Science.gov

Sample records for alkali earth elements

  1. Alkali element constraints on Earth-Moon relations

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Drake, M. J.; Jones, J. H.

    1994-01-01

    Given their range of volatilities, alkali elements are potential tracers of temperature-dependent processes during planetary accretion and formation of the Earth-Moon system. Under the giant impact hypothesis, no direct connection between the composition of the Moon and the Earth is required, and proto-lunar material does not necessarily experience high temperatures. Models calling for multiple collisions with smaller planetesimals derive proto-lunar materials mainly from the Earth's mantle and explicitly invoke vaporization, shock melting and volatility-related fractionation. Na/K, K/Rb, and Rb/Cs should all increase in response to thermal volatization, so theories which derive the Moon substantially from Earth's mantle predict these ratios will be higher in the Moon than in the primitive mantle of the Earth. Despite the overall depletion of volatile elements in the Moon, its Na/K and K/Rb are equal to or less than those of Earth. A new model presented here for the composition of Earth's continental crust, a major repository of the alkali elements, suggests the Rb/Cs of the Moon is also less than that of Earth. Fractionation of the alkali elements between Earth and Moon are in the opposite sense to predictions based on the relative volatilities of these elements, if the Moon formed by high-T processing of Earth's mantle. Earth, rather than the Moon, appears to carry a signature of volatility-related fractionation in the alkali elements. This may reflect an early episode of intense heating on Earth with the Moon's alkali budget accreting from cooler material.

  2. Alkali elements in the Earth's core: Evidence from enstatite meteorites

    NASA Technical Reports Server (NTRS)

    Lodders, K.

    1995-01-01

    The abundances of alkali elements in the Earth's core are predicted by assuming that accretion of the Earth started from material similar in composition to enstatite chondrites and that enstatite achondrites (aubrites) provide a natural laboratory to study core-mantle differentiation under extremely reducing conditions. If core formation on the aubrite parent body is comparable with core formation on the early Earth, it is found that 2600 (+/- 1000) ppm Na, 550 (+/- 260) ppm K, 3.4 (+/- 2.1) ppm Rb, and 0.31 (+/- 0.24) ppm Cs can reside in the Earth's core. The alkali-element abundances are consistent with those predicted by independent estimates based on nebula condensation calculations and heat flow data.

  3. Alkali element depletion by core formation and vaporization on the early Earth

    NASA Technical Reports Server (NTRS)

    Lodders, K.; Fegley, B., Jr.

    1994-01-01

    The depletion of Na, K, Rb, and Cs in the Earth's upper mantle and crust relative to their abundances in chondrites is a long standing problem in geochemistry. Here we consider two commonly invoked mechanisms, namely core formation, and vaporization, for producing the observed depletions. Our models predict that a significant percentage of the Earth's bulk alkali element inventory is in the core (30 percent for Na, 52 percent for K, 74 percent for Rb, and 92 percent for Cs). These predictions agree with independent estimates from nebular volatility trends and (for K) from terrestrial heat flow data. Our models also predict that vaporization and thermal escape during planetary accretion are unlikely to produce the observed alkali element depletion pattern. However, loss during the putative giant impact which formed the Moon cannot be ruled out. Experimental, observational, and theoretical tests of our predictions are also described. Alkali element partitioning into the Earth's core was modeled by assuming that alkali element partitioning during core formation on the aubrite parent body (APB) is analogous to that on the early Earth. The analogy is reasonable for three reasons. First, the enstatite meteorites are the only known meteorites with the same oxygen isotope systematics as the Earth-Moon system. Second, the large core size of the Earth and the V depletion in the mantle requires accretion from planetesimals as reduced as the enstatite chondrites. Third, experimental studies of K partitioning between silicate and metal plus sulfide show that more K goes into the metal plus sulfide at higher pressures than at one atmosphere pressure. Thus partitioning in the relatively low pressure natural laboratory of the APB is a good guide to alkali elemental partitioning during the growth of the Earth.

  4. Origin of the earth's moon - Constraints from alkali volatile trace elements

    NASA Technical Reports Server (NTRS)

    Kreutzberger, M. E.; Drake, M. J.; Jones, J. H.

    1986-01-01

    Although the moon is depleted in volatile elements compared to the earth, these depletions are not in accord with simple volatility. For example, the Cs/Rb ratios of the earth and moon inferred from basalt are approximately one seventh and one half of the CI ratio, respectively. Volatility considerations alone predict that the lunar Cs/Rb ratio should be equal to or lower than the terrestrial ratio if the moon was derived entirely from earth mantle material. Thus hypotheses such as rotational fission which invoke derivation of lunar material entirely from the earth's mantle may be excluded. The collisional ejection hypothesis of lunar origin requires at least 18 percent of lunar material to be derived from a projectile with dehydrated CI composition to match the lunar Cs/Rb ratio, and 25-50 percent to match both the lunar Cs/Rb ratio and absolute concentrations of Cs and Rb. It remains to be demonstrated that this relatively large contribution of projectile material is consistent with other elemental abundances and element ratios in the moon.

