Science.gov

Sample records for alkali halide photocathodes

  1. Fabrication of alkali halide UV photocathodes by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Brendel', V. M.; Bukin, V. V.; Garnov, Sergei V.; Bagdasarov, V. Kh; Denisov, N. N.; Garanin, Sergey G.; Terekhin, V. A.; Trutnev, Yurii A.

    2012-12-01

    A technique has been proposed for the fabrication of atmospheric corrosion resistant alkali halide UV photocathodes by pulsed laser deposition. We produced photocathodes with a highly homogeneous photoemissive layer well-adherent to the substrate. The photocathodes were mounted in a vacuum photodiode, and a tungsten grid was used as an anode. Using pulsed UV lasers, we carried out experiments aimed at evaluating the quantum efficiency of the photocathodes. With a dc voltage applied between the photocathode and anode grid, we measured a shunt signal proportional to the total charge emitted by the cathode exposed to UV laser light. The proposed deposition technique enables one to produce photocathodes with photoemissive layers highly uniform in quantum efficiency, which is its main advantage over thin film growth by resistive evaporation.

  2. Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Everman, E.; Vallerga, J. V.; Lampton, M.

    1988-01-01

    Comprehensive measurements are presented for the quantum detection efficiency (QDE) of the microchannel plate materials CsI, KBr, KCl, and MgF2, over the 44-1800 A wavelength range. QDEs in excess of 40 percent are achieved by several materials in specific wavelength regions of the EUV. Structure is noted in the wavelength dependence of the QDE that is directly related to the valence-band/conduction-band gap energy and the onset of atomic-like resonant transitions. A simple photocathode model allows interpretation of these features, together with the QDE efficiency variation, as a function of illumination angle.

  3. Ageing of alkali halide windows

    SciTech Connect

    Kennedy, M.; Trung, D.H.; Meyer, F.

    1995-12-31

    The environmental effect on the ageing behaviour of NaCl and KCl windows was studied. Laser windows were aged at different relative humidities in a controlled climate-chamber. Degradation is monitored with a microscope inspection system equipped with a computer controlled image processing board. The temporal development of surface defect density under different atmospheric conditions was investigated with respect to optical absorption and damage thresholds of the windows at 10.6 {mu}m. Laser windows coated with single layers of NaF deposited by an adapted IAD-technique were analysed. The performance of the coated and uncoated laser windows is discussed under consideration of typical applications. In comparison to the bare samples, the coated windows show an improved resistivity against environmental influences. Accelerated testing theory is employed to model the ageing behaviour of the samples. An approach to deduce a qualified acceleration factor is made in order to extrapolate the lifetime of alkali halide laser windows under normal conditions.

  4. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  5. Alkali Halide Nanotubes: Structure and Stability

    PubMed Central

    Fernandez-Lima, Francisco A.; Henkes, Aline Verônica; da Silveira, Enio F.; Nascimento, Marco Antonio Chaer

    2013-01-01

    Accurate density functional theory (DFT) and coupled-cluster (CCSD) calculations on a series of (LiF)n=2,36 neutral clusters suggest that nanotube structures with hexagonal and octagonal transversal cross sections show stability equal to or greater than that of the typical cubic form of large LiF crystals. The nanotube stability was further corroborated by quantum dynamic calculations at room temperature. The fact that stable nanotube structures were also found for other alkali halides (e.g., NaCl and KBr) suggests that this geometry may be widely implemented in material sciences. PMID:24376901

  6. Enhanced Quantum Efficiency From Hybrid Cesium Halide/Copper Photocathode

    SciTech Connect

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Gong, Yu; Hess, Wayne P.

    2014-04-28

    The quantum efficiency of Cu is found to increase dramatically when coated by a CsI film and then irradiated by a UV laser. Over three orders of magnitude quantum efficiency enhancement at 266 nm is observed in CsI/Cu(100), indicating potential application in future photocathode devices. Upon laser irradiation, a large work function reduction to a value less than 2 eV is also observed, significantly greater than for similarly treated CsBr/Cu(100). The initial QE enhancement, prior to laser irradiation, is attributed to interface interaction, surface cleanliness and the intrinsic properties of the Cs halide film. Further QE enhancement following activation is attributed to formation of inter-band states and Cs metal accumulation at the interface induced by laser irradiation.

  7. Enhanced quantum efficiency from hybrid cesium halide/copper photocathodes

    SciTech Connect

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Gong, Yu; Hess, Wayne P.

    2014-04-28

    The quantum efficiency (QE) of Cu is found to increase dramatically when coated by a CsI film and then irradiated by a UV laser. Over three orders of magnitude quantum efficiency enhancement at 266?nm is observed in CsI/Cu(100), indicating potential application in future photocathode devices. Upon laser irradiation, a large work function reduction to a value less than 2?eV is also observed, significantly greater than for similarly treated CsBr/Cu(100). The initial QE enhancement, prior to laser irradiation, is attributed to interface interaction and the intrinsic properties of the Cs halide film. Further QE enhancement following activation is attributed to formation of inter-band states and Cs metal accumulation at the interface induced by laser irradiation.

  8. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    SciTech Connect

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-12-08

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10{sup 25}/m{sup 3}. The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics.

  9. Photocathode transfer and storage techniques using alkali vapor feedback control

    SciTech Connect

    Springer, R.W.; Cameron, B.J.

    1991-12-20

    Photocathodes of quantum efficiency above 1% at the doubled YAG frequency of 532 nM are very sensitive to the local vacuum environment. These cathodes must have a band gap of less than 2.3 eV, and a work function that is also on the order of {approximately}2 volts or less. As such, these surfaces are very reactive as they provide many surface states for the residual gases that have positive electron affinities such as oxygen and omnipotent water. Attendant to this problem is that the optimal operating point for some of these cesium based cathodes is unstable. Three of the cesium series were tried, the Cs-Ag-Bi-O, the Cs{sub 3}Sb and the K{sub 2}CsSb. The most stable material found is the K{sub 2}CsSb. The vacuum conditions can be met by a variety of pumping schemes. The vacuum is achieved by using sputter ion diode pumps, and baking at 250{degrees}C or less for whatever time is required to reduce the pump currents to below 1 uA at room temperature. To obtain the required partial pressure of cesium, a simple very sensitive diagnostic gauge has been developed that can discriminate between free alkali and other gases present. This Pressure Alkali Monitor (PAM) can be used cesium sources to provide a low partial pressure using standard feedback techniques. Photocathodes of arbitrary composition have been transferred to a separate vacuum system and preserved for over 10 days with less than a 25% loss to the QE at 543.5 nM.

  10. Volcanic Origin of Alkali Halides on Io

    NASA Technical Reports Server (NTRS)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  11. Electronic excitation in bulk and nanocrystalline alkali halides

    NASA Astrophysics Data System (ADS)

    Bichoutskaia, Elena; Pyper, Nicholas C.

    2012-11-01

    The lowest energy excitations in bulk alkali halides are investigated by considering five different excited state descriptions. It is concluded that excitation transfers one outermost halide electron in the fully ionic ground state to the lowest energy vacant s orbital of one closest cation neighbour to produce the excited state termed dipolar. The excitation energies of seven salts were computed using shell model description of the lattice polarization produced by the effective dipole moment of the excited state neutral halogen-neutral metal pair. Ab initio uncorrelated short-range inter-ionic interactions computed from anion wavefunctions adapted to the in-crystal environment were augmented by short-range electron correlation contributions derived from uniform electron-gas density functional theory. Dispersive attractions including wavefunction overlap damping were introduced using reliable semi-empirical dispersion coefficients. The good agreement between the predicted excitation energies and experiment provides strong evidence that the excited state is dipolar. In alkali halide nanocrystals in which each ionic plane contains only four ions, the Madelung energies are significantly reduced compared with the bulk. This predicts that the corresponding intra-crystal excitation energies in the nanocrystals, where there are two excited states depending on whether the halide electron is transferred to a cation in the same or in the neighbouring plane, will be reduced by almost 2 eV. For such an encapsulated KI crystal, it has been shown that the greater polarization in the excited state of the bulk crystal causes these reductions to be lowered to a 1.1 eV-1.5 eV range for the case of charge transfer to a neighbouring plane. For intra-plane charge transfer the magnitude of the polarization energy is further reduced thus causing the excitation in these encapsulated materials to be only 0.2 eV less than in the bulk crystal.

  12. A new polarizable force field for alkali and halide ions

    SciTech Connect

    Kiss, Péter T.; Baranyai, András

    2014-09-21

    We developed transferable potentials for alkali and halide ions which are consistent with our recent model of water [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. Following the approach used for the water potential, we applied Gaussian charge distributions, exponential repulsion, and r{sup ?6} attraction. One of the two charges of the ions is fixed to the center of the particle, while the other is connected to this charge by a harmonic spring to express polarization. Polarizability is taken from quantum chemical calculations. The repulsion between different species is expressed by the combining rule of Kong [J. Chem. Phys. 59, 2464 (1972)]. Our primary target was the hydration free energy of ions which is correct within the error of calculations. We calculated water-ion clusters up to 6 water molecules, and, as a crosscheck, we determined the density and internal energy of alkali-halide crystals at ambient conditions with acceptable accuracy. The structure of hydrated ions was also discussed.

  13. Investigating Metallization in Shock-Compressed Alkali Halides

    NASA Astrophysics Data System (ADS)

    Diamond, Matthew

    2015-06-01

    Laser-shock compression on four alkali halides has been used to probe the transition from insulating to metallic states, a high-pressure transition in chemical bonding that has fundamental implications for planetary formation and structure. Collectively, pressures up to 450 GPa were explored across a total of fourteen single-crystal samples of CsI, CsBr, KBr and NaCl. Velocity interferometry was used to record shock velocities and reflectivities at 532 nm during decaying shock compression. The data show up to three-fold increases in density as well as significant increases in optical reflectivity in response to high pressures and temperatures. Ionic salts are simple model systems amenable to first-principles theory and serve as analog materials for predicting whether specific chemical constituents can reside in the rocky mantles or metallic cores of planets. A key objective is to disentangle the complementary roles of temperature and compression in transforming ionic into metallic bonding. Furthermore, at high pressures CsI becomes analogous to Xe: they are isoelectronic and follow matching equations of state. Therefore, studies on CsI can inform understanding of noble-gas geochemistry at conditions deep inside planets.

  14. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).

  15. The influence of oxygen defect states on the surface charge of alkali halides

    SciTech Connect

    Veeramasuneni, S.; Yalamanchili, M.R.; Miller, J.D.

    1996-09-01

    The sign of the surface charge for alkali halides in their saturated brines has been established from nonequilibrium electrophoresis measurements, and on this basis the flotation response of alkali halides was explained based on the adsorption of oppositely charged collector colloids by heterocoagulation. These surface charge results for alkali halides are generally as expected from simplified lattice ion hydration theory with some exceptions, specifically LiF, KCl, NaCl, KBr, RbBr, KI, and RbI. The presence of natural oxygen defect states in the crystal lattice and the inaccuracies involved in the gaseous ion hydration free energy values used appear, in the past, to be responsible for these deviations. The presence of natural oxygen defect states in KCl, KBr, RbBr, and RbI, as characterized by UV/Vis absorption, was found to account for their anomalous surface charge. Further, other positively charged alkali halides, LiF, NaCl, and KI, were found to be free of oxygen defect states. Nevertheless, oxygen defects can be created in these alkali halides to make them negatively charged, and this has been demonstrated for NaCl. Such negatively charged NaCl can be readily floated with positively charged amine collector colloids, thus confirming the surface charge/collector colloid adsorption theory.

  16. Model of self-trapped excitons in alkali halides

    NASA Astrophysics Data System (ADS)

    Puchin, V. E.; Shluger, A. L.; Tanimura, K.; Itoh, N.

    1993-03-01

    We have carried out an ab initio many-electron variational calculation of the adiabatic potential-energy surface (APES) for the lowest triplet state of the self-trapped exciton (STE) in LiCl, NaCl, and KCl. Calculations of the H center in these crystals show that the <111> orientation is favored, in agreement with experimental results for NaCl but not for KCl, in which it is oriented along a <110> direction (no measurement exists for LiCl), and hence most detailed calculations for STE's are carried out for NaCl. It is found that the APES minimum for each crystal occurs when the Cl-2 molecular ion is displaced along its molecular axis from its symmetrical position (D2h) nearly halfway to the nearest halogen lattice point. The calculated transition energies for the optical absorption and luminescence at this configuration agree with the experimental values for the triplet STE, although the calculated stretching vibration frequency of the Cl-2 molecular ion in NaCl is much smaller than that for the H center, contradictory to recent resonant Raman studies. Other minima are found at the nearest F-H pair configuration, in which the Cl-2 molecular ion is reoriented by 90° from the initial orientation and next-nearest F-H pair. Extremely small luminescence energy at these configurations excludes the possibility that they are the candidates for the luminescent state of the STE. It is found that, after the displacement of the Cl-2 molecular ion beyond the first minimum of the APES towards the nearest F-H pair configuration, the total energy is lowered by reorientation, inducing an anomaly on the APES. The results of a recent experimental investigation, including existence of several types of relaxed configuration of the STE in alkali halides, the stretching vibration frequency, and the femtosecond oscillation on APES, are discussed on the basis of the results of the calculation.

  17. Direct observation of bi-alkali antimonide photocathodes growth via in operando x-ray diffraction studies

    NASA Astrophysics Data System (ADS)

    Ruiz-Osés, M.; Schubert, S.; Attenkofer, K.; Ben-Zvi, I.; Liang, X.; Muller, E.; Padmore, H.; Rao, T.; Vecchione, T.; Wong, J.; Xie, J.; Smedley, J.

    2014-12-01

    Alkali antimonides have a long history as visible-light-sensitive photocathodes. This work focuses on the process of fabrication of the bi-alkali photocathodes, K2CsSb. In-situ synchrotron x-ray diffraction and photoresponse measurements were used to monitor phase evolution during sequential photocathode growth mode on Si(100) substrates. The amorphous-to-crystalline transition for the initial antimony layer was observed at a film thickness of 40 Å . The antimony crystalline structure dissolved upon potassium deposition, eventually recrystallizing upon further deposition into K-Sb crystalline modifications. This transition, as well as the conversion of potassium antimonide to K2CsSb upon cesium deposition, is correlated with changes in the quantum efficiency.

  18. Direct observation of bi-alkali antimonide photocathodes growth via in operando x-ray diffraction studies

    SciTech Connect

    Ruiz-Osés, M.; Ben-Zvi, I.; Liang, X.; Muller, E.; Schubert, S.; Attenkofer, K.; Rao, T.; Smedley, J.; Padmore, H.; Vecchione, T.; Wong, J.; Xie, J.

    2014-12-01

    Alkali antimonides have a long history as visible-light-sensitive photocathodes. This work focuses on the process of fabrication of the bi-alkali photocathodes, K{sub 2}CsSb. In-situ synchrotron x-ray diffraction and photoresponse measurements were used to monitor phase evolution during sequential photocathode growth mode on Si(100) substrates. The amorphous-to-crystalline transition for the initial antimony layer was observed at a film thickness of 40 Å . The antimony crystalline structure dissolved upon potassium deposition, eventually recrystallizing upon further deposition into K-Sb crystalline modifications. This transition, as well as the conversion of potassium antimonide to K{sub 2}CsSb upon cesium deposition, is correlated with changes in the quantum efficiency.

  19. Spectroscopic behavior of halogen photodesorption from alkali halides under UV and VUV excitation

    E-print Network

    Zbigniew, Postawa

    Spectroscopic behavior of halogen photodesorption from alkali halides under UV and VUV excitation N halogen atoms from KI, KBr, and RbI at several tempera- tures has been measured in the photon energy range material. The behavior of the halogen desorption yield is analyzed in the frame of inelastic electron

  20. Ordering of alkali halide salts dissolved in bacteriophage Pf1 solutions: A nuclear magnetic resonance study

    E-print Network

    Augustine, Mathew P.

    Ordering of alkali halide salts dissolved in bacteriophage Pf1 solutions: A nuclear magnetic into filamentous bacteriophage Pf1 solutions display line splittings and shifts consistent with an interaction phospholipid bicelles1 and filamen- tous virus2 and bacteriophage3 particles partially restores an- isotropic

  1. ``Textbook'' Adsorption at ``Nontextbook'' Adsorption Sites: Halogen Atoms on Alkali Halide Surfaces

    E-print Network

    Alavi, Ali

    ``Textbook'' Adsorption at ``Nontextbook'' Adsorption Sites: Halogen Atoms on Alkali Halide adsorption mode is stabilized by the formation of textbook two-center three- electron covalent bonds or even metal-oxide substrates. Thus, one of the simplest questions one could ask concerning adsorption

  2. Study of bi-alkali photocathode growth on glass by X-ray techniques for fast timing response photomultipliers

    NASA Astrophysics Data System (ADS)

    Xie, Junqi; Demarteau, Marcel; Wagner, Robert; Ruiz-Oses, Miguel; Liang, Xue; Ben-Zvi, Ilan; Attenkofer, Klaus; Schubert, Susanne; Smedley, John; Wong, Jared; Padmore, Howard; Woll, Arthur

    2014-03-01

    Bi-alkali antimonide photocathode is an essential component in fast timing response photomultipliers. Real-time in-situ grazing incidence x-ray diffraction and post-growth x-ray reflectivity measurement were performed to study the photocathode deposition process on glass substrate. Grazing incidence x-ray diffraction patterns show the formation of Sb crystalline, dissolution of crystalline phase Sb by the application of K vapor and reformation of refined crystal textures. XRR result exhibits that the film thickness increases ~ 4.5 times after K diffusion and almost have no change after Cs diffusion. Further investigation is expected to understand the photocathode growth process and provide guidelines for photocathode development.

  3. Alkali Metal Photocathodes Claire Stortstrom, Patrick O'Shea, Eric J. Montgomery, Noah SennettClaire Stortstrom, Patrick O Shea, Eric J. Montgomery, Noah Sennett

    E-print Network

    Anlage, Steven

    Alkali Metal Photocathodes Claire Stortstrom, Patrick O'Shea, Eric J. Montgomery, Noah SennettClaire Stortstrom, Patrick O Shea, Eric J. Montgomery, Noah Sennett Motivation To produce high powered electron

  4. Reactions between cold methyl halide molecules and alkali-metal atoms

    SciTech Connect

    Lutz, Jesse J.; Hutson, Jeremy M.

    2014-01-07

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH{sub 3}X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH{sub 3}X + A ? CH{sub 3} + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  5. Scattering of alkali atoms and ions from alkali-halide surfaces: No evidence found for electronic surface states within the band gap of the insulator

    SciTech Connect

    Mertens, A.; Auth, C.; Winter, H.; Borisov, A.G.

    1997-02-01

    Fast alkali atoms and ions are scattered with keV energies under grazing incidence from the surface of the alkali halides LiF(100), KCl(100), KI(100), and the scattered beams are analyzed with respect to their charge fractions. From our experiments we find no evidence for occupied or unoccupied electronic surface states within the band gap of the insulator. {copyright} {ital 1997} {ital The American Physical Society}

  6. Alkali Halide Interfacial Behavior in a Sequence of Charged Slit Pores

    SciTech Connect

    Wander, Matthew C; Shuford, Kevin L

    2011-01-01

    In this paper, a variety of alkali halide, aqueous electrolyte solutions in contact with charged, planar-graphite slit-pores are simulated using classical molecular dynamics. Size trends in structure and transport properties are examined by varying the choice of ions among the alkali metal and halide series. As with the uncharged pores, system dynamics are driven by changes in water hydration behavior and specifically by variations in the number of hydrogen bonds per water molecule. Overall, the larger ions diffuse more rapidly under high surface charge conditions than the smaller ions. In particular, for the 1 nmslit, ion diffusivity increased by a factor of 4 compared to the uncharged case. Finally, a quantitative fit to the interfacial charge structure is presented, which confirms the presence of two distinct types of layers in an aqueous interface. This model indicates that the chemistry of the interface is able to create a small interfacial potential, and it shows how water molecules can rotate to increase charge separation in response to a surface potential.

  7. Molecular dispersion energy parameters for alkali and halide ions in aqueous solution

    SciTech Connect

    Reiser, S.; Deublein, S.; Hasse, H.; Vrabec, J.

    2014-01-28

    Thermodynamic properties of aqueous solutions containing alkali and halide ions are determined by molecular simulation. The following ions are studied: Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cs{sup +}, F{sup ?}, Cl{sup ?}, Br{sup ?}, and I{sup ?}. The employed ion force fields consist of one Lennard-Jones (LJ) site and one concentric point charge with a magnitude of ±1 e. The SPC/E model is used for water. The LJ size parameter of the ion models is taken from Deublein et al. [J. Chem. Phys. 136, 084501 (2012)], while the LJ energy parameter is determined in the present study based on experimental self-diffusion coefficient data of the alkali cations and the halide anions in aqueous solutions as well as the position of the first maximum of the radial distribution function of water around the ions. On the basis of these force field parameters, the electric conductivity, the hydration dynamics of water molecules around the ions, and the enthalpy of hydration is predicted. Considering a wide range of salinity, this study is conducted at temperatures of 293.15 and 298.15 K and a pressure of 1 bar.

  8. MULTI-ALKALI PHOTOCATHODE DEVELOPMENT AT BROOKHAVEN NATIONAL LAB FOR APPLICATION IN SUPERCONDUCTING PHOTOINJECTORS. KICKERS.

    SciTech Connect

    BURRILL, A.; BEN-ZVI, I.; RAO, T.; PATE, D.; SEGALOV, Z.

    2005-05-16

    The development of a suitable photocathode for use in a high average current photoinjector at temperatures ranging from 273 K down to 2 K is a subject of considerable interest, and active research. The choice of photocathode material is often a trade-off made based on the quantum efficiency of the cathode material, the tolerance to adverse vacuum conditions, and the laser wavelength needed to produce photoelectrons. In this paper an overview of the BNL work to date on CsK{sub 2}Sb photocathodes on a variety of substrates, irradiated at multiple wavelengths, and at temperatures down to 170 K will be discussed. The application of this photocathode material into a SRF photoinjector will also be discussed.

  9. Multi-Alkali Photocathode Development at Brookhaven National Lab for Application in Superconducting Photoinjectors

    SciTech Connect

    Burrill, A.; Ben-Zvi, I.; Pate, D.; Rao, T.; Segalov, Z.; Dowell, D.; /SLAC

    2006-02-15

    The development of a suitable photocathode for use in a high average current photoinjector at temperatures ranging from 273 K down to 2 K is a subject of considerable interest, and active research. The choice of photocathode material is often a trade-off made based on the quantum efficiency of the cathode material, the tolerance to adverse vacuum conditions, and the laser wavelength needed to produce photoelectrons. In this paper an overview of the BNL work to date on CsK{sub 2}Sb photocathodes on a variety of substrates, irradiated at multiple wavelengths, and at temperatures down to 170 K will be discussed. The application of this photocathode material into a SRF photoinjector will also be discussed.

  10. Molecular Simulation of Aqueous Electrolyte Solubility. 3. Alkali-Halide Salts and Their Mixtures in Water and in Hydrochloric Acid

    E-print Network

    Lisal, Martin

    and for calculating their chemical potentials as functions of concentration to cases involving electrolyte hydrates of the solubility of electrolyte hydrates and to the mutual solubility of salts with a common ion, includingMolecular Simulation of Aqueous Electrolyte Solubility. 3. Alkali- Halide Salts and Their Mixtures

  11. Physics and nanofriction of alkali halide solid surfaces at the melting point

    NASA Astrophysics Data System (ADS)

    Zykova-Timan, T.; Ceresoli, D.; Tartaglino, U.; Tosatti, E.

    2006-09-01

    Alkali halide (1 0 0) surfaces are anomalously poorly wetted by their own melt at the triple point. We carried out simulations for NaCl(1 0 0) within a simple (BMHFT) model potential. Calculations of the solid-vapor, solid-liquid and liquid-vapor free energies showed that solid NaCl(1 0 0) is a nonmelting surface, and that the incomplete wetting can be traced to the conspiracy of three factors: surface anharmonicities stabilizing the solid surface; a large density jump causing bad liquid-solid adhesion; incipient NaCl molecular correlations destabilizing the liquid surface, reducing in particular its entropy much below that of solid NaCl(1 0 0). Presently, we are making use of the nonmelting properties of this surface to conduct case study simulations of hard tips sliding on a hot stable crystal surface. Preliminary results reveal novel phenomena whose applicability is likely of greater generality.

  12. Ion Segregation and Deliquescence of Alkali Halide Nanocrystals on SiO2

    SciTech Connect

    Arima, Kenta; Jiang, Peng; Lin, Deng-Sung; Verdaguer, Albert; Salmeron, Miquel

    2009-08-11

    The adsorption of water on alkali halide (KBr, KCl, KF, NaCl) nanocrystals on SiO{sub 2} and their deliquescence was investigated as a function of relative humidity (RH) from 8% to near saturation by scanning polarization force microscopy. At low humidity, water adsorption solvates ions at the surface of the crystals and increases their mobility. This results in a large increase in the dielectric constant, which is manifested in an increase in the electrostatic force and in an increase in the apparent height of the nanocrystals. Above 58% RH, the diffusion of ions leads to Ostwald ripening, where larger nanocrystals grow at the expense of the smaller ones. At the deliquescence point, droplets were formed. For KBr, KCl, and NaCl, the droplets exhibit a negative surface potential relative to the surrounding region, which is indicative of the preferential segregation of anions to the air/solution interface.

  13. Silicon Halide-alkali Metal Flames as a Source of Solar Grade Silicon

    NASA Technical Reports Server (NTRS)

    Olson, D. B.; Gould, R. K.

    1979-01-01

    A program is presented which was aimed at determining the feasibility of using high temperature reactions of alkali metals and silicon halides to produce low cost solar-grade silicon. Experiments are being conducted to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, and determine the effects of the reactants and/or products on materials of reactor construction. During the current reporting period, the results of heat release experiments were used to design and construct a new type of thick-wall graphite reactor to produce larger quantities of silicon. A reactor test facility was constructed. Material compatibility tests were performed for Na in contact with graphite and several coated graphites. All samples were rapidly degraded at T = 1200K, while samples retained structural strength at 1700K. Pyrolytic graphite coatings cracked and separated from substances in all cases.

  14. Studies of non-proportionality in alkali halide and strontium iodide scintillators using SLYNCI

    SciTech Connect

    Ahle, Larry; Bizarri, Gregory; Boatner, Lynn; Cherepy, Nerine J.; Choong, Woon-Seng; Moses, William W.; Payne, Stephen A.; Shah, Kanai; Sheets, Steven; Sturm, Benjamin, W.

    2010-10-14

    Recently a collaboration of LLNL and LBNL has constructed a second generation Compton coincidence instrument to study the non-proportionality of scintillators. This device, known as SLYNCI (Scintillator Light-Yield Non-proportionality Characterization Instrument), has can completely characterize a sample with less than 24 hours of running time. Thus, SLYNCI enables a number of systematic studies of scintillators since many samples can be processed in a reasonable length of time. These studies include differences in nonproportionality between different types of scintillators, different members of the same family of scintillators, and impact of different doping levels. The results of such recent studies are presented here, including a study of various alkali halides, and the impact of europium doping level in strontium iodide. Directions of future work area also discussed.

  15. Studies of Non-Proportionality in Alkali Halide and Strontium Iodide Scintillators Using SLYNCI

    SciTech Connect

    Ahle, L; Bizarri, G; Boatner, L; Cherepy, N J; Choong, W; Moses, W W; Payne, S A; Shah, K; Sheets, S; Sturm, B W

    2009-05-05

    Recently a collaboration of LLNL and LBNL has constructed a second generation Compton coincidence instrument to study the non-proportionality of scintillators [1-3]. This device, known as SLYNCI (Scintillator Light-Yield Non-proportionality Characterization Instrument), has can completely characterize a sample with less than 24 hours of running time. Thus, SLYNCI enables a number of systematic studies of scintillators since many samples can be processed in a reasonable length of time. These studies include differences in nonproportionality between different types of scintillators, different members of the same family of scintillators, and impact of different doping levels. The results of such recent studies are presented here, including a study of various alkali halides, and the impact of europium doping level in strontium iodide. Directions of future work area also discussed.

  16. Optical properties of ? hole centres in alkali halides: I. Investigation with optical detection of paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Rogulis, U.; Spaeth, J.-M.; Cabria, I.; Moreno, M.; Aramburu, J. A.; Barriuso, M. T.

    1998-07-01

    The spectra of the magnetic circular dichroism of the absorption (MCDA) and of optically detected electron paramagnetic resonance (ODEPR) of 0953-8984/10/29/007/img9 hole centres have been investigated in a number of alkali halides. Several new absorption bands were found using excitation spectra of the 0953-8984/10/29/007/img9 ODEPR lines. The number of the MCDA transitions of 0953-8984/10/29/007/img9 in the bromides and especially in the iodides is larger than predicted by the molecular orbital picture discussed so far in the literature. An explanation will be given in part II by Cabria et al on the basis of 0953-8984/10/29/007/img12 calculations including the spin-orbit effects of the ligands.

  17. Ab initio perspective on the Mollwo-Ivey relation for F centers in alkali halides

    NASA Astrophysics Data System (ADS)

    Tiwald, Paul; Karsai, Ferenc; Laskowski, Robert; Gräfe, Stefanie; Blaha, Peter; Burgdörfer, Joachim; Wirtz, Ludger

    2015-10-01

    We revisit the well-known Mollwo-Ivey relation that describes the "universal" dependence of the absorption energies of F-type color centers on the lattice constant a of alkali-halide crystals, Eabs?a-n. We perform both state-of-the-art ab initio quantum chemistry and post-DFT calculations of F-center absorption spectra. By "tuning" independently the lattice constant and the atomic species we show that the scaling with the lattice constant alone (keeping the elements fixed) would yield n =2 in agreement with the "particle-in-the-box" model. Keeping the lattice constant fixed and changing the atomic species enables us to quantify the ion-size effects which are shown to be responsible for the exponent n ?1.8 .

  18. Quantum Efficiency Enhancement in CsI/Metal Photocathodes

    SciTech Connect

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Hess, Wayne P.

    2015-02-01

    High quantum efficiency enhancement is found for hybrid metal-insulator photocathodes consisting of thin films of CsI deposited on Cu(100), Ag(100), Au(111) and Au films irradiated by 266 nm laser pulses. Low work functions (near or below 2 eV) are observed following ultraviolet laser activation. Work functions are reduced by roughly 3 eV from that of clean metal surfaces. We discuss various mechanisms of quantum efficiency enhancement for alkali halide/metal photocathode systems and conclude that the large change in work function, due to Cs accumulation of Cs metal at the metal-alkali halide interface, is the dominant mechanism for quantum efficiency enhancement

  19. Silicon halide-alkali metal flames as a source of solar grade silicon

    NASA Technical Reports Server (NTRS)

    Olsen, D. B.; Miller, W. J.

    1979-01-01

    The feasibility of using alkali metal-silicon halide diffusion flames to produce solar-grade silicon in large quantities and at low cost is demonstrated. Prior work shows that these flames are stable and that relatively high purity silicon can be produced using Na + SiCl4 flames. Silicon of similar purity is obtained from Na + SiF4 flames although yields are lower and product separation and collection are less thermochemically favored. Continuous separation of silicon from the byproduct alkali salt was demonstrated in a heated graphite reactor. The process was scaled up to reduce heat losses and to produce larger samples of silicon. Reagent delivery systems, scaled by a factor of 25, were built and operated at a production rate of 0.5 kg Si/h. Very rapid reactor heating rates are observed with wall temperatures reaching greater than 2000 K. Heat release parameters were measured using a cooled stainless steel reactor tube. A new reactor was designed.

  20. EUREM 12, Brno, Czech Republic, July 9-14, 2000 P 259 HRTEM studies of alkali halides incorporated into single walled carbon

    E-print Network

    Dunin-Borkowski, Rafal E.

    the imaging properties of the halide by varying the respective constituent anions and cations [3]. 2. When alkali halides with heavier cations and lighter anions where imaged iside SWNTs (e.g. Cs or Rb chlorides), then the contribution from the heavier cation lattices was found to dominate the lattice images

  1. Reverse osmosis transport of alkali halides and nickel salts through cellulose triacetate membranes. Performance prediction from NaCl experiments

    SciTech Connect

    Nirmal, J.D.; Pandya, V.P.; Desai, N.V.; Rangarajan, R. )

    1992-10-01

    The separation of alkali metal halides, nickel chloride, and nickel sulfate was determined for cellulose triacetate reverse osmosis (CTA RO) membranes. From transport analysis, the relative free energy parameters for transport of these salts through CTA membranes were determined. From these relative free energy parameters of salts, the solute separation by CTA membranes could be predicted from RO experiment with NaCl solution. The transport analysis and an illustration of how the concept is useful are presented in this paper.

  2. Silicon halide-alkali metal flames as a source of solar grade silicon

    NASA Technical Reports Server (NTRS)

    Olson, D. B.; Miller, W. J.; Gould, R. K.

    1980-01-01

    The feasibility of using continuous high-temperature reactions of alkali metals and silicon halides to produce silicon in large quantities and of suitable purity for use in the production of photovoltaic solar cells was demonstrated. Low pressure experiments were performed demonstrating the production of free silicon and providing experience with the construction of reactant vapor generators. Further experiments at higher reagent flow rates were performed in a low temperature flow tube configuration with co-axial injection of reagents and relatively pure silicon was produced. A high temperature graphite flow tube was built and continuous separation of Si from NaCl was demonstrated. A larger scaled well stirred reactor was built. Experiments were performed to investigate the compatability of graphite based reactor materials of construction with sodium. At 1100 to 1200 K none of these materials were found to be suitable. At 1700 K the graphites performed well with little damage except to coatings of pyrolytic graphite and silicon carbide which were damaged.

  3. Stable geometries of the self-trapped exciton in alkali halide crystals

    NASA Astrophysics Data System (ADS)

    Song, K. S.; Baetzold, R. C.; Kong, F.

    1994-06-01

    According to recent works, the self-trapped excitons (STE) in alkali halides are grouped in three different types. In some (e.g. RbI), a population transfer is observed among coexisting types as temperature is raised. In others (NaBr and NaI) extra type emission bands have been observed under dilational strain. We studied the adiabatic potential energy surface (APES) of the STE under the effect of expanded or compressed lattices, and of rotation of the Vk core in several directions, based on both extended-ion and ab initio Hartree-Fock methods. A critical study of the zero field splitting parameter D of the spin Hamiltonian is made in assessing the effect of rotation. It is shown that: (a) the potential barrier separating the adjacent local minima on the APES becomes smaller as the lattice is dilated; (b) the APES associated with rotation of the halogen molecule-ion axis from [110] toward [001], upto about 30°, is flat; Rotations in other directions are stiff, however; (c) the observed anomaly of the D parameter in NaCl is compatible with the rotation described in (b) above. The geometries of the three types are discussed on the basis of this study.

  4. Alkali halide solutions under thermal gradients: soret coefficients and heat transfer mechanisms.

    PubMed

    Römer, Frank; Wang, Zilin; Wiegand, Simone; Bresme, Fernando

    2013-07-11

    We report an extensive analysis of the non-equilibrium response of alkali halide aqueous solutions (Na(+)/K(+)-Cl(-)) to thermal gradients using state of the art non-equilibrium molecular dynamics simulations and thermal diffusion forced Rayleigh scattering experiments. The coupling between the thermal gradient and the resulting ionic salt mass flux is quantified through the Soret coefficient. We find the Soret coefficient is of the order of 10(-3) K(-1) for a wide range of concentrations. These relatively simple solutions feature a very rich behavior. The Soret coefficient decreases with concentration at high temperatures (higher than T ? 315 K), whereas it increases at lower temperatures. In agreement with previous experiments, we find evidence for sign inversion in the Soret coefficient of NaCl and KCl solutions. We use an atomistic non-equilibrium molecular dynamics approach to compute the Soret coefficients in a wide range of conditions and to attain further microscopic insight on the heat transport mechanism and the behavior of the Soret coefficient in aqueous solutions. The models employed in this work reproduce the magnitude of the Soret coefficient, and the general dependence of this coefficient with temperature and salt concentration. We use the computer simulations as a microscopic approach to establish a correlation between the sign and magnitude of the Soret coefficients and ionic solvation and hydrogen bond structure of the solutions. Finally, we report an analysis of heat transport in ionic solution by quantifying the solution thermal conductivity as a function of concentration. The simulations accurately reproduce the decrease of the thermal conductivity with increasing salt concentration that is observed in experiments. An explanation of this behavior is provided. PMID:23758489

  5. Simple electrolyte solutions: Comparison of DRISM and molecular dynamics results for alkali halide solutions

    PubMed Central

    Joung, In Suk; Luchko, Tyler; Case, David A.

    2013-01-01

    Using the dielectrically consistent reference interaction site model (DRISM) of molecular solvation, we have calculated structural and thermodynamic information of alkali-halide salts in aqueous solution, as a function of salt concentration. The impact of varying the closure relation used with DRISM is investigated using the partial series expansion of order-n (PSE-n) family of closures, which includes the commonly used hypernetted-chain equation (HNC) and Kovalenko-Hirata closures. Results are compared to explicit molecular dynamics (MD) simulations, using the same force fields, and to experiment. The mean activity coefficients of ions predicted by DRISM agree well with experimental values at concentrations below 0.5 m, especially when using the HNC closure. As individual ion activities (and the corresponding solvation free energies) are not known from experiment, only DRISM and MD results are directly compared and found to have reasonably good agreement. The activity of water directly estimated from DRISM is nearly consistent with values derived from the DRISM ion activities and the Gibbs-Duhem equation, but the changes in the computed pressure as a function of salt concentration dominate these comparisons. Good agreement with experiment is obtained if these pressure changes are ignored. Radial distribution functions of NaCl solution at three concentrations were compared between DRISM and MD simulations. DRISM shows comparable water distribution around the cation, but water structures around the anion deviate from the MD results; this may also be related to the high pressure of the system. Despite some problems, DRISM-PSE-n is an effective tool for investigating thermodynamic properties of simple electrolytes. PMID:23387564

  6. Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions

    NASA Astrophysics Data System (ADS)

    Mao, Albert H.; Pappu, Rohit V.

    2012-08-01

    Accurate models of alkali and halide ions in aqueous solution are necessary for computer simulations of a broad variety of systems. Previous efforts to develop ion force fields have generally focused on reproducing experimental measurements of aqueous solution properties such as hydration free energies and ion-water distribution functions. This dependency limits transferability of the resulting parameters because of the variety and known limitations of water models. We present a solvent-independent approach to calibrating ion parameters based exclusively on crystal lattice properties. Our procedure relies on minimization of lattice sums to calculate lattice energies and interionic distances instead of equilibrium ensemble simulations of dense fluids. The gain in computational efficiency enables simultaneous optimization of all parameters for Li+, Na+, K+, Rb+, Cs+, F-, Cl-, Br-, and I- subject to constraints that enforce consistency with periodic table trends. We demonstrate the method by presenting lattice-derived parameters for the primitive model and the Lennard-Jones model with Lorentz-Berthelot mixing rules. The resulting parameters successfully reproduce the lattice properties used to derive them and are free from the influence of any water model. To assess the transferability of the Lennard-Jones parameters to aqueous systems, we used them to estimate hydration free energies and found that the results were in quantitative agreement with experimentally measured values. These lattice-derived parameters are applicable in simulations where coupling of ion parameters to a particular solvent model is undesirable. The simplicity and low computational demands of the calibration procedure make it suitable for parametrization of crystallizable ions in a variety of force fields.

  7. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations

    SciTech Connect

    Webster, R. Harrison, N. M.; Bernasconi, L.

    2015-06-07

    We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional c{sub HF} and show that there exists one value of c{sub HF} (?0.32) that reproduces at least semi-quantitatively the optical gap of this material.

  8. Low-Energy Grazing Ion-Scattering from Alkali-Halide Surfaces: A Novel Approach to C-14 Detection

    SciTech Connect

    Meyer, Fred W; Galutschek, Ernst; Hotchkis, Michael

    2009-01-01

    Carbon-14 labeled compounds are widely used in the pharmaceutical industry, e.g., as tracers to determine the fate of these compounds in vivo. Conventional accelerator mass spectrometry (AMS) is one approach that offers sufficiently high sensitivity to avoid radiological waste and contamination issues in such studies, but requires large, expensive facilities that are usually not solely dedicated to this task. At the ORNL Multicharged Ion Research Facility (MIRF) we are exploring a small size, low cost alternative to AMS for biomedical 14C tracer studies that utilizes ECR-ion-source-generated keV-energy-range multicharged C beams grazingly incident on an alkali halide target, where efficient negative ion production by multiple electron capture takes place. By using C ion charge states of +3 or higher, the molecular isobar interference at mass 14, e.g. 12CH2 and 13CH, is eliminated. The negatively charged ions in the beam scattered from the alkali halide surface are separated from other scattered charge states by two large acceptance ({approx}15 msr) stages of electrostatic analysis. The N-14 isobar interference is thus removed, since N does not support a stable negative ion. Initial results for C-14 detection obtained using C-14 enriched CO2 from ANSTO will be described.

  9. Development of processes for the production of solar grade silicon from halides and alkali metals, phase 1 and phase 2

    NASA Technical Reports Server (NTRS)

    Dickson, C. R.; Gould, R. K.; Felder, W.

    1981-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.

  10. Boosting the photocurrent density of p-type solar cells based on organometal halide perovskite-sensitized mesoporous NiO photocathodes.

    PubMed

    Wang, Huan; Zeng, Xianwei; Huang, Zhanfeng; Zhang, Wenjun; Qiao, Xianfeng; Hu, Bin; Zou, Xiaoping; Wang, Mingkui; Cheng, Yi-Bing; Chen, Wei

    2014-08-13

    The p-n tandem design of a sensitized solar cell is a novel concept holding the potential to overcome the efficiency limitation of conventional single-junction sensitized solar cells. Significant improvement of the photocurrent density (Jsc) of the p-type half-cell is a prerequisite for the realization of a highly efficient p-n tandem cell in the future. This study has demonstrated effective photocathodes based on novel organometal halide perovskite-sensitized mesoporous NiO in liquid-electrolyte-based p-type solar cells. An acceptably high Jsc up to 9.47 mA cm(-2) and efficiency up to 0.71% have been achieved on the basis of the CH3NH3PbI3/NiO solar cell at 100 mW cm(-2) light intensity, which are significantly higher than those of any previously reported liquid-electrolyte-based p-type solar cells based on sensitizers of organic dyes or inorganic quantum dots. The dense blocking layer made by spray pyrolysis of nickel acetylacetonate holds the key to determining the current flow direction of the solar cells. High hole injection efficiency at the perovskite/NiO interface and high hole collection efficiency through the mesoporous NiO network have been proved by time-resolved photoluminescence and transient photocurrent/photovoltage decay measurements. The limitation of these p-type solar cells primarily rests with the adverse light absorption by the NiO mesoporous film; the secondary limitation arises from the highly viscous ethyl acetate-based electrolyte, which is helpful for the solar cell stability but hinders fluent diffusion into the pore channels, giving rise to a nonlinear dependence of Jsc on the light intensity. PMID:24972278

  11. Lattice model calculation of elastic and thermodynamic properties at high pressure and temperature. [for alkali halides in NaCl lattice

    NASA Technical Reports Server (NTRS)

    Demarest, H. H., Jr.

    1972-01-01

    The elastic constants and the entire frequency spectrum were calculated up to high pressure for the alkali halides in the NaCl lattice, based on an assumed functional form of the inter-atomic potential. The quasiharmonic approximation is used to calculate the vibrational contribution to the pressure and the elastic constants at arbitrary temperature. By explicitly accounting for the effect of thermal and zero point motion, the adjustable parameters in the potential are determined to a high degree of accuracy from the elastic constants and their pressure derivatives measured at zero pressure. The calculated Gruneisen parameter, the elastic constants and their pressure derivatives are in good agreement with experimental results up to about 600 K. The model predicts that for some alkali halides the Grunesen parameter may decrease monotonically with pressure, while for others it may increase with pressure, after an initial decrease.

  12. An Investigation of Ion-Pairing of Alkali Metal Halides in Aqueous Solutions Using the Electrical Conductivity and the Monte Carlo Computer Simulation Methods

    PubMed Central

    Gujt, Jure; Bešter-Roga?, Marija; Hribar-Lee, Barbara

    2013-01-01

    The ion pairing is, in very dilute aqueous solutions, of rather small importance for solutions’ properties, which renders its precise quantification quite a laborious task. Here we studied the ion pairing of alkali halides in water by using the precise electric conductivity measurements in dilute solutions, and in a wide temperature range. The low-concentration chemical model was used to analyze the results, and to estimate the association constant of different alkali halide salts. It has been shown that the association constant is related to the solubility of salts in water and produces a ’volcano relationship’, when plotted against the difference between the free energy of hydration of the corresponding individual ions. The computer simulation, using the simple MB+dipole water model, were used to interprete the results, to find a microscopic basis for Collins’ law of matching water affinities. PMID:24526801

  13. Ca-Fe and Alkali-Halide Alteration of an Allende Type B CAI: Aqueous Alteration in Nebular or Asteroidal Settings

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Simon, J. I.; Simon, S. B.; Grossman, L.

