalin, using standard protocols and without destroying morphological features. The fixed sections provided sufficient template for multiple polymerase chain reaction-based DNA sequence analyses. PMID:19274156

  18. Spiroplasma species share common DNA sequences among their viruses, plasmids and genomes.

    PubMed

    Ranhand, J M; Nur, I; Rose, D L; Tully, J G

    1987-01-01

    Alkaline-Southern-blot analyses showed that a spiroplasma plasmid, pRA1, obtained from Spiroplasma citri (Maroc-R8A2), contained DNA sequences that were homologous to spiroplasma type 3 viruses (SV3) obtained from S. citri (Maroc-R8A2), S. citri (608) and S. mirum (SMCA). In addition, pRA1 and SV3(608) DNA shared common, but not necessarily related, sequences with extrachromosomal DNA derived from 11 Spiroplasma species or strains. Furthermore, SV3(608) had DNA homology with the chromosome from 6 distinct spiroplasmas but not with chromosomal DNA from eight other Spiroplasma species or strains. The biological function of these common sequences is unknown.

  19. Extending the spectrum of DNA sequences retrieved from ancient bones and teeth

    PubMed Central

    Glocke, Isabelle; Meyer, Matthias

    2017-01-01

    The number of DNA fragments surviving in ancient bones and teeth is known to decrease with fragment length. Recent genetic analyses of Middle Pleistocene remains have shown that the recovery of extremely short fragments can prove critical for successful retrieval of sequence information from particularly degraded ancient biological material. Current sample preparation techniques, however, are not optimized to recover DNA sequences from fragments shorter than ∼35 base pairs (bp). Here, we show that much shorter DNA fragments are present in ancient skeletal remains but lost during DNA extraction. We present a refined silica-based DNA extraction method that not only enables efficient recovery of molecules as short as 25 bp but also doubles the yield of sequences from longer fragments due to improved recovery of molecules with single-strand breaks. Furthermore, we present strategies for monitoring inefficiencies in library preparation that may result from co-extraction of inhibitory substances during DNA extraction. The combination of DNA extraction and library preparation techniques described here substantially increases the yield of DNA sequences from ancient remains and provides access to a yet unexploited source of highly degraded DNA fragments. Our work may thus open the door for genetic analyses on even older material. PMID:28408382

  20. Compilation of DNA sequences of Escherichia coli (update 1991)

    PubMed Central

    Kröger, Manfred; Wahl, Ralf; Rice, Peter

    1991-01-01

    We have compiled the DNA sequence data for E.coli available from the GENBANK and EMBL data libraries and over a period of several years independently from the literature. This is the third listing replacing and increasing the former listing roughly by one fifth. However, in order to save space this printed version contains DNA sequence information only. The complete compilation is now available in machine readable form from the EMBL data library (ECD release 6). After deletion of all detected overlaps a total of 1 492 282 individual bp is found to be determined till the beginning of 1991. This corresponds to a total of 31.62% of the entire E.coli chromosome consisting of about 4,720 kbp. This number may actually be higher by some extra 2,5% derived from lysogenic bacteriophage lambda and various DNA sequences already received for statistical purposes only. PMID:2041799