  5. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  6. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups

    NASA Astrophysics Data System (ADS)

    Hulsbosch, Niels; Hertogen, Jan; Dewaele, Stijn; André, Luc; Muchez, Philippe

    2014-05-01

    This study presents a general model for the evaluation of Rayleigh fractional crystallisation as the principal differentiation mechanism in the formation of regionally zoned common and rare-element pegmatites. The magmatic evolution of these systems from a granitic source is reconstructed by means of alkali element and rare earth element (REE) analyses of rock-forming minerals (feldspars, micas and tourmaline), which represent a whole sequence of regional pegmatite zonation. The Gatumba pegmatite field (Rwanda, Central Africa) is chosen as case study area because of its well-developed regional zonation sequence. The pegmatites are spatially and temporally related to peraluminous G4-granites (986 ± 10 Ma). The regional zonation is developed around a G4-granite and the proximal pegmatites grade outwardly into biotite, two-mica and muscovite pegmatites. Rare-element (Nb-Ta-Sn) pegmatites occur most distal from the granite.

  7. Dirac Node Lines in Pure Alkali Earth Metals.

    PubMed

    Li, Ronghan; Ma, Hui; Cheng, Xiyue; Wang, Shoulong; Li, Dianzhong; Zhang, Zhengyu; Li, Yiyi; Chen, Xing-Qiu

    2016-08-26

    Beryllium is a simple alkali earth metal, but has been the target of intensive studies for decades because of its unusual electron behavior at surfaces. The puzzling aspects include (i) severe deviations from the description of the nearly free-electron picture, (ii) an anomalously large electron-phonon coupling effect, and (iii) giant Friedel oscillations. The underlying origins for such anomalous surface electron behavior have been under active debate, but with no consensus. Here, by means of first-principles calculations, we discover that this pure metal system, surprisingly, harbors the Dirac node line (DNL) that in turn helps to rationalize many of the existing puzzles. The DNL is featured by a closed line consisting of linear band crossings, and its induced topological surface band agrees well with previous photoemission spectroscopy observations on the Be (0001) surface. We further reveal that each of the elemental alkali earth metals of Mg, Ca, and Sr also harbors the DNL and speculate that the fascinating topological property of the DNL might naturally exist in other elemental metals as well. PMID:27610865

  8. Alkali element background reduction in laser ICP-MS

    NASA Astrophysics Data System (ADS)

    Magee, C. W., Jr.; Norris, C. A.

    2014-11-01

    Alkali backgrounds in laser ablation ICP-MS analyses can be enhanced by electron-induced ionization of alkali contamination on the skimmer cone, reducing effective detection limits for these elements. Traditionally, this problem is addressed by isolating analyses of high alkali materials onto a designated cone set, or by operating the ICP-MS in a "soft extraction" mode, which reduces the energy of electrons repelled into the potentially contaminated sampling cone by the extraction field. Here we present a novel approach, where we replace the traditional alkali glass tuning standards with synthetic low-alkali glass reference materials. Using this vitreous tuning solution, we find that this approach reduces the amount of alkali contamination produced, halving backgrounds for the heavy alkali elements without any change to analytical procedures. Using segregated cones is still the most effective method for reducing lithium backgrounds, but since the procedures are complimentary both can easily be applied to the routine operations of an analytical lab.

  9. Alkali element background reduction in laser ICP-MS

    NASA Astrophysics Data System (ADS)

    Magee, C. W., Jr.; Norris, C. A.

    2015-03-01

    Alkali backgrounds in laser ablation ICP-MS analyses can be enhanced by electron-induced ionisation of alkali contamination on the skimmer cone, reducing effective detection limits for these elements. Traditionally, this problem is addressed by isolating analyses of high-alkali materials onto a designated cone set, or by operating the ICP-MS in a "soft extraction" mode, which reduces the energy of electrons repelled into the potentially contaminated sampling cone by the extraction field. Here we present a novel approach, where we replace the traditional alkali glass tuning standards with synthetic low-alkali glass reference materials. Using this vitreous tuning solution, we find that this approach reduces the amount of alkali contamination produced, halving backgrounds for the heavy alkali elements without any change to analytical procedures. Using segregated cones is still the most effective method for reducing lithium backgrounds, but since the procedures are complimentary, both can easily be applied to the routine operations of an analytical lab.

  10. Theoretical study of the alkali and alkaline-earth monosulfides

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1988-01-01

    Ab initio calculations have been used to obtain accurate spectroscopic constants for the X2Pi and A2Sigma(+) states of the alkali sulfides and the X1Sigma(+), a3Pi, and A1Pi states of the alkaline-earth sulfides. In contrast to the alkali oxides, the alkali sulfides are found to have X2Pi ground states, due to the larger electrostatic interaction. Dissociation energies of 3.27 eV for BeS, 2.32 eV for MgS, 3.29 eV for CaS, and 3.41 eV for SrS have been obtained for the X1Sigma(+) states of the alkaline-earth sulfides, in good agreement with experimental results. Core correlation is shown to increase the Te values for the a3Pi and A1Pi states of MgS, CaS, and SrS.

