Science.gov

Sample records for alkali halide photocathodes

  1. Fabrication of alkali halide UV photocathodes by pulsed laser deposition

    SciTech Connect

    Brendel', V M; Bukin, V V; Garnov, Sergei V; Bagdasarov, V Kh; Denisov, N N; Garanin, Sergey G; Terekhin, V A; Trutnev, Yurii A

    2012-12-31

    A technique has been proposed for the fabrication of atmospheric corrosion resistant alkali halide UV photocathodes by pulsed laser deposition. We produced photocathodes with a highly homogeneous photoemissive layer well-adherent to the substrate. The photocathodes were mounted in a vacuum photodiode, and a tungsten grid was used as an anode. Using pulsed UV lasers, we carried out experiments aimed at evaluating the quantum efficiency of the photocathodes. With a dc voltage applied between the photocathode and anode grid, we measured a shunt signal proportional to the total charge emitted by the cathode exposed to UV laser light. The proposed deposition technique enables one to produce photocathodes with photoemissive layers highly uniform in quantum efficiency, which is its main advantage over thin film growth by resistive evaporation. (laser technologies)

  2. Quantum efficiencies of imaging detectors with alkali halide photocathodes. I - Microchannel plates with separate and integral CsI photocathodes

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1987-01-01

    Measurements and comparisons have been made of the quantum efficiencies of microchannel plate (MCP) detectors in the far-UV (below 2000-A) wavelength range using CsI photocathodes (a) deposited on the front surfaces of microchannel plates and (b) deposited on solid substrates as opaque photocathodes with the resulting photoelectrons input to microchannel plates. The efficiences were measured in both pulse-counting and photodiode modes of operation. Typical efficiencies are about 15 percent at 1216 A for a CsI-coated MCP compared with 65 percent for an opaque CsI photocathode MCP detector. Special processing has yielded an efficiency as high as 20 percent for a CsI-coated MCP. This may possibly be further improved by optimization of the tilt angle of the MCP channels relative to the front face of the MCP and incident radiation. However, at present there still remains a factor of at least 3 quantum efficiency advantage in the separate opaque CsI photocathode configuration.

  3. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  4. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are

  5. Removable organic protective coating for alkali-antimonide photocathodes

    NASA Astrophysics Data System (ADS)

    Breskin, A.; Buzulutskov, A.; Shefer, E.; Chechik, R.; Prager, M.

    We describe a technique for protecting alkali-antimonide visible light photocathodes against deterioration by exposure to impurities, during handling or storage in poor vacuum or gas. The photocathodes are coated with a ˜1 μm vacuum-deposited hexatriacontane film, which can be subsequently removed by low-temperature sublimation. We show that Cs 3Sb coated photocathodes can be exposed for several minutes to considerable amounts of oxygen, without deterioration. Their initial photoemission properties are almost fully recovered after film removal.

  6. Solvation at nanoscale: Alkali-halides in water clusters

    SciTech Connect

    Partanen, Leena; Mikkelae, Mikko-Heikki; Huttula, Marko; Tchaplyguine, Maxim; Zhang Chaofan; Andersson, Tomas; Bjoerneholm, Olle

    2013-01-28

    The solvation of alkali-halides in water clusters at nanoscale is studied by photoelectron spectroscopy using synchrotron radiation. The Na 2p, K 3p, Cl 2p, Br 3d, and I 4d core level binding energies have been measured for salt-containing water clusters. The results have been compared to those of alkali halide clusters and the dilute aqueous salt solutions. It is found that the alkali halides dissolve in small water clusters as ions.

  7. Ionic alkali halide XUV laser feasibility study

    SciTech Connect

    Yang, T.T.; Gylys, V.T.; Bower, R.D.; Harris, D.G.; Blauer, J.A.; Turner, C.E.; Hindy, R.N.

    1989-11-10

    The objective of this work is to assess the feasibility of a select set of ionic alkali halide XUV laser concepts by obtaining the relevant kinetic and spectroscopic parameters required for a proof-of-principle and conceptual design. The proposed lasers operate in the 80--200 nm spectral region and do not require input from outside radiation sources for their operation. Frequency up-conversion and frequency mixing techniques and therefore not considered in the work to be described. An experimental and theoretical study of a new type of laser operating in the extreme ultraviolet wavelength region has been conducted. The lasing species are singly ionized alkali halide molecules such as Rb{sup 2+}F{sub {minus}}, Rb{sup 2+}Br{sup {minus}} and Cs{sup 2+}F{sup {minus}}. These species are similar in electronic structure to the rare gas halide excimers, such as XeF and Krf, except that the ionic molecules emit at wavelengths of 80--200 nm, much shorter than the conventional rare-gas halide excimer laser. The radiative lifetime of these molecules are typically near 1 ns, which is about an order of magnitude shorter than that for rare-gas halide systems. The values of the cross section for stimulated emission are on the order of 1 {times} 10{sup {minus}16}cm{sup 2}. Because of the fundamental similarity to existing UV lasers, these systems show promise as a high power, efficient XUV lasers. 55 refs., 50 figs., 5 tabs.

  8. Enhanced Quantum Efficiency From Hybrid Cesium Halide/Copper Photocathode

    SciTech Connect

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Gong, Yu; Hess, Wayne P.

    2014-04-28

    The quantum efficiency of Cu is found to increase dramatically when coated by a CsI film and then irradiated by a UV laser. Over three orders of magnitude quantum efficiency enhancement at 266 nm is observed in CsI/Cu(100), indicating potential application in future photocathode devices. Upon laser irradiation, a large work function reduction to a value less than 2 eV is also observed, significantly greater than for similarly treated CsBr/Cu(100). The initial QE enhancement, prior to laser irradiation, is attributed to interface interaction, surface cleanliness and the intrinsic properties of the Cs halide film. Further QE enhancement following activation is attributed to formation of inter-band states and Cs metal accumulation at the interface induced by laser irradiation.

  9. Thermoluminescence of alkali halides and its implications

    NASA Astrophysics Data System (ADS)

    Gartia, R. K.; Rey, L.; Tejkumar Singh, Th.; Basanta Singh, Th.

    2012-03-01

    Trapping levels present in some alkali halides namely NaCl, KCl, KBr, and KI are determined by deconvolution of the thermoluminescence (TL) curves. Unlike most of the studies undertaken over the last few decades, we have presented a comprehensive picture of the phenomenon of TL as an analytical technique capable of revealing the position of the trapping levels present in the materials. We show that for all practical purposes, TL can be described involving only the three key trapping parameters, namely, the activation energy (E), the frequency factor (s), and the order of kinetics (b) even for complex glow curves having a number of TL peaks. Finally, based on these, we logically infer the importance of TL in development and characterization of materials used in dosimetry, dating and scintillation.

  10. Heat capacity of shocked alkali halides

    NASA Astrophysics Data System (ADS)

    Boness, David A.; Brown, J. Michael

    1996-05-01

    The rarefaction-overtake method, combined with optical-pyrometry temperature measurements, allows the determination of the heat capacity for shocked transparent materials. We measured heat capacity for shocked single-crystal CsBr, KBr, KCl, and NaCl, and compared these results with previously-reported values for CsI. For these alkali halides as a suite, temperature strongly correlates linearly with compression, and the heat capacities rise with temperature from a classical 3R value to more than twice that for two-fold compressions and eV-level temperature. Electronic structure and thermalization of electrons likely account for the observed correlation between heat capacity and material band gap.

  11. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    NASA Astrophysics Data System (ADS)

    Bory, Benjamin F.; Wang, Jingxin; Gomes, Henrique L.; Janssen, René A. J.; De Leeuw, Dago M.; Meskers, Stefan C. J.

    2014-12-01

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron-hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 1025/m3. The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics.

  12. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    SciTech Connect

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-12-08

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10{sup 25}/m{sup 3}. The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics.

  13. Photocathode transfer and storage techniques using alkali vapor feedback control

    SciTech Connect

    Springer, R.W.; Cameron, B.J.

    1991-12-20

    Photocathodes of quantum efficiency above 1% at the doubled YAG frequency of 532 nM are very sensitive to the local vacuum environment. These cathodes must have a band gap of less than 2.3 eV, and a work function that is also on the order of {approximately}2 volts or less. As such, these surfaces are very reactive as they provide many surface states for the residual gases that have positive electron affinities such as oxygen and omnipotent water. Attendant to this problem is that the optimal operating point for some of these cesium based cathodes is unstable. Three of the cesium series were tried, the Cs-Ag-Bi-O, the Cs{sub 3}Sb and the K{sub 2}CsSb. The most stable material found is the K{sub 2}CsSb. The vacuum conditions can be met by a variety of pumping schemes. The vacuum is achieved by using sputter ion diode pumps, and baking at 250{degrees}C or less for whatever time is required to reduce the pump currents to below 1 uA at room temperature. To obtain the required partial pressure of cesium, a simple very sensitive diagnostic gauge has been developed that can discriminate between free alkali and other gases present. This Pressure Alkali Monitor (PAM) can be used cesium sources to provide a low partial pressure using standard feedback techniques. Photocathodes of arbitrary composition have been transferred to a separate vacuum system and preserved for over 10 days with less than a 25% loss to the QE at 543.5 nM.

  14. Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light

    NASA Astrophysics Data System (ADS)

    Cultrera, L.; Gulliford, C.; Bartnik, A.; Lee, H.; Bazarov, I.

    2016-03-01

    The intrinsic emittance of electron beams generated from a multi-alkali photocathode operated in a high voltage DC gun is reported. The photocathode showed sensitivity extending to the infrared part of the spectrum up to 830 nm. The measured intrinsic emittances of electron beams generated with light having wavelength longer than 800 nm are approaching the limit imposed by the thermal energy of electrons at room temperature with quantum efficiencies comparable to metallic photocathodes used in operation of modern photoinjectors.

  15. Electro-optic contribution to Raman scattering from alkali halides

    SciTech Connect

    Mahan, G.D.; Subbaswamy, K.R.

    1986-06-15

    The electro-optic contributions to second-order Raman scattering and field-induced first-order scattering from alkali halides are calculated explicitly in terms of the ionic hyperpolarizability coefficients. The relevant local-field corrections are evaluated. Illustrative numerical results are presented.

  16. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  17. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  18. Alkali halide microstructured optical fiber for X-ray detection

    SciTech Connect

    DeHaven, S. L. E-mail: russel.a.wincheski@nasa.gov; Wincheski, R. A. E-mail: russel.a.wincheski@nasa.gov; Albin, S.

    2015-03-31

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  19. Volcanic Origin of Alkali Halides on Io

    NASA Technical Reports Server (NTRS)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  20. Electronic excitation in bulk and nanocrystalline alkali halides.

    PubMed

    Bichoutskaia, Elena; Pyper, Nicholas C

    2012-11-14

    The lowest energy excitations in bulk alkali halides are investigated by considering five different excited state descriptions. It is concluded that excitation transfers one outermost halide electron in the fully ionic ground state to the lowest energy vacant s orbital of one closest cation neighbour to produce the excited state termed dipolar. The excitation energies of seven salts were computed using shell model description of the lattice polarization produced by the effective dipole moment of the excited state neutral halogen-neutral metal pair. Ab initio uncorrelated short-range inter-ionic interactions computed from anion wavefunctions adapted to the in-crystal environment were augmented by short-range electron correlation contributions derived from uniform electron-gas density functional theory. Dispersive attractions including wavefunction overlap damping were introduced using reliable semi-empirical dispersion coefficients. The good agreement between the predicted excitation energies and experiment provides strong evidence that the excited state is dipolar. In alkali halide nanocrystals in which each ionic plane contains only four ions, the Madelung energies are significantly reduced compared with the bulk. This predicts that the corresponding intra-crystal excitation energies in the nanocrystals, where there are two excited states depending on whether the halide electron is transferred to a cation in the same or in the neighbouring plane, will be reduced by almost 2 eV. For such an encapsulated KI crystal, it has been shown that the greater polarization in the excited state of the bulk crystal causes these reductions to be lowered to a 1.1 eV-1.5 eV range for the case of charge transfer to a neighbouring plane. For intra-plane charge transfer the magnitude of the polarization energy is further reduced thus causing the excitation in these encapsulated materials to be only 0.2 eV less than in the bulk crystal. PMID:23163361

  1. Cold electron beams from cryocooled, alkali antimonide photocathodes

    NASA Astrophysics Data System (ADS)

    Cultrera, L.; Karkare, S.; Lee, H.; Liu, X.; Bazarov, I.; Dunham, B.

    2015-11-01

    In this paper we report on the generation of cold electron beams using a Cs3Sb photocathode grown by codeposition of Sb and Cs. By cooling the photocathode to 90 K we demonstrate a significant reduction in the mean transverse energy validating the long-standing speculation that the lattice temperature contributes to limiting the mean transverse energy or intrinsic emittance near the photoemission threshold, opening new frontiers in generating ultrabright beams. At 90 K, we achieve a record low intrinsic emittance of 0.2 μ m (rms) per mm of laser spot diameter from an ultrafast (subpicosecond) photocathode with quantum efficiency greater than 7 ×10-5 using a visible laser wavelength of 690 nm.

  2. A new polarizable force field for alkali and halide ions

    SciTech Connect

    Kiss, Péter T.; Baranyai, András

    2014-09-21

    We developed transferable potentials for alkali and halide ions which are consistent with our recent model of water [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. Following the approach used for the water potential, we applied Gaussian charge distributions, exponential repulsion, and r{sup −6} attraction. One of the two charges of the ions is fixed to the center of the particle, while the other is connected to this charge by a harmonic spring to express polarization. Polarizability is taken from quantum chemical calculations. The repulsion between different species is expressed by the combining rule of Kong [J. Chem. Phys. 59, 2464 (1972)]. Our primary target was the hydration free energy of ions which is correct within the error of calculations. We calculated water-ion clusters up to 6 water molecules, and, as a crosscheck, we determined the density and internal energy of alkali-halide crystals at ambient conditions with acceptable accuracy. The structure of hydrated ions was also discussed.

  3. Potential function and dissociation energy of alkali halide

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhay P.; Pandey, Anjani K.; Pandey, Brijesh K.

    2016-05-01

    Dissociation energy of some alkali halides have been calculated by using different interaction potential function such as Born-Mayer, Varshani-Shukla and L5 potential model. The theoretical calculation is compared with experimental values. The Result shows that the values of dissociation energy as calculated by using different potential models have an equal amount of deviation with experimental values. The above said deviation with experimental values can be explained by consideration of rotational-vibrational coupling between the constituents of molecules in the limelight of molecular spectroscopy. Findings of present work suggest that the existing potential model need to be reviewed in view of the correction factors solely depending on the rotational, vibrational and electronic coupling between the constituents of molecules.

  4. Laser Control of Product Electronic State: Desorption from Alkali Halides

    SciTech Connect

    Beck, Kenneth M.); Joly, Alan G.); Dupuis, Nicholas F.; Perozzo, Peggy; Hess, Wayne P.); Sushko, P V.; Shluger, Alexander L.

    2004-02-01

    We demonstrate laser control of the electronic product state distribution of photodesorbed halogen atoms from alkali halide crystals. Our general model of surface exciton desorption dynamics is developed into a simple method for laser control of the relative halogen atom spin orbit laser desorption yield. By tuning the excitation laser photon energy in a narrow region of the absorption threshold, the relative Cl(2P1/2) yield can be made to vary from near 0 to 80% from KCI and from near 0 to 60% for NaCl. We described the physical properties necessary to obtain a high degree of product state control and the limitation induced when these requirements are not met. These results demonstrate that laser control can be applied to solid state surface reactions and provide strong support for surface exciton-based desorption models.

  5. Electronic States of F-Centers in Alkali Halide Crystals

    NASA Astrophysics Data System (ADS)

    Matsunaga, Katsuyuki; Narita, Nobutaka; Tanaka, Isao; Adachi, Hirohiko

    1996-08-01

    The electronic states of F-centers in alkali halides with NaCl-type structure have been investigated using the discrete variational (DV) Xα cluster method. The electronic transition accompanied by optical absorption is examined on the basis of Slater's transition state concept. The photo-absorption energies of F-centers computed for the compounds with relatively small anions agree well with experimental data, but those for iodides and bromides exhibit much lower values than the observed values. We have also investigated the change in the absorption energy by the atom displacement. By the inward displacement of 1st neighbor cations, the absorption energies are decreased to approach the experimental values. The relaxation of the 1st neighbors estimated from the computation exhibits fairly small values in fluorides, while large values in iodides and bromides. The effect of lattice relaxation around an F-center is discussed in connection with the bonding nature of the F-center level.

  6. Subpicosecond time-resolved absorption spectroscopy of alkali halide crystals

    NASA Astrophysics Data System (ADS)

    Thoma, Eben Daniel

    1997-12-01

    Relaxation of fundamental electronic excitation (electron-hole pairs and excitons) in perfect insulators can result in lattice defect formation via self-induced carrier localization (self-trapping). The potential for localization of electronic energy to the unit cell dimension is determined primarily by the strength of charge carrier to lattice phonon coupling. An effective tool for investigating the formation and evolution of radiation induced defects is pump-probe transient absorption spectroscopy. In our formulation of this technique, the 2nd,/ 3rd or 4th harmonics of an amplified 855 nm, 130 fs laser pulse are used to create electron-hole pairs in the sample via two-photon absorption. After the pump beam creates the excitation, the leftover fundamental (or 2nd harmonic) is used to generate a white-light continuum which is used as a probe for the excitation induced absorption. Control over the arrival time of the excitation pulse with respect to the pump pulse is achieved via a path length adjustment. Radiation induced absorption can currently be measured for probe delays of 0 to about 250 ps. This technique allows for observation of the evolution of localized species formation and transient behaviors with as high as 100 fs time resolution. This thesis describes the construction and operation of a subpicosecond transient absorption spectrometer. Included in this description are issues of special data interpretation and analysis which must be considered when working with intrinsic excitation of wide-gap metal halides in the high intensity, subpicosecond regime. Specifically, we have realized that a particular nonlinear mixing of the pump and probe laser (TPCCA) can produce a signal which is easily misinterpreted for a radiation induced defect absorption. This phenomena most likely accounts for a misidentification of the initial absorption signal in several of the alkali halides which have been published by other research groups. This misinterpretation leads to an erroneous conclusion on the nature of the initial self-induced carrier localization in these materials. This thesis additionally presents results on time- resolved defect formation in a variety of alkali halide samples including the first published results in the picosecond regimes for SrF2, AgCl, CsBr, and CsI.

  7. The entropies of the hard sphere alkali halide crystals

    NASA Astrophysics Data System (ADS)

    Cox, John W.; Beyerlein, Adolph L.

    1982-08-01

    An asymptotic expansion for the entropy of hard-sphere alkali halide crystals with N small and large particle pairs is obtained: SN/NkB ???13 ln(?ls2e)/(?l?s) +3 ln(?1/3-1)+3 ln ?-C-D?-E?2+???, where kB is the Boltzman constant, e is the natural number, ? is the ratio of the system volume to its high compression limiting volume, ?l and ?s are the mean thermal de Broglie wavelengths [?=(h2/2?mkBT)1/2, m being the mass] of the large and small particles, respectively, ?ls is the hard-sphere collision diameter of nearest neighbor large and small particles; C, D, E, etc. are well-defined parameters dependent on the small to large particle radius ratio and the lattice structure, and ?=[(?1/3-1)+(1-?ls/?ls')], where ?ls' is the average distance between nearest neighbor large and small particles in the high compression limit. If the small to large particle radius ratio is less than ?2-1 for the ''NaCl'' lattice and less than ?3-1 for the ''CsCl'' lattice ?lsalkali metal fluoride salts approach the experimental values at temperatures approaching the melting point which is consistent with the contention that the hard sphere contribution to the entropy dominates other contributions at high temperatures. The predicted difference between the entropies of the two alkali halide lattices is also consistent with the experimental data at higher temperatures.

  8. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    PubMed

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas. PMID:11944694

  9. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).

  10. Graphitic cage transformation by electron-beam-induced catalysis with alkali-halide nanocrystals

    NASA Astrophysics Data System (ADS)

    Fujita, Jun-ichi; Tachi, Masashi; Ito, Naoto; Murakami, Katsuhisa; Takeguchi, Masaki

    2016-05-01

    We found that alkali-halide nanocrystals, such as KCl and NaCl, have strong catalytic capability to form graphitic carbon cages from amorphous carbon shells under electron beam irradiation. In addition to the electron beam irradiation strongly inducing the decomposition of alkali-halide nanocrystals, graphene fragments were formed and linked together to form the final product of thin graphitic carbon cages after the evaporation of alkali-halide nanocrystals. The required electron dose was approximately 1 to 20 C/cm2 at 120 keV at room temperature, which was about two orders of magnitude smaller than that required for conventional beam-induced graphitization. The “knock-on” effect of primary electrons strongly induced the decomposition of the alkali-halide crystal inside the amorphous carbon shell. However, the strong ionic cohesion quickly reformed the crystal into thin layers inside the amorphous shell. The bond excitation induced by the electron beam irradiation seemed to enhance strongly the graphitization at the interface between the outer amorphous carbon shell and the inner alkali-halide crystal.

  11. Model of self-trapped excitons in alkali halides

    NASA Astrophysics Data System (ADS)

    Puchin, V. E.; Shluger, A. L.; Tanimura, K.; Itoh, N.

    1993-03-01

    We have carried out an ab initio many-electron variational calculation of the adiabatic potential-energy surface (APES) for the lowest triplet state of the self-trapped exciton (STE) in LiCl, NaCl, and KCl. Calculations of the H center in these crystals show that the <111> orientation is favored, in agreement with experimental results for NaCl but not for KCl, in which it is oriented along a <110> direction (no measurement exists for LiCl), and hence most detailed calculations for STE's are carried out for NaCl. It is found that the APES minimum for each crystal occurs when the Cl-2 molecular ion is displaced along its molecular axis from its symmetrical position (D2h) nearly halfway to the nearest halogen lattice point. The calculated transition energies for the optical absorption and luminescence at this configuration agree with the experimental values for the triplet STE, although the calculated stretching vibration frequency of the Cl-2 molecular ion in NaCl is much smaller than that for the H center, contradictory to recent resonant Raman studies. Other minima are found at the nearest F-H pair configuration, in which the Cl-2 molecular ion is reoriented by 90° from the initial orientation and next-nearest F-H pair. Extremely small luminescence energy at these configurations excludes the possibility that they are the candidates for the luminescent state of the STE. It is found that, after the displacement of the Cl-2 molecular ion beyond the first minimum of the APES towards the nearest F-H pair configuration, the total energy is lowered by reorientation, inducing an anomaly on the APES. The results of a recent experimental investigation, including existence of several types of relaxed configuration of the STE in alkali halides, the stretching vibration frequency, and the femtosecond oscillation on APES, are discussed on the basis of the results of the calculation.

  12. Comparison of CsBr and KBr coated Cu photocathodes. Effects of laser irradiation and work function changes

    SciTech Connect

    He, Weidong; VilayurGanapathy, Subramanian; Joly, Alan G.; Droubay, Timothy C.; Chambers, Scott A.; Maldonado, Juan R.; Hess, Wayne P.

    2013-02-20

    Thin films (7 nm layers) of CsBr and KBr were deposited on Cu(100) to investigate photoemission properties of these potential photocathode materials. After thin film deposition and prolonged laser ultraviolet (UV) irradiation (266 nm picosecond laser) photoemission quantum efficiency increases by factors of 26 and 77 for KBr/Cu(100) and CsBr/Cu(100) photocathodes, respectively. Immediately following thin film deposition, a decrease in work function is observed, compared to bare Cu, in both cases. Quantum efficiency enhancements are attributed to the decrease in photocathode work function, due to the deposition of alkali halide thin films, and photo-induced processes, that introduce defect states into the alkali halide bandgap, induced by UV laser irradiation. It is possible that alkali metal formation occurs during UV irradiation and that this further contributes to photoemission enhancement. Our results suggest that KBr, a relatively stable alkali-halide, has potential for photocathode applications.

  13. Direct observation of bi-alkali antimonide photocathodes growth via in operando x-ray diffraction studies

    SciTech Connect

    Ruiz-Osés, M.; Ben-Zvi, I.; Liang, X.; Muller, E.; Schubert, S.; Attenkofer, K.; Rao, T.; Smedley, J.; Padmore, H.; Vecchione, T.; Wong, J.; Xie, J.

    2014-12-01

    Alkali antimonides have a long history as visible-light-sensitive photocathodes. This work focuses on the process of fabrication of the bi-alkali photocathodes, K{sub 2}CsSb. In-situ synchrotron x-ray diffraction and photoresponse measurements were used to monitor phase evolution during sequential photocathode growth mode on Si(100) substrates. The amorphous-to-crystalline transition for the initial antimony layer was observed at a film thickness of 40 Å . The antimony crystalline structure dissolved upon potassium deposition, eventually recrystallizing upon further deposition into K-Sb crystalline modifications. This transition, as well as the conversion of potassium antimonide to K{sub 2}CsSb upon cesium deposition, is correlated with changes in the quantum efficiency.

  14. Electro-optic contribution to field-induced Raman scattering in alkali halides

    SciTech Connect

    Subbaswamy, K.R.; Mahan, G.D.

    1985-10-15

    The electro-optic contribution to the field-induced first-order Raman scattering cross section in alkali halide crystals is calculated using measured values for hyperpolarizabilities. The electro-optic contribution is much larger than the previously reported atomic displacement contribution. The results cast some doubt on the accuracy of the reported hyperpolarizability values.

  15. Refractive index of the alkali halides. II. Effect of pressure on the refractive index of 11 alkali halides

    NASA Astrophysics Data System (ADS)

    Johannsen, P. G.; Reiß, G.; Bohle, U.; Magiera, J.; Müautller, R.; Spiekermann, H.; Holzapfel, W. B.

    1997-03-01

    A recently developed comparative interferometric method for the determination of the refractive index at high pressures is applied to NaF, NaBr, NaI, KCl, KBr, KI, RbCl, RbI, CsCl, CsBr, and CsI. In the studied pressure range up to 12 GPa, the potassium and rubidium halides show a polymorphic phase transition from NaCl- to CsCl-type structure, accompanied by a discontinuous increase of the refractive index. The pressure data of the sodium and cesium halides are converted from pressure to density dependences by the help of ultrasonic equations of state. The refractive index of the sodium halides shows an almost linear density dependence, while the cesium halides exhibit strong nonlinear behavior. The constant joint-density-of-states (CJDOS) model, proposed in the first paper of this series, is used for the further analysis of the data. In the CJDOS model the density dependence of the dielectric function is related to the different behaviors of s and d conduction bands with density. While the almost linear behavior of the sodium halides can be understood by a competition of an increasing contribution of transitions to the d bands, and a decreasing contribution of transitions to the s conduction band, the nonlinear behavior of the cesium halides is predominantly caused by the closure of the band gap, with a d-band character of the lower conduction-band states.

  16. Resonance-Raman-scattering spectroscopy for the halogen-molecular-ion centers in alkali halides

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Tanimura, K.; Itoh, N.

    1993-10-01

    We have measured the Raman scattering in resonance with the bonding-to-antibonding transitions of two types of dihalogen-molecular-ion centers in alkali halides, the VK and H centers; the molecular ion occupies two adjacent halogen sites in the former and a single halogen site in the latter. It is found that the stretching-vibration frequency of the molecular ion is higher by more than 30% for the H center than for the VK center. The hardening is ascribed to the bond tightening due to the Madelung potential. Although the Raman line due to the stretching vibration consists of a single line in most alkali halides, two closely lying lines are observed for the H centers in alkali halides with small alkali-metal to halogen radius ratio and also for the VK center in NaCl. The paired-line structure is ascribed to the coupling of the stretching vibration of the halogen molecular ion with the lattice.

  17. Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1985-01-01

    The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.

  18. Theory of metal atom-water interactions and alkali halide dimers

    NASA Technical Reports Server (NTRS)

    Jordan, K. D.; Kurtz, H. A.

    1982-01-01

    Theoretical studies of the interactions of metal atoms with water and some of its isoelectronic analogs, and of the properties of alkali halides and their aggregates are discussed. Results are presented of ab initio calculations of the heats of reaction of the metal-water adducts and hydroxyhydrides of Li, Be, B, Na, Mg, and Al, and of the bond lengths and angles an; the heats of reaction for the insertion of Al into HF, H2O, NH3, H2S and CH3OH, and Be and Mg into H2O. Calculations of the electron affinities and dipole moments and polarizabilities of selected gas phase alkali halide monomers and dimers are discussed, with particular attention given to results of calculations of the polarizability of LiF taking into account electron correlation effects, and the polarizability of the dimer (LiF)2.

  19. Investigation of structure of UV luminescence centres in pure alkali halide crystals with SR

    NASA Astrophysics Data System (ADS)

    Kochubey, V. I.; Gyunsburg, K. E.; Sedova, Yu. G.; Zvezdova, N. P.

    1998-02-01

    The nature of the thermal defects in alkali-halide crystals was studied by the X-ray excited UV luminescence and XEOL. The dependence of the luminescent intensity on the heating time and temperature and X-ray dose was observed. The structure of the defects was determined by XEOL. It has been suggested that luminescent centres are the pair defects of anionic sublattice of crystal.

  20. Development of processes for the production of solar grade silicon from halides and alkali metals

    NASA Technical Reports Server (NTRS)

    Dickson, C. R.; Gould, R. K.

    1980-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon in volume at low cost were studied. Experiments were performed to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, determine the effects of reactants and/or products on materials of reactor construction, and make preliminary engineering and economic analyses of a scaled-up process.

  1. Ab initio modeling of the F-center in light alkali halides

    NASA Astrophysics Data System (ADS)

    Dunning, Rodney Blane

    This thesis reports the first determination of the spatial dependence of the F-center electron wave function in the alkali halides within the framework of Density Functional Theory. The results reported herein also allow us to evaluate two long-standing but contradictory views of the distribution of the F-center electron density within the alkali halides. We applied Blochl's Projector Augment Wave (PAW) method to the F-center in several alkali halide materials, viz., lithium fluoride, lithium bromide, lithium chloride, sodium fluoride, sodium chloride, sodium bromide, and potassium chloride, determining for each, inter alia, the lattice constant, cohesive energy, and bulk modulus of the perfect crystal, the relaxed atomic configuration and cohesive energy of the defective crystal, the formation energy of the F-center, and the topology of the F-center electron, including the electron density, with comparisons to electron-nuclear double resonance (ENDOR) data where available, and the root-mean-square (RMS) size of the F-center electron. We find the F-center defect has little effect on the positions of the surrounding ions. Relaxation is largely limited to the nearest- and next-neighbor shells, and with a few exceptions all shells relax away from the vacancy site. The formation energy of the F-center is only a few electron volts. The calculated F-center electron density at the nearest-, next-, and next-next nearest neighbor sites is in good agreement with ENDOR data, except for sodium chloride. The F -center electron becomes less localized with increasing interionic separation, when comparing materials with a common alkali ion. The RMS size of the F-center electron increases with increasing interionic separation, when comparing materials with a common alkali ion. We find good agreement with other calculations of the RMS size based on optical absorption data.

  2. Alkali metal/halide thermal energy storage systems performance evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1986-01-01

    A pseudoheat-pipe heat transfer mechanism has been demonstrated effective in terms of both total heat removal efficiency and rate, on the one hand, and system isothermal characteristics, on the other, for solar thermal energy storage systems of the kind being contemplated for spacecraft. The selection of appropriate salt and alkali metal substances for the system renders it applicable to a wide temperature range. The rapid heat transfer rate obtainable makes possible the placing of the thermal energy storage system around the solar receiver canister, and the immersing of heat transfer fluid tubes in the phase change salt to obtain an isothermal heat source.

  3. Importance of accurate dynamic polarizabilities for the ionic dispersion interactions of alkali halides.

    PubMed

    Parsons, Drew F; Ninham, Barry W

    2010-02-01

    Ab initio quantum mechanical calculations of the dynamic polarizability of alkali metal and halide ions are performed as a function of imaginary frequency. Electron correlation is shown to provide a significant correction to ionic polarizabilities. Ab initio ion-surface dispersion coefficients are compared with single- and multimode London approximations. The commonly employed single-mode model with the characteristic frequency taken from the ionization potential of the ion is shown to be inadequate, underestimating dispersion forces with an average error around 40% or as high as 80% for halide ions. Decomposition of the polarizability data into five modes covers the major modes of each ion adequately (four modes for Li(+)). Illustrative calculations of surface potentials at the mica surface in aqueous alkali halide electrolytes are made. Charge reversal is obtained with the more polarizable cations, K(+) and Rb(+). The error in the single-mode ionization potential models is seen as a strong shift in the surface potential from negative toward positive values. PMID:20099919

  4. Molecular dispersion energy parameters for alkali and halide ions in aqueous solution

    SciTech Connect

    Reiser, S.; Deublein, S.; Hasse, H.; Vrabec, J.

    2014-01-28

    Thermodynamic properties of aqueous solutions containing alkali and halide ions are determined by molecular simulation. The following ions are studied: Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cs{sup +}, F{sup −}, Cl{sup −}, Br{sup −}, and I{sup −}. The employed ion force fields consist of one Lennard-Jones (LJ) site and one concentric point charge with a magnitude of ±1 e. The SPC/E model is used for water. The LJ size parameter of the ion models is taken from Deublein et al. [J. Chem. Phys. 136, 084501 (2012)], while the LJ energy parameter is determined in the present study based on experimental self-diffusion coefficient data of the alkali cations and the halide anions in aqueous solutions as well as the position of the first maximum of the radial distribution function of water around the ions. On the basis of these force field parameters, the electric conductivity, the hydration dynamics of water molecules around the ions, and the enthalpy of hydration is predicted. Considering a wide range of salinity, this study is conducted at temperatures of 293.15 and 298.15 K and a pressure of 1 bar.

  5. Alkali Halide Interfacial Behavior in a Sequence of Charged Slit Pores

    SciTech Connect

    Wander, Matthew C; Shuford, Kevin L

    2011-01-01

    In this paper, a variety of alkali halide, aqueous electrolyte solutions in contact with charged, planar-graphite slit-pores are simulated using classical molecular dynamics. Size trends in structure and transport properties are examined by varying the choice of ions among the alkali metal and halide series. As with the uncharged pores, system dynamics are driven by changes in water hydration behavior and specifically by variations in the number of hydrogen bonds per water molecule. Overall, the larger ions diffuse more rapidly under high surface charge conditions than the smaller ions. In particular, for the 1 nmslit, ion diffusivity increased by a factor of 4 compared to the uncharged case. Finally, a quantitative fit to the interfacial charge structure is presented, which confirms the presence of two distinct types of layers in an aqueous interface. This model indicates that the chemistry of the interface is able to create a small interfacial potential, and it shows how water molecules can rotate to increase charge separation in response to a surface potential.

  6. Protection of cesium-antimony photocathodes

    NASA Astrophysics Data System (ADS)

    Buzulutskov, A.; Breskin, A.; Chechik, R.; Prager, M.; Shefer, E.

    1997-02-01

    In order to operate gaseous photomultipliers in the visible range it was suggested to protect sensitive photocathodes against contact to air and counting gases by their coating with a thin solid dielectric film. We present data on coating of cesium-antimony photocathodes with alkali-halide (NaI, CsI, CsF, NaF), oxide (SiO) and organic (hexatriacontane, calcium stearate) films. The photoelectron transmission through these films and their protection capability have been studied in detail. Cesium-antinomy photocathodes are shown to withstand exposure to considerable doses of oxygen and dry air when coated with NaI films. This opens ways to their operation in gas media.

  7. Ab initio perspective on the Mollwo-Ivey relation for F centers in alkali halides

    NASA Astrophysics Data System (ADS)

    Tiwald, Paul; Karsai, Ferenc; Laskowski, Robert; Grfe, Stefanie; Blaha, Peter; Burgdrfer, Joachim; Wirtz, Ludger

    2015-10-01

    We revisit the well-known Mollwo-Ivey relation that describes the "universal" dependence of the absorption energies of F-type color centers on the lattice constant a of alkali-halide crystals, Eabs?a-n. We perform both state-of-the-art ab initio quantum chemistry and post-DFT calculations of F-center absorption spectra. By "tuning" independently the lattice constant and the atomic species we show that the scaling with the lattice constant alone (keeping the elements fixed) would yield n =2 in agreement with the "particle-in-the-box" model. Keeping the lattice constant fixed and changing the atomic species enables us to quantify the ion-size effects which are shown to be responsible for the exponent n ?1.8 .

  8. A Kirkwood-Buff Derived Force Field for Aqueous Alkali Halides

    PubMed Central

    Gee, Moon Bae; Cox, Nicholas R.; Jiao, Yuanfang; Bentenitis, Nikolaos; Weeerasinghe, Samantha; Smith, Paul E.

    2011-01-01

    A classical nonpolarizable force field is presented for the simulation of aqueous alkali halide solutions (MX), where M = Li+, Na+, K+, Rb+, Cs+ and X = F−, Cl−, Br−, I−, and their interactions with biomolecules. The models are specifically designed to reproduce the experimental Kirkwood-Buff integrals, and thereby the solution salt activities, as a function of salt concentration. Additionally, we demonstrate that these models reasonably reproduce other experimental properties including ion diffusion constants, dielectric decrements, and the excess heats of mixing. The parameters are developed by considering the properties of aqueous NaX and MCl solutions using a previously established model for NaCl. Transferability of the parameters to other salts is then established by the successful simulation of additional aqueous salt solutions, KI and CsBr, not originally included in the parameterization procedure. PMID:21789033

  9. Ion Segregation and Deliquescence of Alkali Halide Nanocrystals on SiO2

    SciTech Connect

    Arima, Kenta; Jiang, Peng; Lin, Deng-Sung; Verdaguer, Albert; Salmeron, Miquel

    2009-08-11

    The adsorption of water on alkali halide (KBr, KCl, KF, NaCl) nanocrystals on SiO{sub 2} and their deliquescence was investigated as a function of relative humidity (RH) from 8% to near saturation by scanning polarization force microscopy. At low humidity, water adsorption solvates ions at the surface of the crystals and increases their mobility. This results in a large increase in the dielectric constant, which is manifested in an increase in the electrostatic force and in an increase in the apparent height of the nanocrystals. Above 58% RH, the diffusion of ions leads to Ostwald ripening, where larger nanocrystals grow at the expense of the smaller ones. At the deliquescence point, droplets were formed. For KBr, KCl, and NaCl, the droplets exhibit a negative surface potential relative to the surrounding region, which is indicative of the preferential segregation of anions to the air/solution interface.

  10. Quantum Efficiency Enhancement in CsI/Metal Photocathodes

    SciTech Connect

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Hess, Wayne P.

    2015-02-01

    High quantum efficiency enhancement is found for hybrid metal-insulator photocathodes consisting of thin films of CsI deposited on Cu(100), Ag(100), Au(111) and Au films irradiated by 266 nm laser pulses. Low work functions (near or below 2 eV) are observed following ultraviolet laser activation. Work functions are reduced by roughly 3 eV from that of clean metal surfaces. We discuss various mechanisms of quantum efficiency enhancement for alkali halide/metal photocathode systems and conclude that the large change in work function, due to Cs accumulation of Cs metal at the metal-alkali halide interface, is the dominant mechanism for quantum efficiency enhancement

  11. Chemistry of alkali cation exchanged faujasite and mesoporous NaX using alkyl halides and phosphates

    NASA Astrophysics Data System (ADS)

    Lee, Min-Hong

    The purpose of this work was to increase the reactivity of Faujasite X (NaX) zeolite toward the reactive decontamination of materials subject to nucleophilic attack by means of zeolite cation optimization and by means of the synthesis of mesoporous Faujasite X. Primary alkyl halides and trialkyl phosphates have been the test materials on which the cation-optimized and mesoporous zeolites have been tested. In the alkali cation optimization work, reactions of methyl iodide and 1-chloropropane with alkali metal cation exchanged Faujasite zeolite X were investigated at room temperature. The reactivity of the framework and the product formation were shown to depend on zeolite framework counter-cation. A quantitative study of zeolite product formation has been carried out, primarily using solid-state NMR spectroscopy. Large alkali cations showed preference toward substitution chemistry. In contrast, alkyl halide exposed LiX and NaX zeolites underwent both substitution and elimination. Subsequently introduced water molecules led to hydrolysis of framework species that was sensitive to framework counter-cation. The mesoporous NaX zeolites work undertakes to test whether an improvement in surface chemical reactivity can be achieved by introducing mesopores into the already reactive nucleophilic microporous NaX zeolite. Incorporation of the polydiallyl dimethyl ammonium chloride (PDADMAC) template and the formation of mesopores in Faujasite X zeolite (NaX) were successful and well-characterized. The mesopores are proposed to have occurred from incorporation of the cationic PDADMAC polymer into the zeolite by compensating zeolite framework charge. Subsequent sodium cation exchange of calcined mesoporous NaX was shown to restore the chemical reactivity characteristic of as-synthesized NaX. Trialkyl organophosphorous compounds underwent substitution reactions. The reactivity of both microporous and mesoporous Faujasite zeolite X and the product formation was shown to depend on the length of the alkyl chain. Although introduced mesopores alleviated the limited reagent diffusion to reactive sites due to the microporosity of the NaX zeolites, no marked improvement in the product yields was achieved with either the 1-chloroalkanes or the trialkyl phosphates test compounds, regardless of alkyl chain length. The disappointing results have been attributed to lack of substantial net increase in the numbers of zeolite nucleophilic sites accompanying mesopore introduction.

  12. Stable geometries of the self-trapped exciton in alkali halide crystals

    NASA Astrophysics Data System (ADS)

    Song, K. S.; Baetzold, R. C.; Kong, F.

    1994-06-01

    According to recent works, the self-trapped excitons (STE) in alkali halides are grouped in three different types. In some (e.g. RbI), a population transfer is observed among coexisting types as temperature is raised. In others (NaBr and NaI) extra type emission bands have been observed under dilational strain. We studied the adiabatic potential energy surface (APES) of the STE under the effect of expanded or compressed lattices, and of rotation of the Vk core in several directions, based on both extended-ion and ab initio Hartree-Fock methods. A critical study of the zero field splitting parameter D of the spin Hamiltonian is made in assessing the effect of rotation. It is shown that: (a) the potential barrier separating the adjacent local minima on the APES becomes smaller as the lattice is dilated; (b) the APES associated with rotation of the halogen molecule-ion axis from [110] toward [001], upto about 30°, is flat; Rotations in other directions are stiff, however; (c) the observed anomaly of the D parameter in NaCl is compatible with the rotation described in (b) above. The geometries of the three types are discussed on the basis of this study.

  13. Dynamics of nuclear wave packets at the F center in alkali halides

    NASA Astrophysics Data System (ADS)

    Koyama, Takeshi; Suemoto, Tohru

    2011-07-01

    The F center in alkali halides is a well-known prototype of a strongly coupled localized electron-phonon system. This colour center is one of the long studied targets in the field of photophysics because it is simple but rich in variety. Steady-state spectroscopy, such as modulation spectroscopy and Raman scattering spectroscopy, has elucidated the strength of the electron-phonon coupling in the (meta-)stable state, i.e. the ground state and the relaxed excited state. Picosecond spectroscopy has improved understanding of the state mixing in the transient state. Owing to recent developments of ultrafast lasers with pulse widths shorter than oscillation periods of phonons, it has been possible to perform real-time observation of lattice vibration, and the understanding of the transient state has been remarkably expanded. In this paper, we review early and present studies on dynamics of electron-phonon coupling at the F center, especially recent real-time observations on the dynamics of nuclear wave packets in the excited state of the F center in KI, KBr, KCl and RbCl. These real-time observations reveal (i) spatial extension of the electronic wave function of a trapped electron, (ii) the difference between the coupled phonons in the ground state and the excited state, (iii) diabatic transition between the adiabatic potential energy surfaces and (iv) anharmonicity of the potential energy surface.

  14. Silicon halide-alkali metal flames as a source of solar grade silicon

    NASA Technical Reports Server (NTRS)

    Olson, D. B.; Miller, W. J.; Gould, R. K.

    1980-01-01

    The feasibility of using continuous high-temperature reactions of alkali metals and silicon halides to produce silicon in large quantities and of suitable purity for use in the production of photovoltaic solar cells was demonstrated. Low pressure experiments were performed demonstrating the production of free silicon and providing experience with the construction of reactant vapor generators. Further experiments at higher reagent flow rates were performed in a low temperature flow tube configuration with co-axial injection of reagents and relatively pure silicon was produced. A high temperature graphite flow tube was built and continuous separation of Si from NaCl was demonstrated. A larger scaled well stirred reactor was built. Experiments were performed to investigate the compatability of graphite based reactor materials of construction with sodium. At 1100 to 1200 K none of these materials were found to be suitable. At 1700 K the graphites performed well with little damage except to coatings of pyrolytic graphite and silicon carbide which were damaged.

  15. Performance of a multi-anode photomultiplier employing an ultra bi-alkali photo-cathode and rugged dynodes

    NASA Astrophysics Data System (ADS)

    Toizumi, T.; Inagawa, S.; Nakamori, T.; Kataoka, J.; Tsubuku, Y.; Yatsu, Y.; Shimokawabe, T.; Kawai, N.; Okada, T.; Ohtsu, I.

    2009-06-01

    We report on the performance testing of a multi-anode photomultiplier (MAPMT), the R8900-200-M16MOD-UBA, newly developed by Hamamatsu Photonics K.K. Although the R8900 series offers the great advantage of a highly sensitive surface ( ⩾80% of physical area), the quantum efficiency (Q.E.) was relatively low (at up to 20%). This paper describes two substantial changes we have made to the R8900-200-M16MOD-UBA: (1) improving the Q.E. to the 40% level by employing an ultra bi-alkali (UBA) photo-cathode and (2) constructing a rugged dynode that can withstand vibration for future use in space. We measured each pixel signal at the single photoelectron level and the signals of scintillation photons by using a 16-pixel plastic scintillator array. Thanks to high Q.E., good energy resolution of 29.9% (FWHM) was obtained for 59.5 keV γ-rays. We also demonstrated tolerance to vibration up to 17 Grms in possible launching vehicles.

  16. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations

    SciTech Connect

    Webster, R. Harrison, N. M.; Bernasconi, L.

    2015-06-07

    We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional c{sub HF} and show that there exists one value of c{sub HF} (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material.

  17. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations

    NASA Astrophysics Data System (ADS)

    Webster, R.; Bernasconi, L.; Harrison, N. M.

    2015-06-01

    We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green's function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional cHF and show that there exists one value of cHF (˜0.32) that reproduces at least semi-quantitatively the optical gap of this material.

  18. Simple electrolyte solutions: Comparison of DRISM and molecular dynamics results for alkali halide solutions

    PubMed Central

    Joung, In Suk; Luchko, Tyler; Case, David A.

    2013-01-01

    Using the dielectrically consistent reference interaction site model (DRISM) of molecular solvation, we have calculated structural and thermodynamic information of alkali-halide salts in aqueous solution, as a function of salt concentration. The impact of varying the closure relation used with DRISM is investigated using the partial series expansion of order-n (PSE-n) family of closures, which includes the commonly used hypernetted-chain equation (HNC) and Kovalenko-Hirata closures. Results are compared to explicit molecular dynamics (MD) simulations, using the same force fields, and to experiment. The mean activity coefficients of ions predicted by DRISM agree well with experimental values at concentrations below 0.5 m, especially when using the HNC closure. As individual ion activities (and the corresponding solvation free energies) are not known from experiment, only DRISM and MD results are directly compared and found to have reasonably good agreement. The activity of water directly estimated from DRISM is nearly consistent with values derived from the DRISM ion activities and the Gibbs-Duhem equation, but the changes in the computed pressure as a function of salt concentration dominate these comparisons. Good agreement with experiment is obtained if these pressure changes are ignored. Radial distribution functions of NaCl solution at three concentrations were compared between DRISM and MD simulations. DRISM shows comparable water distribution around the cation, but water structures around the anion deviate from the MD results; this may also be related to the high pressure of the system. Despite some problems, DRISM-PSE-n is an effective tool for investigating thermodynamic properties of simple electrolytes. PMID:23387564

  19. Low-Energy Grazing Ion-Scattering From Alkali-Halide Surfaces: A Novel Approach To C-14 Detection

    SciTech Connect

    Meyer, F. W.; Galutschek, E.; Hotchkis, M.