    2012-01-01

    Ca-Fe and alkali-halide alteration of CAIs is often attributed to aqueous alteration by fluids circulating on asteroidal parent bodies after the various chondritic components have been assembled, although debate continues about the roles of asteroidal vs. nebular modification processes [1-7]. Here we report de-tailed observations of alteration products in a large Type B2 CAI, TS4 from Allende, one of the oxidized subgroup of CV3s, and propose a speculative model for aqueous alteration of CAIs in a nebular setting. Ca-Fe alteration in this CAI consists predominantly of end-member hedenbergite, end-member andradite, and compositionally variable, magnesian high-Ca pyroxene. These phases are strongly concentrated in an unusual "nodule" enclosed within the interior of the CAI (Fig. 1). The Ca, Fe-rich nodule superficially resembles a clast that pre-dated and was engulfed by the CAI, but closer inspection shows that relic spinel grains are enclosed in the nodule, and corroded CAI primary phases interfinger with the Fe-rich phases at the nodule s margins. This CAI also contains abundant sodalite and nepheline (alkali-halide) alteration that occurs around the rims of the CAI, but also penetrates more deeply into the CAI. The two types of alteration (Ca-Fe and alkali-halide) are adjacent, and very fine-grained Fe-rich phases are associated with sodalite-rich regions. Both types of alteration appear to be replacive; if that is true, it would require substantial introduction of Fe, and transport of elements (Ti, Al and Mg) out of the nodule, and introduction of Na and Cl into alkali-halide rich zones. Parts of the CAI have been extensively metasomatized.

  14. EPR study of electron bombarded alkali- and alkaline-earth halide crystal surfaces

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Lad, R. A.

    1975-01-01

    An EPR study of electron bombarded LiF, NaCl, KCl, CaF2 and BaF2 polycrystalline surfaces has shown that small metal particles are formed on the surfaces of the crystals. Identification was made from CESR signals. The symmetric line-shape of the signals, even at 77 K, indicated that the particles were less than 0.5 micron in diameter. Signals due to F centers were observed in LiF but not in the other halides. Implications to metal deposition are considered.

  15. Universal scaling of potential energy functions describing intermolecular interactions. II. The halide-water and alkali metal-water interactions

    SciTech Connect

    Werhahn, Jasper C.; Akase, Dai; Xantheas, Sotiris S.

    2014-08-14

    The scaled forms of the newly introduced generalized potential energy functions (PEFs) describing intermolecular interactions [J. Chem. Phys. xx, yyyyy (2011)] have been used to fit the ab-initio minimum energy paths (MEPs) for the halide- and alkali metal-water systems X-(H2O), X=F, Cl, Br, I, and M+(H2O), M=Li, Na, K, Rb, Cs. These generalized forms produce fits to the ab-initio data that are between one and two orders of magnitude better in the ?2 than the original forms of the PEFs. They were found to describe both the long-range, minimum and repulsive wall of the potential energy surface quite well. Overall the 4-parameter extended Morse (eM) and generalized Buckingham exponential-6 (gB-e6) potentials were found to best fit the ab-initio data. Furthermore, a single set of parameters of the reduced form was found to describe all candidates within each class of interactions. The fact that in reduced coordinates a whole class of interactions can be represented by a single PEF, yields the simple relationship between the molecular parameters associated with energy (well depth, ?), structure (equilibrium distance, rm) and spectroscopy (anharmonic frequency, ?):€? = A? (? /?)1/ 2 /rm + B?? /rm 3 , where A and B are constants depending on the underlying PEF. This more general case of Badger’s rule has been validated using the experimentally measured frequencies of the hydrogen bonded OH stretching vibrations in the halide-water series.

  16. N ,N'-dimethylperylene-3,4,9,10-bis(dicarboximide) on alkali halide (001) surfaces

    NASA Astrophysics Data System (ADS)

    Fendrich, Markus; Lange, Manfred; Weiss, Christian; Kunstmann, Tobias; Möller, Rolf

    2009-05-01

    The growth of N ,N'-dimethylperylene-3,4,9,10-bis(dicarboximide) (DiMe-PTCDI) on KBr(001) and NaCl(001) surfaces has been studied. Experimental results have been achieved using frequency modulation atomic force microscopy at room temperature under ultrahigh vacuum conditions. On both substrates, DiMe-PTCDI forms molecular wires with a width of 10nm, typically, and a length of up to 600nm at low coverages. All wires grow along either the [110] direction (or [11¯0] direction, respectively) of the alkali halide (001) substrates. There is no wetting layer of molecules: atomic resolution of the substrates can be achieved between the wires. The wires are mobile on KBr but substantially more stable on NaCl. A p(2×2) superstructure in a brickwall arrangement on the ionic crystal surfaces is proposed based on electrostatic considerations. Calculations and Monte Carlo simulations using empirical potentials reveal possible growth mechanisms for molecules within the first layer for both substrates, also showing a significantly higher binding energy for NaCl(001). For KBr, the p(2×2) superstructure is confirmed by the simulations; for NaCl, a less dense, incommensurate superstructure is predicted.

  17. Interaction of wide band gap single crystals with 248 nm excimer laser radiation. XII. The emission of negative atomic ions from alkali halides

    SciTech Connect

    Kimura, Kenichi; Langford, S. C.; Dickinson, J. T.

    2007-12-01

    Many wide band gap materials yield charged and neutral emissions when exposed to sub-band-gap laser radiation at power densities below the threshold for optical breakdown and plume formation. In this work, we report the observation of negative alkali ions from several alkali halides under comparable conditions. We observe no evidence for negative halogen ions, in spite of the high electron affinities of the halogens. Significantly, the positive and negative alkali ions show a high degree of spatial and temporal overlap. A detailed study of all the relevant particle emissions from potassium chloride (KCl) suggests that K{sup -} is formed by the sequential attachment of two electrons to K{sup +}.

  18. Thermal diffusivity of alkali and silver halide crystals as a function of temperature

    NASA Astrophysics Data System (ADS)

    Yu, Xueyang; Hofmeister, Anne M.

    2011-02-01

    The phonon component of thermal diffusivity (D) for ten synthetic single-crystals (LiF, NaCl, NaI, NaI:Tl, KCl, KBr, CsI, CsI:Tl, AgCl, and AgBr) with the B1 and B2 structures was measured from ambient temperature (T) up to ˜1093 K using contact-free, laser-flash analysis, from which effects of ballistic radiative transfer were removed. We investigated optical flats from different manufacturers as well as pellets made from compressed powders of most of the above chemical compositions plus LiI, NaBr, KI, RbCl, RbBr, RbI, CsCl, CsBr, and AgI. Impurities were characterized using various spectroscopic methods. With increasing T ,D decreases such that near melting the derivatives ?D/?T are low, -0.0006±0.0004 mm2 s-1 K-1. Our results are ˜16% lower than D298 previously obtained with contact methods, which are elevated by ballistic radiative transfer for these infrared (IR) windows, and are well described by either D-1 following a low order polynomial in T, or by D-1?T+n, where n ranges from 1.0294 to 1.9429. Inverse correlations were found between D298 and both density and thermal expansivity (?). Primitive lattice constant times compressional velocity correlates directly with D but changes much more slowly with temperature. Instead, D(T ) is proportional to (T?L)-1 from ˜0 K up to the limit of measurements, in accord with these physical properties being anharmonic. On average, the damped harmonic oscillator-phonon gas model reproduces D298 based on two physical properties: compressional velocity and the damping coefficient (? ) from analysis of IR reflectivity data. Given large uncertainties in ?(T ), D-1(T) is reproduced for LiF, NaCl, MgO, and the silver halides, for which IR reflectivity data are available. Our correlations show that optical phonons largely govern heat transport of insulators, and permit prediction of D and thus thermal conductivity for simple, diatomic solids.

  19. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mester, Zoltan; Panagiotopoulos, Athanassios Z.

    2015-07-01

    The mean ionic activity coefficients of aqueous KCl, NaF, NaI, and NaCl solutions of varying concentrations have been obtained from molecular dynamics simulations following a recently developed methodology based on gradual insertions of salt molecules [Z. Mester and A. Z. Panagiotopoulos, J. Chem. Phys. 142, 044507 (2015)]. The non-polarizable ion models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)], Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)], Reiser et al. [J. Chem. Phys. 140, 044504 (2014)], and Joung and Cheatham [J. Phys. Chem. B 112, 9020 (2008)] were used along with the extended simple point charge (SPC/E) water model [Berendsen et al., J. Phys. Chem. 91, 6269 (1987)] in the simulations. In addition to the chemical potentials in solution used to obtain the activity coefficients, we also calculated the chemical potentials of salt crystals and used them to obtain the solubility of these alkali halide models in SPC/E water. The models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)] and Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)] provide excellent predictions of the mean ionic activity coefficients at 298.15 K and 1 bar, but significantly underpredict or overpredict the solubilities. The other two models generally predicted the mean ionic activity coefficients only qualitatively. With the exception of NaF for which the solubility is significantly overpredicted, the model of Joung and Cheatham predicts salt solubilities that are approximately 40%-60% of the experimental values. The models of Reiser et al. [J. Chem. Phys. 140, 044504 (2014)] make good predictions for the NaCl and NaI solubilities, but significantly underpredict the solubilities for KCl and NaF. We also tested the transferability of the models to temperatures much higher than were used to parametrize them by performing simulations for NaCl at 373.15 K and 1 bar, and at 473.15 K and 15.5 bar. All models overpredict the drop in the values of mean ionic activity coefficients with increased temperature seen in experiments. The present results, together with earlier calculations for a number of models for NaCl aqueous solutions at 298.15 K, point to the strong need for development of improved intermolecular potential models for classical simulations of electrolyte solutions.

  20. Photocathode aging in MCP PMT

    NASA Astrophysics Data System (ADS)

    Barnyakov, M. Yu; Mironov, A. V.

    2011-12-01

    We study aging of alkali-antimonide photocathodes in the microchannel plate photomultiplier tubes (MCP PMT) manufactured in Novosibirsk by ``Ekran FEP'' company. Such PMTs are used in the particle identification systems of KEDR, SND and CMD-3 experiments carried out at e+e- colliders VEPP-4M and VEPP-2000 in the Budker Institute of Nuclear Physics. The quantum efficiency (QE) degradation of a PMT equipped with MCP Chevron has been measured at different photon counting rates from 4?107 to 6?1010 s-1cm-2. It is found that the QE decrease is proportional to the charge extracted from the MCP nearest to the photocathode rather than to the output charge. The comparison of different types of alkali-antimonide photocathodes has shown that the treatment of photocathode with vapors of cesium and antimony can dramatically reduce the photocathode aging rate. The photocathode lifetime of the best MCP PMT sample has been measured at the photon counting rate of 107 cm-2s-1 and the initial gain of 106. The peak quantum efficiency degraded by 20% after accumulation of 3.3 C/cm2 anode charge.

  1. Lithium-selective phosphine oxide-based ditopic receptors show enhanced halide binding upon alkali metal ion coordination†

    PubMed Central

    Gavette, Jesse V.; Lara, Juven; Reling, Linda L.; Haley, Michael M.; Johnson, Darren W.

    2012-01-01

    Previous work on a ditopic receptor based on a tripodal phosphine oxide core demonstrated preferential enhancement of bromide binding over chloride or iodide in the presence of lithium cation. Current studies on an elongated receptor provide evidence that preferential bromide binding enhancement in the presence of lithium cation is common to this receptor class in general, and that lengthening of the receptor results in an overall increase in halide association. Furthermore, the extended receptor shows a strong preference for Li+ binding in solution. PMID:23505609

  2. Band-structure calculations of noble-gas and alkali halide solids using accurate Kohn-Sham potentials with self-interaction correction

    SciTech Connect

    Li, Y.; Krieger, J.B. ); Norman, M.R. ); Iafrate, G.J. )

    1991-11-15

    The optimized-effective-potential (OEP) method and a method developed recently by Krieger, Li, and Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-correlation energy functional. The resulting band gaps from both calculations are found to be in fair agreement with the experimental values. The discrepancies are typically within a few percent with results that are nearly the same as those of previously published orbital-dependent multipotential SIC calculations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD---and it is believed to be the case even for the exact Kohn-Sham potential---both the OEP and KLI predict valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields essentially the same results as the OEP.

  3. Characterization of an Alkali- and Halide-Resistant Laccase Expressed in E. coli: CotA from Bacillus clausii

    PubMed Central

    Brander, Søren; Mikkelsen, Jørn D.; Kepp, Kasper P.

    2014-01-01

    The limitations of fungal laccases at higher pH and salt concentrations have intensified the search for new extremophilic bacterial laccases. We report the cloning, expression, and characterization of the bacterial cotA from Bacillus clausii, a supposed alkalophilic ortholog of cotA from B. subtilis. Both laccases were expressed in E. coli strain BL21(DE3) and characterized fully in parallel for strict benchmarking. We report activity on ABTS, SGZ, DMP, caffeic acid, promazine, phenyl hydrazine, tannic acid, and bilirubin at variable pH. Whereas ABTS, promazine, and phenyl hydrazine activities vs. pH were similar, the activity of B. clausii cotA was shifted upwards by ?0.5–2 pH units for the simple phenolic substrates DMP, SGZ, and caffeic acid. This shift is not due to substrate affinity (KM) but to pH dependence of catalytic turnover: The kcat of B. clausii cotA was 1 s?1 at pH 6 and 5 s?1 at pH 8 in contrast to 6 s?1 at pH 6 and 2 s?1 at pH 8 for of B. subtilis cotA. Overall, kcat/KM was 10-fold higher for B. subtilis cotA at pHopt. While both proteins were heat activated, activation increased with pH and was larger in cotA from B. clausii. NaCl inhibited activity at acidic pH, but not up to 500–700 mM NaCl in alkaline pH, a further advantage of the alkali regime in laccase applications. The B. clausii cotA had ?20 minutes half-life at 80°C, less than the ?50 minutes at 80°C for cotA from B. subtilis. While cotA from B. subtilis had optimal stability at pH?8, the cotA from B. clausii displayed higher combined salt- and alkali-resistance. This resistance is possibly caused by two substitutions (S427Q and V110E) that could repel anions to reduce anion-copper interactions at the expense of catalytic proficiency, a trade-off of potential relevance to laccase optimization. PMID:24915287

  4. Characterization of an alkali- and halide-resistant laccase expressed in E. coli: CotA from Bacillus clausii.

    PubMed

    Brander, Søren; Mikkelsen, Jørn D; Kepp, Kasper P

    2014-01-01

    The limitations of fungal laccases at higher pH and salt concentrations have intensified the search for new extremophilic bacterial laccases. We report the cloning, expression, and characterization of the bacterial cotA from Bacillus clausii, a supposed alkalophilic ortholog of cotA from B. subtilis. Both laccases were expressed in E. coli strain BL21(DE3) and characterized fully in parallel for strict benchmarking. We report activity on ABTS, SGZ, DMP, caffeic acid, promazine, phenyl hydrazine, tannic acid, and bilirubin at variable pH. Whereas ABTS, promazine, and phenyl hydrazine activities vs. pH were similar, the activity of B. clausii cotA was shifted upwards by ~0.5-2 pH units for the simple phenolic substrates DMP, SGZ, and caffeic acid. This shift is not due to substrate affinity (K(M)) but to pH dependence of catalytic turnover: The k(cat) of B. clausii cotA was 1 s?¹ at pH 6 and 5 s?¹ at pH 8 in contrast to 6 s?¹ at pH 6 and 2 s?¹ at pH 8 for of B. subtilis cotA. Overall, k(cat)/K(M) was 10-fold higher for B. subtilis cotA at pH(opt). While both proteins were heat activated, activation increased with pH and was larger in cotA from B. clausii. NaCl inhibited activity at acidic pH, but not up to 500-700 mM NaCl in alkaline pH, a further advantage of the alkali regime in laccase applications. The B. clausii cotA had ~20 minutes half-life at 80°C, less than the ~50 minutes at 80°C for cotA from B. subtilis. While cotA from B. subtilis had optimal stability at pH~8, the cotA from B. clausii displayed higher combined salt- and alkali-resistance. This resistance is possibly caused by two substitutions (S427Q and V110E) that could repel anions to reduce anion-copper interactions at the expense of catalytic proficiency, a trade-off of potential relevance to laccase optimization. PMID:24915287

  5. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    NASA Astrophysics Data System (ADS)

    Mamun, M. A.; Hernandez-Garcia, C.; Poelker, M.; Elmustafa, A. A.

    2015-06-01

    CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  6. Electrolytic systems and methods for making metal halides and refining metals

    DOEpatents

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  7. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    SciTech Connect

    Mulhollan, Gregory; /SLAC /Saxed Surface Science, Austin, TX

    2010-08-25

    We have developed an activation procedure by which the reactivity to CO{sub 2}, a principal cause of yield decay for GaAs photocathodes, is greatly reduced. The use of a second alkali in the activation process is responsible for the increased immunity of the activated surface. The best immunity was obtained by using a combination of Cs and Li without any loss in near bandgap yield. Optimally activated photocathodes have nearly equal quantities of both alkalis.

  8. A Masked Photocathode in Photoinjector

    SciTech Connect

    Qiang, Ji

    2010-12-14

    In this paper, we propose a masked photocathode inside the photoinjector for generating high brightness election beam. Instead of mounting the photocathode onto an electrode, an electrode with small hole is used as a mask to shield the photocathode from the accelerating vacuum chamber. Using such a masked photocathode will make the replacement of photocathode material easy by rotating the photocathode behind the electrode into the hole. Furthermore, this helps reduce the dark current or secondary electron emission from the photocathode material. The masked photocathode also provides transverse cut-off to a Gaussian laser beam that reduces electron beam emittance growth from nonlinear space-charge effects.

  9. Oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Rohrmann, Charles A. (Kennewick, WA); Fullam, Harold T. (Richland, WA)

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  10. Piezoelectrically Enhanced Photocathodes

    NASA Technical Reports Server (NTRS)

    Beach, Robert A.; Nikzad, Shouleh; Bell, Lloyd Douglas; Strittmatter, Robert

    2011-01-01

    Doping of photocathodes with materials that have large piezoelectric coefficients has been proposed as an alternative means of increasing the desired photoemission of electrons. Treating cathode materials to increase emission of electrons is called "activation" in the art. It has been common practice to activate photocathodes by depositing thin layers of suitable metals (usually, cesium). Because cesium is unstable in air, fabrication of cesiated photocathodes and devices that contain them must be performed in sealed tubes under vacuum. It is difficult and costly to perform fabrication processes in enclosed, evacuated spaces. The proposed piezoelectrically enhanced photocathodes would have electron-emission properties similar to those of cesiated photocathodes but would be stable in air, and therefore could be fabricated more easily and at lower cost. Candidate photocathodes include nitrides of elements in column III of the periodic table . especially compounds of the general formula Al(x)Ga(1.x)N (where 0< or = x < or =.1). These compounds have high piezoelectric coefficients and are suitable for obtaining response to ultraviolet light. Fabrication of a photocathode according to the proposal would include inducement of strain in cathode layers during growth of the layers on a substrate. The strain would be induced by exploiting structural mismatches among the various constituent materials of the cathode. Because of the piezoelectric effect in this material, the strain would give rise to strong electric fields that, in turn, would give rise to a high concentration of charge near the surface. Examples of devices in which piezoelectrically enhanced photocathodes could be used include microchannel plates, electron- bombarded charge-coupled devices, image tubes, and night-vision goggles. Piezoelectrically enhanced photocathode materials could also be used in making highly efficient monolithic photodetectors. Highly efficient and stable piezoelectrically enhanced, ultraviolet-sensitive photocathodes and photodetectors could be fabricated by use of novel techniques for growing piezoelectrically enhanced layers, in conjunction with thinning and dopant-selective etching techniques.

  11. Molecular compressibility of some halides in alcohols

    NASA Technical Reports Server (NTRS)

    Serban, C.; Auslaender, D.

    1974-01-01

    After measuring ultrasonic velocity and density, the molecular compressibility values from Wada's formula were calculated, for alkali metal halide solutions in methyl, ethyl, butyl, and glycol alcohol. The temperature and concentration dependence were studied, finding deviations due to the hydrogen bonds of the solvent.

  12. Acicular photomultiplier photocathode structure

    DOEpatents

    Craig, Richard A.; Bliss, Mary

    2003-09-30

    A method and apparatus for increasing the quantum efficiency of a photomultiplier tube by providing a photocathode with an increased surface-to-volume ratio. The photocathode includes a transparent substrate, upon one major side of which is formed one or more large aspect-ratio structures, such as needles, cones, fibers, prisms, or pyramids. The large aspect-ratio structures are at least partially composed of a photoelectron emitting material, i.e., a material that emits a photoelectron upon absorption of an optical photon. The large aspect-ratio structures may be substantially composed of the photoelectron emitting material (i.e., formed as such upon the surface of a relatively flat substrate) or be only partially composed of a photoelectron emitting material (i.e., the photoelectron emitting material is coated over large aspect-ratio structures formed from the substrate material itself.) The large aspect-ratio nature of the photocathode surface allows for an effective increase in the thickness of the photocathode relative the absorption of optical photons, thereby increasing the absorption rate of incident photons, without substantially increasing the effective thickness of the photocathode relative the escape incidence of the photoelectrons.

  13. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water

    NASA Astrophysics Data System (ADS)

    Reif, Maria M.; Hünenberger, Philippe H.

    2011-04-01

    The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Hünenberger, J. Chem. Phys. 124, 224501 (2006), 10.1529/biophysj.106.083667; M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li+, Na+, K+, Rb+, Cs+) and halide (F-, Cl-, Br-, I-) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998), 10.1021/jp982638r; Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, ? G_hyd^{ominus }[H+] = -1100, -1075 or -1050 kJ mol-1, resulting in three sets L, M, and H for the SPC water model and three sets LE, ME, and HE for the SPC/E water model (alternative sets can easily be interpolated to intermediate ? G_hyd^{ominus }[H+] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective ionic radius entering into the calculation of the correction terms is also evaluated and found to be very limited. Ultimately, it is expected that comparison with other experimental ionic properties (e.g., derivative single-ion solvation properties, as well as data concerning ionic crystals, melts, solutions at finite concentrations, or nonaqueous solutions) will permit to validate one specific set and thus, the associated ? G_hyd^{ominus }[H+] value (atomistic consistency assumption). Preliminary results (first-peak positions in the ion-water radial distribution functions, partial molar volumes of ionic salts in water, and structural properties of ionic crystals) support a value of ? G_hyd^{ominus }[H+] close to -1100 kJ.mol-1.

  14. Low-workfunction photocathodes based on acetylide compounds

    SciTech Connect

    Terdik, Joseph Z; Spentzouris, Linda; Terry, Jr., Jeffrey H; Harkay, Katherine C; Nemeth, Karoly; Srajer, George

    2014-05-20

    A low-workfunction photocathode includes a photoemissive material employed as a coating on the photocathode. The photoemissive material includes A.sub.nMC.sub.2, where A is a first metal element, the first element is an alkali metal, an alkali-earth element or the element Al; n is an integer that is 0, 1, 2, 3 or 4; M is a second metal element, the second metal element is a transition metal or a metal stand-in; and C.sub.2 is the acetylide ion C.sub.2.sup.2-. The photoemissive material includes a crystalline structure or non-crystalline structure of rod-like or curvy 1-dimensional polymeric substructures with MC.sub.2 repeating units embedded in a matrix of A.

  15. Defects induced melting in alkali halides

    NASA Astrophysics Data System (ADS)

    Chauhan, R. S.; Snehlata, K.; Singh, C. P.

    2011-02-01

    In the present paper we study the pressure dependence of melting of NaCl and CsCl crystals. A formulation has been presented for the pressure dependence of melting temperature on the basis of the vacancy model using the expression for the pressure dependence of the volume of Schottky defects from the Roy-Roy equation of state. Values of pressure derivatives of melting temperature have been calculated at elevated pressures to determine the rate of change of melting temperature with increase in pressures using the data of vacancy formation energy and effective volume of Schottky defects. The vacancy model revised in the present study takes into account the variation of bulk modulus with pressure, whereas in the Ksiazek and Gorecki model, it was treated constant. Results for pressure derivative of melting temperature are calculated for the solids under study. The melting curves have also been obtained and found to compare well with results based on molecular dynamics simulation and experimental data reported in recent literature.

  16. Spectroscopic predictions for alkali-atom-alkali-halide reaction intermediates

    NASA Astrophysics Data System (ADS)

    Thompson, J. W.; Child, M. S.

    1989-05-01

    The semi-empirical Roach-Child model is used to predict ionisation potentials, rotational constants, vibrational frequencies and the first three electronic absorption bands for the reaction intermediates Na 2Cl, K 2Cl and NaKCl, which are known to be isolatable by supersonic beam techniques.

  17. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water

    SciTech Connect

    Reif, Maria M.; Huenenberger, Philippe H.

    2011-04-14

    The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Huenenberger, J. Chem. Phys. 124, 224501 (2006); M. M. Reif and P. H. Huenenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cs{sup +}) and halide (F{sup -}, Cl{sup -}, Br{sup -}, I{sup -}) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998); Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, {Delta}G{sub hyd} {sup O-minus} [H{sup +}]=-1100, -1075 or -1050 kJ mol{sup -1}, resulting in three sets L, M, and H for the SPC water model and three sets L{sub E}, M{sub E}, and H{sub E} for the SPC/E water model (alternative sets can easily be interpolated to intermediate {Delta}G{sub hyd} {sup O-minus} [H{sup +}] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective ionic radius entering into the calculation of the correction terms is also evaluated and found to be very limited. Ultimately, it is expected that comparison with other experimental ionic properties (e.g., derivative single-ion solvation properties, as well as data concerning ionic crystals, melts, solutions at finite concentrations, or nonaqueous solutions) will permit to validate one specific set and thus, the associated {Delta}G{sub hyd} {sup O-minus} [H{sup +}] value (atomistic consistency assumption). Preliminary results (first-peak positions in the ion-water radial distribution functions, partial molar volumes of ionic salts in water, and structural properties of ionic crystals) support a value of {Delta}G{sub hyd} {sup O-minus} [H{sup +}] close to -1100 kJ{center_dot}mol{sup -1}.

  18. Ionic structure and physicochemical properties of molten halides

    SciTech Connect

    Smirnov, M.V.; Stepanov, V.P.; Khokhlov, V.A.

    1988-05-01

    A large body of experimental data on different physicochemical (thermodynamic, transport, surface) properties of molten halides is summarized. Trends in their variation during transition from typical ionic liquids, which are molten halides of alkali metals, to mixed ionic-covalent liquids, which contain halides of polyvalent metals, are demonstrated. It is concluded that for qualitative explanation and quantitative description of the temperature and concentration dependences of the physicochemical properties of molten halides, it is necessary to consider their actual ionic compositions, i.e., the existence also of clustered particles (clusters, groups of ions) besides the elemental ions. Such an approach allows us to accurately predict the physicochemical properties of molten halides of given chemical compositions.

  19. Robust activation method for negative electron affinity photocathodes

    DOEpatents

    Mulhollan, Gregory A. (Dripping Springs, TX); Bierman, John C. (Austin, TX)

    2011-09-13

    A method by which photocathodes(201), single crystal, amorphous, or otherwise ordered, can be surface modified to a robust state of lowered and in best cases negative, electron affinity has been discovered. Conventional methods employ the use of Cs(203) and an oxidizing agent(207), typically carried by diatomic oxygen or by more complex molecules, for example nitrogen trifluoride, to achieve a lowered electron affinity(404). In the improved activation method, a second alkali, other than Cs(205), is introduced onto the surface during the activation process, either by co-deposition, yo-yo, or sporadic or intermittent application. Best effect for GaAs photocathodes has been found through the use of Li(402) as the second alkali, though nearly the same effect can be found by employing Na(406). Suitable photocathodes are those which are grown, cut from boules, implanted, rolled, deposited or otherwise fabricated in a fashion and shape desired for test or manufacture independently supported or atop a support structure or within a framework or otherwise affixed or suspended in the place and position required for use.

  20. Final Report, Photocathodes for High Repetition Rate Light Sources

    SciTech Connect

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

  1. DIAMOND AMPLIFIED PHOTOCATHODES.

    SciTech Connect

    SMEDLEY,J.; BEN-ZVI, I.; BOHON, J.; CHANG, X.; GROVER, R.; ISAKOVIC, A.; RAO, T.; WU, Q.

    2007-11-26

    High-average-current linear electron accelerators require photoinjectors capable of delivering tens to hundreds of mA average current, with peak currents of hundreds of amps. Standard photocathodes face significant challenges in meeting these requirements, and often have short operational lifetimes in an accelerator environment. We report on recent progress toward development of secondary emission amplifiers for photocathodes, which are intended to increase the achievable average current while protecting the cathode from the accelerator. The amplifier is a thin diamond wafer which converts energetic (few keV) primary electrons into hundreds of electron-hole pairs via secondary electron emission. The electrons drift through the diamond under an external bias and are emitted into vacuum via a hydrogen-terminated surface with negative electron affinity (NEA). Secondary emission gain of over 200 has been achieved. Two methods of patterning diamond, laser ablation and reactive-ion etching (RIE), are being developed to produce the required geometry. A variety of diagnostic techniques, including FTIR, SEM and AFM, have been used to characterize the diamonds.

  2. Infrared-sensitive photocathode

    DOEpatents

    Mariella, Jr., Raymond P. (Danville, CA); Cooper, Gregory A. (Pleasant Hill, CA)

    1995-01-01

    A single-crystal, multi-layer device incorporating an IR absorbing layer that is compositionally different from the Ga.sub.x Al.sub.1-x Sb layer which acts as the electron emitter. Many different IR absorbing layers can be envisioned for use in this embodiment, limited only by the ability to grow quality material on a chosen substrate. A non-exclusive list of possible IR absorbing layers would include GaSb, InAs and InAs/Ga.sub.w In.sub.y Al.sub.1-y-w Sb superlattices. The absorption of the IR photon excites an electron into the conduction band of the IR absorber. An externally applied electric field then transports electrons from the conduction band of the absorber into the conduction band of the Ga.sub.x Al.sub.1-x Sb, from which they are ejected into vacuum. Because the band alignments of Ga.sub.x Al.sub.1-x Sb can be made the same as that of GaAs, emitting efficiencies comparable to GaAs photocathodes are obtainable. The present invention provides a photocathode that is responsive to wavelengths within the range of 0.9 .mu.m to at least 10 .mu.m.

  3. Infrared-sensitive photocathode

    DOEpatents

    Mariella, R.P. Jr.; Cooper, G.A.

    1995-04-04

    A single-crystal, multi-layer device is described incorporating an IR absorbing layer that is compositionally different from the Ga{sub x}Al{sub 1{minus}x}Sb layer which acts as the electron emitter. Many different IR absorbing layers can be envisioned for use in this embodiment, limited only by the ability to grow quality material on a chosen substrate. A non-exclusive list of possible IR absorbing layers would include GaSb, InAs and InAs/Ga{sub w}In{sub y}Al{sub 1{minus}y{minus}w}Sb superlattices. The absorption of the IR photon excites an electron into the conduction band of the IR absorber. An externally applied electric field then transports electrons from the conduction band of the absorber into the conduction band of the Ga{sub x}Al{sub 1{minus}x}Sb, from which they are ejected into vacuum. Because the band alignments of Ga{sub x}Al{sub 1{minus}x}Sb can be made the same as that of GaAs, emitting efficiencies comparable to GaAs photocathodes are obtainable. The present invention provides a photocathode that is responsive to wavelengths within the range of 0.9 {mu}m to at least 10 {mu}m. 9 figures.

  4. DIAMOND AMPLIFIER FOR PHOTOCATHODES.

    SciTech Connect

    RAO,T.; BEN-ZVI,I.; BURRILL,A.; CHANG,X.; HULBERT,S.; JOHNSON,P.D.; KEWISCH,J.

    2004-06-21

    We report a new approach to the generation of high-current, high-brightness electron beams. Primary electrons are produced by a photocathode (or other means) and are accelerated to a few thousand electron-volts, then strike a specially prepared diamond window. The large Secondary Electron Yield (SEY) provides a multiplication of the number of electrons by about two orders of magnitude. The secondary electrons drift through the diamond under an electric field and emerge into the accelerating proper of the ''gun'' through a Negative Electron Affinity surface of the diamond. The advantages of the new approach include the following: (1) Reduction of the number of primary electrons by the large SEY, i.e. a very low laser power in a photocathode producing the primaries. (2) Low thermal emittance due to the NEA surface and the rapid thermalization of the electrons. (3) Protection of the cathode from possible contamination from the gun, allowing the use of large quantum efficiency but sensitive cathodes. (4) Protection of the gun from possible contamination by the cathode, allowing the use of superconducting gun cavities. (5) Production of high average currents, up to ampere class. (6) Encapsulated design, making the ''load-lock'' systems unnecessary. This paper presents the criteria that need to be taken into account in designing the amplifier.

  5. 1st Workshop on Photo-cathodes: 300nm-500nm July 20-21, 2009: University of Chicago

    E-print Network

    1st Workshop on Photo-cathodes: 300nm-500nm July 20-21, 2009: University of Chicago 3rd Floor:30 - 12:00 New Bialkali/Multi-alkali Materials and Prospects Panel Discussion on What Questions-cathode Geometries: Valentin Ivanov (Muons,Inc) 5:00 - 5:20 Do Opaque PC's Allow Other Materials than Used

  6. Prevention of electron field emission from molybdenum substrates for photocathodes by the native oxide layer

    NASA Astrophysics Data System (ADS)

    Lagotzky, Stefan; Barday, Roman; Jankowiak, Andreas; Kamps, Thorsten; Klimm, Carola; Knobloch, Jens; Müller, Günter; Senkovskiy, Boris; Siewert, Frank

    2015-05-01

    Comprehensive investigations of the electron field emission (FE) properties of annealed single crystal and polycrystalline molybdenum plugs, which are used as substrates for actual alkali-based photocathodes were performed with a FE scanning microscope. Well-polished and dry-ice cleaned Mo samples with native oxide did not show parasitic FE up to a field level of 50 MV/m required for photoinjector cavities. In situ heat treatments (HT) above 400 °C, which are usual before photocathode deposition, activated field emission at lower field strength. Oxygen loading into the Mo surface, however, partially weakened these emitters. X-ray photoelectron spectroscopy of comparable Mo samples showed the dissolution of the native oxide during such heat treatments. These results reveal the suppression of field emission by native Mo oxides. Possible improvements for the photocathode preparation will be discussed.

  7. Binary technetium halides

    NASA Astrophysics Data System (ADS)

    Johnstone, Erik Vaughan

    In this work, the synthetic and coordination chemistry as well as the physico-chemical properties of binary technetium (Tc) chlorides, bromides, and iodides were investigated. Resulting from these studies was the discovery of five new binary Tc halide phases: alpha/beta-TcCl3, alpha/beta-TcCl 2, and TcI3, and the reinvestigation of the chemistries of TcBr3 and TcX4 (X = Cl, Br). Prior to 2009, the chemistry of binary Tc halides was poorly studied and defined by only three compounds, i.e., TcF6, TcF5, and TcCl4. Today, ten phases are known (i.e., TcF6, TcF5, TcCl4, TcBr 4, TcBr3, TcI3, alpha/beta-TcCl3 and alpha/beta-TcCl2) making the binary halide system of Tc comparable to those of its neighboring elements. Technetium binary halides were synthesized using three methods: reactions of the elements in sealed tubes, reactions of flowing HX(g) (X = Cl, Br, and I) with Tc2(O2CCH3)4Cl2, and thermal decompositions of TcX4 (X = Cl, Br) and alpha-TcCl 3 in sealed tubes under vacuum. Binary Tc halides can be found in various dimensionalities such as molecular solids (TcF6), extended chains (TcF5, TcCl4, alpha/beta-TcCl2, TcBr 3, TcI3), infinite layers (beta-TcCl3), and bidimensional networks of clusters (alpha-TcCl3); eight structure-types with varying degrees of metal-metal interactions are now known. The coordination chemistry of Tc binary halides can resemble that of the adjacent elements: molybdenum and ruthenium (beta-TcCl3, TcBr3, TcI 3), rhenium (TcF5, alpha-TcCl3), platinum (TcCl 4, TcBr4), or can be unique (alpha-TcCl2 and beta-TcCl 2) in respect to other known transition metal binary halides. Technetium binary halides display a range of interesting physical properties that are manifested from their electronic and structural configurations. The thermochemistry of binary Tc halides is extensive. These compounds can selectively volatilize, decompose, disproportionate, or convert to other phases. Ultimately, binary Tc halides may find application in the nuclear fuel cycle and as precursors in inorganic and organometallic chemistry.

  8. Alkali Bee

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The alkali bee, Nomia melanderi, is native to deserts and semi-arid desert basins of the western United States. It is a very effective and manageable pollinator for the production of seed in alfalfa (=lucerne) and some other crops, such as onion. It is the world’s only intensively managed ground-n...

  9. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect

    Siemer, D.D.

    2013-07-01

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  10. Process for oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Lyke, Stephen E. (Middleton, WI)

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  11. Photocathodes for the energy recovery linacs

    SciTech Connect

    T. Rao; A. Burrill; X.Y. Chang; J. Smedley; T. Nishitani; C. Hernandez Garcia; M. Poelker; E. Seddon; F.E. Hannon; C.K. Sinclair; J. Lewellen; D. Feldman

    2005-03-19

    This paper presents an overview of existing and emerging technologies on electron sources that can service various Energy Recovering Linacs under consideration. Photocathodes that can deliver average currents from 1 mA to 1 A, the pros and cons associated with these cathodes are addressed. Status of emerging technologies such as secondary emitters, cesiated dispenser cathodes, field and photon assisted field emitters and super lattice photocathodes are also reviewed.

  12. PHOTOCATHODES FOR THE ENERGY RECOVERY LINACS.

    SciTech Connect

    RAO, T.; BURRILL, A.; CHANG, X.Y.; SMEDLEY, J.; ET AL.

    2005-03-19

    This paper presents an overview of existing and emerging technologies on electron sources that can service various Energy Recovering Linacs under consideration. Photocathodes that can deliver average currents from 1 mA to 1 A, the pros and cons associated with these cathodes are addressed. Status of emerging technologies such as secondary emitters, cesiated dispenser cathodes, field and photon assisted field emitters and super lattice photocathodes are also reviewed.

  13. Production and properties of perrhenate-doped alkali halide crystals

    SciTech Connect

    Nestor, O.H.; Figueira, J.F.

    1987-01-01

    The growth and selected properties of single crystals of KCl doped with ReO/sub 4//minus// is described. The crystals have been used as saturable absorbers to modulate and control CO/sub 2/ laser radiation. ReO/sub 4//minus// ion concentrations in excess of 10/sup 17/ cm/sup /minus/3/ were achieved in KCl with good optical quality. The room temperature absorption of the ReO/sub 4//minus// ion in KCl was centered at 936.8 cm/sup /minus/1/ with 1.5 cm/sup (minus/1/ linewidth and with absorption cross section determined to be (0.46 + 0.02) /times/ 10 /sup /minus/16/ cm/sup 2/. The addition of Li/sup /plus// as a second dopant resulted in a splitting of the ReO/sub 4//minus// resonance into two components at 957.5 cm/sup /minus/1/ and 900.7 cm/sup /minus/1/. The characteristically sharp resonance of ReO/sub 4/minus// was not detected in NaCl grown with NaReO/sub 4/ additions to the melt. Only with addition of Ca/sup ++/ as a co-dopant was the ReO/sub 4/minus// resonance observed. The absorption, detected as a very weak resonance through a 92 mm path length, was centered at 946.0 cm/sup /minus/1/ with linewidth of 5 cm/sup /minus/1/ with linewidth of 5 cm/sup /minus/1/, overlapping the P(20) transition in the 10 micron CO/sub 2/ band. 6 refs., 10 figs.

  14. Interferometric Line Shape Modulation in Alkali-Halide Photoabsorption

    SciTech Connect

    Cornett, S.T.; Sadeghpour, H.R.; Cavagnero, M.J.

    1999-03-01

    An {ital ab initio} calculation of the photoabsorption spectrum of ground state LiF below the ionic Li{sup +}+F {sup {minus}} threshold predicts a periodic modulation of the predissociation line shapes. Specifically, we predict a periodic reversal of Fano{close_quote}s line shape asymmetry parameter q . In this case, reversal of the q parameter occurs because of the interference of vibrational wave functions propagating alternatively along diabatic and adiabatic potentials. The interference modulates the predissociation spectrum giving rise to both extremely long-lived resonances and broad window resonances. These anomalous resonances occur periodically on an energy scale greater than the Rydberg energy spacing and are finite in number. {copyright} {ital 1999} {ital The American Physical Society}

  15. Far infrared photoelectric thresholds of extrinsic semiconductor photocathodes

    E-print Network

    Perera, A. G. Unil

    to the photoelectric effect at a metal (photocathode)-vacuum in- terface. At lower doping levels normally usedFar infrared photoelectric thresholds of extrinsic semiconductor photocathodes A. G. U. Perera, FL

  16. RF Gun Photocathode Research at SLAC

    SciTech Connect

    Jongewaard, E.; Akre, R.; Brachmann, A.; Corbett, J.; Gilevich, S.; Grouev, K.; Hering, P.; P.Krejcik,; Lewandowski, J.; Loos, H.; Montagne, T.; Sheppard, J.C.; Stefan, P.; Vlieks, A.; Weathersby, S.; Zhou, F.; /SLAC

    2012-05-16

    LCLS is presently operating with a third copper photocathode in the original rf gun, with a quantum efficiency (QE) of {approx}1 x 10{sup -4} and projected emittance {gamma}{var_epsilon}{sub x,y} = 0.45 {micro}m at 250 pC bunch charge. The spare LCLS gun is installed in the SLAC Accelerator Structure Test Area (ASTA), fully processed to high rf power. As part of a wider photocathode R and D program, a UV laser system and additional gun diagnostics are being installed at ASTA to measure QE, QE lifetime, and electron beam emittance under a variety of operating conditions. The near-term goals are to test and verify the spare photocathode production/installation sequence, including transfer from the final holding chamber to the rf gun. Mid- and longer-term goals include development of a rigorous understanding of plasma and laser-assisted surface conditioning and investigation of new, high-QE photocathode materials. In parallel, an x-ray photoemission spectroscopy station is nearing completion, to analyze Cu photocathode surface chemistry. In this paper we review the status and anticipated operating parameters of ASTA and the spectroscopy test chamber.

  17. Gallium nitride photocathode development for imaging detectors

    NASA Astrophysics Data System (ADS)

    Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; McPhate, Jason B.; Hull, Jeffrey S.; Malloy, James; Dabiran, Amir M.

    2008-07-01

    Recent progress in Gallium Nitride (GaN, AlGaN, InGaN) photocathodes show great promise for future detector applications in Astrophysical instruments. Efforts with opaque GaN photocathodes have yielded quantum efficiencies up to 70% at 120 nm and cutoffs at ~380 nm, with low out of band response, and high stability. Previous work with semitransparent GaN photocathodes produced relatively low quantum efficiencies in transmission mode (4%). We now have preliminary data showing that quantum efficiency improvements of a factor of 5 can be achieved. We have also performed two dimensional photon counting imaging with 25mm diameter semitransparent GaN photocathodes in close proximity to a microchannel plate stack and a cross delay line readout. The imaging performance achieves spatial resolution of ~50?m with low intrinsic background (below 1 event sec-1 cm-2) and reasonable image uniformity. GaN photocathodes with significant quantum efficiency have been fabricated on ceramic MCP substrates. In addition GaN has been deposited at low temperature onto quartz substrates, also achieving substantial quantum efficiency.

  18. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  19. Silver-halide gelatin holograms

    NASA Astrophysics Data System (ADS)

    Chang, B. J.; Winick, K.

    1980-05-01

    The use of a silver-halide gelatin for volume phase holograms having a wide spectral response and lower exposure requirements than alternatives and using commercially available silver salts, is proposed. The main difference between the dichromated gelatin and silver-halide processes is the creation of a hologram latent image, which is given in the form of a hardness differential between exposed and unexposed regions in the silver halide hologram; the differential is in turn created by the reaction products of either tanning development or tanning bleach, which harden the gelatin with link-bonds between molecules.

  20. Graphene shield enhanced photocathodes and methods for making the same

    DOEpatents

    Moody, Nathan Andrew

    2014-09-02

    Disclosed are graphene shield enhanced photocathodes, such as high QE photocathodes. In certain embodiments, a monolayer graphene shield membrane ruggedizes a high quantum efficiency photoemission electron source by protecting a photosensitive film of the photocathode, extending operational lifetime and simplifying its integration in practical electron sources. In certain embodiments of the disclosed graphene shield enhanced photocathodes, the graphene serves as a transparent shield that does not inhibit photon or electron transmission but isolates the photosensitive film of the photocathode from reactive gas species, preventing contamination and yielding longer lifetime.

  1. Actinide halide complexes

    SciTech Connect

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1991-02-07

    A compound of the formula MX{sub n}L{sub m} wherein M = Th, Pu, Np,or Am thorium, X = a halide atom, n = 3 or 4, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is 3 or 4 for monodentate ligands or is 2 for bidentate ligands, where n + m = 7 or 8 for monodentate ligands or 5 or 6 for bidentate ligands, a compound of the formula MX{sub n} wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  2. Wire ageing with the TEA photocathode

    SciTech Connect

    Va`vra, J.