  11. Ultrasonic coal washing to leach alkali elements from coals.

    PubMed

    Balakrishnan, S; Reddy, V Midhun; Nagarajan, R

    2015-11-01

    Deposition of fly ash particles onto heat-transfer surfaces is often one of the reasons for unscheduled shut-downs of coal-fired boilers. Fouling deposits encountered in convective sections of a boiler are characterized by arrival of ash particles in solidified (solid) state. Fouling is most frequently caused by condensation and chemical reaction of alkali vapors with the deposited ash particles creating a wet surface conducive to collect impacting ash particles. Hence, the amount of alkali elements present in coals, which, in turn, is available in the flue gas as condensable vapors, determines the formation and growth of fouling deposits. In this context, removal of alkali elements becomes vital when inferior coals having high-ash content are utilized for power generation. With the concept of reducing alkali elements present in a coal entering the combustor, whereby the fouling deposits can either be minimized or be weakened due to absence of alkali gluing effect, the ultrasonic leaching of alkali elements from coals is investigated in this study. Ultrasonic water-washing and chemical-washing, in comparison with agitation, are studied in order to estimate the intensification of the alkali removal process by sonication. PMID:26186840

  12. Orbital Feshbach Resonance in Alkali-Earth Atoms.

    PubMed

    Zhang, Ren; Cheng, Yanting; Zhai, Hui; Zhang, Peng

    2015-09-25

    For a mixture of alkali-earth atomic gas in the long-lived excited state ^{3}P_{0} and the ground state ^{1}S_{0}, in addition to nuclear spin, another "orbital" index is introduced to distinguish these two internal states. In this Letter we propose a mechanism to induce Feshbach resonance between two atoms with different orbital and nuclear spin quantum numbers. Two essential ingredients are the interorbital spin-exchange process and orbital dependence of the Landé g factors. Here the orbital degrees of freedom plays a similar role as the electron spin degree of freedom in magnetic Feshbach resonance in alkali-metal atoms. This resonance is particularly accessible for the ^{173}Yb system. The BCS-BEC crossover in this system requires two fermion pairing order parameters, and displays a significant difference compared to that in an alkali-metal system. PMID:26451561

  13. Orbital Feshbach Resonance in Alkali-Earth Atoms

    NASA Astrophysics Data System (ADS)

    Zhang, Ren; Cheng, Yanting; Zhai, Hui; Zhang, Peng

    2015-09-01

    For a mixture of alkali-earth atomic gas in the long-lived excited state 3P0 and the ground state 1S0, in addition to nuclear spin, another "orbital" index is introduced to distinguish these two internal states. In this Letter we propose a mechanism to induce Feshbach resonance between two atoms with different orbital and nuclear spin quantum numbers. Two essential ingredients are the interorbital spin-exchange process and orbital dependence of the Landé g factors. Here the orbital degrees of freedom plays a similar role as the electron spin degree of freedom in magnetic Feshbach resonance in alkali-metal atoms. This resonance is particularly accessible for the 173Yb system. The BCS-BEC crossover in this system requires two fermion pairing order parameters, and displays a significant difference compared to that in an alkali-metal system.

  14. Effect of cavitation on removal of alkali elements from coal

    NASA Astrophysics Data System (ADS)

    Srivalli, H.; Nirmal, L.; Nagarajan, R.

    2015-12-01

    The main impurities in coal are sulphur, ash and alkali. On combustion, the volatile forms of these impurities are either condensed on the boilers, or emitted in the form of potentially hazardous gases. The alkali elements present in coal help the fly ash particles adhere to boiler surfaces by providing a wet surface on which collection of these particles can take place. Use of ultrasonic techniques in cleaning of coal has stirred interest among researchers in recent times. Extraction of alkali elements by cavitation effect using low-frequency ultrasound, in the presence of reagents (HNO3 and H2O2) is reported in this paper. Powdered coal was dissolved with the reagent and exposed to ultrasonic fields of various frequencies at different time intervals. The treated solution is filtered and tested for alkali levels.

  15. Solvent-averaged potentials for alkali-, earth alkali-, and alkylammonium halide aqueous solutions

    NASA Astrophysics Data System (ADS)

    Hess, Berk; van der Vegt, Nico F. A.

    2007-12-01

    We derive effective, solvent-free ion-ion potentials for alkali-, earth alkali-, and alkylammonium halide aqueous solutions. The implicit solvent potentials are parametrized to reproduce experimental osmotic coefficients. The modeling approach minimizes the amount of input required from atomistic (force field) models, which usually predict large variations in the effective ion-ion potentials at short distances. For the smaller ion species, the reported potentials are composed of a Coulomb and a Weeks-Chandler-Andersen term. For larger ions, we find that an additional, attractive potential is required at the contact minimum, which is related to solvent degrees of freedom that are usually not accounted for in standard electrostatics models. The reported potentials provide a simple and accurate force field for use in molecular dynamics and Monte Carlo simulations of (poly-)electrolyte systems.

  16. Ground state properties of alkali and alkaline-earth hydrides

    NASA Astrophysics Data System (ADS)

    Fuentealba, P.; Reyes, O.; Stoll, H.; Preuss, H.