    2009-03-10

    Carbon-14 labeled compounds are widely used in the pharmaceutical industry, e.g., as tracers to determine the fate of these compounds in vivo. Conventional accelerator mass spectrometry (AMS) is one approach that offers sufficiently high sensitivity to avoid radiological waste and contamination issues in such studies, but requires large, expensive facilities that are usually not solely dedicated to this task. At the ORNL Multicharged Ion Research Facility (MIRF) we are exploring a small size, low cost alternative to AMS for biomedical {sup 14}C tracer studies that utilizes ECR-ion-source-generated keV-energy-range multicharged C beams grazingly incident on an alkali halide target, where efficient negative ion production by multiple electron capture takes place. By using C ion charge states of +3 or higher, the molecular isobar interference at mass 14, e.g. {sup 12}CH{sub 2} and {sup 13}CH, is eliminated. The negatively charged ions in the beam scattered from the alkali halide surface are separated from other scattered charge states by two large acceptance ({approx}15 msr) stages of electrostatic analysis. The N-14 isobar interference is thus removed, since N does not support a stable negative ion. Initial results for C-14 detection obtained using C-14 enriched CO{sub 2} from ANSTO will be described.

  20. Low-Energy Grazing Ion-Scattering from Alkali-Halide Surfaces: A Novel Approach to C-14 Detection

    SciTech Connect

    Meyer, Fred W; Galutschek, Ernst; Hotchkis, Michael

    2009-01-01

    Carbon-14 labeled compounds are widely used in the pharmaceutical industry, e.g., as tracers to determine the fate of these compounds in vivo. Conventional accelerator mass spectrometry (AMS) is one approach that offers sufficiently high sensitivity to avoid radiological waste and contamination issues in such studies, but requires large, expensive facilities that are usually not solely dedicated to this task. At the ORNL Multicharged Ion Research Facility (MIRF) we are exploring a small size, low cost alternative to AMS for biomedical 14C tracer studies that utilizes ECR-ion-source-generated keV-energy-range multicharged C beams grazingly incident on an alkali halide target, where efficient negative ion production by multiple electron capture takes place. By using C ion charge states of +3 or higher, the molecular isobar interference at mass 14, e.g. 12CH2 and 13CH, is eliminated. The negatively charged ions in the beam scattered from the alkali halide surface are separated from other scattered charge states by two large acceptance ({approx}15 msr) stages of electrostatic analysis. The N-14 isobar interference is thus removed, since N does not support a stable negative ion. Initial results for C-14 detection obtained using C-14 enriched CO2 from ANSTO will be described.

  1. Low-Energy Grazing Ion-Scattering From Alkali-Halide Surfaces: A Novel Approach To C-14 Detection

    NASA Astrophysics Data System (ADS)

    Meyer, F. W.; Galutschek, E.; Hotchkis, M.

    2009-03-01

    Carbon-14 labeled compounds are widely used in the pharmaceutical industry, e.g., as tracers to determine the fate of these compounds in vivo. Conventional accelerator mass spectrometry (AMS) is one approach that offers sufficiently high sensitivity to avoid radiological waste and contamination issues in such studies, but requires large, expensive facilities that are usually not solely dedicated to this task. At the ORNL Multicharged Ion Research Facility (MIRF) we are exploring a small size, low cost alternative to AMS for biomedical 14C tracer studies that utilizes ECR-ion-source-generated keV-energy-range multicharged C beams grazingly incident on an alkali halide target, where efficient negative ion production by multiple electron capture takes place. By using C ion charge states of +3 or higher, the molecular isobar interference at mass 14, e.g. 12CH2 and 13CH, is eliminated. The negatively charged ions in the beam scattered from the alkali halide surface are separated from other scattered charge states by two large acceptance (˜15 msr) stages of electrostatic analysis. The N-14 isobar interference is thus removed, since N does not support a stable negative ion. Initial results for C-14 detection obtained using C-14 enriched CO2 from ANSTO will be described.

  2. Liquid madelung energy and schottky defect energy related to liquid structure and melting temperature for alkali halides

    SciTech Connect

    March, N.H.; Tosi, M.P.

    1985-01-01

    Motivated by the work of Reiss et al. in which the melting temperature T /SUB m/ of alkali halides is correlated with Coulomb energy, we consider the cohesive energy W of ionic melts and Schottky defect energy E /SUB s/ in the hot crystal, relative to the thermal energy k /SUB B/ T /SUB m/ . It is shown here that is accurately approximated by the liquid Madelung energy and hence that W/k /SUB B/ T /SUB m/ relates to the charge-charg direct correlation function c /SUB QQ/ (r) at r = 0. The existence of a ''Madelung constant'' for the liquid at T /SUB m/ is thereby demonstrated through the alkali halide series. An estimate of the ratio E /SUB s/ /k /SUB B/ T /SUB m/ i then considered; the basic additional ingredient being argued to be the static dielectric constant of the solid. Th BarrDawson-Lidiard empirical correlation between E /SUB s/ and k /SUB B/ T /SUB m/ can be understood in this way.

  3. Development of processes for the production of solar grade silicon from halides and alkali metals, phase 1 and phase 2

    NASA Technical Reports Server (NTRS)

    Dickson, C. R.; Gould, R. K.; Felder, W.

    1981-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.

  4. Sensitivity of alkali halide scintillating calorimeters with particle identification to investigate the DAMA dark matter detection claim

    NASA Astrophysics Data System (ADS)

    Nadeau, P.; Clark, M.; Di Stefano, P. C. F.; Lanfranchi, J.-C.; Roth, S.; von Sivers, M.; Yavin, I.

    2015-07-01

    Scintillating calorimeters are cryogenic detectors combining a measurement of scintillation with one of phonons to provide particle identification. In view of developing alkali halide devices of this type able to check the DAMA/LIBRA claim for the observation of dark matter, we have simulated detector performances to determine their sensitivity by two methods with little model-dependence. We conclude that if performance of the phonon channel can be brought in line with those of other materials, an exposure of 10 kg-days would suffice to check the DAMA/LIBRA claim in standard astrophysical scenarios. Additionally, a fairly modest array of 5 kg with background rejection would be able to directly check the DAMA/LIBRA modulation result in 2 years.

  5. Low-frequency modes of aqueous alkali halide solutions: an ultrafast optical Kerr effect study.

    PubMed

    Heisler, Ismael A; Mazur, Kamila; Meech, Stephen R

    2011-03-01

    A detailed picture of aqueous solvation of ions is central to the understanding of diverse phenomena in chemistry and biology. In this work, we report polarization resolved THz time domain measurements of the Raman spectral density of a wide range of aqueous salt solutions. In particular, the isotropic Raman spectral density reveals the frequency of the hydrogen bond formed between the halide ion and water. The frequency of this mode is measured for the series Cl(-), Br(-), and I(-) as a function of concentration, cation size, and charge. The frequencies extrapolated to zero concentration permit an estimation of the force constant of the mode, which is found to decrease with increasing halide mass and to be similar to the force constant associated with the water-water hydrogen bond. This result is consistent with recent calculations. The extrapolation of the frequency of the chloride hydrogen bond to zero concentration reveals a dependence of the frequency on the nature of the cation. This is ascribed to an interaction between the solvated anion and cation even at the lowest concentration studied here (<0.15 M). It is suggested that this behavior reflects the influence of the electric field of the cation on the hydrogen bond of an adjacent anion. Such interactions should be taken into account when modeling experimental data recorded at concentrations of ions in excess of 0.1 M. These measurements of the isotropic Raman spectral density are compared with those for the anisotropic response, which reflects the frequencies of the full range of hydrogen bonds in aqueous salt solutions. The anisotropic spectral density recovered can be modeled in terms of a concentration-dependent population of water-water H-bonds with a frequency unaffected by the ions, the halide-water hydrogen bonds, and a low-frequency collision-induced contribution. PMID:21291185

  6. EPR study of electron bombarded alkali- and alkaline-earth halide crystal surfaces

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Lad, R. A.

    1975-01-01

    An EPR study of electron bombarded LiF, NaCl, KCl, CaF2 and BaF2 polycrystalline surfaces has shown that small metal particles are formed on the surfaces of the crystals. Identification was made from CESR signals. The symmetric line-shape of the signals, even at 77 K, indicated that the particles were less than 0.5 micron in diameter. Signals due to F centers were observed in LiF but not in the other halides. Implications to metal deposition are considered.

  7. An Investigation of Ion-Pairing of Alkali Metal Halides in Aqueous Solutions Using the Electrical Conductivity and the Monte Carlo Computer Simulation Methods

    PubMed Central

    Gujt, Jure; Bešter-Rogač, Marija; Hribar-Lee, Barbara

    2013-01-01

    The ion pairing is, in very dilute aqueous solutions, of rather small importance for solutions’ properties, which renders its precise quantification quite a laborious task. Here we studied the ion pairing of alkali halides in water by using the precise electric conductivity measurements in dilute solutions, and in a wide temperature range. The low-concentration chemical model was used to analyze the results, and to estimate the association constant of different alkali halide salts. It has been shown that the association constant is related to the solubility of salts in water and produces a ’volcano relationship’, when plotted against the difference between the free energy of hydration of the corresponding individual ions. The computer simulation, using the simple MB+dipole water model, were used to interprete the results, to find a microscopic basis for Collins’ law of matching water affinities. PMID:24526801

  8. Lattice model calculation of elastic and thermodynamic properties at high pressure and temperature. [for alkali halides in NaCl lattice

    NASA Technical Reports Server (NTRS)

    Demarest, H. H., Jr.

    1972-01-01

    The elastic constants and the entire frequency spectrum were calculated up to high pressure for the alkali halides in the NaCl lattice, based on an assumed functional form of the inter-atomic potential. The quasiharmonic approximation is used to calculate the vibrational contribution to the pressure and the elastic constants at arbitrary temperature. By explicitly accounting for the effect of thermal and zero point motion, the adjustable parameters in the potential are determined to a high degree of accuracy from the elastic constants and their pressure derivatives measured at zero pressure. The calculated Gruneisen parameter, the elastic constants and their pressure derivatives are in good agreement with experimental results up to about 600 K. The model predicts that for some alkali halides the Grunesen parameter may decrease monotonically with pressure, while for others it may increase with pressure, after an initial decrease.

  9. Universal scaling of potential energy functions describing intermolecular interactions. II. The halide-water and alkali metal-water interactions

    SciTech Connect

    Werhahn, Jasper C.; Akase, Dai; Xantheas, Sotiris S.

    2014-08-14

    The scaled forms of the newly introduced generalized potential energy functions (PEFs) describing intermolecular interactions [J. Chem. Phys. xx, yyyyy (2011)] have been used to fit the ab-initio minimum energy paths (MEPs) for the halide- and alkali metal-water systems X-(H2O), X=F, Cl, Br, I, and M+(H2O), M=Li, Na, K, Rb, Cs. These generalized forms produce fits to the ab-initio data that are between one and two orders of magnitude better in the χ2 than the original forms of the PEFs. They were found to describe both the long-range, minimum and repulsive wall of the potential energy surface quite well. Overall the 4-parameter extended Morse (eM) and generalized Buckingham exponential-6 (gB-e6) potentials were found to best fit the ab-initio data. Furthermore, a single set of parameters of the reduced form was found to describe all candidates within each class of interactions. The fact that in reduced coordinates a whole class of interactions can be represented by a single PEF, yields the simple relationship between the molecular parameters associated with energy (well depth, ε), structure (equilibrium distance, rm) and spectroscopy (anharmonic frequency, ν):€ν = A⋅ (ε /μ)1/ 2 /rm + B⋅ε /rm 3 , where A and B are constants depending on the underlying PEF. This more general case of Badger’s rule has been validated using the experimentally measured frequencies of the hydrogen bonded OH stretching vibrations in the halide-water series.

  10. Ca-Fe and Alkali-Halide Alteration of an Allende Type B CAI: Aqueous Alteration in Nebular or Asteroidal Settings

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Simon, J. I.; Simon, S. B.; Grossman, L.

    2012-01-01

    Ca-Fe and alkali-halide alteration of CAIs is often attributed to aqueous alteration by fluids circulating on asteroidal parent bodies after the various chondritic components have been assembled, although debate continues about the roles of asteroidal vs. nebular modification processes [1-7]. Here we report de-tailed observations of alteration products in a large Type B2 CAI, TS4 from Allende, one of the oxidized subgroup of CV3s, and propose a speculative model for aqueous alteration of CAIs in a nebular setting. Ca-Fe alteration in this CAI consists predominantly of end-member hedenbergite, end-member andradite, and compositionally variable, magnesian high-Ca pyroxene. These phases are strongly concentrated in an unusual "nodule" enclosed within the interior of the CAI (Fig. 1). The Ca, Fe-rich nodule superficially resembles a clast that pre-dated and was engulfed by the CAI, but closer inspection shows that relic spinel grains are enclosed in the nodule, and corroded CAI primary phases interfinger with the Fe-rich phases at the nodule s margins. This CAI also contains abundant sodalite and nepheline (alkali-halide) alteration that occurs around the rims of the CAI, but also penetrates more deeply into the CAI. The two types of alteration (Ca-Fe and alkali-halide) are adjacent, and very fine-grained Fe-rich phases are associated with sodalite-rich regions. Both types of alteration appear to be replacive; if that is true, it would require substantial introduction of Fe, and transport of elements (Ti, Al and Mg) out of the nodule, and introduction of Na and Cl into alkali-halide rich zones. Parts of the CAI have been extensively metasomatized.

  11. Characterization of alkali halides doped 1-(2-methoxy benzyloxy)-8- hydroxy-9,10-anthraquinone films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Mahajan, Aman; Singh, Mandeep; Gupta, Himani; Bedi, R. K.; Kumar, S.; Aswal, D. K.

    2012-06-01

    Thin films of 1-(2-methoxy benzyloxy)-8-hydroxy-9, 10-anthraquinone (AQ) have been prepared by hot wall technique onto glass substrates kept at 348 K in a vacuum of 10-5 Torr. Chemical modifications of films have been performed by their treatment with different alkali halides. The films so obtained are systematically studied for their electrical and optical properties. The electrical conductivities of the resulting films exhibited semiconductor-like temperature dependence in the experimental range studied. LiCl and LiBr doped films exhibit almost three orders of magnitude higher conductivity, than untreated films, whereas NaCl, NaBr and KBr do not show any remarkable change in the conductivity. Analysis of optical absorption measurements indicate that the interband transition energies of films lie in the range of 2.57-2.66 eV. Keeping in view the electrical and optical properties of films, ITO/AQ/Al solar cells have been fabricated and characterized. The J-V characteristics of these devices are found to be in good agreement with standard diode equation. Power conversion efficiency of Li doped AQ based devices are found to increase by an order of two as compared to undoped AQ based devices.

  12. Interaction of wide band gap single crystals with 248 nm excimer laser radiation. XII. The emission of negative atomic ions from alkali halides

    SciTech Connect

    Kimura, Kenichi; Langford, S. C.; Dickinson, J. T.

    2007-12-01

    Many wide band gap materials yield charged and neutral emissions when exposed to sub-band-gap laser radiation at power densities below the threshold for optical breakdown and plume formation. In this work, we report the observation of negative alkali ions from several alkali halides under comparable conditions. We observe no evidence for negative halogen ions, in spite of the high electron affinities of the halogens. Significantly, the positive and negative alkali ions show a high degree of spatial and temporal overlap. A detailed study of all the relevant particle emissions from potassium chloride (KCl) suggests that K{sup -} is formed by the sequential attachment of two electrons to K{sup +}.

  13. Shallow electron traps in alkali halide crystals: Mollwo-Ivey relations of the optical absorption bands

    NASA Astrophysics Data System (ADS)

    Ziraps, Valters

    2001-03-01

    Evidences are given that two classes of the transient IR- absorption bands: (a) with max. at 0.27-0.36 eV in NaCl, KCl, KBr, KI and RbCl (due to shallow electron traps according G. Jacobs or due to bound polarons according E.V. Korovkin and T.A. Lebedkina) and (b) with max. at 0.15-0.36 eV in NaI, NaBr, NaCl:I, KCl:I, RbCl:I and RbBr:I (due to on-center STE localized at iodine dimer according M. Hirai and collaborators) are caused by the same defect- atomic alkali impurity center [M+]c0e- (electron e- trapped by a substitutional smaller size alkali cation impurity [M+]c0). The Mollwo-Ivey plots (for the transient IR-absorption bands) of the zero-phonon line energy E0 (for NaCl, KCl, KBr, RbCl and NaBr, KCl:I) and/or the low-energy edge valued E0 (for NaI, RbCl:I, RbBr:I) versus anion-cation distance (d) evidence that two types of the [M+]c0e- centers are predominant: (a) [Na+]c0e- in the KX and RbX host crystals with the relation E0approximately equals 6.15/d2.74, (b) [Li+]c03- in the NaX host crystals - E0approximately equals 29.4/d4.72. The Mollwo-Ivey relation E0approximately equals 18.36/d(superscript 2.70 is fulfilled as well for the F' band in NaCl, KCl, KBr, KI, RbCl, RbI if we use the F' center optical binding energy values E0.

  14. Molecular simulation of aqueous electrolyte solubility. 3. Alkali-halide salts and their mixtures in water and in hydrochloric acid.

    PubMed

    Moučka, Filip; Lísal, Martin; Smith, William R

    2012-05-10

    We extend the osmotic ensemble Monte Carlo (OEMC) molecular simulation method (Moučka et al. J. Phys Chem. B 2011, 115, 7849-7861) for directly calculating the aqueous solubility of electrolytes and for calculating their chemical potentials as functions of concentration to cases involving electrolyte hydrates and mixed electrolytes, including invariant points involving simultaneous precipitation of several solutes. The method utilizes a particular semigrand canonical ensemble, which performs simulations of the solution at a fixed number of solvent molecules, pressure, temperature, and specified overall electrolyte chemical potential. It avoids calculations for the solid phase, incorporating available solid chemical potential data from thermochemical tables, which are based on well-defined reference states, or from other sources. We apply the method to a range of alkali halides in water and to selected examples involving LiCl monohydrate, mixed electrolyte solutions involving water and hydrochloric acid, and invariant points in these solvents. The method uses several existing force-field models from the literature, and the results are compared with experiment. The calculated results agree qualitatively well with the experimental trends and are of reasonable accuracy. The accuracy of the calculated solubility is highly dependent on the solid chemical potential value and also on the force-field model used. Our results indicate that pairwise additive effective force-field models developed for the solution phase are unlikely to also be good models for the corresponding crystalline solid. We find that, in our OEMC simulations, each ionic force-field model is characterized by a limiting value of the total solution chemical potential and a corresponding aqueous concentration. For higher values of the imposed chemical potential, the solid phase in the simulation grows in size without limit. PMID:22475081

  15. Evidence for New Excess Electron Localization Sites in Na{sub {ital n}}F{sub {ital n}{minus}1 } Alkali-Halide Clusters

    SciTech Connect

    Durand, G.; Spiegelmann, F.; Labastie, P.; LHermite, J.; Poncharal, P.

    1997-07-01

    This Letter examines new types of localization sites for an excess electron in finite alkali-halide clusters resulting from defects on cuboidal structures, namely {open_quotes}edge states,{close_quotes} R center, and other surface defects. We present theoretical calculations on Na{sub n}F {sub n{minus}1} clusters with one excess electron. Comparisons with experimental results are presented for different cluster sizes (n=17 , 23, 28, and 29). Structures with edge or surface defects are relevant for n=23 , 28, and 29. {copyright} {ital 1997} {ital The American Physical Society}

  16. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mester, Zoltan; Panagiotopoulos, Athanassios Z.

    2015-07-01

    The mean ionic activity coefficients of aqueous KCl, NaF, NaI, and NaCl solutions of varying concentrations have been obtained from molecular dynamics simulations following a recently developed methodology based on gradual insertions of salt molecules [Z. Mester and A. Z. Panagiotopoulos, J. Chem. Phys. 142, 044507 (2015)]. The non-polarizable ion models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)], Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)], Reiser et al. [J. Chem. Phys. 140, 044504 (2014)], and Joung and Cheatham [J. Phys. Chem. B 112, 9020 (2008)] were used along with the extended simple point charge (SPC/E) water model [Berendsen et al., J. Phys. Chem. 91, 6269 (1987)] in the simulations. In addition to the chemical potentials in solution used to obtain the activity coefficients, we also calculated the chemical potentials of salt crystals and used them to obtain the solubility of these alkali halide models in SPC/E water. The models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)] and Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)] provide excellent predictions of the mean ionic activity coefficients at 298.15 K and 1 bar, but significantly underpredict or overpredict the solubilities. The other two models generally predicted the mean ionic activity coefficients only qualitatively. With the exception of NaF for which the solubility is significantly overpredicted, the model of Joung and Cheatham predicts salt solubilities that are approximately 40%-60% of the experimental values. The models of Reiser et al. [J. Chem. Phys. 140, 044504 (2014)] make good predictions for the NaCl and NaI solubilities, but significantly underpredict the solubilities for KCl and NaF. We also tested the transferability of the models to temperatures much higher than were used to parametrize them by performing simulations for NaCl at 373.15 K and 1 bar, and at 473.15 K and 15.5 bar. All models overpredict the drop in the values of mean ionic activity coefficients with increased temperature seen in experiments. The present results, together with earlier calculations for a number of models for NaCl aqueous solutions at 298.15 K, point to the strong need for development of improved intermolecular potential models for classical simulations of electrolyte solutions.

  17. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations.

    PubMed

    Mester, Zoltan; Panagiotopoulos, Athanassios Z

    2015-07-28

    The mean ionic activity coefficients of aqueous KCl, NaF, NaI, and NaCl solutions of varying concentrations have been obtained from molecular dynamics simulations following a recently developed methodology based on gradual insertions of salt molecules [Z. Mester and A. Z. Panagiotopoulos, J. Chem. Phys. 142, 044507 (2015)]. The non-polarizable ion models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)], Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)], Reiser et al. [J. Chem. Phys. 140, 044504 (2014)], and Joung and Cheatham [J. Phys. Chem. B 112, 9020 (2008)] were used along with the extended simple point charge (SPC/E) water model [Berendsen et al., J. Phys. Chem. 91, 6269 (1987)] in the simulations. In addition to the chemical potentials in solution used to obtain the activity coefficients, we also calculated the chemical potentials of salt crystals and used them to obtain the solubility of these alkali halide models in SPC/E water. The models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)] and Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)] provide excellent predictions of the mean ionic activity coefficients at 298.15 K and 1 bar, but significantly underpredict or overpredict the solubilities. The other two models generally predicted the mean ionic activity coefficients only qualitatively. With the exception of NaF for which the solubility is significantly overpredicted, the model of Joung and Cheatham predicts salt solubilities that are approximately 40%-60% of the experimental values. The models of Reiser et al. [J. Chem. Phys. 140, 044504 (2014)] make good predictions for the NaCl and NaI solubilities, but significantly underpredict the solubilities for KCl and NaF. We also tested the transferability of the models to temperatures much higher than were used to parametrize them by performing simulations for NaCl at 373.15 K and 1 bar, and at 473.15 K and 15.5 bar. All models overpredict the drop in the values of mean ionic activity coefficients with increased temperature seen in experiments. The present results, together with earlier calculations for a number of models for NaCl aqueous solutions at 298.15 K, point to the strong need for development of improved intermolecular potential models for classical simulations of electrolyte solutions. PMID:26233143

  18. Study on influence of growth conditions on position and shape of crystal/melt interface of alkali lead halide crystals at Bridgman growth

    NASA Astrophysics Data System (ADS)

    Král, Robert

    2012-12-01

    Suitable conditions for growth of high quality single crystals of ternary alkali lead halides prepared by a Bridgman method were explored using direct observation of a crystal/melt interface when pulling an ampoule out of a furnace, deliberated striations' induction and measurement of a temperature field in the filled ampoule in the vertical Bridgman arrangement, as model compounds lead chloride and ternary rubidium lead bromide were used. By direct observation only position of the crystal/melt interface was markedly determined, while by induced striations both the position and the shape of the interface were visualized but their contrast had to be intensified by adding admixtures. Performed temperature measurements in the filled ampoule brought both a view of temperature field in the 3D radial symmetry and basic data for comparison of a real temperature field with those obtained by projected modeling.

  19. Intrinsic emittance reduction in transmission mode photocathodes

    NASA Astrophysics Data System (ADS)

    Lee, Hyeri; Cultrera, Luca; Bazarov, Ivan

    2016-03-01

    High quantum efficiency (QE) and low emittance electron beams provided by multi-alkali photocathodes make them of great interest for next generation high brightness photoinjectors. Spicer's three-step model well describes the photoemission process; however, some photocathode characteristics such as their thickness have not yet been completely exploited to further improve the brightness of the generated electron beams. In this work, we report on the emittance and QE of a multi-alkali photocathode grown onto a glass substrate operated in transmission and reflection modes at different photon energies. We observed a 20% reduction in the intrinsic emittance from the reflection to the transmission mode operation. This observation can be explained by inelastic electron-phonon scattering during electrons' transit towards the cathode surface. Due to this effect, we predict that thicker photocathode layers will further reduce the intrinsic emittance of electron beams generated by photocathodes operated in transmission mode.

  20. Mass spectrometry of oligopeptides in the presence of large amounts of alkali halides using desorption/ionization induced by neutral cluster impact.

    PubMed

    Portz, André; Baur, Markus; Gebhardt, Christoph R; Dürr, Michael

    2016-06-01

    Oligopeptides in the presence of large amounts of salt were desorbed and ionized using desorption/ionization induced by neutral clusters (DINeC) for further analysis by means of mass spectrometry (MS). Using oligopeptides in alkali halide solutions as a model system, DINeC was shown to yield clear and fragmentation free mass spectra of the biomolecules even from environments with a large excess of salt. The results were traced back to a phase separation between salt and biomolecules during sample preparation. The ratio between alkali metal complexes [M+A](+) and bare biomolecules [M+H](+) was controlled using different preparation schemes. DINeC was applied to the products of a tryptic digest of bovine serum albumin in the presence of sodium chloride; the results of a mass fingerprint analysis did not show a major difference for the spectra with and without salt in the original solution. The metal-ion/peptide interaction was further investigated by means of tandem-MS. PMID:26825286

  1. A different view of structure-making and structure-breaking in alkali halide aqueous solutions through x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Waluyo, Iradwikanari; Nordlund, Dennis; Bergmann, Uwe; Schlesinger, Daniel; Pettersson, Lars G. M.; Nilsson, Anders

    2014-06-01

    X-ray absorption spectroscopy measured in transmission mode was used to study the effect of alkali and halide ions on the hydrogen-bonding (H-bonding) network of water. Cl- and Br- are shown to have insignificant effect on the structure of water while I- locally weakens the H-bonding, as indicated by a sharp increase of the main-edge feature in the x-ray absorption spectra. All alkali cations act as structure-breakers in water, weakening the H-bonding network. The spectral changes are similar to spectra of high density ices where the 2nd shell has collapsed due to a break-down of the tetrahedral structures, although here, around the ions, the breakdown of the local tetrahedrality is rather due to non-directional H-bonding to the larger anions. In addition, results from temperature-dependent x-ray Raman scattering measurements of NaCl solution confirm the H-bond breaking effect of Na+ and the effect on the liquid as similar to an increase in temperature.

  2. Band-structure calculations of noble-gas and alkali halide solids using accurate Kohn-Sham potentials with self-interaction correction

    SciTech Connect

    Li, Y.; Krieger, J.B. ); Norman, M.R. ); Iafrate, G.J. )

    1991-11-15

    The optimized-effective-potential (OEP) method and a method developed recently by Krieger, Li, and Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-correlation energy functional. The resulting band gaps from both calculations are found to be in fair agreement with the experimental values. The discrepancies are typically within a few percent with results that are nearly the same as those of previously published orbital-dependent multipotential SIC calculations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD---and it is believed to be the case even for the exact Kohn-Sham potential---both the OEP and KLI predict valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields essentially the same results as the OEP.

  3. [Sources of error in the European Pharmacopoeia assay of halide salts of organic bases by titration with alkali].

    PubMed

    Kószeginé, S H; Ráfliné, R Z; Paál, T; Török, I

    2000-01-01

    A short overview has been given by the authors on the titrimetric assay methods of halide salts of organic bases in the pharmacopoeias of greatest importance. The alternative procedures introduced by the European Pharmacopoeia Commission some years ago to replace the non-aqueous titration with perchloric acid in the presence of mercuric acetate have also been presented and evaluated. The authors investigated the limits of applicability and the sources of systematic errors (bias) of the strongly preferred titration with sodium hydroxide in an alcoholic medium. To assess the bias due to the differences between the results calculated from the two inflexion points of the titration curves and the two real endpoints corresponding to the strong and weak acids, respectively, the mathematical analysis of the titration curve function was carried out. This bias, generally negligible when the pH change near the endpoint of the titration is more than 1 unit, is the function of the concentration, the apparent pK of the analyte and the ionic product of water (ethanol) in the alcohol-water mixtures. Using the validation data gained for the method with the titration of ephedrine hydrochloride the authors analysed the impact of carbon dioxide in the titration medium on the additive and proportional systematic errors of the method. The newly introduced standardisation procedure of the European Pharmacopoeia for the sodium hydroxide titrant to decrease the systematic errors caused by carbon dioxide has also been evaluated. PMID:11379027

  4. Characterization of an Alkali- and Halide-Resistant Laccase Expressed in E. coli: CotA from Bacillus clausii

    PubMed Central

    Brander, Søren; Mikkelsen, Jørn D.; Kepp, Kasper P.

    2014-01-01

    The limitations of fungal laccases at higher pH and salt concentrations have intensified the search for new extremophilic bacterial laccases. We report the cloning, expression, and characterization of the bacterial cotA from Bacillus clausii, a supposed alkalophilic ortholog of cotA from B. subtilis. Both laccases were expressed in E. coli strain BL21(DE3) and characterized fully in parallel for strict benchmarking. We report activity on ABTS, SGZ, DMP, caffeic acid, promazine, phenyl hydrazine, tannic acid, and bilirubin at variable pH. Whereas ABTS, promazine, and phenyl hydrazine activities vs. pH were similar, the activity of B. clausii cotA was shifted upwards by ∼0.5–2 pH units for the simple phenolic substrates DMP, SGZ, and caffeic acid. This shift is not due to substrate affinity (KM) but to pH dependence of catalytic turnover: The kcat of B. clausii cotA was 1 s−1 at pH 6 and 5 s−1 at pH 8 in contrast to 6 s−1 at pH 6 and 2 s−1 at pH 8 for of B. subtilis cotA. Overall, kcat/KM was 10-fold higher for B. subtilis cotA at pHopt. While both proteins were heat activated, activation increased with pH and was larger in cotA from B. clausii. NaCl inhibited activity at acidic pH, but not up to 500–700 mM NaCl in alkaline pH, a further advantage of the alkali regime in laccase applications. The B. clausii cotA had ∼20 minutes half-life at 80°C, less than the ∼50 minutes at 80°C for cotA from B. subtilis. While cotA from B. subtilis had optimal stability at pH∼8, the cotA from B. clausii displayed higher combined salt- and alkali-resistance. This resistance is possibly caused by two substitutions (S427Q and V110E) that could repel anions to reduce anion-copper interactions at the expense of catalytic proficiency, a trade-off of potential relevance to laccase optimization. PMID:24915287

  5. Correlation of CsK{sub 2}Sb photocathode lifetime with antimony thickness

    SciTech Connect

    Mamun, M. A. Elmustafa, A. A.; Hernandez-Garcia, C.; Poelker, M.

    2015-06-01

    CsK{sub 2}Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  6. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    SciTech Connect

    Mamun, M. A.; Hernandez-Garcia, C.; Poelker, M.; Elmustafa, A. A.

    2015-06-01

    CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  7. Structure and Dynamics of Tunneling and Laser - Defects in Alkali Halides as Studied by a Behavior Type Analysis of the Polarized Raman Scattering.

    NASA Astrophysics Data System (ADS)

    Joosen, Wim M. C.

    It is demonstrated that proper analysis of polarized Raman spectra of defects in alkali halides by means of the Behavior Type (BT) method allows a detailed description of defect dynamics. The recently developed BT method provides a systematic procedure to distinguish, among the 125 Raman -active modes of the 33 possible point groups of a defect in a cubic lattice, the Raman modes which are consistent with the polarized Raman data, from those which are not. The efficiency of the BT method was shown in the interpretation of the low frequency Raman mode at 43 cm ^{-1} of the Li ^+ off-center impurity in KCl, which was attributed to a collective motion of the surrounding chlorine ions. This experimental finding inspired us to calculate the time dependent phonon autocorrelation function of a coupled spin-phonon system, which explains the anomalous isotope shift of the low frequency mode. We also studied the hydrogen-tagged Li ^+ center in KCl, which performs a correlated tunneling motion and put forward a defect model, in which the Li^+ ion and the hydrogen atom are both accommodated on the same cation site and displaced along <111> in opposite directions. There is no preferential molecular bond of any consequence between them. Our picture modifies the model based on electron spin resonance measurements, in which the H^{0}Li ^+ center is considered as a (LiH) ^+ molecular system. The Tl^0(1) defect is the first laser-center of the atomic type investigated with the Raman technique. The polarized Raman spectra, were excited in the third optical band of Tl^0 (1) and show that this transition is broadened by A_1-modes of the C_ {rm 4v} defect symmetry. We distinguished an induced first order spectrum, shown to be characteristic for the KCl lattice, and a low frequency vibration at about 30 cm^{-1}, which reflects the motion of the thallium atom along the fourfold axis. The Tl^+Tl^0 (1) center provided a first test-case for the extended BT method for resonant Raman scattering. Its lower symmetry with respect to the unperturbed Tl^0(1) was established from the Raman data. The polarized Raman spectra also illustrated that the electronic structure of Tl^+Tl^0(1) differs considerably from that of Tl^0(1).

  8. Measurement of spectral response of photocathodes and its application

    NASA Astrophysics Data System (ADS)

    Qian, Yunsheng; Zong, Zhiyuan; Chang, Benkang

    2001-10-01

    Spectral response is an important parameter of photocathodes. By analyzing measured spectral response curves, much information about the photocathodes can be obtained which is useful to investigation of photocathodes. The principle measuring the spectral response of photocathodes is expounded in this paper. The on-line measurement system was developed, which can measure the spectral response of optoelectronic devices within range of 400nm~1800nm. It can also measure the reflectance of monochromatic light, the monochromatic photocurrent, and integral sensitivity of photocathodes. The measurement system was used to on-line measure spectral response of multi-alkali photocathodes(Na2KSb:Cs) when they are being prepared. Combining measurement of reflectance of monochromatic light, by which the thickness of photocathodes can be timely obtained, the optimum thickness of photocathode is looked for. The measurement system also used in the investigation of GaAs:Cs-O NEA photocathodes. Surface escape probability, electron diffusion length and back-interface recombination velocity are the factors that influence the quantum yield of NEA photocathode. It is difficult to directly measure these parameters. But they can be obtained by simulation of measured spectral response. The reflective GaAs samples were activated and evaluated. The results were given and analyzed.

  9. Electrolytic systems and methods for making metal halides and refining metals

    SciTech Connect

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  10. Masked Photocathode for Photoinjector

    SciTech Connect

    Qiang, Ji

    2010-01-21

    In this research note, we propose a scheme to insert a photocathode inside a photoinjector for generating high brightness electron beam. Instead of mounting the photocathode onto the electrode, a masked electrode with small hole is used to shield the photocathode from the accelerating vacuum chamber. Using such a masked photocathode will make the replacement of photocathode material very simple by rotating the photocathode behind the mask into the hole. This will significantly increase the usage lifetime of a photocathode. Furthermore, this also helps reduce the dark current or secondary electron emission from the photocathode. The hole on the mask also provides a transverse cut-off to the Gaussian laser profile which can be beneficial from the beam dynamics point of view.

  11. Prototype dispenser photocathode: Demonstration and comparison to theory

    NASA Astrophysics Data System (ADS)

    Moody, N. A.; Jensen, K. L.; Feldman, D. W.; O'Shea, P. G.; Montgomery, E. J.

    2007-03-01

    A method to significantly extend the operational lifetime of alkali-based photocathodes by diffusing cesium to the surface at moderate temperature is presented and shown to restore the quantum efficiency (QE) of cesiated tungsten. Experimental measurements of QE as a function of surface cesium coverage compare exceptionally well with a recent theoretical photoemission model, notably without the use of adjustable parameters. A prototype cesium dispenser cell is demonstrated and validates the concept upon which long-life dispenser photocathodes can be based.

  12. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    SciTech Connect

    Mulhollan, Gregory; /SLAC /Saxed Surface Science, Austin, TX

    2010-08-25

    We have developed an activation procedure by which the reactivity to CO{sub 2}, a principal cause of yield decay for GaAs photocathodes, is greatly reduced. The use of a second alkali in the activation process is responsible for the increased immunity of the activated surface. The best immunity was obtained by using a combination of Cs and Li without any loss in near bandgap yield. Optimally activated photocathodes have nearly equal quantities of both alkalis.

  13. A Masked Photocathode in Photoinjector

    SciTech Connect

    Qiang, Ji

    2010-12-14

    In this paper, we propose a masked photocathode inside the photoinjector for generating high brightness election beam. Instead of mounting the photocathode onto an electrode, an electrode with small hole is used as a mask to shield the photocathode from the accelerating vacuum chamber. Using such a masked photocathode will make the replacement of photocathode material easy by rotating the photocathode behind the electrode into the hole. Furthermore, this helps reduce the dark current or secondary electron emission from the photocathode material. The masked photocathode also provides transverse cut-off to a Gaussian laser beam that reduces electron beam emittance growth from nonlinear space-charge effects.

  14. Photocathode research at SLAC

    SciTech Connect

    Mulhollan, G.; Clendenin, J.; Garwin, E.; Kirby, R.; Maruyama, T.; Tang, H.; Prepost, R.

    1998-01-01

    GaAs based photocathode research at SLAC will be described. Recent efforts have focused on both immediate applications and fundamental photocathode properties. This includes revisiting some old measurements with state-of-the-art instrumentation. {copyright} {ital 1998 American Institute of Physics.}

  15. Piezoelectrically Enhanced Photocathodes

    NASA Technical Reports Server (NTRS)

    Beach, Robert A.; Nikzad, Shouleh; Bell, Lloyd Douglas; Strittmatter, Robert

    2011-01-01

    Doping of photocathodes with materials that have large piezoelectric coefficients has been proposed as an alternative means of increasing the desired photoemission of electrons. Treating cathode materials to increase emission of electrons is called "activation" in the art. It has been common practice to activate photocathodes by depositing thin layers of suitable metals (usually, cesium). Because cesium is unstable in air, fabrication of cesiated photocathodes and devices that contain them must be performed in sealed tubes under vacuum. It is difficult and costly to perform fabrication processes in enclosed, evacuated spaces. The proposed piezoelectrically enhanced photocathodes would have electron-emission properties similar to those of cesiated photocathodes but would be stable in air, and therefore could be fabricated more easily and at lower cost. Candidate photocathodes include nitrides of elements in column III of the periodic table . especially compounds of the general formula Al(x)Ga(1.x)N (where 0< or = x < or =.1). These compounds have high piezoelectric coefficients and are suitable for obtaining response to ultraviolet light. Fabrication of a photocathode according to the proposal would include inducement of strain in cathode layers during growth of the layers on a substrate. The strain would be induced by exploiting structural mismatches among the various constituent materials of the cathode. Because of the piezoelectric effect in this material, the strain would give rise to strong electric fields that, in turn, would give rise to a high concentration of charge near the surface. Examples of devices in which piezoelectrically enhanced photocathodes could be used include microchannel plates, electron- bombarded charge-coupled devices, image tubes, and night-vision goggles. Piezoelectrically enhanced photocathode materials could also be used in making highly efficient monolithic photodetectors. Highly efficient and stable piezoelectrically enhanced, ultraviolet-sensitive photocathodes and photodetectors could be fabricated by use of novel techniques for growing piezoelectrically enhanced layers, in conjunction with thinning and dopant-selective etching techniques.

  16. Oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Rohrmann, Charles A.; Fullam, Harold T.

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  17. Acicular photomultiplier photocathode structure

    DOEpatents

    Craig, Richard A.; Bliss, Mary

    2003-09-30

    A method and apparatus for increasing the quantum efficiency of a photomultiplier tube by providing a photocathode with an increased surface-to-volume ratio. The photocathode includes a transparent substrate, upon one major side of which is formed one or more large aspect-ratio structures, such as needles, cones, fibers, prisms, or pyramids. The large aspect-ratio structures are at least partially composed of a photoelectron emitting material, i.e., a material that emits a photoelectron upon absorption of an optical photon. The large aspect-ratio structures may be substantially composed of the photoelectron emitting material (i.e., formed as such upon the surface of a relatively flat substrate) or be only partially composed of a photoelectron emitting material (i.e., the photoelectron emitting material is coated over large aspect-ratio structures formed from the substrate material itself.) The large aspect-ratio nature of the photocathode surface allows for an effective increase in the thickness of the photocathode relative the absorption of optical photons, thereby increasing the absorption rate of incident photons, without substantially increasing the effective thickness of the photocathode relative the escape incidence of the photoelectrons.

  18. Low-workfunction photocathodes based on acetylide compounds

    SciTech Connect

    Terdik, Joseph Z; Spentzouris, Linda; Terry, Jr., Jeffrey H; Harkay, Katherine C; Nemeth, Karoly; Srajer, George

    2014-05-20

    A low-workfunction photocathode includes a photoemissive material employed as a coating on the photocathode. The photoemissive material includes A.sub.nMC.sub.2, where A is a first metal element, the first element is an alkali metal, an alkali-earth element or the element Al; n is an integer that is 0, 1, 2, 3 or 4; M is a second metal element, the second metal element is a transition metal or a metal stand-in; and C.sub.2 is the acetylide ion C.sub.2.sup.2-. The photoemissive material includes a crystalline structure or non-crystalline structure of rod-like or curvy 1-dimensional polymeric substructures with MC.sub.2 repeating units embedded in a matrix of A.

  19. Molecular compressibility of some halides in alcohols

    NASA Technical Reports Server (NTRS)

    Serban, C.; Auslaender, D.

    1974-01-01

    After measuring ultrasonic velocity and density, the molecular compressibility values from Wada's formula were calculated, for alkali metal halide solutions in methyl, ethyl, butyl, and glycol alcohol. The temperature and concentration dependence were studied, finding deviations due to the hydrogen bonds of the solvent.

  20. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water.

    PubMed

    Reif, Maria M; Hünenberger, Philippe H

    2011-04-14

    The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Hünenberger, J. Chem. Phys. 124, 224501 (2006); M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li(+), Na(+), K(+), Rb(+), Cs(+)) and halide (F(-), Cl(-), Br(-), I(-)) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998); Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, ΔG(hyd)(⊖)[H(+)] = -1100, -1075 or -1050 kJ mol(-1), resulting in three sets L, M, and H for the SPC water model and three sets L(E), M(E), and H(E) for the SPC/E water model (alternative sets can easily be interpolated to intermediate ΔG(hyd)(⊖)[H(+)] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective ionic radius entering into the calculation of the correction terms is also evaluated and found to be very limited. Ultimately, it is expected that comparison with other experimental ionic properties (e.g., derivative single-ion solvation properties, as well as data concerning ionic crystals, melts, solutions at finite concentrations, or nonaqueous solutions) will permit to validate one specific set and thus, the associated ΔG(hyd)(⊖)[H(+)] value (atomistic consistency assumption). Preliminary results (first-peak positions in the ion-water radial distribution functions, partial molar volumes of ionic salts in water, and structural properties of ionic crystals) support a value of ΔG(hyd)(⊖)[H(+)] close to -1100 kJ·mol(-1). PMID:21495739

  1. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water

    SciTech Connect

    Reif, Maria M.; Huenenberger, Philippe H.

    2011-04-14

    The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Huenenberger, J. Chem. Phys. 124, 224501 (2006); M. M. Reif and P. H. Huenenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cs{sup +}) and halide (F{sup -}, Cl{sup -}, Br{sup -}, I{sup -}) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998); Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, {Delta}G{sub hyd} {sup O-minus} [H{sup +}]=-1100, -1075 or -1050 kJ mol{sup -1}, resulting in three sets L, M, and H for the SPC water model and three sets L{sub E}, M{sub E}, and H{sub E} for the SPC/E water model (alternative sets can easily be interpolated to intermediate {Delta}G{sub hyd} {sup O-minus} [H{sup +}] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective ionic radius entering into the calculation of the correction terms is also evaluated and found to be very limited. Ultimately, it is expected that comparison with other experimental ionic properties (e.g., derivative single-ion solvation properties, as well as data concerning ionic crystals, melts, solutions at finite concentrations, or nonaqueous solutions) will permit to validate one specific set and thus, the associated {Delta}G{sub hyd} {sup O-minus} [H{sup +}] value (atomistic consistency assumption). Preliminary results (first-peak positions in the ion-water radial distribution functions, partial molar volumes of ionic salts in water, and structural properties of ionic crystals) support a value of {Delta}G{sub hyd} {sup O-minus} [H{sup +}] close to -1100 kJ{center_dot}mol{sup -1}.

  2. Final Report, Photocathodes for High Repetition Rate Light Sources

    SciTech Connect

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

  3. Robust activation method for negative electron affinity photocathodes

    DOEpatents

    Mulhollan, Gregory A.; Bierman, John C.

    2011-09-13

    A method by which photocathodes(201), single crystal, amorphous, or otherwise ordered, can be surface modified to a robust state of lowered and in best cases negative, electron affinity has been discovered. Conventional methods employ the use of Cs(203) and an oxidizing agent(207), typically carried by diatomic oxygen or by more complex molecules, for example nitrogen trifluoride, to achieve a lowered electron affinity(404). In the improved activation method, a second alkali, other than Cs(205), is introduced onto the surface during the activation process, either by co-deposition, yo-yo, or sporadic or intermittent application. Best effect for GaAs photocathodes has been found through the use of Li(402) as the second alkali, though nearly the same effect can be found by employing Na(406). Suitable photocathodes are those which are grown, cut from boules, implanted, rolled, deposited or otherwise fabricated in a fashion and shape desired for test or manufacture independently supported or atop a support structure or within a framework or otherwise affixed or suspended in the place and position required for use.

  4. Dense-Pinch Photocathode

    NASA Astrophysics Data System (ADS)

    Asmus, John F.; Lovberg, Ralph H.

    1988-05-01

    A promising approach to the generation of low-emittance e-beams for particle beam and FEL application employs a photoelectron cathode. IF such an e-beam source is to be viable at high power, a high-performance hard-UV illuminator is needed. Toward this end, experiments have been performed by illuminating a metal photocathode with the VUV radiation from a laser-guided gas-embedded high-density high-Z pinch. Such a VUV source is interesting because the plasma is created at high density and is optically thick. Thus, it is both a stable and an efficient radiator. Coupled with a copper photocathode it has generated a-beam current densities up to 60 A/sq-cm. The test device has been modified to utilize a pinch formed from a liquid jet in vacuum, rather than the laser-guided discharge in high-pressure gas. This is more suitable for rep-rate operation as it dispenses with the VUV-absorbing interposed gas, the channel-forming laser, and gas transport at high average power. A decane-jet device has been tested at 10 Hz with a peak pulse VUV power of 100 MW.

  5. DIAMOND AMPLIFIED PHOTOCATHODES.

    SciTech Connect

    SMEDLEY,J.; BEN-ZVI, I.; BOHON, J.; CHANG, X.; GROVER, R.; ISAKOVIC, A.; RAO, T.; WU, Q.

    2007-11-26

    High-average-current linear electron accelerators require photoinjectors capable of delivering tens to hundreds of mA average current, with peak currents of hundreds of amps. Standard photocathodes face significant challenges in meeting these requirements, and often have short operational lifetimes in an accelerator environment. We report on recent progress toward development of secondary emission amplifiers for photocathodes, which are intended to increase the achievable average current while protecting the cathode from the accelerator. The amplifier is a thin diamond wafer which converts energetic (few keV) primary electrons into hundreds of electron-hole pairs via secondary electron emission. The electrons drift through the diamond under an external bias and are emitted into vacuum via a hydrogen-terminated surface with negative electron affinity (NEA). Secondary emission gain of over 200 has been achieved. Two methods of patterning diamond, laser ablation and reactive-ion etching (RIE), are being developed to produce the required geometry. A variety of diagnostic techniques, including FTIR, SEM and AFM, have been used to characterize the diamonds.

  6. DIAMOND AMPLIFIER FOR PHOTOCATHODES.

    SciTech Connect

    RAO,T.; BEN-ZVI,I.; BURRILL,A.; CHANG,X.; HULBERT,S.; JOHNSON,P.D.; KEWISCH,J.

    2004-06-21

    We report a new approach to the generation of high-current, high-brightness electron beams. Primary electrons are produced by a photocathode (or other means) and are accelerated to a few thousand electron-volts, then strike a specially prepared diamond window. The large Secondary Electron Yield (SEY) provides a multiplication of the number of electrons by about two orders of magnitude. The secondary electrons drift through the diamond under an electric field and emerge into the accelerating proper of the ''gun'' through a Negative Electron Affinity surface of the diamond. The advantages of the new approach include the following: (1) Reduction of the number of primary electrons by the large SEY, i.e. a very low laser power in a photocathode producing the primaries. (2) Low thermal emittance due to the NEA surface and the rapid thermalization of the electrons. (3) Protection of the cathode from possible contamination from the gun, allowing the use of large quantum efficiency but sensitive cathodes. (4) Protection of the gun from possible contamination by the cathode, allowing the use of superconducting gun cavities. (5) Production of high average currents, up to ampere class. (6) Encapsulated design, making the ''load-lock'' systems unnecessary. This paper presents the criteria that need to be taken into account in designing the amplifier.