    1996-06-01

    Recently several RICH protypes successfully tested a gaseous TEA photocathode. However, its wire ageing behavior is unknown. In principle, TEA is a more strongly bonded molecule than TMAE, and, as a result, one would expect better wire ageing behavior. This paper explores this question.

  3. Photocathode Preparation System for the ALICE Photoinjector

    SciTech Connect

    Middleman, Keith J.; Burrows, I.; Cash, R.; Jones, L. B.; McKenzie, J.; Militsyn, B.; Terekhov, A. S.; Fell, B

    2009-08-04

    ALICE--Accelerators and Lasers in Combined Experiments--is a relatively new accelerator built at Daresbury Laboratory that will demonstrate the process of energy recovery by the end of 2008. The project is a research facility to develop the technology required to build a New Light Source (NLS) in the UK. This paper details the current ALICE photoinjector design and highlights the limitations before focusing on a photoinjector upgrade. The key component of the upgrade is a three-stage extreme high vacuum load-lock system that will be incorporated into the ALICE photoinjector in 2010. The load-lock system has de facto become a standard component of a type III-V semiconductor photocathode injector and comprises: 1) loading chamber to allow new photocathodes to be introduced, 2) cleaning chamber for atomic hydrogen cleaning of the photocathodes and, 3) a preparation and activation chamber where the photocathodes will be activated to the NEA state ready for use on the ALICE accelerator. Once commissioned the load-lock system will allow rapid transfer of photocathodes between the load-lock system and the ALICE photoinjector whilst maintaining the integrity of the vacuum system and providing many other benefits. The new load-lock system will not only remove the problems with the existing set-up, it will also permit a new vacuum chamber to be designed for the gun itself. This new design will also aim to improve vacuum performance by addressing some of the major vacuum associated problems ALICE has encountered in the past 2 years.

  4. Methyl Halide Production by Fungi

    NASA Astrophysics Data System (ADS)

    Dailey, G. D.; Varner, R. K.; Blanchard, R. O.; Sive, B. C.; Crill, P. M.

    2005-12-01

    Methyl chloride (CH3Cl), methyl bromide (CH3Br) and methyl iodide (CH3I) are methyl halide gases that contribute significant amounts of halogen radicals to the atmosphere. In an effort to better understand the global budget of methyl halides and their impact on the atmosphere, we need to identify the natural sources in addition to the known anthropogenic sources of these compounds. We are investigating the role of fungi in the production of methyl halides in the soils and wetlands in southern New Hampshire, USA. Previous research has shown that wood decay fungi and ectomycorrhizal fungi, which are within a group of fungi called basidiomycetes, emit methyl halides. In our study, measurements of headspace gas extracted from flasks containing fungi grown in culture demonstrate that a variety of fungi, including basidiomycetes and non-basidiomycetes, emit methyl halides. Our research sites include four ecosystems: an agricultural field, a temperate forest, a fresh water wetland, and coastal salt marshes. We have collected and isolated fungi at each site by culturing tissue samples of fruiting bodies and plant material, by using wood baits, and from the direct culture of soil. We compared the rates of methyl halide emissions from the fungi in the four ecosystems. In addition, we measured emissions from previously assayed fungal isolates after reintroducing them to sterilized soils that were collected from their original environments. Fungal biomass was determined by substrate-induced respiration (SIR). The emission rate by the fungus was determined by a linear regression of the concentration of methyl halide in the sample headspace over time divided by the fungal biomass.

  5. Actinide halide complexes

    DOEpatents

    Avens, Larry R. (Los Alamos, NM); Zwick, Bill D. (Santa Fe, NM); Sattelberger, Alfred P. (Los Alamos, NM); Clark, David L. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  6. Actinide halide complexes

    DOEpatents

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  7. A Summary of the 2010 Photocathode Physics for Photoinjectors Workshop

    SciTech Connect

    Bazarov, I; Dowell, D; Hannon, Fay; Harkay, K; Garcia, C H; Padmore, H; Rao, T; Smedley, J

    2010-10-01

    This contribution contains a summary and some highlights from the Photocathode Physics for Photoinjectors (P3) Workshop [1]. This workshop, held at Brookhaven National Laboratory in Ocotber of 2010, was aimed at bringing the photocathode community together to discuss and explore the current state of the art in accelerator photocathodes, from both a theoretical and a materials science perspective. All types of photocathode materials were discussed, including metals, NEA and PEA semiconductors, and "designer" photocathodes with bespoke properties. Topics of the workshop included: Current status of photocathodes for accelerator applications Current fabrication methods Applications of modern materials science to the growth and analysis of cathodes Photoemission spectroscopy as a diagnostic of cathode performance Utilization of modern user facilities Photoemission theory Novel ideas in cathode development Discussion forum on future collaboration for cathode growth, analysis and testing

  8. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    SciTech Connect

    Gregory A. Mulhollan

    2010-11-16

    Specific activation recipes for bulk, 100 nm thick MBE grown and high polarization III-V photocathode material have been developed which mitigate the effects of exposure to background gasses. Lifetime data using four representative gasses were acquired for bulk GaAs, 100 nm unstrained GaAs and strained superlattice GaAs/GaAsP, all activated both with Cs and then Cs and Li (bi-alkali). Each photoemitter showed marked resilience improvement when activated using the bi-alkali recipe compared to the standard single alkali recipe. A dual alkali activation system at SLAC was constructed, baked and commissioned with the purpose of performing spin-polarization measurements on electrons emitted from the bi-alkali activated surfaces. An end station at SSRL was configured with the required sources for energy resolved photoemission measurements on the bi-alkali activated and CO2 dosed surfaces. The bi-alkali recipes were successfully implemented at SLAC/SSRL. Measurements at SLAC of the photoelectron spin-polarization from the modified activation surface showed no sign of a change in value compared to the standard activated material, i.e., no ill effects. Analysis of photoemission data indicates that the addition of Li to the activation layer results in a multi-layer structure. The presence of Li in the activation layer also acts as an inhibitor to CO2 absorption, hence better lifetimes in worse vacuum were achieved. The bi-alkali activation has been tested on O2 activated GaAs for comparison with NF3 activated surfaces. Comparable resilience to CO2 exposure was achieved for the O2 activated surface. An RF PECVD amorphous silicon growth system was modified to allow high temperature heat cleaning of GaAs substrates prior to film deposition. Growth versus thickness data were collected. Very thin amorphous silicon germanium layers were optimized to exhibit good behavior as an electron emitter. Growth of the amorphous silicon germanium films on the above substrates was fine tuned with respect to time and power to moderate plasma damage to the photo-generating layer. Auger electron spectroscopy was used to analyze the composition and thickness of the emitter layers. AFM studies showed conformal growth on the GaAs substrates. Measurements at SLAC on the photoemitted electrons from high polarization substrates coated with amorphous silicon germanium indicated an ~10% relative drop in spin-polarization at the wavelength corresponding to the maximum spin-polarization when compared to the uncoated material,

  9. Negative affinity X-ray photocathodes

    NASA Technical Reports Server (NTRS)

    Vanspeybroeck, L.; Kellogg, E.; Murray, S.; Duckett, S.

    1974-01-01

    A new X-ray image intensifier is described. The device should eventually have a quantum efficiency which is an order of magnitude greater than that of presently available high spatial resolution X-ray detectors, such as microchannel plates. The new intesifier is based upon a GaAs crystal photocathode which is activated to achieve negative electron affinity. Details concerning the detector concept are discussed together with the theoretical relations involved, X-ray data, and optical data.

  10. Preparation of cerium halide solvate complexes

    SciTech Connect

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  11. Development of Polarized Photocathodes for the Linear Collider

    SciTech Connect

    Richard Prepost

    2009-12-22

    In prior years a Wisconsin-SLAC collaboration developed polarized photocathodes which were used for the SLAC SLD and fixed target programs. Currently, the R&D program goal is the development of a polarized electron source (PES) which meets the ILC requirements for polarization, charge, lifetime, and pulse structure. There are two parts to this program. One part is the continued improvement of photocathode structures with higher polarization. The second part is the design and development of the laser system used to drive the photocathode. The long pulse train for the ILC introduces new challenges for the PES. More reliable and stable operation of the PES may be achievable if appropriate R&D is carried out for higher voltage operation and for a simpler photocathode load-lock system. The collaboration with SLAC is through the Polarized Photocathode Research Collaboration (PPRC). Senior SLAC personnel include T. Maruyama, J. Clendenin, R. Kirby, and A. Brachmann.

  12. Silver nanorod arrays for photocathode applications

    SciTech Connect

    Vilayur Ganapathy, Subramanian; Nandasiri, Manjula I.; Joly, Alan G.; El-Khoury, Patrick Z.; Varga, Tamas; Coffey, Greg W.; Schwenzer, Birgit; Pandey, Archana; Kayani, Asghar N.; Hess, Wayne P.; Thevuthasan, Suntharampillai

    2013-10-14

    In this study, we explore the possibility of using plasmonic Ag nanorod arrays featuring enhanced photoemission as high-brightness photocathode material. Silver nanorod arrays are synthesized by the DC electrodeposition method and their dimensionality, uniformity, crystallinity and oxide/impurity content are characterized. These Ag nanorod arrays exhibit greatly enhanced two-photon photoemission under 400 nm femtosecond pulsed laser excitation. Plasmonic field enhancement in the array produces photoemission hot spots that are mapped using photoemission electron microscopy (PEEM). The relative photoemission enhancement of nanorod array hot spots relative to that of a flat Ag thin film is found to range between 102 and 3 x 103.

  13. Electron beam generation from semiconductor photocathodes

    NASA Astrophysics Data System (ADS)

    Arneodo, F.; Cavanna, F.; De Mitri, I.; Mazza, D.; Nassisi, V.

    2001-01-01

    Several measurements on a variety of semiconductor photocathodes were performed in order to determine their photoelectric quantum efficiency. Two different excimer lasers (XeCl and KrCl) and a pulsed Xe lamp were used as light sources for electron photoextraction from doped and undoped samples of cadmiun telluride, indium antimonide, and indium phosphide. Large current densities were obtained up to the limit of the Child-Langmuir law. This suggests the use of these materials for the production of intense electron sources, which could also be used for purity measurements of noble liquids.

  14. STATUS OF DIAMOND SECONDARY EMISSION ENHANCED PHOTOCATHODE

    SciTech Connect

    RAO,T.; BEN-ZVI, I.; CHANG, X.; GRIMES, J.; GROVER, R.; ISAKOVIC, A.; SMEDLEY, J.; TODD, R.; WARREN, J.; WU, Q.

    2007-05-25

    The diamond secondary emission enhanced photocathode (SEEP) provides an attractive alternative for simple photo cathodes in high average current electron injectors. It reduces the laser power required to drive the cathode, simultaneously isolating the cathode and the FW cavity from each other, thereby protecting them from contamination and increasing their life time. In this paper, we present the latest results on the secondary electron yield using pulsed thermionic and photo cathodes as primary electron sources, shaping the diamond using laser ablation and reactive ion etching as well as the theoretical underpinning of secondary electron generation and preliminary results of modeling.

  15. Development of Halide and Oxy-Halides for Isotopic Separations

    SciTech Connect

    Leigh R. Martin; Aaron T. Johnson; Jana Pfeiffer; Martha R. Finck

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  16. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  17. DEVELOPMENT AND EVALUATION OF METHODS FOR TOTAL ORGANIC HALIDE AND PURGEABLE ORGANIC HALIDE IN WASTEWATER

    EPA Science Inventory

    This report describes a series of studies involving the use of 'surrogate' methods for the determination of total organic halides (TOX), purgeable organic halides (POX), and solvent extractable organic halides (EOX), in wastewater and solid wastes. A pyrolysis/microcoulometric sy...

  18. Alkali and Halogen Chemistry in Volcanic Gases on Io

    E-print Network

    Laura Schaefer; Bruce Fegley Jr

    2004-09-20

    We use chemical equilibrium calculations to model the speciation of alkalis and halogens in volcanic gases emitted on Io. The calculations cover wide temperature (500-2000 K) and pressure (10^-6 to 10^+1 bars) ranges, which overlap the nominal conditions at Pele (T = 1760 K, P = 0.01 bars). About 230 compounds of 11 elements (O, S, Li, Na, K, Rb, Cs, F, Cl, Br, I) are considered. We predict the major alkali and halogen species in a Pele-like volcanic gas and the major alklai and halogen condensates. We also model disequilibrium chemistry of the alkalis and halogens in the volcanic plume. Based on this work and our prior modeling for Na, K, and Cl in a volcanic plume, we predict the major loss processes for the alkali halide gases are photolysis and/or condensation onto grains. On the basis of elemental abundances and photochemical lifetimes, we recommend searching for gaseous KCl, NaF, LiF, LiCl, RbF, RbCl, CsF, and CsCl around volcanic vents during eruptions. Based on abundance considerations and observations of brown dwarfs, we also recommend a search of Io's extended atmosphere and the Io plasma torus for neutral and ionized Li, Cs, Rb, and F.

  19. The QE numerical simulation of PEA semiconductor photocathode

    E-print Network

    Li, Xudong; Zhang, Meng; Zhao, Minghua

    2011-01-01

    Several kinds of models have already been proposed for explaining the photoemission process. The exact photoemission theory of semiconductor photocathode was not well established after decades of research. In this paper an integral equation of quantum efficiency (QE) is constructed to describe the photoemission of positive electron affinity (PEA) semiconductor photocathode based on three-step photoemission model. The influences of forbidden gap, electron affinity, photon energy, incident angle, degree of polarization, refractive index, extinction coefficient, initial/final electron energy, relaxation time and external electric field on the QE of PEA semiconductor photocathode are taken into account. In addition, a computer code is also programmed to calculate the QE of K2CsSb photocathode theoretically at 532nm wavelength, the result is in line with the experimental value by and large. What are the reasons caused to the distinction between the experimental measuring and theoretical QE are discussed.

  20. Advanced 3D Photocathode Modeling and Simulations Final Report

    SciTech Connect

    Dimitre A Dimitrov; David L Bruhwiler

    2005-06-06

    High brightness electron beams required by the proposed Next Linear Collider demand strong advances in photocathode electron gun performance. Significant improvement in the production of such beams with rf photocathode electron guns is hampered by the lack high-fidelity simulations. The critical missing piece in existing gun codes is a physics-based, detailed treatment of the very complex and highly nonlinear photoemission process.

  1. High gradient rf gun studies of CsBr photocathodes

    DOE PAGESBeta

    Vecchione, Theodore; Maldonado, Juan R.; Gierman, Stephen; Corbett, Jeff; Hartmann, Nick; Pianetta, Piero A.; Hesselink, Lambertus; Schmerge, John F.

    2015-04-03

    CsBr photocathodes have 10 times higher quantum efficiency with only 3 times larger intrinsic transverse emittance than copper. They are robust and can withstand 80 MV/m fields without breaking down or emitting dark current. They can operate in 2×10?? torr vacuum and survive exposure to air. They are well suited for generating high pulse charge in rf guns without a photocathode transfer system.

  2. Review and demonstration of ultra-low-emittance photocathode measurements

    NASA Astrophysics Data System (ADS)

    Lee, Hyeri; Karkare, Siddharth; Cultrera, Luca; Kim, Andrew; Bazarov, Ivan V.

    2015-07-01

    This paper reports the development of a simple and reliable apparatus for measuring ultra-low emittance, or equivalently the mean transverse energy from cryogenically cooled photocathodes. The existing methods to measure ultra-low emittance from photocathodes are reviewed. Inspired by the available techniques, we have implemented two complementary methods, the waist scan and voltage scan, in one system giving consistent results. Additionally, this system is capable of measuring the emittance at electric fields comparable to those obtained in DC photoinjectors.

  3. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  4. Spermicidal activity of some halides.

    PubMed

    Narayan, J P; Singh, J N

    1979-01-01

    Though most of the metallic ions are spermicidal in action, the present investigation emphasises the spermicidal activity of anions. Among the inorganic compounds screened at 4 concentrations (0.01%, 0.1%, 1% and 5%) halides are mainly spermicidal, except NaCl, KCl & CsCl which are spermiostatic; sulphates and nitrates are mainly spermiostatic except ZnSO4 at 1% concentration and above; CuSO4, Al2 (SO4)3, Uo2(NO3)2.6H2O and AgNO3 at 5% concentration where they become spermicidal. PMID:528038

  5. Hygroscopicity Evaluation of Halide Scintillators

    SciTech Connect

    Zhuravleva, M; Stand, L; Wei, H; Hobbs, C. L.; Boatner, Lynn A; Ramey, Joanne Oxendine; Burger, Arnold; Rowe, E; Bhattacharya, P.; Tupitsyn, E; Melcher, Charles L

    2014-01-01

    A collaborative study of relative hygroscopicity of anhydrous halide scintillators grown at various laboratories is presented. We have developed a technique to evaluate moisture sensitivity of both raw materials and grown crystals, in which the moisture absorption rate is measured using a gravimetric analysis. Degradation of the scintillation performance was investigated by recording gamma-ray spectra and monitoring the photopeak position, count rate and energy resolution. The accompanying physical degradation of the samples exposed to ambient atmosphere was photographically recorded as well. The results were compared with ben

  6. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  7. Milk-alkali syndrome

    MedlinePLUS

    Milk-alkali syndrome is a condition in which there is a high level of calcium in the body (hypercalcemia). This causes a shift in the body's acid/base balance toward alkaline (metabolic alkalosis). As a result, there can be a loss of kidney ...

  8. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  9. Progress on diamond amplified photo-cathode

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Burrill, A.; Kewisch, J.; Chang, X.; Rao, T.; Smedley, J.; Wu, Q.; Muller, E.; Xin, T.

    2011-03-28

    Two years ago, we obtained an emission gain of 40 from the Diamond Amplifier Cathode (DAC) in our test system. In our current systematic study of hydrogenation, the highest gain we registered in emission scanning was 178. We proved that our treatments for improving the diamond amplifiers are reproducible. Upcoming tests planned include testing DAC in a RF cavity. Already, we have designed a system for these tests using our 112 MHz superconducting cavity, wherein we will measure DAC parameters, such as the limit, if any, on emission current density, the bunch charge, and the bunch length. The diamond-amplified photocathode, that promises to support a high average current, low emittance, and a highly stable electron beam with a long lifetime, is under development for an electron source. The diamond, functioning as a secondary emitter amplifies the primary current, with a few KeV energy, that comes from the traditional cathode. Earlier, our group recorded a maximum gain of 40 in the secondary electron emission from a diamond amplifier. In this article, we detail our optimization of the hydrogenation process for a diamond amplifier that resulted in a stable emission gain of 140. We proved that these characteristics are reproducible. We now are designing a system to test the diamond amplifier cathode using an 112MHz SRF gun to measure the limits of the emission current's density, and on the bunch charge and bunch length.

  10. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y. (Houston, TX); Clavenna, Le Roy R. (Baytown, TX); Eakman, James M. (Houston, TX); Kalina, Theodore (Morris Plains, NJ)

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  11. Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report

    SciTech Connect

    Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T

    2011-08-04

    The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.

  12. Sealed GEM photomultiplier with a CsI photocathode: ion feedback and ageing

    E-print Network

    1 Sealed GEM photomultiplier with a CsI photocathode: ion feedback and ageing A. Breskin a , A, 630090 Novosibirsk, Russia. Abstract We present the performance of a sealed gaseous photomultiplierI photocathode, in Ar/CH4 (95/5). A few-month stability study of the photocathode in a sealed mode is presented

  13. Study of photoemission mechanism for varied doping GaN photocathode

    NASA Astrophysics Data System (ADS)

    Qiao, Jianliang; Xu, Yuan; Niu, Jun; Gao, Youtang; Chang, Benkang

    2015-10-01

    Negative electron affinity (NEA) GaN photocathode has many virtues, such as high quantum efficiency, low dark current, concentrated electrons energy distribution and angle distribution, adjustive threshold and so on. The quantum efficiency is an important parameter for the preparation and evaluation of NEA GaN photocathode. The varied doping GaN photocathode has the directional inside electric field within the material, so the higher quantum efficiency can be obtained. The varied doping NEA GaN photocathode has better photoemission performance. According to the photoemission theory of NEA GaN photocathode, the quantum efficiency formulas for uniform doping and varied doping NEA GaN photocathodes were given. In the certain condition, the quantum efficiency formula for varied doping GaN photocathode consists with the uniform doping. The activation experiment was finished for varied doping GaN photocathode. The cleaning method and technics for varied doping GaN photocathode were given in detail. To get an atom clean surface, the heat cleaning must be done after the chemical cleaning. Using the activation and evaluation system for NEA photocathode, the varied doping GaN photocathode was activated with Cs and O, and the photocurrent curve for varied doping GaN photocathode was gotten.

  14. Intrinsic Emittance Reduction of an Electron Beam from Metal Photocathodes

    SciTech Connect

    Hauri, C. P.; Ganter, R.; Le Pimpec, F.; Trisorio, A.; Ruchert, C.; Braun, H. H.

    2010-06-11

    Electron beams in modern linear accelerators are now becoming limited in brightness by the intrinsic emittance of the photocathode electron source. Therefore it becomes important for large scale facilities such as free electron lasers to reduce this fundamental limit. In this Letter we present measurements of the intrinsic emittance for different laser wavelength (from 261 to 282 nm) and for different photocathode materials such as Mo, Nb, Al, Cu. Values as low as 0.41{+-}0.03 mm{center_dot}mrad/mm laser spot size (rms) were measured for a copper photocathode illuminated with a 282 nm laser wavelength. The key element for emittance reduction is a uv laser system which allows adjustment of the laser photon energy to match the effective work function of the cathode material and to emit photoelectrons with a lower initial kinetic energy. The quantum efficiency over the explored wavelength range varies by less than a factor of 3.

  15. Photoemission characteristics of thin GaAs-based heterojunction photocathodes

    SciTech Connect

    Feng, Cheng; Zhang, Yijun Qian, Yunsheng; Shi, Feng; Zou, Jijun; Zeng, Yugang

    2015-01-14

    To better understand the different photoemission mechanism of thin heterojunction photocathodes, the quantum efficiency models of reflection-mode and transmission-mode GaAs-based heterojunction photocathodes are revised based on one-dimensional continuity equations, wherein photoelectrons generated from both the emission layer and buffer layer are taken into account. By comparison of simulated results between the revised and conventional models, it is found that the electron contribution from the buffer layer to shortwave quantum efficiency is closely related to some factors, such as the thicknesses of emission layer and buffer layer and the interface recombination velocity. Besides, the experimental quantum efficiency data of reflection-mode and transmission-mode AlGaAs/GaAs photocathodes are well fitted to the revised models, which confirm the applicability of the revised quantum efficiency models.

  16. Polarized Photocathode R&D for Future Linear Collliders

    SciTech Connect

    Zhou, F; Brachmann, A.; Maruyama, T.; Sheppard, J.C.; /SLAC

    2009-01-23

    It is a challenge to generate full charge electrons from the electron sources without compromising polarization for the proposed ILC and CLIC. It is essential to advance polarized photocathodes to meet the requirements. SLAC has worldwide unique dedicated test facilities, Cathode Test System and dc-Gun Test Laboratory, to fully characterize polarized photocathodes. Recent systematic measurements on a strained-well InAlGaAs/AlGaAs cathode at the facilities show that 87% polarization and 0.3% QE are achieved. The QE can be increased to {approx}1.0% with atomic hydrogen cleaning. The surface charge limit at a very low current intensity and the clear dependence of the polarization on the surface charge limit are observed for the first time. On-going programs to develop photocathodes for the ILC and CLIC are briefly introduced.

  17. FEMTO SECOND ELECTRON BEAM DIFFRACTION USING A PHOTOCATHODE RF GUN.

    SciTech Connect

    WANG,X.J.WU,Z.IHEE,H.

    2003-05-12

    One of the 21st century scientific frontiers is to explore the molecule structure transition on the femtosecond time scale. X-ray free electron laser (XFEL) is one of the tools now under development for investigating femto-second structure transition. We are proposing an alternative technique--femto-second electron diffraction based on a photocathode RF gun. We will present a design of a kHz femto-seconds electron diffraction system based on a photocathode RF gun. Our simulation shows that, the photocathode RF gun can produce 100 fs (FWHM) electron bunch with millions electrons at about 2 MeV. This is at least one order of magnitude reduction in bunch length, and two orders of magnitude increase in number of electrons comparing to present time-resolved electron diffraction system. We will also discuss various issues and limitations related to MeV electron diffraction.

  18. Emission properties of body-centered cubic elemental metal photocathodes

    SciTech Connect

    Li, Tuo; Rickman, Benjamin L. Schroeder, W. Andreas

    2015-04-07

    A first principles analysis of photoemission is developed to explain the lower than expected rms transverse electron momentum measured using the solenoid scan technique for the body-centered cubic Group Vb (V, Nb, and Ta) and Group VIb (Cr, Mo, and W) metallic photocathodes. The density functional theory based analysis elucidates the fundamental role that the electronic band structure (and its dispersion) plays in determining the emission properties of solid-state photocathodes and includes evaluation of work function anisotropy using a thin-slab method.

  19. Dimming of metal halide lamps

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.

  20. The Remarkable Reactivity of Aryl Halides with Nucleophiles

    ERIC Educational Resources Information Center

    Bunnett, Joseph F.

    1974-01-01

    Discusses the reactivity of aryl halides with nucleophilic or basic reagents, including nucleophilic attacks on carbon, hydrogen, halogen, and arynes. Suggestions are made concerning revisions of the sections on aryl halide chemistry courses and the corresponding chapters in textbooks. (CC)

  1. Solar-Driven Microbial Photoelectrochemical Cells with a Nanowire Photocathode

    E-print Network

    Li, Yat

    . In this regard, microbial fuel cells (MFCs) hold great promises to address both issues simultaneouslySolar-Driven Microbial Photoelectrochemical Cells with a Nanowire Photocathode Fang Qian,* Gongming cell (solar MPC) that can produce sustainable energy through coupling the microbial catalysis

  2. New Photocathode materials for electron-ion-colliders

    SciTech Connect

    Lukaszew, Rosa A.

    2015-02-25

    Our aim has been to explore new photocathode materials and schemes to develop strategies and technologies for next generation nuclear physics accelerator capabilities, particularly for Electron Ion Colliders (EIC). Thus, we investigated thin film deposition and ensuing properties for several adequate magnetic materials applicable to spin-polarized photocathodes. We also implemented a full experimental setup for light incidence at an acute angle onto the photocathode surface in order to excite surface Plasmon resonance hence increasing light absorption by a metallic surface. We successfully tested the setup with a thermionic cathode as well as Plasmonic silver-MgO samples and obtained very encouraging results. Our first results are very encouraging since the photocurrent measured on this preliminary plasmonic Ag-MgO sample under low power (~ 1mW) cw red light from a HeNe laser was 256 pA, thus two orders magnitude larger than that reported by others following also plasmonic approaches. We extended our studies to shorter wavelengths and we also started preliminary work on chemically ordered MnAl thin films –a component of the tertiary Ag-Mn-Al (silmanal) alloy in order to develop spin-polarized photocathodes capable of sustaining surface Plasmon resonance. It is worthwhile mentioning that a graduate student has been directly involved during this project ensuring the training of next generation of scientists in this area of research.

  3. SUPPRESSION OF AFTERPULSING IN PHOTOMULTIPLIERS BY GATING THE PHOTOCATHODE

    EPA Science Inventory

    A number of gating schemes to minimize the long-term afterpulse signal in photomultipliers have been evaluated. Blocking the excitation pulse by gating the photocathode was found to reduce the gate-on afterpulse background by a factor of 230 over that for nongated operation. Thi...

  4. Metal-Insulator Photocathode Heterojunction for Directed Electron Emission

    SciTech Connect

    Droubay, Timothy C.; Chambers, Scott A.; Joly, Alan G.; Hess, Wayne P.; Nemeth, Karoly; Harkay, Katherine C.; Spentzouris, Linda

    2014-02-14

    New photocathode materials capable of producing intense and directed electron pulses are needed for development of next generation light sources and dynamic transmission electron microscopy. Ideal photocathodes should have high photoemission quantum efficiency (QE) and be capable of delivering collimated and well-shaped pulses of consistent charge under high-field operating conditions. High-brightness and low-intrinsic emittance electron pulses have been predicted for hybrid metal-insulator photocathode designs constructed from three to four monolayer MgO films on atomically flat silver. Here we use angle-resolved photoelectron spectroscopy to confirm directional photoemission and a large increase in QE under ultraviolet laser excitation of an ultrathin MgO film on Ag(001). We observe new low-binding energy photoemission, not seen for Ag(001), and greater electron emission in the normal direction. Under 4.66 eV laser excitation, the photoemission quantum efficiency of the MgO/Ag(001) hybrid photocathode is a factor of seven greater than that for clean Ag(001).

  5. Point defect production by ultrafast laser irradiation of alkali-containing silica glasses and alkali halide single crystals

    NASA Astrophysics Data System (ADS)

    Avanesyan, S. M.; Orlando, S.; Langford, S. C.; Dickinson, J. T.

    2005-07-01

    The high instantaneous powers associated with femtosecond lasers can color many nominally transparent materials. Although the excitations responsible for this defect formation occur at subpicosecond time scales, subsequent interactions between the resulting electronic and lattice defects complicate the evolution of color center formation and decay. These interactions must be understood in order to account for the long-term behavior of coloration. In this work, we probe the evolution of color centers produced by femtosecond laser radiation in soda lime glass and single-crystal sodium chloride at time scales from microseconds to hundreds of seconds. By using an appropriately chosen probe laser focused through the femtosecond laser spot, we can follow the changes in coloration due to individual or multiple femtosecond pulses, and follow the evolution of that coloration for long times after the femtosecond laser radiation is terminated. For the soda lime glass, the decay of color centers is well described in terms of bimolecular annihilation reactions between electron and hole centers. Similar processes are also occurring in single-crystal sodium chloride. Finally, we report fabrication of permanent periodic patterns in soda lime glass by two time coincident femtosecond laser pulses.

  6. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C. (Hamden, CT); Gregory, Kevin M. (Woodridge, IL)

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  7. Preparation of graphene/polymer composite photocathode for QDSSC

    NASA Astrophysics Data System (ADS)

    Wang, Qiandi; Shen, Yue; Tan, Jie; Xu, Kai; Shen, Tan; Cao, Meng; Gu, Feng; Wang, Linjun

    2013-12-01

    Graphene (rGO) was fabricated by modified Hummers method and a reducing process. Conductive polymer/graphene films were obtained by scalpel technology and used as photocathode in CdS quantum dot-sensitized solar cell (QDSSC). Polymers used in this paper were ethyl cellulose (EC), polyphenyl vinyl (PPV) and polyvinyl butyral (PVB), respectively. The obtained composite films were investigated by X-ray diffraction, Raman spectroscopy technology and scanning electron microscope (SEM). The photoelectric properties of QDSSCs were tested under AM 1.5 irradiation. Test results show that the film performance of the EC/rGO and PPV/rGO photocathode have been improved effectively. Power conversion efficiency (PCE) of the relative QDSSCs under AM 1.5 irradiation were 0.81% and 0.86%, respectively.

  8. Photocathode performance measurements for the SLC polarized electron gun

    SciTech Connect

    Garden, C.L.; Hoyt, E.W.; Schultz, D.C.; Tang, H.

    1993-04-01

    A low-voltage test system is used to qualify various III-V semiconductor materials as photocathodes for the SLC. The system features a load lock to introduce samples, high pumping speed, a sensitive residual gas analyzer, and an infrared temperature detector. Heat cleaning, cesiation, and oxidation procedures have been studied to optimize cathode activation for achieving an optimum NEA surface. VGF GaAs, MBE-grown AlGaAs, MBE GaAs layered on AlGaAs, and MOCVD GaAsP cathodes with different active layer thicknesses and doping concentrations have been tested for quantum efficiency and lifetime. New higher-polarization strained-layer GaAs on GaAsP photocathodes have also been tested. Results and operational experience are discussed.

  9. Femtosecond response time measurements of a Cs2Te photocathode

    E-print Network

    Aryshev, A; Honda, Y; Terunuma, N; Urakawa, J

    2015-01-01

    We present the response time measurements of a Cs2Te photocathode illuminated with two 100 fs duration, variable time separation laser pulses at 266 nm wavelength. The response time was confirmed in dispersive region downstream of a 12-cell standing wave S-band acceleration structure using a well-known RF zero-crossing technique. At the same time it was also measured by changing mechanical path-length difference between two micro-bunches. Both methods agree that Cs2Te photocathode time response is of the order of 250 fs and thereby it is possible to generate and control a THz sequence of relativistic electron bunches by a conventional S-band RF gun. This result further opens a possibility to construct wide-range tunable THz FEL.

  10. Extreme ultraviolet quantum detection efficiency of rubidium bromide opaque photocathodes

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Gaines, Geoffrey A.

    1990-01-01

    Measurements are presented of the quantum detection efficiency (QDE) of three samples of RbBr photocathode layers over the 44-150-A wavelength range. The QDE of RbBr-coated microchannel plate (MCP) was measured using a back-to-back Z-stack MCP configuration in a detector with a wedge and strip position-sensitive anode, of the type described by Siegmund et al. (1984). To assess the stability of RbBr layer, the RbBr photocathode was exposed to air at about 30 percent humidity for 20 hr. It was found that the QDE values for the aged cathode were within the QDE measurement errors of the original values. A simple QDE model was developed, and it was found that its predictions are in accord with the QDE measurements.

  11. The Quantum Efficiency and Thermal Emittance of Metal Photocathodes

    SciTech Connect

    Dowell, David H.; Schmerge, John F.; /SLAC

    2009-03-04

    Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray wavelengths, with the principle improvements occurring since the invention of the photocathode gun. The state-of-the-art normalized emittance electron beams are now becoming limited by the thermal emittance of the cathode. In both DC and RF photocathode guns, details of the cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore improving cathode performance is essential to increasing the brightness of beams. It is especially important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This paper investigates the relationship between the quantum efficiency and the thermal emittance of metal cathodes using the Fermi-Dirac model for the electron distribution. We derive the thermal emittance and its relationship to the quantum efficiency, and compare our results to those of others.

  12. DC photogun vacuum characterization through photocathode lifetime studies

    SciTech Connect

    Marcy Stutzman; Joseph Grames; Matt Poelker; Kenneth Surles-Law; Philip Adderley

    2007-07-02

    Excellent vacuum is essential for long photocathode lifetimes in DC high voltage photoelectron guns. Vacuum Research at Thomas Jefferson National Accelerator Facility has focused on characterizing the existing vacuum systems at the CEBAF polarized photoinjector and on quantifying improvements for new systems. Vacuum chamber preprocessing, full activation of NEG pumps and NEG coating the chamber walls should improve the vacuum within the electron gun, however, pressure measurement is difficult at pressures approaching the extreme-high-vacuum (XHV) region and extractor gauge readings are not significantly different between the improved and original systems. The ultimate test of vacuum in a DC high voltage photogun is the photocathode lifetime, which is limited by the ionization and back-bombardment of residual gasses. Discussion will include our new load-locked gun design as well as lifetime measurements in both our operational and new photo-guns, and the correlations between measured vacuum and lifetimes will be investigated.

  13. High Brightness and high polarization electron source using transmission photocathode

    SciTech Connect

    Yamamoto, Naoto; Jin Xiuguang; Ujihara, Toru; Takeda, Yoshikazu; Mano, Atsushi; Nakagawa, Yasuhide; Nakanishi, Tsutomu; Okumi, Shoji; Yamamoto, Masahiro; Konomi, Taro; Ohshima, Takashi; Saka, Takashi; Kato, Toshihiro; Horinaka, Hiromichi; Yasue, Tsuneo; Koshikawa, Takanori

    2009-08-04

    A transmission photocathode was fabricated based on GaAs-GaAsP strained superlattice layers on a GaP substrate and a 20 kV-gun was built to generate the polarized electron beams with the diameter of a few micro-meter. As the results, the reduced brightness of 1.3x10{sup 7} A/cm{sup 2}/sr and the polarization of 90% were achieved.

  14. Advanced Laser Technologies for High-brightness Photocathode Electron Gun

    NASA Astrophysics Data System (ADS)

    Tomizawa, Hiromitsu

    A laser-excited photocathode RF gun is one of the most reliable high-brightness electron beam sources for XFELs. Several 3D laser shaping methods have been developed as ideal photocathode illumination sources at SPring-8 since 2001. To suppress the emittance growth caused by nonlinear space-charge forces, the 3D cylindrical UV-pulse was optimized spatially as a flattop and temporally as squarely stacked chirped pulses. This shaping system is a serial combination of a deformable mirror that adaptively shapes the spatial profile with a genetic algorithm and a UV-pulse stacker that consists of four birefringent ?-BBO crystal rods for temporal shaping. Using this 3D-shaped pulse, a normalized emittance of 1.4 ? mm mrad was obtained in 2006. Utilizing laser's Z-polarization, Schottky-effect-gated photocathode gun was proposed in 2006. The cathode work functions are reduced by a laser-induced Schottky effect. As a result of focusing a radially polarized laser pulse with a hollow lens in vacuum, the Z-field (Z-polarization) is generated at the cathode.

  15. Upgrading platform using alkali metals

    DOEpatents

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  16. Elastic properties of alpha quartz and the alkali halides based on an interatomic force model.

    NASA Technical Reports Server (NTRS)

    Weidner, D. J.; Simmons, G.

    1972-01-01

    A two-body central-force atomic model can be used to describe accurately the elastic properties of alpha quartz if the nontetrahedral O:O forces are included. The strength of the Si:O interaction has little effect on the bulk modulus. The technique is sufficiently general to allow calculations of the elastic properties of a specified structure under arbitrary pressure from a complete description of the interatomic forces. The elastic constants for the NaCl structure and the CsCl structure are examined. Our model includes two-body, central, anion-anion, anion-cation, and electrostatic interactions.

  17. The aluminum electrode in AlCl3-alkali-halide melts

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.; Giner, J.

    1972-01-01

    Passivation phenomena were observed upon cathodic and anodic polarization of the Al electrode in AlCl3-KCl-NaCl melts between 100 and 160 C. They are caused by formation of a solid salt layer at the electrode surface resulting from concentration changes upon current flow. The anodic limiting currents increased with temperature and with decreasing AlCl3 content of the melt. Current voltage curves obtained on a rotating aluminum disk showed a linear relationship between the anodic limiting current and 1/sq root of 2 pi (rps). Upon cathodic polarization dentrite formation occurs at the Al electrode. The activation overvoltage in AlCl3-KCl-NaCl (57.5-12.5-20 mol%) was determined by galvanostatic current step methods. An apparent exchange current density of 270 mA/cm2 at 130 C and a double layer capacity of 40 plus or minus 10 microfarad/cm2 were measured.

  18. The aluminum electrode in AlCl3-alkali-halide melts.

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.; Giner, J.

    1972-01-01

    Passivation phenomena have been observed upon cathodic and anodic polarization of the Al electrode in AlCl3-KCl-NaCl melts between 100 and 160 C. They are caused by formation of a solid salt layer at the electrode surface resulting from concentration changes upon current flow. The anodic limiting currents increased with temperature and with decreasing AlCl3 content of the melt. Current voltage curves obtained on a rotating aluminum disk showed a linear relationship between the anodic limiting current and omega to the minus 1/2 power. Upon cathodic polarization, dendrite formation occurs at the Al electrode. The activation overvoltage in AlCl3-KCl-NaCl was determined by galvanostatic current step methods. An apparent exchange current density of 270 mA/sq cm at 130 C and a double layer capacity of 40 plus or minus 10 microfarad/sq cm were measured.

  19. Theory of negative-ion conversion of neutral atoms in grazing scattering from alkali halide surfaces

    NASA Astrophysics Data System (ADS)

    Borisov, A. G.; Sidis, V.

    1997-10-01

    The theoretical approach proposed by Borisov et al. [Phys. Rev. Lett. 77, 1893 (1996)] to treat negative-ion conversion of neutral atoms at ionic crystal surfaces is described in detail. Due to the localization of the valence-band electrons at the anionic sites of the crystal, the conversion process is viewed as a result of successive binary collisions between the projectile and the negatively charged sites at the surface. Parameter-free calculations of F- formation in grazing scattering from LiF(100) and KI(100) are performed using a model in which all sites of the crystal lattice but one, the active site, are represented by eventually polarizable point charges. Parallel velocity thresholds for negative-ion formation, relative efficiency of the negative-ion formation for LiF and KI crystals, and dependences of this efficiency on the scattering angle correspond well to the experimental results.

  20. Structure of adsorbates on alkali halides (theory). I. HBr on LiF(001)

    NASA Astrophysics Data System (ADS)

    Polanyi, J. C.; Williams, R. J.; O'Shea, S. F.

    1991-01-01

    We report a first computation of the geometry of HBr adsorbed on a LiF(001) substrate. The interaction energy of 200 HBr molecules with periodic boundary conditions was determined with respect to adsorbate-substrate and adsorbate-adsorbate electrostatic interaction (point charges in HBr simulated its dipole and multipoles) as well as a short-range ``core'' potential (comprising dispersion forces and repulsive overlap). The monolayer heat of adsorption at T=100 K according to this model was 0. 27 eV, which was also the experimental value [E. B. D. Bourdon, et al., J. Chem. Phys. (submitted)]. The major contribution to this energy came from electrostatic binding. The preferred HBr location at all surface coverages (0.25, 0.50, and 1.0 ML) in the temperature range T=70-130 K was with Br over Li+ and H almost eclipsing one of the four neighboring F-. In this configuration, Br-H is tilted down by 23 ° from the crystal plane in an arrangement resembling a Br-H- -F- hydrogen bond. This computed geometry agrees well with recent experimental findings for HBr/LiF(001) using polarized infrared spectroscopy [P. M. Blass et al.; J. Chem. Phys. (submitted)], and is also in qualitative accord with the observed angular distribution of fast H from the photolysis of HBr adsorbed on LiF(001). At the separations dictated by the LiF(001) lattice, the net adsorbate-adsorbate interaction is attractive, leading to a tentative prediction of island formation at lower coverages under equilibrium conditions.

  1. Shear viscosity of molten alkali halides from equilibrium and nonequilibrium molecular-dynamics simulations

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Nieto de Castro, C. A.; Ely, James F.

    2005-06-01

    The shear viscosity of molten NaCl and KCl was calculated through equilibrium (EMD) and nonequilibrium molecular-dynamics (NEMD) simulations in the canonical (N,V,T) ensemble. Two rigid-ion potentials were investigated, namely, the Born-Mayer-Huggins-Tosi-Fumi potential and the Michielsen-Woerlee-Graaf-Ketelaar potential with the parameters proposed by Ladd. The NEMD simulations were performed using the SLLOD equations of motion [D. J. Evans and G. P. Morriss, Phys. Rev. A 30, 1528 (1984)] with a Gaussian isokinetic thermostat and the results are compared with those obtained from Green-Kubo EMD (N,V,T) simulations and experimental shear viscosity data. The NEMD zero strain rate shear viscosity, ?(0), was obtained by fitting a simplified Carreau-type equation and by application of mode-coupling theory, i.e., a ?-?1/2 linear relationship. The values obtained from the first method are found to be significantly lower than those predicted by the second. The agreement between the EMD and NEMD results with experimental data is satisfactory for the two potentials investigated. The ion-ion radial distribution functions obtained with the two rigid-ion potentials for both molten salts are discussed in terms of the differences between the two models.

  2. Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Nieto de Castro, C. A.; Ely, James F.

    2007-05-01

    The thermal conductivity of molten NaCl and KCl was calculated through the Evans-Gillan nonequilibrium molecular dynamics (NEMD) algorithm and Green-Kubo equilibrium molecular dynamics (EMD) simulations. The EMD simulations were performed for a "binary" ionic mixture and the NEMD simulations assumed a pure system for reasons discussed in this work. The cross thermoelectric coefficient obtained from Green-Kubo EMD simulations is discussed in terms of the homogeneous thermoelectric power or Seebeck coefficient of these materials. The thermal conductivity obtained from NEMD simulations is found to be in very good agreement with that obtained through Green-Kubo EMD simulations for a binary ionic mixture. This result points to a possible cancellation between the neglected "partial enthalpy" contribution to the heat flux associated with the interdiffusion of one species through the other and that part of the thermal conductivity related to the coupled fluxes of charge and heat in "binary" ionic mixtures.

  3. Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations.

    PubMed

    Galamba, N; Nieto de Castro, C A; Ely, J F

    2004-05-01

    The thermal conductivity of molten sodium chloride and potassium chloride has been computed through equilibrium molecular dynamics Green-Kubo simulations in the microcanonical ensemble (N,V,E). In order to access the temperature dependence of the thermal conductivity coefficient of these materials, the simulations were performed at five different state points. The form of the microscopic energy flux for ionic systems whose Coulombic interactions are calculated through the Ewald method is discussed in detail and an efficient formula is used by analogy with the methods used to evaluate the stress tensor in Coulombic systems. The results show that the Born-Mayer-Huggins-Tosi-Fumi potential predicts a weak negative temperature dependence for the thermal conductivity of NaCl and KCl. The simulation results are in agreement with part of the experimental data available in the literature with simulation values generally overpredicting the thermal conductivity by 10%-20%. PMID:15267797

  4. Two types of self-trapped excitons in alkali halide crystals

    NASA Astrophysics Data System (ADS)

    Shluger, A. L.; Itoh, N.; Puchin, V. E.; Heifets, E. N.