    1987-11-01

    The ground state potential energy curves of alkali (LiH to CsH) and alkaline-earth monohydrides (BeH to BaH) have been calculated. A pseudopotential formalism including a core-polarization potential has been used. For the valence correlation energy, two different methods, the local spin-density functional and the configuration interaction with single and double excitations, have been employed. Dissociation energies, bond lengths, vibrational frequencies, anharmonicity constants, and dipole moments are reported. The agreement with experimental values, where available, is very good. A discussion and a comparison with other theoretical values, at different levels of approximation, are also included.

  17. Crystal chemistry of hydrothermally grown ternary alkali rare earth fluorides.

    PubMed

    McMillen, Colin D; Comer, Sara; Fulle, Kyle; Sanjeewa, Liurukara D; Kolis, Joseph W

    2015-12-01

    The structural variations of several alkali metal rare earth fluoride single crystals are summarized. Two different stoichiometric formulations are considered, namely those of ARE2F7 and ARE3F10 (A = K, Rb, Cs; RE = Y, La-Lu), over a wide range of ionic radii of both the alkali and rare earth (RE) ions. Previously reported and several new single-crystal structures are considered. The new single crystals are grown using hydrothermal methods and the structures are compared with literature reports of structures grown from both melts and hydrothermal fluids. The data reported here are combined with the literature data to gain a greater understanding of structural subtleties surrounding these systems. The work underscores the importance of the size of the cations to the observed structure type and also introduces synthetic technique as a contributor to the same. New insights based on single-crystal structure analysis in the work introduce a new disordered structure type in the case of ARE2F7, and examine the trends and boundaries of the ARE3F10 stoichiometry. Such fundamental structural information is useful in understanding the potential applications of these compounds as optical materials. PMID:26634734

  18. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  19. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure.

    PubMed

    Hinwood, A L; Stasinska, A; Callan, A C; Heyworth, J; Ramalingam, M; Boyce, M; McCafferty, P; Odland, J Ø

    2015-09-01

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children. PMID:25984984

  20. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    DOE PAGESBeta

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; Rawn, Claudia J.; Richardson, Jim

    2016-01-01

    When appropriately activated, alkali rare-earth double phosphates of the form: M3RE(PO4)2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K3RE(PO4)2 with RE = Lu, Er, Ho, Dy, Gd, Nd, Ce, plus Ymore » and Sc - as well as the compounds: A3Lu(PO4)2, with A = Rb, and Cs. The double phosphate K3Lu(PO4)2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K3Lu(PO4)2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K3Lu(PO4)2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K3Yb(PO4)2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single-crystal growth methods structural systematics, and thermal expansion properties of the present series of alkali rare-earth double phosphates, as determined by X-ray and neutron diffraction methods, are treated here.« less

  1. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    SciTech Connect

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; Rawn, Claudia J.; Richardson, Jim

    2016-01-01

    When appropriately activated, alkali rare-earth double phosphates of the form: M3RE(PO4)2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K3RE(PO4)2 with RE = Lu, Er, Ho, Dy, Gd, Nd, Ce, plus Y and Sc - as well as the compounds: A3Lu(PO4)2, with A = Rb, and Cs. The double phosphate K3Lu(PO4)2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K3Lu(PO4)2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K3Lu(PO4)2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K3Yb(PO4)2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single

  2. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.

    PubMed

    Long, Jiang; Song, Hu; Jun, Xiang; Sheng, Su; Lun-Shi, Sun; Kai, Xu; Yao, Yao

    2012-07-01

    Investigating the release characteristics of alkali and alkaline earth metallic species (AAEMs) is of potential interest because of AAEM's possible useful service as catalysts in biomass thermal conversion. In this study, three kinds of typical Chinese biomass were selected to pyrolyse and their chars were subsequently steam gasified in a designed quartz fixed-bed reactor to investigate the release characteristics of alkali and alkaline earth metallic species (AAEMs). The results indicate that 53-76% of alkali metal and 27-40% of alkaline earth metal release in pyrolysis process, as well as 12-34% of alkali metal and 12-16% of alkaline earth metal evaporate in char gasification process, and temperature is not the only factor to impact AAEMs emission. The releasing characteristics of AAEMs during pyrolysis and char gasification process of three kinds of biomass were discussed in this paper. PMID:22525260

  3. Process for preparing higher oxides of the alkali and alkaline earth metals

    NASA Technical Reports Server (NTRS)

    Sadhukhan, P.; Bell, A. (Inventor)

    1978-01-01

    High purity inorganic higher oxides of the alkali and alkaline earth metals are prepared by subjecting the hydroxide of the alkali and alkaline earth metal to a radio frequency discharge sustained in oxygen. The process is particulary adaptable to the production of high purity potassium superoxide by subjecting potassium hydroxide to glow discharge sustained in oxygen under the pressure of about 0.75 to 1.00 torr.

  4. Matrix diffusion of some alkali- and alkaline earth-metals in granitic rock

    SciTech Connect

    Johansson, H.; Byegaard, J.; Skarnemark, G.; Skaalberg, M.