  7. Infrared-sensitive photocathode

    DOEpatents

    Mariella, R.P. Jr.; Cooper, G.A.

    1995-04-04

    A single-crystal, multi-layer device is described incorporating an IR absorbing layer that is compositionally different from the Ga{sub x}Al{sub 1{minus}x}Sb layer which acts as the electron emitter. Many different IR absorbing layers can be envisioned for use in this embodiment, limited only by the ability to grow quality material on a chosen substrate. A non-exclusive list of possible IR absorbing layers would include GaSb, InAs and InAs/Ga{sub w}In{sub y}Al{sub 1{minus}y{minus}w}Sb superlattices. The absorption of the IR photon excites an electron into the conduction band of the IR absorber. An externally applied electric field then transports electrons from the conduction band of the absorber into the conduction band of the Ga{sub x}Al{sub 1{minus}x}Sb, from which they are ejected into vacuum. Because the band alignments of Ga{sub x}Al{sub 1{minus}x}Sb can be made the same as that of GaAs, emitting efficiencies comparable to GaAs photocathodes are obtainable. The present invention provides a photocathode that is responsive to wavelengths within the range of 0.9 {mu}m to at least 10 {mu}m. 9 figures.

  8. Infrared-sensitive photocathode

    DOEpatents

    Mariella, Jr., Raymond P.; Cooper, Gregory A.

    1995-01-01

    A single-crystal, multi-layer device incorporating an IR absorbing layer that is compositionally different from the Ga.sub.x Al.sub.1-x Sb layer which acts as the electron emitter. Many different IR absorbing layers can be envisioned for use in this embodiment, limited only by the ability to grow quality material on a chosen substrate. A non-exclusive list of possible IR absorbing layers would include GaSb, InAs and InAs/Ga.sub.w In.sub.y Al.sub.1-y-w Sb superlattices. The absorption of the IR photon excites an electron into the conduction band of the IR absorber. An externally applied electric field then transports electrons from the conduction band of the absorber into the conduction band of the Ga.sub.x Al.sub.1-x Sb, from which they are ejected into vacuum. Because the band alignments of Ga.sub.x Al.sub.1-x Sb can be made the same as that of GaAs, emitting efficiencies comparable to GaAs photocathodes are obtainable. The present invention provides a photocathode that is responsive to wavelengths within the range of 0.9 .mu.m to at least 10 .mu.m.

  9. Photocathodes for free electron lasers

    SciTech Connect

    Kong, S.H.; Kinross-Wright, J.; Nuguyen, D.C.; Sheffield, R.L.

    1994-09-01

    Many different photocathodes have been used as electron sources for FELs and other electron accelerator systems. In choosing one, a compromise between lifetime and quantum efficiency have been unavoidable. High quantum efficiency photocathodes such as CsK{sub 2}Sb, Cs{sub 3}Sb, and cesiated GaAs have short operational lifetimes and require an ultrahigh-vacuum environment. Long lifetime photocathodes such as LaB{sub 6}, Cu, and Y have relatively low quantum efficiencies. However, recently, cesium telluride was found to be an exception. Initial results from CERN and now at Los Alamos have shown that Cs{sub 2}Te is reasonably rugged with a high quantum efficiency below 270 nm. Further studies were carried out at Los Alamos in determining its performance as an electron source for the Los Alamos Advanced FEL. The Los Alamos Advanced FEL was successfully operated at 5-6 microns with a Cs{sub 2}Te photocathode driven by a frequency quadrupled Nd:YLF laser as the electron source. Cs{sub 2}Te photocathodes with quantum efficiencies of 12-18% at 254 mn were fabricated in an ultrahigh-vacuum chamber and transferred under high vacuum to the FEL. The authors estimated that the operational lifetime of Cs{sub 2}Te photocathodes to be at least 20 times that for K{sub 2}CsSb photocathodes. Furthermore, experiments in the fabrication chamber have shown that heating to 150-200{degrees}C photocathodes exposed for one hour at 2{times}10{sup {minus}4} torr of air was sufficient to revive the quantum efficiency from below 1% to about 10%. The electron beam for the FEL extracted from a cesium telluride target was also characterized. The emittance, response time, saturation level and dark current of cesium telluride photocathodes was determined to be sufficient for FEL applications.

  10. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Alkali metal and alkali halide mixtures are identified which may be suitable for thermal energy storage at temperatures above 600 C. The use of metal-halides is appropriate because of their tendency to form two immiscible melts with a density difference, which reduces scale formation and solidification on heat transfer surfaces. Also, the accumulation of phase change material along the melt interface is avoided by the self-dispersing characteristic of some metal-halides, in particular Sr-SrCl2, Ba-BaCl2, and Ba-BaBr2 mixtures. Further advantages lie in their high thermal conductivities, ability to cope with thermal shock, corrosion inhibition, and possibly higher energy densities.

  11. Prevention of electron field emission from molybdenum substrates for photocathodes by the native oxide layer

    NASA Astrophysics Data System (ADS)

    Lagotzky, Stefan; Barday, Roman; Jankowiak, Andreas; Kamps, Thorsten; Klimm, Carola; Knobloch, Jens; Müller, Günter; Senkovskiy, Boris; Siewert, Frank

    2015-05-01

    Comprehensive investigations of the electron field emission (FE) properties of annealed single crystal and polycrystalline molybdenum plugs, which are used as substrates for actual alkali-based photocathodes were performed with a FE scanning microscope. Well-polished and dry-ice cleaned Mo samples with native oxide did not show parasitic FE up to a field level of 50 MV/m required for photoinjector cavities. In situ heat treatments (HT) above 400 °C, which are usual before photocathode deposition, activated field emission at lower field strength. Oxygen loading into the Mo surface, however, partially weakened these emitters. X-ray photoelectron spectroscopy of comparable Mo samples showed the dissolution of the native oxide during such heat treatments. These results reveal the suppression of field emission by native Mo oxides. Possible improvements for the photocathode preparation will be discussed.

  12. Alkali Metal/Salt Thermal-Energy-Storage Systems

    NASA Technical Reports Server (NTRS)

    Phillips, Wayne W.; Stearns, John W.

    1987-01-01

    Proposed thermal-energy-storage system based on mixture of alkali metal and one of its halide salts; metal and salt form slurry of two immiscible melts. Use of slurry expected to prevent incrustations of solidified salts on heat-transfer surfaces that occur where salts alone used. Since incrustations impede heat transfer, system performance improved. In system, charging heat-exchanger surface immersed in lower liquid, rich in halide-salt, phase-charge material. Discharging heat exchanger surface immersed in upper liquid, rich in alkali metal.

  13. Factors affecting performance of dispenser photocathodes

    NASA Astrophysics Data System (ADS)

    Moody, Nathan A.; Jensen, Kevin L.; Feldman, Donald W.; Montgomery, Eric J.; O'Shea, Patrick G.

    2007-11-01

    Usable lifetime has long been a limitation of high efficiency photocathodes in high average current accelerator applications such as free electron lasers, where poor vacuum conditions and high incident laser power contribute to early degradation in electron beam emission. Recent progress has been made in adapting well known thermionic dispenser techniques to photocathodes, resulting in a dispenser photocathode whose photosensitive surface coating of cesium can be periodically replenished to extend effective lifetime. This article details the design and fabrication process of a prototype cesium dispenser photocathode and describes in detail the dominant factors affecting its performance: activation procedure, surface cleanliness, temperature, and substrate microstructure.

  14. Alkali Bee

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The alkali bee, Nomia melanderi, is native to deserts and semi-arid desert basins of the western United States. It is a very effective and manageable pollinator for the production of seed in alfalfa (=lucerne) and some other crops, such as onion. It is the world’s only intensively managed ground-n...

  15. Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures

    DOEpatents

    Rohrmann, Charles A.

    1978-01-01

    A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.

  16. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.

  17. S-20 photocathode research activity. Part I

    SciTech Connect

    Gex, F.; Huen, T.; Kalibjian, R.

    1983-11-22

    The goal of this activity has been to develop and implement S-20 photocathode processing techniques at Lawrence Livermore National Laboratory (LLNL) in order to study the physical properties of the photocathode films. The present work is the initial phase of a planned activity in understanding cathode fabrication techniques and the optical/electrical characterization of these films.

  18. Process for oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  19. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect

    Siemer, D.D.

    2013-07-01

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  20. Evaluation system of negative electron affinity photocathode

    NASA Astrophysics Data System (ADS)

    Fu, Rongguo; Chang, Benkang; Qian, Yunsheng; Wang, Guihua; Zong, Zhiyuan

    2001-10-01

    This article first describes the background of the research and manufacture of evaluation system of Negative Electron Affinity photocathode. This article designs a set of super high vacuum system for activating NEA photocathode on the base of activation theory, the process of design and debugging is given. The system is composed of three parts: super high vacuum system for GaAs material activation, multi-meter testing system, surface analysis system. The system is used for on-line evaluation of activating of NEA photocathode. The technical parameters and structure of the evaluation system of NEA photocathode are given in the paper. The system is finished and experiments are made. At last the picture of the system is given.

  1. Photocathodes for the energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Rao, T.; Burrill, A.; Chang, X. Y.; Smedley, J.; Nishitani, T.; Hernandez Garcia, C.; Poelker, M.; Seddon, E.; Hannon, F. E.; Sinclair, C. K.; Lewellen, J.; Feldman, D.

    2006-02-01

    This paper presents an overview of existing and emerging technologies on electron sources that can service various energy recovering linacs under consideration. Photocathodes that can deliver average currents from 1 mA to 1 A, the pros and cons associated with these cathodes are addressed. Status of emerging technologies such as secondary emitters, cesiated dispenser cathodes, field and photon assisted field emitters and super lattice photocathodes are also reviewed.

  2. Cold ablation driven by localized forces in alkali halides.

    PubMed

    Hada, Masaki; Zhang, Dongfang; Pichugin, Kostyantyn; Hirscht, Julian; Kochman, Michał A; Hayes, Stuart A; Manz, Stephanie; Gengler, Regis Y N; Wann, Derek A; Seki, Toshio; Moriena, Gustavo; Morrison, Carole A; Matsuo, Jiro; Sciaini, Germán; Miller, R J Dwayne

    2014-01-01

    Laser ablation has been widely used for a variety of applications. Since the mechanisms for ablation are strongly dependent on the photoexcitation level, so called cold material processing has relied on the use of high-peak-power laser fluences for which nonthermal processes become dominant; often reaching the universal threshold for plasma formation of ~1 J cm(-2) in most solids. Here we show single-shot time-resolved femtosecond electron diffraction, femtosecond optical reflectivity and ion detection experiments to study the evolution of the ablation process that follows femtosecond 400 nm laser excitation in crystalline sodium chloride, caesium iodide and potassium iodide. The phenomenon in this class of materials occurs well below the threshold for plasma formation and even below the melting point. The results reveal fast electronic and localized structural changes that lead to the ejection of particulates and the formation of micron-deep craters, reflecting the very nature of the strong repulsive forces at play. PMID:24835317

  3. Calculations of hyper-Raman tensor components of alkali halides

    NASA Astrophysics Data System (ADS)

    de Landa Castillo-Alvarado, Fray; Kucharczyk, Wlotek

    1998-03-01

    Calculations of hyper-Raman tensor components of NaCl,KCl and KBr crystals based on the bond polizability approach are presented. The results obtained are in good agreement whit experimental data reported previously in literature. A week cubic anisotropy of the hyper-Raman tensor is found. For LO mode our results predict the lattice deformation contribution to hyper-Raman scattering to be comparable whit the electro-optic contribution.

  4. Calculations of hyper-Raman tensor components of alkali halides

    NASA Astrophysics Data System (ADS)

    Kucharczyk, W.; Castillo Alvarado, F. L.

    1999-01-01

    Calculations of hyper-Raman scattering by the zone-centre optical phonons in NaCl, KCl and KBr crystals based on the bond polarizability approach are presented. The results obtained for the hyper-Raman tensor components are in agreement with experimental data reported previously in literature. A weak cubic anisotropy of the hyper-Raman tensor is found. For the LO mode our results predict the lattice and electro-optic contributions to hyper-Raman scattering to be of the same order of magnitude.

  5. Production and properties of perrhenate-doped alkali halide crystals

    SciTech Connect

    Nestor, O.H.; Figueira, J.F.

    1987-01-01

    The growth and selected properties of single crystals of KCl doped with ReO/sub 4//minus// is described. The crystals have been used as saturable absorbers to modulate and control CO/sub 2/ laser radiation. ReO/sub 4//minus// ion concentrations in excess of 10/sup 17/ cm/sup /minus/3/ were achieved in KCl with good optical quality. The room temperature absorption of the ReO/sub 4//minus// ion in KCl was centered at 936.8 cm/sup /minus/1/ with 1.5 cm/sup (minus/1/ linewidth and with absorption cross section determined to be (0.46 + 0.02) /times/ 10 /sup /minus/16/ cm/sup 2/. The addition of Li/sup /plus// as a second dopant resulted in a splitting of the ReO/sub 4//minus// resonance into two components at 957.5 cm/sup /minus/1/ and 900.7 cm/sup /minus/1/. The characteristically sharp resonance of ReO/sub 4/minus// was not detected in NaCl grown with NaReO/sub 4/ additions to the melt. Only with addition of Ca/sup ++/ as a co-dopant was the ReO/sub 4/minus// resonance observed. The absorption, detected as a very weak resonance through a 92 mm path length, was centered at 946.0 cm/sup /minus/1/ with linewidth of 5 cm/sup /minus/1/ with linewidth of 5 cm/sup /minus/1/, overlapping the P(20) transition in the 10 micron CO/sub 2/ band. 6 refs., 10 figs.

  6. Skylab experiments on semiconductors and alkali halides. [single crystal growth

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.

    1974-01-01

    The space processing experiments performed during the Skylab missions included one on single crystal growth of germanium selenide and telluride, one on pure and doped germanium crystals, two on pure and doped indium antimonide, one on gallium-indium-antimony systems, and one on a sodium chloride-sodium fluoride eutectic. In each experiment, three ampoules of sample were processed in the multipurpose electric furnace within the Skylab Materials Processing Facility. All were successful in varying degrees and gave important information about crystal growth removed from the effects of earth surface gravity.

  7. Advanced photocathode simulation and theory

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Feldman, D. W.; O'Shea, P. G.

    2003-07-01

    A low work function dispenser type photocathode that is self-annealing or repairing would have a substantial impact on Free Electron Lasers (FELs). On such a cathode, the emitting surface is constantly renewed by replenishment of low-work-function material. A photo-dispenser cathode should operate at a relatively low temperature compared to a conventional dispenser cathode and is anticipated to be robust and long-lived. Coatings cause a reduction in the transport barrier experienced by the electrons through a complex modification of the potential at the surface, e.g., a reduction in work function due to dipole effects. In this work, we describe our theoretical program to address such effects, as part of a program concurrent with experimental efforts to develop dispenser cathodes for use in high power RF photoinjectors. In particular, we discuss the development of a generalised Transmission Coefficient approach, its application to photoemission from metals, and progress towards developing a methodology for the determination of the general emission barrier profile.

  8. RF Gun Photocathode Research at SLAC

    SciTech Connect

    Jongewaard, E.; Akre, R.; Brachmann, A.; Corbett, J.; Gilevich, S.; Grouev, K.; Hering, P.; P.Krejcik,; Lewandowski, J.; Loos, H.; Montagne, T.; Sheppard, J.C.; Stefan, P.; Vlieks, A.; Weathersby, S.; Zhou, F.; /SLAC

    2012-05-16

    LCLS is presently operating with a third copper photocathode in the original rf gun, with a quantum efficiency (QE) of {approx}1 x 10{sup -4} and projected emittance {gamma}{var_epsilon}{sub x,y} = 0.45 {micro}m at 250 pC bunch charge. The spare LCLS gun is installed in the SLAC Accelerator Structure Test Area (ASTA), fully processed to high rf power. As part of a wider photocathode R and D program, a UV laser system and additional gun diagnostics are being installed at ASTA to measure QE, QE lifetime, and electron beam emittance under a variety of operating conditions. The near-term goals are to test and verify the spare photocathode production/installation sequence, including transfer from the final holding chamber to the rf gun. Mid- and longer-term goals include development of a rigorous understanding of plasma and laser-assisted surface conditioning and investigation of new, high-QE photocathode materials. In parallel, an x-ray photoemission spectroscopy station is nearing completion, to analyze Cu photocathode surface chemistry. In this paper we review the status and anticipated operating parameters of ASTA and the spectroscopy test chamber.

  9. High Biomass Specific Methyl Halide Production Rates of Selected Coastal Marsh Plants and its Relationship to Halide Content

    NASA Astrophysics Data System (ADS)

    Manley, S. L.; Wang, N.; Cicerone, R. J.

    2002-12-01

    Salt tolerant coastal marsh plants (halophytes) have previously been shown to be globally significant producers of methyl chloride (MeCl) and methyl bromide (MeBr). While halophytes are known for their high salt content, there are few reports of their halide content. Our studies have attempted to quantify biomass specific methyl halide (MeX) production from these plants and relate it to tissue halide levels. MeCl, MeBr and MeI production rates and tissue chloride, bromide and iodide concentrations from selected coastal marsh plants were measured for nearly a year. Certain halophyte species (i.e. Batis and Frankenia) have very high summer biomass specific production rates for MeX (e.g. Frankenia: 1 ug MeCl /gfwt/hr; 80 ng MeBr/gfwt/hr; 8 ng MeI/gfwt/hr). These rates of MeCl and MeBr production are much higher than those from other coastal marsh plants or seaweeds. Plant halide levels remain high throughout the year, while MeX production peaks at a high level in mid summer falling to low winter rates. This implies a linkage to plant growth. Higher levels of chloride and bromide were seen in the fleshy marsh plants such as Batis (saltwort, approximately 20 percent dry wt chloride, 0.4 percent dry wt bromide) and Salicornia (pickleweed) than in the others such as Frankenia (alkali heath) approx 7 percent dry wt chloride, 0.1 percent dry wt bromide) or Spartina (cordgrass). No such trend was seen for iodide, which ranged from 4 - 10 ppm. Calculations show the daily halide losses from MeX production are far less than the variability in tissue halide content. MeX production removes a small fraction of the total tissue halide from these plants suggesting that MeX production is not a mechanism used by these species to control internal halide levels. Saltwort cell-free extracts incubated with bromide or iodide in the presence of S-adenosyl-L-methionine (SAM) produced the corresponding MeX. MeBr production was inhibited by caffeic acid the substrate of lignin-specific O-methyl transferase. MeX production may be a result of non-specific methylation of halides by SAM utilizing methyl transferases used in other biosynthetic pathways.

  10. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  11. Atomic hydrogen cleaning of semiconductor photocathodes

    SciTech Connect

    Sinclair, C.K.; Poelker, B.M.; Price, J.S.

    1997-06-01

    Negative Electron Affinity (NEA) semiconductor photocathodes are widely used for the production of polarized electron beams, and are also useful for the production of high brightness electron beams which can be modulated at very high frequencies. Preparation of an atomically clean semiconductor surface is an essential step in the fabrication of a NEA photocathode. This cleaning step is difficult for certain semiconductors, such as the very thin materials which produce the highest beam polarization, and those which have tightly bound oxides and carbides. Using a small RF dissociation atomic hydrogen source, the authors have reproducibly cleaned GaAs wafers which have been only degreased prior to installation in vacuum. They have consistently prepared very high quantum efficiency photocathodes following atomic hydrogen cleaning. Details of their apparatus and most recent results are presented.

  12. Large photocathode area picosecond streak tube

    NASA Astrophysics Data System (ADS)

    Andreev, S. V.; Belolipetski, V. S.; Ivanova, S. R.; Kulechenkova, T. P.; Levina, G. P.; Makushina, V. A.; Monastyrskiy, M. A.; Polykarkina, N. D.; Schelev, M. Ya.; Semichastnova, Z. M.; Sokolov, V. E.

    2008-11-01

    The paper reports on the development of a new streak image tube with accelerating mesh and large (18 mm) photocathode work area. The tube's temporal resolution is close to one picosecond. To govern photoelectronic images the tube possesses shutter and deflector plates. Its geometric design allows uniform spatial resolution (more than 25 lp/mm) along the entire photocathode work area at 1.3 electron-optical magnification and negligibly small distortion. Being a continuation of the well-known PV and PIF - type streak image tubes developed in due time in GPI, the tube represents a promising tool for taking pictures of ultrafast processes in wide radiation spectrum range.

  13. An electron-lens for opaque photocathodes.

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Hallam, K. L.

    1973-01-01

    It is possible to employ opaque photocathodes in image tubes having a special electromagnetic lens without the use of special internal image-forming optical lenses or mirrors. The special electron lens, having flat object and image planes, is found to provide excellent quality electron-optical image transfer. Stray light reflection inside the tube is expected to be less serious in this electron lens than in a conventional magnetically focused image tube lens due to the offset image plane, and due to the increased absorption of photons in opaque photocathode applications.

  14. Graphene shield enhanced photocathodes and methods for making the same

    DOEpatents

    Moody, Nathan Andrew

    2014-09-02

    Disclosed are graphene shield enhanced photocathodes, such as high QE photocathodes. In certain embodiments, a monolayer graphene shield membrane ruggedizes a high quantum efficiency photoemission electron source by protecting a photosensitive film of the photocathode, extending operational lifetime and simplifying its integration in practical electron sources. In certain embodiments of the disclosed graphene shield enhanced photocathodes, the graphene serves as a transparent shield that does not inhibit photon or electron transmission but isolates the photosensitive film of the photocathode from reactive gas species, preventing contamination and yielding longer lifetime.

  15. Wire ageing with the TEA photocathode

    SciTech Connect

    Va`vra, J.

    1996-06-01

    Recently several RICH protypes successfully tested a gaseous TEA photocathode. However, its wire ageing behavior is unknown. In principle, TEA is a more strongly bonded molecule than TMAE, and, as a result, one would expect better wire ageing behavior. This paper explores this question.

  16. Silver-halide gelatin holograms

    NASA Astrophysics Data System (ADS)

    Chang, B. J.; Winick, K.

    1980-05-01

    The use of a silver-halide gelatin for volume phase holograms having a wide spectral response and lower exposure requirements than alternatives and using commercially available silver salts, is proposed. The main difference between the dichromated gelatin and silver-halide processes is the creation of a hologram latent image, which is given in the form of a hardness differential between exposed and unexposed regions in the silver halide hologram; the differential is in turn created by the reaction products of either tanning development or tanning bleach, which harden the gelatin with link-bonds between molecules.

  17. Photocathode RF gun using cartridge-type electric tubes

    NASA Astrophysics Data System (ADS)

    Sasabe, Jun; Hanaki, Hirofumi; Asaka, Takao; Dewa, Hideki; Kobayashi, Toshiaki; Mizuno, Akihiko; Suzuki, Shinsuke; Taniuchi, Tsutomu; Tomizawa, Hiromitsu; Yanagida, Kenichi; Uesaka, Mitsuru

    2004-08-01

    This report describes an S-band photoinjector with replaceable Cs 2Te photocathodes. The photoinjector is equipped with a cathode-module, which is composed of four cartridge-type electric tubes with Cs 2Te photocathodes. The photocathodes can be inserted into a single cell pillbox-type RF cavity. The maximum electric field strength on the photocathode surface, 90 MV/m, has been achieved for the pillbox-type cavity in only 2 h of RF processing following the exchange of the photocathode. The temporal behavior of the photocathode's quantum efficiency was measured following application of the electric field strength of 90 MV/m. The initial quantum efficiency of 3% was halved to 1.5% in 5 h and finally settled to 1% after 15 h. Analysis of the surface suggested the possibility of oxidization on the cathode surface rather than damage by vacuum discharges.

  18. A Summary of the 2010 Photocathode Physics for Photoinjectors Workshop

    SciTech Connect

    Bazarov, I; Dowell, D; Hannon, Fay; Harkay, K; Garcia, C H; Padmore, H; Rao, T; Smedley, J

    2010-10-01

    This contribution contains a summary and some highlights from the Photocathode Physics for Photoinjectors (P3) Workshop [1]. This workshop, held at Brookhaven National Laboratory in Ocotber of 2010, was aimed at bringing the photocathode community together to discuss and explore the current state of the art in accelerator photocathodes, from both a theoretical and a materials science perspective. All types of photocathode materials were discussed, including metals, NEA and PEA semiconductors, and "designer" photocathodes with bespoke properties. Topics of the workshop included: Current status of photocathodes for accelerator applications Current fabrication methods Applications of modern materials science to the growth and analysis of cathodes Photoemission spectroscopy as a diagnostic of cathode performance Utilization of modern user facilities Photoemission theory Novel ideas in cathode development Discussion forum on future collaboration for cathode growth, analysis and testing

  19. METHOD OF PREPARING METAL HALIDES

    DOEpatents

    Hendrickson, A.V.

    1958-11-18

    The conversion of plutonium halides from plutonium peroxide can be done by washing the peroxide with hydrogen peroxide, drying the peroxide, passing a dry gaseous hydrohalide over the surface of the peroxide at a temperature of about lOO icient laborato C until the reaction rate has stabillzed, and then ralsing the reaction temperature to between 400 and 600 icient laborato C until the conversion to plutonium halide is substantially complete.

  20. Atomistic simulation of ion solvation in water explains surface preference of halides

    PubMed Central

    Caleman, Carl; Hub, Jochen S.; van Maaren, Paul J.; van der Spoel, David

    2011-01-01

    Water is a demanding partner. It strongly attracts ions, yet some halide anionschloride, bromide, and iodideare expelled to the air/water interface. This has important implications for chemistry in the atmosphere, including the ozone cycle. We present a quantitative analysis of the energetics of ion solvation based on molecular simulations of all stable alkali and halide ions in water droplets. The potentials of mean force for Cl-, Br-, and I- have shallow minima near the surface. We demonstrate that these minima derive from more favorable waterwater interaction energy when the ions are partially desolvated. Alkali cations are on the inside because of the favorable ionwater energy, whereas F- is driven inside by entropy. Models attempting to explain the surface preference based on one or more ion properties such as polarizability or size are shown to lead to qualitative and quantitative errors, prompting a paradigm shift in chemistry away from such simplifications.

  1. Microwave-assisted hydrothermal hydrolysis of cellobiose and effects of additions of halide salts.

    PubMed

    Tsubaki, Shuntaro; Oono, Kiriyo; Onda, Ayumu; Yanagisawa, Kazumichi; Azuma, Jun-Ichi

    2012-11-01

    Microwave irradiation was compared with induction heating for hydrothermal hydrolysis of cellobiose. Microwave heating improved glucose selectivity and resulted in a pH of the hydrolyzates that was ⩽0.57 units lower than those from conventional heating, which suggests that fewer side-reactions occurred. Halide salts of alkali and alkali earth metals improved microwave-assisted hydrothermal saccharification of cellobiose at lower reaction severity by around 0.3 of logR(0). NaCl addition of ⩾10mM reduced the required microwave output to 58.6-66.2% as compared to conventional microwave-hydrothermal hydrolysis without halide salts. Kinetic analyses revealed that the addition of salt increased the hydrolysis rate by increasing the frequency factor of the reaction. The results showed that microwave irradiation in the presence of microwave-absorbing salts is effective for hydrothermal hydrolysis of carbohydrates. PMID:22939594

  2. PROGRESS ON LEAD PHOTOCATHODES FOR SUPERCONDUCTING INJECTORS.

    SciTech Connect

    SMEDLEY, J.; RAO, T.; SEKUTOWICZ, J.; KNEISEL, P.; LANGNER, J.; STRZYZEWSKI, P.; LEFFERTS, R.; LIPSKI, A.

    2005-05-16

    We present the results of our investigation of bulk lead, along with various types of lead films, as suitable photocathode materials for superconducting RF injectors. The quantum efficiency of each sample is presented as a function of the photon energy of the incident light, from 3.9 eV to 6.5 eV. Quantum efficiencies of 0.5% have been obtained. Production of a niobium cavity with a lead-plated cathode is underway.

  3. Progress on lead photocathodes for superconducting injectors

    SciTech Connect

    Smedley, John; Rao, Triveni; Sekutowicz, Jacek; Kneisel, Peter; Langner, J; Strzyzewski, P; Lefferts, Richard; Lipski, Andrzej

    2005-05-16

    We present the results of our investigation of bulk lead, along with various types of lead films, as suitable photocathode materials for superconducting RF injectors. The quantum efficiency of each sample is presented as a function of the photon energy of the incident light, from 3.9 eV to 6.5 eV. Quantum efficiencies of 0.5% have been obtained. Production of a niobium cavity with a lead plated cathode is underway.

  4. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    SciTech Connect

    Gregory A. Mulhollan

    2010-11-16

    Specific activation recipes for bulk, 100 nm thick MBE grown and high polarization III-V photocathode material have been developed which mitigate the effects of exposure to background gasses. Lifetime data using four representative gasses were acquired for bulk GaAs, 100 nm unstrained GaAs and strained superlattice GaAs/GaAsP, all activated both with Cs and then Cs and Li (bi-alkali). Each photoemitter showed marked resilience improvement when activated using the bi-alkali recipe compared to the standard single alkali recipe. A dual alkali activation system at SLAC was constructed, baked and commissioned with the purpose of performing spin-polarization measurements on electrons emitted from the bi-alkali activated surfaces. An end station at SSRL was configured with the required sources for energy resolved photoemission measurements on the bi-alkali activated and CO2 dosed surfaces. The bi-alkali recipes were successfully implemented at SLAC/SSRL. Measurements at SLAC of the photoelectron spin-polarization from the modified activation surface showed no sign of a change in value compared to the standard activated material, i.e., no ill effects. Analysis of photoemission data indicates that the addition of Li to the activation layer results in a multi-layer structure. The presence of Li in the activation layer also acts as an inhibitor to CO2 absorption, hence better lifetimes in worse vacuum were achieved. The bi-alkali activation has been tested on O2 activated GaAs for comparison with NF3 activated surfaces. Comparable resilience to CO2 exposure was achieved for the O2 activated surface. An RF PECVD amorphous silicon growth system was modified to allow high temperature heat cleaning of GaAs substrates prior to film deposition. Growth versus thickness data were collected. Very thin amorphous silicon germanium layers were optimized to exhibit good behavior as an electron emitter. Growth of the amorphous silicon germanium films on the above substrates was fine tuned with respect to time and power to moderate plasma damage to the photo-generating layer. Auger electron spectroscopy was used to analyze the composition and thickness of the emitter layers. AFM studies showed conformal growth on the GaAs substrates. Measurements at SLAC on the photoemitted electrons from high polarization substrates coated with amorphous silicon germanium indicated an ~10% relative drop in spin-polarization at the wavelength corresponding to the maximum spin-polarization when compared to the uncoated material,

  5. Methyl Halide Production by Fungi

    NASA Astrophysics Data System (ADS)

    Dailey, G. D.; Varner, R. K.; Blanchard, R. O.; Sive, B. C.; Crill, P. M.

    2005-12-01

    Methyl chloride (CH3Cl), methyl bromide (CH3Br) and methyl iodide (CH3I) are methyl halide gases that contribute significant amounts of halogen radicals to the atmosphere. In an effort to better understand the global budget of methyl halides and their impact on the atmosphere, we need to identify the natural sources in addition to the known anthropogenic sources of these compounds. We are investigating the role of fungi in the production of methyl halides in the soils and wetlands in southern New Hampshire, USA. Previous research has shown that wood decay fungi and ectomycorrhizal fungi, which are within a group of fungi called basidiomycetes, emit methyl halides. In our study, measurements of headspace gas extracted from flasks containing fungi grown in culture demonstrate that a variety of fungi, including basidiomycetes and non-basidiomycetes, emit methyl halides. Our research sites include four ecosystems: an agricultural field, a temperate forest, a fresh water wetland, and coastal salt marshes. We have collected and isolated fungi at each site by culturing tissue samples of fruiting bodies and plant material, by using wood baits, and from the direct culture of soil. We compared the rates of methyl halide emissions from the fungi in the four ecosystems. In addition, we measured emissions from previously assayed fungal isolates after reintroducing them to sterilized soils that were collected from their original environments. Fungal biomass was determined by substrate-induced respiration (SIR). The emission rate by the fungus was determined by a linear regression of the concentration of methyl halide in the sample headspace over time divided by the fungal biomass.

  6. Actinide halide complexes

    DOEpatents

    Avens, Larry R.; Zwick, Bill D.; Sattelberger, Alfred P.; Clark, David L.; Watkin, John G.

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  7. Actinide halide complexes

    DOEpatents

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  8. A magnetically focused image tube employing an opaque photocathode

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Hallam, K. L.

    1973-01-01

    Image converter has been developed which uses opaque photocathode for improved efficiency. Device is easier to fabricate than previous semi-transparent photocathode converters and uses compounds from Groups 3-5 that are responsive to wave-lengths between ultraviolet (approximately 100 nm) and near infrared region (approximately 1000 nm).

  9. Development of Polarized Photocathodes for the Linear Collider

    SciTech Connect

    Richard Prepost

    2009-12-22

    In prior years a Wisconsin-SLAC collaboration developed polarized photocathodes which were used for the SLAC SLD and fixed target programs. Currently, the R&D program goal is the development of a polarized electron source (PES) which meets the ILC requirements for polarization, charge, lifetime, and pulse structure. There are two parts to this program. One part is the continued improvement of photocathode structures with higher polarization. The second part is the design and development of the laser system used to drive the photocathode. The long pulse train for the ILC introduces new challenges for the PES. More reliable and stable operation of the PES may be achievable if appropriate R&D is carried out for higher voltage operation and for a simpler photocathode load-lock system. The collaboration with SLAC is through the Polarized Photocathode Research Collaboration (PPRC). Senior SLAC personnel include T. Maruyama, J. Clendenin, R. Kirby, and A. Brachmann.

  10. Radiochemical synthesis of pure anhydrous metal halides

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Marsik, S. J.; May, C. E.

    1973-01-01

    Method uses radiation chemistry as practical tool for inorganic preparations and in particular deposition of metals by irradiation of their aqueous metal salt solutions with high energy electrons. Higher valence metal halide is dissolved in organic liquid and exposed to high energy electrons. This causes metal halide to be reduced to a lower valence metal halide.

  11. Structure-Tuned Lead Halide Perovskite Nanocrystals.

    PubMed

    Hassan, Yasser; Song, Yin; Pensack, Ryan D; Abdelrahman, Ahmed I; Kobayashi, Yoichi; Winnik, Mitchell A; Scholes, Gregory D

    2016-01-01

    Colloidally stable suspensions of lead halide perovskite nanocrystals are prepared from high-quality lead halide nanocrystal seeds. Perovskite nanocrystals with different layered crystal structures are reported. These systems are well suited for investigations of the intrinsic photophysics and spectroscopy of organic-inorganic metal halide perovskites. PMID:26596245

  12. Preparation of cerium halide solvate complexes

    SciTech Connect

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  13. Solid state cell with alkali metal halo-alkali thiocyanate electrolyte

    SciTech Connect

    Rao, B. M.; Silbernagel, B. G.

    1980-02-26

    A novel electrochemical cell is disclosed utilizing: (A) an anode which contains an alkali metal as an anode-active material; (B) a cathode and (C) an electrolyte comprising an electrolytically effective amount of one or more compounds having the formula: (Ax)ma'scn wherein a is an alkali metal, X is a halogen, a' is an alkali metal and 0.1 < or = N < or = 10. Preferred systems include lithium-containing anodes, lithium-containing electrolytes and cathodes which contain cathode-active material selected from the group consisting of cathode-active sulfurs, halogens, halides, chromates, phosphates, oxides and chalcogenides, especially those chalcogenides of the empirical formula mzm wherein M is one or more metals selected from the group consisting of iron, titanium, zirconium, hafnium, niobium, tantalum and vanadium, Z is one or more chalcogens selected from the group consisting of oxygen, sulfur, selenium and tellurium, and M is a numerical value between about 1.8 and about 3.2.

  14. STATUS OF DIAMOND SECONDARY EMISSION ENHANCED PHOTOCATHODE

    SciTech Connect

    RAO,T.; BEN-ZVI, I.; CHANG, X.; GRIMES, J.; GROVER, R.; ISAKOVIC, A.; SMEDLEY, J.; TODD, R.; WARREN, J.; WU, Q.

    2007-05-25

    The diamond secondary emission enhanced photocathode (SEEP) provides an attractive alternative for simple photo cathodes in high average current electron injectors. It reduces the laser power required to drive the cathode, simultaneously isolating the cathode and the FW cavity from each other, thereby protecting them from contamination and increasing their life time. In this paper, we present the latest results on the secondary electron yield using pulsed thermionic and photo cathodes as primary electron sources, shaping the diamond using laser ablation and reactive ion etching as well as the theoretical underpinning of secondary electron generation and preliminary results of modeling.

  15. Silver nanorod arrays for photocathode applications

    NASA Astrophysics Data System (ADS)

    Vilayurganapathy, Subramanian; Nandasiri, Manjula I.; Joly, Alan G.; El-Khoury, Patrick Z.; Varga, Tamas; Coffey, Greg; Schwenzer, Birgit; Pandey, Archana; Kayani, Asghar; Hess, Wayne P.; Thevuthasan, Suntharampillai

    2013-10-01

    We explore the use of plasmonic Ag nanorod arrays featuring enhanced photoemission as high-brightness photocathode material. Silver nanorod arrays are synthesized by the direct current electrodeposition method and their dimensionality, uniformity, crystallinity, and oxide/impurity content are characterized. The yielded arrays exhibit greatly enhanced two-photon photoemission under 400 nm femtosecond pulsed laser excitation. Plasmonic field enhancement in the array produces photoemission hot spots that are mapped using photoemission electron microscopy. The relative photoemission enhancement of nanorod hot spots relative to that of a flat Ag thin film is found to range between 102 and 3 × 103.

  16. Milk-alkali syndrome

    MedlinePlus

    ... the dynamics of calcium homeostasis. Clin J Am Soc Nephrol . 1006;1:641– 654. Grubb M, Gaurav ... Welcome to the calcium-alkali syndrome. J Am Soc Nephrol. 2010;21:1440-1443. Yoshizawa H, Morishita ...

  17. Performance of photocathode rf gun electron accelerators

    SciTech Connect

    Ben-Zvi, I.

    1993-07-01

    In Photo-Injectors (PI) electron guns, electrons are emitted from a photocathode by a short laser pulse and then accelerated by intense rf fields in a resonant cavity. The best known advantage of this technique is the high peak current with a good emittance (high brightness). This is important for short wavelength Free-Electron Lasers and linear colliders. PIs are in operation in many electron accelerator facilities and a large number of new guns are under construction. Some applications have emerged, providing, for example, very high pulse charges. PIs have been operated over a wide range of frequencies, from 144 to 3000 MHz (a 17 GHz gun is being developed). An exciting new possibility is the development of superconducting PIs. A significant body of experimental and theoretical work exists by now, indicating the criticality of the accelerator elements that follow the gun for the preservation of the PI`s performance as well as possible avenues of improvements in brightness. Considerable research is being done on the laser and photocathode material of the PI, and improvement is expected in this area.

  18. Performance of photocathode rf gun electron accelerators

    SciTech Connect

    Ben-Zvi, I.

    1993-01-01

    In Photo-Injectors (PI) electron guns, electrons are emitted from a photocathode by a short laser pulse and then accelerated by intense rf fields in a resonant cavity. The best known advantage of this technique is the high peak current with a good emittance (high brightness). This is important for short wavelength Free-Electron Lasers and linear colliders. PIs are in operation in many electron accelerator facilities and a large number of new guns are under construction. Some applications have emerged, providing, for example, very high pulse charges. PIs have been operated over a wide range of frequencies, from 144 to 3000 MHz (a 17 GHz gun is being developed). An exciting new possibility is the development of superconducting PIs. A significant body of experimental and theoretical work exists by now, indicating the criticality of the accelerator elements that follow the gun for the preservation of the PI's performance as well as possible avenues of improvements in brightness. Considerable research is being done on the laser and photocathode material of the PI, and improvement is expected in this area.

  19. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  20. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  1. Development of Halide and Oxy-Halides for Isotopic Separations

    SciTech Connect

    Leigh R. Martin; Aaron T. Johnson; Jana Pfeiffer; Martha R. Finck

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  2. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  3. High gradient rf gun studies of CsBr photocathodes

    DOE PAGESBeta

    Vecchione, Theodore; Maldonado, Juan R.; Gierman, Stephen; Corbett, Jeff; Hartmann, Nick; Pianetta, Piero A.; Hesselink, Lambertus; Schmerge, John F.

    2015-04-03

    CsBr photocathodes have 10 times higher quantum efficiency with only 3 times larger intrinsic transverse emittance than copper. They are robust and can withstand 80 MV/m fields without breaking down or emitting dark current. They can operate in 2×10⁻⁹ torr vacuum and survive exposure to air. They are well suited for generating high pulse charge in rf guns without a photocathode transfer system.

  4. Advanced 3D Photocathode Modeling and Simulations Final Report

    SciTech Connect

    Dimitre A Dimitrov; David L Bruhwiler

    2005-06-06

    High brightness electron beams required by the proposed Next Linear Collider demand strong advances in photocathode electron gun performance. Significant improvement in the production of such beams with rf photocathode electron guns is hampered by the lack high-fidelity simulations. The critical missing piece in existing gun codes is a physics-based, detailed treatment of the very complex and highly nonlinear photoemission process.

  5. Review and demonstration of ultra-low-emittance photocathode measurements

    NASA Astrophysics Data System (ADS)

    Lee, Hyeri; Karkare, Siddharth; Cultrera, Luca; Kim, Andrew; Bazarov, Ivan V.

    2015-07-01

    This paper reports the development of a simple and reliable apparatus for measuring ultra-low emittance, or equivalently the mean transverse energy from cryogenically cooled photocathodes. The existing methods to measure ultra-low emittance from photocathodes are reviewed. Inspired by the available techniques, we have implemented two complementary methods, the waist scan and voltage scan, in one system giving consistent results. Additionally, this system is capable of measuring the emittance at electric fields comparable to those obtained in DC photoinjectors.

  6. High gradient rf gun studies of CsBr photocathodes

    NASA Astrophysics Data System (ADS)

    Vecchione, Theodore; Maldonado, Juan R.; Gierman, Stephen; Corbett, Jeff; Hartmann, Nick; Pianetta, Piero A.; Hesselink, Lambertus; Schmerge, John F.

    2015-04-01

    CsBr photocathodes have 10 times higher quantum efficiency with only 3 times larger intrinsic transverse emittance than copper. They are robust and can withstand 80 MV /m fields without breaking down or emitting dark current. They can operate in 2 ×10-9 torr vacuum and survive exposure to air. They are well suited for generating high pulse charge in rf guns without a photocathode transfer system.

  7. High gradient rf gun studies of CsBr photocathodes

    SciTech Connect

    Vecchione, Theodore; Maldonado, Juan R.; Gierman, Stephen; Corbett, Jeff; Hartmann, Nick; Pianetta, Piero A.; Hesselink, Lambertus; Schmerge, John F.

    2015-04-03

    CsBr photocathodes have 10 times higher quantum efficiency with only 3 times larger intrinsic transverse emittance than copper. They are robust and can withstand 80 MV/m fields without breaking down or emitting dark current. They can operate in 210?? torr vacuum and survive exposure to air. They are well suited for generating high pulse charge in rf guns without a photocathode transfer system.

  8. R&D ERL: Photocathode Deposition and Transport System

    SciTech Connect

    Pate, D.; Ben-Zvi, I.; Rao, T.; Burrill, R.; Todd, R.; Smedley, J.; Holmes, D.

    2010-01-01

    The purpose of the photocathode deposition and transport system is to (1) produce a robust, high yield multialkali photocathode and (2) have a method of transporting the multialkali photocathode for insertion into a super conducting RF electron gun. This process is only successful if a sufficient quantum efficiency lifetime of the cathode, which is inserted in the SRF electron gun, is maintained. One important element in producing a multialkali photocathode is the strict vacuum requirements of 10{sup -11} torr to assure success in the production of longlived photocathodes that will not have their QE or lifetime depleted due to residual gas poisoning in a poor vacuum. A cutaway view of our third generation deposition system is shown in figure 1. There are certain design criteria and principles required. One must be able to install, remove, rejuvenate and replace a cathode without exposing the source or cathode to atmosphere. The system must allow one to deposit Cs, K, and Sb on a cathode tip surface at pressures in the 10{sup -10} to 10{sup -9} torr range. The cathode needs to be heated to as high as 850 C for cleaning and maintained at 130 C to 150 C during deposition. There should also be the capability for in-situ QE measurements. In addition the preparation of dispenser photocathodes must be accounted for, thus requiring an ion source for cathode cleaning. Finally the transport cart must be mobile and be able to negotiate the ERL facility labyrinth.

  9. Alkalis and Skin.

    PubMed

    Greenwood, John E; Tan, Jin Lin; Ming, Justin Choong Tzen; Abell, Andrew D

    2016-01-01

    The aim of this editorial is to provide an overview of the chemical interactions occurring in the skin of our patients on contact with alkaline agents. Strongly basic alkali is highly aggressive and will readily hydrolyze (or cleave) key biological molecules such as lipids and proteins. This phenomenon is known as saponification in the case of lipids and liquefactive denaturation for peptides and proteins. A short section on current first-aid concepts is included. A better understanding of the basic science behind alkali burns will make us better teachers and provide an insight into the urgency needed in treating these common and dangerous chemical injuries. PMID:26182072

  10. TRANSURANIC METAL HALIDES AND A PROCESS FOR THE PRODUCTION THEREOF

    DOEpatents

    Fried, S.

    1951-03-20

    Halides of transuranic elements are prepared by contacting with aluminum and a halogen, or with an aluminum halide, a transuranic metal oxide, oxyhalide, halide, or mixture thereof at an elevated temperature.

  11. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  12. Methods of recovering alkali metals

    SciTech Connect

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  13. Metal Photocathodes for Free Electron Laser Applications

    NASA Astrophysics Data System (ADS)

    Greaves, Corin Michael Ricardo

    Synchrotron x-ray radiation sources have revolutionized many areas of science from elucidating the atomic structure of proteins to understanding the electronic structure of complex materials such as the cuprate superconductors. In a Free Electron Laser (FEL), the main difference to the synchrotron radiation mechanism is that the light field acts on the electron beam, over a long distance in an undulator, and causes electron bunching at the optical wavelength. Electrons in different parts of the electron bunch are therefore correlated, and so emit coherently, with a brightness that scales as the square of the number of electrons. In order to lase, the electron beam in a FEL must have a transverse geometric emittance less than the wavelength of the light to be produced. For the generation of x-ray wavelengths, this is one of the most difficult challenges in the design and construction of a FEL. The geometric emittance can be "compressed" by acceleration to very high energy, but with the penalty of very large physical size and very large cost. The motivation for this work was provided by the desire to investigate the fundamental origin of the emittance of an electron beam as it is born at a photocathode. If this initial, or "thermal" emittance can be reduced, the energy, scale and cost of accelerators potentially would be reduced. As the LCLS used copper as its photocathode, this material was the one studied in this work. Copper was used in the LCLS as it represented a "robust" material that could stand the very high accelerating gradients used in the photoinjector of the FEL. Metals are also prompt photoemitters, and so can be used to produce very short electron bunches. This can be a useful property for creation of extremely short FEL pulses, and also for creation of beams that are allowed to expand under space charge forces, but in a way that results in linear fields, allowing subsequent recompression. An ideal photocathode for FEL photoinjector should have high quantum efficiency (QE), small emittance, fast temporal response, long lifetime, and minimal complexity. High QE of cathodes require less power for driving laser and also reduce the risk of damaging the cathode materials. Small emittance reduce the scale of the accelerator, therefore, the cost. Metal photocathodes such as copper exhibit long lifetime and fast response, but have quite low quantum efficiency ( < 10-4). The aim in this work was to understand the quantum yield of the metal, and the transverse momentum spectrum, as the product of the latter and the cathode beam spot size gives the transverse emittance. Initial x-ray diffraction work provided evidence that the LCLS photocathode consisted of large low index single crystal grains, and so work focused on the study of single crystals that could be produced with atomically ordered surfaces, rather than a polycrystalline material. Present theories of quantum yield and transverse emittance assume the basic premise that the metal is entirely disordered, and work here shows that this is fundamentally incorrect, and that the order of the surface plays a critical role in determining the characteristics of emission. In order to investigate these surfaces, I constructed a laser-based ultra-low energy angle resolved photoemission system, capable of measuring the momentum spectrum of the emission and wavelength and angle dependent electron yield. This system has been commissioned, and data taken on low index surfaces of copper. Results from this work on single crystal copper demonstrates that emitted electrons from the band structure of a material can exhibit small emittance and high quantum efficiency. We show that the emission from the Cu(111) surface state is highly correlated between angle of incidence and excitation energy. This manifests itself in the form of a truncated emission cone, rather than the isotropic emission predicted from the normal model. This clearly then reduces the emittance from the normal values. It also results in extremely strong polarization dependence, with p-s asymmetry of up to 16 at low photon energy. It also directly suggests ways through changing materials, or by material design to significantly reduce emittance, at the same time increasing electron yield. These results show the benefits that could be gained from electronic engineering of cathodes and should have direct impact in the design of future FEL photoinjectors. (Abstract shortened by UMI.)