    1991-07-01

    We have carried out ab initio many-electron variational calculations of the adiabatic potential-energy surface (APES) for the lowest triplet state of the self-trapped exciton (STE) in KCl and LiCl. For KCl, it is found that at the APES minimum, the Cl-2 molecular ion comprising the STE hole is displaced along the <110> axis by about 0.90 Å from its symmetrical position. The STE electron and hole are shifted in the direction opposite to that of the Cl-2 displacement. The calculated optical-transition energies due to electron and hole excitations of the STE at the APES minimum, and the luminescence energy due to the transition to the crystal ground state agree well with the experimental results. It is found that the <110> displacement of the Cl-2 molecular ion at the APES minimum from its symmetrical position for LiCl is 0.07 Å, much smaller than that in KCl, and that the direction of the shift of the electron and hole is opposite to that for KCl; the electron and hole are localized near one of the Cl-2 ions located closer to the lattice site. It is shown that, for a small shift of the Cl-2 molecular ion from its symmetrical position, the states in which electron and hole are shifted to opposite directions appear in both LiCl and KCl crystals within energy intervals less than 0.8 eV. It is pointed out that the configuration interaction between the two states with the electron and hole shifted in opposite directions should be included for more precise APES calculations at small off-center displacements, and that the electron-hole correlation is important to determine the electronic structure of the STE.

  5. Spectroscopic studies of Sb3 + color centers in alkali halide single crystals

    NASA Astrophysics Data System (ADS)

    Choi, K. O.; Lee, S. W.; Bae, H. K.; Jung, S. H.; Chang, C. K.; Kang, J. G.

    1991-05-01

    The emission from KCl: Sb3+ and KI: Sb3+ excited in the A-absorption band was measured as a function of exciting photon energy and temperature. The A-band excitation produced two emission bands for KCl: Sb3+ and a single band for KI: Sb3+. The definitive assignment of these bands is presented in terms of the adiabatic potential energy surface (APES), in which the effect of the spin-orbit interaction (SO) on the Jahn-Teller (JT) interaction coupling to the Eg mode is taken into account. The polarization spectrum and the angular dependence of polarization ratio of the A-band emission were also studied to determine the symmetry axes of the Sb3+ -vacancies complex. The results indicate that the anisotropy is associated with the relaxed excited state (RES) of Sb3+. It is also found that the JT interaction coupling to the T2g mode and the vacancies, situated in the next-nearest-neighbor (nnn) and the nearest-neighbor (nn) positions to the Sb3+ ion, give rise to an additive perturbation.

  6. Is surface layering of aqueous alkali halides determined by ion pairing in the bulk solution?

    NASA Astrophysics Data System (ADS)

    Brandes, Eva; Stage, Christiane; Motschmann, Hubert; Rieder, Julian; Buchner, Richard

    2014-11-01

    This contribution aims to elucidate the connection between ion-ion-solvent interactions in the bulk of aqueous electrolyte solutions and the properties of their liquid-air interface. In particular, we were interested in the conditions under which ion pairs form at the surface and whether this is linked to ion pairing in the bulk. For this reason different combinations of hard (Cl-, Li+) and soft ions (I-, Cs+) were investigated. Ion hydration and possible ion association in the bulk was probed with dielectric relaxation spectroscopy. This technique monitors the cooperative reorientation of the dipolar solvent molecules and detects all ion-pair species possibly present in the solution. At the interface, the formation of contact ion pairs was investigated by infrared-visible-sum frequency spectroscopy (SFG). This nonlinear optical technique possesses an inherent surface specificity and can be used for the characterization of interfacial water. The intensity of the SFG-active vibrational stretching modes depends on the number of oriented water molecules. The electric field at the surface of a charged aqueous interface aligns the water dipoles, which in turn increases the SFG response. Hence, the enhancement of the oscillator strengths of the water vibrational modes can be used to draw some conclusions on the strengths and geometrical extension of the electric field. The formation of ion pairs at the interface reduces the intensity of the band associated with hydrogen-bonded water. The underlying theory is presented. The combined data show that there are no contact ion pairs in the bulk of the fluid and—at best—only small amounts of solvent shared ion pairs. On the other hand, the combination of hard/hard or soft/soft ions leads to the formation of ion pairs at the liquid-air interface.

  7. Alkali Halide Opacity in Brown Dwarf and Cool Stellar Atmospheres: A Study of Lithium Chloride

    NASA Astrophysics Data System (ADS)

    Kirby, K.; Weck, P. F.; Schweitzer, A.; Stancil, P. C.; Hauschildt, P. H.

    2003-12-01

    Recent thermochemical equilibrium calculations have revealed the important role played by lithium chloride in the lithium chemistry of cool dwarf atmospheres (K. Lodders 1999, ApJ 519, 793). Indeed, LiCl appears to be the dominant Li-bearing gas over an extended domain of the (P,T) diagram, typically for temperatures below 1500 K. LiCl has a large dipole moment in its ground electronic state which can give rise to intense rovibrational line spectra. In addition, LiCl can make dipole transitions to several low-lying unbound excited states, causing dissociation of the molecule. For these reasons, LiCl may be a significant source of line and continuum opacity in brown dwarf and cool stellar atmospheres. In this work, we report calculations of complete lists of line oscillator strengths and photodissociation cross sections for the low-lying electronic states of LiCl. We have performed single- and double-excitation configuration interaction calculations using the ALCHEMY ab initio package (Mc Lean et al. 1991, MOTECC 91, Elsevier, Leiden) and obtained the potential curves and the corresponding dipole transition moment functions between the X 1? ^+ ground state and the B 1? ^+ and A 1? excited states. The resulting line oscillator strengths and molecular photodissociation cross sections have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999, J. Comput. App. Math. 102, 41). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state (EOS). This work was supported in part by NSF grants AST-9720704 and AST-0086246, NASA grants NAG5-8425, NAG5-9222, and NAG5-10551 as well as NASA/JPL grant 961582.

  8. Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes

    NASA Astrophysics Data System (ADS)

    Brown, T. M.; Friend, R. H.; Millard, I. S.; Lacey, D. J.; Butler, T.; Burroughes, J. H.; Cacialli, F.

    2003-05-01

    The electronic nature of metal-semiconductor contacts is a fundamental issue in the understanding of semiconductor device physics, because such contacts control charge injection, and therefore play a major role in determining the electron/hole population in the semiconductor itself. This role is particularly important for organic semiconductors as they are generally used in their pristine, undoped form. Here, we review our progress in the understanding of the energy level line-up in finished, blue-emitting, polyfluorene-based light-emitting diodes, which exploit LiF and CsF thin films in combination with Ca and Al to obtain cathodes with low injection barriers. We have used electroabsorption measurements, as they allow the noninvasive determination of the built-in potential when changing the cathode. This provides precious experimental information on the alteration of the polymer/cathode interfacial energy level line-up. The latter is found to depend strongly on the electrode work function. Thus, the Schottky-Mott model for the energy level alignment is found to be a better first-order approximation than those models where strong pinning or large interface dipoles determine the alignment (e.g., Bardeen model), except for electrodes that extensively react with the polymer, and introduce deep gap states. In addition, we show results that validate the approximation of rigid tilting of polymer energy levels with bias (for biases for which no significant injection of carriers occurs). To investigate further the consequences of the electronic line-up on device operation, we complemented the electroabsorption measurements with characterization of the emissive and transport properties of the light-emitting diodes, and confirmed that the cathodic barrier lowering in CsF/Ca/Al and LiF/Ca/Al electrodes leads to the best improvements in electron injection. We found that luminance and overall current are greatly affected by the barrier-reducing cathodes, indicating a truly bipolar transport, with comparable electron and hole currents. We also found significant indications of CsF/Ca/Al cathodes strongly reacting with the polymer, which is suggestive of CsF dissociation and diffusion in the bulk of the polymer.

  9. Flame inhibition by hydrogen halides - Some spectroscopic measurements

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Cagliostro, D. E.

    1973-01-01

    The far-ultraviolet absorption spectrum of an air-propane diffusion flame inhibited with hydrogen halides has been studied. Plots of the absorption of light by hydrogen halides as a function of position in the flame and also as a function of the amount of hydrogen halide added to the flame have been obtained. The hydrogen halides are shown to be more stable on the fuel side of the reaction zone than they are on the air side. Thermal diffusion is seen to be important in determining the concentration distribution of the heavier hydrogen halides in diffusion flames. The relationship between the concentration distribution of the hydrogen halides in the flame and the flame inhibition mechanism is discussed.

  10. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    PubMed

    Chen, Kun; Tüysüz, Harun

    2015-11-01

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites. PMID:26376773

  11. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Halide salt of an alkylamine (generic). 721...Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a...substance identified generically as halide salt of an alkylamine (PMN...

  12. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Halide salt of an alkylamine (generic). 721...Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a...substance identified generically as halide salt of an alkylamine (PMN...

  13. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Halide salt of an alkylamine (generic). 721...Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a...substance identified generically as halide salt of an alkylamine (PMN...

  14. 10 CFR Appendix A to Subpart S of... - Compliance Statement for Metal Halide Lamp Ballasts

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...2011-01-01 false Compliance Statement for Metal Halide Lamp Ballasts A Appendix A...CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures Pt...of Part 431—Compliance Statement for Metal Halide Lamp Ballasts Equipment:...

  15. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...2014-01-01 false Definitions concerning metal halide lamp ballasts and fixtures...COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures § 431.322 Definitions concerning metal halide lamp ballasts and fixtures....

  16. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...2012-01-01 false Definitions concerning metal halide lamp ballasts and fixtures...COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures § 431.322 Definitions concerning metal halide lamp ballasts and fixtures....

  17. 10 CFR Appendix B to Subpart S to... - Certification Report for Metal Halide Lamp Ballasts

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...2011-01-01 false Certification Report for Metal Halide Lamp Ballasts B Appendix B...CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures Pt...to Part 431—Certification Report for Metal Halide Lamp Ballasts All...

  18. 75 FR 5544 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures: Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ...Program: Energy Conservation Standards for Metal Halide Lamp Fixtures: Public Meeting and...energy conservation standards for certain metal halide lamp fixtures. This document announces...Document for energy conservation standards for metal halide lamp fixtures and provide...

  19. 76 FR 18127 - Energy Conservation Standards for Metal Halide Lamp Fixtures: Public Meeting and Availability of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ...1904-AC00 Energy Conservation Standards for Metal Halide Lamp Fixtures: Public Meeting and...establishing energy conservation standards for metal halide lamp fixtures (MHLFs); the analytical...appliance_standards/commercial/metal_halide_lamp_fixtures.html....

  20. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...2010-01-01 false Definitions concerning metal halide lamp ballasts and fixtures...COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures § 431.322 Definitions concerning metal halide lamp ballasts and fixtures....

  1. 78 FR 51463 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ...Program: Energy Conservation Standards for Metal Halide Lamp Fixtures; Proposed Rule Federal...Program: Energy Conservation Standards for Metal Halide Lamp Fixtures AGENCY: Office of...commercial and industrial equipment, including metal halide lamp fixtures. EPCA also...

  2. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...2011-01-01 false Definitions concerning metal halide lamp ballasts and fixtures...COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures § 431.322 Definitions concerning metal halide lamp ballasts and fixtures....

  3. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...2013-01-01 false Definitions concerning metal halide lamp ballasts and fixtures...COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures § 431.322 Definitions concerning metal halide lamp ballasts and fixtures....

  4. EVALUATION OF METHODS FOR THE DETERMINATION OF TOTAL ORGANIC HALIDE IN WATER AND WASTE

    EPA Science Inventory

    Various methods for the determination of total organic halides (TOX) in groundwater and in waste oil samples have been evaluated. Of three inorganic halide species generation approaches and three inorganic halide determinative techniques evaluated for groundwater analyses, one co...

  5. Lanthanide-halide based humidity indicators

    DOEpatents

    Beitz, James V. (Hinsdale, IL); Williams, Clayton W. (Chicago, IL)

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  6. Alkali metal cluster theory

    SciTech Connect

    Chen, J.

    1990-01-01

    The tight-binding Hubbard model has been applied to alkali metal clusters with Hartree-Fock self-consistent methods and perturbation methods for the numerical calculations. The relaxation has been studied between the equilibrium structures and the range of the hopping matrix elements in the Hubbard Hamiltonian. The structures are not sensitive to the interaction range but are determined by the number of valence electrons each atom has. Inertia tensors are used to analyze the symmetries of the clusters. The principal axes of the clusters are determined to be the axes of rotational symmetries of clusters if the clusters have any. The eigenvalues of inertia tensors are compared between this model and the ellipsoidal jellium model. The agreement is good for large clusters. At a finite temperature, the thermal motion fluctuates the structures. A fluctuation function has been defined with the distance matrix of a cluster. The fluctuation has been studied with the Monte Carlo simulation method. Energy levels of clusters are calculated from the Hubbard model. Ionization potentials and magic numbers are also obtained from these energy levels. The results confirm that the Hubbard model is a good approximation for a small cluster. The excitation energy is presented by the difference between the original level and excited level, and the electron-hole interactions. The author also studied cooling of clusters between the nozzle and detector in molecular beam apparatus with three cooling mechanisms, adiabatic expansion, photon emission and cluster decay. The adiabatic expansion and the photon emission do not affect mass abundances of clusters. The studies show that cluster decay cooling produces a shift in the mass spectra. The shift is dependent on the temperature of the beam and increases as the temperature increases.

  7. Process and composition for drying of gaseous hydrogen halides

    DOEpatents

    Tom, Glenn M. (New Milford, CT); Brown, Duncan W. (Wilton, CT)

    1989-08-01

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  8. Lanthanide doped strontium-barium cesium halide scintillators

    DOEpatents

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  9. Research on mechanical vibration impacts of GaAs photocathode photoemission performance

    NASA Astrophysics Data System (ADS)

    Shi, Feng; Cheng, Hong-chang; Bai, Xiao-feng; Yan, Lei

    2015-04-01

    The GaAs photocathode has widely been used in optoelectronic devices such as image intensifiers, photomultiplier tubes, but these devices is inevitable to withstand a variety of mechanical vibration. In order to study the mechanical vibration impact on the photoemission performance of GaAs photocathode, GaAs photocathode image intensifier is researched in this paper. The spectral response of the GaAs photocathode before and after 5~55Hz scan frequency, 14Hz, 33Hz, 52Hz stay frequency, 5?60Hz scan frequency mechanical vibration respectively was tested, then the parameter of photocathode was calculated by MATLAB software according to quantum efficiency formula, the quantum efficiency curve were fitted. The results show that surface escape probability is increased after photocathode is subjected to mechanical vibration, so that its photoemission performance will be improved. We think this phenomenon is due to the GaAs photocathode surface Cs-O reconstruction. This finding provided a new method to enhance the photoemission performance of photocathode.

  10. The Boeing photocathode accelerator magnetic pulse compression and energy recovery experiment

    SciTech Connect

    Dowell, D.H.; Adamski, J.L.; Hayward, T.D.

    1995-12-31

    An 18 MeV, photocathode accelerator operating at 433 MHz is being commissioned for FEL applications. The accelerator consists of a two-cell RF photocathode imjector followed by four new multicell cavities. The two cell injector has previously been operated at a micropulse repetition frequency of 27 MHz, a micropulse charge of 5 nC and 25% duty factor.

  11. Development of high efficiency opaque photocathodes for the Region 900 angstrom to 1200 angstrom

    NASA Technical Reports Server (NTRS)

    Lampton, M.; Siegmund, O.

    1988-01-01

    Progress in the following three areas is reported: investigation of the basic properties of candidate photocathode materials; measurement of the quantum detection efficiency (QDE) of KCl, RbBr, and CsBr as a function of wavelength and incident angle; and assessment of the stability of these photocathodes.

  12. Effects of atomic hydrogen and deuterium exposure on high polarization GaAs photocathodes

    SciTech Connect

    M. Baylac; P. Adderley; J. Brittian; J. Clark; T. Day; J. Grames; J. Hansknecht; M. Poelker; M. Stutzman; A. T. Wu; A. S. Terekhov

    2005-12-01

    Strained-layer GaAs and strained-superlattice GaAs photocathodes are used at Jefferson Laboratory to create high average current beams of highly spin-polarized electrons. High electron yield, or quantum efficiency (QE), is obtained only when the photocathode surface is atomically clean. For years, exposure to atomic hydrogen or deuterium has been the photocathode cleaning technique employed at Jefferson Laboratory. This work demonstrates that atomic hydrogen cleaning is not necessary when precautions are taken to ensure that clean photocathode material from the vendor is not inadvertently dirtied while samples are prepared for installation inside photoemission guns. Moreover, this work demonstrates that QE and beam polarization can be significantly reduced when clean high-polarization photocathode material is exposed to atomic hydrogen from an rf dissociator-style atomic hydrogen source. Surface analysis provides some insight into the mechanisms that degrade QE and polarization due to atomic hydrogen cleaning.

  13. Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production.

    PubMed

    Lin, Yongjing; Battaglia, Corsin; Boccard, Mathieu; Hettick, Mark; Yu, Zhibin; Ballif, Christophe; Ager, Joel W; Javey, Ali

    2013-01-01

    An amorphous Si thin film with TiO2 encapsulation layer is demonstrated as a highly promising and stable photocathode for solar hydrogen production. With platinum as prototypical cocatalyst, a photocurrent onset potential of 0.93 V vs RHE and saturation photocurrent of 11.6 mA/cm(2) are measured. Importantly, the a-Si photocathodes exhibit impressive photocurrent of ~6.1 mA/cm(2) at a large positive bias of 0.8 V vs RHE, which is the highest for all reported photocathodes at such positive potential. Ni-Mo alloy is demonstrated as an alternative low-cost catalyst with onset potential and saturation current similar to those obtained with platinum. This low-cost photocathode with high photovoltage and current is a highly promising photocathode for solar hydrogen production. PMID:24079390

  14. Kelvin probe studies of cesium telluride photocathode for the AWA photoinjector

    SciTech Connect

    Velazquez, D.; Wisniewski, E. E.; Yusof, Z.; Harkay, K.; Spentzouris, L.; Terry, J.

    2012-12-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (> 1%), is robust in a photoinjector, and long lifetime. This photocathode is fabricated in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch ({approx}50 nC) in a long bunch train. We present some results from a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV light exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  15. Characterization of quantum well structures using a photocathode electron microscope

    NASA Technical Reports Server (NTRS)

    Spencer, Michael G.; Scott, Craig J.

    1989-01-01

    Present day integrated circuits pose a challenge to conventional electronic and mechanical test methods. Feature sizes in the submicron and nanometric regime require radical approaches in order to facilitate electrical contact to circuits and devices being tested. In addition, microwave operating frequencies require careful attention to distributed effects when considering the electrical signal paths within and external to the device under test. An alternative testing approach which combines the best of electrical and optical time domain testing is presented, namely photocathode electron microscope quantitative voltage contrast (PEMQVC).

  16. RECENT PROGRESS ON THE DIAMOND AMPLIFIED PHOTO-CATHODE EXPERIMENT.

    SciTech Connect

    CHANG,X.; BEN-ZVI, I.; BURRILL, A.; GRIMES, J.; RAO, T.; SEGALOV, Z.; SMEDLEY, J.; WU, Q.

    2007-06-25

    We report recent progress on the Diamond Amplified Photo-cathode (DAP). The use of a pulsed electron gun provides detailed information about the DAP physics. The secondary electron gain has been measured under various electric fields. We have achieved gains of a few hundred in the transmission mode and observed evidence of emission of electrons from the surface. A model based on recombination of electrons and holes during generation well describes the field dependence of the gain. The emittance measurement system for the DAP has been designed, constructed and is ready for use. The capsule design of the DAP is also being studied in parallel.

  17. High voltage switch triggered by a laser-photocathode subsystem

    DOEpatents

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  18. Mechanism and Selectivity in Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides

    PubMed Central

    Biswas, Soumik; Weix, Daniel J.

    2013-01-01

    The direct cross-coupling of two different electrophiles, such as an aryl halide with an alkyl halide, offers many advantages over conventional cross-coupling methods that require a carbon nucleophile. Despite its promise as a versatile synthetic strategy, a limited understanding of the mechanism and origin of cross selectivity has hindered progress in reaction development and design. Herein, we shed light on the mechanism for the nickel-catalyzed cross-electrophile coupling of aryl halides with alkyl halides and demonstrate that the selectivity arises from an unusual catalytic cycle that combines both polar and radical steps to form the new C-C bond. PMID:23952217

  19. Polarization and charge limit studies of strained GaAs photocathodes

    SciTech Connect

    Saez, P.J.

    1997-03-01

    This thesis presents studies on the polarization and charge limit behavior of electron beams produced by strained GaAs photocathodes. These photocathodes are the source of high-intensity, high-polarization electron beams used for a variety of high-energy physics experiments at the Stanford Linear Accelerator Center. Recent developments on P-type, biaxially-strained GaAs photocathodes have produced longitudinal polarization in excess of 80% while yielding beam intensities of {approximately} 2.5 A/cm{sup 2} at an operating voltage of 120 kV. The SLAC Gun Test Laboratory, which has a replica of the SLAC injector, was upgraded with a Mott polarimeter to study the polarization properties of photocathodes operating in a high-voltage DC gun. Both the maximum beam polarization and the maximum charge obtainable from these photocathodes have shown a strong dependence on the wavelength of illumination, on the doping concentration, and on the negative electron affinity levels. The experiments performed for this thesis included studying the effects of temperature, cesiation, quantum efficiency, and laser intensity on the polarization of high-intensity beams. It was found that, although low temperatures have been shown to reduce the spin relaxation rate in bulk semiconductors, they don`t have a large impact on the polarization of thin photocathodes. It seems that the short active region in thin photocathodes does not allow spin relaxation mechanisms enough time to cause depolarization. Previous observations that lower QE areas on the photocathode yield higher polarization beams were confirmed. In addition, high-intensity, small-area laser pulses were shown to produce lower polarization beams. Based on these results, together with some findings in the existing literature, a new proposal for a high-intensity, high-polarization photocathode is given. It is hoped that the results of this thesis will promote further investigation on the properties of GaAs photocathodes.

  20. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOEpatents

    Joshi, Ashok V. (Salt Lake City, UT); Balagopal, Shekar (Sandy, UT); Pendelton, Justin (Salt Lake City, UT)

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  1. AlGaN/InGaN Photocathode Development

    SciTech Connect

    Buckley, J. H.; Leopold, D. J.

    2008-12-24

    An increase in quantum efficiency in photodetectors could result in a proportional reduction in the area of atmospheric Cherenkov telescopes and an even larger reduction in cost. We report on the development of high quantum efficiency, high gain, UV/blue photon-counting detectors based on AlGaN/InGaN photocathode heterostructures grown by molecular beam epitaxy. This research could eventually result in nearly ideal light detectors with a number of distinct advantages over existing technologies for numerous applications in high-energy physics and particle astrophysics. Potential advantages include much lower noise detection, better stability and radiation resistance than other cathode structures, high VUV sensitivity and very low radioactive background levels for deep underground experiments, and high detection efficiency for the detection of individual VUV-visible photons. We are also developing photocathodes with intrinsic gain, initially improving the detection efficiency of hybrid semiconductor-vacuum tube devices and eventually leading to a new type of all-solid-state photomultiplier device.

  2. Highly active oxide photocathode for photoelectrochemical water reduction

    NASA Astrophysics Data System (ADS)

    Paracchino, Adriana; Laporte, Vincent; Sivula, Kevin; Grätzel, Michael; Thimsen, Elijah

    2011-06-01

    A clean and efficient way to overcome the limited supply of fossil fuels and the greenhouse effect is the production of hydrogen fuel from sunlight and water through the semiconductor/water junction of a photoelectrochemical cell, where energy collection and water electrolysis are combined into a single semiconductor electrode. We present a highly active photocathode for solar H2 production, consisting of electrodeposited cuprous oxide, which was protected against photocathodic decomposition in water by nanolayers of Al-doped zinc oxide and titanium oxide and activated for hydrogen evolution with electrodeposited Pt nanoparticles. The roles of the different surface protection components were investigated, and in the best case electrodes showed photocurrents of up to -7.6?mA?cm-2 at a potential of 0?V versus the reversible hydrogen electrode at mild pH. The electrodes remained active after 1?h of testing, cuprous oxide was found to be stable during the water reduction reaction and the Faradaic efficiency was estimated to be close to 100%.

  3. AlGaN/InGaN Photocathode Development

    NASA Astrophysics Data System (ADS)

    Buckley, J. H.; Leopold, D. J.

    2008-12-01

    An increase in quantum efficiency in photodetectors could result in a proportional reduction in the area of atmospheric Cherenkov telescopes and an even larger reduction in cost. We report on the development of high quantum efficiency, high gain, UV/blue photon-counting detectors based on AlGaN/InGaN photocathode heterostructures grown by molecular beam epitaxy. This research could eventually result in nearly ideal light detectors with a number of distinct advantages over existing technologies for numerous applications in high-energy physics and particle astrophysics. Potential advantages include much lower noise detection, better stability and radiation resistance than other cathode structures, high VUV sensitivity and very low radioactive background levels for deep underground experiments, and high detection efficiency for the detection of individual VUV-visible photons. We are also developing photocathodes with intrinsic gain, initially improving the detection efficiency of hybrid semiconductor-vacuum tube devices and eventually leading to a new type of all-solid-state photomultiplier device.

  4. Large charge extraction from metallic multifilamentary Nb3Sn photocathode.

    PubMed

    Anghel, A; Ardana-Lamas, F; Le Pimpec, F; Hauri, C P

    2012-05-11

    The current density limit for photoemission from metals was measured in an rf photogun to be below 10(9)??A/m2. We have achieved 1.6×10(11)??A/m2 by photofield emission from a new type of photocathode made from a metallic-composite, multifilamentary Nb3Sn wire driven by a 266 nm picosecond laser pulse and a 2 ns, 50 kV accelerating voltage. This cathode has a micrometer arrayed structure with tens of thousands of Nb/Nb3Sn filaments embedded in a bronze matrix. Our measurements revealed the existence of a new electron emission regime at high laser fluence (100??mJ/cm2). We have extracted stably, and without any surface ablation, up to 4800 pC of charge. This corresponds to 0.9% quantum efficiency, 100 times larger than what is measured from conventional metallic photocathodes. The unexpected large and stable charge extraction cannot be explained by the 3-step model. Thanks to the small emitting area, the measured emittance (0.6??mm·mrad) is low in spite of the high current density and space charge effects. This cathode will be of benefit for many applications based on short and bright electron bunches. PMID:23003048

  5. Highly active oxide photocathode for photoelectrochemical water reduction.

    PubMed

    Paracchino, Adriana; Laporte, Vincent; Sivula, Kevin; Grätzel, Michael; Thimsen, Elijah

    2011-06-01

    A clean and efficient way to overcome the limited supply of fossil fuels and the greenhouse effect is the production of hydrogen fuel from sunlight and water through the semiconductor/water junction of a photoelectrochemical cell, where energy collection and water electrolysis are combined into a single semiconductor electrode. We present a highly active photocathode for solar H(2) production, consisting of electrodeposited cuprous oxide, which was protected against photocathodic decomposition in water by nanolayers of Al-doped zinc oxide and titanium oxide and activated for hydrogen evolution with electrodeposited Pt nanoparticles. The roles of the different surface protection components were investigated, and in the best case electrodes showed photocurrents of up to -7.6 mA cm(-2) at a potential of 0 V versus the reversible hydrogen electrode at mild pH. The electrodes remained active after 1 h of testing, cuprous oxide was found to be stable during the water reduction reaction and the Faradaic efficiency was estimated to be close to 100%. PMID:21552270

  6. Controlling Metal-Halide Vapor Density in Lasers

    NASA Technical Reports Server (NTRS)

    Pivirotto, T. J.

    1984-01-01

    Streams of buffer gas convect and dilute metal-halide vapor. Technique uses flow of buffer gas through reservoir, which contains heated metal halide, to convect vapors into discharge tube. Second stream of buffer gas dilutes vapor. Final vapor density in laser tube controlled and changed by adjusting either one or both of buffer gas flow rates.

  7. Magnesium-based photocathodes for triggering back-lighted thyratrons

    NASA Astrophysics Data System (ADS)

    Sozer, Esin B.

    This dissertation presents experimental studies of application of magnesium-based photocathodes to optically triggered pseudospark switches, called back-lighted thyratrons (BLTs). Magnesium was chosen as a low work function metal photocathode for its potential to increase triggering performance of the switch with a higher photoemission performance than traditional BLT cathodes. Improvement in triggering performance of plasma switches is of interest for device development of compact pulsed power systems where the size of switching units can limit the overall size and the mobility of the system. Experiments were conducted on photoemission performance of photocathode candidates under BLT-relevant conditions; and delay and jitter performance of a BLT with photocathode candidates with changing helium pressure and switch voltages. A review of photocathode literature showed that Mg and Cu are the most promising candidates for increasing the photoemission during the triggering of BLTs. As a commonly used BLT cathode in the switch literature, Mo was chosen together with Mg and Cu to be tested under BLT-relevant pressure and field conditions. Quantum efficiency measurements of high-purity foils of Mg, Cu and Mo showed a superior performance of Mg and Cu over Mo. Mg had the highest quantum efficiency of 1.5 x 10-5 among all three materials. After photoemission measurements in a test bed were concluded, testing of these cathodes for their switching performance was done in two stages. First, an unfocused UV laser beam (8.5 x 106 W/cm 2) with a wavelength of 266 nm was used for delay measurements of a BLT with Mg, Cu and Mo-based cathodes. Mg-based cathodes showed at least a thirty-fold reduction in delay and jitter compared to Cu-based and at least an eighty-fold reduction in delay and jitter compared to Mo-based cathodes at any given helium pressure and switch voltage pair. Subsequently, a partial focusing of the same light source was utilized (7.4 x 107W/cm 2) for delay measurements of a BLT with copper electrodes at constant switch voltage and changing helium pressure before and after integration of a Mg foil. These measurements showed an order of magnitude shorter delay and jitter throughout the pressure range when the high-purity Mg-foil was present at the switch cathode. Theoretical estimations of electron emission from the cathode during the triggering suggested that the main mechanism responsible for the observed change in delay and jitter was the increased photoemission due to the lower work function of the Mg cathode and that the effect of temperature on triggering is negligible. SEM images of the high-purity Mg foil integrated at the BLT cathode for 106 shots showed signs of melting around the bore hole. No degradation of the switch performance was observed for the duration of 10 6 shots. In conclusion, magnesium-based cathodes for BLTs showed an important potential for small triggering units for optical triggering, especially when the intensity of the optical source is limited. A future work involving plasma simulations is suggested for assessing potential of different cathode/optical source pairs for triggering BLTs.

  8. Surface Science Analysis of GaAs Photocathodes Following Sustained Electron Beam Delivery

    SciTech Connect

    Shutthanandan, V.; Zhu, Zihua; Stutzman, Marcy L.; Hannon, Fay; Hernandez-Garcia, Carlos; Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai; Hess, Wayne P.

    2012-06-12

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Several photocathode degradation processes are suspected, including defect formation by ion back bombardment, photochemistry of surface adsorbed species and irradiation-induced surface defect formation. To better understand the mechanisms of photocathode degradation, we have conducted surface and bulk analysis studies of two GaAs photocathodes removed from the FEL photoinjector after delivering electron beam for a few years. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, strained super-lattice GaAs photocathode samples, removed from the CEBAF photoinjector were analyzed using Transmission Electron Microscopy (TEM) and SIMS. This analysis of photocathode degradation during nominal photoinjector operating conditions represents first steps towards developing robust new photocathode designs necessary for generating sub-micron emittance electron beams required for both fourth generation light sources and intense polarized CW electron beams for nuclear and high energy physics facilities.

  9. Observation of Significant Quantum Efficiency Enhancement from a Polarized Photocathode with Distributed Brag Reflector

    SciTech Connect

    Zhang, Shukui; Poelker, Matthew; Stutzman, Marcy L.; Chen, Yiqiao; Moy, Aaron

    2015-09-01

    Polarized photocathodes with higher Quantum efficiency (QE) would help to reduce the technological challenge associated with producing polarized beams at milliampere levels, because less laser light would be required, which simplifies photocathode cooling requirements. And for a given amount of available laser power, higher QE would extend the photogun operating lifetime. The distributed Bragg reflector (DBR) concept was proposed to enhance the QE of strained-superlattice photocathodes by increasing the absorption of the incident photons using a Fabry-Perot cavity formed between the front surface of the photocathode and the substrate that includes a DBR, without compromising electron polarization. Here we present recent results showing QE enhancement of a GaAs/GaAsP strained-superlattice photocathode made with a DBR structure. Typically, a GaAs/GaAsP strained-superlattice photocathode without DBR provides a QE of 1%, at a laser wavelength corresponding to peak polarization. In comparison, the GaAs/GaAsP strained-superlattice photocathodes with DBR exhibited an enhancement of over 2 when the incident laser wavelength was tuned to meet the resonant condition for the Fabry-Perot resonator.

  10. Nanoscale investigation of organic - inorganic halide perovskites

    NASA Astrophysics Data System (ADS)

    Cacovich, S.; Divitini, G.; Vru?ini?, M.; Sadhanala, A.; Friend, R. H.; Sirringhaus, H.; Deschler, F.; Ducati, C.

    2015-10-01

    Over the last few years organic - inorganic halide perovskite-based solar cells have exhibited a rapid evolution, reaching certified power conversion efficiencies now surpassing 20%. Nevertheless the understanding of the optical and electronic properties of such systems on the nanoscale is still an open problem. In this work we investigate two model perovskite systems (based on iodine - CH3NH3PbI3 and bromine - CH3NH3PbBr3), analysing the local elemental composition and crystallinity and identifying chemical inhomogeneities.

  11. 10 CFR 429.54 - Metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Metal halide lamp ballasts and fixtures. 429.54 Section... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.54 Metal halide lamp ballasts... are applicable to metal halide lamp ballasts; and (2) For each basic model of metal halide...

  12. 10 CFR 429.54 - Metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Metal halide lamp ballasts and fixtures. 429.54 Section... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.54 Metal halide lamp ballasts... are applicable to metal halide lamp ballasts; and (2) For each basic model of metal halide...

  13. 10 CFR 429.54 - Metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Metal halide lamp ballasts and fixtures. 429.54 Section... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.54 Metal halide lamp ballasts... are applicable to metal halide lamp ballasts; and (2) For each basic model of metal halide...

  14. A novel system for measurement of the transverse electron momentum distribution from photocathodes

    SciTech Connect

    Feng, J.; Nasiatka, J.; Wan, W.; Padmore, H. A.; Vecchione, T.

    2015-01-15

    The transverse momentum of electrons produced by a photocathode contributes significantly to the performance of several different types of accelerator-based light sources, such as Free Electron Lasers, as well as systems designed for ultrafast electron diffraction and dynamic transmission electron microscopy. Minimization of the transverse emittance from photocathodes is the subject of intensive research, and therefore measurement of this parameter is of great importance. Here, we describe a simple system that offers real time measurements of transverse emittance and can be easily integrated into the photocathode fabrication process.

  15. Chemical trends in halide perovskite electronic properties

    NASA Astrophysics Data System (ADS)

    Lambrecht, Walter; Huang, Ling-Yi

    2015-03-01

    The halide perovskites ABX3 with B = Pb or Sn, X=I, and A=Cs or methylammionium (MA), have recently attracted attention as solar cell materials. We discuss the basic bonding, stability and electronic band structure of these materials for different chemical substitutions using first-principles calculations. An important feature of the Pb and Sn based halides is that these element's s-electrons strongly hybridize with the halogen p-orbitals leading to a valence band maximum with strong Sn or Pb- s character and small effective mass. The conduction band minimum is Sn or Pb p-like. We present trends in the electronic band structure with the halogen X = I, Br, Cl and the B cation Pb, Sn, Ge, Si. The gap is remarkably insensitive because of the opposing trends of the increased spin-orbit coupling for heavier elements (reducing the gap) and the decreased valence band width for heaver elements due to the larger B-X distance, which increases the gap. The stability of the perovskite structure vs. competing structures is influenced by the tolerance factor t =RAC /?{ 2}RBC . The smaller this factor, the least stable is the perovskite structure. CsSiI3 is found to be a topological insulator. Its stability with respect to CsI and SiIn is discussed. Supported by DOE-BES, No. ER 46874-SC0008933.

  16. Methyl halide production associated with kelp

    NASA Technical Reports Server (NTRS)

    Dastoor, Minoo N.; Manley, Steven L.

    1985-01-01

    Methyl halides (MeX) are important trace constituents of the atmosphere because they, mostly MeCl, have a major impact on the atmospheric ozone layer. Also, MeCl may account for 5 pct. of the total Cl budget and MeI may have a central role in the biogeochemical cycling of iodine. High MeI concentrations were found in seawater from kelp beds and it has been suggested that MeI is produced by kelps and that MeI and MeBr along with numerous other halocarbons were released by non-kelp marine macroalgae. The objective was to determine if kelps (and other seaweeds) are sources of MeX and to assess their contribution to the estimated global source strength (EGSS) of MeX. Although the production of MeX appears to be associated with kelp, microbes involved with kelp degradation also produce MeX. Microbial MeX production may be of global significance. The microbial MeX production potential, assuming annual kelp production equals kelp degradation and 100 pct. conversion of kelp halides to MeX, is approx. 2 x the EGSS. This is not achieved but indicates that microbial production of MeX may be of global significance.

  17. Reproducible, rugged, and inexpensive photocathode x-ray diode

    SciTech Connect

    Idzorek, G. C.; Tierney, T. E.; Lockard, T. E.; Moy, K. J.; Keister, J. W.

    2008-10-15

    The photoemissive cathode type of x-ray diode (XRD) is popular for measuring time and spectrally resolved output of pulsed power experiments. Vitreous carbon XRDs currently used on the Sandia National Laboratories Z-machine were designed in the early 1980s and use materials and processes no longer available. Additionally cathodes used in the high x-ray flux and dirty vacuum environment of a machine such as Z suffer from response changes requiring recalibration. In searching for a suitable replacement cathode, we discovered very high purity vitreous-carbon planchets are commercially available for use as biological substrates in scanning electron microscope (SEM) work. After simplifying the photocathode mounting to use commercially available components, we constructed a set of 20 XRDs using SEM planchets that were then calibrated at the National Synchrotron Light Source at Brookhaven National Laboratory. We present comparisons of the reproducibility and absolute calibrations between the current vitreous-carbon XRDs and our new design.

  18. High-power fiber lasers for photocathode electron injectors

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi; Bartnik, Adam; Wise, Frank W.; Bazarov, Ivan V.; Dunham, Bruce M.

    2014-05-01

    Many new applications for electron accelerators require high-brightness, high-average power beams, and most rely on photocathode-based electron injectors as a source of electrons. To achieve such a photoinjector, one requires both a high-power laser system to produce the high average current beam, and also a system at reduced repetition rate for electron beam diagnostics to verify high beam brightness. Here we report on two fiber laser systems designed to meet these specific needs, at 50 MHz and 1.3 GHz repetition rate, together with pulse pickers, second harmonic generation, spatiotemporal beam shaping, intensity feedback, and laser beam transport. The performance and flexibility of these laser systems have allowed us to demonstrate electron beam with both low emittance and high average current for the Cornell energy recovery linac.

  19. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  20. Optical detection of alkali compounds

    SciTech Connect

    Oldenborg, R.C.; Baughcum, S.L.

    1984-01-01

    The objective of this program is to develop a laser-based optical diagnostic technique, which should be applicable to the direct monitoring of trace levels of alkali compounds within the stream of a coal gasifier. The diagnostic is based on the observation that atomic emission is detected from alkali metals upon ultraviolet photodissociation of the parent compound. From the intensity of the atomic emission, the known absorption cross section of the parent compound, and the laser fluence, the concentration of the alkali compounds can be determined over an extreme range of conditions and their chemistry can be elucidated. KCl vapor was irradiated with an ArF laser that was Raman-shifted in both H/sub 2/ and D/sub 2/. The 766.5-nm atomic potassium emission (4/sup 2/P) was observed for all excitation wavelengths between 193 and 255 nm. The relative production efficiency drops dramatically for energies below the calculated threshold wavelength of 207 nm. An absolute detection sensitivity for KCl was determined at 0.2 ppB, which is better than required for anticipated fossil fuel monitoring applications. 5 figures.

  1. Spectral response, carrier lifetime, and photocurrents of SiC photocathodes

    NASA Astrophysics Data System (ADS)

    Kato, Masashi; Miyake, Keiko; Yasuda, Tomonari; Ichimura, Masaya; Hatayama, Tomoaki; Ohshima, Takeshi

    2016-01-01

    Silicon carbide (SiC) photocathode is one of the candidates for energy conversion from the solar light to hydrogen gas. The conversion efficiencies using SiC photocathodes are still low for practical use. In this study, to find origins of low conversion efficiency, we evaluated carrier lifetimes and depletion layer widths in SiC photocathodes and examined relationship of them with photocurrents. In addition, we observed spectral response of the photocurrents from the photocathodes. From these results, we found that enhancement of the carrier lifetime and the depletion layer width is effective for increase of the conversion efficiency for 4H- and 6H-SiC. 3C-SiC would have defects reducing the effective carrier lifetime, and thus decrease of such defects is essential for increase of the conversion efficiency using 3C-SiC.

  2. Towards a Robust, Efficient Dispenser Photocathode: the Effect of Recesiation on Quantum Efficiency

    SciTech Connect

    Montgomery, Eric J.; Pan Zhigang; Leung, Jessica; Feldman, Donald W.; O'Shea, Patrick G.; Jensen, Kevin L.

    2009-01-22

    Future electron accelerators and Free Electron Lasers (FELs) require high brightness electron sources; photocathodes for such devices are challenged to maintain long life and high electron emission efficiency (high quantum efficiency, or QE). The UMD dispenser photocathode design addresses this tradeoff of robustness and QE. In such a dispenser, a cesium-based surface layer is deposited on a porous substrate. The surface layer can be replenished from a subsurface cesium reservoir under gentle heating, allowing cesium to diffuse controllably to the surface and providing demonstrably more robust photocathodes. In support of the premise that recesiation is able to restore contaminated photocathodes, we here report controlled contamination of cesium-based surface layers with subsequent recesiation and the resulting effect on QE. Contaminant gases investigated include examples known from the vacuum environment of typical electron guns.

  3. Evaluation of chemical cleaning for Ga1-xAlxAs photocathode by spectral response

    NASA Astrophysics Data System (ADS)

    Chen, Xinlong; Chang, Benkang; Zhao, Jing; Hao, Guanghui; Jin, Muchun; Xu, Yuan

    2013-11-01

    The spectral response has been used to evaluate the chemical cleaning for Ga1-xAlxAs photocathode by an on-line spectral response measurement system. The spectral response curves of Ga1-xAlxAs photocathodes treated by different chemical cleaning methods are measured and analyzed in detail. We use the quantum efficiency formulas to fit the experimental curves transforming from the spectral response curves, and obtain the related performance parameters such as the surface electron escape probability, the back-interface recombination velocity, the electron diffusion length, and the thickness of the etching GaAs layer. The results show that the GaAs photocathode cleaned by the HF solution could obtain a good photoemission effect, while the Ga0.37Al0.63As photocathode could be well cleaned by the solution of sulfuric acid and hydrogen peroxide.

  4. Position-Sensitive Detector with GaAs photocathode and high time resolution

    SciTech Connect

    De-Bur, Vjacheslav; Beskin, Grigory; Karpov, Sergey; Plokhotnichenko, Vladimir; Terekhov, Alexander; Kosolobov, Sergey; Sheibler, Heinrich

    2008-02-22

    The Position-Sensitive Detector (PSD) on base of GaAs photocathode and microchannel plate set has been developed. PSD consists of thick semi-conductor photocathode with quantum efficiency about 48% in the range of 4000-7500 A, two micro-channel plates, and 16-electrode collector. The detector has spatial resolution of 20-40 microns for about 5{center_dot}10{sup 2} pixels, time resolution of 1 {mu}s and effective sensitivity up to 35%.

  5. High stability of negative electron affinity gallium arsenide photocathodes activated with Cs and NF3

    NASA Astrophysics Data System (ADS)

    Chanlek, N.; Herbert, J. D.; Jones, R. M.; Jones, L. B.; Middleman, K. J.; Militsyn, B. L.

    2015-09-01

    In this paper we report the first time demonstration under extremely high vacuum (XHV) conditions of the influence of O2, CO2, CO, N2, H2 and CH4 on the quantum efficiency (QE) of negative electron affinity (NEA) gallium arsenide (GaAs) photocathodes activated with Cs and NF3. The photocathodes were exposed to a small quantity (<0.25 Langmuirs) of each gas species under test in a vacuum chamber with a typical base pressure of 1.5× {{10}-11} mbar, thereby minimising the influence of the residual gas in the photocathode response. It was found that exposure to N2, H2 and CH4 does not affect the QE of the photocathodes, whereas exposure to O2 and CO2 lead to a substantial reduction in the QE of the photocathodes. Only small degradation in the QE under CO exposure was observed. Compared to those activated with Cs and O2 in our previous study [1], photocathodes activated with Cs and NF3 are more stable, especially under exposure to CO.

  6. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  7. Topological insulator phase in halide perovskite structures

    NASA Astrophysics Data System (ADS)

    Jin, Hosub; Im, Jino; Freeman, Arthur J.