    1997-12-31

    Static through-diffusion experiments were performed to study the diffusion of alkali- and alkaline earth-metals in fine-grained granite and medium-grained Aespoe-diorite. Tritiated water was used as an inert reference tracer. Radionuclides of the alkali- and alkaline earth-metals (mono- and divalent elements which are not influenced by hydrolysis in the pH-range studied) were used as tracers, i.e., {sup 22}Na{sup +}, {sup 45}Ca{sup 2+} and {sup 85}Sr{sup 2+}. The effective diffusivity and the rock capacity factor were calculated by fitting the breakthrough curve to the one-dimensional solution of the diffusion equation. Sorption coefficients, K{sub d}, that were derived from the rock capacity factor (diffusion experiments) were compared with K{sub d} determined in batch experiments using crushed material of different size fractions. The results show that the tracers were retarded in the same order as was expected from the measured batch K{sub d}. Furthermore, the largest size fraction was the most representative when comparing batch K{sub d} with K{sub d} evaluated from the diffusion experiments. The observed effective diffusivities tended to decrease with increasing cell lengths, indicating that the transport porosity decreases with increasing sample lengths used in the diffusion experiments.

  5. Calculation of Radiative Corrections to E1 matrix elements in the Neutral Alkalis

    SciTech Connect

    Sapirstein, J; Cheng, K T

    2004-09-28

    Radiative corrections to E1 matrix elements for ns-np transitions in the alkali metal atoms lithium through francium are evaluated. They are found to be small for the lighter alkalis but significantly larger for the heavier alkalis, and in the case of cesium much larger than the experimental accuracy. The relation of the matrix element calculation to a recent decay rate calculation for hydrogenic ions is discussed, and application of the method to parity nonconservation in cesium is described.

  6. Isotopic fractionation of alkali earth metals during carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Yotsuya, T.; Ohno, T.; Muramatsu, Y.; Shimoda, G.; Goto, K. T.

    2014-12-01

    The alkaline earth metals such as magnesium, calcium and strontium play an important role in a variety of geochemical and biological processes. The element ratios (Mg/Ca and Sr/Ca) in marine carbonates have been used as proxies for reconstruction of the past environment. Recently several studies suggested that the study for the isotopic fractionation of the alkaline earth metals in marine carbonates has a potentially significant influence in geochemical research fields (e.g. Eisenhauer et al., 2009). The aim of this study is to explore the influence of carbonate polymorphs (Calcite and Aragonite) and environmental factors (e.g., temperature, precipitation rate) on the level of isotopic fractionation of the alkaline earth metals. We also examined possible correlations between the level of isotopic fractionation of Ca and that of other alkaline earth metals during carbonate precipitation. In order to determine the isotope fractionation factor of Mg, Ca and Sr during carbonate precipitation, calcite and aragonite were synthesized from calcium bicarbonate solution in which the amount of magnesium was controlled based on Kitano method. Calcium carbonates were also prepared from the mixture of calcium chlorite and sodium hydrogen carbonate solutions. The isotope fractionation factors were measured by MC-ICPMS. Results suggested that the level of isotopic fractionation of Mg during carbonate precipitation was correlated with that of Sr and that the change of the carbonate crystal structure could make differences of isotopic fractionations of Mg and Ca, however no difference was found in the case of Sr. In this presentation, the possible mechanism will be discussed.

  7. Scarcity of rare earth elements.

    PubMed

    de Boer, M A; Lammertsma, K

    2013-11-01

    Rare earth elements (REEs) are important for green and a large variety of high-tech technologies and are, therefore, in high demand. As a result, supply with REEs is likely to be disrupted (the degree of depends on the REE) in the near future. The 17 REEs are divided into heavy and light REEs. Other critical elements besides REEs, identified by the European Commission, are also becoming less easily available. Although there is no deficiency in the earth's crust of rare earth oxides, the economic accessibility is limited. The increased demand for REEs, the decreasing export from China, and geopolitical concerns on availability contributed to the (re)opening of mines in Australia and the USA and other mines are slow to follow. As a result, short supply of particularly terbium, dysprosium, praseodymium, and neodymium is expected to be problematic for at least the short term, also because they cannot be substituted. Recycling REEs from electronic waste would be a solution, but so far there are hardly any established REE recycling methods. Decreasing the dependency on REEs, for example, by identifying possible replacements or increasing their efficient use, represents another possibility. PMID:24009098

  8. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    USGS Publications Warehouse

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  9. The fate of minor alkali elements in the chemical evolution of salt lakes

    PubMed Central

    2011-01-01

    Alkaline earth elements and alkali metals (Mg, Ca, Na and K) play an important role in the geochemical evolution of saline lakes as the final brine type is defined by the abundance of these elements. The role of major ions in brine evolution has been studied in great detail, but little has been done to investigate the behaviour of minor alkali elements in these systems despite their similar chemical affinities to the major cations. We have examined three major anionic brine types, chloride, sulphate, and bicarbonate-carbonate, in fifteen lakes in North America and Antarctica to determine the geochemical behaviour of lithium, rubidium, strontium, and barium. Lithium and rubidium are largely conservative in all water types, and their concentrations are the result of long-term solute input and concentration through evaporation and/or sublimation. Strontium and barium behaviours vary with anionic brine type. Strontium can be removed in sulphate and carbonate-rich lakes by the precipitation of carbonate minerals. Barium may be removed in chloride and sulphate brines by either the precipitation of barite and perhaps biological uptake. PMID:21992434