  14. Advances in microchannel plates and photocathodes for ultraviolet photon counting detectors

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; Fujiwara, K.; Hemphill, R.; Jelinsky, S. R.; McPhate, J. B.; Tremsin, A. S.; Vallerga, J. V.; Frisch, H. J.; Elam, J.; Mane, A.; Bennis, D. C.; Craven, C. A.; Deterando, M. A.; Escolas, J. R.; Minot, M. J.; Renaud, J. M.

    2011-09-01

    A new method of fabricating microchannel plates has been investigated, employing microcapillary arrays of borosilicate glass that are deposited with resistive and secondary emissive layers using atomic layer deposition. Microchannel plates of this kind have been made in sizes from 33 mm to 200 mm, with pore sizes of 40 μm and 20 μm, pore length to diameter ratios of 60:1, bias angles of 8°, and open areas from 60% to 83%. Tests with single MCPs and MCP pairs have been done and show good imaging quality, gain comparable to conventional MCPs, low background rates (~ 0.085 events sec-1 cm-2), fast pulse response, and good ageing characteristics. The quantum efficiency for bare and alkali halide coated MCPs is similar to conventional MCPs, and we have also been able to deposit opaque GaN(Mg) cathodes directly onto these MCPs.

  15. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  16. Fabrication and measurement of regenerable low work function dispenser photocathodes

    NASA Astrophysics Data System (ADS)

    Moody, Nathan A.

    Laser-switched photoemitters are a source of electrons for high current applications such as free electron lasers. Laser-modulated photoemission permits rapid switching of the electron beam, far surpassing what can be achieved using electric-field gated emission. Photoinjector systems consist of a drive laser producing short bunches of photons and an efficient photocathode, which converts photon bunches into electron beam pulses. Development of both technologies is required, but the scope of this project is restricted to improvement of the photocathode. Most high-efficiency photocathodes employ cesium-based surface coatings to reduce work function and enable efficient electron emission in the visible range. Lifetime is severely limited by the loss of this delicate coating, which degrades rapidly in practical vacuum environments. More robust photocathodes exist, but have much lower efficiency, and place unrealistic demands on drive laser power and stability. This research proposes a novel dispenser concept that dramatically extends the lifetime of high efficiency cesium-based cathodes by continuously or periodically restoring the cesium surface monolayer during an in situ rejuvenation process. Sintered tungsten provides an interface between a cesium reservoir and the photoemitting surface. During temperature-controlled rejuvenation, cesium diffuses through and across the sintered tungsten to create and sustain a low-work function photocathode. The prototype dispenser cathode was fabricated and tested for two modes of operation: continuous and periodic near-room temperature rejuvenation. The data are compared with a photoemission model of partially covered surfaces under design for integration with existing beam simulations. Overall performance suggests that this cesium-delivery mechanism can significantly enhance the efficiency and operational lifetime of a wide variety of present and future cesium-based photocathodes. Also reported are surface characterization, ion beam cleaning, and fabrication techniques used to optimize performance of the dispenser photocathode.

  17. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  18. Progress on diamond amplified photo-cathode

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Burrill, A.; Kewisch, J.; Chang, X.; Rao, T.; Smedley, J.; Wu, Q.; Muller, E.; Xin, T.

    2011-03-28

    Two years ago, we obtained an emission gain of 40 from the Diamond Amplifier Cathode (DAC) in our test system. In our current systematic study of hydrogenation, the highest gain we registered in emission scanning was 178. We proved that our treatments for improving the diamond amplifiers are reproducible. Upcoming tests planned include testing DAC in a RF cavity. Already, we have designed a system for these tests using our 112 MHz superconducting cavity, wherein we will measure DAC parameters, such as the limit, if any, on emission current density, the bunch charge, and the bunch length. The diamond-amplified photocathode, that promises to support a high average current, low emittance, and a highly stable electron beam with a long lifetime, is under development for an electron source. The diamond, functioning as a secondary emitter amplifies the primary current, with a few KeV energy, that comes from the traditional cathode. Earlier, our group recorded a maximum gain of 40 in the secondary electron emission from a diamond amplifier. In this article, we detail our optimization of the hydrogenation process for a diamond amplifier that resulted in a stable emission gain of 140. We proved that these characteristics are reproducible. We now are designing a system to test the diamond amplifier cathode using an 112MHz SRF gun to measure the limits of the emission current's density, and on the bunch charge and bunch length.

  19. Multiple-Wavelength Metal/Halide Laser

    NASA Technical Reports Server (NTRS)

    Nerheim, N. M.

    1984-01-01

    Single device produces multiple lasing lines. Laser capable of producing many lasing lines has several reservoirs of halide lasant mixed with chlorides of copper, manganese and iron. Convection-control technique possible to rapidly change from one metal halide to another at maximum energy.

  20. The effects of dissolved halide anions on hydrogen bonding in liquid water.

    PubMed

    Smith, Jared D; Saykally, Richard J; Geissler, Phillip L

    2007-11-14

    It is widely believed that the addition of salts to water engenders structural changes in the hydrogen-bond network well beyond the adjacent shell of solvating molecules. Classification of many ions as "structure makers" and "structure breakers" has been based in part on corresponding changes in the vibrational spectra (Raman and IR). Here we show that changes in O-H vibrational spectra induced by the alkali halides in liquid water result instead from the actions of ions' electric fields on adjacent water molecules. Computer simulations that accurately reproduce our experimental measurements suggest that the statistics of hydrogen-bond strengths are only weakly modified beyond this first solvation shell. PMID:17958418

  1. Hygroscopicity Evaluation of Halide Scintillators

    SciTech Connect

    Zhuravleva, M; Stand, L; Wei, H; Hobbs, C. L.; Boatner, Lynn A; Ramey, Joanne Oxendine; Burger, Arnold; Rowe, E; Bhattacharya, P.; Tupitsyn, E; Melcher, Charles L

    2014-01-01

    A collaborative study of relative hygroscopicity of anhydrous halide scintillators grown at various laboratories is presented. We have developed a technique to evaluate moisture sensitivity of both raw materials and grown crystals, in which the moisture absorption rate is measured using a gravimetric analysis. Degradation of the scintillation performance was investigated by recording gamma-ray spectra and monitoring the photopeak position, count rate and energy resolution. The accompanying physical degradation of the samples exposed to ambient atmosphere was photographically recorded as well. The results were compared with ben

  2. Recent Pes Photocathode R&d at Nagoya University

    NASA Astrophysics Data System (ADS)

    Kuwahara, M.; Nakanishi, T.; Okumi, S.; Yamamoto, M.; Furuta, F.; Miyamoto, M.; Yamamoto, N.; Naniwa, K.; Yasui, K.; Nishitani, T.; Watanabe, O.; Takeda, Y.; Kobayakawa, H.; Takashima, Y.; Togawa, K.

    2005-08-01

    The strained-layer superlattice structures have been exhibiting the most promising performance as a photocathode for the polarized electron source (PES). In our experiments, the GaAs-GaAsP photocathode achieved maximum polarization of 92±6% with quantum efficiency of 0.5%, while the InGaAs-AlGaAs photocathode provided higher quantum efficiency (0.7%) with lower polarization (77±5%). Criteria for achieving high spin polarization and high quantum efficiency using superlattice photocathodes were clarified by employing the spin-resolved quantum efficiency spectra. However, it seems that major problems still remained for the PES R&D are to improve (1) beam emittance and (2) NEA lifetime under gun operations for high peak current and high average current, respectively. In order to overcome these problems simultaneously, we started a development of a new type photocathode using field emission mechanism. First, we tried to use a pyramidal shape GaAs (tip-GaAs). Using the tip-GaAs, electrons can be emitted from a small area at the top of pyramid, and thus the beam emittance is expected to be small. This emission mechanism also enables to extract electrons from the poor NEA or small PEA surface into vacuum, and it helps to relax the NEA lifetime problem. Preliminary results were already obtained.

  3. Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report

    SciTech Connect

    Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T

    2011-08-04

    The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.

  4. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  5. Study of photoemission mechanism for varied doping GaN photocathode

    NASA Astrophysics Data System (ADS)

    Qiao, Jianliang; Xu, Yuan; Niu, Jun; Gao, Youtang; Chang, Benkang

    2015-10-01

    Negative electron affinity (NEA) GaN photocathode has many virtues, such as high quantum efficiency, low dark current, concentrated electrons energy distribution and angle distribution, adjustive threshold and so on. The quantum efficiency is an important parameter for the preparation and evaluation of NEA GaN photocathode. The varied doping GaN photocathode has the directional inside electric field within the material, so the higher quantum efficiency can be obtained. The varied doping NEA GaN photocathode has better photoemission performance. According to the photoemission theory of NEA GaN photocathode, the quantum efficiency formulas for uniform doping and varied doping NEA GaN photocathodes were given. In the certain condition, the quantum efficiency formula for varied doping GaN photocathode consists with the uniform doping. The activation experiment was finished for varied doping GaN photocathode. The cleaning method and technics for varied doping GaN photocathode were given in detail. To get an atom clean surface, the heat cleaning must be done after the chemical cleaning. Using the activation and evaluation system for NEA photocathode, the varied doping GaN photocathode was activated with Cs and O, and the photocurrent curve for varied doping GaN photocathode was gotten.

  6. Characterization of diamond film and bare metal photocathodes as a function of temperature and surface preparation

    SciTech Connect

    Shurter, R.P.; Moir, D.C.; Devlin, D.J.

    1996-07-01

    High current photocathodes using bare metal and polycrystalline diamond films illuminated by ultraviolet lasers are being developed at Los Alamos for use in a new generation of linear induction accelerators. These photocathodes must be able to produce multiple 60 ns pulses separated by several to tens of nanoseconds. The vacuum environment in which the photocathodes must operate is 10{sup -5} torr.

  7. Impurity segregation in zone-refined precursors for crystalline halide scintillators

    NASA Astrophysics Data System (ADS)

    Swider, S.; Lam, S.; Motakef, S.; Donohoe, E.; Coers, L.; Taylor, S.; Spencer, S.

    2015-06-01

    Successful growth of halide scintillator crystals depends on a supply of ultra-high purity (UHP) precursor materials. Metallic interstitials and substitutions may provide traps that quench luminescence. Oxygen impurities can create competing compounds within a matrix, such as oxyhalides, that disrupt crystallinity and nucleate cracks. Using mass spectroscopy and oxygen combustion analysis, we analyzed impurities in SrI2, EuI2, and YCl3 precursors before and after zone refining. The data show most alkali and alkali earth impurities segregated easily. However, with the exception of iron, many transition metals were incorporated into the solid. Reliable oxygen measurements proved difficult to achieve. Additional oxygen was measured in nitrates and sulfates, via ion chromatography. Zone refining reduced the overall impurity content, but levels remained above a 10 ppm target.

  8. Intrinsic Emittance Reduction of an Electron Beam from Metal Photocathodes

    SciTech Connect

    Hauri, C. P.; Ganter, R.; Le Pimpec, F.; Trisorio, A.; Ruchert, C.; Braun, H. H.

    2010-06-11

    Electron beams in modern linear accelerators are now becoming limited in brightness by the intrinsic emittance of the photocathode electron source. Therefore it becomes important for large scale facilities such as free electron lasers to reduce this fundamental limit. In this Letter we present measurements of the intrinsic emittance for different laser wavelength (from 261 to 282 nm) and for different photocathode materials such as Mo, Nb, Al, Cu. Values as low as 0.41{+-}0.03 mm{center_dot}mrad/mm laser spot size (rms) were measured for a copper photocathode illuminated with a 282 nm laser wavelength. The key element for emittance reduction is a uv laser system which allows adjustment of the laser photon energy to match the effective work function of the cathode material and to emit photoelectrons with a lower initial kinetic energy. The quantum efficiency over the explored wavelength range varies by less than a factor of 3.

  9. FEMTO SECOND ELECTRON BEAM DIFFRACTION USING A PHOTOCATHODE RF GUN.

    SciTech Connect

    WANG,X.J.WU,Z.IHEE,H.

    2003-05-12

    One of the 21st century scientific frontiers is to explore the molecule structure transition on the femtosecond time scale. X-ray free electron laser (XFEL) is one of the tools now under development for investigating femto-second structure transition. We are proposing an alternative technique--femto-second electron diffraction based on a photocathode RF gun. We will present a design of a kHz femto-seconds electron diffraction system based on a photocathode RF gun. Our simulation shows that, the photocathode RF gun can produce 100 fs (FWHM) electron bunch with millions electrons at about 2 MeV. This is at least one order of magnitude reduction in bunch length, and two orders of magnitude increase in number of electrons comparing to present time-resolved electron diffraction system. We will also discuss various issues and limitations related to MeV electron diffraction.

  10. Photoemission characteristics of thin GaAs-based heterojunction photocathodes

    SciTech Connect

    Feng, Cheng; Zhang, Yijun Qian, Yunsheng; Shi, Feng; Zou, Jijun; Zeng, Yugang

    2015-01-14

    To better understand the different photoemission mechanism of thin heterojunction photocathodes, the quantum efficiency models of reflection-mode and transmission-mode GaAs-based heterojunction photocathodes are revised based on one-dimensional continuity equations, wherein photoelectrons generated from both the emission layer and buffer layer are taken into account. By comparison of simulated results between the revised and conventional models, it is found that the electron contribution from the buffer layer to shortwave quantum efficiency is closely related to some factors, such as the thicknesses of emission layer and buffer layer and the interface recombination velocity. Besides, the experimental quantum efficiency data of reflection-mode and transmission-mode AlGaAs/GaAs photocathodes are well fitted to the revised models, which confirm the applicability of the revised quantum efficiency models.

  11. High quantum efficiency S-20 photocathodes in photon counting detectors

    NASA Astrophysics Data System (ADS)

    Orlov, D. A.; DeFazio, J.; Duarte Pinto, S.; Glazenborg, R.; Kernen, E.

    2016-04-01

    Based on conventional S-20 processes, a new series of high quantum efficiency (QE) photocathodes has been developed that can be specifically tuned for use in the ultraviolet, blue or green regions of the spectrum. The QE values exceed 30% at maximum response, and the dark count rate is found to be as low as 30 Hz/cm2 at room temperature. This combination of properties along with a fast temporal response makes these photocathodes ideal for application in photon counting detectors, which is demonstrated with an MCP photomultiplier tube for single and multi-photoelectron detection.

  12. Emission properties of body-centered cubic elemental metal photocathodes

    SciTech Connect

    Li, Tuo; Rickman, Benjamin L. Schroeder, W. Andreas

    2015-04-07

    A first principles analysis of photoemission is developed to explain the lower than expected rms transverse electron momentum measured using the solenoid scan technique for the body-centered cubic Group Vb (V, Nb, and Ta) and Group VIb (Cr, Mo, and W) metallic photocathodes. The density functional theory based analysis elucidates the fundamental role that the electronic band structure (and its dispersion) plays in determining the emission properties of solid-state photocathodes and includes evaluation of work function anisotropy using a thin-slab method.

  13. Review and demonstration of ultra-low-emittance photocathode measurements.

    PubMed

    Lee, Hyeri; Karkare, Siddharth; Cultrera, Luca; Kim, Andrew; Bazarov, Ivan V

    2015-07-01

    This paper reports the development of a simple and reliable apparatus for measuring ultra-low emittance, or equivalently the mean transverse energy from cryogenically cooled photocathodes. The existing methods to measure ultra-low emittance from photocathodes are reviewed. Inspired by the available techniques, we have implemented two complementary methods, the waist scan and voltage scan, in one system giving consistent results. Additionally, this system is capable of measuring the emittance at electric fields comparable to those obtained in DC photoinjectors. PMID:26233374

  14. Toxicity of organometal halide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Babayigit, Aslihan; Ethirajan, Anitha; Muller, Marc; Conings, Bert

    2016-03-01

    In the last few years, the advent of metal halide perovskite solar cells has revolutionized the prospects of next-generation photovoltaics. As this technology is maturing at an exceptional rate, research on its environmental impact is becoming increasingly relevant.

  15. SUPPRESSION OF AFTERPULSING IN PHOTOMULTIPLIERS BY GATING THE PHOTOCATHODE

    EPA Science Inventory

    A number of gating schemes to minimize the long-term afterpulse signal in photomultipliers have been evaluated. Blocking the excitation pulse by gating the photocathode was found to reduce the gate-on afterpulse background by a factor of 230 over that for nongated operation. Thi...

  16. New Photocathode materials for electron-ion-colliders

    SciTech Connect

    Lukaszew, Rosa A.

    2015-02-25

    Our aim has been to explore new photocathode materials and schemes to develop strategies and technologies for next generation nuclear physics accelerator capabilities, particularly for Electron Ion Colliders (EIC). Thus, we investigated thin film deposition and ensuing properties for several adequate magnetic materials applicable to spin-polarized photocathodes. We also implemented a full experimental setup for light incidence at an acute angle onto the photocathode surface in order to excite surface Plasmon resonance hence increasing light absorption by a metallic surface. We successfully tested the setup with a thermionic cathode as well as Plasmonic silver-MgO samples and obtained very encouraging results. Our first results are very encouraging since the photocurrent measured on this preliminary plasmonic Ag-MgO sample under low power (~ 1mW) cw red light from a HeNe laser was 256 pA, thus two orders magnitude larger than that reported by others following also plasmonic approaches. We extended our studies to shorter wavelengths and we also started preliminary work on chemically ordered MnAl thin films –a component of the tertiary Ag-Mn-Al (silmanal) alloy in order to develop spin-polarized photocathodes capable of sustaining surface Plasmon resonance. It is worthwhile mentioning that a graduate student has been directly involved during this project ensuring the training of next generation of scientists in this area of research.

  17. Reflection silver-halide gelatin holograms

    NASA Astrophysics Data System (ADS)

    Usanov, Yuri E.; Vavilova, Ye. A.; Kosobokova, N. L.; Shevtsov, Michail K.

    1991-02-01

    A new principle of reflection silverhalide gelatin (SHG) holograms generation is presented. The formation mechanism of the micro-cavity structure of holographic gratings is investigated. Based on the principle discussed here three methods of processing are suggested for making highly efficient SHG reflection holograms in the blue the green and the red regions of spectra with properties similar to those of conventional dichromated gelatin (DCG) holograms. 2. SHG HOLOGRAMS AND ANALYSIS OF THE PRINCIPAL OF THEIR FABRICATION Optical properties of DCG holograms and high light sensitivity of silver halide materials in the whole visible spectrum range can be combined in SHG holograms in which light field interference pattern recording is realized on silver halide grains while the light diffraction during the reconstruction takes place on a gelatin layer similar to DCG layer having a refractive index modulation. There exist a number of methods for transforming a ''silver'' structure into refracted index modulation structure. They are based on selective hardening of silver-halide layer gelatin. According to Pennington et. al. [1] selective hardening takes place as a result of the effect of laser or UV light on a silver halide developed fixed bleached and ammonium dichromate sensitized. A gelatin in isophase grating planes is hardened to a less degree that between planes due to high adsorption of a halide silver. After the removal of halide silver from the layer during the next fixing process

  18. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  19. Point defect production by ultrafast laser irradiation of alkali-containing silica glasses and alkali halide single crystals

    NASA Astrophysics Data System (ADS)

    Avanesyan, S. M.; Orlando, S.; Langford, S. C.; Dickinson, J. T.

    2005-07-01

    The high instantaneous powers associated with femtosecond lasers can color many nominally transparent materials. Although the excitations responsible for this defect formation occur at subpicosecond time scales, subsequent interactions between the resulting electronic and lattice defects complicate the evolution of color center formation and decay. These interactions must be understood in order to account for the long-term behavior of coloration. In this work, we probe the evolution of color centers produced by femtosecond laser radiation in soda lime glass and single-crystal sodium chloride at time scales from microseconds to hundreds of seconds. By using an appropriately chosen probe laser focused through the femtosecond laser spot, we can follow the changes in coloration due to individual or multiple femtosecond pulses, and follow the evolution of that coloration for long times after the femtosecond laser radiation is terminated. For the soda lime glass, the decay of color centers is well described in terms of bimolecular annihilation reactions between electron and hole centers. Similar processes are also occurring in single-crystal sodium chloride. Finally, we report fabrication of permanent periodic patterns in soda lime glass by two time coincident femtosecond laser pulses.

  20. Dimming of metal halide lamps

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.

  1. Novel lithium halide battery structure

    SciTech Connect

    Harney, M.J.; Icore, B.; O'Boyle, M.

    1980-12-30

    The present invention relates to a lithium halide battery structure comprising an outer metal envelope and top portion which is hermetically sealed to the envelope. The top portion includes an insulator conforming to and positioned thereon to the base configuration of the top portion and a support means having a base configuration substantially the same as the insulator. The support means also includes a flange depending from the support base and a pair of spaced apart post holders integral with said flange. First and second posts are positioned in the post holders with a metal anode collector screen positioned between and attached to said posts. The first post extends through the support means, insulator and top portion to define the anode terminal. The second post terminates in the associated post holder. A first and second pair of lithium anodes are pressure bonded together to sandwich therebetween the support means and anode collector screen. First and second depolarizer pellets are positioned between and in coextensive contact with the first and second anodes and the inner surface of the envelope.

  2. The Remarkable Reactivity of Aryl Halides with Nucleophiles

    ERIC Educational Resources Information Center

    Bunnett, Joseph F.

    1974-01-01

    Discusses the reactivity of aryl halides with nucleophilic or basic reagents, including nucleophilic attacks on carbon, hydrogen, halogen, and arynes. Suggestions are made concerning revisions of the sections on aryl halide chemistry courses and the corresponding chapters in textbooks. (CC)

  3. Palladium-catalyzed asymmetric reductive heck reaction of aryl halides.

    PubMed

    Yue, Guizhou; Lei, Kaining; Hirao, Hajime; Zhou, Jianrong Steve

    2015-05-26

    Asymmetric reductive Heck reaction of aryl halides is realized in high stereoselectivity. Hydrogen-bond donors, trialkylammonium salts in a glycol solvent, were used to promote halide dissociation from neutral arylpalladium complexes to access cationic, stereoselective pathways. PMID:25867113

  4. Highly efficient and stable ultraviolet photocathode based on nanodiamond particles

    NASA Astrophysics Data System (ADS)

    Velardi, L.; Valentini, A.; Cicala, G.

    2016-02-01

    Nanodiamond (ND) layers on silicon substrate are deposited by the pulsed spray technique starting from nanoparticles of about 250 nm dispersed in 1,2-dichloroethane solvent. The aim of this letter is to investigate the quantum efficiency (QE) of photocathodes based on ND particles in the vacuum ultraviolet spectral range. Various ND layers are examined employing as-received and hydrogenated nanoparticles. As expected, the hydrogen plasma treatment improves strongly the photoemission of the layer giving a QE of 22% at 146 nm. Indeed, this efficiency value is achieved only if the particles are treated in H2 microwave plasma before the growth of the sprayed layer rather than to hydrogenate the already formed one. These QE values are higher than those of photocathodes based on plasma chemical vapor deposition diamond films, but with the advantage of being much stable, too. The highest QE values are explained to be due to the intrinsic chemical and structural features of utilized ND particles.

  5. Extreme ultraviolet quantum detection efficiency of rubidium bromide opaque photocathodes

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Gaines, Geoffrey A.

    1990-01-01

    Measurements are presented of the quantum detection efficiency (QDE) of three samples of RbBr photocathode layers over the 44-150-A wavelength range. The QDE of RbBr-coated microchannel plate (MCP) was measured using a back-to-back Z-stack MCP configuration in a detector with a wedge and strip position-sensitive anode, of the type described by Siegmund et al. (1984). To assess the stability of RbBr layer, the RbBr photocathode was exposed to air at about 30 percent humidity for 20 hr. It was found that the QDE values for the aged cathode were within the QDE measurement errors of the original values. A simple QDE model was developed, and it was found that its predictions are in accord with the QDE measurements.

  6. DC photogun vacuum characterization through photocathode lifetime studies

    SciTech Connect

    Marcy Stutzman; Joseph Grames; Matt Poelker; Kenneth Surles-Law; Philip Adderley

    2007-07-02

    Excellent vacuum is essential for long photocathode lifetimes in DC high voltage photoelectron guns. Vacuum Research at Thomas Jefferson National Accelerator Facility has focused on characterizing the existing vacuum systems at the CEBAF polarized photoinjector and on quantifying improvements for new systems. Vacuum chamber preprocessing, full activation of NEG pumps and NEG coating the chamber walls should improve the vacuum within the electron gun, however, pressure measurement is difficult at pressures approaching the extreme-high-vacuum (XHV) region and extractor gauge readings are not significantly different between the improved and original systems. The ultimate test of vacuum in a DC high voltage photogun is the photocathode lifetime, which is limited by the ionization and back-bombardment of residual gasses. Discussion will include our new load-locked gun design as well as lifetime measurements in both our operational and new photo-guns, and the correlations between measured vacuum and lifetimes will be investigated.

  7. The Quantum Efficiency and Thermal Emittance of Metal Photocathodes

    SciTech Connect

    Dowell, David H.; Schmerge, John F.; /SLAC

    2009-03-04

    Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray wavelengths, with the principle improvements occurring since the invention of the photocathode gun. The state-of-the-art normalized emittance electron beams are now becoming limited by the thermal emittance of the cathode. In both DC and RF photocathode guns, details of the cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore improving cathode performance is essential to increasing the brightness of beams. It is especially important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This paper investigates the relationship between the quantum efficiency and the thermal emittance of metal cathodes using the Fermi-Dirac model for the electron distribution. We derive the thermal emittance and its relationship to the quantum efficiency, and compare our results to those of others.

  8. Photocathode performance measurements for the SLC polarized electron gun

    SciTech Connect

    Garden, C.L.; Hoyt, E.W.; Schultz, D.C.; Tang, H.

    1993-04-01

    A low-voltage test system is used to qualify various III-V semiconductor materials as photocathodes for the SLC. The system features a load lock to introduce samples, high pumping speed, a sensitive residual gas analyzer, and an infrared temperature detector. Heat cleaning, cesiation, and oxidation procedures have been studied to optimize cathode activation for achieving an optimum NEA surface. VGF GaAs, MBE-grown AlGaAs, MBE GaAs layered on AlGaAs, and MOCVD GaAsP cathodes with different active layer thicknesses and doping concentrations have been tested for quantum efficiency and lifetime. New higher-polarization strained-layer GaAs on GaAsP photocathodes have also been tested. Results and operational experience are discussed.

  9. Preliminary Results from a superconducting photocathode sample cavity

    SciTech Connect

    Peter Kneisel; Jacek Sekutowicz; R. Lefferts; A. Lipski

    2005-05-01

    Pure niobium has been proposed as a photocathode material to extract directly photo-currents from the surface of a RF-gun cavity [1]. However, the quantum efficiency of niobium is {approx}3 {center_dot} 10{sup -4}, whereas electro- or vacuum deposited lead has an {approx} 10 times higher quantum efficiency. We have designed and tested a photo-injector niobium cavity, which can be used to insert photo-cathodes made of different materials in the high electric field region of the cavity. Experiments have been conducted with niobium and lead, which show that neither the Q- values of the cavity nor the obtainable surface fields are significantly lowered. This paper reports about the results from these tests.

  10. How Lead Halide Complex Chemistry Dictates the Composition of Mixed Halide Perovskites.

    PubMed

    Yoon, Seog Joon; Stamplecoskie, Kevin G; Kamat, Prashant V

    2016-04-01

    Varying the halide ratio (e.g., Br(-):I(-)) is a convenient approach to tune the bandgap of organic lead halide perovskites. The complexation between Pb(2+) and halide ions is the primary step in dictating the overall composition, and optical properties of the annealed perovskite structure. The complexation between Pb(2+) and Br(-) is nearly 7 times greater than the complexation between Pb(2+) and I(-), thus making Br(-) a dominant binding species in mixed halide systems. Emission and transient absorption measurements show a strong dependence of excited state behavior on the composition of halide ions employed in the precursor solution. When excess halide (X = Br(-) and I(-)) are present in the precursor solution (0.3 M PbX2 and 0.9 M CH3NH3X), the exclusive binding of Pb(2+) with Br(-) results in the formation of CH3NH3PbBr3 perovskites as opposed to mixed halide perovskite. PMID:27007695

  11. Brookhaven Accelerator Test Facility photocathode gun and transport beamline

    SciTech Connect

    Parsa, Z.; Young, L.

    1990-01-01

    We present an analysis of the electron beam emitted from a laser driven photocathode injector (Gun, operating at 2856 MHZ), through a Transport beamline, to the LINAC entrance for the Brookhaven Accelerator Test Facility (ATF). The beam parameters including beam energy, and emittance are calculated. Some of our results, are tabulated and the phase plots of the beam parameters, from Cathode, through the Transport line elements, to the LINAC entrance, are shown.

  12. Thermal emittance measurements of a cesium potassium antimonide photocathode

    NASA Astrophysics Data System (ADS)

    Bazarov, Ivan; Cultrera, Luca; Bartnik, Adam; Dunham, Bruce; Karkare, Siddharth; Li, Yulin; Liu, Xianghong; Maxson, Jared; Roussel, William

    2011-05-01

    Thermal emittance measurements of a CsK2Sb photocathode at several laser wavelengths are presented. The emittance is obtained with a solenoid scan technique using a high voltage dc photoemission gun. The thermal emittance is 0.56±0.03 mm mrad/mm(rms) at 532 nm wavelength. The results are compared with a simple photoemission model and found to be in a good agreement.

  13. High Brightness and high polarization electron source using transmission photocathode

    SciTech Connect

    Yamamoto, Naoto; Jin Xiuguang; Ujihara, Toru; Takeda, Yoshikazu; Mano, Atsushi; Nakagawa, Yasuhide; Nakanishi, Tsutomu; Okumi, Shoji; Yamamoto, Masahiro; Konomi, Taro; Ohshima, Takashi; Saka, Takashi; Kato, Toshihiro; Horinaka, Hiromichi; Yasue, Tsuneo; Koshikawa, Takanori

    2009-08-04

    A transmission photocathode was fabricated based on GaAs-GaAsP strained superlattice layers on a GaP substrate and a 20 kV-gun was built to generate the polarized electron beams with the diameter of a few micro-meter. As the results, the reduced brightness of 1.3x10{sup 7} A/cm{sup 2}/sr and the polarization of 90% were achieved.

  14. Applications of Laser and Synchrotron Based ARPES to Photocathode Research

    SciTech Connect

    Rameau J.; Smedley J.; Muller, E.; Kidd, T.; Johnson, P.; Allen, P.; Carr, L.; Valla, T.

    2010-10-12

    Laser angle resolved photoelectron spectroscopy (ARPES) provides unique information about angle and energy distribution of photoelectrons. Laser ARPES gives unique insight into how NEA materials work. ARPES combined with some ancillary measurements gives a very complete picture of system electronic physics. For H:C[100] there is now a clear program for engineering as well as development analogous systems. ARPES well suited for identifying 'ideal' photocathodes with intrinsically low emittance and high QE.

  15. Upgrading platform using alkali metals

    DOEpatents

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  16. Performance of Au transmission photocathode on a microchannel plate detector

    SciTech Connect

    Lowenstern, M. E.; Harding, E. C.; Huntington, C. M.; Visco, A. J.; Rathore, G.; Drake, R. P.

    2008-10-15

    X-ray framing cameras, employing microchannel plates (MCPs) for detection and signal amplification, play a key role in research in high-energy-density physics. These instruments convert radiographic x-rays into electrons produced by plasma during such experiments into electrons that are amplified in the channels and then detected by a phosphor material. The separation of detection from signal amplification offers potential improvements in sensitivity and noise properties. We have implemented a suspended Au transmission photocathode (160 A thick) on a MCP and are evaluating it using a 1.5 keV Al K{alpha} x-ray source. We find an approximately twofold increase in the ratio of detected events to incident photons when the photocathode-to-MCP voltage difference is sufficiently large. Our calculations indicate that this increase is probably caused by a combination of signal produced by the photocathode and an increase in the efficiency of detection of x-rays that reach the MCP surface through modification of the local electric field.

  17. Highly efficient photocathodes for dye-sensitized tandem solar cells.

    PubMed

    Nattestad, A; Mozer, A J; Fischer, M K R; Cheng, Y-B; Mishra, A; Bäuerle, P; Bach, U

    2010-01-01

    Thin-film dye-sensitized solar cells (DSCs) based on mesoporous semiconductor electrodes are low-cost alternatives to conventional silicon devices. High-efficiency DSCs typically operate as photoanodes (n-DSCs), where photocurrents result from dye-sensitized electron injection into n-type semiconductors. Dye-sensitized photocathodes (p-DSCs) operate in an inverse mode, where dye-excitation is followed by rapid electron transfer from a p-type semiconductor to the dye (dye-sensitized hole injection). Such p-DSCs and n-DSCs can be combined to construct tandem solar cells (pn-DSCs) with a theoretical efficiency limitation well beyond that of single-junction DSCs (ref. 4). Nevertheless, the efficiencies of such tandem pn-DSCs have so far been hampered by the poor performance of the available p-DSCs (refs 3, 5-15). Here we show for the first time that p-DSCs can convert absorbed photons to electrons with yields of up to 96%, resulting in a sevenfold increase in energy conversion efficiency compared with previously reported photocathodes. The donor-acceptor dyes, studied as photocathodic sensitizers, comprise a variable-length oligothiophene bridge, which provides control over the spatial separation of the photogenerated charge carriers. As a result, charge recombination is decelerated by several orders of magnitude and tandem pn-DSCs can be constructed that exceed the efficiency of their individual components. PMID:19946281

  18. Method for recovering hydrocarbons from molten metal halides

    DOEpatents

    Pell, Melvyn B.

    1979-01-01

    In a process for hydrocracking heavy carbonaceous materials by contacting such carbonaceous materials with hydrogen in the presence of a molten metal halide catalyst to produce hydrocarbons having lower molecular weights and thereafter recovering the hydrocarbons so produced from the molten metal halide, an improvement comprising injecting into the spent molten metal halide, a liquid low-boiling hydrocarbon stream is disclosed.

  19. Recent advances in technetium halide chemistry.

    PubMed

    Poineau, Frederic; Johnstone, Erik V; Czerwinski, Kenneth R; Sattelberger, Alfred P

    2014-02-18

    Transition metal binary halides are fundamental compounds, and the study of their structure, bonding, and other properties gives chemists a better understanding of physicochemical trends across the periodic table. One transition metal whose halide chemistry is underdeveloped is technetium, the lightest radioelement. For half a century, the halide chemistry of technetium has been defined by three compounds: TcF6, TcF5, and TcCl4. The absence of Tc binary bromides and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium. The common synthetic routes that scientists use to obtain binary halides of the neighboring elements, such as sealed tube reactions between elements and flowing gas reactions between a molecular complex and HX gas (X = Cl, Br, or I), had not been reported for technetium. In this Account, we discuss how we used these routes to revisit the halide chemistry of technetium. We report seven new phases: TcBr4, TcBr3, α/β-TcCl3, α/β-TcCl2, and TcI3. Technetium tetrachloride and tetrabromide are isostructural to PtX4 (X = Cl or Br) and consist of infinite chains of edge-sharing TcX6 octahedra. Trivalent technetium halides are isostructural to ruthenium and molybdenum (β-TcCl3, TcBr3, and TcI3) and to rhenium (α-TcCl3). Technetium tribromide and triiodide exhibit the TiI3 structure-type and consist of infinite chains of face-sharing TcX6 (X = Br or I) octahedra. Concerning the trichlorides, β-TcCl3 crystallizes with the AlCl3 structure-type and consists of infinite layers of edge-sharing TcCl6 octahedra, while α-TcCl3 consists of infinite layers of Tc3Cl9 units. Both phases of technetium dichloride exhibit new structure-types that consist of infinite chains of [Tc2Cl8] units. For the technetium binary halides, we studied the metal-metal interaction by theoretical methods and magnetic measurements. The change of the electronic configuration of the metal atom from d(3) (Tc(IV)) to d(5) (Tc(II)) is accompanied by the formation of metal-metal bonds in the coordination polyhedra. There is no metal-metal interaction in TcX4, a Tc═Tc double bond is present in α/β-TcCl3, and a Tc≡Tc triple bond is present in α/β-TcCl2. We investigated the thermal behavior of these binary halides in sealed tubes under vacuum at elevated temperature. Technetium tetrachloride decomposes stepwise to α-TcCl3 and β-TcCl2 at 450 °C, while β-TcCl3 converts to α-TcCl3 at 280 °C. The technetium dichlorides disproportionate to Tc metal and TcCl4 above ∼600 °C. At 450 °C in a sealed Pyrex tube, TcBr3 decomposes to Na{[Tc6Br12]2Br}, while TcI3 decomposes to Tc metal. We have used technetium tribromide in the preparation of new divalent complexes; we expect that the other halides will also serve as starting materials for the synthesis of new compounds (e.g., complexes with a Tc3(9+) core, divalent iodide complexes, binary carbides, nitrides, and phosphides, etc.). Technetium halides may also find applications in the nuclear fuel cycle; their thermal properties could be utilized in separation processes using halide volatility. In summary, we hope that these new insights on technetium binary halides will contribute to a better understanding of the chemistry of this fascinating element. PMID:24393028

  20. Dialkylzinc-mediated cross-coupling reactions of perfluoroalkyl and perfluoroaryl halides with aryl halides.

    PubMed

    Kato, Hisano; Hirano, Keiichi; Kurauchi, Daisuke; Toriumi, Naoyuki; Uchiyama, Masanobu

    2015-03-01

    A highly chemoselective perfluoroalkylation reaction of aromatic halides is reported. Thermally stable perfluoroalkylzinc reagents, generated by a rapid halogen-zinc exchange reaction between diorganozinc and perfluoroalkyl halide species, couple with a wide range of aryl halides in the presence of a copper catalyst, in moderate to high yields. Good stability of the perfluoroalkylzinc species was indicated by DFT calculation and the reagents were storable for at least three months under argon without loss of activity. This method is applicable to gram-scale synthesis, and its functional group tolerance compares favorably with reported protocols. PMID:25630706

  1. Method of producing halide-free metal and hydroxides

    SciTech Connect

    Melas, A.A.

    1988-05-03

    A method for producing a halide-free oxide or hydroxide of a subject element from the corresponding subject element halide, is described comprising: in a first reaction step, providing a liquid medium comprising a water-free alcohol and contacting the alcoholic medium with the subject element halide and further contacting the alcohol and the subject element halide with a replacement species that reacts with halides, physically separating the medium containing the alkoxide from the precipitate salt, and in a second reaction step, hydrolyzing the subject element alkoxide with 18 mega ohm purity water to produce the corresponding subject element oxide or subject element hydroxide.

  2. Alkali metal cluster theory

    SciTech Connect

    Chen, J.

    1990-01-01

    The tight-binding Hubbard model has been applied to alkali metal clusters with Hartree-Fock self-consistent methods and perturbation methods for the numerical calculations. The relaxation has been studied between the equilibrium structures and the range of the hopping matrix elements in the Hubbard Hamiltonian. The structures are not sensitive to the interaction range but are determined by the number of valence electrons each atom has. Inertia tensors are used to analyze the symmetries of the clusters. The principal axes of the clusters are determined to be the axes of rotational symmetries of clusters if the clusters have any. The eigenvalues of inertia tensors are compared between this model and the ellipsoidal jellium model. The agreement is good for large clusters. At a finite temperature, the thermal motion fluctuates the structures. A fluctuation function has been defined with the distance matrix of a cluster. The fluctuation has been studied with the Monte Carlo simulation method. Energy levels of clusters are calculated from the Hubbard model. Ionization potentials and magic numbers are also obtained from these energy levels. The results confirm that the Hubbard model is a good approximation for a small cluster. The excitation energy is presented by the difference between the original level and excited level, and the electron-hole interactions. The author also studied cooling of clusters between the nozzle and detector in molecular beam apparatus with three cooling mechanisms, adiabatic expansion, photon emission and cluster decay. The adiabatic expansion and the photon emission do not affect mass abundances of clusters. The studies show that cluster decay cooling produces a shift in the mass spectra. The shift is dependent on the temperature of the beam and increases as the temperature increases.

  3. Vibration-Resistant Support for Halide Lamps

    NASA Technical Reports Server (NTRS)

    Kiss, J.

    1987-01-01

    Lamp envelope protected against breakage. Old and new mounts for halide arc lamp sealed in housing with parabolic refector and quartz window. New version supports lamp with compliant garters instead of rigid brazed joint at top and dimensionally unstable finger stock at bottom.

  4. Unraveling halide hydration: A high dilution approach

    NASA Astrophysics Data System (ADS)

    Migliorati, Valentina; Sessa, Francesco; Aquilanti, Giuliana; D'Angelo, Paola

    2014-07-01

    The hydration properties of halide aqua ions have been investigated combining classical Molecular Dynamics (MD) with Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Three halide-water interaction potentials recently developed [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)], along with three plausible choices for the value of the absolute hydration free energy of the proton (Δ G^{ominus }_{hyd}[H^+]), have been checked for their capability to properly describe the structural properties of halide aqueous solutions, by comparing the MD structural results with EXAFS experimental data. A very good agreement between theory and experiment has been obtained with one parameter set, namely LE, thus strengthening preliminary evidences for a Δ G^{ominus }_{hyd}[H^+] value of -1100 kJ mol-1 [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)]. The Cl-, Br-, and I- ions have been found to form an unstructured and disordered first hydration shell in aqueous solution, with a broad distribution of instantaneous coordination numbers. Conversely, the F- ion shows more ordered and defined first solvation shell, with only two statistically relevant coordination geometries (six and sevenfold complexes). Our thorough investigation on the effect of halide ions on the microscopic structure of water highlights that the perturbation induced by the Cl-, Br-, and I- ions does not extend beyond the ion first hydration shell, and the structure of water in the F- second shell is also substantially unaffected by the ion.

  5. The electronic structure of alkali aurides. A four-component Dirac-Kohn-Sham study.

    PubMed

    Belpassi, Leonardo; Tarantelli, Francesco; Sgamellotti, Antonio; Quiney, Harry M

    2006-04-01

    Spectroscopic constants, including dissociation energies, harmonic and anharmonic vibrational frequencies, and dipole moments, are calculated for the complete alkali auride series (LiAu, NaAu, KAu, RbAu, CsAu). The four-component formulation of relativistic density functional theory has been employed in this study, using the G-spinor basis sets implemented recently in the program BERTHA. The performance of four standard nonrelativistic density functionals employed is investigated by comparing the results with the best available theoretical and experimental data. The present work provides the first theoretical predictions on the molecular properties of RbAu. The intermetallic bond that occurs in the alkali auride series is highly polar and is characterized by a large charge transfer from the alkali metals to gold. The extent of this electron transfer has been investigated using several different charge analysis methods, enabling us to reach some general conclusions on their relative performance. We further report a detailed analysis of the topological properties of relativistic electron density in the bonding region, discussing the features of this approach which characterize the nature of the chemical bond. We have also computed the fully relativistic density for the alkali halides MBr and MI (M = Li, Na, K, Rb, and Cs). The comparative study shows that, on the basis of several topological properties and the variation in bond lengths, the gold atom behaves similarly to a halogen intermediate between Br and I. PMID:16571062

  6. The aluminum electrode in AlCl3-alkali-halide melts

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.; Giner, J.

    1972-01-01

    Passivation phenomena were observed upon cathodic and anodic polarization of the Al electrode in AlCl3-KCl-NaCl melts between 100 and 160 C. They are caused by formation of a solid salt layer at the electrode surface resulting from concentration changes upon current flow. The anodic limiting currents increased with temperature and with decreasing AlCl3 content of the melt. Current voltage curves obtained on a rotating aluminum disk showed a linear relationship between the anodic limiting current and 1/sq root of 2 pi (rps). Upon cathodic polarization dentrite formation occurs at the Al electrode. The activation overvoltage in AlCl3-KCl-NaCl (57.5-12.5-20 mol%) was determined by galvanostatic current step methods. An apparent exchange current density of 270 mA/cm2 at 130 C and a double layer capacity of 40 plus or minus 10 microfarad/cm2 were measured.

  7. Spectroscopic studies of Sb3 + color centers in alkali halide single crystals

    NASA Astrophysics Data System (ADS)

    Choi, K. O.; Lee, S. W.; Bae, H. K.; Jung, S. H.; Chang, C. K.; Kang, J. G.

    1991-05-01

    The emission from KCl: Sb3+ and KI: Sb3+ excited in the A-absorption band was measured as a function of exciting photon energy and temperature. The A-band excitation produced two emission bands for KCl: Sb3+ and a single band for KI: Sb3+. The definitive assignment of these bands is presented in terms of the adiabatic potential energy surface (APES), in which the effect of the spin-orbit interaction (SO) on the Jahn-Teller (JT) interaction coupling to the Eg mode is taken into account. The polarization spectrum and the angular dependence of polarization ratio of the A-band emission were also studied to determine the symmetry axes of the Sb3+ -vacancies complex. The results indicate that the anisotropy is associated with the relaxed excited state (RES) of Sb3+. It is also found that the JT interaction coupling to the T2g mode and the vacancies, situated in the next-nearest-neighbor (nnn) and the nearest-neighbor (nn) positions to the Sb3+ ion, give rise to an additive perturbation.

  8. Two types of self-trapped excitons in alkali halide crystals

    NASA Astrophysics Data System (ADS)

    Shluger, A. L.; Itoh, N.; Puchin, V. E.; Heifets, E. N.

    1991-07-01

    We have carried out ab initio many-electron variational calculations of the adiabatic potential-energy surface (APES) for the lowest triplet state of the self-trapped exciton (STE) in KCl and LiCl. For KCl, it is found that at the APES minimum, the Cl-2 molecular ion comprising the STE hole is displaced along the <110> axis by about 0.90 Å from its symmetrical position. The STE electron and hole are shifted in the direction opposite to that of the Cl-2 displacement. The calculated optical-transition energies due to electron and hole excitations of the STE at the APES minimum, and the luminescence energy due to the transition to the crystal ground state agree well with the experimental results. It is found that the <110> displacement of the Cl-2 molecular ion at the APES minimum from its symmetrical position for LiCl is 0.07 Å, much smaller than that in KCl, and that the direction of the shift of the electron and hole is opposite to that for KCl; the electron and hole are localized near one of the Cl-2 ions located closer to the lattice site. It is shown that, for a small shift of the Cl-2 molecular ion from its symmetrical position, the states in which electron and hole are shifted to opposite directions appear in both LiCl and KCl crystals within energy intervals less than 0.8 eV. It is pointed out that the configuration interaction between the two states with the electron and hole shifted in opposite directions should be included for more precise APES calculations at small off-center displacements, and that the electron-hole correlation is important to determine the electronic structure of the STE.

  9. Alkali Halide Opacity in Brown Dwarf and Cool Stellar Atmospheres: A Study of Lithium Chloride

    NASA Astrophysics Data System (ADS)

    Kirby, K.; Weck, P. F.; Schweitzer, A.; Stancil, P. C.; Hauschildt, P. H.

    2003-12-01

    Recent thermochemical equilibrium calculations have revealed the important role played by lithium chloride in the lithium chemistry of cool dwarf atmospheres (K. Lodders 1999, ApJ 519, 793). Indeed, LiCl appears to be the dominant Li-bearing gas over an extended domain of the (P,T) diagram, typically for temperatures below 1500 K. LiCl has a large dipole moment in its ground electronic state which can give rise to intense rovibrational line spectra. In addition, LiCl can make dipole transitions to several low-lying unbound excited states, causing dissociation of the molecule. For these reasons, LiCl may be a significant source of line and continuum opacity in brown dwarf and cool stellar atmospheres. In this work, we report calculations of complete lists of line oscillator strengths and photodissociation cross sections for the low-lying electronic states of LiCl. We have performed single- and double-excitation configuration interaction calculations using the ALCHEMY ab initio package (Mc Lean et al. 1991, MOTECC 91, Elsevier, Leiden) and obtained the potential curves and the corresponding dipole transition moment functions between the X 1Σ ^+ ground state and the B 1Σ ^+ and A 1Π excited states. The resulting line oscillator strengths and molecular photodissociation cross sections have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999, J. Comput. App. Math. 102, 41). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state (EOS). This work was supported in part by NSF grants AST-9720704 and AST-0086246, NASA grants NAG5-8425, NAG5-9222, and NAG5-10551 as well as NASA/JPL grant 961582.