    2012-09-01

    Topological insulators are a novel quantum state of matter that reveals their properties and shows exotic phenomena when combined with other phases. Hence, priority has been given to making a good quality topological insulator interface with other compounds. From the applications point of view, the topological insulator phase in perovskite structures could be important to provide the various heterostructure interfaces with multifunctional properties. Here, by performing a tight-binding analysis and first-principles calculations, we predict that cubic-based CsPbI3 and CsSnI3 perovskite compounds under reasonable hydrostatic pressure are feasible candidates for three-dimensional topological insulators. Combined with cubic symmetry, the spin and total angular momentum doublets forming the valence and conduction bands result in a prototype of a continuum model, representing three-dimensional isotropic Dirac fermions, and govern the topological phase transition in halide perovskite materials.

  8. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  9. Resolution characteristics of graded band-gap reflection-mode AlGaAs/GaAs photocathodes

    NASA Astrophysics Data System (ADS)

    Deng, Wenjuan; Zhang, Daoli; Zou, Jijun; Peng, Xincun; Wang, Weilu; Zhang, Yijun; Chang, Benkang

    2015-12-01

    The modulation transfer function (MTF) of graded band-gap AlGaAs/GaAs reflection-mode photocathodes was determined using two-dimensional Poisson and continuity equations through numerical method. Based on the MTF model, we calculated the theoretical MTF of graded and uniform band-gap reflection-mode photocathodes. We then analyzed the effects of Al composition, wavelength of incident photon, and thicknesses of AlGaAs and GaAs layer on the resolution. Calculation results show that graded band-gap structures can increase the resolution of reflection-mode photocathodes. When the spatial frequency is 800 lp/mm and wavelength is 600 nm, the resolution of graded band-gap photocathodes generally increases by 15.4-29.6%. The resolution improvement of graded band-gap photocathodes is attributed to the fact that the built-in electric field in graded band-gap photocathodes reduces the lateral diffusion distance of photoelectrons.

  10. Cross-coupling reactions of unactivated alkyl halides

    E-print Network

    Zhou, Jianrong (Jianrong Steve)

    2005-01-01

    My graduate research at MIT has been focused on the development of palladium- or nickel-catalyzed cross-coupling reactions using unactivated alkyl electrophiles (e.g., halides and sulfonates). Although aryl and alkenyl ...

  11. Study of methyl halide fluxes in temperate and tropical ecosystems 

    E-print Network

    Blei, Emanuel

    2010-01-01

    CH3Br and CH3Cl (methyl halides) are the most abundant natural vectors of bromine and chlorine into the stratosphere and play an important role in stratospheric ozone destruction. The current knowledge of their respective ...

  12. Tellurite glass as a waste form for mixed alkali-chloride waste streams: Candidate materials selection and initial testing

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Rieck, Bennett T.; McCloy, John S.; Crum, Jarrod V.; Sundaram, S. K.; Vienna, John D.

    2012-05-01

    Tellurite glasses have historically been shown to host large concentrations of halides. They are here considered for the first time as a waste form for immobilizing chloride wastes, such as may be generated in the proposed molten alkali salt electrochemical separations step in nuclear fuel reprocessing. Key properties of several tellurite glasses are determined to assess acceptability as a chloride waste form. TeO2 glasses with other oxides (PbO, Al2O3 + B2O3, WO3, P2O5, or ZnO) were fabricated with and without 10 mass% of a simulated (non-radioactive) mixed alkali, alkaline-earth, and rare earth chloride waste. Measured chemical durability is compared for the glasses, as determined by the product consistency test (PCT), a common standardized chemical durability test often used to validate borosilicate glass waste forms. The glass with the most promise as a waste form is the TeO2-PbO system, as it offers good halide retention, a low sodium release (by PCT) comparable with high-level waste silicate glass waste forms, and a high storage density.

  13. Purification and Characterization of an Extracellular, Thermo-Alkali-Stable, Metal Tolerant Laccase from Bacillus tequilensis SN4

    PubMed Central

    Sondhi, Sonica; Sharma, Prince; Saini, Shilpa; Puri, Neena; Gupta, Naveen

    2014-01-01

    A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC) was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (kcat/Km) showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibited by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and ?-mercaptoethanol. SN4LAC was found to be highly thermostable, having temperature optimum at 85°C and could retain more than 80% activity at 70°C for 24 h. The optimum pH of activity for 2, 6-dimethoxyphenol, 2, 2?-azino bis[3-ethylbenzthiazoline-6-sulfonate], syringaldazine and guaiacol was 8.0, 5.5, 6.5 and 8.0 respectively. Enzyme was alkali-stable as it retained more than 75% activity at pH 9.0 for 24 h. Activity of the enzyme was significantly enhanced by Cu2+, Co2+, SDS and CTAB, while it was stable in the presence of halides, most of the other metal ions and surfactants. The extracellular nature and stability of SN4LAC in extreme conditions such as high temperature, pH, heavy metals, halides and detergents makes it a highly suitable candidate for biotechnological and industrial applications. PMID:24871763

  14. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Substituted halogenated pyridinol, alkali salt. 721.8900 Section 721.8900 ...Substituted halogenated pyridinol, alkali salt. (a) Chemical substances and significant...substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and...

  15. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Substituted naphthalenesulfonic acid, alkali salt. 721.5278 Section 721.5278 ...Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical substance and significant...substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to...

  16. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Substituted halogenated pyridinol, alkali salt. 721.8900 Section 721.8900 ...Substituted halogenated pyridinol, alkali salt. (a) Chemical substances and significant...substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and...

  17. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Substituted naphthalenesulfonic acid, alkali salt. 721.5278 Section 721.5278 ...Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical substance and significant...substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to...

  18. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Alkali metal alkyl borohydride (generic). 721...Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a...substance identified generically as alkali metal alkyl borohydride (PMN...

  19. Genetic control of methyl halide production in Arabidopsis.

    PubMed

    Rhew, Robert C; Østergaard, Lars; Saltzman, Eric S; Yanofsky, Martin F

    2003-10-14

    Methyl chloride (CH(3)Cl) and methyl bromide (CH(3)Br) are the primary carriers of natural chlorine and bromine, respectively, to the stratosphere, where they catalyze the destruction of ozone, whereas methyl iodide (CH(3)I) influences aerosol formation and ozone loss in the boundary layer. CH(3)Br is also an agricultural pesticide whose use is regulated by international agreement. Despite the economic and environmental importance of these methyl halides, their natural sources and biological production mechanisms are poorly understood. Besides CH(3)Br fumigation, important sources include oceans, biomass burning, tropical plants, salt marshes, and certain crops and fungi. Here, we demonstrate that the model plant Arabidopsis thaliana produces and emits methyl halides and that the enzyme primarily responsible for the production is encoded by the HARMLESS TO OZONE LAYER (HOL) gene. The encoded protein belongs to a group of methyltransferases capable of catalyzing the S-adenosyl-L-methionine (SAM)-dependent methylation of chloride (Cl(-)), bromide (Br(-)), and iodide (I(-)) to produce methyl halides. In mutant plants with the HOL gene disrupted, methyl halide production is largely eliminated. A phylogenetic analysis with the HOL gene suggests that the ability to produce methyl halides is widespread among vascular plants. This approach provides a genetic basis for understanding and predicting patterns of methyl halide production by plants. PMID:14561407

  20. The Surface Activation Layer of GaAs Negative Electron Affinity Photocathode Activated by Cs, Li and NF3

    SciTech Connect

    Sun, Yun; Kirby, R.E.; Maruyama, T.; Mulhollan, G.A.; Bierman, J.C.; Pianetta, P.; /SLAC, SSRL

    2009-12-11

    The lifetime of GaAs photocathodes can be greatly improved by introducing Li in the Cs+NF{sub 3} activation process. The surface activation layer of such photocathodes is studied by synchrotron radiation photoemission and is compared with GaAs photocathodes activated without Li. The charge distributions of N, F and Cs experience significant changes when Li is added in the activation. In addition, the presence of Li causes NF{sub x} molecules to take an orientation with F atoms on top. All these changes induced by Li hold the key for the lifetime improvement of GaAs photocathodes.

  1. Metal-nonmetal transition in indium-alkali metal and aluminum-alkali metal melts

    NASA Astrophysics Data System (ADS)

    Kiselev, A. I.

    2012-02-01

    The electrical resistivities of indium-alkali metal and aluminum-alkali metal melts are calculated. The Ziman theory of the electrical conductivity of metallic melts is shown to successfully describe the experimental effects of an increase in the electrical resistivity during a metal-nonmetal transition in the indium-alkali metal systems. This theory also predicts similar qualitative effects of a change in the electrical resistivities of aluminum-alkali metal melts. The melts of aluminum-alkali metal systems are assumed to undergo a metal-nonmetal transition.

  2. 10 CFR Appendix C to Subpart S of... - Enforcement for Performance Standards; Compliance Determination Procedure for Metal Halide Lamp...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...Compliance Determination Procedure for Metal Halide Lamp Ballasts C Appendix C to...CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures Pt...Compliance Determination Procedure for Metal Halide Lamp Ballasts DOE will...

  3. 10 CFR 431.324 - Uniform test method for the measurement of energy efficiency of metal halide ballasts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...the measurement of energy efficiency of metal halide ballasts. 431.324 Section...CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures Test...the measurement of energy efficiency of metal halide ballasts. (a) Scope....

  4. Search for improved-performance scintillator candidates among the electronic structures of mixed halides

    NASA Astrophysics Data System (ADS)

    Li, Qi; Williams, Richard T.; Burger, Arnold; Adhikari, Rajendra; Biswas, Koushik

    2014-09-01

    The application of advanced theory and modeling techniques has become an essential component to understand material properties and hasten the design and discovery of new ones. This is true for diverse applications. Therefore, current efforts aimed towards finding new scintillator materials are also aligned with this general predictive approach. The need for large scale deployment of efficient radiation detectors requires discovery and development of high-performance, yet low-cost, scintillators. While Tl-doped NaI and CsI are still some of the widely used scintillators, there are promising new developments, for example, Eu-doped SrI2 and Ce-doped LaBr3. The newer candidates have excellent light yield and good energy resolution, but challenges persist in the growth of large single crystals. We will discuss a theoretical basis for anticipating improved proportionality as well as light yield in solid solutions of certain systems, particularly alkali iodides, based on considerations of hot-electron group velocity and thermalization. Solid solutions based on NaI and similar alkali halides are attractive to consider in more detail because the end point compositions are inexpensive and easy to grow. If some of this quality can be preserved while reaping improved light yield and possibly improved proportionality of the mixture, the goal of better performance at the low price of NaI:Tl might be attainable by such a route. Within this context, we will discuss a density functional theory (DFT) based study of two prototype systems: mixed anion NaIxBr1-x and mixed cation NaxK1-xI. Results obtained from these two prototype candidates will lead to further targeted theoretical and experimental search and discovery of new scintillator hosts.

  5. Organic-inorganic lead halide perovskite solar cell materials: A possible stability problem

    NASA Astrophysics Data System (ADS)

    Schoonman, J.

    2015-01-01

    The methyl ammonium lead halides are promising visible-light absorbers for application in solar cells. The most common synthetic routes use the solid binary halides as one of the starting compounds. These binary lead halides exhibit photodecomposition. In view of the perovskite crystal structure of the methyl ammonium lead halides, it is possible that also here the lead halide parts may exhibit photodecomposition. The mechanism of the photodecomposition of the binary lead halides is presented in detail. Based on this mechanism the trapping of photo-generated electrons on the lead ions in these perovskite materials should be studied in detail.

  6. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    SciTech Connect

    Carlos Hernandez-Garcia, Fay Hannon, Marcy Stutzman, V. Shutthanandan, Z. Zhu, M. Nandasri, S. V. Kuchibhatla, S. Thevuthasan, W. P. Hess

    2012-06-01

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Photocathode quantum efficiency (QE) degradation is due to residual gasses in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes, which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector and one unused, were also analyzed using Transmission Electron Microscopy (TEM) and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but shows evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.

  7. The alkali metals: 200 years of surprises.

    PubMed

    Dye, James L

    2015-03-13

    Alkali metal compounds have been known since antiquity. In 1807, Sir Humphry Davy surprised everyone by electrolytically preparing (and naming) potassium and sodium metals. In 1808, he noted their interaction with ammonia, which, 100 years later, was attributed to solvated electrons. After 1960, pulse radiolysis of nearly any solvent produced solvated electrons, which became one of the most studied species in chemistry. In 1968, alkali metal solutions in amines and ethers were shown to contain alkali metal anions in addition to solvated electrons. The advent of crown ethers and cryptands as complexants for alkali cations greatly enhanced alkali metal solubilities. This permitted us to prepare a crystalline salt of Na(-) in 1974, followed by 30 other alkalides with Na(-), K(-), Rb(-) and Cs(-) anions. This firmly established the -1 oxidation state of alkali metals. The synthesis of alkalides led to the crystallization of electrides, with trapped electrons as the anions. Electrides have a variety of electronic and magnetic properties, depending on the geometries and connectivities of the trapping sites. In 2009, the final surprise was the experimental demonstration that alkali metals under high pressure lose their metallic character as the electrons are localized in voids between the alkali cations to become high-pressure electrides! PMID:25666067

  8. Properties of mixed alkali germanate glasses

    NASA Astrophysics Data System (ADS)

    Ashton-Patton, Melissann Marie

    There is little data in the literature pertaining to mixed alkali germanate glasses. The majority of the data exists for the sodium-potassium-germanate glasses, and focuses on the density, glass transition temperature and vibrational spectra. This study explores three of the ten possible mixed alkali germanate glass systems: the lithium-cesium-germanium ternary, the sodium-potassium-germanium ternary, and the potassium-rubidium-germanium ternary. The mixed alkali effect was examined at two different concentrations of germania (85 and 90 mol %). To examine the mixed alkali effect on the germanate anomaly, the alkali oxides were held in a ratio of 1:1 and the germanium was varied from 100 to 75 mol %. The glass transition temperature and densities behavior of the mixed alkali germanate glasses in this study behaved as expected, exhibiting a maximum in Tg and no mixed alkali effect in density. The glasses with a 1:1 ratio of alkali exhibited properties between the end member glasses. The infrared spectra from this study show that the hydroxyl content increases as the amount of alkali in the glass increases. The cation identity does effect the band positions and intensities. The infrared bands between 1500 and 4000 cm-1 are shown to be a result of water. Electrical conductivity of mixed alkali germanate glasses exhibited unique behavior. Small additions of alkali (? 5 mol %) result in a positive or a linear deviation from additivity, in both the lithium-cesium-germanate system and the sodium-potassium-germanate system. With 10 mol % alkali oxide addition the deviation from additivity increases as the radius ratio of the cations increases. However, with 15 mol % alkali oxide addition, the greater the difference in the radius ratio of the cations, the smaller the deviation from additivity. A Kissinger study on the lithium-cesium-germanate glasses, yields activation energies consistent with crystallization studies in the literature for other mixed alkali germanate glasses. Glasses with a 1:1 ratio of cesium oxide to lithium oxide, or more cesium oxide than lithium oxide, crystallize into cesium germanium oxide crystals, however if there is more lithium the glasses crystallize into an unknown phase.

  9. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D. (Lockport, IL); McPheeters, Charles C. (Plainfield, IL)

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  10. A cesium bromide photocathode excited by 405?nm radiation

    SciTech Connect

    Maldonado, J. R.; Cheng, Y. T.; Pease, Fabian W.; Hesselink, L.; Pianetta, P.

    2014-07-14

    In several applications, such as electron beam lithography and X-ray differential phase contrast imaging, there is a need for a free electron source with a current density at least 10?A/cm{sup 2} yet can be shaped with a resolution down to 20?nm and pulsed. Additional requirements are that the source must operate in a practical demountable vacuum (>1e-9?Torr) and be reasonably compact. In prior work, a photocathode comprising a film of CsBr on metal film on a sapphire substrate met the requirements except it was bulky because it required a beam (>10?W/cm{sup 2}) of 257?nm radiation. Here, we describe an approach using a 405?nm laser which is far less bulky. The 405?nm laser, however, is not energetic enough to create color centers in CsBr films. The key to our approach is to bombard the CsBr film with a flood beam of about 1?keV electrons prior to operation. Photoelectron efficiencies in the range of 100–1000?nA/mW were demonstrated with lifetimes exceeding 50?h between electron bombardments. We suspect that the electron bombardment creates intraband color centers whence electrons can be excited by the 405?nm photons into the conduction band and thence into the vacuum.

  11. Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Hidding, B.; Rosenzweig, J. B.; Xi, Y.; O'Shea, B.; Andonian, G.; Schiller, D.; Barber, S.; Williams, O.; Pretzler, G.; Königstein, T.; Kleeschulte, F.; Hogan, M. J.; Litos, M.; Corde, S.; White, W. W.; Muggli, P.; Bruhwiler, D. L.; Lotov, K.

    2012-12-01

    An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed "Trojan Horse" acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment "E-210: Trojan Horse Plasma Wakefield Acceleration" has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.

  12. Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration

    SciTech Connect

    Hidding, B.; Rosenzweig, J. B.; Xi, Y.; O'Shea, B.; Andonian, G.; Schiller, D.; Barber, S.; Williams, O.; Pretzler, G.; Koenigstein, T.; Kleeschulte, F.; Hogan, M. J.; Litos, M.; Corde, S.; White, W. W.; Muggli, P.; Bruhwiler, D. L.; Lotov, K.

    2012-12-21

    An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed 'Trojan Horse' acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment 'E-210: Trojan Horse Plasma Wakefield Acceleration' has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.

  13. Superlattice Photocathodes for Accelerator-Based Polarized Electron Source Applications

    SciTech Connect

    Clendenin, James E

    1999-03-22

    A major improvement in the performance of the SLC was achieved with the introduction of thin strained-layer semiconductor crystals. After some optimization, polarizations of 75-85% became standard with lifetimes that were equal to or better than that of thick unstrained crystals. Other accelerators of polarized electrons, generally operating with a much higher duty factor, have now successfully utilized similar photocathodes. For future colliders, the principal remaining problem is the limit on the total charge that can be extracted in a time scale of 10 to 100 ns. In addition, higher polarization is critical for exploring new physics, especially supersymmetry. However, it appears that strained-layer crystals have reached the limit of their optimization. Today strained superlattice crystals are the most promising candidates for better performance. The individual layers of the superlattice can be designed to be below the critical thickness for strain relaxation, thus in principle improving the polarization. Thin layers also promote high electron conduction to the surface. In addition the potential barriers at the surface for both emission of conduction-band electrons to vacuum and for tunneling of valence-band holes to the surface can be significantly less than for single strained-layer crystals, thus enhancing both the yield at any intensity and also decreasing the limitations on the total charge. The inviting properties of the recently developed AlInGaAs/GaAs strained superlattice with minimal barriers in the conduction band are discussed in detail.

  14. Growth and characterization of indium gallium arsenide photocathodes for extended near infrared imaging

    NASA Astrophysics Data System (ADS)

    Bourree, Loig Erwan Richard

    Near infrared InGaAs photocathodes were designed and grown using molecular beam epitaxy (MBE), a high quality semiconductor growth technique, for the purpose of expanding the current spectral range of generation 3 image intensifier tubes to a 1000nm wavelength while maintaining a high quantum efficiency. Previous authors who have attempted this task have reported low sensitivity compared to the standard GaAs photocathodes and associated this drawback with the compositional mismatch from growing InGaAs epilayers onto GaAs substrates. Our approach differed from these previous authors by using MBE for the semiconductor growth instead of a vapor phase epitaxy technique that had been employed. In addition, to reduce the inherent lattice mismatch between the InGaAs photoemissive layer and the substrate, structures deviating from standard GaAs photocathodes were created, to include lattice-mismatch reducing buffers. These buffers are composed of ternary alloys with graded composition. Utilizing a variety of characterization techniques to determine growth parameters (thickness, doping, composition, crystallinity) a high level of control and reproducibility was achieved on our photocathode structures. Overall, negative electron affinity activation performed on our InGaAs photocathodes showed improvements in their white light photoresponse (PR) resulting from the inclusion of these buffers. Studies performed using room temperature photoluminescence, Raman spectroscopy and atomic force microscopy were employed to attempt relating these increases in PR to changes in material parameters and are presented in this dissertation.

  15. Design of quantum efficiency measurement system for variable doping GaAs photocathode

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Yang, Kai; Liu, HongLin; Chang, Benkang

    2008-03-01

    To achieve high quantum efficiency and good stability has been a main direction to develop GaAs photocathode recently. Through early research, we proved that variable doping structure is executable and practical, and has great potential. In order to optimize variable doping GaAs photocathode preparation techniques and study the variable doping theory deeply, a real-time quantum efficiency measurement system for GaAs Photocathode has been designed. The system uses FPGA (Field-programmable gate array) device, and high speed A/D converter to design a high signal noise ratio and high speed data acquisition card. ARM (Advanced RISC Machines) core processor s3c2410 and real-time embedded system are used to obtain and show measurement results. The measurement precision of photocurrent could reach 1nA, and measurement range of spectral response curve is within 400~1000nm. GaAs photocathode preparation process can be real-time monitored by using this system. This system could easily be added other functions to show the physic variation of photocathode during the preparation process more roundly in the future.

  16. Optical properties of halide and oxide compounds including the excitonic effects

    NASA Astrophysics Data System (ADS)

    Shwetha, G.; Kanchana, V.

    2014-04-01

    We have studied the optical properties of alkali halide and alkaline-earth oxide compounds including the excitonic effects by using the newly developed bootstrap kernel approximation for the exchange-correlation kernel of the Time-Dependent Density Functional Theory (TD-DFT) implemented in Full-Potential Linearized Augmented Plane Wave (FP-LAPW) method in the elk code. The bootstrap calculations are computationally less expensive and give results the same quality as the Bethe-Salpeter equation. We found improved results when compared to normal Density Functional Theory calculations, and observed results are comparable with the experiments. The lower energy peak of imaginary part of dielectric spectra shifts to lower energy regions as we move from MgO to BaO indicating the decrease in the band gap of these compounds from MgO to BaO. In all the studied compounds, the lower energy peak of the imaginary part of dielectric function is due to the transition from halogen p or oxide p states to metal derived s/d states.

  17. Charge carrier mobility in hybrid halide perovskites

    NASA Astrophysics Data System (ADS)

    Motta, Carlo; El-Mellouhi, Fedwa; Sanvito, Stefano

    2015-08-01

    The charge transport properties of hybrid halide perovskites are investigated with a combination of density functional theory including van der Waals interaction and the Boltzmann theory for diffusive transport in the relaxation time approximation. We find the mobility of electrons to be in the range 5-10?cm2V-1s-1 and that for holes within 1-5?cm2V-1s-1, where the variations depend on the crystal structure investigated and the level of doping. Such results, in good agreement with recent experiments, set the relaxation time to about 1?ps, which is the time-scale for the molecular rotation at room temperature. For the room temperature tetragonal phase we explore two possible orientations of the organic cations and find that the mobility has a significant asymmetry depending on the direction of the current with respect to the molecular axis. This is due mostly to the way the PbI3 octahedral symmetry is broken. Interestingly we find that substituting I with Cl has minor effects on the mobilities. Our analysis suggests that the carrier mobility is probably not a key factor in determining the high solar-harvesting efficiency of this class of materials.

  18. Charge carrier mobility in hybrid halide perovskites

    PubMed Central

    Motta, Carlo; El-Mellouhi, Fedwa; Sanvito, Stefano

    2015-01-01

    The charge transport properties of hybrid halide perovskites are investigated with a combination of density functional theory including van der Waals interaction and the Boltzmann theory for diffusive transport in the relaxation time approximation. We find the mobility of electrons to be in the range 5–10?cm2V?1s?1 and that for holes within 1–5?cm2V?1s?1, where the variations depend on the crystal structure investigated and the level of doping. Such results, in good agreement with recent experiments, set the relaxation time to about 1?ps, which is the time-scale for the molecular rotation at room temperature. For the room temperature tetragonal phase we explore two possible orientations of the organic cations and find that the mobility has a significant asymmetry depending on the direction of the current with respect to the molecular axis. This is due mostly to the way the PbI3 octahedral symmetry is broken. Interestingly we find that substituting I with Cl has minor effects on the mobilities. Our analysis suggests that the carrier mobility is probably not a key factor in determining the high solar-harvesting efficiency of this class of materials. PMID:26235910

  19. Lead Halide Perovskites and Other Metal Halide Complexes As Inorganic Capping Ligands for Colloidal Nanocrystals

    PubMed Central

    2014-01-01

    Lead halide perovskites (CH3NH3PbX3, where X = I, Br) and other metal halide complexes (MXn, where M = Pb, Cd, In, Zn, Fe, Bi, Sb) have been studied as inorganic capping ligands for colloidal nanocrystals. We present the methodology for the surface functionalization via ligand-exchange reactions and the effect on the optical properties of IV–VI, II–VI, and III–V semiconductor nanocrystals. In particular, we show that the Lewis acid–base properties of the solvents, in addition to the solvent dielectric constant, must be properly adjusted for successful ligand exchange and colloidal stability. High luminescence quantum efficiencies of 20–30% for near-infrared emitting CH3NH3PbI3-functionalized PbS nanocrystals and 50–65% for red-emitting CH3NH3CdBr3- and (NH4)2ZnCl4-capped CdSe/CdS nanocrystals point to highly efficient electronic passivation of the nanocrystal surface. PMID:24746226

  20. A Hybrid Laser-driven E-beam Injector Using Photo-cathode Electron Gun and superconducting Cavity*

    E-print Network

    Geng, Rong-Li

    A Hybrid Laser-driven E-beam Injector Using Photo-cathode Electron Gun and superconducting Cavity, Beijing 100871, China * Work supported by NNSF of China Abstract A laser-driven photo-cathode electron gun constructed and tested. As the next step, a hybrid photo-injector, using a DC laser-driven electron gun

  1. Uptake of haloacetyl and carbonyl halides by water surfaces

    SciTech Connect

    De Bruyn, W.J.; Shorter, J.A.; Davidovits, P.; Worsnop, D.R.; Zahniser, M.S.; Kolb, C.E.

    1995-05-01

    Gas-liquid uptake studies have been completed for the carbonyl halides CCl{sub 2}O and CF{sub 2}O and the haloacetyl halides CCl{sub 3}CCIO, CF{sub 3}CFO, and CF{sub 3}CCIO, which are intermediate products from gas phase oxidation of volatile halogen-containing species in the atmosphere. The fluorine-containing species result from the degradation of hydrochlorofluorocarbons (HCFCs) (proposed substitutes for chlorofluorocarbons, CFCs). The tropospheric lifetime of the halides depends on their dissolution in the aqueous phase, determined by Henry`s law solubility (H) and hydrolysis rate (k{sub hyd}). Using a bubble column apparatus, time-resolved gas-liquid interaction experiments measured the product Hk{sub hyd}{1/2}. Studies were performed at 278 K and pH = 1-13; for CCl{sub 3}CClO and CCl{sub 2}O, temperature was varied from 278 to 298 K. From this work and results from other laboratories, limits on values of the product Hk{sub hyd} were established and used to estimate a `global` cloud processing rate of these halides. A approximately 30-day upper limit to their tropospheric lifetime implies that tropospheric removal of the halide degradation products is fast enough not to contribute to the ozone depletion potential of the parent HCFCs. 39 refs., 6 figs., 1 tab.

  2. Silver Halide Fiber For Transmitting A CO2 Laser Beam

    NASA Astrophysics Data System (ADS)

    Takahashi, Ken-ichi; Yoshida, Noriyuki; Yamauchi, Kazuhisa

    1987-01-01

    The silver halide fiber for transmitting a CO2 laser beam using the mixture crystal of silver bromide and silver chloride is described. The silver halide is purified by zone melting. The absorption coefficient of its preformed crystal measured by a CO2 laser calorimeter is less than 1.0x10-4 cm-1 . The silver halide fibers whose diameters are 0.5 to 0.7mm are made by hot extrusion. The transmission loss of silver halide fiber is 0.07dB/m when measured by a CO2 laser beam. The measured spectral transmission lgss due to scattering inside and on the surface of the fiber is nearly proportional to ? -2 where ? is the wavelength, and it is low in the infrared wavelength region, ranging from a few microns to over ten microns. Because of its excellent resistance to optical damage and bending as well as other characteristics important to practical application, silver halide fiber is suitable for use in CO2 laser power transmission. It is also expected to he an optical waveguide in the field of infrared optic sensors.

  3. Cesium Evaporation Rate on Tungsten Photocathodes Ameerah Jabr-Hamdan, Dr. Eric Montgomery, Dr. Patrick O' Shea, Blake Riddick, and Peter Zhigang Pan

    E-print Network

    Anlage, Steven

    Cesium Evaporation Rate on Tungsten Photocathodes Ameerah Jabr-Hamdan, Dr. Eric Montgomery, Dr into a vacuum chamber. Experimentally found the evaporation rate of Cesium on a Tungsten Photocathode Photocathode) More accurate model of Cesium evaporation. The Free Electron Laser and Needed Improvements

  4. High quantum efficiency photocathode simulation for the investigation of novel structured designs

    SciTech Connect

    Opachich, Y. P. Ross, P. W.; Huffman, E.; Koch, J. A.; MacPhee, A. G.; Nagel, S. R.; Bell, P. M.; Bradley, D. K.; Landen, O. L.; Hilsabeck, T. J.

    2014-11-15

    A computer model in CST Studio Suite has been developed to evaluate several novel geometrically enhanced photocathode designs. This work was aimed at identifying a structure that would increase the total electron yield by a factor of two or greater in the 1–30 keV range. The modeling software was used to simulate the electric field and generate particle tracking for several potential structures. The final photocathode structure has been tailored to meet a set of detector performance requirements, namely, a spatial resolution of <40 ?m and a temporal spread of 1–10 ps. We present the details of the geometrically enhanced photocathode model and resulting static field and electron emission characteristics.

  5. First Beam Measurements of the S-Band photocathode Radio-Frequency Gun at Tsinghua University

    NASA Astrophysics Data System (ADS)

    Du, Ying-Chao; Yan, Li-Xin; Du, Qiang; He, Xiao-Zhong; Xiang, Dao; Tang, Chuan-Xiang; Huang, Wen-Hui; Lin, Yu-Zheng

    2007-07-01

    During the last decades, photocathode rf gun has been proven to be successful in generating the high brightness electron beam (~1nC,~1?mmmrad,~1 ps) which is required by the ILC, XFEL, Thomson scattering x-ray source, etc. A photocathode rf gun system is built to develop electron source for the Thomson scattering x-ray source at Accelerator Laboratory of Tsinghua University. The system consists of a BNL/ATF-type 1.6 cell S-band rf cavity, a solenoid for emittance compensation, a laser system and some simple equipments for beam diagnosis. The first beam measurements of the photocathode rf gun, including the dark current, transverse beam profile, charge and quantum efficiency, are reported.

  6. Temporal resolution limit estimation of x-ray streak cameras using a CsI photocathode

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Gu, Li; Zong, Fangke; Zhang, Jingjin; Yang, Qinlao

    2015-08-01

    A Monte Carlo model is developed and implemented to calculate the characteristics of x-ray induced secondary electron (SE) emission from a CsI photocathode used in an x-ray streak camera. Time distributions of emitted SEs are investigated with an incident x-ray energy range from 1 to 30 keV and a CsI thickness range from 100 to 1000 nm. Simulation results indicate that SE time distribution curves have little dependence on the incident x-ray energy and CsI thickness. The calculated time dispersion within the CsI photocathode is about 70 fs, which should be the temporal resolution limit of x-ray streak cameras that use CsI as the photocathode material.

  7. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  8. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  9. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  10. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  11. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  12. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  13. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  14. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Definitions concerning metal halide lamp ballasts and fixtures. 431.322 Section 431.322 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures § 431.322 Definitions concerning metal halide...

  15. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Definitions concerning metal halide lamp ballasts and fixtures. 431.322 Section 431.322 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures § 431.322 Definitions concerning metal halide...

  16. 10 CFR 429.54 - Metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...2012-01-01 2012-01-01 false Metal halide lamp ballasts and fixtures. 429...EQUIPMENT Certification § 429.54 Metal halide lamp ballasts and fixtures. ...requirements of § 429.11 are applicable to metal halide lamp ballasts; and (2)...

  17. 10 CFR 429.54 - Metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...2014-01-01 2014-01-01 false Metal halide lamp ballasts and fixtures. 429...EQUIPMENT Certification § 429.54 Metal halide lamp ballasts and fixtures. ...requirements of § 429.11 are applicable to metal halide lamp ballasts; and (2)...

  18. 10 CFR 429.54 - Metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...2013-01-01 2013-01-01 false Metal halide lamp ballasts and fixtures. 429...EQUIPMENT Certification § 429.54 Metal halide lamp ballasts and fixtures. ...requirements of § 429.11 are applicable to metal halide lamp ballasts; and (2)...

  19. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning metal halide lamp ballasts and... FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures § 431.322 Definitions concerning metal halide lamp ballasts and fixtures. Ballast efficiency means, in the case of...

  20. 10 CFR Appendix B to Subpart S to... - Certification Report for Metal Halide Lamp Ballasts

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Certification Report for Metal Halide Lamp Ballasts B... PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures Pt. 431, Subpt. S, App. B Appendix B to Subpart S to Part 431—Certification Report for Metal Halide Lamp...

  1. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (inventor); Fraschetti, George A. (inventor); Mccann, Timothy A. (inventor); Mayall, Sherwood D. (inventor); Dunn, Donald E. (inventor); Trauger, John T. (inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  2. High-brightness electron beam evolution following laser-based cleaning of a photocathode

    NASA Astrophysics Data System (ADS)

    Zhou, F.; Brachmann, A.; Decker, F.-J.; Emma, P.; Gilevich, S.; Iverson, R.; Stefan, P.; Turner, J.

    2012-09-01

    Laser-based techniques have been widely used for cleaning metal photocathodes to increase quantum efficiency (QE). However, the impact of laser cleaning on cathode uniformity and thereby on electron beam quality are less understood. We are evaluating whether this technique can be applied to revive photocathodes used for high-brightness electron sources in advanced x-ray free-electron laser (FEL) facilities, such as the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The laser-based cleaning was applied to two separate areas of the current LCLS photocathode on July 4 and July 26, 2011, respectively. The QE was increased by 8-10 times upon the laser cleaning. Since the cleaning, routine operation has exhibited a slow evolution of the QE improvement and comparatively rapid improvement of transverse emittance, with a factor of 3 QE enhancement over five months, and a significant emittance improvement over the initial 2-3 weeks following the cleaning. Currently, the QE of the LCLS photocathode is holding constant at about 1.2×10-4, with a normalized injector emittance of about 0.3?m for a 150-pC bunch charge. With the proper procedures, the laser-cleaning technique appears to be a viable tool to revive the LCLS photocathode. We present observations and analyses for the QE and emittance evolution in time following the laser-based cleaning of the LCLS photocathode, and comparison to the previous studies, the measured thermal emittance versus the QE and comparison to the theoretical model.

  3. III-V photocathode with nitrogen doping for increased quantum efficiency

    NASA Technical Reports Server (NTRS)

    James, L. W. (inventor)

    1976-01-01

    An increase in the quantum efficiency of a 3-5 photocathode is achieved by doping its semiconductor material with an acceptor and nitrogen, a column-5 isoelectronic element, that introduces a spatially localized energy level just below the conduction band similar to a donor level to which optical transitions can occur. This increases the absorption coefficient, alpha without compensation of the acceptor dopant. A layer of a suitable 1-5, 1-6 or 1-7 compound is included as an activation layer on the electron emission side to lower the work function of the photocathode.

  4. Compact narrow-band THz radiation source based on photocathode rf gun

    NASA Astrophysics Data System (ADS)

    Li, Wei-Wei; He, Zhi-Gang; Jia, Qi-Ka

    2014-04-01

    Narrow-band THz coherent Cherenkov radiation can be driven by a subpicosecond electron bunch traveling along the axis of a hollow cylindrical dielectric-lined waveguide. We present a scheme of compact THz radiation source based on the photocathode rf gun. On the basis of our analytic result, the subpicosecond electron bunch with high charge (800 pC) can be generated directly in the photocathode rf gun. According to the analytical and simulated results, a narrow emission spectrum peaked at 0.24 THz with 2 megawatt (MW) peak power is expected to gain in the proposed scheme (the length of the facility is about 1.2 m).

  5. Li + neutralisation in back-scattering from alkali/Al(100) surfaces: comparison between the various alkalis

    NASA Astrophysics Data System (ADS)

    Goryunov, D. G.; Borisov, A. G.; Makhmetov, G. E.; Teillet-Billy, D.; Gauyacq, J. P.

    1998-04-01

    The Li + ion neutralisation by back-scattering from an Al(100) surface partially covered by alkali adsorbates is theoretically studied, using a previously developed model representation of the Li + ion-alkali adsorbate-Al substrate system [A.G. Borisov, G.E. Makhmetov, D. Teillet-Billy, J.P. Gauyacq, Surf. Sci. 350 (1996) L205]. Three alkali adsorbates are studied: Na, K and Cs and the differences between their effects are discussed. In the back-scattering geometry, the neutralisation probability is found to be quite different for lithium bouncing from the alkali adsorbate or from the Al substrate; it is also different for the various alkali adsorbates. The present results are found to be in quantitative agreement with the recent experimental data of Weare and Yarmoff [C.B. Weare, J.A. Yarmoff, Surf. Sci. 348 (1996) 359]. These results confirm the importance of the local variation of the charge transfer process on the surface, as well as the capability of the charge transfer process to probe the local electronic potentials. A large probability for Li(2p) excited atom formation by collision on the adsorbate sites is also found in the present study, even in the limit of very low alkali coverages.

  6. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  7. Milk Alkali and Hydrochlorothiazide: A Case Report

    PubMed Central

    Parvez, Babar; Emuwa, Chinenye; Faulkner, Marquetta L.; Murray, John J.

    2011-01-01

    Hypercalcemia is a relatively common clinical problem in both outpatient and inpatient settings. Primary pathophysiology is the entry of calcium that exceeds its excretion into urine or deposition in bone into circulation. Among a wide array of causes of hypercalcemia, hyperparathyroidism and malignancy are the most common, accounting for greater than 90 percent of cases. Concordantly, there has been a resurgence of milk-alkali syndrome associated with the ingestion of large amounts of calcium and absorbable alkali, making it the third leading cause of hypercalcemia (Beall and Scofield, 1995 and Picolos et al., 2005). This paper centers on a case of over-the-counter calcium and alkali ingestion for acid reflux leading to milk alkali with concordant use of thiazide diuretic for hypertension. PMID:21738535

  8. Ultrafast time-resolved spectroscopy of lead halide perovskite films

    NASA Astrophysics Data System (ADS)

    Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore

    2015-09-01

    Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.

  9. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  10. Through a glass, darkly: point defect production by ultrafast laser irradiation of alkali-containing silica glasses and alkali halide single crystals

    NASA Astrophysics Data System (ADS)

    Avanesyan, Sergey M.; Orlando, Stefano; Langford, Steve C.; Dickinson, J. Thomas

    2005-02-01

    The high instantaneous powers associated with femtosecond lasers can color many nominally transparent materials. Although the excitations responsible for this defect formation occur on subpicosecond time scales, subsequent interactions between the resulting electronic and lattice defects complicate the evolution of color center formation and decay. These interactions must be understood in order to account for the long term behavior of coloration. In this work, we probe the evolution of color centers produced by femtosecond laser radiation in soda lime glass and single crystal sodium chloride on time scales from microseconds to hundreds of seconds. By using an appropriately chosen probe laser focused through the femtosecond laser spot, we can follow the changes in coloration due to individual or multiple femtosecond pulses, and follow the evolution of that coloration for long times after femtosecond laser radiation is terminated. For the soda lime glass, the decay of color centers is well described in terms of bimolecular annihilation reactions between electron and hole centers. Similar processes are also occurring in single crystal sodium chloride. Finally, we report fabrication of permanent periodic patterns in soda lime glass by two time coincident femtosecond laser pulses.

  11. Alkali metal crystalline polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Zhang, Chuhong; Gamble, Stephen; Ainsworth, David; Slawin, Alexandra M. Z.; Andreev, Yuri G.; Bruce, Peter G.

    2009-07-01

    Polymer electrolytes have been studied extensively because uniquely they combine ionic conductivity with solid yet flexible mechanical properties, rendering them important for all-solid-state devices including batteries, electrochromic displays and smart windows. For some 30 years, ionic conductivity in polymers was considered to occur only in the amorphous state above Tg. Crystalline polymers were believed to be insulators. This changed with the discovery of Li+ conductivity in crystalline poly(ethylene oxide)6:LiAsF6 (refs 4, 5). However, new crystalline polymer electrolytes have proved elusive, questioning whether the 6:1 complex has particular structural features making it a unique exception to the rule that only amorphous polymers conduct. Here, we demonstrate that ionic conductivity in crystalline polymers is not unique to the 6:1 complex by reporting several new crystalline polymer electrolytes containing different alkali metal salts (Na+, K+ and Rb+), including the best conductor poly(ethylene oxide)8:NaAsF6 discovered so far, with a conductivity 1.5 orders of magnitude higher than poly(ethylene oxide)6:LiAsF6. These are the first crystalline polymer electrolytes with a different composition and structures to that of the 6:1 Li+ complex.

  12. Comparison of module structure of wideband response GaAs photocathode grown by MBE and MOCVD

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Shen, Weikang; Chang, Benkang; Zhang, Yijun; Zhang, Jian; Qin, Cui

    2014-10-01

    In order to compare the structures of GaAs photocathodes grown by molecular beam epitaxy (MBE) and metal-organic chemical vapour deposition (MOCVD), four wideband response exponential doping photocathodes were prepared. Their reflectivity and transmittivity were measured by the spectrophotometer, and three thin layer thicknesses were fitted based on the matrix theory in Thin-film Optics. The comparison of the results indicated that for the GaAs photocathode grown by MBE, only one amendatory layer with the low Al component should be added between the Ga1-xAlxAs window layer and the GaAs active layer in order to the higher fitting accuracy. Opposite occurs for the MOCVD samples. In the case of accurately controlling the layered doping concentration, the material grown by MBE is the optimal, while that grown by MOCVD is suit for the exponential doping situation. These results are available for the material growth and the module preparation of the varied doping transmission-mode GaAs photocathodes.

  13. NREL Improves Hole Transport in Sensitized CdS-NiO Nanoparticle Photocathodes (Fact Sheet)

    SciTech Connect

    Not Available

    2012-01-01

    Significantly improved charge-collection efficiencies result from a general chemical approach to synthesizing photocathodes. It has been reported that a dye-sensitized nickel oxide (NiO) photocathode, when coupled to a dye-sensitized photoanode, could significantly increase overall solar conversion efficiency. However, the conversion efficiencies of these cells are still low. There has been much effort to improve the conversion efficiency by fabricating films with improved properties and developing more effective sensitizing dyes for p-type NiO. One of the factors limiting the use of NiO for solar cell application is the low hole conductivity in p-NiO. A team of researchers from the National Renewable Energy Laboratory (NREL) developed a general chemical approach to synthesize NiO-cadmium sulfide (CdS) core-shell nanoparticle films as photocathodes for p-type semiconductor-sensitized solar cells. Compared to dye-sensitized NiO photocathodes, the CdS-sensitized NiO cathodes exhibited two orders of magnitude faster hole transport (attributable to the passivation of surface traps by the CdS) and almost 100% charge-collection efficiencies.

  14. Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes Mark Hettick,,

    E-print Network

    Javey, Ali

    , exhibiting half-cell solar-to-hydrogen conversion efficiencies of over 14%. However, the high cost of singleV) approaching single-crystalline wafers and an overall power conversion efficiency of 11.6%, making TF-VLS InP a promising photocathode for scalable and efficient solar hydrogen generation. The generation of storable fuel

  15. Photocathode electron beam sources using GaN and InGaN with NEA surface

    NASA Astrophysics Data System (ADS)

    Nishitani, T.; Maekawa, T.; Tabuchi, M.; Meguro, T.; Honda, Y.; Amano, H.

    2015-03-01

    A photocathode electron source using p-type GaN and p-type InGaN semiconductors with a negative electron affinity (NEA) surface has been studied for its ability to maintain an extended NEA state. The key technology of NEA photocathodes is the formation of electric dipoles by atoms on the surface, which makes it possible for photo excited electrons in the conduction band minimum to escape into the vacuum. This means that in order to keep the electron energy spread as small as possible, the excitation photon energy should be tuned to the band gap energy. However, the NEA surface is damaged by the adsorption of residual gas and the back-bombardment of ionized residual gas by photoelectrons. The p-type GaN and InGaN semiconductors were measured a lifetime of quantum yield of excitation energy corresponding to the band gap energy in comparison to the p-type GaAs as the conventional NEA photocathode. Lifetime of NEA-photocathodes using the GaN and InGaN were 21 times and 7.7 times longer respectively than that using the GaAs.

  16. Enhanced Raman scattering from cesium suboxides on silver particles and the structure of S-1 photocathodes

    NASA Technical Reports Server (NTRS)

    Bates, C. W., Jr.

    1984-01-01

    An explanation is given for the results of recent enhanced Raman scattering studies of photomultiplier tubes with S-1 photocathode surfaces which indicated the presence of Cs11O3 but not Cs2O. The reason for the discrepancy between the currently accepted model of the S-1 and this recent result is discussed.