  10. The fate of minor alkali elements in the chemical evolution of salt lakes.

    PubMed

    Witherow, Rebecca A; Lyons, W Berry

    2011-01-01

    Alkaline earth elements and alkali metals (Mg, Ca, Na and K) play an important role in the geochemical evolution of saline lakes as the final brine type is defined by the abundance of these elements. The role of major ions in brine evolution has been studied in great detail, but little has been done to investigate the behaviour of minor alkali elements in these systems despite their similar chemical affinities to the major cations. We have examined three major anionic brine types, chloride, sulphate, and bicarbonate-carbonate, in fifteen lakes in North America and Antarctica to determine the geochemical behaviour of lithium, rubidium, strontium, and barium. Lithium and rubidium are largely conservative in all water types, and their concentrations are the result of long-term solute input and concentration through evaporation and/or sublimation. Strontium and barium behaviours vary with anionic brine type. Strontium can be removed in sulphate and carbonate-rich lakes by the precipitation of carbonate minerals. Barium may be removed in chloride and sulphate brines by either the precipitation of barite and perhaps biological uptake. PMID:21992434

  11. Pressure studies of alkali, alkaline earth and rare earth doped C{sub 60} superconductors

    SciTech Connect

    Schirber, J.E.; Bayless, W.R.; Kortan, A.R.; Ozdas, E.; Zhou, O.; Murphy, D.; Fischer, J.E.

    1994-06-01

    Pressure studies of the superconducting transition temperature T{sub c} of the alkali metal doped C{sub 60} compounds helped to establish a universal curve of T{sub c} versus lattice constant upon which nearly all of these materials lie. Various theoretical schemes incorporate this finding and suggest that only the lattice parameter and not the details of the dopant determine T{sub c}. Ca{sub 5}C{sub 60}, the highest T{sub c} member of the alkaline earth doped C{sub 60} superconductor has a T{sub c} which lies on this universal curve so this material, from these considerations, should have the same large negative pressure derivative as the alkali doped superconductors. We have measured dT{sub c}/dP for Ca{sub 5}C{sub 60} and for Yb{sub x}C{sub 60} (x near 3) and find small and positive values indicating that the theoretical models must be expanded to include band structure effects.

  12. Ab initio study of the alkali and alkaline-earth monohydroxides

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.; Partridge, H.

    1986-01-01

    A systematic study of the structures and dissociation energies of all the alkali and alkaline-earth monohydroxides is conducted. A theoretical model for determining accurate dissociation energies of ionic molecules is discussed. The obtained theoretical structures and dissociation energies of the alkali and alkaline-earth monohydroxides, respectively, are compared with experimental data. It is found that the theoretical studies of the bending potentials of BeOH, MgOH, and CaOH reveal the different admixture of covalent character in these systems. The BeOH molecule with the largest degree of covalent character is found to be bent (theta equals 147 deg). The MgOH is also linear. The theoretical dissociation energies for the alkali and akaline-earth hydroxides are thought to be accurate to 0.1 eV.

  13. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    USGS Publications Warehouse

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  14. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    ERIC Educational Resources Information Center

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  15. Calculation of radiative corrections to E1 matrix elements in the neutral alkali metals

    SciTech Connect

    Sapirstein, J.; Cheng, K.T.

    2005-02-01

    Radiative corrections to E1 matrix elements for ns-np transitions in the alkali-metal atoms lithium through francium are evaluated. They are found to be small for the lighter alkali metals but significantly larger for the heavier alkali metals, and in the case of cesium much larger than the experimental accuracy. The relation of the matrix element calculation to a recent decay rate calculation for hydrogenic ions is discussed, and application of the method to parity nonconservation in cesium is described.

  16. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  17. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  18. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    PubMed

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals. PMID:26005925

  19. Volatile degassing of basaltic achondrite parent bodies Evidence from alkali elements and phosphorus

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    1987-01-01

    The Na, K, Rb, Cs, and P abundances in eucrites, diogenites, basaltic clasts from polymict eucrite, howardites, and mesosiderites are examined, and compared with an average of highly incompatible refractory (AHIR) elements normalized to cosmic abundances. It is observed that basaltic eucrites and basaltic clasts show a positive correlation between K, Rb, and Cs, and alkali element/AHIR ratios; the volatile loss of the alkali elements from the basalt affects the parent body inventory of volatile elements. The data reveal that for diogenites, the alkali /AHIR ratios are 1.4-2 times greater than in basaltic eucrites and are more variable; and the negative relation between K, Rb, Cs, and the alkali/AHIR ratio correlate with progressive alkali loss through volatile outgassing during crystallization of one or more magmas resulting in a greater than 90 percent loss of the volatile element inventory from the parent body. It is also detected that P displays volatile loss from the basaltic eucrites and elevated P/AHIR ratios in diogenites.