  10. Solvation thermodynamics of alkali and halide ions in ionic liquids through integral equations.

    PubMed

    Bruzzone, Samantha; Malvaldi, Marco; Chiappe, Cinzia

    2008-08-21

    In this work, we study the solvation thermodynamics and other solvation properties of small ions in two room-temperature ionic liquids, dimethyl imidazolium hexafluorophosphate [mmim] [pf6] and dimethyl imidazolium chloride [mmim][cl] with the reference interaction site model (RISM). The nature of the charge affects several aspects of solvation, from electrostriction to the mutual disposition of cations around the solute; nevertheless, the long-range screening behavior of the liquid appears to be insensitive to both charge and dimensions of the solute. The ion solvation is energy driven, as expected for the nature of the solvent, and displays a marked asymmetry between cation and anion solvation chemical potential. Such asymmetry is dependent, even qualitatively, on the ionic liquid chosen as solvent. Partial molar volumes of ions in solution are found to follow the nature of ion-solvent interaction. PMID:19044785

  11. THERMAL GRADIENT MIGRATION OF BRINE INCLUSIONS IN SYNTHETIC ALKALI HALIDE SINGLE CRYSTALS

    SciTech Connect

    Olander, D.R.; Machiels, A.J.; Balooch, M.; Yagnik, S.

    1981-01-01

    An apparatus consisting of an optical microscope with a hot stage attachment capable of simultaneously non-uniformly heating and mechanically loading small single crystals of salt was used to measure the velocities of all-liquid inclusions in NaCl and KCl specimens under various conditions of temperature, temperature gradient, and uniaxial stress. The rate-controlling elementary step in the migration of the inclusions was found to be associated with interfacial processes, probably dissolution of the hot face. Dislocations are required for this step to take place. The small number of dislocation intersections with small inclusions in nearly perfect crystals causes substantial variations in the velocity, a sensitivity of the velocity to mechanical loading of the crystal, and a velocity which varies approximately as the square of the temperature gradient.

  12. The aluminum electrode in AlCl3-alkali-halide melts.

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.; Giner, J.

    1972-01-01

    Passivation phenomena have been observed upon cathodic and anodic polarization of the Al electrode in AlCl3-KCl-NaCl melts between 100 and 160 C. They are caused by formation of a solid salt layer at the electrode surface resulting from concentration changes upon current flow. The anodic limiting currents increased with temperature and with decreasing AlCl3 content of the melt. Current voltage curves obtained on a rotating aluminum disk showed a linear relationship between the anodic limiting current and omega to the minus 1/2 power. Upon cathodic polarization, dendrite formation occurs at the Al electrode. The activation overvoltage in AlCl3-KCl-NaCl was determined by galvanostatic current step methods. An apparent exchange current density of 270 mA/sq cm at 130 C and a double layer capacity of 40 plus or minus 10 microfarad/sq cm were measured.

  13. Thermal Properties of (F+2)H and (F+2)AH Centres in Alkali Halides

    NASA Astrophysics Data System (ADS)

    Kawa, E.; Konaté, A.; Doualan, J. L.; Margerie, J.

    1997-01-01

    Several thermal properties of (F+2)H and (F+2)AH centres are studied. (i) Positions and widths of the infrared absorption band have been measured as functions of temperature in seven cases; the results are discussed in the frame of a simple configuration coordinate model. (ii) The thermal stability of the (a) variety at room temperature is reported for a great number of (F+2)H and (F+2)AH centres. (iii) The spontaneous (b) (a) transformation in the 150 to 250 K domain is briefly studied for eight (F+2)H or (F+2)AH centres and in more details in four cases. (iv) It is demonstrated that the so-called (b) variety of (F+2)H centres in NaCl:O2 - is really a mixture of two different species, probably the (a) variety and a (b0) one, with relative proportions depending on the temperature of the F-light irradiation which has converted (a) into (b). An energy scheme is proposed to explain the behaviour of the (a) - (b) intertransformations, both thermal and radiative. Plusieurs propriétés thermiques des centres (F+2)H et (F+2)AH sont étudiées. (i) Les positions et les largeurs de la bande d'absorption infrarouge ont été mesurées en fonction de la température dans sept cas; les résultats sont discutés dans le cadre d'un modèle simple de coordonnée de configuration. (ii) La stabilité thermique de la variété (a) à la température de la pièce est donnée pour un grand nombre de centres (F+2)H et (F+2)AH. (iii) La transformation spontanée (b) (a) dans le domaine de 150 à 250 K est étudiée sommairement pour huit centres (F+2)H ou (F+2)AH et plus en détail dans quatre cas. (iv) Nous montrons que la soit-disant variété (b) des centres (F+2)H dans NaCl:O2 - est en fait un mélange de deux espèces différentes, probablement la variété (a) et une variété (b0), avec des proportions relatives qui dépendent de la température de l'irradiation en lumière F qui a transformé (a) en (b). Nous proposons un schéma énergétique pour expliquer les propriétés des intertransformations (a) - (b), tant thermiques que radiatives.

  14. Growth of pure single crystals of alkali halides and alkaline earth fluorides

    NASA Astrophysics Data System (ADS)

    Fredericks, W. J.

    1981-05-01

    The final report covers the design of ion selective filters and development of an ion exchange purification system for potassium bromide. The system consists of an ion selective filter for passage of potassium ions and a bromide anion exchange system for reduction of anionic impurities. Because of the high ionic strength of the solutions used and particularly their ability to hydrolyze amide and ester bonds, limitations are imposed on the materials that can be used for construction of those parts of the systems that contact these solutions. Certain addition polymers are more promising for construction of the components of such a system than others, these are discussed in the body of the report. A special group of components have been designed and assembled to provide the fittings, valves, electrode chambers, sampling valves, columns and filters necessary for a closed purification system. The preparation of the resins for use in such a system required that their conversion to the forms required for purification of KBr, require that the reactions for this conversion go almost to completion. The extent of conversion of the resins affect the operational characteristics of the system and are discussed in this report. The product of the initial purification is a strongly acid KBr solution and the techniques were developed to minimize external contamination during reduction of the purified salt solution to a solid. The final purification step made during the growth of the crystal is treatment with a reactive gas. A greaseless reactive gas manifold was constructed and several reactive gas treatments were used in an attempt to purify the KBr.

  15. Mean molal stoichiometric activity coefficients of alkali halides and related electrolytes in hydrothermal solutions

    SciTech Connect

    Wood, S.A.; Crerar, D.A.; Brantley, S.L.; Borcsik, M.

    1984-06-01

    The mean molal stoichiometric activity coefficients have been measured for NaCl at 325/sup 0/ and 350/sup 0/C and for KCl and CaCl/sub 2/ from 200/sup 0/ to 350/sup 0/C using the static vapor pressure method. Differential vapor pressure measurements made using a strain-gauge transducer proved to be rapid and accurate. The vapor pressures were converted to osmotic coefficients, and these osmotic coefficients were fit to both the Lietzke-Stoughton and Pitzer equations. Parameters for these salts and others (NaBr, NaI, NaHS, KBr, KI, LiCl, LiBr, and LiI), for which literature data exist, were tabulated. Many of the trends in the calculated activity coefficients can be correlated with respect to the effect of the ions on the structure of the water. A simple model is presented that factors the activity coefficient into three parts corresponding to long-range electrostatic ion-ion interactions, hydration, and association: this reproduces experimental values with reasonable accuracy. The authors demonstrate a correlation between the ionic potential ratio, (Z/sub c//r/sub c/)/(Z/sub a//r/sub a/), and the activity coefficient, which corresponds physical to the structure-making/breaking correlation. The model has been applied qualitatively to the high temperature data obtained here. The model has also been used to reevaluate the MacInnes convention as a means of obtaining single-ion activity coefficients.

  16. Development and characterization of diamond film and compound metal surface high current photocathodes

    SciTech Connect

    Shurter, R.P.; Moir, D.C.; Devlin, D.J.; Springer, R.W.; Archuleta, T.A.

    1997-09-01

    High current photocathodes operating in vacuum environments as high as 8xE-5 torr are being developed at Los Alamos for use in a new generation of linear induction accelerators. We report quantum efficiencies in wide bandgap semiconductors, pure metals, and compound metal surfaces photocathode materials illuminated by ultraviolet laser radiation.

  17. Technical memo on new results on CsI photocathodes: Enhancement and aging

    SciTech Connect

    Anderson, D.F.; Kwan, S. ); Hoeneisen, B. ); Peskov, V. . World Lab.)

    1991-09-01

    It appears that there are 4 processes involved in the enhancement and aging of a CsI or CsI-TMAE photocathode: water absorption, charging up of the photocathode, a self annealing aging, and a permanent aging. The evidence for these processes are presented. 9 refs., 6 figs.

  18. Research on mechanical vibration impacts of GaAs photocathode photoemission performance

    NASA Astrophysics Data System (ADS)

    Shi, Feng; Cheng, Hong-chang; Bai, Xiao-feng; Yan, Lei

    2015-04-01

    The GaAs photocathode has widely been used in optoelectronic devices such as image intensifiers, photomultiplier tubes, but these devices is inevitable to withstand a variety of mechanical vibration. In order to study the mechanical vibration impact on the photoemission performance of GaAs photocathode, GaAs photocathode image intensifier is researched in this paper. The spectral response of the GaAs photocathode before and after 5~55Hz scan frequency, 14Hz, 33Hz, 52Hz stay frequency, 5~60Hz scan frequency mechanical vibration respectively was tested, then the parameter of photocathode was calculated by MATLAB software according to quantum efficiency formula, the quantum efficiency curve were fitted. The results show that surface escape probability is increased after photocathode is subjected to mechanical vibration, so that its photoemission performance will be improved. We think this phenomenon is due to the GaAs photocathode surface Cs-O reconstruction. This finding provided a new method to enhance the photoemission performance of photocathode.

  19. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  20. Effects of atomic hydrogen and deuterium exposure on high polarization GaAs photocathodes

    SciTech Connect

    M. Baylac; P. Adderley; J. Brittian; J. Clark; T. Day; J. Grames; J. Hansknecht; M. Poelker; M. Stutzman; A. T. Wu; A. S. Terekhov

    2005-12-01

    Strained-layer GaAs and strained-superlattice GaAs photocathodes are used at Jefferson Laboratory to create high average current beams of highly spin-polarized electrons. High electron yield, or quantum efficiency (QE), is obtained only when the photocathode surface is atomically clean. For years, exposure to atomic hydrogen or deuterium has been the photocathode cleaning technique employed at Jefferson Laboratory. This work demonstrates that atomic hydrogen cleaning is not necessary when precautions are taken to ensure that clean photocathode material from the vendor is not inadvertently dirtied while samples are prepared for installation inside photoemission guns. Moreover, this work demonstrates that QE and beam polarization can be significantly reduced when clean high-polarization photocathode material is exposed to atomic hydrogen from an rf dissociator-style atomic hydrogen source. Surface analysis provides some insight into the mechanisms that degrade QE and polarization due to atomic hydrogen cleaning.

  1. Mean transverse energy and response time measurements of GaInP based photocathodes

    SciTech Connect

    Jin, Xiuguang; Yamamoto, Masahiro; Miyajima, Tsukasa; Honda, Yosuke; Uchiyama, Takashi; Tabuchi, Masao; Takeda, Yoshikazu

    2014-08-14

    GaInP, which has a wider band gap than GaAs, is introduced as a photocathode for energy recovery linac (ERL). The wide band gap of material is expected to reduce the heating effect in the thermal relaxation process after high energy excitation. GaInP photocathodes exhibited higher quantum efficiency than GaAs and low thermal emittance as the same as GaAs photocathodes under green laser light irradiation. A short picosecond electron pulse was also achieved with the GaInP photocathode under 532 nm pulse laser irradiation. These experimental results demonstrate that the GaInP photocathode is an important candidate for ERL.

  2. Thermal emittance and response time of a cesium antimonide photocathode

    NASA Astrophysics Data System (ADS)

    Cultrera, Luca; Bazarov, Ivan; Bartnik, Adam; Dunham, Bruce; Karkare, Siddharth; Merluzzi, Richard; Nichols, Matthew

    2011-10-01

    Measurements of the intrinsic emittance and response time of a Cs3Sb photocathode are presented. The emittance is obtained with a solenoid scan technique using a high voltage dc photoemission gun. Photoemission response time is evaluated using a RF deflecting cavity synchronized to a picosecond laser pulse train. We find that Cs3Sb has both small mean transverse energy, 160 ± 10 meV at 532 nm laser wavelength, and a prompt response time (below the resolution of our measurement) making it a suitable material for high brightness electron photoinjectors.

  3. Characterization of quantum well structures using a photocathode electron microscope

    NASA Technical Reports Server (NTRS)

    Spencer, Michael G.; Scott, Craig J.

    1989-01-01

    Present day integrated circuits pose a challenge to conventional electronic and mechanical test methods. Feature sizes in the submicron and nanometric regime require radical approaches in order to facilitate electrical contact to circuits and devices being tested. In addition, microwave operating frequencies require careful attention to distributed effects when considering the electrical signal paths within and external to the device under test. An alternative testing approach which combines the best of electrical and optical time domain testing is presented, namely photocathode electron microscope quantitative voltage contrast (PEMQVC).

  4. Modeling the quantum efficiency of controlled porosity dispenser photocathodes

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Jensen, K.; O'Shea, P.

    2012-01-01

    A theoretical model of diffusion, evaporation, and rejuvenation of cesium on the surface of a controlled porosity dispenser photocathode is developed. The model applies a novel hexagonal meshgrid for increased numerical accuracy. For activation temperatures within the range of 400 K-1000 K, simulation found differences of less than 5% between the quantum efficiency (QE) maximum and minimum over ideal homogenous surfaces. Simulations suggest more variation for real cases to include real surface non uniformity. Changes in the QE map across the surface suggest that the emittance can change depending on temperature. Extensions to the model as well as connections to experiment are discussed.

  5. High voltage switch triggered by a laser-photocathode subsystem

    DOEpatents

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  6. Polarization and charge limit studies of strained GaAs photocathodes

    SciTech Connect

    Saez, P.J.

    1997-03-01

    This thesis presents studies on the polarization and charge limit behavior of electron beams produced by strained GaAs photocathodes. These photocathodes are the source of high-intensity, high-polarization electron beams used for a variety of high-energy physics experiments at the Stanford Linear Accelerator Center. Recent developments on P-type, biaxially-strained GaAs photocathodes have produced longitudinal polarization in excess of 80% while yielding beam intensities of {approximately} 2.5 A/cm{sup 2} at an operating voltage of 120 kV. The SLAC Gun Test Laboratory, which has a replica of the SLAC injector, was upgraded with a Mott polarimeter to study the polarization properties of photocathodes operating in a high-voltage DC gun. Both the maximum beam polarization and the maximum charge obtainable from these photocathodes have shown a strong dependence on the wavelength of illumination, on the doping concentration, and on the negative electron affinity levels. The experiments performed for this thesis included studying the effects of temperature, cesiation, quantum efficiency, and laser intensity on the polarization of high-intensity beams. It was found that, although low temperatures have been shown to reduce the spin relaxation rate in bulk semiconductors, they don`t have a large impact on the polarization of thin photocathodes. It seems that the short active region in thin photocathodes does not allow spin relaxation mechanisms enough time to cause depolarization. Previous observations that lower QE areas on the photocathode yield higher polarization beams were confirmed. In addition, high-intensity, small-area laser pulses were shown to produce lower polarization beams. Based on these results, together with some findings in the existing literature, a new proposal for a high-intensity, high-polarization photocathode is given. It is hoped that the results of this thesis will promote further investigation on the properties of GaAs photocathodes.

  7. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOEpatents

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  8. Alkali and transition metal phospholides

    NASA Astrophysics Data System (ADS)

    Bezkishko, I. A.; Zagidullin, A. A.; Milyukov, V. A.; Sinyashin, O. G.

    2014-06-01

    Major tendencies in modern chemistry of alkali and transition metal phospholides (phosphacyclopentadienides) are systematized, analyzed and generalized. Basic methods of synthesis of these compounds are presented. Their chemical properties are considered with a special focus on their complexing ability. Potential applications of phospholides and their derivatives are discussed. The bibliography includes 184 references.

  9. Large Charge Extraction from Metallic Multifilamentary Nb3Sn Photocathode

    NASA Astrophysics Data System (ADS)

    Anghel, A.; Ardana-Lamas, F.; Le Pimpec, F.; Hauri, C. P.

    2012-05-01

    The current density limit for photoemission from metals was measured in an rf photogun to be below 109A/m2. We have achieved 1.6×1011A/m2 by photofield emission from a new type of photocathode made from a metallic-composite, multifilamentary Nb3Sn wire driven by a 266 nm picosecond laser pulse and a 2 ns, 50 kV accelerating voltage. This cathode has a micrometer arrayed structure with tens of thousands of Nb/Nb3Sn filaments embedded in a bronze matrix. Our measurements revealed the existence of a new electron emission regime at high laser fluence (100mJ/cm2). We have extracted stably, and without any surface ablation, up to 4800 pC of charge. This corresponds to 0.9% quantum efficiency, 100 times larger than what is measured from conventional metallic photocathodes. The unexpected large and stable charge extraction cannot be explained by the 3-step model. Thanks to the small emitting area, the measured emittance (0.6mm·mrad) is low in spite of the high current density and space charge effects. This cathode will be of benefit for many applications based on short and bright electron bunches.

  10. Magnetron Driven L Band RF Gun using a Photocathode Emitter

    NASA Astrophysics Data System (ADS)

    Evans, Kirk; Fisher, Amnon; Friedman, Moshe

    1996-11-01

    Magnetron Driven L Band RF Gun using a Photocathode Emitter A tunable 5 megawatt L-Band injection locked magnetron amplifier is used to drive a 1-1/2 cell RF cavity gun, to produce a 2.5 megavolt electron beam. A tunable RF source relaxes the precision of the cavity gun construction, and therefore simplifies the design and reduces the overall cost. The design of the L-Band ( 1.3 GHz) RF cavity linear accelerator is presented, along with Superfish, SOS computer simulations, and calculations of beam energy and temporal qualities. Measurements of a few robust photocathode materials as well as measurements of the beam qualities of the final accelerator are presented. Future work will utilize new semiconductor laser diodes that can be electrically driven in the gigahertz range. This makes possible an electron gun system which can run at the RF frequency used to accelerate the electron beam. Such a system produces a "lock to clock" and synchronized RF and electron beam source which can be run single shot or any rep rate up to the RF frequency.

  11. The upgraded photocathode laser of the TESLA Test Facility

    NASA Astrophysics Data System (ADS)

    Will, I.; Koss, G.; Templin, I.

    2005-04-01

    This paper describes the photocathode laser of the TESLA Test Facility (TTF). The laser system generates trains of ultraviolet picosecond pulses with 262 nm wavelength. Special measures were required to allow for stable and reliable generation of these pulse trains that are up to 800 μs long and can contain up to 800 micropulses at 1 MHz repetition rate, alternatively, up to 2400 micropulses at 3 MHz repetition rate within the train. The duration of the individual micropulses is 11 ps FWHM ( σ˜4.5 ps). In the 1 MHz mode the micropulse energy at 262 nm wavelength reaches 54 μJ. Laser pulses are generated synchronously to the RF system of the TTF-2 linear accelerators (linac) with synchronization accuracy better than 1 ps. The laser is able to run at 10 Hz repetition rate with full remote control. It illuminates the photocathode of an RF gun to generate the electron bunches which are subsequently accelerated in the TTF linac.

  12. AlGaN/InGaN Photocathode Development

    SciTech Connect

    Buckley, J. H.; Leopold, D. J.

    2008-12-24

    An increase in quantum efficiency in photodetectors could result in a proportional reduction in the area of atmospheric Cherenkov telescopes and an even larger reduction in cost. We report on the development of high quantum efficiency, high gain, UV/blue photon-counting detectors based on AlGaN/InGaN photocathode heterostructures grown by molecular beam epitaxy. This research could eventually result in nearly ideal light detectors with a number of distinct advantages over existing technologies for numerous applications in high-energy physics and particle astrophysics. Potential advantages include much lower noise detection, better stability and radiation resistance than other cathode structures, high VUV sensitivity and very low radioactive background levels for deep underground experiments, and high detection efficiency for the detection of individual VUV-visible photons. We are also developing photocathodes with intrinsic gain, initially improving the detection efficiency of hybrid semiconductor-vacuum tube devices and eventually leading to a new type of all-solid-state photomultiplier device.

  13. Lanthanide-halide based humidity indicators

    DOEpatents

    Beitz, James V.; Williams, Clayton W.

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  14. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    PubMed

    Chen, Kun; Tüysüz, Harun

    2015-11-01

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites. PMID:26376773

  15. Flame inhibition by hydrogen halides - Some spectroscopic measurements

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Cagliostro, D. E.

    1973-01-01

    The far-ultraviolet absorption spectrum of an air-propane diffusion flame inhibited with hydrogen halides has been studied. Plots of the absorption of light by hydrogen halides as a function of position in the flame and also as a function of the amount of hydrogen halide added to the flame have been obtained. The hydrogen halides are shown to be more stable on the fuel side of the reaction zone than they are on the air side. Thermal diffusion is seen to be important in determining the concentration distribution of the heavier hydrogen halides in diffusion flames. The relationship between the concentration distribution of the hydrogen halides in the flame and the flame inhibition mechanism is discussed.

  16. Unraveling halide hydration: A high dilution approach

    SciTech Connect

    Migliorati, Valentina Sessa, Francesco; D’Angelo, Paola; Aquilanti, Giuliana

    2014-07-28

    The hydration properties of halide aqua ions have been investigated combining classical Molecular Dynamics (MD) with Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Three halide-water interaction potentials recently developed [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)], along with three plausible choices for the value of the absolute hydration free energy of the proton (ΔG{sub hyd}{sup ⊖}[H{sup +}]), have been checked for their capability to properly describe the structural properties of halide aqueous solutions, by comparing the MD structural results with EXAFS experimental data. A very good agreement between theory and experiment has been obtained with one parameter set, namely L{sub E}, thus strengthening preliminary evidences for a ΔG{sub hyd}{sup ⊖}[H{sup +}] value of −1100 kJ mol{sup −1} [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)]. The Cl{sup −}, Br{sup −}, and I{sup −} ions have been found to form an unstructured and disordered first hydration shell in aqueous solution, with a broad distribution of instantaneous coordination numbers. Conversely, the F{sup −} ion shows more ordered and defined first solvation shell, with only two statistically relevant coordination geometries (six and sevenfold complexes). Our thorough investigation on the effect of halide ions on the microscopic structure of water highlights that the perturbation induced by the Cl{sup −}, Br{sup −}, and I{sup −} ions does not extend beyond the ion first hydration shell, and the structure of water in the F{sup −} second shell is also substantially unaffected by the ion.

  17. Process and composition for drying of gaseous hydrogen halides

    DOEpatents

    Tom, Glenn M.; Brown, Duncan W.

    1989-08-01

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  18. Observation of Significant Quantum Efficiency Enhancement from a Polarized Photocathode with Distributed Brag Reflector

    SciTech Connect

    Zhang, Shukui; Poelker, Matthew; Stutzman, Marcy L.; Chen, Yiqiao; Moy, Aaron

    2015-09-01

    Polarized photocathodes with higher Quantum efficiency (QE) would help to reduce the technological challenge associated with producing polarized beams at milliampere levels, because less laser light would be required, which simplifies photocathode cooling requirements. And for a given amount of available laser power, higher QE would extend the photogun operating lifetime. The distributed Bragg reflector (DBR) concept was proposed to enhance the QE of strained-superlattice photocathodes by increasing the absorption of the incident photons using a Fabry-Perot cavity formed between the front surface of the photocathode and the substrate that includes a DBR, without compromising electron polarization. Here we present recent results showing QE enhancement of a GaAs/GaAsP strained-superlattice photocathode made with a DBR structure. Typically, a GaAs/GaAsP strained-superlattice photocathode without DBR provides a QE of 1%, at a laser wavelength corresponding to peak polarization. In comparison, the GaAs/GaAsP strained-superlattice photocathodes with DBR exhibited an enhancement of over 2 when the incident laser wavelength was tuned to meet the resonant condition for the Fabry-Perot resonator.

  19. Opaque gallium nitride photocathodes in UV imaging detectors with microchannel plates

    NASA Astrophysics Data System (ADS)

    Tremsin, Anton S.; Hull, Jeffrey S.; Siegmund, Oswald H. W.; McPhate, Jason B.; Vallerga, John V.; Dabiran, Amir M.; Mane, Anil; Elam, Jeff

    2013-09-01

    The optimization and performance of opaque Galium Nitride (GaN) photocathodes deposited directly on novel Microchannel Plates (MCPs) are presented in this paper. The novel borosilicate glass MCPs, which are manufactured with the help of Atomic Layer Deposition, can withstand higher temperatures enabling direct deposition of GaN films on their surfaces. The quantum efficiency of MBE-grown GaN photocathodes of various thickness and buffer layers was studied in the spectral range of ~200-400 nm for the films grown on different surface layers (such as Al2O3 or buffer AlN layer) in order to determine the optimal opaque photocathode configuration. The MCPs with the GaN photocathodes were activated with surface cesiation in order to achieve the negative Electron Affinity for the efficient photon detection. The opaque photocathodes enable substantial broadening of the spectral sensitivity range compared to the semitransparent configuration when the photocathodes are deposited on the input window. The design of currently processed sealed tube event counting detector with an opaque GaN photocathode are also described in this paper. Our experiments demonstrate that although there is still development work required the detection quantum efficiencies exceeding 20% level should be achievable in 200-400 nm range and <50% in 100-200 nm range for the event counting MCP detectors with high spatial resolution (better than 50 μm) and timing resolution of <100 ps and very low background levels of only few events cm-2 s-1.

  20. A high average current DC GaAs photocathode gun for ERLs and FELs

    SciTech Connect

    C. Hernandez-Garcia; T. Siggins; S. Benson; D. Bullard; H. F. Dylla; K. Jordan; C. Murray; G. R. Neil; Michelle D. Shinn; R. Walker

    2005-05-01

    The Jefferson Lab (JLab) 10 kW IR Upgrade FEL DC GaAs photocathode gun is presently the highest average current electron source operational in the U.S., delivering a record 9.1 mA CW, 350 kV electron beam with 122 pC/bunch at 75 MHz rep rate. Pulsed operation has also been demonstrated with 8 mA per pulse (110 pC/bunch) in 16 ms-long pulses at 2 Hz rep rate. Routinely the gun delivers 5 mA CW and pulse current at 135 pC/bunch for FEL operations. The Upgrade DC photocathode gun is a direct evolution of the DC photocathode gun used in the previous JLab 1 kW IR Demo FEL. Improvements in the vacuum conditions, incorporation of two UHV motion mechanisms (a retractable cathode and a photocathode shield door) and a new way to add cesium to the GaAs photocathode surface have extended its lifetime to over 450 Coulombs delivered between re-cesiations (quantum efficiency replenishment). With each photocathode activation quantum efficiencies above 6% are routinely achieved. The photocathode activation and performance will be described in detail.

  1. Surface Science Analysis of GaAs Photocathodes Following Sustained Electron Beam Delivery

    SciTech Connect

    Shutthanandan, V.; Zhu, Zihua; Stutzman, Marcy L.; Hannon, Fay; Hernandez-Garcia, Carlos; Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai; Hess, Wayne P.

    2012-06-12

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Several photocathode degradation processes are suspected, including defect formation by ion back bombardment, photochemistry of surface adsorbed species and irradiation-induced surface defect formation. To better understand the mechanisms of photocathode degradation, we have conducted surface and bulk analysis studies of two GaAs photocathodes removed from the FEL photoinjector after delivering electron beam for a few years. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, strained super-lattice GaAs photocathode samples, removed from the CEBAF photoinjector were analyzed using Transmission Electron Microscopy (TEM) and SIMS. This analysis of photocathode degradation during nominal photoinjector operating conditions represents first steps towards developing robust new photocathode designs necessary for generating sub-micron emittance electron beams required for both fourth generation light sources and intense polarized CW electron beams for nuclear and high energy physics facilities.

  2. Alkali and alkali-earth ions in 4He systems

    NASA Astrophysics Data System (ADS)

    Rossi, M.; Verona, M.; Galli, D. E.; Reatto, L.

    2004-06-01

    We study with variational Monte Carlo simulations a single ion impurity in nanodroplets and in liquid 4He . Within the shadow wave function (SWF) approach we have studied alkali-earth ion doped 4He systems ( Be+ and Mg+ ) and we have also improved our previous variational results for alkali ion impurities ( Na+ , K+ , and Cs+ ). The new SWF allows for anisotropic correlations between 4He atoms and the ion. The first shell of 4He atoms around the ions has always a well defined solidlike structure, which is remarkably different for each ion but it does not depend on the 4He system (bulk liquid or cluster). We also give results for the chemical potential, the single particle excitation spectrum, and the effective mass of the ions in the bulk.

  3. Lanthanide doped strontium-barium cesium halide scintillators

    DOEpatents

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  4. A novel system for measurement of the transverse electron momentum distribution from photocathodes

    SciTech Connect

    Feng, J.; Nasiatka, J.; Wan, W.; Padmore, H. A.; Vecchione, T.

    2015-01-15

    The transverse momentum of electrons produced by a photocathode contributes significantly to the performance of several different types of accelerator-based light sources, such as Free Electron Lasers, as well as systems designed for ultrafast electron diffraction and dynamic transmission electron microscopy. Minimization of the transverse emittance from photocathodes is the subject of intensive research, and therefore measurement of this parameter is of great importance. Here, we describe a simple system that offers real time measurements of transverse emittance and can be easily integrated into the photocathode fabrication process.

  5. Properties of CsI and CsI-TMAE photocathodes

    SciTech Connect

    Anderson, D.F.; Kwan, S.; Peskov, V.; Hoeneisen, B.

    1992-06-01

    The importance of heating the CsI or CsI-TMAE photocathodes during preparation, as well as the importance of the gas environment on the quantum efficiency is presented. The dependence of the aging characteristics of these photocathodes on the operating temperature, on the presence of gas, and on the charge amplification of the chamber is also discussed. For CsI photocathodes charges in excess of 2{times}10{sup 14} e{sup {minus}}/mm{sup 2} can be collected with little degradation of performance. A timing resolution of 0.55 ns is also achieved for single photoelectrons suggesting a possible time-of-flight detector.

  6. Photocathode non-uniformity contribution to the energy resolution of scintillators.

    PubMed

    Mottaghian, M; Koohi-Fayegh, R; Ghal-Eh, N; Etaati, G R

    2010-06-01

    This paper introduces the basics of the light transport simulation in scintillators and the wavelength-dependencies in the process. The non-uniformity measurement of the photocathode surface is undertaken, showing that for the photocathode used in this study the quantum efficiency falls to about 4 % of its maximum value, especially in areas far from the centre. The wavelength- and position-dependent quantum efficiency is implemented in the Monte Carlo light transport code, showing that, the contribution of the photocathode non-uniformity to the energy resolution is estimated to be around 18 %, when all position- and wavelength-dependencies are included. PMID:20167795

  7. Photocathode-Uniformity Tests of the Hamamatsu R5912 Photomultiplier Tubes Used in the Milagro Experiment

    NASA Astrophysics Data System (ADS)

    Vasileiou, V.; Ellsworth, R. W.; Smith, A.

    The Milagro experiment observes the extensive air showers produced by very high energy gamma-rays impacting the Earth’s atmosphere. Milagro uses 898 Hamamatsu R5912 Photomultiplier Tubes. To complete our Monte Carlo simulations, we tested the photocathode uniformity of our PMTs. The main finding was that the PMT gain and detection efficiency are a function of the distance from the center of the photocathode. Both quantities become considerably smaller as the illumination position nears the edge of the photocathode. Inclusion of the measured quantities in our MC simulations greatly increased the agreement between the simulations and the experiment.

  8. Performance of the 8-in. R5912 photomultiplier tube with super bialkali photocathode

    NASA Astrophysics Data System (ADS)

    Wang, W.; Qian, S.; Xia, J.; Ning, Z.; Cheng, Y.; Qi, M.; Heng, Y.; Wang, Z.; Li, X.; Liu, S.; Lei, X.

    2015-08-01

    An enhanced R5912 family photomultiplier (8-inch.) model with super bialkali photocathode was developed by Hamamatsu. The spectral responses of the standard and enhanced photocathode were compared and a relative increase of 39% at 400 nm was found for the enhanced one. Additional measurements on the relative detection efficiency at a gain of 1E7 showed a consistent improvement of the quantum efficiency. Good uniformity was observed on the super bialkali photocathode. Additional tests proved that both the charge resolution and time properties were not affected by the new cathode technology. Dark count rate and dark current values were found larger in the super bialkali model compared to the standard one.

  9. Making and Breaking of Lead Halide Perovskites.

    PubMed

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization kinetics can be tailored to yield improved thin film homogeneity. Because degradation of the as-formed perovskite film is in many ways analogous to its initial formation, the same suite of monitoring techniques reveals the moisture-induced transformation of low band gap methylammonium lead iodide (CH3NH3PbI3) to wide band gap hydrate compounds. The rate of degradation is increased upon exposure to light. Interestingly, the hydration process is reversible under certain conditions. This facile formation and subsequent chemical lability raises the question of whether CH3NH3PbI3 and its analogues are thermodynamically stable phases, thus posing a significant challenge to the development of transformative perovskite photovoltaics. Adequately addressing issues of structural and chemical stability under real-world operating conditions is paramount if perovskite solar cells are to make an impact beyond the benchtop. Expanding our fundamental knowledge of lead halide perovskite formation and degradation pathways can facilitate fabrication of stable, high-quality perovskite thin films for the next generation of photovoltaic and light emitting devices. PMID:26789596

  10. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  11. Alkali metal/sulfur battery

    DOEpatents

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  12. Alkali metal sources for OLED devices

    NASA Astrophysics Data System (ADS)

    Cattaneo, Lorena; Longoni, Giorgio; Bonucci, Antonio; Tominetti, Stefano

    2005-07-01

    In OLED organic layers electron injection is improved by using alkali metals as cathodes, to lower work function or, as dopants of organic layer at cathode interface. The creation of an alkali metal layer can be accomplished through conventional physical vapor deposition from a heated dispenser. However alkali metals are very reactive and must be handled in inert atmosphere all through the entire process. If a contamination takes place, it reduces the lithium deposition rate and also the lithium total yield in a not controlled way. An innovative alkali metal dispensing technology has been developed to overcome these problems and ensure OLED alkali metal cathode reliability. The alkali Metal dispenser, called Alkamax, will be able to release up to a few grams of alkali metals (in particular Li and Cs) throughout the adoption of a very stable form of the alkali metal. Lithium, for example, can be evaporated "on demand": the evaporation could be stopped and re-activated without losing alkali metal yield because the metal not yet consumed remains in its stable form. A full characterization of dispensing material, dispenser configuration and dispensing process has been carried out in order to optimize the evaporation and deposition dynamics of alkali metals layers. The study has been performed applying also inside developed simulations tools.

  13. Enhanced lifetime hybrid-diffuser cesium reservoir photocathode

    NASA Astrophysics Data System (ADS)

    Montgomery, Eric J.; Pan, Zhigang; Riddick, Blake C.; O'Shea, Patrick G.; Feldman, Donald W.; Jensen, Kevin L.; Ives, R. Lawrence; Falce, Louis R.

    2013-01-01

    A novel self-healing hybrid-diffuser cesium reservoir photocathode is demonstrated. The model-driven design optimizes operating temperature to match diffusion and evaporation rates and maximize quantum efficiency of the cesiated tungsten surface. A sintered-wire tungsten emitter promotes surface uniformity. Cesium loss is less than 0.023 µg/cm2/hr at 125°C, and conservatively extrapolated reservoir lifetime exceeds 30,000 hours. Contamination robustness to a direct atmospheric leak with room-temperature contamination by over 200 Langmuirs of oxidizing gases is excellent, with 90% of maximum QE repeatedly restored via in situ self-healing recesiation under gentle 90°C heating.

  14. Enhanced lifetime hybrid-diffuser cesium reservoir photocathode

    NASA Astrophysics Data System (ADS)

    Montgomery, Eric J.; Pan, Zhigang; Riddick, Blake C.; O'Shea, Patrick G.; Feldman, Donald W.; Jensen, Kevin L.; Ives, R. Lawrence; Falce, Louis R.

    2012-12-01

    A novel self-healing hybrid-diffuser cesium reservoir photocathode is demonstrated. The model-driven design optimizes operating temperature to match diffusion and evaporation rates and maximize quantum efficiency of the cesiated tungsten surface. A sintered-wire tungsten emitter promotes surface uniformity. Cesium loss is less than 0.023 µg/cm2/hr at 125°C, and conservatively extrapolated reservoir lifetime exceeds 30,000 hours. Contamination robustness to a direct atmospheric leak with room-temperature contamination by over 200 Langmuirs of oxidizing gases is excellent, with 90% of maximum QE repeatedly restored via in situ self-healing recesiation under gentle 90°C heating.

  15. High-power fiber lasers for photocathode electron injectors

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi; Bartnik, Adam; Wise, Frank W.; Bazarov, Ivan V.; Dunham, Bruce M.

    2014-05-01

    Many new applications for electron accelerators require high-brightness, high-average power beams, and most rely on photocathode-based electron injectors as a source of electrons. To achieve such a photoinjector, one requires both a high-power laser system to produce the high average current beam, and also a system at reduced repetition rate for electron beam diagnostics to verify high beam brightness. Here we report on two fiber laser systems designed to meet these specific needs, at 50 MHz and 1.3 GHz repetition rate, together with pulse pickers, second harmonic generation, spatiotemporal beam shaping, intensity feedback, and laser beam transport. The performance and flexibility of these laser systems have allowed us to demonstrate electron beam with both low emittance and high average current for the Cornell energy recovery linac.

  16. Measurement of photocathode spectral response at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Menegolli, A.; Prata, M.; Prata, M. C.; Raselli, G. L.; Vignoli, C.

    2007-03-01

    Noble-gas liquids, such as xenon and argon, have been recently proposed as light scintillators in some experiments dedicated to neutrino physics and dark matter research. These experiments need the use of photomultiplier tubes directly immersed in the liquid phase and operating at cryogenic temperatures. We carried out an investigation about the spectral response and its variation from room to cryogenic temperature for two different kind of cryogenic photocathodes manufactured by Electron Tubes Ltd. and Hamamatsu Photonics K.K. Measurements were carried out by means of a xenon continuous lamp and a UV-VIS monocromator which allows the analysis from 300 to 700 nm with 5 nm resolution. Cryogenic tests were made at the liquid nitrogen temperature (77 K).

  17. Atomic hydrogen cleaning of GaAS Photocathodes

    SciTech Connect

    M. Poelker; J. Price; C. Sinclair

    1997-01-01

    It is well known that surface contaminants on semiconductors can be removed when samples are exposed to atomic hydrogen. Atomic H reacts with oxides and carbides on the surface, forming compounds that are liberated and subsequently pumped away. Experiments at Jefferson lab with bulk GaAs in a low-voltage ultra-high vacuum H cleaning chamber have resulted in the production of photocathodes with high photoelectron yield (i.e., quantum efficiency) and long lifetime. A small, portable H cleaning apparatus also has been constructed to successfully clean GaAs samples that are later removed from the vacuum apparatus, transported through air and installed in a high-voltage laser-driven spin-polarized electron source. These results indicate that this method is a versatile and robust alternative to conventional wet chemical etching procedures usually employed to clean bulk GaAs.

  18. Reproducible, rugged, and inexpensive photocathode x-ray diode

    SciTech Connect

    Idzorek, G. C.; Tierney, T. E.; Lockard, T. E.; Moy, K. J.; Keister, J. W.

    2008-10-15

    The photoemissive cathode type of x-ray diode (XRD) is popular for measuring time and spectrally resolved output of pulsed power experiments. Vitreous carbon XRDs currently used on the Sandia National Laboratories Z-machine were designed in the early 1980s and use materials and processes no longer available. Additionally cathodes used in the high x-ray flux and dirty vacuum environment of a machine such as Z suffer from response changes requiring recalibration. In searching for a suitable replacement cathode, we discovered very high purity vitreous-carbon planchets are commercially available for use as biological substrates in scanning electron microscope (SEM) work. After simplifying the photocathode mounting to use commercially available components, we constructed a set of 20 XRDs using SEM planchets that were then calibrated at the National Synchrotron Light Source at Brookhaven National Laboratory. We present comparisons of the reproducibility and absolute calibrations between the current vitreous-carbon XRDs and our new design.

  19. Performance and operational upgrades of x-ray streak camera photocathode assemblies at NIF

    NASA Astrophysics Data System (ADS)

    Hatch, Ben; Palmer, Nathan; Ayers, Shannon; Browning, Don; Felker, Brian; Holder, Joe; Homoelle, Doug; Khan, Shahab; Kimbrough, Joe; MacPhee, Andrew; Petre, Robert B.; Perfect, Brad; Throop, Alan; Wong, J. N.

    2014-09-01

    X-ray streak cameras are used at the National Ignition Facility for time-resolved measurements of inertial confinement fusion metrics such as capsule implosion velocity, self-emission burn width, and x-ray bang time (time of brightest x-ray emission). Recently a design effort was undertaken to improve the performance and operation of the streak camera photocathode and related assemblies. The performance improvements include a new optical design for the input of UV timing fiducial pulses that increases collection efficiency of electrons off the photocathode, repeatability and precision of the photocathode pack assembly, and increase the input field of view for upcoming experiments. The operational improvements will provide the ability to replace photocathode packs between experiments in the field without removing the diagnostic from the Diagnostic Instrument Manipulator (DIM). The new design and preliminary results are presented.

  20. Towards a Robust, Efficient Dispenser Photocathode: the Effect of Recesiation on Quantum Efficiency

    SciTech Connect

    Montgomery, Eric J.; Pan Zhigang; Leung, Jessica; Feldman, Donald W.; O'Shea, Patrick G.; Jensen, Kevin L.

    2009-01-22

    Future electron accelerators and Free Electron Lasers (FELs) require high brightness electron sources; photocathodes for such devices are challenged to maintain long life and high electron emission efficiency (high quantum efficiency, or QE). The UMD dispenser photocathode design addresses this tradeoff of robustness and QE. In such a dispenser, a cesium-based surface layer is deposited on a porous substrate. The surface layer can be replenished from a subsurface cesium reservoir under gentle heating, allowing cesium to diffuse controllably to the surface and providing demonstrably more robust photocathodes. In support of the premise that recesiation is able to restore contaminated photocathodes, we here report controlled contamination of cesium-based surface layers with subsequent recesiation and the resulting effect on QE. Contaminant gases investigated include examples known from the vacuum environment of typical electron guns.

  1. Photocathode behavior during high current running in the Cornell energy recovery linac photoinjector

    NASA Astrophysics Data System (ADS)

    Cultrera, Luca; Maxson, Jared; Bazarov, Ivan; Belomestnykh, Sergey; Dobbins, John; Dunham, Bruce; Karkare, Siddharth; Kaplan, Roger; Kostroun, Vaclav; Li, Yulin; Liu, Xianghong; Löhl, Florian; Smolenski, Karl; Zhao, Zhi; Rice, David; Quigley, Peter; Tigner, Maury; Veshcherevich, Vadim; Finkelstein, Kenneth; Dale, Darren; Pichler, Benjamin

    2011-12-01

    The Cornell University energy recovery linac (ERL) photoinjector has recently demonstrated operation at 20 mA for approximately 8 hours, utilizing a multialkali photocathode deposited on a Si substrate. We describe the recipe for photocathode deposition, and will detail the parameters of the run. Post-run analysis of the photocathode indicates the presence of significant damage to the substrate, perhaps due to ion back-bombardment from the residual beam line gas. While the exact cause of the substrate damage remains unknown, we describe multiple surface characterization techniques (x-ray fluorescence spectroscopy, x-ray diffraction, atomic force, and scanning electron microscopy) used to study the interesting morphological and crystallographic features of the photocathode surface after its use for high current beam production. Finally, we present a simple model of crystal damage due to ion back-bombardment, which agrees qualitatively with the distribution of damage on the substrate surface.

  2. Towards a Robust, Efficient Dispenser Photocathode: the Effect of Recesiation on Quantum Efficiency

    NASA Astrophysics Data System (ADS)

    Montgomery, Eric J.; Pan, Zhigang; Leung, Jessica; Feldman, Donald W.; O'Shea, Patrick G.; Jensen, Kevin L.

    2009-01-01

    Future electron accelerators and Free Electron Lasers (FELs) require high brightness electron sources; photocathodes for such devices are challenged to maintain long life and high electron emission efficiency (high quantum efficiency, or QE). The UMD dispenser photocathode design addresses this tradeoff of robustness and QE. In such a dispenser, a cesium-based surface layer is deposited on a porous substrate. The surface layer can be replenished from a subsurface cesium reservoir under gentle heating, allowing cesium to diffuse controllably to the surface and providing demonstrably more robust photocathodes. In support of the premise that recesiation is able to restore contaminated photocathodes, we here report controlled contamination of cesium-based surface layers with subsequent recesiation and the resulting effect on QE. Contaminant gases investigated include examples known from the vacuum environment of typical electron guns.

  3. Theoretical analysis and modeling of photoemission characteristics of GaAs nanowire array photocathodes

    NASA Astrophysics Data System (ADS)

    Ge, Xiaowan; Zou, Jijun; Deng, Wenjuan; Peng, Xincun; Wang, Weilu; Jiang, Shaotao; Ding, Xiaojun; Chen, Zhaoping; Zhang, Yijun; Chang, Benkang

    2015-09-01

    Gallium arsenide (GaAs) nanowire array (NWA) photocathodes have unique electrical and optical properties. Based on studies about photon absorption, band structure, and electron transport properties of GaAs nanowire, a photoemission model for GaAs NWA photocathodes is established. According to the model, we simulate and analyze the photocurrent, spectral response, and absorption properties of ordered GaAs NWA photocathodes. The results present a very interesting phenomenon; the photocurrent and spectral response peak at incident angles of 20° and 30°, respectively. These special properties of NWA cathodes differentiate them from their thin film counterparts. We also analyze the effects of nanowire length and diameter on the photocurrent of NWA cathodes, and find the optimum height of the nanowires is 10 μm. This study shows that NWAs exhibit higher absorbance and excellent charge transport. Thus, GaAs NWA photocathodes are excellent candidates for electron sources.

  4. Molecular Catalyst Immobilized Photocathodes for Water/Proton and Carbon Dioxide Reduction.

    PubMed

    Tian, Haining

    2015-11-01

    As one of the components in a tandem photoelectrochemical cell for solar-fuel production, the photocathode carries out the reduction reaction to convert solar light and the corresponding substrate (e.g., proton and CO2) into target fuels. Immobilizing molecular catalysts onto the photocathode is a promising strategy to enhance the interfacial electron/hole-transfer process and to improve the stability of the catalysts. Furthermore, the molecular catalysts are beneficial in improving the selectivity of the reduction reaction, particularly for CO2 reduction. On the photocathode, the binding mode of the catalysts and the arrangement between the photosensitizer and the catalyst also play crucial roles in the performance and stability of the final device. How to firmly and effectively immobilize the catalyst on the photoelectrode is now becoming a scientific question. Recent publications on molecular catalyst immobilized photocathodes are therefore surveyed. PMID:26437747

  5. Spectral response, carrier lifetime, and photocurrents of SiC photocathodes

    NASA Astrophysics Data System (ADS)

    Kato, Masashi; Miyake, Keiko; Yasuda, Tomonari; Ichimura, Masaya; Hatayama, Tomoaki; Ohshima, Takeshi

    2016-01-01

    Silicon carbide (SiC) photocathode is one of the candidates for energy conversion from the solar light to hydrogen gas. The conversion efficiencies using SiC photocathodes are still low for practical use. In this study, to find origins of low conversion efficiency, we evaluated carrier lifetimes and depletion layer widths in SiC photocathodes and examined relationship of them with photocurrents. In addition, we observed spectral response of the photocurrents from the photocathodes. From these results, we found that enhancement of the carrier lifetime and the depletion layer width is effective for increase of the conversion efficiency for 4H- and 6H-SiC. 3C-SiC would have defects reducing the effective carrier lifetime, and thus decrease of such defects is essential for increase of the conversion efficiency using 3C-SiC.

  6. [Emissions of methyl halides from coastal salt marshes: A review].