  17. On the Boiling Points of the Alkyl Halides.

    ERIC Educational Resources Information Center

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  18. Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides

    ERIC Educational Resources Information Center

    Waas, Jack R.

    2006-01-01

    Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the Hartree-Fock method, and two DFT methods. These calculated values were compared to experimental values where possible. All five methods agreed generally with the expected empirically known trends in the…

  19. Still Photography Throwdown: Silver Halide vs. Silicon Journal: CIC18

    E-print Network

    Fairchild, Mark D.

    , etc. : a funky hip-hop throwdown.[1] Photographers have long been an interesting and innovative halide (AgX) technology that dominated the field for over a century to digital still cameras based photographic prints and soft displays. Four camera systems, two digital and two film based, were evaluated

  20. Kinetic Studies of the Solvolysis of Two Organic Halides

    ERIC Educational Resources Information Center

    Duncan, J. A.; Pasto, D. J.

    1975-01-01

    Describes an undergraduate organic chemistry laboratory experiment which utilizes the solvolysis of organic halides to demonstrate first and second order reaction kinetics. The experiment also investigates the effect of a change of solvent polarity on reaction rate, common-ion and noncommon-ion salt effects, and the activation parameters of a…

  1. Assessing Global Terrestrial Sources of Methyl Halides - Ozone Regulating Gases 

    E-print Network

    Gancarczyk, Maciej

    2010-11-24

    Methyl bromide (CH3Br) and methyl chloride (CH3Cl) play significant roles in the depletion of the stratospheric ozone layer. The vast portion of methyl halide sources and sinks sources and sinks are natural in origin. The sources are poorly...

  2. Cocrystallization of certain 4f and 5f elements in the bivalent state with alkali metal halides

    SciTech Connect

    Mikheev, N.B.; Kamenskaya, A.M.; Veleshko, I.E.; Kulyukhin, S.A.

    1987-01-01

    The cocrystallization of Fm/sup 2 +/, Es/sup 2 +/, Cf/sup 2 +/, Am/sup 2 +/, Yb/sup 2 +/, Eu/sup 2 +/ and Sr/sup 2 +/ with NaCl, KCl and KBr in tetrahydrofuran (THF), hexamethylphosphorotriamide (HMPA), and ethanol has been studied. It is shown that in water-ethanol medium An/sup 2 +/ cocrystallize with KCl by the formation of anomalous mixed crystals and Ln/sup 2 +/ do not cocrystallize. In HMPA neither Ln/sup 2 +/ nor An/sup 2 +/ are observed to transfer into the KBr solid phase, while in THF both Ln/sup 2 +/ and An/sup 2 +/ cocrystallize with NaCl. The change in the behavior on Ln/sup 2 +/ and An/sup 2 +/ cocrystallize with a change from one solvent to another is caused by the difference in the effective ionic radii of these elements, which arises from the large nephelauxetic effect for An/sup 2 +/ as well as by the different solvating power of these solvents.

  3. The interaction energies and polarizabilities of sodium fluoride, sodium chloride, and some alkali and halide ions pairs

    NASA Astrophysics Data System (ADS)

    Bounds, David G.; Hinchliffe, Alan

    1982-02-01

    Ab initio SCF pair potentials and polarizabilities for NaF, NaCl, F 2-2, Na 2-2, K 2-2, FCl 2-, LiNa 2+, LiK 2+, presented. Together with results reported previously, these values form a complete and consistent set of energy and polarizability data on the fluorides and chlorides of lithium, sodium and potassium.

  4. Measurement of Surface Phonon Dispersion Curves of Alkali Halide Single Crystals by Time of Flight Spectroscopy of He Atom Beams

    NASA Astrophysics Data System (ADS)

    Toennies, J. Peter

    1982-01-01

    The development of highly expanded He nozzle beams with velocity half widths less than 1% has made it possible to observe the annihilation and creation of single surface phonons in time of flight spectra of the scattered atoms. Measurements have been carried out for a wide range of incident angles at a beam energy of about 20 meV for the following crystals and directions: LiF langle100rangle, LiF langle110rangle, NaF langle100rangle, KCl langle100rangle, NaCl langle100rangle, and MgO langle100rangle. In all cases the spectra show up to 5 sharp well resolved maxima. From the final angle and energy of each peak the parallel surface momentum component and frequency of the phonon is determined. The results show a predominant coupling with Rayleigh surface phonons with only a weak coupling with bulk phonons. Rayleigh dispersion curves have been measured out to the zone boundary for all crystals except LiF langle110rangle and MgO. There is also some evidence for excitation of modes of higher frequencies. Except for LiF langle100rangle at the zone boundary the results compare well with theoretical calculations. Benedek has been able to fit the new LiF He atom and previous neutron dispersion curves with a revised breathing shell model calculation.

  5. Line shapes of narrow optical bands: Infrared absorption by U centers and heavier impurities in alkali halides

    NASA Astrophysics Data System (ADS)

    Lagos, Miguel; Asenjo, Felipe; Hauyón, Roberto; Pastén, Denisse; González, Hernán; Henríquez, Ricardo; Troncoso, Roberto

    2008-03-01

    The shape of the bands for photon absorption and emission by the local constituents of a solid is governed mainly by processes involving many low-energy acoustic phonons. This applies not only to wide bands, such as those exhibited by F centers, but also to narrow ones, as those observed for infrared absorption by local vibration modes of U centers and heavier impurities. The line shapes are theoretically studied on a general basis to show they provide a nice example to illustrate the power of field theory and methods to reproduce experimental facts. To this aim, the phonon induced broadenings of infrared absorption lines by U centers in KCl and KBr, and by substitutional Ag+ in KI, were calculated to compare theoretical predictions with experiment. The agreement obtained between both is remarkable.

  6. Design and fabrication of prototype 6×6 cm2 microchannel plate photodetector with bialkali photocathode for fast timing applications

    NASA Astrophysics Data System (ADS)

    Xie, Junqi; Byrum, Karen; Demarteau, Marcel; Gregar, Joseph; May, Edward; Virgo, Mathew; Wagner, Robert; Walters, Dean; Wang, Jingbo; Xia, Lei; Zhao, Huyue

    2015-06-01

    Planar microchannel plate-based photodetectors with a bialkali photocathode are able to achieve photon detection with very good time and position resolution. A 6×6 cm2 photodetector production facility was designed and built at Argonne National Laboratory. Small form-factor MCP-based photodetectors completely constructed out of glass were designed and prototypes were successfully fabricated. Knudsen effusion cells were incorporated in the photocathode growth chamber to achieve uniform and high quantum efficiency photocathodes. The thin film uniformity was simulated and measured for an antimony film deposition, showing uniformity of better than 10%. Several prototype devices with bialkali photocathodes have been fabricated with the described system and their characteristics were evaluated in the large signal (multi-PE) limit. A typical prototype device exhibits time-of-flight resolution of ~27 psec and differential time resolution of ~9 psec, corresponding to spatial resolution of ~0.65 mm.

  7. p-GaAs(Cs,O)-photocathodes: Demarcation of domains of validity for practical models of the activation layer

    SciTech Connect

    Bakin, V. V.; Toropetsky, K. V.; Scheibler, H. E.; Terekhov, A. S.; Jones, L. B.; Militsyn, B. L.; Noakes, T. C. Q.

    2015-05-04

    The (Cs,O)-activation procedure for p-GaAs(Cs,O)-photocathodes was studied with the aim of demarcating the domains of validity for the two practical models of the (Cs,O)-activation layer: The dipole layer (DL) model and the heterojunction (HJ) model. To do this, the photocathode was activated far beyond the normal maximum of quantum efficiency, and several photocathode parameters were measured periodically during this process. In doing so, the data obtained enabled us to determine the domains of validity for the DL- and HJ-models, to define more precisely the characteristic parameters of the photocathode within both of these domains and thus to reveal the peculiarities of the influence of the (Cs,O)-layer on the photoelectron escape probability.

  8. Selection of non-adsorbing alkali components

    SciTech Connect

    Lee, S.H.D.; Natesan, K.; Swift, W.M.

    1992-01-01

    This project consists of three phases of laboratory experimental study. In phase I (screening), eight candidate materials, 304SS (serves as a base material for comparison), Hastelloy C-276, Hastelloy X, Haynes No. 188, Allonized 304SS, Pt-coated 304SS, and ceramic-coated 304SS, will be subjected to atmospheric TGA study under the simulated PFBC (oxidizing) environment with and without alkali vapor doping. Each candidate material will be evaluated for its resistance toward alkali-vapor capture. In addition, a post-test metallographic characterization of the sample will be performed to obtain a better understanding of the alkali capture mechanism and material behavior. The material(s) with little or no alkali-vapor adsorption will be selected as the promising material(s) for the Phase II study. In Phase II, the promising material(s) will be further tested in the TGA under elevated pressure to simulate the PFBC environment (in terms of temperature, pressure, and gas composition). The effect of pressure on the extent of alkali-vapor adsorption will be evaluated, and the test samples will be metallographically characterized. The most promising candidate material(s) will be identified and recommended for further tesfing in the actual PFBC environment. In Phase III, four materials will be selected from the eight candidate materials screened in the PFBC environment and will be evaluated for their alkali-vapor capture by atmospheric TGA under the coal gasification fuel gas (reducing) environment. The tested samples will also be metallographically characterized. The most promising material(s) will be identified and recommended for further testing in the actual coal gasification environment.

  9. Selection of non-adsorbing alkali components

    SciTech Connect

    Lee, S.H.D.; Natesan, K.; Swift, W.M.

    1992-11-01

    This project consists of three phases of laboratory experimental study. In phase I (screening), eight candidate materials, 304SS (serves as a base material for comparison), Hastelloy C-276, Hastelloy X, Haynes No. 188, Allonized 304SS, Pt-coated 304SS, and ceramic-coated 304SS, will be subjected to atmospheric TGA study under the simulated PFBC (oxidizing) environment with and without alkali vapor doping. Each candidate material will be evaluated for its resistance toward alkali-vapor capture. In addition, a post-test metallographic characterization of the sample will be performed to obtain a better understanding of the alkali capture mechanism and material behavior. The material(s) with little or no alkali-vapor adsorption will be selected as the promising material(s) for the Phase II study. In Phase II, the promising material(s) will be further tested in the TGA under elevated pressure to simulate the PFBC environment (in terms of temperature, pressure, and gas composition). The effect of pressure on the extent of alkali-vapor adsorption will be evaluated, and the test samples will be metallographically characterized. The most promising candidate material(s) will be identified and recommended for further tesfing in the actual PFBC environment. In Phase III, four materials will be selected from the eight candidate materials screened in the PFBC environment and will be evaluated for their alkali-vapor capture by atmospheric TGA under the coal gasification fuel gas (reducing) environment. The tested samples will also be metallographically characterized. The most promising material(s) will be identified and recommended for further testing in the actual coal gasification environment.

  10. Spectroscopic effects of disorder and vibrational localization in mixed-halide metal-halide chain solids

    SciTech Connect

    Love, S.P.; Scott, B.; Worl, L.A.; Huckett, S.C.; Saxena, A.; Huang, X.Z.; Bishop, A.R.; Swanson, B.I.

    1993-02-01

    Resonance Raman techniques, together with lattice-dynamics and Peierls-Hubbard modelling, are used to explore the electronic and vibrational dynamics of the quasi-one-dimensional metal-halogen chain solids [Pt(en){sub 2}][R(en){sub 2}X{sub 2}](ClO{sub 4}){sub 4}, (en = C{sub 2}H{sub 8}N{sub 2} and X=Cl, Br), abbreviated ``PLX.`` The mixed-halide materials PtCl{sub 1-x}Br{sub x} and PtCl{sub 1-x}I{sub x} consist of long mixed chains with heterojunctions between segments of the two constituent materials. Thus, in addition to providing mesoscale modulation of the chain electronic states, they serve as prototypes for elucidating the properties to be expected for macroscopic heterojunctions of these highly nonlinear materials. Once a detailed understanding of the various local vibrational modes occurring in these disordered solids is developed, the electronic structure of the chain segments and junctions can be probed by tuning the Raman excitation through their various electronic resonances.

  11. Matrix isolation infrared spectra of hydrogen halide and halogen complexes with nitrosyl halides

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; Lucas, Donald; Pimentel, George C.

    1982-01-01

    Matrix isolation infrared spectra of nitrosyl halide (XNO) complexes with HX and X2 (X = Cl, Br) are presented. The relative frequency shifts of the HX mode are modest (ClNO H-Cl, delta-nu/nu = -0.045; BrNO H-Br, delta-nu/nu = -0.026), indicating weak hydrogen bonds 1-3 kcal/mol. These shifts are accompanied by significant shifts to higher frequencies in the XN-O stretching mode (CIN-O HCl, delta-nu/nu = +0.016; BrN-O HBr, delta-nu/nu = +0.011). Similar shifts were observed for the XN-O X2 complexes (ClN-O Cl2, delta-nu/nu = +0.009; BrN-O-Br2, delta-nu/nu = +0.013). In all four complexes, the X-NO stretching mode relative shift is opposite in sign and about 1.6 times that of the NO stretching mode. These four complexes are considered to be similar in structure and charge distribution. The XN-O frequency shift suggests that complex formation is accompanied by charge withdrawal from the NO bond ranging from about .04 to .07 electron charges. The HX and X2 molecules act as electron acceptors, drawing electrons out of the antibonding orbital of NO and strengthening the XN-O bond. The implications of the pattern of vibrational shifts concerning the structure of the complexes are discussed.

  12. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  13. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate

    SciTech Connect

    Owsiak, Z

    2004-01-01

    The paper discusses results of the research into the influence of high-alkali Portland cement on granite aggregate. The deformation of the concrete structure occurred after 18 months. The research was carried out by means of a scanning electron microscope equipped with a high-energy dispersive X-ray analyzer that allowed observation of unpolished sections of concrete bars exhibiting the cracking pattern typical of the alkali-silica reaction. Both the microscopic observation and the X-ray elemental analysis confirm the presence of alkali-silica gel and secondary ettringite in the cracks.

  14. Methods and Mechanisms for Cross-Electrophile Coupling of Csp(2) Halides with Alkyl Electrophiles.

    PubMed

    Weix, Daniel J

    2015-06-16

    Cross-electrophile coupling, the cross-coupling of two different electrophiles, avoids the need for preformed carbon nucleophiles, but development of general methods has lagged behind cross-coupling and C-H functionalization. A central reason for this slow development is the challenge of selectively coupling two substrates that are alike in reactivity. This Account describes the discovery of generally cross-selective reactions of aryl halides and acyl halides with alkyl halides, the mechanistic studies that illuminated the underlying principles of these reactions, and the use of these fundamental principles in the rational design of new cross-electrophile coupling reactions. Although the coupling of two different electrophiles under reducing conditions often leads primarily to symmetric dimers, the subtle differences in reactivity of aryl halides and alkyl halides with nickel catalysts allowed for generally cross-selective coupling reactions. These conditions could also be extended to the coupling of acyl halides with alkyl halides. These reactions are exceptionally functional group tolerant and can be assembled on the benchtop. A combination of stoichiometric and catalytic studies on the mechanism of these reactions revealed an unusual radical-chain mechanism and suggests that selectivity arises from (1) the preference of nickel(0) for oxidative addition to aryl halides and acyl halides over alkyl halides and (2) the greater propensity of alkyl halides to form free radicals. Bipyridine-ligated arylnickel intermediates react with alkyl radicals to efficiently form, after reductive elimination, new C-C bonds. Finally, the resulting nickel(I) species is proposed to regenerate an alkyl radical to carry the chain. Examples of new reactions designed using these principles include carbonylative coupling of aryl halides with alkyl halides to form ketones, arylation of epoxides to form ?-aryl alcohols, and coupling of benzyl sulfonate esters with aryl halides to form diarylmethanes. Arylnickel(II) intermediates can insert carbon monoxide to form acylnickel(II) intermediates that react with alkyl halides to form ketones, demonstrating the connection between the mechanisms of reactions of aryl halides and acid chlorides with alkyl halides. The low reactivity of epoxides with nickel can be overcome by the use of either titanium or iodide cocatalysis to facilitate radical generation and this can also be extended to enantioselective arylation of meso-epoxides. The high reactivity of benzyl bromide with nickel, which leads to the formation of bibenzyl in attempted reactions with bromobenzene, can be overcome by using a benzyl mesylate along with cobalt phthalocyanine cocatalysis to convert the mesylate into an alkyl radical. PMID:26011466

  15. Microscopic surface structure of liquid alkali metals H. Tostmann

    E-print Network

    Pershan, Peter S.

    Microscopic surface structure of liquid alkali metals H. Tostmann Division of Applied Sciences study of the microscopic structure of the surface of a liquid alkali metal. The bulk liquid structure of an elemental liquid alkali metal. Analysis of off-specular diffuse scattering and specular x-ray reflectivity

  16. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  17. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  18. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  19. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  20. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  1. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  2. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  3. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  4. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  5. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  6. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  7. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  8. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  9. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  10. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  11. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  12. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  13. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  14. Enhanced Born Charge and Proximity to Ferroelectricity in Thallium Halides

    SciTech Connect

    Du, Mao-Hua; Singh, David J

    2010-01-01

    Electronic structure and lattice dynamics calculations on thallium halides show that the Born effective charges in these compounds are more than twice larger than the nominal ionic charges. This is a result of cross-band-gap hybridization between Tl-p and halogen-p states. The large Born charges cause giant splitting between longitudinal and transverse optic phonon modes, bringing the lattice close to ferroelectric instability. Our calculations indeed show spontaneous lattice polarization upon lattice expansion starting at 2%. It is remarkable that the apparently ionic thallium halides with a simple cubic CsCl structure and large differences in electronegativity between cations and anions can be very close to ferroelectricity. This can lead to effective screening of defects and impurities that would otherwise be strong carrier traps and may therefore contribute to the relatively good carrier transport properties in TlBr radiation detectors.

  15. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires.

    PubMed

    Zhang, Dandan; Eaton, Samuel W; Yu, Yi; Dou, Letian; Yang, Peidong

    2015-07-29

    Halide perovskites have attracted much attention over the past 5 years as a promising class of materials for optoelectronic applications. However, compared to hybrid organic-inorganic perovskites, the study of their pure inorganic counterparts, like cesium lead halides (CsPbX3), lags far behind. Here, a catalyst-free, solution-phase synthesis of CsPbX3 nanowires (NWs) is reported. These NWs are single-crystalline, with uniform growth direction, and crystallize in the orthorhombic phase. Both CsPbBr3 and CsPbI3 are photoluminescence active, with composition-dependent temperature and self-trapping behavior. These NWs with a well-defined morphology could serve as an ideal platform for the investigation of fundamental properties and the development of future applications in nanoscale optoelectronic devices based on all-inorganic perovskites. PMID:26181343

  16. Large methyl halide emissions from south Texas salt marshes

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Whelan, M. E.; Min, D.-H.

    2014-11-01

    Coastal salt marshes are natural sources of methyl chloride (CH3Cl) and methyl bromide (CH3Br) to the atmosphere, but measured emission rates vary widely by geography. Here we report large methyl halide fluxes from subtropical salt marshes of south Texas. Sites with the halophytic plant, Batis maritima, emitted methyl halides at rates that are orders of magnitude greater than sites containing other vascular plants or macroalgae. B. maritima emissions were generally highest at midday; however, diurnal variability was more pronounced for CH3Br than CH3Cl, and surprisingly high nighttime CH3Cl fluxes were observed in July. Seasonal and intra-site variability were large, even taking into account biomass differences. Overall, these subtropical salt marsh sites show much higher emission rates than temperate salt marshes at similar times of the year, supporting the contention that low-latitude salt marshes are significant sources of CH3Cl and CH3Br.

  17. Large methyl halide emissions from south Texas salt marshes

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Whelan, M. E.; Min, D.-H.

    2014-06-01

    Coastal salt marshes are natural sources of methyl chloride (CH3Cl) and methyl bromide (CH3Br) to the atmosphere, but measured emission rates vary widely by geography. Here we report large methyl halide fluxes from subtropical salt marshes of south Texas. Sites with the halophytic plant, Batis maritima, emitted methyl halides at rates that are orders of magnitude greater than sites containing other vascular plants or macroalgae. B. maritima emissions were generally highest at midday; however, diurnal variability was more pronounced for CH3Br than CH3Cl, and surprisingly high nighttime CH3Cl fluxes were observed in July. Seasonal and intra-site variability were large, even taking into account biomass differences. Overall, these subtropical salt marsh sites show much higher emission rates than temperate salt marshes at similar times of the year, supporting the contention that low-latitude salt marshes are significant sources of CH3Cl and CH3Br.

  18. Band filling with free charge carriers in organometal halide perovskites

    NASA Astrophysics Data System (ADS)

    Manser, Joseph S.; Kamat, Prashant V.

    2014-09-01

    The unique and promising properties of semiconducting organometal halide perovskites have brought these materials to the forefront of solar energy research. Here, we present new insights into the excited-state properties of CH3NH3PbI3 thin films through femtosecond transient absorption spectroscopy measurements. The photoinduced bleach recovery at 760?nm reveals that band-edge recombination follows second-order kinetics, indicating that the dominant relaxation pathway is via recombination of free electrons and holes. Additionally, charge accumulation in the perovskite films leads to an increase in the intrinsic bandgap that follows the Burstein-Moss band filling model. Both the recombination mechanism and the band-edge shift are studied as a function of the photogenerated carrier density and serve to elucidate the behaviour of charge carriers in hybrid perovskites. These results offer insights into the intrinsic photophysics of semiconducting organometal halide perovskites with direct implications for photovoltaic and optoelectronic applications.

  19. Enhanced Born charge and proximity to ferroelectricity in thallium halides

    NASA Astrophysics Data System (ADS)

    Du, Mao-Hua; Singh, David J.

    2010-04-01

    Electronic-structure and lattice-dynamics calculations on thallium halides show that the Born effective charges in these compounds are more than twice larger than the nominal ionic charges. This is a result of cross-band-gap hybridization between Tlp and halogen- p states. The large Born charges cause giant splitting between longitudinal and transverse-optic phonon modes, bringing the lattice close to ferroelectric instability. Our calculations indeed show that cubic TlBr develops ferroelectric instabilities upon lattice expansion starting at 2%. It is remarkable that the apparently ionic thallium halides with a simple cubic CsCl structure and large differences in electronegativity between cations and anions can be very close to ferroelectricity. This can lead to effective screening of defects and impurities that would otherwise be strong carrier traps and may therefore contribute to the relatively good carrier transport properties in TlBr radiation detectors.

  20. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOEpatents

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  1. Palladium- (and nickel-) catalyzed vinylation of aryl halides

    PubMed Central

    Denmark, Scott E.; Butler, Christopher R.

    2009-01-01

    Functionalized styrenes are extremely useful building blocks for organic synthesis and for functional polymers. One of the most general syntheses of styrenes involves the combination of an aryl halide with a vinyl organometallic reagent under catalysis by palladium or nickel complexes. This Feature Article provides the first comprehensive summary of the vinylation methods currently available along with a critical comparison of the efficiency, cost and scope of the methods. PMID:19081992

  2. Ni-catalyzed reductive addition of alkyl halides to isocyanides.

    PubMed

    Wang, Bo; Dai, Yijing; Tong, Weiqi; Gong, Hegui

    2015-12-21

    This paper highlights Ni-catalyzed reductive trapping of secondary and tertiary alkyl radicals with both electron-rich and electron-deficient aryl isocyanides using zinc as the terminal reductant, affording 6-alkylated phenanthridine in good yields. The employment of carbene ligands necessitates the alkyl radical process, and represents the first utility in the Ni-catalyzed reductive conditions for the generation of unactivated alkyl radicals from the halide precursors. PMID:26524544

  3. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents

    PubMed Central

    Shrestha, Bijay

    2015-01-01

    Summary We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N’,N’-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields.

  4. Effect of humid air exposure on photoemissive and structural properties of KBr thin film photocathode

    NASA Astrophysics Data System (ADS)

    Rai, R.; Triloki; Ghosh, N.; Singh, B. K.

    2015-07-01

    We have investigated the influence of water molecule absorption on photoemissive and structural properties of potassium bromide (KBr) thin film photocathode under humid air exposure at relative humidity 62 ±3%. It is evident from photoemission measurement that the photoelectron yield of KBr photocathode is degraded exponentially with humid air exposed time. Structural studies of the "as-deposited" and "humid air aged" films reveal that there is no effect of relative humidity on film's crystalline face centered cubic structure. However, the crystallite size of "humid air aged" KBr film has been increased as compared to "as-deposited" one. In addition, topographical properties of KBr film are also examined by means of scanning electron microscope, transmission electron microscope and atomic force microscope and it is observed that granular characteristic of film has been altered, even for short exposure to humid atmosphere.

  5. Engineering Design and Fabrication of an Ampere-Class Superconducting Photocathode Electron Gun

    SciTech Connect

    Ben-Zvi,I.

    2008-11-17

    Over the past three years, Advanced Energy Systems and Brookhaven National Laboratory (BNL) have been collaborating on the design of an Ampere- class superconducting photocathode electron gun. BNL performed the physics design of the overall system and RF cavity under prior programs. Advanced Energy Systems (AES) is currently responsible for the engineering design and fabrication of the electron gun under contract to BNL. We will report on the engineering design and fabrication status of the superconducting photocathode electron gun. The overall configuration of the cryomodule will be reviewed. The layout of the hermitic string, space frame, shielding package, and cold mass will be discussed. The engineering design of the gun cavity and removable cathode will be presented in detail and areas of technical risk will be highlighted. Finally, the fabrication sequence and fabrication status of the gun cavity will be discussed.

  6. Photoemission Studies of Metallic Photocathodes Prepared by Pulsed Laser Ablation Deposition Technique

    NASA Astrophysics Data System (ADS)

    Fasano, V.; Lorusso, A.; De Rosa, H.; Cultrera, L.; Perrone, A.

    2010-11-01

    We present the results of our investigation on metallic films as suitable photocathodes for the production of intense electron beams in RF photoinjector guns. Pulsed laser ablation deposition technique was used for growing Mg and Y thin films onto Si and Cu substrates in high vacuum and at room temperature. Different diagnostic methods were used to characterize the thin films deposited on Si with the aim to optimize the deposition process. Photoelectron performances were investigated on samples deposited on Cu substrate in an ultra high vacuum photodiode chamber at 10-7 Pa. Relatively high quantum efficiencies have been obtained for the deposited films, comparable to those of corresponding bulks. Samples could stay for several months in humid open air before being tested in a photodiode cell. The deposition process and the role of the photocathode surface contamination and its influence on the photoelectron performances are presented and discussed.

  7. Robust CsBr/Cu Photocathodes for the Linac Coherent Light Source

    SciTech Connect

    Maldonado, Juan R.; Liu, Zhi; Dowell, D.H.; Kirby, Robert E.; Sun, Yun; Pianetta, Piero; Pease, Fabian; /Stanford U., Phys. Dept.

    2011-06-21

    The linac coherent light source (LCLS), an x-ray free-electron laser project presently under construction at SLAC, uses a 2.856 GHz rf photocathode gun with a copper cathode for its electron source. While the copper cathode is performing well for the LCLS project, a cathode material with higher quantum efficiency would reduce the drive laser requirements and allow a greater range of operating conditions. Therefore a robust CsBr/Cu photocathode with greater than 50 times the quantum yield at 257 nm relative to the present LCLS copper cathode has been investigated. Preliminary experiments using a dedicated electron source development test stand at SLAC/SSRL are encouraging and are presented in this paper.

  8. Photo-cathode preparation system of the A0 photo-injector

    SciTech Connect

    Moyses Kuchnir et al.

    2002-08-23

    The A0 Photo-Injector is an electron accelerator located in the AZero high bay area of Fermilab. A pulsed laser system generates electron bunches by the photo-electric effect when hitting a photo-cathode in a 1.5-cell, 1.3 GHz RF gun. A 9-cell, 1.3 GHz superconducting resonant cavity then accelerates the electrons to 15 MeV. The 10 ps time resolved waveform of the laser pulses is transferred to the electron bunches. This report is focused on the first hardware component of this accelerator, the Photo-cathode Preparation System. The reason for its existence is in the nature of the photo-electric material film used: Cs{sub 2}Te (Cesium Telluride), a very reactive compound that once coated on the cathode requires that it be transported and used in ultra high vacuum (UHV), i.e. < 10{sup -9} Torr.

  9. Ultraviolet quantum detection efficiency of potassium bromide as an opaque photocathode applied to microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Everman, E.; Vallerga, J. V.; Sokolowski, J.; Lampton, M.

    1987-01-01

    The quantum detection efficiency (QDE) of potassium bromide as a photocathode applied directly to the surface of a microchannel plate over the 250-1600 A wavelength range has been measured. The contributions of the photocathode material in the channels and on the interchannel web to the QDE have been determined. Two broad peaks in the QDE centered at about 450 and about 1050 A are apparent, the former with about 50 percent peak QDE and the latter with about 40 percent peak QDE. The photoelectric threshold is observed at about 1600 A, and there is a narrow QDE minimum at about 750 A which correlates with 2X the band gap energy for KBr. The angular variation of the QDE from 0 to 40 deg to the channnel axis has also been examined. The stability of Kbr with time is shown to be good with no significant degradation of QDE at wavelengths below 1216 A over a 15-day period in air.

  10. Method for resurrecting negative electron affinity photocathodes after exposure to an oxidizing gas

    DOEpatents

    Mulhollan, Gregory A; Bierman, John C

    2012-10-30

    A method by which negative electron affinity photocathodes (201), single crystal, amorphous, or otherwise ordered, can be made to recover their quantum yield following exposure to an oxidizing gas has been discovered. Conventional recovery methods employ the use of cesium as a positive acting agent (104). In the improved recovery method, an electron beam (205), sufficiently energetic to generate a secondary electron cloud (207), is applied to the photocathode in need of recovery. The energetic beam, through the high secondary electron yield of the negative electron affinity surface (203), creates sufficient numbers of low energy electrons which act on the reduced-yield surface so as to negate the effects of absorbed oxidizing atoms thereby recovering the quantum yield to a pre-decay value.

  11. SO2 REMOVAL BY LIMESTONE DUAL ALKALI

    EPA Science Inventory

    The article gives results of testing (between February 1982 and March 1983) on a pilot-scale, limestone, dual-alkali, flue gas desulfurization (FGD) system at IERL-RTP, where testing started in 1979. These results that significant improvement in soda ash consumption and filter ca...

  12. Terahertz radiation in alkali vapor plasmas

    SciTech Connect

    Sun, Xuan; Zhang, X.-C.

    2014-05-12

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5?Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization.

  13. Depth profile of halide anions under highly charged biological membrane

    NASA Astrophysics Data System (ADS)

    Sung, Woongmo; Wang, Wenjie; Lee, Jonggwan; Vaknin, David; Kim, Doseok

    2015-03-01

    Halide ion (Cl- and I-) distribution under a cationic Langmuir monolayer consisting of 1,2-dipalmitoyl-3 trimethylammonium-propane (DPTAP) molecules was investigated by vibrational sum-frequency generation (VSFG) and X-ray spectroscopy. From VSFG spectra, it was observed that large halide anions (I-) screen surface charge more efficiently so that interfacial water alignment becomes more randomized. On the other hand, number density of ions directly measured by X-ray fluorescence spectroscopy at grazing incidence angle reveals that the ion densities within 6 ~ 8 nm are the same for both I- and Cl-. Since the observed ion densities in both cases are almost equal to the charge density of the DPTAP monolayer, we propose that larger halide anions are attracted closer to the surface making direct binding with the charged headgroups of the molecules in the monolayer, accomplishing charge neutrality in short distance. This direct adsorption of anions also disturbs the monolayer structure both in terms of the conformation of alkyl chains and the vertical configuration of the monolayer, with iodine having the stronger effect. Our study shows that the length scale that ions neutralize a charged interface varies significantly and specifically even between monovalent ions.

  14. Extensive and Highly Accurate Line Lists for Hydrogen Halides

    NASA Astrophysics Data System (ADS)

    Li, G.; Bernath, P. F.; Gordon, I. E.; Rothman, L. S.; Richard, C.; Le Roy, R. J.; Coxon, J. A.; Hajigeorgiou, P.

    2011-06-01

    New dipole moment functions (DMF) for the ground X 1?+ electronic states of the hydrogen halides (HF, HCl, HBr, HI) have been obtained using a direct fit approach that fits the best available and appropriately weighted experimental line intensity data for individual ro-vibrational transitions. Combining the newly developed (taking into account the most recent experiments) empirical potential energy functions and the DMFs, line positions and line intensities of the hydrogen halides and their isotopologues have been calculated numerically using program LEVEL. In addition, new semi-empirical algorithms for assigning line-shape parameters for these species have been developed. Using these improvements, new line lists for hydrogen halides were created to update the HITRAN spectroscopic database. These new lists are more accurate and significantly more extensive than those included in the current version of the database (HITRAN2008). R.J. Le Roy, ``LEVEL 8.0, 2007'', University of Waterloo Chemical Physics Research Report CP-663 (2007); see http://leroy.uwaterloo.ca/programs/. L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, et al., ``The HITRAN 2008 Molecular Spectroscopic Database,'' JQSRT 110, 532-572 (2009).

  15. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets.

    PubMed

    Sichert, Jasmina A; Tong, Yu; Mutz, Niklas; Vollmer, Mathias; Fischer, Stefan; Milowska, Karolina Z; García Cortadella, Ramon; Nickel, Bert; Cardenas-Daw, Carlos; Stolarczyk, Jacek K; Urban, Alexander S; Feldmann, Jochen

    2015-10-14

    Organometal halide perovskites have recently emerged displaying a huge potential for not only photovoltaic, but also light emitting applications. Exploiting the optical properties of specifically tailored perovskite nanocrystals could greatly enhance the efficiency and functionality of applications based on this material. In this study, we investigate the quantum size effect in colloidal organometal halide perovskite nanoplatelets. By tuning the ratio of the organic cations used, we can control the thickness and consequently the photoluminescence emission of the platelets. Quantum mechanical calculations match well with the experimental values. We find that not only do the properties of the perovskite, but also those of the organic ligands play an important role. Stacking of nanoplatelets leads to the formation of minibands, further shifting the bandgap energies. In addition, we find a large exciton binding energy of up to several hundreds of meV for nanoplatelets thinner than three unit cells, partially counteracting the blueshift induced by quantum confinement. Understanding of the quantum size effects in perovskite nanoplatelets and the ability to tune them provide an additional method with which to manipulate the optical properties of organometal halide perovskites. PMID:26327242

  16. Porous copper zinc tin sulfide thin film as photocathode for double junction photoelectrochemical solar cells.

    PubMed

    Dai, Pengcheng; Zhang, Guan; Chen, Yuncheng; Jiang, Hechun; Feng, Zhenyu; Lin, Zhaojun; Zhan, Jinhua

    2012-03-21

    Porous copper zinc tin sulfide (CZTS) thin film was prepared via a solvothermal approach. Compared with conventional dye-sensitized solar cells (DSSCs), double junction photoelectrochemical cells using dye-sensitized n-type TiO(2) (DS-TiO(2)) as the photoanode and porous p-type CZTS film as the photocathode shows an increased short circuit current, external quantum efficiency and power conversion efficiency. PMID:22322239

  17. Optimal Charge of a Photocathode Gun for a Compact X-ray Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Yeon; Chae, Moon Sik; Ko, In Soo

    2010-02-01

    For a photocathode gun, the optimal charge per gun pulse is derived to give the theoretically allowed smallest saturation length of the X-ray free-electron laser based on the self amplified spontaneous emission scheme. The derivation is approximate, but the result is practically independent of specific machine design. The objective is to contribute to the study of a compact X-ray free-electron laser.

  18. Magnetic field effects on the photocathode uniformity of Hamamatsu R7081 photomultiplier tubes

    NASA Astrophysics Data System (ADS)

    Jeon, E. J.; Kim, J. Y.; Kim, Y. D.; Ma, K. J.; Nam, J. T.

    2013-01-01

    We tested the effects of magnetic fields on a photomultiplier tube (PMT), namely, Hamamatsu R7081, with a large surface area photocathode. The output signals of the PMT were affected in such a way that the magnetic fields deflected photoelectrons to the first dynode. We measured the effects produced by the orientation of the PMT relative to the magnetic fields and the variations in the output signals with respect to the incident light positions in the magnetic fields.

  19. State-of-the-art Pb photocathodes deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Gontad, F.; Perrone, A.

    2014-05-01

    In this article we present and discuss the current status of thin film Pb photocathodes deposited by pulsed laser deposition (PLD) with different laser parameters, such as laser fluence, wavelength or pulse duration. The PLD technique appears very efficient for the fabrication of pure Pb photocathodes, providing good adherence and respectable quantum efficiency. The films deposited on the picosecond and subpicosecond regimes are practically free of big droplets and fragments, whereas in the nanosecond regime their presence cannot be neglected. All the films present a granular structure and polycrystalline character with preferential orientation along the (111) crystalline planes, irrespective of the laser pulse duration or wavelength. The main results obtained from the photoemission performance of Pb thin films deposited by PLD demonstrate their chemical stability under vacuum conditions and respectable quantum efficiency with a maximum of 7.3×10-5 for films deposited on the subpicosecond regime. The photoemission properties confirm that Pb thin films deposited by PLD are a notable alternative for the fabrication of photocathodes for superconductive radio-frequency electron guns.

  20. Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes.

    PubMed

    Hettick, Mark; Zheng, Maxwell; Lin, Yongjing; Sutter-Fella, Carolin M; Ager, Joel W; Javey, Ali

    2015-06-18

    To date, some of the highest performance photocathodes of a photoelectrochemical (PEC) cell have been shown with single-crystalline p-type InP wafers, exhibiting half-cell solar-to-hydrogen conversion efficiencies of over 14%. However, the high cost of single-crystalline InP wafers may present a challenge for future large-scale industrial deployment. Analogous to solar cells, a thin-film approach could address the cost challenges by utilizing the benefits of the InP material while decreasing the use of expensive materials and processes. Here, we demonstrate this approach, using the newly developed thin-film vapor-liquid-solid (TF-VLS) nonepitaxial growth method combined with an atomic-layer deposition protection process to create thin-film InP photocathodes with large grain size and high performance, in the first reported solar device configuration generated by materials grown with this technique. Current-voltage measurements show a photocurrent (29.4 mA/cm(2)) and onset potential (630 mV) approaching single-crystalline wafers and an overall power conversion efficiency of 11.6%, making TF-VLS InP a promising photocathode for scalable and efficient solar hydrogen generation. PMID:26266588

  1. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W. (Seabrook, TX); Clavenna, LeRoy R. (Baytown, TX); Gorbaty, Martin L. (Fanwood, NJ); Tsou, Joe M. (Galveston, TX)

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  2. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    NASA Astrophysics Data System (ADS)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will include a consideration on how stable isotope studies assisted advancements in this subject area. For example, it has been shown that the methoxyl groups of lignin and pectin which together constitute the bulk of the C1 plant pool have a carbon isotope signature significantly depleted in 13C. Plant-derived C1 volatile organic compounds (VOCs) are also highly depleted in 13C compared with Cn+1 VOCs. These observations suggest that the plant methoxyl pool is the predominant source of methyl halides released from senescent and dead plant litter. The distinct 13C depletion of plant methoxyl groups and naturally produced methyl halides may provide a helpful tool in constraining complex environmental processes and therefore improve our understanding of the global cycles of atmospheric methyl halides.

  3. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    PubMed

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. PMID:26496216

  4. Geopolymers and Related Alkali-Activated Materials

    NASA Astrophysics Data System (ADS)

    Provis, John L.; Bernal, Susan A.

    2014-07-01

    The development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives for future research developments are also explored.

  5. Structural characterization of alkali metal 3-nitrobenzoates

    NASA Astrophysics Data System (ADS)

    ?wis?ocka, R.; Oleksi?ski, E.; Regulska, E.; Kalinowska, M.; Lewandowski, W.

    2007-05-01

    In this paper, the influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the 3-nitrobenzoic acid was studied. The vibrational (FT-IR, FT-Raman) and NMR ( 1H and 13C) spectra for 3-nitrobenzoic acid and its alkali metal salts were recorded. The changes of chemical shifts of protons ( 1H NMR) and carbons ( 13C NMR) in the series of studied alkali metal 3-nitrobenzoates were observed too. Optimized geometrical structures of studied compounds were calculated by B3PW91 method using 6-311++G ?? and 6-311++G basis sets. Geometric aromaticity indices, dipole moments and energies were also calculated. The theoretical wavenumbers and intensities of IR spectra were obtained at B3PW91/6-311++G level. The calculated parameters were compared to experimental characteristic of studied compounds.

  6. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  7. THE DETERMINATION OF TOTAL ORGANIC HALIDE IN WATER: AN INTERLABORATORY COMPARATIVE STUDY OF TWO METHODS

    EPA Science Inventory

    Total organic halide (TOX) analyzers are commonly used to measure the amount of dissolved halogenated organic byproducts in disinfected waters. Because of the lack of information on the identity of disinfection byproducts, rigorous testing of the dissolved organic halide (DOX) pr...

  8. THE DETERMINATION OF TOTAL ORGANIC HALIDE IN WATER: A COMPARATIVE STUDY OF TWO INSTRUMENTS

    EPA Science Inventory

    Total organic halide (TOX) analyzers are commonly used to measure the amount of dissolved halogenated organic byproducts in disinfected waters. ecause of the lack of information on the identity of disinfection byproducts, rigorous testing of the dissolved organic halide (DOX) pro...

  9. 75 FR 5544 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures: Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... public meeting and availability of the Framework Document in the Federal Register (74 FR 69036) for... for Metal Halide Lamp Fixtures: Public Meeting and Availability of the Framework Document AGENCY... conservation standards for certain metal halide lamp fixtures. This document announces that the period...

  10. Crossed-Beam Reactions of Barium with Hydrogen Halides Measurement of Internal State Distributions by Laser-Induced Fluorescence

    E-print Network

    Crossed-Beam Reactions of Barium with Hydrogen Halides Measurement of Internal State Distributions is presented and applied to the reactions of barium with the hydrogen halides. It is found that most-inducedfluorescenceas a molecular beam detector and apply it to the reactions of barium atoms with hydrogen halides, Reactions (1

  11. Alkali metal protective garment and composite material

    DOEpatents

    Ballif, III, John L. (Salt Lake City, UT); Yuan, Wei W. (Seattle, WA)

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  12. Alkali Metal Heat Pipe Life Issues

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.

    2004-01-01

    One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.

  13. Nanostructured Silicon Photocathodes for Solar Water Splitting Patterned by the Self-Assembly of Lamellar Block Copolymers.

    PubMed

    Shen, Lang; He, Chunlin; Qiu, Jing; Lee, Sung-Min; Kalita, Abinasha; Cronin, Stephen B; Stoykovich, Mark P; Yoon, Jongseung

    2015-12-01

    We studied a type of nanostructured silicon photocathode for solar water splitting, where one-dimensionally periodic lamellar nanopatterns derived from the self-assembly of symmetric poly(styrene-block-methyl methacrylate) block copolymers were incorporated on the surface of single-crystalline silicon in configurations with and without a buried metallurgical junction. The resulting nanostructured silicon photocathodes with the characteristic lamellar morphology provided suppressed front-surface reflection and increased surface area, which collectively contributed to the enhanced photocatalytic performance in the hydrogen evolution reaction. The augmented light absorption in the nanostructured silicon directly translated to the increase of the saturation current density, while the onset potential decreased with the etching depth because of the increased levels of surface recombination. The pp(+)-silicon photocathodes, compared to the n(+)pp(+)-silicon with a buried solid-state junction, exhibited a more pronounced shift of the current density-potential curves upon the introduction of the nanostructured surface owing to the corresponding increase in the liquid/silicon junction area. Systematic studies on the morphology, optical properties, and photoelectrochemical characteristics of nanostructured silicon photocathodes, in conjunction with optical modeling based on the finite-difference time-domain method, provide quantitative description and optimal design rules of lamellar-patterned silicon photocathodes for solar water splitting. PMID:26575400

  14. Development of High Quantum Efficiency UV/Blue Photocathode Epitaxial Semiconductor Heterostructures for Scintillation and Cherenkov Radiation Detection

    NASA Technical Reports Server (NTRS)

    Leopold, Daniel J.

    2002-01-01

    The primary goal of this research project was to further extend the use of advanced heteroepitaxial-semiconductor crystal growth techniques such as molecular beam epitaxy (MBE) and to demonstrate significant gains in UV/blue photonic detection by designing and fabricating atomically-tailored heteroepitaxial GaAlN/GaInN photocathode device structures. This NASA Explorer technology research program has focused on the development of photocathodes for Cherenkov and scintillation radiation detection. Support from the program allowed us to enhance our MBE system to include a nitrogen plasma source and a magnetic bearing turbomolecular pump for delivery and removal of high purity atomic nitrogen during GaAlN/GaInN film growth. Under this program we have also designed, built and incorporated a cesium activation stage. In addition, a connected UHV chamber with photocathode transfer/positioner components as well as a hybrid phototube stage was designed and built to make in-situ quantum efficiency measurements without ever having to remove the photocathodes from UHV conditions. Thus we have constructed a system with the capability to couple atomically-tailored MBE-grown photocathode heterostructures with real high gain readout devices for single photon detection evaluation.