  20. Ultrafine Na-4-mica: uptake of alkali and alkaline earth metal cations by ion exchange.

    PubMed

    Kodama, Tatsuya; Ueda, Masahito; Nakamuro, Yumiko; Shimizu, Ken-ichi; Komarneni, Sridhar

    2004-06-01

    The cation exchange properties of alkali and alkaline earth metal cations at room temperature were investigated on an ultrafine, highly charged Na-4-mica (with the ideal mica composition Na4Mg6Al4Si4O20F4.xH2O). Ultrafine mica crystallites of 200 nm in size led to faster Sr2+ uptake kinetics in comparison to larger mica crystallites. The alkali metal ion (K+, Cs+, and Li+) exchange uptake was rapid, and complete exchange occurred within 30 min. For the alkaline earth metal ions Ba2+, Ca2+, and Mg2+, however, the exchange uptake required lengthy periods from 3 days to 4 weeks to be completed, similar to its Sr uptake, as previously reported. Kinetic models of the modified Freundlich and parabolic diffusion were examined for the experimental data on the Ba2+, Ca2+, and Mg2+ uptakes. The modified Freundlich model described well the Ba2+ ion uptake kinetics as well as that for the Sr2+ ion, while for the Ca2+ and Mg2+ ions the parabolic diffusion model showed better fitting. The alkali and alkaline earth ion exchange isotherms were also determined in comparison to the Sr2+ exchange isotherm. The thermodynamic equilibria for these cations were compared by using Kielland plots evaluated from the isotherms. PMID:15984251

  1. Theoretical study of the diatomic alkali and alkaline-earth oxides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1986-01-01

    Theoretical dissociation energies for the ground states of the alkali and alkaline earth oxides are presented that are believed to be accurate to 0.1 eV. The 2 Pi - 2 Sigma + separations for the alkali oxides are found to be more sensitive to basis set than to electron correlation. Predicted 2 Pi ground states for LiO and NaO and 2 Sigma + ground states for RbO and CsO are found to be in agreement with previous theoretical and experimental work. For KO, a 2 Sigma + state is found at both the numerical Hartree-Fock (NHF) level and at the singles plus doubles configuration interaction level using a Slater basis set that is within 0.02 eV of the NHF limit. It is found that an accurate balanced treatment of the two states requires correlating the electrons on both the metal and oxide ion.

  2. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene

    NASA Astrophysics Data System (ADS)

    Sahin, H.; Peeters, F. M.

    2013-02-01

    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  3. Molecular mechanics (MM3) calculations on benzocrown ether complexes of the alkali and alkaline earth cations

    SciTech Connect

    Yang, Linrong R.; Hay, B.P.

    1997-12-31

    The new metal-ligand feature of MM3 has been extended to benzocrown ether complexes of alkali and alkaline earth cations. Over 50 complexes were compared with the crystal structures retrieved from Cambridge Crystal Database. The results agree with experimental data. The averages of absolute deviations between experimental and calculated structural features are: metal-oxygen bond length, 0.03 {angstrom}; Metal-oxygen-carbon angles, 4.1{degrees}; and Metal-oxygen-carbon-carbon angles: 5.1{degrees}. Development of structure-function relationships is in progress.

  4. Theoretical dissociation energies for the alkali and alkaline-earth monofluorides and monochlorides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1986-01-01

    Spectroscopic parameters are accurately determined for the alkali and alkaline-earth monofluorides and monochlorides by means of ab initio self-consistent field and correlated wave function calculations. Numerical Hartree-Fock calculations are performed on selected systems to ensure that the extended Slater basis sets employed are near the Hartree-Fock limit. Since the bonding is predominantly electrostatic in origin, a strong correlation exists between the dissociation energy (to ions) and the spectroscopic parameter r(e). By dissociating to the ionic limits, most of the differential correlation effects can be embedded in the accurate experimental electron affinities and ionization potentials.

  5. Rare earth element scavenging in seawater

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Kim, Ki-Hyun

    1990-10-01

    Examinations of rare earth element (REE) adsorption in seawater, using a variety of surface-types, indicated that, for most surfaces, light rare earth elements (LREEs) are preferentially adsorbed compared to the heavy rare earths (HREEs). Exceptions to this behavior were observed only for silica phases (glass surfaces, acid-cleaned diatomaceous earth, and synthetic SiO 2). The affinity of the rare earths for surfaces can be strongly affected by thin organic coatings. Glass surfaces which acquired an organic coating through immersion in Tampa Bay exhibited adsorptive behavior typical of organic-rich, rather than glass, surfaces. Models of rare earth distributions between seawater and carboxylate-rich surfaces indicate that scavenging processes which involve such surfaces should exhibit a strong dependence on pH and carbonate complexation. Scavenging models involving carboxylate surfaces produce relative REE abundance patterns in good general agreement with observed shale-normalized REE abundances in seawater. Scavenging by carboxylate-rich surfaces should produce HREE enrichments in seawater relative to the LREEs and may produce enrichments of lanthanum relative to its immediate trivalent neighbors. Due to the origin of distribution coefficients as a difference between REE solution complexation (which increases strongly with atomic number) and surface complexation (which apparently also increases with atomic number) the relative solution abundance patterns of the REEs produced by scavenging reactions can be quite complex.