    PubMed

    Xie, Wen-xia; Zhao, Quan-sheng; Cui, Yu-qian; Du, Hui-na; Ye, Si-yuan

    2015-11-01

    Methyl halides are the major carrier of halogens in the atmosphere, and they play an important role in tropospheric and stratospheric ozone depletion. Meanwhile, methyl halides can act as greenhouse gases in the atmosphere, and they are also environmentally significant because of their toxicity. Coastal salt marshes, the important intertidal ecosystems at the land-ocean interface, have been considered to be a large potential natural source of methyl halides. In this paper, the research status of the natural source or sink of methyl halides, the mechanisms of their emission from coastal salt marshes and affecting factors were summarized. In view of this, the following research fields need to be strengthened in the future: 1) Long time-scale and large region-range researches about the emission of methyl halides and the evaluation of their source and sink function, 2) Accurate quantification of contribution rates of different plant species and various biological types to fluxes of methyl halides, 3) Further researches on effects of the tidal fluctuation process and flooding duration on methyl halides emission, 4) Effects of the global change and human activities on methyl halides emission. PMID:26915215

  7. Photoemission studies with barium and LaB6 photocathodes and polarized laser light

    NASA Astrophysics Data System (ADS)

    Conde, M. E.; Kwon, S. I.; Young, A. T.; Leung, K. N.; Kim, K.-J.

    1994-11-01

    In this paper, presented is a work on the optimization of the performance of barium photocathodes. Studies on the dependence of the quantum yield on the polarization and angle of incidence of the laser beam are conducted. Moreover, studies on single crystal LaB6 photocathodes are reported. This material possesses a lower quantum yield than barium, but chemically it is much less reactive and have a very good thermionic emission characteristics.

  8. How specific halide adsorption varies hydrophobic interactions.

    PubMed

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-01-01

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces. PMID:26753786

  9. Raman spectra of hydroxide-halide melts

    NASA Astrophysics Data System (ADS)

    Zakiriyanova, I. D.; Khokhlov, V. A.

    2012-08-01

    The Raman spectra of molten binary mixtures based on sodium hydroxide and containing (mol %) 35 NaCl, 30 NaBr, and 30 NaI have been recorded at various temperatures. An increase in the vibrational frequency and the force constant of the O-H bond is detected under isothermal conditions upon a variation of the anionic composition of a melt in the series I → Br → Cl. Based on the experimental data, the viscosity of the hydroxide-halide melts is estimated.

  10. Color separation in metal halide lamps

    NASA Astrophysics Data System (ADS)

    Stoffels, W. W.; Nimalasuriya, T.; Flikweert, A. J.; Brok, W. J. M.; Mullen, J. J. A. M.; Kroesen, G. M. W.; Haverlag, M.

    2006-10-01

    Metal halide discharge lamps are efficient lighting sources. However their widespread application is hindered by several problems. One problem is color separation. This is caused by a non-homogeneous distribution of radiating species within the lamp. It is believed to be the result of a complex interplay between diffusion and convection processes. In this contribution convection in the lamp is varied by placing the lamp in a rotating centrifuge. The resulting centrifugal force of up to ten times the normal gravitational force enhances the convection within the lamp and allows studying its effect on the color separation.

  11. Nanoscale investigation of organic - inorganic halide perovskites

    NASA Astrophysics Data System (ADS)

    Cacovich, S.; Divitini, G.; Vru?ini?, M.; Sadhanala, A.; Friend, R. H.; Sirringhaus, H.; Deschler, F.; Ducati, C.

    2015-10-01

    Over the last few years organic - inorganic halide perovskite-based solar cells have exhibited a rapid evolution, reaching certified power conversion efficiencies now surpassing 20%. Nevertheless the understanding of the optical and electronic properties of such systems on the nanoscale is still an open problem. In this work we investigate two model perovskite systems (based on iodine - CH3NH3PbI3 and bromine - CH3NH3PbBr3), analysing the local elemental composition and crystallinity and identifying chemical inhomogeneities.

  12. Stabilization of aqueous alkali metal aluminate solutions

    SciTech Connect

    Allenson, S.J.

    1988-03-29

    A method of stabilizing an aqueous solution of alkali metal aluminate is described comprising: admixing an aqueous solution of alkali metal aluminate having a pH of at least 10 with a sufficient amount of vinyl polymer having pendant carboxylate groups to form a solution containing from 0.1 to 2.0 weight percent of an anionic vinyl polymer based on alkali metal aluminate solids. The anionic vinyl polymer has an average molecular weight of at least 500,000.

  13. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  14. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  15. Optical Design Considerations Relevant to Reflective UV Launch Gratings for Photocathode Irradiation

    SciTech Connect

    Bolton, Paul

    2010-12-07

    The characteristics of photoelectron microbunches emitted from a photocathode in response to laser irradiation determine many of the incident laser pulse requirements. RF photocathode designs based on grazing incidence of the irradiation benefit from the removal of launch optics from the electron beamline and enhanced absorption at Brewster angles. However, this also introduces two well known complexities in the laser pulse 'launch' requirements: (i) a transverse spatial anamorphism to guarantee that the projected transverse spatial profile of the irradiation is circular (in the plane of the photocathode) and (ii) a 'time slew' or tilted amplitude front on the laser pulse that is incident on the photocathode to guarantee that the temporal (longitudinal) profiles are synchronous across the entire transverse irradiation profile in the photocathode plane. A single diffraction grating can be used to fulfill these combined requirements. This reported work focuses on grating behavior only. It does not address imaging requirements associated with relayed optical transport from the grating to the photocathode. Because the grating is a highly dispersive optical element by design, the dispersive aspects of all launch requirements are important.

  16. Electron-bombarded CCD image intensifier with a GaAs photocathode

    NASA Astrophysics Data System (ADS)

    Enloe, William S.; Shelden, Richard; Reed, Larry; Amith, Avraham

    1992-06-01

    ITT has an ongoing research program to develop a new generation of image intensifiers that uses a charge-coupled device (CCD) operated in the electron-bombarded mode in order to detect electrons directly from a GaAs photocathode. This type of image intensifier combines signal-to-noise levels typical of microchannel plate (MCP) image tubes with the modulation transfer function (MTF) performance of a diode tube design and generates electronic output compatible with standard video displays. The first successful electron-bombarded CCD (EB- CCD) image intensifier with a GaAs photocathode was demonstrated in August 1991. This photocathode was a standard ITT negative-electron-affinity (NEA) GaAs photocathode. Imagery was obtained from this device. The intensifier incorporated an RCA back-illuminated frame-transfer CCD, designed for electron detection and mounted in a vacuum compatible package. The cathode had a photoresponse of 965 (mu) A/lm at 6 kV -- equivalent to 1,166 (mu) A/lm at an electric field typical of proximity-focused image intensifiers (80 V/mil). A full-well signal was obtained with 2.5 X 10-5 fc photocathode illumination and 6 kV cathode-to-CCD bias. A photocathode life in excess of 280 hours at 1 X 10-4 fc illumination was demonstrated.

  17. Resolution characteristics of graded band-gap reflection-mode AlGaAs/GaAs photocathodes

    NASA Astrophysics Data System (ADS)

    Deng, Wenjuan; Zhang, Daoli; Zou, Jijun; Peng, Xincun; Wang, Weilu; Zhang, Yijun; Chang, Benkang

    2015-12-01

    The modulation transfer function (MTF) of graded band-gap AlGaAs/GaAs reflection-mode photocathodes was determined using two-dimensional Poisson and continuity equations through numerical method. Based on the MTF model, we calculated the theoretical MTF of graded and uniform band-gap reflection-mode photocathodes. We then analyzed the effects of Al composition, wavelength of incident photon, and thicknesses of AlGaAs and GaAs layer on the resolution. Calculation results show that graded band-gap structures can increase the resolution of reflection-mode photocathodes. When the spatial frequency is 800 lp/mm and wavelength is 600 nm, the resolution of graded band-gap photocathodes generally increases by 15.4-29.6%. The resolution improvement of graded band-gap photocathodes is attributed to the fact that the built-in electric field in graded band-gap photocathodes reduces the lateral diffusion distance of photoelectrons.

  18. Methyl halide production associated with kelp

    NASA Technical Reports Server (NTRS)

    Dastoor, Minoo N.; Manley, Steven L.

    1985-01-01

    Methyl halides (MeX) are important trace constituents of the atmosphere because they, mostly MeCl, have a major impact on the atmospheric ozone layer. Also, MeCl may account for 5 pct. of the total Cl budget and MeI may have a central role in the biogeochemical cycling of iodine. High MeI concentrations were found in seawater from kelp beds and it has been suggested that MeI is produced by kelps and that MeI and MeBr along with numerous other halocarbons were released by non-kelp marine macroalgae. The objective was to determine if kelps (and other seaweeds) are sources of MeX and to assess their contribution to the estimated global source strength (EGSS) of MeX. Although the production of MeX appears to be associated with kelp, microbes involved with kelp degradation also produce MeX. Microbial MeX production may be of global significance. The microbial MeX production potential, assuming annual kelp production equals kelp degradation and 100 pct. conversion of kelp halides to MeX, is approx. 2 x the EGSS. This is not achieved but indicates that microbial production of MeX may be of global significance.

  19. Chemical trends in halide perovskite electronic properties

    NASA Astrophysics Data System (ADS)

    Lambrecht, Walter; Huang, Ling-Yi

    2015-03-01

    The halide perovskites ABX3 with B = Pb or Sn, X=I, and A=Cs or methylammionium (MA), have recently attracted attention as solar cell materials. We discuss the basic bonding, stability and electronic band structure of these materials for different chemical substitutions using first-principles calculations. An important feature of the Pb and Sn based halides is that these element's s-electrons strongly hybridize with the halogen p-orbitals leading to a valence band maximum with strong Sn or Pb- s character and small effective mass. The conduction band minimum is Sn or Pb p-like. We present trends in the electronic band structure with the halogen X = I, Br, Cl and the B cation Pb, Sn, Ge, Si. The gap is remarkably insensitive because of the opposing trends of the increased spin-orbit coupling for heavier elements (reducing the gap) and the decreased valence band width for heaver elements due to the larger B-X distance, which increases the gap. The stability of the perovskite structure vs. competing structures is influenced by the tolerance factor t =RAC /√{ 2}RBC . The smaller this factor, the least stable is the perovskite structure. CsSiI3 is found to be a topological insulator. Its stability with respect to CsI and SiIn is discussed. Supported by DOE-BES, No. ER 46874-SC0008933.

  20. Alkali-Metal Spin Maser

    NASA Astrophysics Data System (ADS)

    Chalupczak, W.; Josephs-Franks, P.

    2015-07-01

    Quantum measurement is a combination of a read-out and a perturbation of the quantum system. We explore the nonlinear spin dynamics generated by a linearly polarized probe beam in a continuous measurement of the collective spin state in a thermal alkali-metal atomic sample. We demonstrate that the probe-beam-driven perturbation leads, in the presence of indirect pumping, to complete polarization of the sample and macroscopic coherent spin oscillations. As a consequence of the former we report observation of spectral profiles free from collisional broadening. Nonlinear dynamics is studied through exploring its effect on radio frequency as well as spin noise spectra.

  1. 10 CFR 429.54 - Metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Metal halide lamp ballasts and fixtures. 429.54 Section... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.54 Metal halide lamp ballasts... are applicable to metal halide lamp ballasts; and (2) For each basic model of metal halide...

  2. 10 CFR 429.54 - Metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Metal halide lamp ballasts and fixtures. 429.54 Section... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.54 Metal halide lamp ballasts... are applicable to metal halide lamp ballasts; and (2) For each basic model of metal halide...

  3. The Surface Activation Layer of GaAs Negative Electron Affinity Photocathode Activated by Cs, Li and NF3

    SciTech Connect

    Sun, Yun; Kirby, R.E.; Maruyama, T.; Mulhollan, G.A.; Bierman, J.C.; Pianetta, P.; /SLAC, SSRL

    2009-12-11

    The lifetime of GaAs photocathodes can be greatly improved by introducing Li in the Cs+NF{sub 3} activation process. The surface activation layer of such photocathodes is studied by synchrotron radiation photoemission and is compared with GaAs photocathodes activated without Li. The charge distributions of N, F and Cs experience significant changes when Li is added in the activation. In addition, the presence of Li causes NF{sub x} molecules to take an orientation with F atoms on top. All these changes induced by Li hold the key for the lifetime improvement of GaAs photocathodes.

  4. The alkali metals: 200 years of surprises.

    PubMed

    Dye, James L

    2015-03-13

    Alkali metal compounds have been known since antiquity. In 1807, Sir Humphry Davy surprised everyone by electrolytically preparing (and naming) potassium and sodium metals. In 1808, he noted their interaction with ammonia, which, 100 years later, was attributed to solvated electrons. After 1960, pulse radiolysis of nearly any solvent produced solvated electrons, which became one of the most studied species in chemistry. In 1968, alkali metal solutions in amines and ethers were shown to contain alkali metal anions in addition to solvated electrons. The advent of crown ethers and cryptands as complexants for alkali cations greatly enhanced alkali metal solubilities. This permitted us to prepare a crystalline salt of Na(-) in 1974, followed by 30 other alkalides with Na(-), K(-), Rb(-) and Cs(-) anions. This firmly established the -1 oxidation state of alkali metals. The synthesis of alkalides led to the crystallization of electrides, with trapped electrons as the anions. Electrides have a variety of electronic and magnetic properties, depending on the geometries and connectivities of the trapping sites. In 2009, the final surprise was the experimental demonstration that alkali metals under high pressure lose their metallic character as the electrons are localized in voids between the alkali cations to become high-pressure electrides! PMID:25666067

  5. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    SciTech Connect

    Carlos Hernandez-Garcia, Fay Hannon, Marcy Stutzman, V. Shutthanandan, Z. Zhu, M. Nandasri, S. V. Kuchibhatla, S. Thevuthasan, W. P. Hess

    2012-06-01

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Photocathode quantum efficiency (QE) degradation is due to residual gasses in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes, which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector and one unused, were also analyzed using Transmission Electron Microscopy (TEM) and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but shows evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.

  6. Tellurite glass as a waste form for mixed alkali-chloride waste streams: Candidate materials selection and initial testing

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Rieck, Bennett T.; McCloy, John S.; Crum, Jarrod V.; Sundaram, S. K.; Vienna, John D.

    2012-05-01

    Tellurite glasses have historically been shown to host large concentrations of halides. They are here considered for the first time as a waste form for immobilizing chloride wastes, such as may be generated in the proposed molten alkali salt electrochemical separations step in nuclear fuel reprocessing. Key properties of several tellurite glasses are determined to assess acceptability as a chloride waste form. TeO2 glasses with other oxides (PbO, Al2O3 + B2O3, WO3, P2O5, or ZnO) were fabricated with and without 10 mass% of a simulated (non-radioactive) mixed alkali, alkaline-earth, and rare earth chloride waste. Measured chemical durability is compared for the glasses, as determined by the product consistency test (PCT), a common standardized chemical durability test often used to validate borosilicate glass waste forms. The glass with the most promise as a waste form is the TeO2-PbO system, as it offers good halide retention, a low sodium release (by PCT) comparable with high-level waste silicate glass waste forms, and a high storage density.

  7. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  8. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  9. Emissions of methyl halides and methane from rice paddies.

    PubMed

    Redeker, K R; Wang, N; Low, J C; McMillan, A; Tyler, S C; Cicerone, R J

    2000-11-01

    Methyl halide gases are important sources of atmospheric inorganic halogen compounds, which in turn are central reactants in many stratospheric and tropospheric chemical processes. By observing emissions of methyl chloride, methyl bromide, and methyl iodide from flooded California rice fields, we estimate the impact of rice agriculture on the atmospheric budgets of these gases. Factors influencing methyl halide emissions are stage of rice growth, soil organic content, halide concentrations, and field-water management. Extrapolating our data implies that about 1 percent of atmospheric methyl bromide and 5 percent of methyl iodide arise from rice fields worldwide. Unplanted flooded fields emit as much methyl chloride as planted, flooded rice fields. PMID:11062125

  10. Vibrational Spectroscopy of Sodium Halide and Hydrogen Halide Aqueous Solutions: Application to Atmospheric Aerosol Chemistry

    NASA Astrophysics Data System (ADS)

    Levering, L. M.; Liu, D.; Allen, H. C.

    2003-12-01

    Heterogeneous reactions on the surfaces of atmospheric aerosols play an important role in atmospheric chemistry. These reactions are capable of converting alkyl and hydrogen halides (common constituents of marine boundary aerosols) into active halogen compounds. Fundamental questions still remain concerning surface species and reaction mechanisms pertaining to marine boundary aerosols. The first step in beginning to understand these heterogeneous reactions is to determine how ions in solution affect the structure of water at the interface. Vibrational sum frequency generation spectroscopy is used to examine the air-liquid interface of sodium halide and hydrogen halide (i.e. strong acid) solutions. In addition, comparison of the bulk water structure to that of the interface is accomplished using Raman spectroscopy. The hydrogen-bonding environment at the surface of NaCl is found to be similar to that of the air-water interface. In contrast, the interfacial water structure of NaBr, HCl, and HBr solutions is significantly altered from that of neat water. In the bulk, NaCl, NaBr, HCl, and HBr solutions disturb the hydrogen-bonding network of neat water. A comparison between the corresponding salts and acids show that the salts produce greater disorder (i.e. less coupling of the water symmetric stretching modes) in the bulk water structure.

  11. Halide-Substituted Electronic Properties of Organometal Halide Perovskite Films: Direct and Inverse Photoemission Studies.

    PubMed

    Li, Chi; Wei, Jian; Sato, Mikio; Koike, Harunobu; Xie, Zhong-Zhi; Li, Yan-Qing; Kanai, Kaname; Kera, Satoshi; Ueno, Nobuo; Tang, Jian-Xin

    2016-05-11

    Solution-processed perovskite solar cells are attracting increasing interest due to their potential in next-generation hybrid photovoltaic devices. Despite the morphological control over the perovskite films, quantitative information on electronic structures and interface energetics is of paramount importance to the optimal photovoltaic performance. Here, direct and inverse photoemission spectroscopies are used to determine the electronic structures and chemical compositions of various methylammonium lead halide perovskite films (MAPbX3, X = Cl, Br, and I), revealing the strong influence of halide substitution on the electronic properties of perovskite films. Precise control over halide compositions in MAPbX3 films causes the manipulation of the electronic properties, with a qualitatively blue shift along the I → Br → Cl series and showing the increase in ionization potentials from 5.96 to 7.04 eV and the change of transport band gaps in the range from 1.70 to 3.09 eV. The resulting light absorption of MAPbX3 films can cover the entire visible region from 420 to 800 nm. The results presented here provide a quantitative guide for the analysis of perovskite-based solar cell performance and the selection of optimal carrier-extraction materials for photogenerated electrons and holes. PMID:27101940

  12. Unraveling the Role of Monovalent Halides in Mixed-Halide Organic-Inorganic Perovskites.

    PubMed

    Deepa, Melepurath; Ramos, F Javier; Shivaprasad, S M; Ahmad, Shahzada

    2016-03-16

    The performance of perovskite solar cells is strongly influenced by the composition and microstructure of the perovskite. A recent approach to improve the power conversion efficiencies utilized mixed-halide perovskites, but the halide ions and their roles were not directly studied. Unraveling their precise location in the perovskite layer is of paramount importance. Here, we investigated four different perovskites by using X-ray photoelectron spectroscopy, and found that among the three studied mixed-halide perovskites, CH3 NH3 Pb(I0.74 Br0.26 )3 and CH3 NH3 PbBr3-x Clx show peaks that unambiguously demonstrate the presence of iodide and bromide in the former, and bromide and chloride in the latter. The CH3 NH3 PbI3-x Clx perovskite shows anomalous behavior, the iodide content far outweighs that of the chloride; a small proportion of chloride, in all likelihood, resides deep within the TiO2 /absorber layer. Our study reveals that there are many distinguishable structural differences between these perovskites, and that these directly impact the photovoltaic performances. PMID:26717046

  13. Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration

    SciTech Connect

    Hidding, B.; Rosenzweig, J. B.; Xi, Y.; O'Shea, B.; Andonian, G.; Schiller, D.; Barber, S.; Williams, O.; Pretzler, G.; Koenigstein, T.; Kleeschulte, F.; Hogan, M. J.; Litos, M.; Corde, S.; White, W. W.; Muggli, P.; Bruhwiler, D. L.; Lotov, K.

    2012-12-21

    An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed 'Trojan Horse' acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment 'E-210: Trojan Horse Plasma Wakefield Acceleration' has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.

  14. Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Hidding, B.; Rosenzweig, J. B.; Xi, Y.; O'Shea, B.; Andonian, G.; Schiller, D.; Barber, S.; Williams, O.; Pretzler, G.; Königstein, T.; Kleeschulte, F.; Hogan, M. J.; Litos, M.; Corde, S.; White, W. W.; Muggli, P.; Bruhwiler, D. L.; Lotov, K.

    2012-12-01

    An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed "Trojan Horse" acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment "E-210: Trojan Horse Plasma Wakefield Acceleration" has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.

  15. High brightness photocathode injector for BNL Accelerator Test Facility

    SciTech Connect

    Parsa, Z.; Young, L.

    1990-01-01

    An analysis of the BNL photocathode (1-1/2 cell) Gun'' operating at 2856 MHZ, is presented. The beam parameters including beam energy, and emittance are calculated. A review of the Gun parameters and full input and output of our analysis with program PARMELA, is given in Section 2, some of our results, are tabulated. The phase plots and the beam parameters, at downstream ends of the elements, from cathode through the cavity, first cell is labeled as element 2; and second cell is labeled as element to the exit of the GUN. The analysis was made for 3 cases, using three different initial values (EO) for the average accelerating gradient (MV/m), for comparison with previous works. For illustration, the field obtained with program SUPERFISH is given, and conclusion including shunt impedances obtained for the cells and the cavity are given in Section 6. PARMELA is used as a standard design program at ATF. At the request of some of the users of program PARMELA, this request of some of the users of program PARMELA, this report include and illustrates some of our data, in the input and output format of the program PARMELA. 5 refs., 7 figs., 3 tabs.

  16. Hybrid modeling of relativistic underdense plasma photocathode injectors

    NASA Astrophysics Data System (ADS)

    Xi, Y.; Hidding, B.; Bruhwiler, D.; Pretzler, G.; Rosenzweig, J. B.

    2013-03-01

    The dynamics of laser ionization-based electron injection in the recently introduced plasma photocathode concept is analyzed analytically and with particle-in-cell simulations. The influence of the initial few-cycle laser pulse that liberates electrons through background gas ionization in a plasma wakefield accelerator on the final electron phase space is described through the use of Ammosov-Deloine-Krainov theory as well as nonadiabatic Yudin-Ivanov (YI) ionization theory and subsequent downstream dynamics in the combined laser and plasma wave fields. The photoelectrons are tracked by solving their relativistic equations of motion. They experience the analytically described transient laser field and the simulation-derived plasma wakefields. It is shown that the minimum normalized emittance of fs-scale electron bunches released in mulit-GV/m-scale plasma wakefields is of the order of 10-2mmmrad. Such unprecedented values, combined with the dramatically increased controllability of electron bunch production, pave the way for highly compact yet ultrahigh quality plasma-based electron accelerators and light source applications.

  17. Tellurium halide IR fibers for remote spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xhang H.; Ma, Hong Li; Blanchetiere, Chantal; Le Foulgoc, Karine; Lucas, Jacques; Heuze, Jean; Colardelle, P.; Froissard, P.; Picque, D.; Corrieu, G.

    1994-07-01

    The new family of IR transmitting glasses, the TeX glasses, based on the association of tellurium and halide (Cl, Br, or I) are characterized by a wide optical window extending from 2 to 18 micrometers and a strong stability towards devitrification. Optical fibers drawn from these glasses exhibit low losses in the 7 - 10 micrometers range (less than 1 dB/m for single index fibers, 1 - 2 dB/m for fibers having a core-clad structure). The TeX glass fibers have been used in a remote analysis set-up which is mainly composed of a FTIR spectrometer coupled with a HgCdTe detector. This prototype system permits qualitative and quantitative analysis in a wide wavelength region lying from 3 to 13 micrometers , covering the fundamental absorption of more organic species. The evolution of a lactic and an alcoholic fermentation has been monitored by means of this set-up.

  18. Fatigue of silver-halide fibers

    NASA Astrophysics Data System (ADS)

    Barkay, Nitzan; German, Alla; Shalem, Shaul; Katzir, Abraham

    1994-07-01

    The IR transmittance of silver-halide fibers was measured while they were undergoing various flexing procedures leading to mechanical fatigue. The fatigue experiments consisted of repetitive bending, going from small bending radii (plastic regime) to large bending radii (elastic regime). Various types of fibers have been investigated including unclad fibers, fibers with a core-clad structure, fibers of various AgClxBr1-x compositions and fibers of different diameters. The optical measurements which were done during the flexing experiments involved CO2-laser transmission and spectral (FTIR) transmission. The results for the various conditions are reported and discussed in terms of high-cycle and low- cycle fatigue. Such investigations are of practical importance in characterizing fibers useful for endoscopic surgery and IR detection.

  19. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  20. High-Throughput Screening Protocol for the Coupling Reactions of Aryl Halides Using a Colorimetric Chemosensor for Halide Ions.

    PubMed

    Eom, Min Sik; Noh, Jieun; Kim, Han-Sung; Yoo, Soyeon; Han, Min Su; Lee, Sunwoo

    2016-04-15

    Mercury complex of 4-(2-pyridylazo)resorcinol (PAR-2Hg(2+)), a halide-ion chemosensor, was prepared and its efficiency as a tool for high-throughput screening (HTS) of transition-metal-catalyzed coupling reactions was investigated. It showed a high selectivity for halide ions. When the PAR-2Hg(2+) complex was used in the Suzuki coupling reaction and C-H activated coupling reaction with aryl bromides, the quantitative and qualitative conversions of aryl halides were obtained from the reaction mixture color change. PMID:27019333

  1. Halide etching for tin EUV optics cleaning

    NASA Astrophysics Data System (ADS)

    Shin, Hyung Joo; Jurczyk, Brian E.; Ruzic, D. N.; Bristol, Robert

    2006-03-01

    Tin (Sn) has the advantage of delivering higher conversion efficiency than xenon. However, the use of a condensable fuel in a lithography system leads to some additional challenges for maintaining a satisfactory lifetime of the EUV optics. A critical issue leading to decreased mirror lifetime is the buildup of debris on the surface of the primary mirror optics that comes from the use of Sn in GDPP or LPP. This leads to a decreased reflectivity from the added material thickness and increased surface roughness that contributes to scattering. Reactive ion etching (RIE) with halide ions is one potential solution to this problem. Encouraging results were obtained using argon/chlorine and other gas mixtures in a PlasmaTherm SLR-770 inductively coupled plasma reactive ion etcher at the Micro and Nanotechnology Laboratory at the University of Illinois. The results showed that at low sample bias tin could be etched at a rate of 278 nm/min with a selectivity of tin removal rate to SiO2 removal rate over 9000. However, the use of the etcher at a multi-user facility did not provide adequate control over experimental parameters and reproducible cleanliness of the system. Moreover, the simulating the real optics in the PlasmaTherm SLR-770 was not allowed. Hence, a collector mock-up which can simulate the real collector optics was constructed. This work presents results for etch rate and selectivity for halide etching of tin in the Plasma-Material Interaction Group's new reactive ion etching experiment where control over important parameters such as gas mixture, RF power, sample bias, and sample temperature; as well as overall system cleanliness is maintained. The effect of these parameters on etch rate and selectivity will be presented. In addition, the results of our recipes in the optics mock-up will be shown.

  2. Photoemission characteristics of graded band-gap AlGaAs/GaAs wire photocathode

    NASA Astrophysics Data System (ADS)

    Ding, Xiaojun; Ge, Xiaowan; Zou, Jijun; Zhang, Yijun; Peng, Xincun; Deng, Wenjuan; Chen, Zhaoping; Zhao, Wenjun; Chang, Benkang

    2016-05-01

    A photoemission model of graded band-gap AlGaAs/GaAs wire NEA photocathode is developed based on the numerical solution of coupled Poisson and continuity equations. The emission current density and integral sensitivity of graded band-gap AlGaAs/GaAs wire photocathode as a function of incident light wavelength, Al composition range, and wire length, are simulated according to the model. The simulation results show that, compared with the GaAs (Al composition 0) wire photocathode, the peak integral sensitivities for the photocathodes with wire width of 1 μm and linearly graded Al composition ranges of 0 to 0.1, 0.2, 0.3, and 0.4 increase by 29.5%, 38.5%, 42.1%, and 43.8%, respectively. The optimum wire lengths are 4.7, 5.9, 7.1, and 8.4 μm for the wire photocathodes with Al composition ranges of 0 to 0.1, 0.2, 0.3, and 0.4, respectively.

  3. A mechanism of Cu work function reduction in CsBr/Cu photocathodes.

    PubMed

    Halliday, M T E; Hess, W P; Shluger, A L

    2016-03-01

    Thin films of CsBr deposited on Cu(100) have been proposed as next-generation photocathode materials for applications in particle accelerators and free-electron lasers. However, the mechanisms underlying an improved photocathode performance as well as their long-term stability remain poorly understood. We present Density Functional Theory (DFT) calculations of the work function reduction following the application of CsBr thin film coatings to Cu photocathodes. The effects of both flat and rough interface and van der Waals forces are examined. Calculations suggest that CsBr films can reduce the Cu(100) work function by about 1.5 eV, which would explain the observed increase in quantum efficiency (QE) of coated vs. uncoated photocathodes. A model explaining the experimentally observed laser activation of photocathodes is provided whereby the photo-induced creation of Br vacancies and Cs-Br di-vacancies and their subsequent diffusion to the Cu/CsBr interface lead to a further increase in QE after a period of laser irradiation. PMID:26899524

  4. Alkali burns from wet cement.

    PubMed Central

    Peters, W. J.

    1984-01-01

    When water is added to the dry materials of Portland cement calcium hydroxide is formed; the wet cement is caustic (with a pH as high as 12.9) and can produce third-degree alkali burns after 2 hours of contact. Unlike professional cement workers, amateurs are usually not aware of any danger and may stand or kneel in the cement for long periods. As illustrated in a case report, general physicians may recognize neither the seriousness of the injury in its early stages nor the significance of a history of prolonged contact with wet cement. All people working with cement should be warned about its dangers and advised to immediately wash and dry the skin if contact does occur. Images Fig. 1 PMID:6561052

  5. Alkali Silicate Vehicle Forms Durable, Fireproof Paint

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Seindenberg, Benjamin

    1964-01-01

    The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.

  6. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  7. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  8. The effects of variations in the photocathode voltages of electronic streak cameras

    SciTech Connect

    Bowers, M.W.; Biggs, G.L.; Ronchetto, J.J.; Teruya, A.T.

    1988-08-08

    Electronic streak cameras are used to record subnanosecond data at the Nevada Test Site. It has been found that externally induced variations in the photocathode voltage of the streak tube can produce both temporal and spatial errors on the output image. An electron beam tracing code was used to model the magnification as a function of photocathode voltage and signal input position for streak tubes manufactured by RCA, ITT, and Kentech. Laboratory tests were also performed where pulsed and radio frequency signals were induced upon the photocathode and the errors on the resultant image were compared with the error predicted by the electron beam code. Also, methods for processing the distortion in digitized images were investigated. This paper will discuss the results of these investigations. 3 refs., 17 figs.

  9. High quantum efficiency photocathode simulation for the investigation of novel structured designs

    SciTech Connect

    Opachich, Y. P. Ross, P. W.; Huffman, E.; Koch, J. A.; MacPhee, A. G.; Nagel, S. R.; Bell, P. M.; Bradley, D. K.; Landen, O. L.; Hilsabeck, T. J.

    2014-11-15

    A computer model in CST Studio Suite has been developed to evaluate several novel geometrically enhanced photocathode designs. This work was aimed at identifying a structure that would increase the total electron yield by a factor of two or greater in the 1–30 keV range. The modeling software was used to simulate the electric field and generate particle tracking for several potential structures. The final photocathode structure has been tailored to meet a set of detector performance requirements, namely, a spatial resolution of <40 μm and a temporal spread of 1–10 ps. We present the details of the geometrically enhanced photocathode model and resulting static field and electron emission characteristics.

  10. Monte Carlo charge transport and photoemission from negative electron affinity GaAs photocathodes

    NASA Astrophysics Data System (ADS)

    Karkare, Siddharth; Dimitrov, Dimitre; Schaff, William; Cultrera, Luca; Bartnik, Adam; Liu, Xianghong; Sawyer, Eric; Esposito, Teresa; Bazarov, Ivan

    2013-03-01

    High quantum yield, low transverse energy spread, and prompt response time make GaAs activated to negative electron affinity an ideal candidate for a photocathode in high brightness photoinjectors. Even after decades of investigation, the exact mechanism of electron emission from GaAs is not well understood. Here, photoemission from such photocathodes is modeled using detailed Monte Carlo electron transport simulations. Simulations show a quantitative agreement with the experimental results for quantum efficiency, energy distributions of emitted electrons, and response time without the assumption of any ad hoc parameters. This agreement between simulation and experiment sheds light on the mechanism of electron emission and provides an opportunity to design novel semiconductor photocathodes with optimized performance.

  11. Comparative research on indium seal process for transmission-mode GaAs photocathodes

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Zhang, Shuqin; Jin, Shangzhong; Xu, Sunan; Jiao, Gangcheng

    2013-01-01

    For night vision devices and other applications, the transmission-mode photocathodes must be sealed to tube by indium seal process (ISP) in practical application. But in early research, the integral sensitivity has large drop to about 30% amplitude after ISP process than after activation process. In order to well study the influence of ISP on surface barriers of activated GaAs photocathodes, we used the comparative research method by surface photovoltage spectroscopy (SPS) and spectral response current (SRC). Through fitting calculation, we can find that the impurity gas sources by micro channel plate and fluorescent screen have deep influence on the amplitude and width of surface barriers which lead to the large drop on SRC curves before and after ISP process. This on-line comparative research method can help to optimize ISP technique and vacuum degree optimization for transmission-mode GaAs photocathodes in the future.

  12. Photoemission Study of Cs-NF3 Activated GaAs(100) Negative Electron Affinity Photocathodes

    SciTech Connect

    Liu, Z.; Sun, Y.; Peterson, S.; Pianetta, P.

    2008-05-28

    GaAs based negative electron affinity photocathodes activated with Cs and NF{sub 3} are used as polarized electron sources for linear accelerators. It is generally believed that the activation layer consists of CsF. The activation layers of Cs-NF{sub 3} on GaAs photocathodes are herein investigated using synchrotron radiation photoelectron spectroscopy (SR-PES). F1s, N1s and other core levels are recorded at photon energies ranging from 70eV to 820eV. Surprisingly, a significant amount of nitrogen is observed in the activation layers. Two distinct species of nitrogen are observed, one of which decreases along with the Fluorine signal as the yield of the photocathode decays with time.

  13. Polarization studies of strained GaAs photocathodes at the SLAC Gun Test Laboratory

    SciTech Connect

    Saez, P.; Alley, R.; Clendenin, J.; Frisch, J.; Kirby, R.; Mair, R.; Maruyama, T.; Miller, R.; Mulhollan, G.; Prescott, C.

    1995-08-01

    The SLAC Gun Test Laboratory apparatus, the first two meters of which is a replica of the SLAC injector, is used to study the production of intense, highly-polarized electron beams required for the Stanford Linear Collider and future linear colliders. The facility has been upgraded with a Mott polarimeter in order to characterize the electron polarization from photocathodes operating in a DC gun. In particular, SLAC utilizes p-type, biaxially strained GaAs photocathodes which have produced longitudinal electron polarizations greater than 80% while yielding pulses of 5 A/sq cm at an operating voltage of 120 kV. Among the experiments performed include studying the influences of the active layer thickness, temperature, quantum efficiency and cessation on the polarization. The results might help to develop strained photocathodes with higher polarization.

  14. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes

    NASA Astrophysics Data System (ADS)

    Zhang, Xuemei; Wu, Xu; Centeno, Anthony; Ryan, Mary P.; Alford, Neil M.; Riley, D. Jason; Xie, Fang

    2016-03-01

    Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap.

  15. Temporal resolution limit estimation of x-ray streak cameras using a CsI photocathode

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Gu, Li; Zong, Fangke; Zhang, Jingjin; Yang, Qinlao

    2015-08-01

    A Monte Carlo model is developed and implemented to calculate the characteristics of x-ray induced secondary electron (SE) emission from a CsI photocathode used in an x-ray streak camera. Time distributions of emitted SEs are investigated with an incident x-ray energy range from 1 to 30 keV and a CsI thickness range from 100 to 1000 nm. Simulation results indicate that SE time distribution curves have little dependence on the incident x-ray energy and CsI thickness. The calculated time dispersion within the CsI photocathode is about 70 fs, which should be the temporal resolution limit of x-ray streak cameras that use CsI as the photocathode material.

  16. Characterizing and Optimizing Photocathode Laser Distributions for Ultra-low Emittance Electron Beam Operations

    SciTech Connect

    Zhou, F.; Bohler, D.; Ding, Y.; Gilevich, S.; Huang, Z.; Loos, H.; Ratner, D.; Vetter, S.

    2015-12-07

    Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Light Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.

  17. Photoelectrochemical water splitting: silicon photocathodes for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Warren, Emily L.; Boettcher, Shannon W.; McKone, James R.; Lewis, Nathan S.

    2010-08-01

    The development of low cost, scalable, renewable energy technologies is one of today's most pressing scientific challenges. We report on progress towards the development of a photoelectrochemical water-splitting system that will use sunlight and water as the inputs to produce renewable hydrogen with oxygen as a by-product. This system is based on the design principle of incorporating two separate, photosensitive inorganic semiconductor/liquid junctions to collectively generate the 1.7-1.9 V at open circuit needed to support both the oxidation of H2O (or OH-) and the reduction of H+ (or H2O). Si microwire arrays are a promising photocathode material because the high aspect-ratio electrode architecture allows for the use of low cost, earth-abundant materials without sacrificing energy-conversion efficiency, due to the orthogonalization of light absorption and charge-carrier collection. Additionally, the high surfacearea design of the rod-based semiconductor array inherently lowers the flux of charge carriers over the rod array surface relative to the projected geometric surface of the photoelectrode, thus lowering the photocurrent density at the solid/liquid junction and thereby relaxing the demands on the activity (and cost) of any electrocatalysts. Arrays of Si microwires grown using the Vapor Liquid Solid (VLS) mechanism have been shown to have desirable electronic light absorption properties. We have demonstrated that these arrays can be coated with earth-abundant metallic catalysts and used for photoelectrochemical production of hydrogen. This development is a step towards the demonstration of a complete artificial photosynthetic system, composed of only inexpensive, earth-abundant materials, that is simultaneously efficient, durable, and scalable.

  18. Enhanced Photocathodes for Astrophysics using Atomic Layer Deposition Techniques Deposition Techniques

    NASA Astrophysics Data System (ADS)

    Siegmund, Oswald

    The objective of this program is to exploit the recent availability of atomic layer deposition techniques to provide a new generation of high performance photocathodes. We intend to work on the enhancement of photocathodes by atomic layer deposition, and on atomic layer deposited substrate structures, and assess their performance (gain, lifetime, stability, image fidelity) in microchannel plate based detectors. This would enable detection efficiency and bandpass improvements for microchannel plate based spaceflight detectors for imaging and spectroscopic instruments in small and large formats. Applications include the detection of soft X-ray, and UV through NUV. Recent work has achieved considerable success in development of borosilicate substrate microchannel plates functionalized by atomic layer deposited resistive and photoemissive materials. These could provide stable, compatible, substrates for high efficiency photocathodes, although very limited work has been done to date on this aspect. This development addresses detector technologies for SALSO, and impending proposals for a number of other NASA sub-orbital and satellite instruments. Results with borosilicate substrate microchannel plates functionalized by atomic layer deposited surface layers has been impressive, providing economical devices with long term stable gain and low background in formats up to 20 cm. Atomic layer deposition provides a surface layer that is smooth, clean, and chemically compatible with photocathode materials, and withstands high temperatures. The substrates can also be made with larger open area ratios, and the atomic layer deposition nanofabrication processes provides high secondary emission coefficients that will enhance photocathode efficiencies. Photocathodes (GaN, etc) deposited by MOCVD or MBE processes may also be deposited using atomic layer deposition, with potential advantages in layer structuring and selective area coverage and penetration over large areas.

  19. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  20. SRRC/ANL high current l-band single cell photocathode rf gun.

    SciTech Connect

    Ho, C. H.

    1998-07-16

    A high current L-band photocathode rf gun is under development at SRRC (Synchrotron Radiation Research Center, Taiwan) in collaboration with ANL (Argonne National Laboratory, USA). The goal is to produce up to 100 nC charge with the surface field gradient of over 90 MV/m at the center of the photocathode. In this report, they present the detailed design and initial test results. If successful, this gun will be used as the future AWA (Argonne Wakefield Accelerator)[1] high current gun.

  1. Effects of Surface Nonuniformities on the Mean Transverse Energy from Photocathodes

    NASA Astrophysics Data System (ADS)

    Karkare, Siddharth; Bazarov, Ivan

    2015-08-01

    The performance of photoinjectors is limited by the lowest value of the mean transverse energy of the electrons obtained from photocathodes. The factors that influence the mean transverse energy are poorly understood. In this paper, we develop models to calculate the effect of spatial work-function variations and subnanometer-scale roughness and surface defects on the mean transverse energy. We show that these can limit the lowest value of mean transverse energy achieved and that atomically perfect surfaces will be required to further reduce the mean transverse energy obtained from photocathodes.

  2. Design and beam dynamics simulations of an S-band photocathode rf gun

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Pant, K. K.; Krishnagopal, S.

    2002-10-01

    We are building an S-band photocathode rf gun as an injector to a 30MeV electron linac for FEL applications. Here we discuss details of design simulations performed using superfish and gdfidl and compare with results of cold tests performed on prototype cells of the photocathode rf gun. We also discuss beam dynamics simulations performed using parmela and report results from simulations to achieve a normalized transverse rms emittance of about 1π mm mrad for a 10ps pulse with 1nC charge in the presence of a solenoid magnetic field used for emittance compensation.

  3. Characterization of quantum efficiency and robustness of cesium-based photocathodes

    NASA Astrophysics Data System (ADS)

    Montgomery, Eric J.

    High quantum efficiency, robust photocathodes produce picosecond-pulsed, high-current electron beams for photoinjection applications like free electron lasers. In photoinjectors, a pulsed drive laser incident on the photocathode causes photoemission of short, dense bunches of electrons, which are then accelerated into a relativistic, high quality beam. Future free electron lasers demand reliable photocathodes with long-lived quantum efficiency at suitable drive laser wavelengths to maintain high current density. But faced with contamination, heating, and ion back-bombardment, the highest efficiency photocathodes find their delicate cesium-based coatings inexorably lost. In answer, the work herein presents careful, focused studies on cesium-based photocathodes, particularly motivated by the cesium dispenser photocathode. This is a novel device comprised of an efficiently photoemissive, cesium-based coating deposited onto a porous sintered tungsten substrate, beneath which is a reservoir of elemental cesium. Under controlled heating cesium diffuses from the reservoir through the porous substrate and across the surface to replace cesium lost to harsh conditions---recently shown to significantly extend the lifetime of cesium-coated metal cathodes. This work first reports experiments on coated metals to validate and refine an advanced theory of photoemission already finding application in beam simulation codes. Second, it describes a new theory of photoemission from much higher quantum efficiency cesium-based semiconductors and verifies its predictions with independent experiment. Third, it investigates causes of cesium loss from both coated metal and semiconductor photocathodes and reports remarkable rejuvenation of full quantum efficiency for contaminated cesium-coated surfaces, affirming the dispenser prescription of cesium resupply. And fourth, it details continued advances in cesium dispenser design with much-improved operating characteristics: lower temperature and cleaner operation. Motivated by dispenser integration with semiconductor coatings, initial fabrication of those coatings are reported on dispenser-type substrates with measurement of quantum efficiency and analysis of thermal stability. Detailed investigations are performed on dispenser substrate preparation by ion beam cleaning and on dispenser pore structure by electron microscopy and focused ion beam milling. The dissertation concludes by discussing implications of all results for the demonstration and optimization of the future high quantum efficiency cesium dispenser photocathode.

  4. Organic-inorganic lead halide perovskite solar cell materials: A possible stability problem

    NASA Astrophysics Data System (ADS)

    Schoonman, J.

    2015-01-01

    The methyl ammonium lead halides are promising visible-light absorbers for application in solar cells. The most common synthetic routes use the solid binary halides as one of the starting compounds. These binary lead halides exhibit photodecomposition. In view of the perovskite crystal structure of the methyl ammonium lead halides, it is possible that also here the lead halide parts may exhibit photodecomposition. The mechanism of the photodecomposition of the binary lead halides is presented in detail. Based on this mechanism the trapping of photo-generated electrons on the lead ions in these perovskite materials should be studied in detail.

  5. Alkali metal propellants for MPD thrusters

    NASA Technical Reports Server (NTRS)

    Polk, J. E.; Pivirotto, T. J.

    1991-01-01

    Experiments performed in the United States in the 1960s and early 1970s and in the Soviet Union with alkali metal-fuelled MPD thrusters indicate performance levels substantially better than those achieved with gaseous propellants. Cathode wear appears to be less in engines with alkali metal propellants also. A critical review of the available data indicates that the data are consistent and reliable. An analysis of testing and systems-level considerations shows that pumping requirements for testing are substantially decreased and reductions in tankage fraction can be expected. In addition, while care must be exercised in handling the alkali metals, it is not prohibitively difficult or hazardous. The greatest disadvantage seems to be the potential for spacecraft contamination, but there appear to be viable strategies for minimizing the impact of propellant deposition on spacecraft surfaces. Renewed examination of alkali metal-fuelled MPD thrusters for ambitious SEI missions is recommended.

  6. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  7. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  8. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  9. Alkali metal intercalates of molybdenum disulfide.

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.

    1973-01-01

    Study of some of the physicochemical properties of compounds obtained by subjecting natural molybdenite and single crystals of molybdenum disulfide grown by chemical vapor transport to intercalation with the alkali group of metals (Li, Na, K, Rb, and Cs) by means of the liquid ammonia technique. Reported data and results include: (1) the intercalation of the entire alkali metal group, (2) stoichiometries and X-ray data on all of the compounds, and (3) superconductivity data for all the intercalation compounds.

  10. Superconductivity in alkali-doped C60

    NASA Astrophysics Data System (ADS)

    Ramirez, Arthur P.

    2015-07-01

    Superconductivity in alkali-doped C60 (A3C60, A = an alkali atom) is well described by an s-wave state produced by phonon mediated pairing. Moderate coupling of electrons to high-frequency shape-changing intra-molecular vibrational modes produces transition temperatures (Tc) up to 33 K in single-phase material. The good understanding of pairing in A3C60 offers a paradigm for the development of new superconducting materials.

  11. Fate of alkalis in coal combustion

    SciTech Connect

    Stewart, G.W.; Stinespring, C.D.; Davidovits, P.

    1982-01-01

    The results of these measurements and experiments provide a plausible way to begin an explanation for the distribution of alkali in the ash particulates. To summarize: (1) under typical coal combustion conditions in an atmosphere rich in CO/sub 2/ and/or SO/sub 2/, the alkalis in the organic fraction do not vaporize but remain bound in the ash as stable carbonates or sulfates; (2) the alkalis in the inorganic fraction diffuse to the surface producing enrichment by a factor of about 13 to a depth of about 100A. The results, however, do not provide conclusive evidence about the fate of the alkalis. The effect of water vapor in the combustion stream has not yet been studied. Clearly, water could have an important effect on the vaporization process. Furthermore, the reasoning we have followed to explain the absence of alkali enrichment in the submicron particles requires that the volatilization of the alkalis in both the organic and inorganic fraction not be significant (say less than 20%).