  15. Transport properties of alkali metal doped fullerides

    NASA Astrophysics Data System (ADS)

    Yadav, Daluram; Yadav, Nishchhal

    2015-07-01

    We have studied the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, Tc, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported Tc (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  16. Chemically induced fracturing in alkali feldspar

    NASA Astrophysics Data System (ADS)

    Scheidl, K. S.; Schaeffer, A.-K.; Petrishcheva, E.; Habler, G.; Fischer, F. D.; Schreuer, J.; Abart, R.

    2014-01-01

    Fracturing in alkali feldspar during Na+-K+ cation exchange with a NaCl-KCl salt melt was studied experimentally. Due to a marked composition dependence of the lattice parameters of alkali feldspar, any composition gradient arising from cation exchange causes coherency stress. If this stress exceeds a critical level fracturing occurs. Experiments were performed on potassium-rich gem-quality alkali feldspars with polished (010) and (001) surfaces. When the feldspar was shifted toward more sodium-rich compositions over more than about 10 mole %, a system of parallel cracks with regular crack spacing formed. The cracks have a general (h0l) orientation and do not correspond to any of the feldspar cleavages. The cracks are rather oriented (sub)-perpendicular to the direction of maximum tensile stress. The critical stress needed to initiate fracturing is about 325 MPa. The critical stress intensity factor for the propagation of mode I cracks, K Ic, is estimated as 2.30-2.72 MPa m1/2 (73-86 MPa mm1/2) from a systematic relation between characteristic crack spacing and coherency stress. An orientation mismatch of 18° between the crack normal and the direction of maximum tensile stress is ascribed to the anisotropy of the longitudinal elastic stiffness which has pronounced maxima in the crack plane and a minimum in the direction of the crack normal.

  17. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    SciTech Connect

    Moore, David T.; Sai, Hiroaki; Wee Tan, Kwan; Estroff, Lara A.; Wiesner, Ulrich

    2014-08-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.

  18. Methyl Halide Production by Periphyton Mats from the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Raffel, A.; Jones, R. D.; Rice, A. L.; Scully, N. M.

    2012-12-01

    Methyl chloride and methyl bromide are trace gases with both natural and anthropogenic origins. Once generated these gases transport chlorine and bromine into the stratosphere, where they play an important role in atmospheric chemistry by participating in ozone depleting catalytic cycles. Coastal wetlands are one location where methyl halide emissions have been proposed to be elevated due to high primary production and ionic halogens. This region also provides a unique study environment due to salt water intrusions which occur during storm or low marsh water level-high tide events. The purpose of this research was to determine how varying concentrations of salinity affect methyl halide production originating from periphyton mats within the Florida Everglades. Florida Everglades periphyton (25 g/L) were exposed to continuous 12 hour dark/light cycles in varying concentrations of salt water (0, 0.1, 1.0, and 10‰). All water samples were analyzed to determine the concentration and production rate of methyl chloride and methyl bromide in periphyton samples using a gas chromatograph coupled with an electron capture detector. The concentration of methyl chloride increased by approximately 3.4 and 60 pM over a 0 to 72 hour range for 1‰ and 10 ‰ treatments respectively, and reached a steady state concentration after 24 hours. There was no significant production of methyl bromide for all treatments. These studies will be used to gain a better understanding of methyl halide production from periphyton mats in simulated natural conditions. This research was supported by the National Science Foundation Chemical Oceanography Program Award No. 1029710.

  19. CFTR-mediated halide transport in phagosomes of human neutrophils

    PubMed Central

    Painter, Richard G.; Marrero, Luis; Lombard, Gisele A.; Valentine, Vincent G.; Nauseef, William M.; Wang, Guoshun

    2010-01-01

    Chloride serves as a critical component of innate host defense against infection, providing the substrate for MPO-catalyzed production of HOCl in the phagosome of human neutrophils. Here, we used halide-specific fluorescent sensors covalently coupled to zymosan particles to investigate the kinetics of chloride and iodide transport in phagosomes of human neutrophils. Using the self-ratioable fluorescent probe specific for chloride anion, we measured chloride dynamics within phagosomes in response to extracellular chloride changes by quantitative fluorescence microscopy. Under the experimental conditions used, normal neutrophils showed rapid phagosomal chloride uptake with an initial influx rate of 0.31 ± 0.04 mM/s (n=5). GlyH-101, a CFTRinh, decreased the rate of uptake in a dose-dependent manner. Neutrophils isolated from CF patients showed a significantly slower rate of chloride uptake by phagosomes, having an initial influx rate of 0.043 ± 0.012 mM/s (n=5). Interestingly, the steady-state level of chloride in CF phagosomes was ?26 mM, significantly lower than that of the control (?68 mM). As CFTR transports chloride as well as other halides, we conjugated an iodide-sensitive probe as an independent approach to confirm the results. The dynamics of iodide uptake by neutrophil phagosomes were monitored by flow cytometry. CFTRinh172 blocked 40–50% of the overall iodide uptake by phagosomes in normal neutrophils. In a parallel manner, the level of iodide uptake by CF phagosomes was only 20–30% of that of the control. Taken together, these results implicate CFTR in transporting halides into the phagosomal lumen. PMID:20089668

  20. Transport phenomena of aluminium oxide in metal halide lamps

    NASA Astrophysics Data System (ADS)

    Fischer, S.; Niemann, U.; Markus, T.

    2008-07-01

    A better understanding of the transport phenomena observed in metal halide lamps can be achieved using computer-based model calculations. The chemical transport of aluminium oxide in advanced high-pressure discharge vessels was calculated as a function of temperature and composition of the salt mixture relevant to the lamp. Below 1773 K chemical transport is the prevailing process; above this temperature the vaporization and condensation of the envelope material—aluminium oxide—become more important. The results of the calculations show that the amount of transported alumina increases linearly with the number of iteration cycles and exponentially with the temperature gradient.

  1. Selective Cross-Coupling of Organic Halides with Allylic Acetates

    PubMed Central

    Anka-Lufford, Lukiana L.; Prinsell, Michael R.

    2012-01-01

    A general protocol for the coupling of haloarenes with a variety of allylic acetates is presented. Strengths of the method are a tolerance for electrophilic (ketone, aldehyde) and acidic (sulfonamide, trifluoroacetamide) substrates and the ability to couple with a variety of substituted allylic acetates. Secondary alkyl bromides can also be allylated under slightly modified conditions, demonstrating the generality of the approach. Finally, the coupling of a reactive vinyl halide could be achieved by the use of a very hindered ligand and more reactive, branched allylic acetates. PMID:23095043

  2. Bright Light-Emitting Diodes based on Organometal Halide Perovskite

    E-print Network

    Tan, Zhi-Kuang; Moghaddam, Reza Saberi; Lai, May Ling; Docampo, Pablo; Higler, Ruben; Deschler, Felix; Price, Michael; Sadhanala, Aditya; Pazos, Luis M.; Credgington, Dan; Hanusch, Fabian; Bein, Thomas; Snaith, Henry J.; Friend, Richard H.

    2014-08-03

    on Organometal Halide Perovskite Zhi-Kuang Tan1, Reza Saberi Moghaddam1, May Ling Lai1, Pablo Docampo2, Ruben Higler1, Felix Deschler1, Michael Price1, Aditya Sadhanala1, Luis M. Pazos1, Dan Credgington1, Fabian Hanusch2, Thomas Bein2, Henry J. Snaith3... and Richard H. Friend1* 1 Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK. 2 Ludwig-Maximilians-Universität München, Butenandtstraße 11, 81377, München, Germany. 3 Department of Physics, University of Oxford...

  3. Volatile species in halide-activated-diffusion coating packs

    NASA Technical Reports Server (NTRS)

    Bianco, Robert; Rapp, Robert A.; Jacobson, Nathan S.

    1992-01-01

    An atmospheric pressure sampling mass spectrometer was used to identify the vapor species generated in a halide-activated cementation pack. Pack powder mixtures containing a Cr-Al binary masteralloy powder, an NH4Cl activator salt, and either ZrO2 or Y2O3 (or neither) were analyzed at 1000 C. Both the equilibrium calculations for the pack and mass spectrometer results indicated that volatile AlCl(x) and CrCl(y) species were generated by the pack powder mixture; in packs containing the reactive element oxide, volatile ZrCl(z) and YCl(w) species were formed by the conversion of their oxide sources.

  4. Selective substitution of alkali cations in mixed alkali glass by solid-state electrochemistry

    NASA Astrophysics Data System (ADS)

    Kamada, Kai; Tsutsumi, Yuko; Yamashita, Shuichi; Matsumoto, Yasumichi

    2004-01-01

    Electrosubstitution of alkali cations in mixed-alkali glass containing both Na 2O and K 2O for other monovalent metal cations ( M+=Li +, Ag +, and Cs +) was investigated using a solid-state electrochemical method. The fundamental electrolysis system consists of anode/ M+-conducting microelectrode/glass/Na- ??-Al 2O 3/cathode, where M+ is substituted for the alkali metal ions in the glass under an applied electric field. Li + ions attacked only Na + sites, and Ag + ions replaced Na + sites more readily than K +. In contrast, Cs + ions simultaneously substituted for both Na + and K + sites. The substitution behavior appears to depend on the difference in ionic conductivity between K + and Na + and the radius of the dopant. This mechanism was discussed qualitatively.

  5. High time resolution beam-based measurement of the rf-to-laser jitter in a photocathode rf gun

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Du, Yingchao; Yan, Lixin; Du, Qiang; Hua, Jianfei; Shi, Jiaru; Yang, Jin; Wang, Dan; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2014-03-01

    Characterizing the rf-to-laser jitter in the photocathode rf gun and its possible origins is important for improving the synchronization and beam quality of the linac based on the photocathode rf gun. A new method based on the rf compression effect in the photocathode rf gun is proposed to measure the rf-to-laser jitter in the gun. By taking advantage of the correlation between the rf compression and the laser injection phase, the error caused by the jitter of the accelerating field in the gun is minimized and thus 10fs time resolution is expected. Experimental demonstration at the Tsinghua Thomson scattering x-ray source with a time resolution better than 35 fs is reported in this paper. The experimental results are successfully used to obtain information on the possible cause of the jitter and the accompanying drifts.

  6. Solar Hydrogen Production by Amorphous Silicon Photocathodes Coated with a Magnetron Sputter Deposited Mo2C Catalyst.

    PubMed

    Morales-Guio, Carlos G; Thorwarth, Kerstin; Niesen, Bjoern; Liardet, Laurent; Patscheider, Jörg; Ballif, Christophe; Hu, Xile

    2015-06-10

    Coupling of Earth-abundant hydrogen evolution catalysts to photoabsorbers is crucial for the production of hydrogen fuel using sunlight. In this work, we demonstrate the use of magnetron sputtering to deposit Mo2C as an efficient hydrogen evolution reaction catalyst onto surface-protected amorphous silicon (a-Si) photoabsorbers. The a-Si/Mo2C photocathode evolves hydrogen under simulated solar illumination in strongly acidic and alkaline electrolytes. Onsets of photocurrents are observed at potentials as positive as 0.85 V vs RHE. Under AM 1.5G (1 sun) illumination, the photocathodes reach current densities of -11.2 mA cm(-2) at the reversible hydrogen potential in 0.1 M H2SO4 and 1.0 M KOH. The high photovoltage and low-cost of the Mo2C/a-Si assembly make it a promising photocathode for solar hydrogen production. PMID:26005904

  7. A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell

    PubMed Central

    Bourgeteau, Tiphaine; Tondelier, Denis; Geffroy, Bernard; Brisse, Romain; Laberty-Robert, Christel; Campidelli, Stéphane; de Bettignies, Rémi; Artero, Vincent; Palacin, Serge; Jousselme, Bruno

    2013-01-01

    An organic solar cell based on a poly-3-hexylthiophene (P3HT): phenyl-C61-butyric acid (PCBM) bulk hetero-junction was directly coupled with molybdenum sulfide resulting in the design of a new type of photocathode for the production of hydrogen. Both the light-harvesting system and the catalyst were deposited by low-cost solution-processed methods, i.e. spin coating and spray coating respectively. Spray-coated MoS3 films are catalytically active in strongly acidic aqueous solutions with the best efficiencies for thicknesses of 40 to 90 nm. The photocathodes display photocurrents higher than reference samples, without catalyst or without coupling with a solar cell. Analysis by gas chromatography confirms the light-induced hydrogen evolution. The addition of titanium dioxide in the MoS3 film enhances electron transport and collection within thick films and therefore the performance of the photocathode. PMID:24404434

  8. Evaluation of the amperex 56 TVP photomultiplier. [characteristics: photoelectron time spread, anode pulse amplitude and photocathode sensing area

    NASA Technical Reports Server (NTRS)

    Lo, C. C.; Leskovar, B.

    1976-01-01

    Characteristics were measured for the Amperex 56 TVP 42 mm-diameter photomultiplier. Some typical photomultiplier characteristics-such as gain, dark current, transit and rise times-are compared with data provided. Photomultiplier characteristics generally not available such as the single photoelectron time spread, the relative collection efficiency, the relative anode pulse amplitude as a function of the voltage between the photocathode and focusing electrode, and the position of the photocathode sensing area were measured and are discussed for two 56 TVP's. The single photoelectron time spread, the relative collection efficiency, and the transit time difference as a function of the voltage between photocathode and focusing electrode were also measured and are discussed, particularly with respect to the optimization of photomultiplier operating conditions for timing applications.

  9. Environmental mercury contamination around a chlor-alkali plant

    SciTech Connect

    Lodenius, M.; Tulisalo, E.

    1984-04-01

    The chlor-alkali industry is one of the most important emitters of mercury. This metal is effectively spread from chlor-alkali plants into the atmosphere and it has been reported that only a few percent of the mercury emissions are deposited locally the major part spreading over very large areas. The purpose of this investigation was to study the spreading of mercury up to 100 km from a chlor-alkali plant using three different biological indicators.

  10. Determination of the common and rare alkalies in mineral analysis

    USGS Publications Warehouse

    Wells, R.C.; Stevens, R.E.

    1934-01-01

    Methods are described which afford a determination of each member of the alkali group and are successful in dealing with the quantities of the rare alkalies found in rocks and minerals. The procedures are relatively rapid and based chiefly on the use of chloroplatinic acid, absolute alcohol and ether, and ammonium sulfate. The percentages of all the alkalies found in a number of minerals are given.

  11. A polarized photoluminescence study of strained layer GaAs photocathodes

    SciTech Connect

    Mair, R.A.

    1996-07-01

    Photoluminescence measurements have been made on a set of epitaxially grown strained GaAs photocathode structures. The photocathodes are designed to exhibit a strain-induced enhancement of the electron spin polarization obtainable by optical pumping with circularly polarized radiation of near band gap energy. For the case of non-strained GaAs, the degree of spin polarization is limited to 50% by crystal symmetry. Under an appropriate uniaxial compression or tension, however, the valence band structure near the gap minimum is modified such that a spin polarization of 100% is theoretically possible. A total of nine samples with biaxial compressive strains ranging from zero to {approximately}0.8% are studied. X-ray diffraction analysis, utilizing Bragg reflections, is used to determine the crystal lattice structure of the samples. Luminescence spectra and luminescence circular polarization data are obtained at room temperature, {approx}78 K and {approx}12 K. The degree of luminescence circular polarization is used as a relative measure of the photo-excited electron spin polarization. The room temperature luminescence circular polarization data is compared with the measured electron spin polarization when the samples are used as electron photo-emitters with a negative electron affinity surface preparation. The luminescence data is also analyzed in conjunction with the crystal structure data with the goal of understanding the strain dependent valence band structure, optical pumping characteristics and spin depolarization mechanisms of the photocathode structures. A simple model is used to describe the luminescence data, obtained for the set of samples. Within the assumptions of the model, the deformation potentials a, b and d for GaAs are determined. The measured values are a = -10.16{+-}.21 eV, b = -2.00{+-}.05 eV and d = -4.87{+-}.29 eV. Good agreement with published values of the deformation potentials provides support for the model used to describe the data.

  12. A novel scaling law relating the geometrical dimensions of a photocathode radio frequency gun to its radio frequency properties.

    PubMed

    Lal, Shankar; Pant, K K; Krishnagopal, S

    2011-12-01

    Developing a photocathode RF gun with the desired RF properties of the ?-mode, such as field balance (e(b)) ~1, resonant frequency f(?) = 2856 MHz, and waveguide-to-cavity coupling coefficient ?(?) ~1, requires precise tuning of the resonant frequencies of the independent full- and half-cells (f(f) and f(h)), and of the waveguide-to-full-cell coupling coefficient (?(f)). While contemporary electromagnetic codes and precision machining capability have made it possible to design and tune independent cells of a photocathode RF gun for desired RF properties, thereby eliminating the need for tuning, access to such computational resources and quality of machining is not very widespread. Therefore, many such structures require tuning after machining by employing conventional tuning techniques that are iterative in nature. Any procedure that improves understanding of the tuning process and consequently reduces the number of iterations and the associated risks in tuning a photocathode gun would, therefore, be useful. In this paper, we discuss a method devised by us to tune a photocathode RF gun for desired RF properties under operating conditions. We develop and employ a simple scaling law that accounts for inter-dependence between frequency of independent cells and waveguide-to-cavity coupling coefficient, and the effect of brazing clearance for joining of the two cells. The method has been employed to successfully develop multiple 1.6 cell BNL?SLAC/UCLA type S-band photocathode RF guns with the desired RF properties, without the need to tune them by a tiresome cut-and-measure process. Our analysis also provides a physical insight into how the geometrical dimensions affect the RF properties of the photo-cathode RF gun. PMID:22225212

  13. A novel scaling law relating the geometrical dimensions of a photocathode radio frequency gun to its radio frequency properties

    NASA Astrophysics Data System (ADS)

    Lal, Shankar; Pant, K. K.; Krishnagopal, S.

    2011-12-01

    Developing a photocathode RF gun with the desired RF properties of the ?-mode, such as field balance (eb) ˜1, resonant frequency f? = 2856 MHz, and waveguide-to-cavity coupling coefficient ?? ˜1, requires precise tuning of the resonant frequencies of the independent full- and half-cells (ff and fh), and of the waveguide-to-full-cell coupling coefficient (?f). While contemporary electromagnetic codes and precision machining capability have made it possible to design and tune independent cells of a photocathode RF gun for desired RF properties, thereby eliminating the need for tuning, access to such computational resources and quality of machining is not very widespread. Therefore, many such structures require tuning after machining by employing conventional tuning techniques that are iterative in nature. Any procedure that improves understanding of the tuning process and consequently reduces the number of iterations and the associated risks in tuning a photocathode gun would, therefore, be useful. In this paper, we discuss a method devised by us to tune a photocathode RF gun for desired RF properties under operating conditions. We develop and employ a simple scaling law that accounts for inter-dependence between frequency of independent cells and waveguide-to-cavity coupling coefficient, and the effect of brazing clearance for joining of the two cells. The method has been employed to successfully develop multiple 1.6 cell BNL/SLAC/UCLA type S-band photocathode RF guns with the desired RF properties, without the need to tune them by a tiresome cut-and-measure process. Our analysis also provides a physical insight into how the geometrical dimensions affect the RF properties of the photo-cathode RF gun.

  14. Large Photocathode Photodetectors Using Photon Amplification and Phase-Space Compression

    E-print Network

    Carrio, Alex; Greener, Kevin; McGuiness, Sean; Podrasky, Victor; Sullivan, John; Winn, David R; Bilki, Burak; Onel, Yasar

    2014-01-01

    We describe a simple technique to both amplify incident photons and compress their angular x area phase space. These Optical Compressor Amplifier Tubes (OCA Tube) use techniques analogous to image intensifiers, using vacuum photocathodes to detect photons as converted to photoelectrons, amplify the photons via photoelectron bombardment of fast scintillators, and compress the optical phase space onto optical fibers, so that small, high gain photodetectors, like miniature PMT or SiPM, can be used to detect photons from large areas, at comparatively low cost. The properties of and benefits of OCA tubes are described.

  15. A high-charge high-brightness L-band photocathode RF gun

    SciTech Connect

    Conde, M. E.; Gai, W.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.

    2000-02-25

    The Argonne Wakefield Accelerator has been successfully commissioned and used for conducting wakefield experiments in dielectric loaded structures and plasmas. Although the initial wakefield experiments were successful, higher drive beam quality would substantially improve the wakefield accelerating gradients. In this paper the authors present a new 1-1/2 cell L-band photocathode RF gun design. This gun will produce 10--100 nC beam with 2--5 ps ms pulse length and normalized emittance less than 100 mm mrad. The final gun design and numerical simulations of the beam dynamics are presented.

  16. Photoemission and optical constant measurements of a Cesium Iodide thin film photocathode

    NASA Astrophysics Data System (ADS)

    Triloki; Rai, R.; Gupta, Nikita; Jammal, Nabeel F. A.; Singh, B. K.

    2015-07-01

    The performance of cesium iodide as a reflective photocathode is presented. The absolute quantum efficiency of a 500 nm thick film of cesium iodide has been measured in the wavelength range 150 nm-200 nm. The optical absorbance has been analyzed in the wavelength range 190 nm-900 nm and the optical band gap energy has been calculated. The dispersion properties were determined from the refractive index using an envelope plot of the transmittance data. The morphological and elemental film composition have been investigated by atomic force microscopy and X-ray photo-electron spectroscopy techniques.

  17. Quantum Efficiency and Topography of Heated and Plasma-Cleaned Copper Photocathode Surfaces

    SciTech Connect

    Palmer, Dennis T.; Kirby, R.E.; King, F.K.; /SLAC

    2005-08-04

    We present measurements of photoemission quantum efficiency (QE) for copper photocathodes heated and cleaned by low energy argon and hydrogen ion plasma. The QE and surface roughness parameters were measured before and after processing and surface chemical composition was tracked in-situ with x-ray photoelectron spectroscopy (XPS). Thermal annealing at 230 C was sufficient to improve the QE by 3-4 orders of magnitude, depending on the initial QE. Exposure to residual gas slowly reduced the QE but it was easily restored by argon ion cleaning for a few minutes. XPS showed that the annealing or ion bombardment removed surface water and hydrocarbons.

  18. Study on alkali removal technology from coal gasification gas

    SciTech Connect

    Inai, Motoko; Kajibata, Yoshihiro; Takao, Shoichi; Suda, Masamitsu

    1999-07-01

    The authors have proposed a new coal based combined cycle power plant concept. However, there are certain technical problems that must be overcome to establish this system. Major technical problem of the system is hot corrosion of gas turbine blades caused by sulfur and alkali vapor, because of high temperature dust removal without sulfur removal from the coal gas. So the authors have conducted several fundamental studies on dry type alkali removal sorbents for the purposed of reducing the corrosion on gas turbine blades. Based on the fundamental studies the authors found preferable alkali removal sorbents, and made clear their alkali removal performance.

  19. High temperature alkali corrosion of ceramics in coal gas

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J.

    1991-11-30

    High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this program is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, zirconia, and fireclay glass. The study consists of identification of the alkali reaction products (phase equilibria) and the kinetics of the alkali reactions as a function of temperature and time.

  20. High temperature alkali corrosion of ceramics in coal gas

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J.

    1992-05-27

    High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, zirconia, and fireclay glass. The study consists of identification of the alkali reaction products (phase equilibria) and the kinetics of the alkali reactions as a function of temperature and time.

  1. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  2. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, David C. (Omaha, NE); Mailhe, Catherine C. (Berkeley, CA); De Jonghe, Lutgard C. (Oakland, CA)

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  3. Photocrystallographic Observation of Halide-Bridged Intermediates in Halogen Photoeliminations

    PubMed Central

    2015-01-01

    Polynuclear transition metal complexes, which frequently constitute the active sites of both biological and chemical catalysts, provide access to unique chemical transformations that are derived from metal–metal cooperation. Reductive elimination via ligand-bridged binuclear intermediates from bimetallic cores is one mechanism by which metals may cooperate during catalysis. We have established families of Rh2 complexes that participate in HX-splitting photocatalysis in which metal–metal cooperation is credited with the ability to achieve multielectron photochemical reactions in preference to single-electron transformations. Nanosecond-resolved transient absorption spectroscopy, steady-state photocrystallography, and computational modeling have allowed direct observation and characterization of Cl-bridged intermediates (intramolecular analogues of classical ligand-bridged intermediates in binuclear eliminations) in halogen elimination reactions. On the basis of these observations, a new class of Rh2 complexes, supported by CO ligands, has been prepared, allowing for the isolation and independent characterization of the proposed halide-bridged intermediates. Direct observation of halide-bridged structures establishes binuclear reductive elimination as a viable mechanism for photogenerating energetic bonds. PMID:25264809

  4. Oxide Film Aging on Alloy 22 in Halide Containing Solutions

    SciTech Connect

    Rodriguez, Martin A.; Carranza, Ricardo M.; Rebak, Raul B.

    2007-07-01

    Passive and corrosion behaviors of Alloy 22 in chloride and fluoride containing solutions, changing the heat treatment of the alloy, the halide concentration and the pH of the solutions at 90 deg. C, was investigated. The study was implemented using electrochemical techniques, which included open circuit potential monitoring over time, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements carried out at open circuit and at passivity potentials. Corrosion rates obtained by EIS measurements after 24 h immersion in naturally aerated solutions were below 0.5 {mu}m/year. The corrosion rates were practically independent of solution pH, alloy heat treatment and halide ion nature and concentration. EIS low frequency resistance values increased with applied potential in the passive domain and with polarization time in pH 6 - 1 M NaCl at 90 deg. C. This effect was attributed to an increase in the oxide film thickness and oxide film aging. High frequency capacitance measurements indicated that passive oxide on Alloy 22 presented a double n-type/p-type semiconductor behavior in the passive potential range. (authors)

  5. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...sulfonated diphenyl oxide, alkali and amine salts. 721.2565 Section 721.2565 ...sulfonated diphenyl oxide, alkali and amine salts. (a) Chemical substances and significant...alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  6. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 2010-07-01 false Alkali metal salt of halogenated organoborate (generic...Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic...substances identified generically as alkali metal salt of halogenated organoborate (PMN...

  7. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...sulfonated diphenyl oxide, alkali and amine salts. 721.2565 Section 721.2565 ...sulfonated diphenyl oxide, alkali and amine salts. (a) Chemical substances and significant...alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  8. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Disubstituted benzoic acid, alkali metal salt (generic). 721.10098 Section 721...Disubstituted benzoic acid, alkali metal salt (generic). (a) Chemical substance...disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to...

  9. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fatty alkyl phosphate, alkali metal salt (generic). 721.5985 Section 721... Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical substance...as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to...

  10. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 2013-07-01 false Alkali metal salt of halogenated organoborate (generic...Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic...substances identified generically as alkali metal salt of halogenated organoborate (PMN...

  11. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...sulfonated diphenyl oxide, alkali and amine salts. 721.2565 Section 721.2565 ...sulfonated diphenyl oxide, alkali and amine salts. (a) Chemical substances and significant...alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  12. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Disubstituted benzoic acid, alkali metal salt (generic). 721.10098 Section 721...Disubstituted benzoic acid, alkali metal salt (generic). (a) Chemical substance...disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to...

  13. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...sulfonated diphenyl oxide, alkali and amine salts. 721.2565 Section 721.2565 ...sulfonated diphenyl oxide, alkali and amine salts. (a) Chemical substances and significant...alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  14. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...sulfonated diphenyl oxide, alkali and amine salts. 721.2565 Section 721.2565 ...sulfonated diphenyl oxide, alkali and amine salts. (a) Chemical substances and significant...alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  15. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 2010-07-01 false Fatty alkyl phosphate, alkali metal salt (generic). 721...Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). ...identified generically as a fatty alkyl phosphate, alkali metal salt (PMN...

  16. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 2014-07-01 false Fatty alkyl phosphate, alkali metal salt (generic). 721...Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). ...identified generically as a fatty alkyl phosphate, alkali metal salt (PMN...

  17. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 2013-07-01 false Fatty alkyl phosphate, alkali metal salt (generic). 721...Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). ...identified generically as a fatty alkyl phosphate, alkali metal salt (PMN...

  18. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 2011-07-01 false Fatty alkyl phosphate, alkali metal salt (generic). 721...Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). ...identified generically as a fatty alkyl phosphate, alkali metal salt (PMN...

  19. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 < x < 6.0 ) with Na at Na-beta'-alumina, and Mo with K at K-beta'-alumina. Both liquid metal/solid electrolyte/alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  20. Cathode architectures for alkali metal / oxygen batteries

    DOEpatents

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  1. New EBCCD with transferred electron photocathode for range-gated active imaging system

    NASA Astrophysics Data System (ADS)

    Xu, Xiaowen; Guo, Jin

    2002-09-01

    A detailed comparison between conventional image intensifiers and electron bombarded CCD (EBCCD) is conducted. These sensors' advantages and drawbacks are analyzed. EBCCD with transferred electron (TE) photocathode and its application in Laser Illuminated Viewing and Ranging (LIVAR) system are shown in details. The TE Photocathode (TEP) developed by Intevac in 1996 has a demonstrated quantum efficiency of 20% or higher over the spectral range between 0.95 and 1.7 ?m. The TEP is coupled directly with a CCD chip in an electron bombarded CCD (EBCCD) configuration. The overall noise figure of the EBCCD camera is close to one, approximately half that of a standard Generation-III image intensifier. The EBCCD eliminates the micro-channel plate (MCP), phosphor screen, and fiber optics, and as a result both improved image quality and increased sensitivity can be obtained in a smaller sized camera. Because of the reduction in the number of image conversions and the significantly greater signal-to-noise performance, an EBCCD has higher contrast and resolution than an ICCD. These characteristics make the EBCCD a good candidate for military, helmet-mounted night-vision systems as well as for covert surveillance applications.

  2. Wet etching of AlGaN/GaN photocathode grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Hao, Guanghui; Chang, Benkang; Cheng, Hongchang

    2013-08-01

    The AlGaN/GaN with thin GaN surface was grown by metalorganic chemical vapor deposition (MOCVD). And one of two AlGaN/GaN photocathode samples was etched by molten KOH about 40s, and its reflectivity and transmittance are tested. The thickness of AlGaN and GaN layers are fitted by the matrix formula for thin film optics, and the GaN thickness of them are 7nm and 2.5nm respectively. And etch speed of GaN are got in molten KOH at about 400°C. Then the etched and original AlGaN/GaN photocathode samples are activated by Cs/O in the same way. The spectral response and the result of simulation show that the cut-off wavelength of the etched AlGaN/GaN deviate to the short-wave. And the quantum efficiency decline with the GaN thickness decrease.

  3. Improved Ion Resistance for III-V Photocathodes in High Current Guns

    SciTech Connect

    Mulhollan, Gregory, A.

    2012-11-16

    The two photocathode test systems were modified, baked and recommissioned. The first system was dedicated to ion studies and the second to electron stimulated recovery (ESR) work. The demonstration system for the electron beam rejuvenation was set up, tested and demonstrated to one of the SSRL team (Dr. Kirby) during a site visit. The requisite subsystems were transferred to SSRL, installed and photoemission studies conducted on activated surfaces following electron beam exposure. Little surface chemistry change was detected in the photoemission spectra following the ESR process. The yield mapping system for the ion (and later, the electron beam rejuvenation) studies was implemented and use made routine. Ion species and flux measurements were performed for H, He, Ne, Ar, Kr and Xe ions at energies of 0.5, 1.0 and 2.0 kV. Gas induced photoyield measurements followed each ion exposure measurement. These data permit the extraction of photoyield induced change per ion (by species) at the measured energies. Electron beam induced rejuvenation was first demonstrated in the second chamber with primary electron beam energy and dependency investigations following. A Hiden quadrupole mass spectrometer for the electron stimulated desorption (ESD) measurements was procured. The UHV test systems needed for subsequent measurements were configured, baked, commissioned and utilized for their intended purposes. Measurements characterizing the desorption products from the ESD process and secondary electron (SE) yield at the surfaces of negative electron affinity GaAs photocathodes have been performed. One US Utility Patent was granted covering the ESR process.

  4. Performance Study of K2CsSb Photocathode Inside a DC High Voltage Gun

    SciTech Connect

    McCarter J. L.; Rao T.; Smedley, J.; Grames, J.; Mammei, R.; Poelker, M.; Suleiman, R.

    2011-09-01

    In the past decade, there has been considerable interest in the generation of tens of mA average current in a photoinjector. Until recently, GaAs:Cs cathodes and K{sub 2}CsSb cathodes have been tested successfully in DC and RF injectors respectively for this application. Our goal is to test the K{sub 2}CsSb photocathode inside a DC gun. Since the multialkali cathode is a compound with constant characteristics over its entire thickness, we anticipate that the lifetime issues seen in GaAs:Cs due to surface damage by ion bombardment would be minimized. Hence successful operation of the K{sub 2}CsSb cathode in a DC gun could lead to a relatively robust electron source capable of delivering ampere level currents. In order to test the performance of a K{sub 2}CsSb cathode in a DC gun, we have designed and built a load lock system that allows the fabrication of the cathode at Brookhaven National Lab (BNL) and its testing at Jefferson Lab (JLab). In this paper, we will present the performance of the K{sub 2}CsSb photocathode in the preparation chamber and in the DC gun.

  5. Organic-Inorganic Hybrid Solution-Processed H?-Evolving Photocathodes.

    PubMed

    Lai, Lai-Hung; Gomulya, Widianta; Berghuis, Matthijs; Protesescu, Loredana; Detz, Remko J; Reek, Joost N H; Kovalenko, Maksym V; Loi, Maria A

    2015-09-01

    Here we report for the first time an H2-evolving photocathode fabricated by a solution-processed organic-inorganic hybrid composed of CdSe and P3HT. The CdSe:P3HT (10:1 (w/w)) hybrid bulk heterojunction treated with 1,2-ethanedithiol (EDT) showed efficient water reduction and hydrogen generation. A photocurrent of -1.24 mA/cm(2) at 0 V versus reversible hydrogen electrode (V(RHE)), EQE of 15%, and an unprecedented Voc of 0.85 V(RHE) under illumination of AM1.5G (100 mW/cm(2)) in mild electrolyte were observed. Time-resolved photoluminescence (TRPL), internal quantum efficiency (IQE), and transient photocurrent measurements were carried out to clarify the carrier dynamics of the hybrids. The exciton lifetime of CdSe was reduced by one order of magnitude in the hybrid blend, which is a sign of the fast charge separation upon illumination. By comparing the current magnitude of the solid-state devices and water-splitting devices made with identical active layers, we found that the interfaces of the water-splitting devices limit the device performance. The electron/hole transport properties investigated by comparing IQE spectra upon front- and back-side illumination evidenced balanced electron/hole transport. The Faradaic efficiency is 80-100% for the hybrid photocathodes with Pt catalysts and ?70% for the one without Pt catalysts. PMID:26261996

  6. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst

    NASA Astrophysics Data System (ADS)

    Morales-Guio, Carlos G.; Tilley, S. David; Vrubel, Heron; Grätzel, Michael; Hu, Xile

    2014-01-01

    Concerns over climate change resulting from accumulation of anthropogenic carbon dioxide in the atmosphere and the uncertainty in the amount of recoverable fossil fuel reserves are driving forces for the development of renewable, carbon-neutral energy technologies. A promising clean solution is photoelectrochemical water splitting to produce hydrogen using abundant solar energy. Here we present a simple and scalable technique for the deposition of amorphous molybdenum sulphide films as hydrogen evolution catalyst onto protected copper(I) oxide films. The efficient extraction of excited electrons by the conformal catalyst film leads to photocurrents of up to -5.7mAcm-2 at 0V versus the reversible hydrogen electrode (pH 1.0) under simulated AM 1.5 solar illumination. Furthermore, the photocathode exhibits enhanced stability under acidic environments, whereas photocathodes with platinum nanoparticles as catalyst deactivate more rapidly under identical conditions. The work demonstrates the potential of earth-abundant light-harvesting material and catalysts for solar hydrogen production.

  7. Temporal resolution of MeV ultrafast electron diffraction based on a photocathode RF gun

    NASA Astrophysics Data System (ADS)

    Li, Ren-Kai; Tang, Chuan-Xiang

    2009-07-01

    Photocathode RF guns serve as electron sources in various ultrafast pump-probe experiments, such as in X-ray free-electron lasers, Thomson scattering X-ray sources, and MeV ultrafast electron diffractions (UED), for studying structural dynamics on the fundamental scales of atomic motions. The temporal resolutions of these experiments are of great concern. In this paper, we study each contributing term to the temporal resolution, including the RF compression effect, the dependence of time-of-flight of the electron pulses on the RF-to-laser timing jitter, and the effect of fluctuation of the RF field amplitude. We employ a simple single-particle model, and demonstrate inherent connections of all these effects to the single-particle dynamics. Particularly, the correlation between the RF compression effect and the fluctuation of time-of-flight induced by the RF-to-laser timing jitter, makes the temporal resolution considerably smaller than simply adding each term quadratically. We apply these results to a MeV UED and evaluate its temporal resolution, showing that a ˜100 fs resolution is already achievable with state-of-the-art hardware performances. Since these results are inherent properties of photocathode RF guns, they are also applicable to other facilities.

  8. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst.

    PubMed

    Morales-Guio, Carlos G; Tilley, S David; Vrubel, Heron; Grätzel, Michael; Hu, Xile

    2014-01-01

    Concerns over climate change resulting from accumulation of anthropogenic carbon dioxide in the atmosphere and the uncertainty in the amount of recoverable fossil fuel reserves are driving forces for the development of renewable, carbon-neutral energy technologies. A promising clean solution is photoelectrochemical water splitting to produce hydrogen using abundant solar energy. Here we present a simple and scalable technique for the deposition of amorphous molybdenum sulphide films as hydrogen evolution catalyst onto protected copper(I) oxide films. The efficient extraction of excited electrons by the conformal catalyst film leads to photocurrents of up to -5.7?mA?cm(-2) at 0?V versus the reversible hydrogen electrode (pH 1.0) under simulated AM 1.5 solar illumination. Furthermore, the photocathode exhibits enhanced stability under acidic environments, whereas photocathodes with platinum nanoparticles as catalyst deactivate more rapidly under identical conditions. The work demonstrates the potential of earth-abundant light-harvesting material and catalysts for solar hydrogen production. PMID:24402352

  9. Transmission photocathodes based on stainless steel mesh coated with deuterated diamond like carbon films

    NASA Astrophysics Data System (ADS)

    Huran, J.; Balalykin, N. I.; Feshchenko, A. A.; Kobzev, A. P.; Kleinová, A.; Sasinková, V.; Hrub?ín, L.

    2014-07-01

    In this study we report on the dependence of electron emission properties on the transmission photocathodes DC gun based on stainless steel mesh coated with diamond like carbon films prepared at various technological conditions. Diamond like carbon films were deposited on the stainless steel mesh and silicon substrate by plasma enhanced chemical vapor deposition from gas mixtures CH4+D2+Ar, CH4+H2+Ar and reactive magnetron sputtering using a carbon target and gas mixtures Ar+D2, Ar+H2. The concentration of elements in films was determined by Rutherford backscattering spectrometry (RBS) and elastic recoil detection (ERD) analytical methods simultaneously. Chemical compositions were analyzed by Fourier transform infrared spectroscopy (FT-IR). Raman spectroscopy at visible excitation wavelength was used for the intensity ratio determination of Gaussian fit D-peak and G-peak of Raman spectra. The quantum efficiency was calculated from the measured laser energy and the measured cathode charge. The quantum efficiency of a prepared transmission photocathode was increased with increasing intensity ratio of D-peak and G-peak, which was increased by adding deuterium to the gas mixture and using technology reactive magnetron sputtering.

  10. Performance of GAASP/GAAS Superlattice Photocathodes in High Energy Experiments using Polarized Electrons

    SciTech Connect

    Brachmann, A.; Clendenin, J.E.; Maruyama, T.; Garwin, E.L.; Ioakemidi, K.; Prescott, C.Y.; Turner, J.L.; Prepost, R.; /Wisconsin U., Madison

    2006-02-27

    The GaAsP/GaAs strained superlattice photocathode structure has proven to be a significant advance for polarized electron sources operating with high peak currents per microbunch and relatively low duty factor. This is the characteristic type of operation for SLAC and is also planned for the ILC. This superlattice structure was studied at SLAC [1], and an optimum variation was chosen for the final stage of E-158, a high-energy parity violating experiment at SLAC. Following E-158, the polarized source was maintained on standby with the cathode being re-cesiated about once a week while a thermionic gun, which is installed in parallel with the polarized gun, supplied the linac electron beams. However, in the summer of 2005, while the thermionic gun was disabled, the polarized electron source was again used to provide electron beams for the linac. The performance of the photocathode 24 months after its only activation is described and factors making this possible are discussed.

  11. Applying field mapping refractive beam shapers to improve irradiation of photocathode of FEL

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2012-10-01

    Providing the flattop (uniform) or other intensity distributions of short-pulse laser beam by irradiating photocathode of FEL is a technique that is frequently considered as a way to improve performance of FEL. This task can be easily solved with using beam shaping optics, for example, the field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flattop one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. With using the same piShaper it is possible to realize various beam profiles like flattop, inverse Gauss or super Gauss by simple variation of input beam diameter; this feature makes these devices a powerful tool in reaching various effects of generation of an electron beam. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in systems of FEL photocathode irradiation. Examples of real implementations and experimental results will be presented as well.

  12. Heat load of a P-doped GaAs photocathode in SRF electron gun

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Jain, A.; Gupta, R.; Holmes, D.

    2010-05-23

    Many efforts were made over the last decades to develop a better polarized electron source for the high energy physics. Several laboratories operate DC guns with the Gallium-Arsenide photo-cathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved using a Superconducting RF electron gun, which delivers beams of higher brightness than DC guns does, because the field gradient at the cathode is higher. SRF guns with metal cathodes and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since the cathode will be normal conducting, the problem about the heat load stemming from the cathode arises. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and the verification by measuring the quality factor of the gun with and without cathode.

  13. Use of non evaporable getter pumps to ensure long term performances of high quantum efficiency photocathodes

    SciTech Connect

    Sertore, Daniele Michelato, Paolo; Monaco, Laura; Manini, Paolo; Siviero, Fabrizio

    2014-05-15

    High quantum efficiency photocathodes are routinely used as laser triggered emitters in the advanced high brightness electron sources based on radio frequency guns. The sensitivity of “semiconductor” type photocathodes to vacuum levels and gas composition requires special care during preparation and handling. This paper will discuss the results obtained using a novel pumping approach based on coupling a 20?l s{sup ?1} sputter ion getter pump with a CapaciTorr® D100 non evaporable getter (NEG) pump. A pressure of 8?10{sup ?8}?Pa was achieved using only a sputter ion pump after a 6?day bake-out. With the addition of a NEG pump, a pressure of 2?10{sup ?9}?Pa was achieved after a 2?day bake-out. These pressure values were maintained without power due to the ability of the NEG to pump gases by chemical reaction. Long term monitoring of cathodes quantum efficiencies was also carried out at different photon wavelengths for more than two years, showing no degradation of the photoemissive film properties.

  14. Energetics of the ruthenium-halide bond in olefin metathesis (pre)catalysts.

    PubMed

    Falivene, Laura; Poater, Albert; Cazin, Catherine S J; Slugovc, Christian; Cavallo, Luigi

    2013-05-28

    A DFT analysis of the strength of the Ru-halide bond in a series of typical olefin metathesis (pre)catalysts is presented. The calculated Ru-halide bond energies span the rather broad window of 25-43 kcal mol(-1). This indicates that in many systems dissociation of the Ru-halide bond is possible and is actually competitive with dissociation of the labile ligand generating the 14e active species. Consequently, formation of cationic Ru species in solution should be considered as a possible event. PMID:23235534

  15. Ion Partitioning at the liquid/vapor interface of a multi-component alkali halidesolution: A model for aqueous sea salt aerosols

    SciTech Connect

    Ghosal, Sutapa; Brown, Matthew A.; Bluhm, Hendrik; Krisch, Maria J.; Salmeron, Miquel; Jungwirth, Pavel; Hemminger, John C.

    2008-12-22

    The chemistry of Br species associated with sea salt ice and aerosols has been implicated in the episodes of ozone depletion reported at Arctic sunrise. However, Br{sup -} is only a minor component in sea salt, which has a Br{sup -}/Cl{sup -} molar ratio of {approx}0.0015. Sea salt is a complex mixture of many different species, with NaCl as the primary component. In recent years experimental and theoretical studies have reported enhancement of the large, more polarizable halide ion at the liquid/vapor interface of corresponding aqueous alkali halide solutions. The proposed enhancement is likely to influence the availability of sea salt Br{sup -} for heterogeneous reactions such as those involved in the ozone depletion episodes. We report here ambient pressure x-ray photoelectron spectroscopy studies and molecular dynamics simulations showing direct evidence of Br{sup -} enhancement at the interface of an aqueous NaCl solution doped with bromide. The experiments were carried out on samples with Br{sup -}/Cl{sup -} ratios in the range 0.1% to 10%, the latter being also the ratio for which simulations were carried out. This is the first direct measurement of interfacial enhancement of Br{sup -} in a multi-component solution with particular relevance to sea salt chemistry.