  12. Alkali metal crystalline polymer electrolytes.

    PubMed

    Zhang, Chuhong; Gamble, Stephen; Ainsworth, David; Slawin, Alexandra M Z; Andreev, Yuri G; Bruce, Peter G

    2009-07-01

    Polymer electrolytes have been studied extensively because uniquely they combine ionic conductivity with solid yet flexible mechanical properties, rendering them important for all-solid-state devices including batteries, electrochromic displays and smart windows. For some 30 years, ionic conductivity in polymers was considered to occur only in the amorphous state above Tg. Crystalline polymers were believed to be insulators. This changed with the discovery of Li(+) conductivity in crystalline poly(ethylene oxide)(6):LiAsF(6). However, new crystalline polymer electrolytes have proved elusive, questioning whether the 6:1 complex has particular structural features making it a unique exception to the rule that only amorphous polymers conduct. Here, we demonstrate that ionic conductivity in crystalline polymers is not unique to the 6:1 complex by reporting several new crystalline polymer electrolytes containing different alkali metal salts (Na(+), K(+) and Rb(+)), including the best conductor poly(ethylene oxide)(8):NaAsF(6) discovered so far, with a conductivity 1.5 orders of magnitude higher than poly(ethylene oxide)(6):LiAsF(6). These are the first crystalline polymer electrolytes with a different composition and structures to that of the 6:1 Li(+) complex. PMID:19543313

  13. Charge carrier mobility in hybrid halide perovskites

    PubMed Central

    Motta, Carlo; El-Mellouhi, Fedwa; Sanvito, Stefano

    2015-01-01

    The charge transport properties of hybrid halide perovskites are investigated with a combination of density functional theory including van der Waals interaction and the Boltzmann theory for diffusive transport in the relaxation time approximation. We find the mobility of electrons to be in the range 5–10 cm2V−1s−1 and that for holes within 1–5 cm2V−1s−1, where the variations depend on the crystal structure investigated and the level of doping. Such results, in good agreement with recent experiments, set the relaxation time to about 1 ps, which is the time-scale for the molecular rotation at room temperature. For the room temperature tetragonal phase we explore two possible orientations of the organic cations and find that the mobility has a significant asymmetry depending on the direction of the current with respect to the molecular axis. This is due mostly to the way the PbI3 octahedral symmetry is broken. Interestingly we find that substituting I with Cl has minor effects on the mobilities. Our analysis suggests that the carrier mobility is probably not a key factor in determining the high solar-harvesting efficiency of this class of materials. PMID:26235910

  14. Melt synthesis of inorganic nitrides and halides

    NASA Astrophysics Data System (ADS)

    Molstad, Jay Clark

    Novel halide chlorides Sr7Cl2H12, Sr 7Br2H12, and Ba2ClH3 were formed from sodium chloride and strontium metal in sodium metal melts at 900°C. Sr7Br2H12 crystallizes in the anti-Fe 12Zr2P7 structure type, and Sr7Cl 2H12 crystallizes in a slightly distorted variant of this structure. Ba2ClH3 crystallizes in a structure containing infinite two-dimensional sheets of edge-sharing Ba6Cl chlorine-centered octahedra. Single crystals of gallium nitride can be obtained by reaction of gallium metal and dinitrogen gas at 750°C. Small amounts of alkaline earth metals added to the reaction mixture promote the formation of large crystals. Polycrystalline GaN nucleates rapidly under these conditions on the surface of a stainless steel autoclave; nucleation is far less pronounced on tungsten surfaces. Trace concentrations of hydrogen greatly enhance GaN nucleation. Melts of magnesium metal with cerium, gadolinium, and lanthanum were exposed to ammonia and nitrogen gas at temperatures from 700°C to 900°C. Binary rare earth and magnesium nitrides and hydrides are formed, but no ternary compounds are seen. The absence of ternary compounds is discussed in the light of a thermodynamic model predicting ternary formation in these systems.

  15. Through a glass, darkly: point defect production by ultrafast laser irradiation of alkali-containing silica glasses and alkali halide single crystals

    NASA Astrophysics Data System (ADS)

    Avanesyan, Sergey M.; Orlando, Stefano; Langford, Steve C.; Dickinson, J. Thomas

    2005-02-01

    The high instantaneous powers associated with femtosecond lasers can color many nominally transparent materials. Although the excitations responsible for this defect formation occur on subpicosecond time scales, subsequent interactions between the resulting electronic and lattice defects complicate the evolution of color center formation and decay. These interactions must be understood in order to account for the long term behavior of coloration. In this work, we probe the evolution of color centers produced by femtosecond laser radiation in soda lime glass and single crystal sodium chloride on time scales from microseconds to hundreds of seconds. By using an appropriately chosen probe laser focused through the femtosecond laser spot, we can follow the changes in coloration due to individual or multiple femtosecond pulses, and follow the evolution of that coloration for long times after femtosecond laser radiation is terminated. For the soda lime glass, the decay of color centers is well described in terms of bimolecular annihilation reactions between electron and hole centers. Similar processes are also occurring in single crystal sodium chloride. Finally, we report fabrication of permanent periodic patterns in soda lime glass by two time coincident femtosecond laser pulses.

  16. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... produced by radiation of metal halides and their products of dissociation, possibly in combination with... voltage. Pulse-start metal halide ballast means an electronic or electromagnetic ballast that starts...

  17. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... is produced by radiation of metal halides and their products of dissociation, possibly in combination... electromagnetic ballast that starts a pulse-start metal halide lamp with high voltage pulses, where lamps shall...

  18. Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.

    PubMed

    Aharon, Sigalit; Etgar, Lioz

    2016-05-11

    Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors. PMID:27089497

  19. Genetic Control of Methyl Halide Production in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Ostergaard, L.; Saltzman, E. S.; Yanofsky, M. F.

    2003-12-01

    Methyl chloride and methyl bromide are the primary carriers of natural chlorine and bromine to the stratosphere where they catalyze the destruction of ozone, whereas methyl iodide influences aerosol formation and ozone loss in the troposphere. Methyl bromide is also an agricultural fumigant whose use is scheduled to be phased out by international agreement. Despite the economic and environmental importance of these methyl halides, their natural sources and biological production mechanisms are poorly understood. Currently identified sources include oceans, biomass burning, industrial and agricultural use, fuel combustion, salt marshes, wetlands, rice paddies, certain terrestrial plants and fungi, and abiotic processes. We demonstrate that the model plant Arabidopsis thaliana produces and emits methyl halides and that the enzyme primarily responsible for the production is encoded by the HARMLESS TO OZONE LAYER (HOL) gene located on chromosome II. In mutant plants that have a disruption of the HOL gene, methyl halide production is largely eliminated. A phylogenetic analysis using the HOL gene suggests that the ability to produce methyl halides is widespread among vascular plants. This approach provides a genetic basis for understanding and predicting patterns of methyl halide production by plants.

  20. NREL Improves Hole Transport in Sensitized CdS-NiO Nanoparticle Photocathodes (Fact Sheet)

    SciTech Connect

    Not Available

    2012-01-01

    Significantly improved charge-collection efficiencies result from a general chemical approach to synthesizing photocathodes. It has been reported that a dye-sensitized nickel oxide (NiO) photocathode, when coupled to a dye-sensitized photoanode, could significantly increase overall solar conversion efficiency. However, the conversion efficiencies of these cells are still low. There has been much effort to improve the conversion efficiency by fabricating films with improved properties and developing more effective sensitizing dyes for p-type NiO. One of the factors limiting the use of NiO for solar cell application is the low hole conductivity in p-NiO. A team of researchers from the National Renewable Energy Laboratory (NREL) developed a general chemical approach to synthesize NiO-cadmium sulfide (CdS) core-shell nanoparticle films as photocathodes for p-type semiconductor-sensitized solar cells. Compared to dye-sensitized NiO photocathodes, the CdS-sensitized NiO cathodes exhibited two orders of magnitude faster hole transport (attributable to the passivation of surface traps by the CdS) and almost 100% charge-collection efficiencies.

  1. Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation.

    PubMed

    Chen, Yang; Tran, Phong D; Boix, Pablo; Ren, Yi; Chiam, Sing Yang; Li, Zhen; Fu, Kunwu; Wong, Lydia H; Barber, James

    2015-04-28

    The construction of viable photoelectrochemical (PEC) devices for solar-driven water splitting can be achieved by first identifying an efficient independent photoanode for water oxidation and a photocathode for hydrogen generation. These two photoelectrodes then must be assembled with a proton exchange membrane within a complete coupled system. Here we report the preparation of a Si/a-CoMoSx hybrid photocathode which shows impressive performance (onset potential of 0.25 V vs RHE and photocurrent jsc of 17.5 mA cm(-2) at 0 V vs RHE) in pH 4.25 phosphate solution and under simulated AM 1.5 solar illumination. This performance is among the best reported for Si photocathodes decorated with noble-metal-free catalysts. The electrode preparation is scalable because it relies on a photoassisted electrodeposition process employing an available p-type Si electrode and [Co(MoS4)2](2-) precursor. Investigation of the mechanism of the Si/a-CoMoSx electrode revealed that under conditions of H2 photogeneration this bimetallic sulfide catalyst is highly efficient in extracting electrons from illuminated Si and subsequently in reducing protons into H2. The Si/a-CoMoSx photocathode is functional over a wide range of pH values, thus making it a promising candidate for the construction of a complete solar-driven water splitting PEC device. PMID:25801437

  2. Spectral response variation of a negative-electron-affinity photocathode in the preparation process

    SciTech Connect

    Liu Lei; Du Yujie; Chang Benkang; Yunsheng Qian

    2006-08-20

    In order to research the spectral response variation of a negative electron affinity (NEA) photocathode in the preparation process, we have done two experiments on a transmission-type GaAs photocathode.First, an automatic spectral response recording system is described, which is used to take spectral response curves during the activation procedure of the photocathode. By this system, the spectral response curves of a GaAs:Cs-Ophotocathode measured in situ are presented. Then, after the cathode is sealed with a microchannel plate and a fluorescence screen into the image tube, we measure the spectral response of the tube by another measurement instrument. By way of comparing and analyzing these curves, we can find the typical variation in spectral-responses.The reasons for the variation are discussed. Based on these curves, spectral matching factors of a GaAs cathode for green vegetation and rough concrete are calculated. The visual ranges of night-vision goggles under specific circumstances are estimated. The results show that the spectral response of the NEA photocathode degraded in the sealing process, especially at long wavelengths. The variation has also influenced the whole performance of the intensifier tube.

  3. Measurement of charge limit in a strained lattice GaAs photocathode

    SciTech Connect

    Saez, P.; Alley, R.; Aoyagi, H.

    1993-04-01

    The SLAC Linear Collider (SLC) Polarized Electron Source (PES) photocathodes have shown a charge saturation when illuminated with a high intensity laser pulse. This charge limit in the cesium-activated GaAs crystal seems to be strongly dependent on its surface condition and on the incident light wavelength. Charge limit studies with highly polarized strained lattice GaAs materials are presented.

  4. Comparison of module structure of wideband response GaAs photocathode grown by MBE and MOCVD

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Shen, Weikang; Chang, Benkang; Zhang, Yijun; Zhang, Jian; Qin, Cui

    2014-10-01

    In order to compare the structures of GaAs photocathodes grown by molecular beam epitaxy (MBE) and metal-organic chemical vapour deposition (MOCVD), four wideband response exponential doping photocathodes were prepared. Their reflectivity and transmittivity were measured by the spectrophotometer, and three thin layer thicknesses were fitted based on the matrix theory in Thin-film Optics. The comparison of the results indicated that for the GaAs photocathode grown by MBE, only one amendatory layer with the low Al component should be added between the Ga1-xAlxAs window layer and the GaAs active layer in order to the higher fitting accuracy. Opposite occurs for the MOCVD samples. In the case of accurately controlling the layered doping concentration, the material grown by MBE is the optimal, while that grown by MOCVD is suit for the exponential doping situation. These results are available for the material growth and the module preparation of the varied doping transmission-mode GaAs photocathodes.

  5. Arsenic volatilization of GaAs photocathode at low temperature during thermal cleaning

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Shi, Feng; Miao, Zhuang; Gao, Xiang; Cheng, Hong-chang; Niu, Sen; Wang, Long; Chen, Chang

    2014-09-01

    The gallium arsenide (GaAs) photocathode was generally cleaned by radiant heating, direct heating, ion bombardment annealing, and so on. In this paper, the radiant heating method, namely thermal cleaning method, was adopted for GaAs photocathode surface purification. Using this method could obtain an atomic clean surface, ensure the integrity of the GaAs surface lattice, and guarantee the uniformity of surface cleaning effect at the same time. But because the accurate measurement of the GaAs photocathode surface temperature in the vacuum system was very difficult, the residual gas analyzer (RGA) was used in this experiment to monitor the residual gas composition in ultrahigh vacuum during the thermal cleaning process and determine the thermal cleaning temperature by the partial pressure curves of As and Ga. It was found that the first peaks of As and Ga elements both appeared after heating about one hour, accompanied with H2O, N2/CO, CO2 and other common gas. According to partial pressure curves of H2O, N2/CO, CO2 and the heating time, it could be judged that the temperature at that time was not high, which should be under 150°C.After thermal cleaning experiment of three GaAs photocathodes, it was found that the peak value of As partial pressure at low temperature was generally within 10-11mbar~10-10mbar, and the peak value was at 10-10mbar at high temperature. Sometimes it was appeared that the peak value of As partial pressure at low temperature was even higher than the peak value at high temperature. The As volatilization phenomenon occurred at low temperature indicated that the elemental As exist on the GaAs photocathode surface or near surface after the chemical etching process, and the As could volatilize from GaAs photocathode at low temperature in the beginning of thermal cleaning. This research has guiding significance for further understanding the thermal cleaning mechanism of GaAs photocathode and improving the thermal cleaning technology.

  6. Regeneration of zinc halide catalyst used in the hydrocracking of polynuclear hydrocarbons

    DOEpatents

    Gorin, Everett

    1978-01-01

    Improved recovery of spent molten zinc halide hydro-cracking catalyst is achieved in the oxidative vapor phase regeneration thereof by selective treatment of the zinc oxide carried over by the effluent vapors from the regeneration zone with hydrogen halide gas under conditions favoring the reaction of the zinc oxide with the hydrogen halide, whereby regenerated zinc halide is recovered in a solids-free state with little loss of zinc values.

  7. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Definitions concerning metal halide lamp ballasts and fixtures. 431.322 Section 431.322 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures § 431.322 Definitions concerning metal halide...

  8. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  9. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  10. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  11. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  12. Boron and aluminum halides under pressure - polymerization and chemical transformations

    NASA Astrophysics Data System (ADS)

    Yao, Yansun

    2013-06-01

    High-pressure phase transitions of boron and aluminum halides have been theoretically studied. At low pressure, crystals of the familiar monomers (BX3) and dimers (Al2X6) are the structures of choice. While the higher oligomers as well as three dimensional infinite polymers are unstable at ambient pressure, they are stabilized by application of external pressure, taking advantage of the extra orbitals made accessible by the increased coordination. Several new crystal structures of boron and aluminum halides have been predicted at high pressures. Calculated x-ray diffraction patterns and Raman spectra of these phases are in good agreement with available experimental data.

  13. Applications of Raman scattering spectroscopy to halide glasses

    NASA Astrophysics Data System (ADS)

    Bendow, B.; Banerjee, P. K.; Drexhage, M. G.

    1983-04-01

    Polarized Raman scattering spectroscopy is a useful tool for investigating fundamental vibrational properties, structure and bonding, origins of IR edge absorption, and dispersion of the IR refractive index. In this paper, the application of Raman spectroscopy to halide glasses and, in particular, heavy metal fluoride glasses, is described. The spectra of the latter differ substantially from those of simple oxide, halide or chalcogenide glasses and, moreover, display a wide range of vibrational characteristics, depending on composition. In combination with infrared spectroscopy, useful guidelines can be developed for tailoring glass compositions for specific applications.

  14. Thallous halide materials for use in cryogenic applications

    NASA Technical Reports Server (NTRS)

    Lawless, William N. (Inventor)

    1981-01-01

    Thallous halides, either alone or in combination with other ceramic materials, are used in cryogenic applications such as heat exchange material for the regenerator section of a closed-cycle cryogenic refrigeration section, as stabilizing coatings for superconducting wires, and as dielectric insulating materials. The thallous halides possess unusually large specific heats at low temperatures, have large thermal conductivities, are nonmagnetic, and are nonconductors of electricity. They can be formed into a variety of shapes such as spheres, bars, rods, or the like and can be coated onto substrates.

  15. Numerical modeling of alkali vapor lasers.

    PubMed

    Shu, Hong; Chen, Ying; Bass, Michael; Monjardin, J Fernando; Deile, Jochen

    2011-10-10

    Detailed numerical analyses are presented of a continuous wave (cw), single spatial mode alkali vapor laser pumped by a diffraction-limited Ti: Sapphire laser. These analyses provide insight into the operation of alkali vapor lasers to aid in the development of high power, diode laser pumped alkali vapor lasers. It is demonstrated that in the laser considered the laser spatial pattern is significantly changed after each pass through the gain medium, and the laser spatial pattern in steady state operation is also very different from that of the passive cavity mode. According to the calculation, lasing significantly improves the pump absorption efficiency and changes the absorbed pump distribution. The effect of varying the transverse size of the pumped region is also analyzed and an optimum pump beam waist radius is demonstrated. In addition, the shift of the pump beam waist location is also studied. The computation method and its convergence behavior are also described in detail. PMID:21996995

  16. Selection of non-adsorbing alkali components

    SciTech Connect

    Lee, S.H.D.; Natesan, K.; Swift, W.M.

    1992-01-01

    This project consists of three phases of laboratory experimental study. In phase I (screening), eight candidate materials, 304SS (serves as a base material for comparison), Hastelloy C-276, Hastelloy X, Haynes No. 188, Allonized 304SS, Pt-coated 304SS, and ceramic-coated 304SS, will be subjected to atmospheric TGA study under the simulated PFBC (oxidizing) environment with and without alkali vapor doping. Each candidate material will be evaluated for its resistance toward alkali-vapor capture. In addition, a post-test metallographic characterization of the sample will be performed to obtain a better understanding of the alkali capture mechanism and material behavior. The material(s) with little or no alkali-vapor adsorption will be selected as the promising material(s) for the Phase II study. In Phase II, the promising material(s) will be further tested in the TGA under elevated pressure to simulate the PFBC environment (in terms of temperature, pressure, and gas composition). The effect of pressure on the extent of alkali-vapor adsorption will be evaluated, and the test samples will be metallographically characterized. The most promising candidate material(s) will be identified and recommended for further tesfing in the actual PFBC environment. In Phase III, four materials will be selected from the eight candidate materials screened in the PFBC environment and will be evaluated for their alkali-vapor capture by atmospheric TGA under the coal gasification fuel gas (reducing) environment. The tested samples will also be metallographically characterized. The most promising material(s) will be identified and recommended for further testing in the actual coal gasification environment.

  17. Selection of non-adsorbing alkali components

    SciTech Connect

    Lee, S.H.D.; Natesan, K.; Swift, W.M.

    1992-11-01

    This project consists of three phases of laboratory experimental study. In phase I (screening), eight candidate materials, 304SS (serves as a base material for comparison), Hastelloy C-276, Hastelloy X, Haynes No. 188, Allonized 304SS, Pt-coated 304SS, and ceramic-coated 304SS, will be subjected to atmospheric TGA study under the simulated PFBC (oxidizing) environment with and without alkali vapor doping. Each candidate material will be evaluated for its resistance toward alkali-vapor capture. In addition, a post-test metallographic characterization of the sample will be performed to obtain a better understanding of the alkali capture mechanism and material behavior. The material(s) with little or no alkali-vapor adsorption will be selected as the promising material(s) for the Phase II study. In Phase II, the promising material(s) will be further tested in the TGA under elevated pressure to simulate the PFBC environment (in terms of temperature, pressure, and gas composition). The effect of pressure on the extent of alkali-vapor adsorption will be evaluated, and the test samples will be metallographically characterized. The most promising candidate material(s) will be identified and recommended for further tesfing in the actual PFBC environment. In Phase III, four materials will be selected from the eight candidate materials screened in the PFBC environment and will be evaluated for their alkali-vapor capture by atmospheric TGA under the coal gasification fuel gas (reducing) environment. The tested samples will also be metallographically characterized. The most promising material(s) will be identified and recommended for further testing in the actual coal gasification environment.

  18. Design and fabrication of prototype 6×6 cm2 microchannel plate photodetector with bialkali photocathode for fast timing applications

    NASA Astrophysics Data System (ADS)

    Xie, Junqi; Byrum, Karen; Demarteau, Marcel; Gregar, Joseph; May, Edward; Virgo, Mathew; Wagner, Robert; Walters, Dean; Wang, Jingbo; Xia, Lei; Zhao, Huyue

    2015-06-01

    Planar microchannel plate-based photodetectors with a bialkali photocathode are able to achieve photon detection with very good time and position resolution. A 6×6 cm2 photodetector production facility was designed and built at Argonne National Laboratory. Small form-factor MCP-based photodetectors completely constructed out of glass were designed and prototypes were successfully fabricated. Knudsen effusion cells were incorporated in the photocathode growth chamber to achieve uniform and high quantum efficiency photocathodes. The thin film uniformity was simulated and measured for an antimony film deposition, showing uniformity of better than 10%. Several prototype devices with bialkali photocathodes have been fabricated with the described system and their characteristics were evaluated in the large signal (multi-PE) limit. A typical prototype device exhibits time-of-flight resolution of ~27 psec and differential time resolution of ~9 psec, corresponding to spatial resolution of ~0.65 mm.

  19. p-GaAs(Cs,O)-photocathodes: Demarcation of domains of validity for practical models of the activation layer

    SciTech Connect

    Bakin, V. V.; Toropetsky, K. V.; Scheibler, H. E.; Terekhov, A. S.; Jones, L. B.; Militsyn, B. L.; Noakes, T. C. Q.

    2015-05-04

    The (Cs,O)-activation procedure for p-GaAs(Cs,O)-photocathodes was studied with the aim of demarcating the domains of validity for the two practical models of the (Cs,O)-activation layer: The dipole layer (DL) model and the heterojunction (HJ) model. To do this, the photocathode was activated far beyond the normal maximum of quantum efficiency, and several photocathode parameters were measured periodically during this process. In doing so, the data obtained enabled us to determine the domains of validity for the DL- and HJ-models, to define more precisely the characteristic parameters of the photocathode within both of these domains and thus to reveal the peculiarities of the influence of the (Cs,O)-layer on the photoelectron escape probability.

  20. p-GaAs(Cs,O)-photocathodes: Demarcation of domains of validity for practical models of the activation layer

    NASA Astrophysics Data System (ADS)

    Bakin, V. V.; Toropetsky, K. V.; Scheibler, H. E.; Terekhov, A. S.; Jones, L. B.; Militsyn, B. L.; Noakes, T. C. Q.

    2015-05-01

    The (Cs,O)-activation procedure for p-GaAs(Cs,O)-photocathodes was studied with the aim of demarcating the domains of validity for the two practical models of the (Cs,O)-activation layer: The dipole layer (DL) model and the heterojunction (HJ) model. To do this, the photocathode was activated far beyond the normal maximum of quantum efficiency, and several photocathode parameters were measured periodically during this process. In doing so, the data obtained enabled us to determine the domains of validity for the DL- and HJ-models, to define more precisely the characteristic parameters of the photocathode within both of these domains and thus to reveal the peculiarities of the influence of the (Cs,O)-layer on the photoelectron escape probability.

  1. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  2. Alkali activation of Australian slag cements

    SciTech Connect

    Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B.

    1999-01-01

    Investigation of alkali activation of Australian slag (AAS) was carried out using sodium silicate, sodium hydroxide, sodium carbonate, sodium phosphate, and combinations of these activators. Compressive strengths in the range from 20 to 40 MPa were achieved for the pastes. The most effective activator was liquid sodium silicate. With this activator, the effect of curing at 60 C, modulus (M{sub s}) of sodium silicate solution and concentration of alkalis on the compressive strength and setting times have been studied. On the basis of this investigation, a sodium silicate solution with a low Na content and M{sub s} = 0.75 is recommended for formulation of AAS concrete.

  3. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate

    SciTech Connect

    Owsiak, Z

    2004-01-01

    The paper discusses results of the research into the influence of high-alkali Portland cement on granite aggregate. The deformation of the concrete structure occurred after 18 months. The research was carried out by means of a scanning electron microscope equipped with a high-energy dispersive X-ray analyzer that allowed observation of unpolished sections of concrete bars exhibiting the cracking pattern typical of the alkali-silica reaction. Both the microscopic observation and the X-ray elemental analysis confirm the presence of alkali-silica gel and secondary ettringite in the cracks.

  4. Cocrystallization of certain 4f and 5f elements in the bivalent state with alkali metal halides

    SciTech Connect

    Mikheev, N.B.; Kamenskaya, A.M.; Veleshko, I.E.; Kulyukhin, S.A.

    1987-01-01

    The cocrystallization of Fm/sup 2 +/, Es/sup 2 +/, Cf/sup 2 +/, Am/sup 2 +/, Yb/sup 2 +/, Eu/sup 2 +/ and Sr/sup 2 +/ with NaCl, KCl and KBr in tetrahydrofuran (THF), hexamethylphosphorotriamide (HMPA), and ethanol has been studied. It is shown that in water-ethanol medium An/sup 2 +/ cocrystallize with KCl by the formation of anomalous mixed crystals and Ln/sup 2 +/ do not cocrystallize. In HMPA neither Ln/sup 2 +/ nor An/sup 2 +/ are observed to transfer into the KBr solid phase, while in THF both Ln/sup 2 +/ and An/sup 2 +/ cocrystallize with NaCl. The change in the behavior on Ln/sup 2 +/ and An/sup 2 +/ cocrystallize with a change from one solvent to another is caused by the difference in the effective ionic radii of these elements, which arises from the large nephelauxetic effect for An/sup 2 +/ as well as by the different solvating power of these solvents.

  5. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  6. Structural Characterization of Methanol Substituted Lanthanum Halides

    PubMed Central

    Boyle, Timothy J.; Ottley, Leigh Anna M.; Alam, Todd M.; Rodriguez, Mark A.; Yang, Pin; Mcintyre, Sarah K.

    2010-01-01

    The first study into the alcohol solvation of lanthanum halide [LaX3] derivatives as a means to lower the processing temperature for the production of the LaBr3 scintillators was undertaken using methanol (MeOH). Initially the de-hydration of {[La(µ-Br)(H2O)7](Br)2}2 (1) was investigated through the simple room temperature dissolution of 1 in MeOH. The mixed solvate monomeric [La(H2O)7(MeOH)2](Br)3 (2) compound was isolated where the La metal center retains its original 9-coordination through the binding of two additional MeOH solvents but necessitates the transfer of the innersphere Br to the outersphere. In an attempt to in situ dry the reaction mixture of 1 in MeOH over CaH2, crystals of [Ca(MeOH)6](Br)2 (3) were isolated. Compound 1 dissolved in MeOH at reflux temperatures led to the isolation of an unusual arrangement identified as the salt derivative {[LaBr2.75•5.25(MeOH)]+0.25 [LaBr3.25•4.75(MeOH)]−0.25} (4). The fully substituted species was ultimately isolated through the dissolution of dried LaBr3 in MeOH forming the 8-coordinated [LaBr3(MeOH)5] (5) complex. It was determined that the concentration of the crystallization solution directed the structure isolated (4 concentrated; 5 dilute) The other LaX3 derivatives were isolated as [(MeOH)4(Cl)2La(µ-Cl)]2 (6) and [La(MeOH)9](I)3•MeOH (7). Beryllium Dome XRD analysis indicated that the bulk material for 5 appear to have multiple solvated species, 6 is consistent with the single crystal, and 7 was too broad to elucidate structural aspects. Multinuclear NMR (139La) indicated that these compounds do not retain their structure in MeOD. TGA/DTA data revealed that the de-solvation temperatures of the MeOH derivatives 4 – 6 were slightly higher in comparison to their hydrated counterparts. PMID:20514349

  7. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  8. CO2 electrochemical reduction via adsorbed halide anions

    NASA Astrophysics Data System (ADS)

    Ogura, Kotaro; Salazar-Villalpando, Maria D.

    2011-01-01

    The electrochemical reduction of CO2 was studied utilizing halide ions as electrolytes, specifically, aqueous solutions of KCl, KBr, KI. Electrochemical experiments were carried out in a laboratory-made, divided H-type cell. The working electrode was a copper mesh, while the counter and reference electrodes were a Pt wire and an Ag/AgCl electrode, respectively. The results of our work suggest a reaction mechanism for the electrochemical reduction of CO2 where the presence of Cu-X as the catalytic layer facilitates the electron transfer from the electrode to CO2. Electron-transfer to CO2 may occur via the X- ad(Br-, Cl-, I-)-C bond, which is formed by the electron flow from the specifically adsorbed halide anion to the vacant orbital of CO2. The stronger the adsorption of the halide anion to the electrode, the more strongly CO2 is restrained, resulting in higher CO2 reduction current. Furthermore, it is suggested that specifically adsorbed halide anions could suppress the adsorption of protons; leading to a higher hydrogen overvoltage. These effects may synergistically mitigate the over potential necessary for CO2 reduction, and thus increase the rate of electrochemical CO2 reduction.

  9. Method for calcining nuclear waste solutions containing zirconium and halides

    DOEpatents

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  10. Kinetic Studies of the Solvolysis of Two Organic Halides

    ERIC Educational Resources Information Center

    Duncan, J. A.; Pasto, D. J.

    1975-01-01

    Describes an undergraduate organic chemistry laboratory experiment which utilizes the solvolysis of organic halides to demonstrate first and second order reaction kinetics. The experiment also investigates the effect of a change of solvent polarity on reaction rate, common-ion and noncommon-ion salt effects, and the activation parameters of a…

  11. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is

  12. On the Boiling Points of the Alkyl Halides.

    ERIC Educational Resources Information Center

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  13. Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides

    ERIC Educational Resources Information Center

    Waas, Jack R.

    2006-01-01

    Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the Hartree-Fock method, and two DFT methods. These calculated values were compared to experimental values where possible. All five methods agreed generally with the expected empirically known trends in the…

  14. Students' understanding of alkyl halide reactions in undergraduate organic chemistry

    NASA Astrophysics Data System (ADS)

    Cruz-Ramirez de Arellano, Daniel

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is studied in undergraduate organic chemistry courses, establishing a robust understanding of the concepts and reactions related to them can be beneficial in assuring students' success in organic chemistry courses. Therefore, the purpose of this study was to elucidate and describe students' understanding of alkyl halide reactions in an undergraduate organic chemistry course. Participants were interviewed using a think-aloud protocol in which they were given a set of exercises dealing with reactions and mechanisms of alkyl halide molecules in order to shed light on the students' understanding of these reactions and elucidate any gaps in understanding and incorrect warrants that may be present. These interviews were transcribed and analyzed using qualitative inquiry approaches. In general, the findings from this study show that the students exhibited gaps in understanding and incorrect warrants dealing with: (1) classifying substances as bases and/or nucleophiles, (2) assessing the basic or nucleophilic strength of substances, (3) accurately describing the electron movement of the steps that take place during alkyl halide reaction mechanisms, and (4) assessing the viability of their proposed reactive intermediates and breakage of covalent bonds. In addition, implications for teaching and future research are proposed.

  15. Copper-catalyzed nucleophilic trifluoromethylation of propargylic halides.

    PubMed

    Miyake, Yoshihiro; Ota, Shin-ichi; Shibata, Masashi; Nakajima, Kazunari; Nishibayashi, Yoshiaki

    2013-09-14

    Reactions of propargylic halides with trifluoromethyltrimethylsilane in the presence of a catalytic amount of copper(I) thiophene-2-carboxylate (CuTC) have been found to give the corresponding trifluoromethylated products in good to high yields with a high selectivity. PMID:23884450

  16. 40 CFR 721.10698 - Polyfluorinated alkyl halide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10698 Polyfluorinated alkyl halide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  17. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  18. On the Boiling Points of the Alkyl Halides.

    ERIC Educational Resources Information Center

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.

  19. 40 CFR 721.4095 - Quaternary ammonium alkyltherpropyl trialkylamine halides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Quaternary ammonium alkyltherpropyl... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4095 Quaternary ammonium alkyltherpropyl trialkylamine halides....

  20. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  1. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  2. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  3. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  4. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  5. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  6. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  7. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  8. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  9. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  10. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  11. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  12. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  13. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  14. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  15. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  16. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  17. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  18. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  19. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  20. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    SciTech Connect

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  1. Analysis of Melting for Alkali Earth and Alkali Oxides Based on the Diffusional Force Theory

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Chen, Li-Rong

    An analysis of the melting alkali earth and alkali oxides is presented using the concept of diffusional force. The calculations are performed by developing an ionic model based on Harrison's quantum mechanical treatment of overlap repulsive potential which takes into account the interactions up to second neighbors. Van der Waals dipole-dipole and dipole-quadrupole interactions calculated by more accurate methods are also included in the model. Using the formula by Fang, derived on the basis of thermodynamic analysis, the values of interionic distances for 8 alkali earth and alkali oxides at melting have been obtained. A simple model for melting is developed based on the diffusional force models. The values of Tm thus obtained are found to show fairly good agreement with experimental values of melting temperatures.

  2. Purification and Characterization of an Extracellular, Thermo-Alkali-Stable, Metal Tolerant Laccase from Bacillus tequilensis SN4

    PubMed Central

    Sondhi, Sonica; Sharma, Prince; Saini, Shilpa; Puri, Neena; Gupta, Naveen

    2014-01-01

    A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC) was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (kcat/Km) showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibited by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and β-mercaptoethanol. SN4LAC was found to be highly thermostable, having temperature optimum at 85°C and could retain more than 80% activity at 70°C for 24 h. The optimum pH of activity for 2, 6-dimethoxyphenol, 2, 2′-azino bis[3-ethylbenzthiazoline-6-sulfonate], syringaldazine and guaiacol was 8.0, 5.5, 6.5 and 8.0 respectively. Enzyme was alkali-stable as it retained more than 75% activity at pH 9.0 for 24 h. Activity of the enzyme was significantly enhanced by Cu2+, Co2+, SDS and CTAB, while it was stable in the presence of halides, most of the other metal ions and surfactants. The extracellular nature and stability of SN4LAC in extreme conditions such as high temperature, pH, heavy metals, halides and detergents makes it a highly suitable candidate for biotechnological and industrial applications. PMID:24871763

  3. SO2 REMOVAL BY LIMESTONE DUAL ALKALI

    EPA Science Inventory

    The article gives results of testing (between February 1982 and March 1983) on a pilot-scale, limestone, dual-alkali, flue gas desulfurization (FGD) system at IERL-RTP, where testing started in 1979. These results that significant improvement in soda ash consumption and filter ca...

  4. Terahertz radiation in alkali vapor plasmas

    SciTech Connect

    Sun, Xuan; Zhang, X.-C.

    2014-05-12

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization.

  5. Magnetic emittance suppression using a bucking coil for a dc photocathode electron gun.

    PubMed

    Nagai, Ryoji; Hajima, Ryoichi; Nishimori, Nobuyuki

    2012-12-01

    Magnetic emittance suppression was demonstrated using a bucking coil for a dc photocathode electron gun. The magnetic emittance is derived from a leakage magnetic field on the cathode surface originating from a solenoid lens, and is important for realizing a high brightness dc photocathode electron gun. In order to solve this problem, a bucking coil integrated solenoid lens has been developed. The solenoid lens consists of a main coil, a bucking coil, and a pure iron yoke. The bucking coil and the main coil are integrated in the same yoke in order to prevent distortion of the magnetic field due to misalignment of the two coils. The emittance was measured and calculated as a function of the exciting current of the bucking coil and as a function of the electron beam size on the cathode. PMID:23277978

  6. Thermal emittance and response time measurements of negative electron affinity photocathodes

    NASA Astrophysics Data System (ADS)

    Bazarov, Ivan V.; Dunham, Bruce M.; Li, Yulin; Liu, Xianghong; Ouzounov, Dimitre G.; Sinclair, Charles K.; Hannon, Fay; Miyajima, Tsukasa

    2008-03-01

    The thermal emittance and temporal response of a photocathode set an upper limit on the maximum achievable electron beam brightness from a photoemission electron source, or photoinjector. We present measurements of these parameters over a broad range of laser wavelength for two different negative electron affinity (NEA) photocathodes. The thermal emittance of NEA GaAs and GaAsP has been measured by two techniques—a measurement of the beam size downstream from a solenoid, whose strength was varied, and a double slit transmission measurement—for different laser spot sizes and shapes. The effect of space charge on the beam spot size allows a good estimation of the photoemission response time from these cathodes. Both cathodes show a subpicosecond response for laser wavelengths shorter than 520 nm.

  7. Ultraviolet quantum detection efficiency of potassium bromide as an opaque photocathode applied to microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Everman, E.; Vallerga, J. V.; Sokolowski, J.; Lampton, M.

    1987-01-01

    The quantum detection efficiency (QDE) of potassium bromide as a photocathode applied directly to the surface of a microchannel plate over the 250-1600 A wavelength range has been measured. The contributions of the photocathode material in the channels and on the interchannel web to the QDE have been determined. Two broad peaks in the QDE centered at about 450 and about 1050 A are apparent, the former with about 50 percent peak QDE and the latter with about 40 percent peak QDE. The photoelectric threshold is observed at about 1600 A, and there is a narrow QDE minimum at about 750 A which correlates with 2X the band gap energy for KBr. The angular variation of the QDE from 0 to 40 deg to the channnel axis has also been examined. The stability of Kbr with time is shown to be good with no significant degradation of QDE at wavelengths below 1216 A over a 15-day period in air.

  8. Effect of humid air exposure on photoemissive and structural properties of KBr thin film photocathode

    NASA Astrophysics Data System (ADS)

    Rai, R.; Triloki; Ghosh, N.; Singh, B. K.

    2015-07-01

    We have investigated the influence of water molecule absorption on photoemissive and structural properties of potassium bromide (KBr) thin film photocathode under humid air exposure at relative humidity 62 ±3%. It is evident from photoemission measurement that the photoelectron yield of KBr photocathode is degraded exponentially with humid air exposed time. Structural studies of the "as-deposited" and "humid air aged" films reveal that there is no effect of relative humidity on film's crystalline face centered cubic structure. However, the crystallite size of "humid air aged" KBr film has been increased as compared to "as-deposited" one. In addition, topographical properties of KBr film are also examined by means of scanning electron microscope, transmission electron microscope and atomic force microscope and it is observed that granular characteristic of film has been altered, even for short exposure to humid atmosphere.

  9. Large area polycrystalline diamond films as high current photocathodes for linear induction accelerators

    SciTech Connect

    Shurter, R.P.; Moir, D.C.; Devlin, D.J.; Springer, R.W.

    1997-08-01

    Investigations are underway at Los Alamos to develop a new generation of high current, low source temperature photo cathodes able to operate in vacuum environments with pressures above 10e-6 torr without poisoning or degradation of emission properties. Polycrystalline diamond films are emerging as the ideal material for these photocathodes. Robustness, high quantum efficiency and high thermal conductivity are fundamental necessary attributes that are found in diamond. The high electron/hole mobility in the boron doped diamond lattice and the ability to create a negative electron affinity surface through downward band bending allow for high current density emission with quantum efficiencies of 0.5% when illuminated by a ArF laser. We report the results to date toward the development of a four kiloampere photocathode with a source temperature below 5eV for the DARHT linear induction Accelerator

  10. Performance of a DC GaAs photocathode gun for the Jefferson lab FEL

    SciTech Connect

    Grippo, Albert; Yunn, Byung; Sinclair, Charles; Bohn, Courtlandt; Douglas, David; Bullard, Donald; Krafft, Geoffrey; Gubeli, Joseph; Siggins, Timothy

    2001-12-01

    The performance of the 320kV DC photocathode gun has met the design specifications for the 1kW IR Demo FEL at Jefferson Lab. This gun has shown theability to deliver high average current beam with outstanding lifetimes. The GaAs photocathode has delivered 135pC per bunch, at a bunch repetition rate of37.425MHz, corresponding to 5mA average CW current. In a recent cathode lifetime measurement, 20h of CW beam was delivered with an average currentof 3.1mA and 211C of total charge from a 0.283cm2 illuminated spot. The cathode showed a 1/e lifetime of 58h and a1/e extracted charge lifetime of 618C.We have achieved quantum efficiencies of 5% from a GaAs wafer that has been in service for 13 months delivering in excess 2400C with only three activationcycles.

  11. Photo-cathode preparation system of the A0 photo-injector

    NASA Astrophysics Data System (ADS)

    Kuchnir, M.

    2002-08-01

    The A0 Photo-Injector is an electron accelerator located in the AZero high bay area of Fermilab. A pulsed laser system generates electron bunches by the photo-electric effect when hitting a photo-cathode in a 1.5-cell, 1.3 GHz RF gun. A 9-cell, 1.3 GHz superconducting resonant cavity then accelerates the electrons to 15 MeV. The 10 ps time resolved waveform of the laser pulses is transferred to the electron bunches. This report is focused on the first hardware component of this accelerator, the Photo-cathode Preparation System. The reason for its existence is in the nature of the photo-electric material film used: Cs2 > Te (Cesium Telluride), a very reactive compound that once coated on the cathode requires that it be transported and used in ultra high vacuum (UHV), i.e. < 10-9 Torr.

  12. Method for resurrecting negative electron affinity photocathodes after exposure to an oxidizing gas

    DOEpatents

    Mulhollan, Gregory A; Bierman, John C

    2012-10-30

    A method by which negative electron affinity photocathodes (201), single crystal, amorphous, or otherwise ordered, can be made to recover their quantum yield following exposure to an oxidizing gas has been discovered. Conventional recovery methods employ the use of cesium as a positive acting agent (104). In the improved recovery method, an electron beam (205), sufficiently energetic to generate a secondary electron cloud (207), is applied to the photocathode in need of recovery. The energetic beam, through the high secondary electron yield of the negative electron affinity surface (203), creates sufficient numbers of low energy electrons which act on the reduced-yield surface so as to negate the effects of absorbed oxidizing atoms thereby recovering the quantum yield to a pre-decay value.

  13. Photoemission Studies of Metallic Photocathodes Prepared by Pulsed Laser Ablation Deposition Technique

    SciTech Connect

    Fasano, V.; Lorusso, A.; Perrone, A.; De Rosa, H.; Cultrera, L.

    2010-11-10

    We present the results of our investigation on metallic films as suitable photocathodes for the production of intense electron beams in RF photoinjector guns. Pulsed laser ablation deposition technique was used for growing Mg and Y thin films onto Si and Cu substrates in high vacuum and at room temperature.Different diagnostic methods were used to characterize the thin films deposited on Si with the aim to optimize the deposition process. Photoelectron performances were investigated on samples deposited on Cu substrate in an ultra high vacuum photodiode chamber at 10{sup -7} Pa. Relatively high quantum efficiencies have been obtained for the deposited films, comparable to those of corresponding bulks. Samples could stay for several months in humid open air before being tested in a photodiode cell. The deposition process and the role of the photocathode surface contamination and its influence on the photoelectron performances are presented and discussed.

  14. Robust CsBr/Cu Photocathodes for the Linac Coherent Light Source

    SciTech Connect

    Maldonado, Juan R.; Liu, Zhi; Dowell, D.H.; Kirby, Robert E.; Sun, Yun; Pianetta, Piero; Pease, Fabian; /Stanford U., Phys. Dept.

    2011-06-21

    The linac coherent light source (LCLS), an x-ray free-electron laser project presently under construction at SLAC, uses a 2.856 GHz rf photocathode gun with a copper cathode for its electron source. While the copper cathode is performing well for the LCLS project, a cathode material with higher quantum efficiency would reduce the drive laser requirements and allow a greater range of operating conditions. Therefore a robust CsBr/Cu photocathode with greater than 50 times the quantum yield at 257 nm relative to the present LCLS copper cathode has been investigated. Preliminary experiments using a dedicated electron source development test stand at SLAC/SSRL are encouraging and are presented in this paper.

  15. Photo-cathode preparation system of the A0 photo-injector

    SciTech Connect

    Moyses Kuchnir et al.

    2002-08-23

    The A0 Photo-Injector is an electron accelerator located in the AZero high bay area of Fermilab. A pulsed laser system generates electron bunches by the photo-electric effect when hitting a photo-cathode in a 1.5-cell, 1.3 GHz RF gun. A 9-cell, 1.3 GHz superconducting resonant cavity then accelerates the electrons to 15 MeV. The 10 ps time resolved waveform of the laser pulses is transferred to the electron bunches. This report is focused on the first hardware component of this accelerator, the Photo-cathode Preparation System. The reason for its existence is in the nature of the photo-electric material film used: Cs{sub 2}Te (Cesium Telluride), a very reactive compound that once coated on the cathode requires that it be transported and used in ultra high vacuum (UHV), i.e. < 10{sup -9} Torr.

  16. Engineering Design and Fabrication of an Ampere-Class Superconducting Photocathode Electron Gun

    SciTech Connect

    Ben-Zvi,I.

    2008-11-17

    Over the past three years, Advanced Energy Systems and Brookhaven National Laboratory (BNL) have been collaborating on the design of an Ampere- class superconducting photocathode electron gun. BNL performed the physics design of the overall system and RF cavity under prior programs. Advanced Energy Systems (AES) is currently responsible for the engineering design and fabrication of the electron gun under contract to BNL. We will report on the engineering design and fabrication status of the superconducting photocathode electron gun. The overall configuration of the cryomodule will be reviewed. The layout of the hermitic string, space frame, shielding package, and cold mass will be discussed. The engineering design of the gun cavity and removable cathode will be presented in detail and areas of technical risk will be highlighted. Finally, the fabrication sequence and fabrication status of the gun cavity will be discussed.

  17. Structural and morphological properties of metallic thin films grown by pulsed laser deposition for photocathode application

    NASA Astrophysics Data System (ADS)

    Lorusso, A.; Gontad, F.; Caricato, A. P.; Chiadroni, E.; Broitman, E.; Perrone, A.

    2016-03-01

    In this work yttrium and lead thin films have been deposited by pulsed laser deposition technique and characterized by ex situ different diagnostic methods. All the films were adherent to the substrates and revealed a polycrystalline structure. Y films were uniform with a very low roughness and droplet density, while Pb thin films were characterized by a grain morphology with a relatively high roughness and droplet density. Such metallic materials are studied because they are proposed as a good alternative to copper and niobium photocathodes which are generally used in radiofrequency and superconducting radiofrequency guns, respectively. The photoemission performances of the photocathodes based on Y and Pb thin films have been also studied and discussed.

  18. A High-Gradient CW R Photo-Cathode Electron Gun for High Current Injectors

    SciTech Connect

    Robert Rimmer

    2005-05-01

    The paper describes the analysis and preliminary design of a high-gradient photo-cathode RF gun optimized for high current CW operation. The gun cell shape is optimized to provide maximum acceleration for the newly emitted beam while minimizing wall losses in the structure. The design is intended for use in future high-current high-power CW FELs but the shape optimization for low wall losses may be advantageous for other applications such as XFELs or Linear Colliders using high peak power low duty factor guns where pulse heating is a limitation. The concept allows for DC bias on the photocathode in order to repel ions and improve cathode lifetime.

  19. Use of MgF2 and LiF photocathodes in the extreme ultraviolet.

    NASA Technical Reports Server (NTRS)

    Lapson, L. B.; Timothy, J. G.

    1973-01-01

    The photoelectric yields of 2000-A thick samples of MgF2 and LiF have been measured at wavelengths in the range from 1216 to 461 A. Peak values of 43 and 34%, respectively, were obtained at wavelengths around 550 A at 45 deg incidence. Coating the cathode of a channel electron multiplier with 3000 A of MgF2 produced no significant deterioration in the electrical properties and increased the sensitivity by factors of 1.62, 2.76, and 2.60 at wavelengths of 742, 584, and 461 A, respectively. Since the stability of response of the MgF2 photocathodes appears to be equal to that of conventional metallic and semiconducting cathodes, it is concluded that MgF2 would be a practical, high-efficiency photocathode for use in the extreme ultraviolet.

  20. Growth and characterization of rugged sodium potassium antimonide photocathodes for high brilliance photoinjector

    NASA Astrophysics Data System (ADS)

    Cultrera, L.; Karkare, S.; Lillard, B.; Bartnik, A.; Bazarov, I.; Dunham, B.; Schaff, W.; Smolenski, K.

    2013-09-01

    Sodium potassium antimonide photocathodes with Quantum Efficiency (QE) in the range of few percent have been grown, and their photoemission properties are measured. We report the intrinsic emittance and response time of electron bunches extracted from this material. It is possible to recover the QE of an overheated cathode by simple potassium addition, and the cathode is rugged enough to deliver tens of mA of average current with no or minimal degradation.

  1. Polarization Possibilities of Small Spin-Orbit Interaction in Strained-Superlattice Photocathodes

    SciTech Connect

    Not Available

    2010-08-25

    Strained-superlattice photocathodes based on InGaP/GaAs were investigated. The photocathode performance is found highly dependent on the superlattice parameters. The electron confinement energy in superlattice appears important. The strained-superlattice structure based on GaAsP/GaAs, with a maximum polarization as high as 90% and more than 1% quantum efficiency, is presently the prime candidate for the ILC polarized electron photocathodes. A recent systematic study shows, however, that the peak polarization seems saturated even though the heavy-hole (HH) and light-hole (LH) band splitting is increased significantly, indicating that there is a material specific spin relaxation mechanism. It is widely accepted that the D'yakonov-Perel mechanism is the dominant spin relaxation mechanism in the III-V compound superlattice structures with a low p-doping ({le} 10{sup 17} cm{sup -3}), and that the spin relaxation may be reduced by choosing a material with a smaller spin-orbit interaction. As the spin-orbit interaction in phosphides is much smaller than in arsenides, strained-superlattice structure based on InGaP/GaAs were investigated. The computer code SPECCODE developed by Subashiev and Gerchikov has been used for calculating the band structures in superlattice.

  2. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes.

    PubMed

    Zhang, Xuemei; Wu, Xu; Centeno, Anthony; Ryan, Mary P; Alford, Neil M; Riley, D Jason; Xie, Fang

    2016-01-01

    Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap. PMID:26997140

  3. Modeling Photoemission of Spin-Polarized Electrons from NEA GaAs Photocathodes

    NASA Astrophysics Data System (ADS)

    Chubenko, Oksana; Afanasev, Andrei

    2015-04-01

    At present, photoemission from strained GaAs activated to negative electron affinity (NEA) is a main source of polarized electrons for modern nuclear-physics and particle-physics facilities. Future experiments at advanced electron colliders will require high-current polarized electron beams, which could provide high polarization and luminosity. This sets new requirements for photocathodes in terms of high quantum efficiency (QE) (>>1%) and spin polarization (~85%). Detailed simulation and modeling of physics processes in photocathodes is important for optimization of their design in order to achieve high QE and reduce depolarization mechanisms. The purpose of the present work was to develop a semi-phenomenological model, which could predict photoemission and electron spin polarization from NEA GaAs photocathodes. Effect of the presence of nanostructures was also studied. Simulation results were compared to the experimental results obtained by the polarized electron source group at Thomas Jefferson National Accelerator Facility. Work supported by Thomas Jefferson Accelerator Facility and George Washington University.

  4. Modeling the resupply, diffusion, and evaporation of cesium on the surface of controlled porosity dispenser photocathodes

    NASA Astrophysics Data System (ADS)

    Pan, Zhigang; Jensen, Kevin L.; Montgomery, Eric J.

    2013-09-01

    A controlled porosity dispenser (CPD) photocathode is currently being explored and developed to replace the Cs during operation and increase photocathode lifetime. Experimental results from cesium (Cs) emission of a sintered-wire tungsten CPD are presented and are used to inform a theoretical model of Cs resupply, diffusion, and evaporation on the surface of the photocathode. The evaporation of Cs from a tungsten surface is modeled using an effective one-dimensional potential well representation of the binding energy. The model accounts for both local and global interactions of Cs with the surface metal as well as with other Cs atoms. It is found that for typical activation temperatures within the range of 500 K-750 K, differences of less than 5% between the quantum efficiency (QE) maximum and minimum over ideal homogenous surfaces occur, even when variations to mimic surface non-uniformity due to pore blockage are included. The theoretical evaporation rates of sub-monolayer surface coverage of Cs compare well to the data of Taylor and Langmuir [I. Langmuir and J. B. Taylor, Phys. Rev. 40, 463-464 (1932)] and reproduce the nonlinear behavior of evaporation with varying coverage and temperature.

  5. Effects of Photocathode and Bias Angle Variation on DQE and MTF Measurements of Microchannel Plate Detectors

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Susalla, P. J.; Weaver, J. L.; Bell, P. M.

    2004-11-01

    The microchannel plate (MCP) is essential amplification device for many plasma diagnostics that typically converts incident x-rays into a cascade of electrons. The bias angle of the MCP pores, along which electrons are amplified with the help of an accelerating voltage, and the photocathode (PC), which converts incident x-rays into electrons at the pore opening, are two important parameters that affect the noise and resolution characteristics of a diagnostic. We will present Detector Quantum Efficiency (DQE), photocathode Q.E. and MTF measurements for 8 different MCPs employed in a spatial x-ray imaging diagnostic. The measurements involve 4 different photocathode coatings (CsI, MgF, KBr, No PC), with each coating applied to 2 MCPs with bias angles (5 and 8 degrees). Work at U. of M. supported by the U.S. Naval Research Laboratory and by U.S. DoE under grants DE-FG03-99DP00284, DE-FG03-00SF22021 and other grants and contracts, with technical contributions from Lawrence Livermore National Laboratory.

  6. Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes.

    PubMed

    Hettick, Mark; Zheng, Maxwell; Lin, Yongjing; Sutter-Fella, Carolin M; Ager, Joel W; Javey, Ali

    2015-06-18

    To date, some of the highest performance photocathodes of a photoelectrochemical (PEC) cell have been shown with single-crystalline p-type InP wafers, exhibiting half-cell solar-to-hydrogen conversion efficiencies of over 14%. However, the high cost of single-crystalline InP wafers may present a challenge for future large-scale industrial deployment. Analogous to solar cells, a thin-film approach could address the cost challenges by utilizing the benefits of the InP material while decreasing the use of expensive materials and processes. Here, we demonstrate this approach, using the newly developed thin-film vapor-liquid-solid (TF-VLS) nonepitaxial growth method combined with an atomic-layer deposition protection process to create thin-film InP photocathodes with large grain size and high performance, in the first reported solar device configuration generated by materials grown with this technique. Current-voltage measurements show a photocurrent (29.4 mA/cm(2)) and onset potential (630 mV) approaching single-crystalline wafers and an overall power conversion efficiency of 11.6%, making TF-VLS InP a promising photocathode for scalable and efficient solar hydrogen generation. PMID:26266588

  7. Longitudinal Emittance Compensation In a Photocathode RF gun Injector - Analysis and Experiments

    NASA Astrophysics Data System (ADS)

    Wang, X. J.

    1997-05-01

    The concept of longitudinal emittance compensation in a photocathode RF gun injector is introduced first. The analysis shows that the arrangements of the transverse emittance compensation photocathode RF gun injector is well suited for longitudinal emittance compensation. By setting the laser phase relative to the RF field close to the zero crossing, the photoelectron beam produced at the gun exit will have short bunchlength and large energy spread, this beam was further compressed in the drift space followed the RF gun and solenoid. The linac after the drift space will preserve the short bunch and reduce the energy spread through acceleration. The solenoid magnet plays an important role in the bunch compression in the drift space to reduce the bunch lengthening caused by the beam divergence. Experiments performed at the Brookhaven Accelerator Test Facility (ATF) has produced a 370 fs electron beam with 40 pC using a 15 ps laser, more than a facto of 30 bunch compression. We will also discussed various effects may reduce the longitudinal emittance compensation in the photocathode RF gun injector.

  8. Effect of surface cleaning on spectral response for InGaAs photocathodes.

    PubMed

    Jin, Muchun; Zhang, Yijun; Chen, Xinlong; Hao, Guanghui; Chang, Benkang; Shi, Feng

    2015-12-20

    Photocathode surface treatment aims to obtain high sensitivity, where the key point is to acquire an atomically clean surface. Various surface cleaning methods for removing contamination from InGaAs photocathode surfaces were investigated. The atomic compositions of InGaAs photocathode structures and surfaces were measured by x-ray photoelectron spectroscopy and Ar ion sputtering. After surface cleaning, the InGaAs surface is arsenoxide-free, however, a small amount of Ga2O3 and In2O3 still can be found. The 1:1 mixed solution of hydrochloric acid to deionized water followed by thermal annealing at 525C has been demonstrated to be the best choice in dealing with the surface oxides. After the Cs/O activation, a surface model was proposed where the oxides on the surface will lead to a positive electron affinity, adversely affecting low-energy electrons escaping to the vacuum, which is reflected by the photocurrent curves and the spectral response curves. PMID:26837029

  9. Dye-controlled interfacial electron transfer for high-current indium tin oxide photocathodes.

    PubMed

    Huang, Zhongjie; He, Mingfu; Yu, Mingzhe; Click, Kevin; Beauchamp, Damian; Wu, Yiying

    2015-06-01

    Efficient sensitized photocathodes are highly desired for solar fuels and tandem solar cells, yet the development is hindered by the scarcity of suitable p-type semiconductors. The generation of high cathodic photocurrents by sensitizing a degenerate n-type semiconductor (tin-doped indium oxide; ITO) is reported. The sensitized mesoporous ITO electrodes deliver cathodic photocurrents of up to 5.96±0.19 mA cm(-2), which are close to the highest record in conventional p-type sensitized photocathodes. This is realized by the rational selection of dyes with appropriate energy alignments with ITO. The energy level alignment between the highest occupied molecular orbital of the sensitizer and the conduction band of ITO is crucial for efficient hole injection. Transient absorption spectroscopy studies demonstrate that the cathodic photocurrent results from reduction of the photoexcited sensitizer by free electrons in ITO. Our results reveal a new perspective toward the selection of electrode materials for sensitized photocathodes. PMID:25907357

  10. Heat load of a GaAs photocathode in an SRF electron gun

    NASA Astrophysics Data System (ADS)

    Wang, Er-Dong; Jörg, Kewisch; Ilan, Ben-Zvi; Andrew, Burrill; Trivini, Rao; Wu, Qiong; Animesh, Jain; Ramesh, Gupta; Doug, Holmes; Zhao, Kui

    2011-04-01

    A great deal of effort has been made over the last decades to develop a better polarized electron source for high energy physics. Several laboratories operate DC guns with a gallium arsenide photocathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved by using a superconducting radio frequency (SRF) electron gun, which delivers beams of a higher brightness than that from DC guns because the field gradient at the cathode is higher. SRF guns with metal and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since a bulk gallium arsenide (GaAs) photocathode is normal conducting, a problem arises from the heat load stemming from the cathode. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and verification by measuring the quality factor of the gun with and without the cathode at 2 K. We simulate heat generation and flow from the GaAs cathode using the ANSYS program. By following the findings with the heat load model, we designed and fabricated a new cathode holder (plug) to decrease the heat load from GaAs.

  11. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes

    PubMed Central

    Zhang, Xuemei; Wu, Xu; Centeno, Anthony; Ryan, Mary P.; Alford, Neil M.; Riley, D. Jason; Xie, Fang

    2016-01-01

    Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap. PMID:26997140

  12. Detection of soft X-rays with NEA III-V photocathodes. [Negative Electron Affinity X-ray detector for astronomy

    NASA Technical Reports Server (NTRS)

    Bardas, D.; Kellogg, E.; Murray, S.; Enck, R., Jr.

    1978-01-01

    A description is presented of the results of tests on an X-ray photomultiplier containing a negative electron affinity (NEA) photocathode. This device makes it possible to investigate the response of the NEA photocathode to X-rays of various energies. The obtained data provide a basis for the determination of the photoelectron yield and energy resolution of the considered photocathode as a function of energy in the range from 0.8 to 3 keV. The investigation demonstrates the feasibility of using an NEA III-V photocathode for the detection of soft X-rays.

  13. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  14. Matrix isolation infrared spectra of hydrogen halide and halogen complexes with nitrosyl halides

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; Lucas, Donald; Pimentel, George C.

    1982-01-01

    Matrix isolation infrared spectra of nitrosyl halide (XNO) complexes with HX and X2 (X = Cl, Br) are presented. The relative frequency shifts of the HX mode are modest (ClNO H-Cl, delta-nu/nu = -0.045; BrNO H-Br, delta-nu/nu = -0.026), indicating weak hydrogen bonds 1-3 kcal/mol. These shifts are accompanied by significant shifts to higher frequencies in the XN-O stretching mode (CIN-O HCl, delta-nu/nu = +0.016; BrN-O HBr, delta-nu/nu = +0.011). Similar shifts were observed for the XN-O X2 complexes (ClN-O Cl2, delta-nu/nu = +0.009; BrN-O-Br2, delta-nu/nu = +0.013). In all four complexes, the X-NO stretching mode relative shift is opposite in sign and about 1.6 times that of the NO stretching mode. These four complexes are considered to be similar in structure and charge distribution. The XN-O frequency shift suggests that complex formation is accompanied by charge withdrawal from the NO bond ranging from about .04 to .07 electron charges. The HX and X2 molecules act as electron acceptors, drawing electrons out of the antibonding orbital of NO and strengthening the XN-O bond. The implications of the pattern of vibrational shifts concerning the structure of the complexes are discussed.

  15. Spectroscopic effects of disorder and vibrational localization in mixed-halide metal-halide chain solids

    SciTech Connect

    Love, S.P.; Scott, B.; Worl, L.A.; Huckett, S.C.; Saxena, A.; Huang, X.Z.; Bishop, A.R.; Swanson, B.I.

    1993-02-01

    Resonance Raman techniques, together with lattice-dynamics and Peierls-Hubbard modelling, are used to explore the electronic and vibrational dynamics of the quasi-one-dimensional metal-halogen chain solids [Pt(en){sub 2}][R(en){sub 2}X{sub 2}](ClO{sub 4}){sub 4}, (en = C{sub 2}H{sub 8}N{sub 2} and X=Cl, Br), abbreviated ``PLX.`` The mixed-halide materials PtCl{sub 1-x}Br{sub x} and PtCl{sub 1-x}I{sub x} consist of long mixed chains with heterojunctions between segments of the two constituent materials. Thus, in addition to providing mesoscale modulation of the chain electronic states, they serve as prototypes for elucidating the properties to be expected for macroscopic heterojunctions of these highly nonlinear materials. Once a detailed understanding of the various local vibrational modes occurring in these disordered solids is developed, the electronic structure of the chain segments and junctions can be probed by tuning the Raman excitation through their various electronic resonances.

  16. Developments in alkali-metal atomic magnetometry

    NASA Astrophysics Data System (ADS)

    Seltzer, Scott Jeffrey

    Alkali-metal magnetometers use the coherent precession of polarized atomic spins to detect and measure magnetic fields. Recent advances have enabled magnetometers to become competitive with SQUIDs as the most sensitive magnetic field detectors, and they now find use in a variety of areas ranging from medicine and NMR to explosives detection and fundamental physics research. In this thesis we discuss several developments in alkali-metal atomic magnetometry for both practical and fundamental applications. We present a new method of polarizing the alkali atoms by modulating the optical pumping rate at both the linear and quadratic Zeeman resonance frequencies. We demonstrate experimentally that this method enhances the sensitivity of a potassium magnetometer operating in the Earth's field by a factor of 4, and we calculate that it can reduce the orientation-dependent heading error to less than 0.1 nT. We discuss a radio-frequency magnetometer for detection of oscillating magnetic fields with sensitivity better than 0.2 fT/ Hz , which we apply to the observation of nuclear magnetic resonance (NMR) signals from polarized water, as well as nuclear quadrupole resonance (NQR) signals from ammonium nitrate. We demonstrate that a spin-exchange relaxation-free (SERF) magnetometer can measure all three vector components of the magnetic field in an unshielded environment with comparable sensitivity to other devices. We find that octadecyltrichlorosilane (OTS) acts as an anti-relaxation coating for alkali atoms at temperatures below 170°C, allowing them to collide with a glass surface up to 2,000 times before depolarizing, and we present the first demonstration of high-temperature magnetometry with a coated cell. We also describe a reusable alkali vapor cell intended for the study of interactions between alkali atoms and surface coatings. Finally, we explore the use of a cesium-xenon SERF comagnetometer for a proposed measurement of the permanent electric dipole moments (EDMs) of the electron and the 129Xe atom, with projected sensitivity of deltade=9x10 -30 e-cm and deltadXe=4x10 -31 e-cm after 100 days of integration; both bounds are more than two orders of magnitude better than the existing experimental limits on the EDMs of the electron and of any diamagnetic atom.

  17. Methods and Mechanisms for Cross-Electrophile Coupling of Csp(2) Halides with Alkyl Electrophiles.

    PubMed

    Weix, Daniel J

    2015-06-16

    Cross-electrophile coupling, the cross-coupling of two different electrophiles, avoids the need for preformed carbon nucleophiles, but development of general methods has lagged behind cross-coupling and C-H functionalization. A central reason for this slow development is the challenge of selectively coupling two substrates that are alike in reactivity. This Account describes the discovery of generally cross-selective reactions of aryl halides and acyl halides with alkyl halides, the mechanistic studies that illuminated the underlying principles of these reactions, and the use of these fundamental principles in the rational design of new cross-electrophile coupling reactions. Although the coupling of two different electrophiles under reducing conditions often leads primarily to symmetric dimers, the subtle differences in reactivity of aryl halides and alkyl halides with nickel catalysts allowed for generally cross-selective coupling reactions. These conditions could also be extended to the coupling of acyl halides with alkyl halides. These reactions are exceptionally functional group tolerant and can be assembled on the benchtop. A combination of stoichiometric and catalytic studies on the mechanism of these reactions revealed an unusual radical-chain mechanism and suggests that selectivity arises from (1) the preference of nickel(0) for oxidative addition to aryl halides and acyl halides over alkyl halides and (2) the greater propensity of alkyl halides to form free radicals. Bipyridine-ligated arylnickel intermediates react with alkyl radicals to efficiently form, after reductive elimination, new C-C bonds. Finally, the resulting nickel(I) species is proposed to regenerate an alkyl radical to carry the chain. Examples of new reactions designed using these principles include carbonylative coupling of aryl halides with alkyl halides to form ketones, arylation of epoxides to form β-aryl alcohols, and coupling of benzyl sulfonate esters with aryl halides to form diarylmethanes. Arylnickel(II) intermediates can insert carbon monoxide to form acylnickel(II) intermediates that react with alkyl halides to form ketones, demonstrating the connection between the mechanisms of reactions of aryl halides and acid chlorides with alkyl halides. The low reactivity of epoxides with nickel can be overcome by the use of either titanium or iodide cocatalysis to facilitate radical generation and this can also be extended to enantioselective arylation of meso-epoxides. The high reactivity of benzyl bromide with nickel, which leads to the formation of bibenzyl in attempted reactions with bromobenzene, can be overcome by using a benzyl mesylate along with cobalt phthalocyanine cocatalysis to convert the mesylate into an alkyl radical. PMID:26011466

  18. Geopolymers and Related Alkali-Activated Materials

    NASA Astrophysics Data System (ADS)

    Provis, John L.; Bernal, Susan A.

    2014-07-01

    The development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives for future research developments are also explored.

  19. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  20. Large methyl halide emissions from south Texas salt marshes

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Whelan, M. E.; Min, D.-H.

    2014-11-01

    Coastal salt marshes are natural sources of methyl chloride (CH3Cl) and methyl bromide (CH3Br) to the atmosphere, but measured emission rates vary widely by geography. Here we report large methyl halide fluxes from subtropical salt marshes of south Texas. Sites with the halophytic plant, Batis maritima, emitted methyl halides at rates that are orders of magnitude greater than sites containing other vascular plants or macroalgae. B. maritima emissions were generally highest at midday; however, diurnal variability was more pronounced for CH3Br than CH3Cl, and surprisingly high nighttime CH3Cl fluxes were observed in July. Seasonal and intra-site variability were large, even taking into account biomass differences. Overall, these subtropical salt marsh sites show much higher emission rates than temperate salt marshes at similar times of the year, supporting the contention that low-latitude salt marshes are significant sources of CH3Cl and CH3Br.

  1. Gaseous NH3 Confers Porous Pt Nanodendrites Assisted by Halides.

    PubMed

    Lu, Shuanglong; Eid, Kamel; Li, Weifeng; Cao, Xueqin; Pan, Yue; Guo, Jun; Wang, Liang; Wang, Hongjing; Gu, Hongwei

    2016-01-01

    Tailoring the morphology of Pt nanocrystals (NCs) is of great concern for their enhancement in catalytic activity and durability. In this article, a novel synthetic strategy is developed to selectively prepare porous dendritic Pt NCs with different structures for oxygen reduction reaction (ORR) assisted by NH3 gas and halides (F(-), Cl(-), Br(-)). The NH3 gas plays critical roles on tuning the morphology. Previously, H2 and CO gas are reported to assist the shape control of metallic nanocrystals. This is the first demonstration that NH3 gas assists the Pt anisotropic growth. The halides also play important role in the synthetic strategy to regulate the formation of Pt NCs. As-made porous dendritic Pt NCs, especially when NH4F is used as a regulating reagent, show superior catalytic activity for ORR compared with commercial Pt/C catalyst and other previously reported Pt-based NCs. PMID:27184228

  2. Distribution of impregnated metal halide catalysts in coal grains

    SciTech Connect

    Bodily, D.M.; Wann, J.P.

    1986-09-01

    Metal halides such as stannous chloride and zinc chloride are known to be effective coal hydrogenolysis catalysts. Others examined a number of potential catalysts and found zinc and tin chlorides to be among the best. Although stannous chloride is generally recognized to be more active than zinc chloride, zinc chloride has been chosen as the catalyst in a number of coal liquefaction systems. These include processes developed in Japan, molten salt reactors and short residence time reactors. The metal halides appear to be active in cleaving bridges between groups of condensed aromatic rings (unit structures) under liquefaction conditions. This results in a progressive depolymerization of the coal, ultimately to isolated unit structures, with little reaction of the condensed ring systems themselves. This results in less hydrogen consumption and a soluble product that can be further upgraded.

  3. Photoferroelectric and Photopiezoelectric Properties of Organometal Halide Perovskites.

    PubMed

    Liu, Shi; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M

    2016-04-21

    Piezoelectrics play a critical role in various applications. The permanent dipole associated with the molecular cations in organometal halide perovskites (OMHPs) may lead to spontaneous polarization and thus piezoelectricity. Here we explore the piezoelectric properties of OMHPs with density functional theory. We find that the piezoelectric coefficient depends sensitively on the molecular ordering and that the experimentally observed light-enhanced piezoelectricity is likely due to a nonpolar to polar structural transition. By comparing OMHPs with different atomic substitutions in the ABX3 architecture, we find that the displacement of the B-site cation contributes to nearly all of the piezoelectric response and that the competition between A-X hydrogen bond and B-X metal-halide bond in OMHPs controls the piezoelectric properties. These results highlight the potential of the OMHP architecture for designing new functional photoferroelectrics and photopiezoelectrics. PMID:27002247

  4. Alkali Metal Heat Pipe Life Issues

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.

    2004-01-01

    One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.

  5. Alkali metal protective garment and composite material

    DOEpatents

    Ballif, III, John L. (Salt Lake City, UT); Yuan, Wei W. (Seattle, WA)

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  6. Study of superconducting state parameters of alkali alkali binary alloys by a pseudopotential

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2006-12-01

    A detailed study of the superconducting state parameters (SSP) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ∗, transition temperature TC, isotope effect exponent α and effective interaction strength N OV of ten alkali-alkali binary alloys i.e. Li 1- xNa x, Li 1- xK x, Li 1- xRb x, Li 1- xCs x, Na 1- xK x, Na 1- xRb x, Na 1- xCs x, K 1- xRb x, K 1- xCs x and Rb 1- xCs x are made within the framework of the model potential formalism and employing the pseudo-alloy-atom (PAA) model for the first time. We use the Ashcroft’s empty core (EMC) model potential for evaluating the superconducting properties of alkali alloys. Five different forms of local field correction functions viz. Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used to incorporate the exchange and correlation effects. A considerable influence of various exchange and correlation functions on λ and μ∗ is found from the present study. Reasonable agreement with the theoretical values of the SSP of pure components is found (corresponding to the concentration x = 0 or 1). It is also concluded that nature of the SSP strongly depends on the value of the atomic volume Ω0 of alkali-alkali binary alloys.

  7. Transcriptome Analysis of Alkali Shock and Alkali Adaptation in Listeria monocytogenes 10403S

    PubMed Central

    Giotis, Efstathios S.; Muthaiyan, Arunachalam; Natesan, Senthil; Wilkinson, Brian J.; Blair, Ian S.

    2010-01-01

    Abstract Alkali stress is an important means of inactivating undesirable pathogens in a wide range of situations. Unfortunately, Listeria monocytogenes can launch an alkaline tolerance response, significantly increasing persistence of the pathogen in such environments. This study compared transcriptome patterns of alkali and nonalkali-stressed L. monocytogenes 10403S cells, to elucidate the mechanisms by which Listeria adapts and/or grows during short- or long-term alkali stress. Transcription profiles associated with alkali shock (AS) were obtained by DNA microarray analysis of midexponential cells suspended in pH 9 media for 15, 30, or 60 min. Transcription profiles associated with alkali adaptation (AA) were obtained similarly from cells grown to midexponential phase at pH 9. Comparison of AS and AA transcription profiles with control cell profiles identified a high number of differentially regulated open-reading frames in all tested conditions. Rapid (15 min) changes in expression included upregulation of genes encoding for multiple metabolic pathways (including those associated with Na+/H+ antiporters), ATP-binding cassette transporters of functional compatible solutes, motility, and virulence-associated genes as well as the σB controlled stress resistance network. Slower (30 min and more) responses to AS and adaptation during growth in alkaline conditions (AA) involved a different pattern of changes in mRNA concentrations, and genes involved in proton export. PMID:20677981

  8. Chemically induced fracturing in alkali feldspar

    NASA Astrophysics Data System (ADS)

    Scheidl, K. S.; Schaeffer, A.-K.; Petrishcheva, E.; Habler, G.; Fischer, F. D.; Schreuer, J.; Abart, R.

    2014-01-01

    Fracturing in alkali feldspar during Na+-K+ cation exchange with a NaCl-KCl salt melt was studied experimentally. Due to a marked composition dependence of the lattice parameters of alkali feldspar, any composition gradient arising from cation exchange causes coherency stress. If this stress exceeds a critical level fracturing occurs. Experiments were performed on potassium-rich gem-quality alkali feldspars with polished (010) and (001) surfaces. When the feldspar was shifted toward more sodium-rich compositions over more than about 10 mole %, a system of parallel cracks with regular crack spacing formed. The cracks have a general (h0l) orientation and do not correspond to any of the feldspar cleavages. The cracks are rather oriented (sub)-perpendicular to the direction of maximum tensile stress. The critical stress needed to initiate fracturing is about 325 MPa. The critical stress intensity factor for the propagation of mode I cracks, K Ic, is estimated as 2.30-2.72 MPa m1/2 (73-86 MPa mm1/2) from a systematic relation between characteristic crack spacing and coherency stress. An orientation mismatch of 18° between the crack normal and the direction of maximum tensile stress is ascribed to the anisotropy of the longitudinal elastic stiffness which has pronounced maxima in the crack plane and a minimum in the direction of the crack normal.

  9. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities. PMID:26901167

  10. Transport properties of alkali metal doped fullerides

    SciTech Connect

    Yadav, Daluram Yadav, Nishchhal

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  11. Palladium- (and nickel-) catalyzed vinylation of aryl halides

    PubMed Central

    Denmark, Scott E.; Butler, Christopher R.

    2009-01-01

    Functionalized styrenes are extremely useful building blocks for organic synthesis and for functional polymers. One of the most general syntheses of styrenes involves the combination of an aryl halide with a vinyl organometallic reagent under catalysis by palladium or nickel complexes. This Feature Article provides the first comprehensive summary of the vinylation methods currently available along with a critical comparison of the efficiency, cost and scope of the methods. PMID:19081992

  12. Preparation of primary amides from functionalized organozinc halides.

    PubMed

    Schade, Matthias A; Manolikakes, Georg; Knochel, Paul

    2010-08-20

    Organozinc halides, which are prepared either by direct zinc insertion or halogen-magnesium exchange and subsequent transmetalation with ZnCl(2), react smoothly with commercially available trichloroacetyl isocyanate to give, after hydrolysis, the corresponding primary amides. This method is compatible with a variety of functional groups such as an ester or a cyano group. Also heterocyclic-, alkenyl, and acetylenic zinc reagents are converted to the corresponding primary amides under these conditions. PMID:20704410

  13. Catalytic enantioselective alkylation of aldehydes by using organozinc halide reagents.

    PubMed

    Kinoshita, Yuichiro; Kanehira, Shinichi; Hayashi, Yasuki; Harada, Toshiro

    2013-03-01

    Functionalized alkylzinc halides can be employed in the enantioselective addition to aldehydes by using a titanium(IV) catalyst derived from a H(8)-binaphthol derivative in the presence of [Ti(OiPr)(4)] and MgBr(2). A range of functionalities, including olefin, chlorine atoms, protected alcohols, amides, and cyano groups, are tolerated in the present reaction, providing the corresponding functionalized alcohols in high yields and enantioselectivities (see scheme). PMID:23386512

  14. Halide-bridged binuclear HX-splitting catalysts.

    PubMed

    Powers, David C; Hwang, Seung Jun; Zheng, Shao-Liang; Nocera, Daniel G

    2014-09-01

    Two-electron mixed-valence compounds promote the rearrangement of the two-electron bond photochemically. Such complexes are especially effective at managing the activation of hydrohalic acids (HX). Closed HX-splitting cycles require proton reduction to H2 and halide oxidation to X2 to be both accomplished, the latter of which is thermodynamically and kinetically demanding. Phosphazane-bridged Rh2 catalysts have been especially effective at activating HX via photogenerated ligand-bridged intermediates; such intermediates are analogues of the classical ligand-bridged intermediates proposed in binuclear elimination reactions. Herein, a new family of phosphazane-bridged Rh2 photocatalysts has been developed where the halide-bridged geometry is designed into the ground state. The targeted geometries were accessed by replacing previously used alkyl isocyanides with aryl isocyanide ligands, which provided access to families of Rh2L1 complexes. H2 evolution with Rh2 catalysts typically proceeds via two-electron photoreduction, protonation to afford Rh hydrides, and photochemical H2 evolution. Herein, we have directly observed each of these steps in stoichiometric reactions. Reactivity differences between Rh2 chloride and bromide complexes have been delineated. H2 evolution from both HCl and HBr proceeds with a halide-bridged Rh2 hydride photoresting state. The H2-evolution efficiency of the new family of halide-bridged catalysts is compared to a related catalyst in which ligand-bridged geometries are not stabilized in the molecular ground state, and the new complexes are found to more efficiently facilitate H2 evolution. PMID:25137532

  15. Engaging Alkenyl Halides with Alkylsilicates via Photoredox Dual Catalysis.

    PubMed

    Patel, Niki R; Kelly, Christopher B; Jouffroy, Matthieu; Molander, Gary A

    2016-02-19

    Single-electron transmetalation via photoredox/nickel dual catalysis provides the opportunity for the construction of Csp(3)-Csp(2) bonds through the transfer of alkyl radicals under very mild reaction conditions. A general procedure for the cross-coupling of primary and secondary (bis-catecholato)alkylsilicates with alkenyl halides is presented. The developed method allows not only alkenyl bromides and iodides but also previously underexplored alkenyl chlorides to be employed. PMID:26828317

  16. The photolysis of acetylene halides reaction with oxygen

    SciTech Connect

    Hwang, Mei-Lee; Kuo, Yu-Ping

    1996-12-31

    The photolysis of chloro- and bromo-acetylene reactions at low temperature with Hg lamp are carried out. There is no new absorption band observed after in-situ photolysis of acetylene halides in Ar matrix. With the presence of oxygen, several new bands appeared. The new peaks at 2138 and 2342 cm{sup -1} were assigned as CO and CO{sub 2}, respectively. Further work is essential for the assignment of the other new bands.

  17. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents

    PubMed Central

    Shrestha, Bijay

    2015-01-01

    Summary We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N’,N’-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields. PMID:26734088

  18. Nanostructured Silicon Photocathodes for Solar Water Splitting Patterned by the Self-Assembly of Lamellar Block Copolymers.

    PubMed

    Shen, Lang; He, Chunlin; Qiu, Jing; Lee, Sung-Min; Kalita, Abinasha; Cronin, Stephen B; Stoykovich, Mark P; Yoon, Jongseung

    2015-12-01

    We studied a type of nanostructured silicon photocathode for solar water splitting, where one-dimensionally periodic lamellar nanopatterns derived from the self-assembly of symmetric poly(styrene-block-methyl methacrylate) block copolymers were incorporated on the surface of single-crystalline silicon in configurations with and without a buried metallurgical junction. The resulting nanostructured silicon photocathodes with the characteristic lamellar morphology provided suppressed front-surface reflection and increased surface area, which collectively contributed to the enhanced photocatalytic performance in the hydrogen evolution reaction. The augmented light absorption in the nanostructured silicon directly translated to the increase of the saturation current density, while the onset potential decreased with the etching depth because of the increased levels of surface recombination. The pp(+)-silicon photocathodes, compared to the n(+)pp(+)-silicon with a buried solid-state junction, exhibited a more pronounced shift of the current density-potential curves upon the introduction of the nanostructured surface owing to the corresponding increase in the liquid/silicon junction area. Systematic studies on the morphology, optical properties, and photoelectrochemical characteristics of nanostructured silicon photocathodes, in conjunction with optical modeling based on the finite-difference time-domain method, provide quantitative description and optimal design rules of lamellar-patterned silicon photocathodes for solar water splitting. PMID:26575400

  19. Development of High Quantum Efficiency UV/Blue Photocathode Epitaxial Semiconductor Heterostructures for Scintillation and Cherenkov Radiation Detection

    NASA Technical Reports Server (NTRS)

    Leopold, Daniel J.

    2002-01-01

    The primary goal of this research project was to further extend the use of advanced heteroepitaxial-semiconductor crystal growth techniques such as molecular beam epitaxy (MBE) and to demonstrate significant gains in UV/blue photonic detection by designing and fabricating atomically-tailored heteroepitaxial GaAlN/GaInN photocathode device structures. This NASA Explorer technology research program has focused on the development of photocathodes for Cherenkov and scintillation radiation detection. Support from the program allowed us to enhance our MBE system to include a nitrogen plasma source and a magnetic bearing turbomolecular pump for delivery and removal of high purity atomic nitrogen during GaAlN/GaInN film growth. Under this program we have also designed, built and incorporated a cesium activation stage. In addition, a connected UHV chamber with photocathode transfer/positioner components as well as a hybrid phototube stage was designed and built to make in-situ quantum efficiency measurements without ever having to remove the photocathodes from UHV conditions. Thus we have constructed a system with the capability to couple atomically-tailored MBE-grown photocathode heterostructures with real high gain readout devices for single photon detection evaluation.

  20. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth.

    PubMed

    Yang, Bin; Keum, Jong; Ovchinnikova, Olga S; Belianinov, Alex; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-04-20

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films, a major unresolved question is the competition between multiple halide species (e.g., I(-), Cl(-), Br(-)) in the formation of the mixed-halide perovskite crystals. Whether Cl(-) ions are successfully incorporated into the perovskite crystal structure or, alternatively, where they are located is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br(-) or Cl(-) ions can promote crystal growth, yet reactive I(-) ions prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl(-) ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performing and cost-effective optoelectronic devices. PMID:26931634

  1. Extensive and Highly Accurate Line Lists for Hydrogen Halides

    NASA Astrophysics Data System (ADS)

    Li, G.; Bernath, P. F.; Gordon, I. E.; Rothman, L. S.; Richard, C.; Le Roy, R. J.; Coxon, J. A.; Hajigeorgiou, P.

    2011-06-01

    New dipole moment functions (DMF) for the ground X 1Σ+ electronic states of the hydrogen halides (HF, HCl, HBr, HI) have been obtained using a direct fit approach that fits the best available and appropriately weighted experimental line intensity data for individual ro-vibrational transitions. Combining the newly developed (taking into account the most recent experiments) empirical potential energy functions and the DMFs, line positions and line intensities of the hydrogen halides and their isotopologues have been calculated numerically using program LEVEL. In addition, new semi-empirical algorithms for assigning line-shape parameters for these species have been developed. Using these improvements, new line lists for hydrogen halides were created to update the HITRAN spectroscopic database. These new lists are more accurate and significantly more extensive than those included in the current version of the database (HITRAN2008). R.J. Le Roy, ``LEVEL 8.0, 2007'', University of Waterloo Chemical Physics Research Report CP-663 (2007); see http://leroy.uwaterloo.ca/programs/. L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, et al., ``The HITRAN 2008 Molecular Spectroscopic Database,'' JQSRT 110, 532-572 (2009).

  2. Lasing in robust cesium lead halide perovskite nanowires.

    PubMed

    Eaton, Samuel W; Lai, Minliang; Gibson, Natalie A; Wong, Andrew B; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R; Yang, Peidong

    2016-02-23

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic-inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry-Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm(-2) with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 10(9) excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication. PMID:26862172

  3. Methyl halide emissions from greenhouse-grown mangroves

    NASA Astrophysics Data System (ADS)

    Manley, Steven L.; Wang, Nun-Yii; Walser, Maggie L.; Cicerone, Ralph J.

    2007-01-01

    Two mangrove species, Avicennia germinans and Rhizophora mangle, were greenhouse grown for nearly 1.5 years from saplings. A single individual of each species was monitored for the emission of methyl halides from aerial tissue. During the first 240 days, salinity was incrementally increased with the addition of seawater, and was maintained between 18 and 28‰ for the duration of the study. Exponential growth occurred after 180 days. Methyl halide emissions normalized to leaf area were measured throughout the study and varied dramatically. Emission rates normalized to land area (mg m-2 y-1), assuming a LAI = 5, yielded 82 and 29 for CH3Cl, 10 and 1.6 for CH3Br, and 26 and 11 for CH3I, for A. germinans and R. mangle, respectively. From these preliminary determinations, only CH3I emissions emerge as being of possible global atmospheric significance. This study emphasizes the need for field studies of methyl halide emissions from mangrove forests.

  4. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete (II) expansion and microstructure of concrete microbar

    SciTech Connect

    Lu Duyou . E-mail: duyoulu@njut.edu.cn; Mei Laibao; Xu Zhongzi; Tang Mingshu; Mo Xiangyin; Fournier, Benoit

    2006-06-15

    The effect of the type of alkalis on the expansion behavior of concrete microbars containing typical aggregate with alkali-silica reactivity and alkali-carbonate reactivity was studied. The results verified that: (1) at the same molar concentration, sodium has the strongest contribution to expansion due to both ASR and ACR, followed by potassium and lithium; (2) sufficient LiOH can completely suppress expansion due to ASR whereas it can induce expansion due to ACR. It is possible to use the duplex effect of LiOH on ASR and ACR to clarify the ACR contribution when ASR and ACR may coexist. It has been shown that a small amount of dolomite in the fine-grained siliceous Spratt limestone, which has always been used as a reference aggregate for high alkali-silica reactivity, might dedolomitize in alkaline environment and contribute to the expansion. That is to say, Spratt limestone may exhibit both alkali-silica and alkali-carbonate reactivity, although alkali-silica reactivity is predominant. Microstructural study suggested that the mechanism in which lithium controls ASR expansion is mainly due to the favorable formation of lithium-containing less-expansive product around aggregate particles and the protection of the reactive aggregate from further attack by alkalis by the lithium-containing product layer.

  5. Method for producing hydrocarbon fuels from heavy polynuclear hydrocarbons by use of molten metal halide catalyst

    DOEpatents

    Gorin, Everett

    1979-01-01

    In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst, thereafter separating at least a substantial portion of the carbonaceous material associated with the reaction mixture from the spent molten metal halide and thereafter regenerating the metal halide catalyst, an improvement comprising contacting the spent molten metal halide catalyst after removal of a major portion of the carbonaceous material therefrom with an additional quantity of hydrogen is disclosed.

  6. Systematic analysis of the unique band gap modulation of mixed halide perovskites.

    PubMed

    Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha

    2016-02-01

    Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition. PMID:26791587

  7. Method for the safe disposal of alkali metal

    DOEpatents

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  8. A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell

    PubMed Central

    Bourgeteau, Tiphaine; Tondelier, Denis; Geffroy, Bernard; Brisse, Romain; Laberty-Robert, Christel; Campidelli, Stéphane; de Bettignies, Rémi; Artero, Vincent; Palacin, Serge; Jousselme, Bruno

    2013-01-01

    An organic solar cell based on a poly-3-hexylthiophene (P3HT): phenyl-C61-butyric acid (PCBM) bulk hetero-junction was directly coupled with molybdenum sulfide resulting in the design of a new type of photocathode for the production of hydrogen. Both the light-harvesting system and the catalyst were deposited by low-cost solution-processed methods, i.e. spin coating and spray coating respectively. Spray-coated MoS3 films are catalytically active in strongly acidic aqueous solutions with the best efficiencies for thicknesses of 40 to 90 nm. The photocathodes display photocurrents higher than reference samples, without catalyst or without coupling with a solar cell. Analysis by gas chromatography confirms the light-induced hydrogen evolution. The addition of titanium dioxide in the MoS3 film enhances electron transport and collection within thick films and therefore the performance of the photocathode. PMID:24404434

  9. Resolution characteristics of graded doping and graded composition reflection-mode AlGaAs/GaAs photocathodes

    NASA Astrophysics Data System (ADS)

    Deng, Wenjuan; Zhang, Daoli; Zou, Jijun; Peng, Xincun; Wang, Weilu; Zhang, Yijun; Chang, Benkang

    2015-11-01

    The resolution model of graded doping and graded composition reflection-mode AlGaAs/GaAs photocathode is solved numerically from the two-dimensional continuity equations. According to the model, the theoretical modulation transfer functions (MTFs) of different structure reflection-mode photocathodes were calculated, and the effects of doping concentration, Al composition, AlGaAs and GaAs layer thickness on the resolution of cathodes were analyzed. The simulation results show that both graded composition and graded doping structures can increase the resolution of photocathode, and the effect of graded composition structure is more pronounced. The resolution improvement is attributed to the built-in electric field induced by a graded composition or doping structure. The simulation results also show that the MTFs of cathodes are affected by the AlGaAs and GaAs layer thickness.

  10. Solar Hydrogen Production by Amorphous Silicon Photocathodes Coated with a Magnetron Sputter Deposited Mo2C Catalyst.

    PubMed

    Morales-Guio, Carlos G; Thorwarth, Kerstin; Niesen, Bjoern; Liardet, Laurent; Patscheider, Jörg; Ballif, Christophe; Hu, Xile

    2015-06-10

    Coupling of Earth-abundant hydrogen evolution catalysts to photoabsorbers is crucial for the production of hydrogen fuel using sunlight. In this work, we demonstrate the use of magnetron sputtering to deposit Mo2C as an efficient hydrogen evolution reaction catalyst onto surface-protected amorphous silicon (a-Si) photoabsorbers. The a-Si/Mo2C photocathode evolves hydrogen under simulated solar illumination in strongly acidic and alkaline electrolytes. Onsets of photocurrents are observed at potentials as positive as 0.85 V vs RHE. Under AM 1.5G (1 sun) illumination, the photocathodes reach current densities of -11.2 mA cm(-2) at the reversible hydrogen potential in 0.1 M H2SO4 and 1.0 M KOH. The high photovoltage and low-cost of the Mo2C/a-Si assembly make it a promising photocathode for solar hydrogen production. PMID:26005904

  11. Evaluation of the amperex 56 TVP photomultiplier. [characteristics: photoelectron time spread, anode pulse amplitude and photocathode sensing area

    NASA Technical Reports Server (NTRS)

    Lo, C. C.; Leskovar, B.

    1976-01-01

    Characteristics were measured for the Amperex 56 TVP 42 mm-diameter photomultiplier. Some typical photomultiplier characteristics-such as gain, dark current, transit and rise times-are compared with data provided. Photomultiplier characteristics generally not available such as the single photoelectron time spread, the relative collection efficiency, the relative anode pulse amplitude as a function of the voltage between the photocathode and focusing electrode, and the position of the photocathode sensing area were measured and are discussed for two 56 TVP's. The single photoelectron time spread, the relative collection efficiency, and the transit time difference as a function of the voltage between photocathode and focusing electrode were also measured and are discussed, particularly with respect to the optimization of photomultiplier operating conditions for timing applications.

  12. Formation of cesium peroxide and cesium superoxide on InP photocathode activated by cesium and oxygen

    SciTech Connect

    Sun Yun; Liu Zhi; Pianetta, Piero; Lee, Dong-Ick

    2007-10-01

    Activation of p-type III-V semiconductors with cesium and oxygen has been widely used to prepare negative electron affinity (NEA) photocathodes. However, the nature of the chemical species on the surface after the activation is not well understood. In this study, InP NEA photocathodes activated with cesium and oxygen are studied using synchrotron radiation photoelectron spectroscopy, also called photoemission. Based on the O 1s core level as well as the valence band spectra, Cs peroxide and Cs superoxide are identified on the InP surface. Transformation from Cs peroxide to Cs superoxide is observed after the activation, and is probably the major reason for the decay of the quantum yield of the photocathode. The oxidation of the InP substrate is also observed with elapse of time, adding to the decay of the quantum yield.

  13. Determination of the common and rare alkalies in mineral analysis

    USGS Publications Warehouse

    Wells, R.C.; Stevens, R.E.

    1934-01-01

    Methods are described which afford a determination of each member of the alkali group and are successful in dealing with the quantities of the rare alkalies found in rocks and minerals. The procedures are relatively rapid and based chiefly on the use of chloroplatinic acid, absolute alcohol and ether, and ammonium sulfate. The percentages of all the alkalies found in a number of minerals are given.

  14. Environmental mercury contamination around a chlor-alkali plant

    SciTech Connect

    Lodenius, M.; Tulisalo, E.

    1984-04-01

    The chlor-alkali industry is one of the most important emitters of mercury. This metal is effectively spread from chlor-alkali plants into the atmosphere and it has been reported that only a few percent of the mercury emissions are deposited locally the major part spreading over very large areas. The purpose of this investigation was to study the spreading of mercury up to 100 km from a chlor-alkali plant using three different biological indicators.

  15. A polarized photoluminescence study of strained layer GaAs photocathodes

    SciTech Connect

    Mair, R.A.

    1996-07-01

    Photoluminescence measurements have been made on a set of epitaxially grown strained GaAs photocathode structures. The photocathodes are designed to exhibit a strain-induced enhancement of the electron spin polarization obtainable by optical pumping with circularly polarized radiation of near band gap energy. For the case of non-strained GaAs, the degree of spin polarization is limited to 50% by crystal symmetry. Under an appropriate uniaxial compression or tension, however, the valence band structure near the gap minimum is modified such that a spin polarization of 100% is theoretically possible. A total of nine samples with biaxial compressive strains ranging from zero to {approximately}0.8% are studied. X-ray diffraction analysis, utilizing Bragg reflections, is used to determine the crystal lattice structure of the samples. Luminescence spectra and luminescence circular polarization data are obtained at room temperature, {approx}78 K and {approx}12 K. The degree of luminescence circular polarization is used as a relative measure of the photo-excited electron spin polarization. The room temperature luminescence circular polarization data is compared with the measured electron spin polarization when the samples are used as electron photo-emitters with a negative electron affinity surface preparation. The luminescence data is also analyzed in conjunction with the crystal structure data with the goal of understanding the strain dependent valence band structure, optical pumping characteristics and spin depolarization mechanisms of the photocathode structures. A simple model is used to describe the luminescence data, obtained for the set of samples. Within the assumptions of the model, the deformation potentials a, b and d for GaAs are determined. The measured values are a = -10.16{+-}.21 eV, b = -2.00{+-}.05 eV and d = -4.87{+-}.29 eV. Good agreement with published values of the deformation potentials provides support for the model used to describe the data.

  16. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  17. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  18. Slice emittance measurement for photocathode RF gun with solenoid scanning and RF deflecting cavity

    NASA Astrophysics Data System (ADS)

    Li, Chen; Huang, WenHui; Du, YingChao; Yan, LiXin; Tang, ChuanXiang

    2011-12-01

    The radiation of high-gain short-wavelength free-electron laser depends on the slice transverse emittance of the electron bunch. This essay introduces the method of slice emittance measurement, and shows the brief setup of this experiment using the solenoid scanning and RF deflecting cavity at Tsinghua University. The preliminary experimental results show that the slice rms emittance of the electron bunch generated by photocathode RF gun has considerable variations along the bunch and is typically less than 0.55 mm mrad for the laser rms radius of 0.4 mm.

  19. Photoemission and optical constant measurements of a Cesium Iodide thin film photocathode

    NASA Astrophysics Data System (ADS)

    Triloki; Rai, R.; Gupta, Nikita; Jammal, Nabeel F. A.; Singh, B. K.

    2015-07-01

    The performance of cesium iodide as a reflective photocathode is presented. The absolute quantum efficiency of a 500 nm thick film of cesium iodide has been measured in the wavelength range 150 nm-200 nm. The optical absorbance has been analyzed in the wavelength range 190 nm-900 nm and the optical band gap energy has been calculated. The dispersion properties were determined from the refractive index using an envelope plot of the transmittance data. The morphological and elemental film composition have been investigated by atomic force microscopy and X-ray photo-electron spectroscopy techniques.

  20. Effect of nanoscale surface roughness on transverse energy spread from GaAs photocathodes

    NASA Astrophysics Data System (ADS)

    Karkare, Siddharth; Bazarov, Ivan

    2011-02-01

    High quantum yield, low transverse energy spread, and prompt response time make GaAs activated to negative electron affinity an ideal candidate for a photocathode in high brightness photoinjectors. Even after decades of investigation, the exact mechanism of electron emission from GaAs is not well understood. We show that a nanoscale surface roughness can affect the transverse electron spread from GaAs by nearly an order of magnitude and explain the seemingly controversial experimental results obtained so far. This model can also explain the measured dependence of transverse energy spread on the wavelength of incident light.