  16. Meningitis caused by an alkali-producing pseudomonad.

    PubMed Central

    Cowlishaw, W A; Hughes, M E; Simpson, H C

    1976-01-01

    The clinical and microbiological features of a case of meningitis, due to an alkali-producing pseudomonad which closely resembles Pseudomonas pseudoalcaligenes, are described. A respiratory infection and a course of antibiotic therapy before admission to hospital may have been predisposing factors to opportunistic infection by this normally saprophytic organism. The problems of identifying alkali-producing pseudomonads are discussed. PMID:1010877

  17. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, Wen Y. (Houston, TX)

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  18. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  19. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  20. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  1. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  2. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  3. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang Zhiguo; Gao Fei; Kerisit, Sebastien; Xie Yulong; Campbell, Luke W.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF{sub 2} and BaF{sub 2}. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF{sub 2}, BaF{sub 2}, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs{sup +} relative to Na{sup +}, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  4. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang, Zhiguo; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien N.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 {per_thousand}nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  5. Dynamics of reactive ultracold alkali polar molecules

    NASA Astrophysics Data System (ADS)

    Quéméner, Goulven; Bohn, John; Petrov, Alexander; Kotochigova, Svetlana

    2011-05-01

    Recently, ultracold polar molecules of KRb have been created. These molecules are chemically reactive and their lifetime in a trap is limited. However, their lifetime increases when they are loaded into a 1D optical lattice in the presence of an electric field. These results naturally raise the question of manipulating ultracold collisions of other species of alkali dimer molecules, with an eye toward both novel stereochemistry, as well as suppressing unwanted reactions, to enable condensed matter applications. In this talk, we report on a comparative study between the bi-alkali polar molecules of LiNa, LiK, LiRb, LiCs which have been predicted to be reactive. We compute the isotropic C6 coefficients of these systems and we predict the elastic and reactive rate coefficients when an electric field is applied in a 1D optical lattice. We will discuss the efficacy of evaporative cooling for each species. This work was supported by a MURI-AFOSR grant.

  6. Durability of Alkali Activated Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  7. Soft X-ray and extreme utraviolet quantum detection efficiency of potassium chloride photocathode layers on microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Everman, Elaine; Hull, Jeff; Vallerga, John V.; Lampton, Michael

    1988-01-01

    The quantum detection efficiency (QDE) of KCl photocathodes in the 44-1460 A range was investigated. An opaque layer of KCl, about 15,000-A-thick, was evaporated and applied the surface of a microchannel plate (MCP), and the contribution of the photocathode material in the channels (and on the interchannel web) to the QDE was measured using a Z stack MCP detector. It is shown that KCl is a relatively stable photocathode material, with the QDE equal to 30-40 percent in the EUV. At wavelengths above 200 A, the QDE is slightly better than the QDE of CsI, as reported by Siegmund et al. (1986). While the shape of the QDE curve as a function of wavelength is similar to those reported for CsI and KBr, KCl was found to lack the high QDE peak found in the curves of CsI and KBr at about 100 A. A simple QDE model is described, the predictions of which were found to agree with the measurements on the KCl photocathode.

  8. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution.

    PubMed

    Bao, Xiao-Qing; Fatima Cerqueira, M; Alpuim, Pedro; Liu, Lifeng

    2015-07-01

    We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction. PMID:26050844

  9. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer

    E-print Network

    Yu, Edward T.

    a nanosphere lithography lift-off process and an applied-bias photon-to-current efficiency of 4.9% was achieved,21 . For metal oxides, large bandgaps (usually larger than 2 eV) limit their light absorption, which makes them was used to create a metal­insulator­semiconductor photocathode that, under a broad-spectrum illumination

  10. Electric field effects on alanine tripeptide in sodium halide solutions.

    PubMed

    Astrakas, Loukas G; Gousias, Christos; Tzaphlidou, Margaret

    2015-12-01

    The electric field effects on conformational properties of trialanine in different halide solutions were explored with long-scale molecular dynamics simulations. NaF, NaCl, NaBr and NaI solutions of low (0.2?M) and high (2?M) concentrations were exposed to a constant electric field of 1000?V/m. Generally, the electric field does not disturb trialanine's structure. Large structural changes appear only in the case of the supersaturated 2.0?M NaF solution containing NaF crystals. Although the electric field affects in a complex way, all the ions-water-peptide interactions, it predominantly affects the electroselectivity effect, which describes specific interactions such as the ion-pair formation. PMID:25006865

  11. The oxidation state of europium in halide glasses.

    PubMed

    Weber, J K R; Vu, M; Passlick, C; Schweizer, S; Brown, D E; Johnson, C E; Johnson, J A

    2011-12-14

    The luminescent properties of divalent europium ions can be exploited to produce storage phosphors for x-ray imaging applications. The relatively high cost and limited availability of divalent europium halides makes it desirable to synthesize them from the readily available trivalent salts. In this work, samples of pure EuCl(3) and fluoride glass melts doped with EuCl(3) were processed at 700-800 °C in an inert atmosphere furnace. The Eu oxidation state in the resulting materials was determined using fluorescence and Mössbauer spectroscopy. Heat treatment of pure EuCl(3) for 10 min at 710 °C resulted in a material comprising approximately equal amounts of Eu(2+) and Eu(3+). Glasses made using mixtures of EuCl(2) and EuCl(3) in the starting material contained both oxidation states. This paper describes the sample preparation and analysis and discusses the results in the context of chemical equilibria in the melts. PMID:22101252

  12. Material Innovation in Advancing Organometal Halide Perovskite Functionality.

    PubMed

    Zheng, Fan; Saldana-Greco, Diomedes; Liu, Shi; Rappe, Andrew M

    2015-12-01

    Organometal halide perovskites (OMHPs) have garnered much attention recently for their unprecedented rate of increasing power conversion efficiency (PCE), positioning them as a promising basis for the next-generation photovoltaic devices. However, the gap between the rapid increasing PCE and the incomplete understanding of the structure-property-performance relationship prevents the realization of the true potential of OMHPs. This Perspective aims to provide a concise overview of the current status of OMHP research, highlighting the unique properties of OMHPs that are critical for solar applications but still not adequately explained. Stability and performance challenges of OMHP solar cells are discussed, calling upon combined experimental and theoretical efforts to address these challenges for pioneering commercialization of OMHP solar cells. Various material innovation strategies for improving the performance and stability of OMHPs are surveyed, showing that the OMHP architecture can serve as a promising and robust platform for the design and optimization of materials with desired functionalities. PMID:26631361

  13. Active terahertz device based on optically controlled organometal halide perovskite

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Lv, Longfeng; He, Ting; Chen, Tianji; Zang, Mengdi; Zhong, Liang; Wang, Xinke; Shen, Jingling; Hou, Yanbing

    2015-08-01

    An active all-optical high-efficiency broadband terahertz device based on an organometal halide perovskite (CH3NH3PbI3, MAPbI3)/inorganic (Si) structure is investigated. Spectrally broadband modulation of the THz transmission is obtained in the frequency range from 0.2 to 2.6 THz, and a modulation depth of nearly 100% can be achieved with a low-level photoexcitation power (˜0.4 W/cm2). Both THz transmission and reflection were suppressed in the MAPbI3/Si structure by an external continuous-wave (CW) laser. Enhancement of the charge carrier density at the MAPbI3/Si interface is crucial for photo-induced absorption. The results show that the proposed high-efficiency broadband optically controlled terahertz device based on the MAPbI3/Si structure has been realized.

  14. Theoretical study of the scandium and yttrium halides

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Partridge, Harry

    1988-01-01

    The X1Sigma(+) ground states and a3Delta excited states of the diatomic halides of Sc and Y are characterized theoretically, using the SDCI coupled-pair functional method and the state-averaged CASSCF method to determine the spectroscopic constants and related properties. The techniques employed are discussed, and the results are presented in extensive tables. The dissociation energies are given as D0 = 6.00 eV for ScF, 4.55 eV for ScCl, 3.90 eV for ScBr, 6.72 eV for YF, 5.36 eV for YCl, and 4.74 eV for YBr.

  15. Theory of hydrogen migration in organic-inorganic halide perovskites.

    PubMed

    Egger, David A; Kronik, Leeor; Rappe, Andrew M

    2015-10-12

    Solar cells based on organic-inorganic halide perovskites have recently been proven to be remarkably efficient. However, they exhibit hysteresis in their current-voltage curves, and their stability in the presence of water is problematic. Both issues are possibly related to a diffusion of defects in the perovskite material. By using first-principles calculations based on density functional theory, we study the properties of an important defect in hybrid perovskites-interstitial hydrogen. We show that differently charged defects occupy different crystal sites, which may allow for ionization-enhanced defect migration following the Bourgoin-Corbett mechanism. Our analysis highlights the structural flexibility of organic-inorganic perovskites: successive iodide displacements, combined with hydrogen bonding, enable proton diffusion with low migration barriers. These findings indicate that hydrogen defects can be mobile and thus highly relevant for the performance of perovskite solar cells. PMID:26073061

  16. Theory of Hydrogen Migration in Organic–Inorganic Halide Perovskites**

    PubMed Central

    Egger, David A; Kronik, Leeor; Rappe, Andrew M

    2015-01-01

    Solar cells based on organic–inorganic halide perovskites have recently been proven to be remarkably efficient. However, they exhibit hysteresis in their current–voltage curves, and their stability in the presence of water is problematic. Both issues are possibly related to a diffusion of defects in the perovskite material. By using first-principles calculations based on density functional theory, we study the properties of an important defect in hybrid perovskites—interstitial hydrogen. We show that differently charged defects occupy different crystal sites, which may allow for ionization-enhanced defect migration following the Bourgoin–Corbett mechanism. Our analysis highlights the structural flexibility of organic–inorganic perovskites: successive iodide displacements, combined with hydrogen bonding, enable proton diffusion with low migration barriers. These findings indicate that hydrogen defects can be mobile and thus highly relevant for the performance of perovskite solar cells. PMID:26073061

  17. Metal halide arc discharge lamp having short arc length

    NASA Technical Reports Server (NTRS)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  18. Two-photon pumped lead halide perovskite nanowire lasers

    E-print Network

    Gu, Zhiyuan; Sun, Wenzhao; Li, Jinakai; Liu, Shuai; Song, Qinghai; Xiao, Shumin

    2015-01-01

    Solution-processed lead halide perovskites have shown very bright future in both solar cells and microlasers. Very recently, the nonlinearity of perovskites started to attract considerable research attention. Second harmonic generation and two-photon absorption have been successfully demonstrated. However, the nonlinearity based perovskite devices such as micro- & nano- lasers are still absent. Here we demonstrate the two-photon pumped nanolasers from perovskite nanowires. The CH3NH3PbBr3 perovskite nanowires were synthesized with one-step solution self-assembly method and dispersed on glass substrate. Under the optical excitation at 800 nm, two-photon pumped lasing actions with periodic peaks have been successfully observed at around 546 nm. The obtained quality (Q) factors of two-photon pumped nanolasers are around 960, and the corresponding thresholds are about 674?J=cm2. Both the Q factors and thresholds are comparable to conventional whispering gallery modes in two-dimensional polygon microplates. Ou...

  19. Recent progress in efficient hybrid lead halide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Cui, Jin; Yuan, Huailiang; Li, Junpeng; Xu, Xiaobao; Shen, Yan; Lin, Hong; Wang, Mingkui

    2015-06-01

    The efficiency of perovskite solar cells (PSCs) has been improved from 9.7 to 19.3%, with the highest value of 20.1% achieved in 2014. Such a high photovoltaic performance can be attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths of the hybrid lead halide perovskite materials. In this review, some fundamental details of hybrid lead iodide perovskite materials, various fabrication techniques and device structures are described, aiming for a better understanding of these materials and thus highly efficient PSC devices. In addition, some advantages and open issues are discussed here to outline the prospects and challenges of using perovskites in commercial photovoltaic devices.

  20. Venus: Halide cloud condensation and volatile element inventories

    NASA Technical Reports Server (NTRS)

    Lewis, J. S.; Fegley, B., Jr.

    1982-01-01

    Several Venus cloud condensates, including A12C16 as well as halides, oxides and sulfides of arsenic and antimony, are assessed for their thermodynamic and geochemical plausibility. Aluminum chloride can confidently be ruled out, and condensation of arsenic sulfides on the surface will cause arsenic compounds to be too rare to produce the observed clouds. Antimony may conceivably be sufficiently volatile, but the expected molecular form is gaseous SbS, not the chloride. Arsenic and antimony compounds in the atmosphere will be regulated at very low levels by sulfide precipitation, irrespective of the planetary inventory of As and Sb. Thus the arguments for a volatile-deficient origin for Venus based on the depletion of water and mercury (relative to Earth) cannot be tested by a search for atmospheric arsenic or antimony.

  1. HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Trace elements and alkaliTrace elements and alkali

    E-print Network

    Zevenhoven, Ron

    HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Trace elements and alkaliTrace elements and alkali ·· Trace elements in fuels and wastesTrace elements in fuels and wastes ·· Emission standards for trace elementsEmission standards for trace elements ·· Trace elements (excluding mercury) emission control

  2. Bright light-emitting diodes based on organometal halide perovskite

    NASA Astrophysics Data System (ADS)

    Tan, Zhi-Kuang; Moghaddam, Reza Saberi; Lai, May Ling; Docampo, Pablo; Higler, Ruben; Deschler, Felix; Price, Michael; Sadhanala, Aditya; Pazos, Luis M.; Credgington, Dan; Hanusch, Fabian; Bein, Thomas; Snaith, Henry J.; Friend, Richard H.

    2014-09-01

    Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near-infrared, green and red by tuning the halide compositions in the perovskite. In our infrared device, a thin 15?nm layer of CH3NH3PbI3-xClx perovskite emitter is sandwiched between larger-bandgap titanium dioxide (TiO2) and poly(9,9?-dioctylfluorene) (F8) layers, effectively confining electrons and holes in the perovskite layer for radiative recombination. We report an infrared radiance of 13.2?W?sr-1?m-2 at a current density of 363?mA?cm-2, with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. In our green light-emitting device with an ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag structure, we achieved a luminance of 364?cd?m-2 at a current density of 123?mA?cm-2, giving external and internal quantum efficiencies of 0.1% and 0.4%, respectively. We show, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities. Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities. This demonstration of effective perovskite electroluminescence offers scope for developing this unique class of materials into efficient and colour-tunable light emitters for low-cost display, lighting and optical communication applications.

  3. Electrolysis of halide-containing solutions with platinum based amorphous metal alloy anodes

    SciTech Connect

    Harris, J. H.; Grasselli, R. K.; Tenhover, M. A.; Ward, M. D.

    1985-12-24

    A process for the generation of halogens from halide-containing solutions includes the step of conducting electrolysis of the solutions in an electrolytic cell having a platinum based amorphous metal alloy anode.

  4. Methods for synthesizing alane without the formation of adducts and free of halides

    DOEpatents

    Zidan, Ragaiy; Knight, Douglas A; Dinh, Long V

    2013-02-19

    A process is provided to synthesize an alane without the formation of alane adducts as a precursor. The resulting product is a crystallized .alpha.-alane and is a highly stable product and is free of halides.

  5. Highly Selective Palladium-Catalyzed Cross-Coupling of Secondary Alkylzinc Reagents with Heteroaryl Halides

    E-print Network

    Yang, Yang

    The highly selective palladium-catalyzed Negishi coupling of secondary alkylzinc reagents with heteroaryl halides is described. The development of a series of biarylphosphine ligands has led to the identification of an ...

  6. Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites

    E-print Network

    Price, Michael B.; Butkus, Justinas; Jellicoe, Tom C.; Sadhanala, Aditya; Briane, Anouk; Halpert, Jonathan E.; Broch, Katharina; Hodgkiss, Justin M.; Friend, Richard H.; Deschler, Felix

    2015-09-25

    Metal-halide perovskites are at the frontier of optoelectronic research due to solution-processability and excellent semiconductor properties. Here, we use transient absorption spectroscopy to study hot carrier distributions in CH_3NH_3PbI_3...

  7. Size-dependent Photon Emission from Organometal Halide Perovskite Nanocrystals Embedded in an Organic Matrix

    E-print Network

    Di, Dawei; Musselman, Kevin P.; Li, Guangru; Sadhanala, Aditya; Ievskaya, Yulia; Song, Qilei; Tan, Zhi-Kuang; Lai, May Ling; MacManus-Driscoll, Judith L.; Greenham, Neil C.; Friend, Richard H.

    2015-01-14

    In recent years, organometal halide perovskite materials have attracted significant research interest in the field of optoelectronics. Here we introduce a simple and low temperature route for the formation of self-assembled perovskite nanocrystals...

  8. Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites.

    PubMed

    Glaser, Tobias; Müller, Christian; Sendner, Michael; Krekeler, Christian; Semonin, Octavi E; Hull, Trevor D; Yaffe, Omer; Owen, Jonathan S; Kowalsky, Wolfgang; Pucci, Annemarie; Lovrin?i?, Robert

    2015-08-01

    The organic cation and its interplay with the inorganic lattice underlie the exceptional optoelectronic properties of organo-metallic halide perovskites. Herein we report high-quality infrared spectroscopic measurements of methylammonium lead halide perovskite (CH3NH3Pb(I/Br/Cl)3) films and single crystals at room temperature, from which the dielectric function in the investigated spectral range is derived. Comparison with electronic structure calculations in vacuum of the free methylammonium cation allows for a detailed peak assignment. We analyze the shifts of the vibrational peak positions between the different halides and infer the extent of interaction between organic moiety and the surrounding inorganic cage. The positions of the NH3(+) stretching vibrations point to significant hydrogen bonding between the methylammonium and the halides for all three perovskites. PMID:26267180

  9. USING A 100 KV DC LOAD LOCK PHOTOGUN TO MEASURE PHOTOCATHODE LIFETIME OF HIGH POLARIZATION STRAINED SUPERLATTICE GAAS/GAASP AT BEAM INTENSITY >1 MILLIAMP

    SciTech Connect

    Joseph Grames; Benard Poelker; Philip Adderley; Joshua Brittian; James Clark; John Hansknecht; Danny Machie; Marcy Stutzman; Kenneth Surles-law; Riad Suleiman

    2007-07-02

    A new GaAs DC high voltage load lock photogun has been constructed at Jefferson Laboratory (JLab), with improved vacuum and photocathode preparation capabilities. As reported previously, this gun was used to study photocathode lifetime with bulk GaAs at DC beam currents between 1 and 10 mA. In this submission, lifetime measurements were performed using high polarization strained-superlattice GaAs photocathode material at beam currents up to 1 mA, with near bandgap light from a fiber based drive laser having picosecond optical pulses and RF time structure.

  10. Solar water splitting with earth-abundant materials using amorphous silicon photocathodes and Al/Ni contacts as hydrogen evolution catalyst

    NASA Astrophysics Data System (ADS)

    Urbain, F.; Smirnov, V.; Becker, J.-P.; Rau, U.; Ziegler, J.; Yang, F.; Kaiser, B.; Jaegermann, W.; Hoch, S.; Blug, M.; Finger, F.

    2015-10-01

    An all earth-abundant and precious metal-free photocathode based on a low-temperature fabricated amorphous silicon tandem junction is demonstrated to be an efficient device for solar water splitting. With a particular designed Al/Ni layer stack as photocathode/electrolyte contact an onset potential for cathodic photocurrent of 1.7 V vs. RHE and a saturation photocurrent density of 7.2 mA/cm2 were achieved. For a high-cost alternative with a Ag/Pt layer stack an even higher photocathode performance is demonstrated. Above all we present an approach for a dedicated photovoltaic and electrochemical development for solar water splitting.

  11. Charge Transfer during Alkali-Surface Collisions

    NASA Astrophysics Data System (ADS)

    Weare, Christopher Bruce

    The transfer of electrons between atoms and solid surfaces is the driving force behind ionic bond formation in adsorption and determines the final charge state in particle-surface collisions. Despite its importance, however, many aspects of charge transfer are not completely understood. The experiments presented in this dissertation use the scattering of ^7Li ^+ ions from surfaces to study several aspects of charge transfer. Primarily, the effects of alkali adsorption on the surface local electrostatic potential (LEP) are investigated via resonant charge transfer. In addition, the effects of charge promotion on the final charge state distributions of scattered ^7Li ^+ ions are determined. On metal surfaces, large differences in the final charge state distributions of ^7Li ^+ ions scattered from substrate and adsorbate sites are observed at low alkali coverages, which disappear at high coverages. The final charge state distribution of ^7Li^+ ions is determined primarily by resonant charge transfer, which is dependent on the LEP. Thus, there is a transition in the LEP from inhomogeneous to nearly homogeneous as the adsorbate coverage increases. The LEP is modeled as a collection of isolated dipoles positioned at the adsorbate sites. Calculations of the final charge state distributions of ions scattered from such model surfaces do an excellent job of reproducing the measured charge state distributions. From these calculations, it is shown that the inhomogeneous to homogeneous transition in the LEP is due to a coverage dependent depolarization of the adsorbate dipoles. For the alkali-covered Si(111)-7 x 7 surface, the final charge state distribution is independent of scattering site. This behavior is not attributed to a homogeneous LEP, rather, it is due to the dangling bonds of the Si(111) -7 x 7 surface, which allow resonant charge transfer to take place well above the surface. As a consequence, variations in the LEP near the adsorbate sites are not detected. During the Li-Al charge promotion process, a Li 1s hole is created, which later decays by electron emission. Because of this, the charge state distributions of promoted ions differ significantly from those of non-promoted ions. From a combination of charge state distributions and secondary electron spectra, it is shown that the lifetime of the hole is on the order of the ion-surface interaction time, i.e., 10 fs.

  12. Alkali oxide-tantalum oxide and alkali oxide-niobium oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Parker, H. S.; Brower, W. S.; Minor, D.

    1974-01-01

    A search was made for new cationic conducting phases in alkali-tantalate and niobate systems. The phase equilibrium diagrams were constructed for the six binary systems Nb2O5-LiNbO3, Nb2O5-NaNbO3, Nb2O5-KNbO3, Ta2O5-NaTaO3, Ta2O5-LiTaO3, and Ta2O5-KTaO3. Various other binary and ternary systems were also examined. Pellets of nineteen phases were evaluated (by the sponsoring agency) by dielectric loss measurements. Attempts were made to grow large crystals of eight different phases. The system Ta2O5-KTaO3 contains at least three phases which showed peaks in dielectric loss vs. temperature. All three contain structures related to the tungsten bronzes with alkali ions in non-stoichiometric crystallographic positions.

  13. Spectral sensitization with dyes of core-silver halide shell microsystems

    NASA Astrophysics Data System (ADS)

    Tyurin, A. V.; Zhukov, S. A.; Churashov, V. P.

    2015-09-01

    We have studied spectral sensitization with anionic dyes of core-silver halide shell microsystems cores of which can be either nonsilver or silver halide compounds. Conditions under which dye sensitizers, being adsorbed on cores, remain under silver halide shells after their growing are considered. Comparison of results of sensitometric and low-temperature ( T = 77 K) luminescent measurements have shown that these conditions are determined by the charge state of cations of microsystem cores. If the shell contains the same univalent component in its composition as the core does, as in the case in which the core is a silver halide compound, the anionic dye is displaced to the outer surface of the shell. If the core contains a divalent cationic component, as in the case in which the core is a nonsilver compound, the dye remains under the silver halide shell; i.e., it is overgrown by the shell. We have shown that the charge state of core cations affects the character of the core interaction with anionic dyes, which ensures differences in the spectral sensitization of core-silver halide shell microsystems, as well as differences in the dye photoexcitation relaxation in them.

  14. The effect of low solublility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-02-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be performed in this study. The hygroscopic properties of sodium halide submicrometer particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, Scanning Electron Microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion: whereas the organic covering has little effect in NaBr particles, NaCl and NaI covered particles change their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  15. The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-10-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, scanning electron microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion, whereas the organic surfactant has little effect in NaBr particles, NaCl and NaI covered particles experience appreciable shifts in their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  16. Fluorescence-Based Bacterial Bioreporter for Specific Detection of Methyl Halide Emissions in the Environment

    PubMed Central

    Farhan Ul Haque, Muhammad; Nadalig, Thierry; Bringel, Françoise; Schaller, Hubert

    2013-01-01

    Methyl halides are volatile one-carbon compounds responsible for substantial depletion of stratospheric ozone. Among them, chloromethane (CH3Cl) is the most abundant halogenated hydrocarbon in the atmosphere. Global budgets of methyl halides in the environment are still poorly understood due to uncertainties in their natural sources, mainly from vegetation, and their sinks, which include chloromethane-degrading bacteria. A bacterial bioreporter for the detection of methyl halides was developed on the basis of detailed knowledge of the physiology and genetics of Methylobacterium extorquens CM4, an aerobic alphaproteobacterium which utilizes chloromethane as the sole source of carbon and energy. A plasmid construct with the promoter region of the chloromethane dehalogenase gene cmuA fused to a promotorless yellow fluorescent protein gene cassette resulted in specific methyl halide-dependent fluorescence when introduced into M. extorquens CM4. The bacterial whole-cell bioreporter allowed detection of methyl halides at femtomolar levels and quantification at concentrations above 10 pM (approximately 240 ppt). As shown for the model chloromethane-producing plant Arabidopsis thaliana in particular, the bioreporter may provide an attractive alternative to analytical chemical methods to screen for natural sources of methyl halide emissions. PMID:23956392

  17. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    SciTech Connect

    Curry, J. J.; Henins, A.; Hardis, J. E.; Estupinan, E. G.; Lapatovich, W. P.; Shastri, S. D.

    2012-02-20

    Total vapor-phase densities of Dy in equilibrium with a DyI{sub 3}/InI condensate and Tm in equilibrium with a TmI{sub 3}/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  18. Controlled in-situ dissolution of an alkali metal

    SciTech Connect

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  19. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    USGS Publications Warehouse

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  20. Ultrasonic coal washing to leach alkali elements from coals.

    PubMed

    Balakrishnan, S; Reddy, V Midhun; Nagarajan, R

    2015-11-01

    Deposition of fly ash particles onto heat-transfer surfaces is often one of the reasons for unscheduled shut-downs of coal-fired boilers. Fouling deposits encountered in convective sections of a boiler are characterized by arrival of ash particles in solidified (solid) state. Fouling is most frequently caused by condensation and chemical reaction of alkali vapors with the deposited ash particles creating a wet surface conducive to collect impacting ash particles. Hence, the amount of alkali elements present in coals, which, in turn, is available in the flue gas as condensable vapors, determines the formation and growth of fouling deposits. In this context, removal of alkali elements becomes vital when inferior coals having high-ash content are utilized for power generation. With the concept of reducing alkali elements present in a coal entering the combustor, whereby the fouling deposits can either be minimized or be weakened due to absence of alkali gluing effect, the ultrasonic leaching of alkali elements from coals is investigated in this study. Ultrasonic water-washing and chemical-washing, in comparison with agitation, are studied in order to estimate the intensification of the alkali removal process by sonication. PMID:26186840

  1. Comparative alkali washing of simulated radioactive sludge

    SciTech Connect

    Fugate, G.A.; Ensor, D.D.; Egan, B.Z.

    1996-10-01

    The treatment of large volumes of radioactive sludge generated from uranium and plutonium recovery processes is a pressing problem in the environmental restoration currently planned at various U.S. Department of Energy sites. This sludge, commonly stored in underground tanks, is mainly in the form of metal oxides or precipitated metal hydroxides and the bulk of this material is nonradioactive. One method being developed to pretreat this waste takes advantage of the amphoteric character of aluminum and other nonradioactive elements. Previous studies have reported on the dissolution of eleven elements from simulated sludge using NaOH solutions up to 6M. This work provides a comparative study using KOH. The effectiveness of the alkali washing as a treatment method to reduce the bulk of radioactive sludge requiring long term isolation will be discussed.

  2. Fundamental study on alkali metal thermoelectric converter

    NASA Astrophysics Data System (ADS)

    Masuda, Toshihisa

    1989-11-01

    The alkali metal thermoelectric converter (AMTEC), which utilizes the sodium ion conducting beta-double prime-alumina, is a device for directly converting heat energy to electric energy. It is characterized by high conversion efficiencies of 20 to 40 percent, high power densities of 1 W/sq cm, no moving parts, low maintenance requirements, high durability, and efficiency independent of size. Because of these merits, AMTEC is one of the most promising candidates for dispersed small-scale power stations, remote power stations, and aerospace power systems. In this paper, the results of theoretical and experimental studies on AMTEC power generating characteristics, internal electrical resistances of single cells, and system analysis of AMTEC power-generating systems are reported.

  3. Heat pipes containing alkali metal working fluid

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (inventor)

    1981-01-01

    A technique for improving high temperature evaporation-condensation heat-transfer devices which have important and unique advantage in terrestrial and space energy processing is described. The device is in the form of a heat pipe comprising a sealed container or envelope which contains a capillary wick. The temperature of one end of the heat pipe is raised by the input of heat from an external heat source which is extremely hot and corrosive. A working fluid of a corrosive alkali metal, such as lithium, sodium, or potassium transfers this heat to a heat receiver remote from the heat source. The container and wick are fabricated from a superalloy containing a small percentage of a corrosion inhibiting or gettering element. Lanthanum, scandium, yttrium, thorium, and hafnium are utilized as the alloying metal.

  4. Superconductivity of Alkali Metals under High Pressure

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Papaconstantopoulos, Dimitrios

    2006-03-01

    We calculated the superconductivity properties of alkali metals under high pressure using the results of band theory and the rigid-muffin theory of Gaspari and Gyorffy. Our results suggest that at high pressures Lithium, Potassium, Rubidium and Cesium would be superconductors with transition temperatures approaching 10-20 K. Our calculations also show that Sodium would not be a superconductor under high pressure even if compressed to less than half of its equilibrium volume. We found that the compression of the lattice strengthens the electron-phonon coupling through a delicately balanced increase of both the electronic and phononic components of this coupling. This increase of the electron-phonon coupling in Li is due to an enhancement of the s-p channel of the interaction, while in the heavier elements the p-d channel is the dominant component.

  5. Low energy Mott polarimetry of electrons from negative electron affinity photocathodes

    SciTech Connect

    Ciccacci, F.; De Rossi, S.; Campbell, D.M.

    1995-08-01

    We present data on the spin polarization {ital P} and quantum yield {ital Y} of electrons photoemitted from negative electron affinity semiconductors, including GaAs(100), GaAsP(100) alloy, and strained GaAs layer epitaxially grown on a GaAsP(100) buffer. Near photothreshold the following values for {ital P}({ital Y}) are, respectively, obtained: 26% (2.5{times}10{sup {minus}2}), 40% (1{times}10{sup {minus}3}), and 60% (1.5{times}10{sup {minus}4}). We describe in detail the apparatus used containing a low energy (10--25 keV) Mott polarimeter. The system, completely fitted in a small volume ({similar_to}10{sup 4} cm{sup 3}) ultrahigh vacuum chamber, is intended as a test facility for characterizing candidate photocathode materials for spin polarized electron sources. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  6. Biopolymer-Activated Graphitic Carbon Nitride towards a Sustainable Photocathode Material

    PubMed Central

    Zhang, Yuanjian; Schnepp, Zoë; Cao, Junyu; Ouyang, Shuxin; Li, Ying; Ye, Jinhua; Liu, Songqin

    2013-01-01

    Photoelectrochemical (PEC) conversion of solar light into chemical fuels is one of the most promising solutions to the challenge of sustainable energy. Graphitic carbon (IV) nitride polymer (g-CN) is an interesting sustainable photocathode material due to low-cost, visible-light sensitivity, and chemical stability up to 500°C in air. However, grain boundary effects and limited active sites greatly hamper g-CN activity. Here, we demonstrate biopolymer-activation of g-CN through simultaneous soft-templating of a sponge-like structure and incorporation of active carbon-dopant sites. This facile approach results in an almost 300% increase in the cathodic PEC activity of g-CN under simulated solar-irradiation. PMID:23831846

  7. An Approximate Analytic Expression for the Flux Density of Scintillation Light at the Photocathode

    SciTech Connect

    Braverman, Joshua B; Harrison, Mark J; Ziock, Klaus-Peter

    2012-01-01

    The flux density of light exiting scintillator crystals is an important factor affecting the performance of radiation detectors, and is of particular importance for position sensitive instruments. Recent work by T. Woldemichael developed an analytic expression for the shape of the light spot at the bottom of a single crystal [1]. However, the results are of limited utility because there is generally a light pipe and photomultiplier entrance window between the bottom of the crystal and the photocathode. In this study, we expand Woldemichael s theory to include materials each with different indices of refraction and compare the adjusted light spot shape theory to GEANT 4 simulations [2]. Additionally, light reflection losses from index of refraction changes were also taken into account. We found that the simulations closely agree with the adjusted theory.

  8. Measurements of intrinsic emittance dependence on rf field for copper photocathodes

    NASA Astrophysics Data System (ADS)

    Prat, Eduard; Bettoni, Simona; Braun, Hans-Heinrich; Divall, Marta Csatari; Schietinger, Thomas

    2015-06-01

    Radio-frequency (rf) photoinjectors are used to generate high-brightness electron beams for a wide range of applications. Because of their outstanding beam quality, they are particularly well-suited as sources for X-ray free-electron lasers (FELs). The beam emittance, which is significantly influenced by the intrinsic emittance of the cathode, is fundamental for FELs, since it has a strong impact on the lasing performance and it defines the length and cost of the facility. In this paper we present measurements of the intrinsic emittance as a function of the rf field for a copper photocathode. Our measurements match with the theoretical expectations, showing that the intrinsic emittance can be reduced by decreasing the rf field at the cathode. We obtained normalized intrinsic emittances down to 350 nm /mm , the lowest values ever measured in a rf photoinjector.

  9. P552 X-Ray Streak Tube With Removable Photocathode, Improved Spatial Resolution And Temporal Fiducial

    NASA Astrophysics Data System (ADS)

    de Mascureau, J.; Bourgade, J.-L.; Mens, A.; Sauneif, R.; Rebuffie, J.-C.; Roux, J.-P.

    1989-02-01

    We present here the P552 soft X-ray streak tube which is derived from the P500-P550 X-ray tube from RTC 1. To meet the requirements of X-ray diagnostics in high power laser interaction experiments performed at Centre d' Etudes de Limeil-Valenton some modifications were carried out to allow an easier control of the photocathode and the insertion of an optical fiducial of the laser pulse. We describe the main features of the whole device. This tube associated with a Thomson 2 TSN 505 camera has been used in laser plasma experiments and we present here some results obtained on the PHFBUS laser facility at CEL-V.

  10. Measurements of the Argonne Wakefield Accelerator's low charge, 4 MeV RF photocathode witness beam

    NASA Astrophysics Data System (ADS)

    Power, J.; Chojnacki, E.; Conde, M.; Gai, W.; Konecny, R.; Schoessow, P.; Simpson, J.

    1997-03-01

    The Argonne Wakefield Accelerator's (AWA) witness RF photocathode gun produced its first electron beam in April of 1996. We have characterized the charge, energy, emittance and bunch length of the witness beam over the last several months. The emittance was measured by both a quad scan that fitted for space charge using an in house developed Mathematica routine and a pepper pot technique. The bunch length was measured by imaging Cherenkov light from a quartz plate to a Hamamatsu streak camera with 2 psec resolution. A beam energy of 3.9 MeV was measured with a 6 inch round pole spectrometer while a beam charge was measured with both an ICT and a Faraday Cup. Although the gun will normally be run at 100 pC it has produced charges from 10 pC to 4 nC. All results of the measurements to date are presented here.

  11. High Performance Polarized Electron Photocathodes Based on InGaAlAs/AlGaAs Superlattices

    SciTech Connect

    Mamaev, Yu.

    2004-12-10

    Highly efficient emitters of polarized electrons based on the InAlGaAs/AlGaAs superlattice give an optimistic prognosis to explorations of such structures as the sources for accelerators. A new set of these SL structures with minimized conduction band offset was designed and recently tested. A new technology of surface protection in MBE growth leads to a significantly reduced heat-cleaning temperature. At these lowered cleaning temperatures, the thermal degradation of the working structure parameters is avoided. As a result a polarization P of up to 91% at corresponding quantum efficiency (QE) of 0.3% was achieved at room temperature. A 50% increase in the photocathode lifetime has been achieved with Sb coverage.

  12. Photoemission and optical constant measurements of Cesium Iodide thin film photocathode

    E-print Network

    Triloki,; Gupta, Nikita; Jammal, Nabeel F A; Singh, B K

    2014-01-01

    Performance of cesium iodide (CsI) as a reflective photocathode is presented. Absolute quantum efficiency (QE) measurement of 500 nm thick CsI film has been carried out in the wavelength range of 150 nm to 200 nm. Optical absorbance of 500 nm thick CsI film in the spectral range of 190 nm to 900 nm is analyzed and optical energy band gap is calculated using Tauc plot. To see the dispersive behavior of CsI film, refractive index has been determined by envelop plot of transmittance data, using Swanepoel method. Additional information on morphological and elemental composition results of CsI film, gained by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively are also reported in present work.

  13. A high-gradient high-duty-factor Rf photo-cathode electron gun

    SciTech Connect

    Rimmer, Robert A.; Hartman, Neal; Lidia, Steven M.; Wang, Shaoheng

    2002-05-22

    We describe the analysis and preliminary design of a high-gradient, high-duty factor RF photocathode gun. The gun is designed to operate at high repetition rate or CW, with high gradient on the cathode surface to minimize emittance growth due to space charge forces at high bunch charge. The gun may also be operated in a solenoidal magnetic field for emittance compensation. The design is intended for use in short-pulse, high-charge, and high-repetition rate applications such as linac based X-ray sources. We present and compare the results of gun simulations using different codes, as well as RF and thermal analysis of the structure.

  14. Optical and structural properties of CsI thin film photocathode

    NASA Astrophysics Data System (ADS)

    Triloki; Rai, R.; Singh, B. K.

    2015-06-01

    In the present work, the performance of a cesium iodide thin film photocathode is studied in detail. The optical absorbance of cesium iodide films has been analyzed in the spectral range from 190 nm to 900 nm. The optical band gap energy of 500 nm thick cesium iodide film is calculated from the absorbance data using a Tauc plot. The refractive index is estimated from the envelope plot of transmittance data using Swanepoel's method. The absolute quantum efficiency measurement has been carried out in the wavelength range from 150 nm to 200 nm. The crystallographic nature and surface morphology are investigated by X-ray diffraction and transmission electron microscopy techniques. In addition, the elemental composition result obtained by energy dispersive X-ray analysis is also reported in the present work.

  15. Influence of halide flux on the crystallinity, microstructure and thermoluminescence properties of CdSiO{sub 3}:Co{sup 2+} nanophosphor

    SciTech Connect

    Manjunatha, C.; Visvesvaraya Technological University, Belgaum, Karnataka 590018; Department of Chemistry, R.V. College of Engineering, Bangalore 560059 ; Nagabhushana, B.M.; Sunitha, D.V.; Nagabhushana, H.; Sharma, S.C.; Chakradhar, R.P.S.

    2013-01-15

    Graphical abstract: TL glow curves of CdSiO{sub 3}:Co{sup 2+} different alkali flux (inset without adding flux). Display Omitted Highlights: ? CdSiO{sub 3}:Co{sup 2+} (1–7 mol%) nanocrystalline phosphors synthesized by combustion route. ? Flux effect on thermoluminescence behavior of CdSiO{sub 3}:Co{sup 2+} reported for first time. ? Addition of 2 wt% of flux would drastically enhance the TL properties. ? Well resolved single glow peak at ?170 °C was recorded for all the samples. ? Among all the alkali flux, NaCl shows highest TL peak intensity. -- Abstract: CdSiO{sub 3}:Co{sup 2+} (1–7 mol %) nanophosphors have been prepared via solution combustion method with post calcination at 800 °C for 2 h for the first time. The formation of expected monoclinic phase was investigated by Powder X-ray diffraction (PXRD) measurements. The effect of different fluxes like NaF, NaCl, NH{sub 4}F and NH{sub 4}Cl on the crystallinity, phase and morphology of CdSiO{sub 3} was investigated in detail. The crystallinity of the samples can be greatly enhanced by using fluxes rather than increasing the calcination temperature. Scanning electronic micrograph (SEM) image shows that the powder morphologies are highly influenced by flux addition. The addition of 2 wt% of fluxes would drastically enhance the crystallinity when NaCl, NH{sub 4}F and NH{sub 4}Cl fluxes are used. A well resolved single thermoluminescent glow peak at ?170 °C was recorded for all the samples. Among all the halide fluxes, NaCl flux was found to be the potential one in enhancing the TL peak intensity along with crystallinity.

  16. Dye sensitised solar cells with nickel oxide photocathodes prepared via scalable microwave sintering.

    PubMed

    Gibson, Elizabeth A; Awais, Muhammad; Dini, Danilo; Dowling, Denis P; Pryce, Mary T; Vos, Johannes G; Boschloo, Gerrit; Hagfeldt, Anders

    2013-02-21

    Photoactive NiO electrodes for cathodic dye-sensitised solar cells (p-DSCs) have been prepared with thicknesses ranging between 0.4 and 3.0 ?m by spray-depositing pre-formed NiO nanoparticles on fluorine-doped tin oxide (FTO) coated glass substrates. The larger thicknesses were obtained in sequential sintering steps using a conventional furnace (CS) and a newly developed rapid discharge sintering (RDS) method. The latter procedure is employed for the first time for the preparation of p-DSCs. In particular, RDS represents a scalable procedure that is based on microwave-assisted plasma formation that allows the production in series of mesoporous NiO electrodes with large surface areas for p-type cell photocathodes. RDS possesses the unique feature of transmitting heat from the bulk of the system towards its outer interfaces with controlled confinement of the heating zone. The use of RDS results in a drastic reduction of processing times with respect to other deposition methods that involve heating/calcination steps with associated reduced costs in terms of energy. P1-dye sensitized NiO electrodes obtained via the RDS procedure have been tested in DSC devices and their performances have been analysed and compared with those of cathodic DSCs derived from CS-deposited samples. The largest conversion efficiencies (0.12%) and incident photon-to-current conversion efficiencies, IPCEs (50%), were obtained with sintered NiO electrodes having thicknesses of ~1.5-2.0 ?m. In all the devices, the photogenerated holes in NiO live significantly longer (?(h) ~ 1 s) than have previously been reported for P1-sensitized NiO photocathodes. In addition, P1-sensitised sintered electrodes give rise to relatively high photovoltages (up to 135 mV) when the triiodide-iodide redox couple is used. PMID:23301246

  17. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  18. Electrochemical cell utilizing molten alkali metal electrode-reactant

    DOEpatents

    Virkar, Anil V. (Sandy, UT); Miller, Gerald R. (Salt Lake City, UT)

    1983-11-04

    An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

  19. Spectroscopic study of the interactions of alkali fluorides with D-xylose

    NASA Astrophysics Data System (ADS)

    Fernández-Bertrán, Jose; Reguera, Edilso; Ortiz, Pedro

    2001-11-01

    The interactions of alkali fluorides with D-xylose have been studied by X-ray diffraction (XRD), infrared spectroscopy (IR), nuclear magnetic resonance (NMR, 1H and 13C) and atomic absorption spectrophotometry. KF and CsF form complexes with D-xylose in a 1:1 molar ratio. These complexes can be obtained by solid state milling the reactants in an agate mortar or from methanolic solutions of the sugar and the salt. LiF and NaF do not form complex with D-xylose. IR and XRD prove the identical nature of the complexes obtained by milling and from solution. IR spectra indicate strong perturbation of the OH stretching vibrations with considerable shifts to lower frequencies, which must be caused by strong hydrogen bond formation to the fluorine anion. The perturbations of C?O bond are weak, indicating that cation binding to the oxygen atoms is not the main interaction responsible for the complex formation. 1H NMR spectra of the D-xylose-KF complex dissolved in deuterium oxide is equal to that of pure D-xylose, indicating the destruction of the complex in solution. The complex is stable in DMSO, and 13C spectra of the complex in DMSO-d 6 and in solid state (CPMAS) spectra are in accordance with the observed interactions in the IR spectra. As far as we know, this is the first report of a sugar-halide salt complex in which the anion instead of the cation provides the binding forces.

  20. Structure and Chemistry in Halide Lead-Tellurite Glasses

    SciTech Connect

    McCloy, John S.; Riley, Brian J.; Lipton, Andrew S.; Windisch, Charles F.; Washton, Nancy M.; Olszta, Matthew J.; Rodriguez, Carmen P.

    2013-02-11

    A series of TeO2-PbO glasses were fabricated with increasing fractions of mixed alkali, alkaline earth, and lanthanide chlorides. The glass and crystal structure was studied with Raman spectroscopy, nuclear magnetic resonance (NMR), X-ray diffraction, and electron microscopy. As the chloride fraction increased, the medium-range order in the glass decreased up to a critical point (~14 mass% of mixed chlorides), above which the glasses became phase-separated. Resulting phases are a TeO2/PbO-rich phase and a crystalline phase rich in alkali chlorides. The 125Te NMR indicates, contrary to previous studies, that Te site distribution did not change with increased concentrations of M+, M2+, and M3+ cations, but rather is controlled by the Te/Pb molar ratio. The 207Pb NMR shows that two Pb species exist and their relative concentration changes nearly linearly with addition of the mixed chlorides, indicating that the additives to the TeO2-PbO glass are accommodated by changing the Pb species. The 23Na and 35Cl NMR indicate that Na and Cl are distributed in the single-phase glass phase up to the critical point, and at higher concentrations partition to crystalline phases. Transmission electron microscopy shows that the sample at the critical point contains ~10 nm seed nuclei that increase in size and concentration with exposure to the electron beam.