  6. What about the rare-earth elements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is insufficient understanding of the nutritional physiology of pecan trees and orchards; thus, affecting nutmeat yield and quality, disease resistance and alternate bearing. An analysis of the rare-earth element composition of pecan and related hickory cousins found that they hyperaccumulate ...

  7. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-01-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: [3]Li+, [3]Na+, [4]K+, [4]Rb+, [6]Cs+, [3]Be2+, [4]Mg2+, [6]Ca2+, [6]Sr2+ and [6]Ba2+, but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of [6]Na+, the ratio U eq(Na)/U eq(bonded anions) is partially correlated with 〈[6]Na+—O2−〉 (R 2 = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li+ in [4]- and [6]-coordination, Na+ in [4]- and [6

  8. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    PubMed

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  9. Rare earth element systematics in hydrothermal fluids

    SciTech Connect

    Michard, A. )

    1989-03-01

    Rare earth element concentrations have been measured in hydrothermal solutions from geothermal fields in Italy, Dominica, Valles Caldera, Salton Sea and the Mid-Atlantic Ridge. The measured abundances show that hydrothermal activity is not expected to affect the REE balance of either continental or oceanic rocks. The REE enrichment of the solutions increases when the pH decreases. High-temperature solutions (> 230{degree}C) percolating through different rock types may show similar REE patterns.

  10. Rare earth elements and permanent magnets (invited)

    NASA Astrophysics Data System (ADS)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  11. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  12. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  13. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems. PMID:25317749

  14. Quantum Degenerate Mixtures of Alkali and Alkaline-Earth-Like Atoms

    SciTech Connect

    Hara, Hideaki; Takasu, Yosuke; Yamaoka, Yoshifumi; Doyle, John M.; Takahashi, Yoshiro

    2011-05-20

    We realize simultaneous quantum degeneracy in mixtures consisting of the alkali and alkaline-earth-like atoms Li and Yb. This is accomplished within an optical trap by sympathetic cooling of the fermionic isotope {sup 6}Li with evaporatively cooled bosonic {sup 174}Yb and, separately, fermionic {sup 173}Yb. Using cross-thermalization studies, we also measure the elastic s-wave scattering lengths of both Li-Yb combinations, |a{sub {sup 6}Li-{sup 174}Yb}|=1.0{+-}0.2 nm and |a{sub {sup 6}Li-{sup 173}Yb}|=0.9{+-}0.2 nm. The equality of these lengths is found to be consistent with mass-scaling analysis. The quantum degenerate mixtures of Li and Yb, as realized here, can be the basis for creation of ultracold molecules with electron spin degrees of freedom, studies of novel Efimov trimers, and impurity probes of superfluid systems.

  15. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyue; Merinov, Boris V.; Goddard, William A., III

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  16. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    PubMed

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems. PMID:27001855

  17. Surface charge density on silica in alkali and alkaline earth chloride electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Dove, Patricia M.; Craven, Colin M.

    2005-11-01

    The surface charge density of colloidal SiO 2 (Aerosil 380) was measured in alkali chloride (0.067 and 0.20 M LiCl, NaCl, and KCl) and alkaline earth chloride (0.067 M MgCl 2, CaCl 2, SrCl 2, BaCl 2) solutions. Measurements were conducted at 25°C by potentiometric titrations using the constant ionic medium method in a CO 2-free system. The experimental design measured surface charge for solutions with constant ionic strength as well as constant cation concentration. Alkali chloride solutions promote negative surface charge density in the order LiCl < NaCl < KCl to give the "regular" lyotropic behavior previously reported. In contrast, the alkaline earth chloride solutions exhibit a reversed lyotropic trend with increasing crystallographic radius where increasing negative charge is promoted in the order BaCl 2 < SrCl 2 < CaCl 2 < MgCl 2. The origin of the opposing affinity trends is probed by testing the hypothesis that this reversal is rooted in the differing solvent structuring characteristics of the IA and IIA cations at the silica-water interface. This idea arises from earlier postulations that solvent structuring effects increase entropy through solvent disordering and these gains must be much greater than the small, positive enthalpy associated with electrostatic interactions. By correlating measured charge density with a proxy for the solvent-structuring ability of cations, this study shows that silica surface charge density is maximized by those electrolytes that have the strongest effects on solvent structuring. We suggest that for a given solid material, solvation entropy has a role in determining the ionic specificity of electrostatic interactions and reiterate the idea that the concept of lyotropy is rooted in the solvent-structuring ability of cations at the interface.

  18. Electric dipole polarizabilities at imaginary frequencies for hydrogen, the alkali-metal, alkaline-earth, and noble gas atoms

    SciTech Connect

    Derevianko, Andrei Porsev, Sergey G. Babb, James F.

    2010-05-15

    The electric dipole polarizabilities evaluated at imaginary frequencies for hydrogen, the alkali-metal atoms, the alkaline-earth atoms, and the noble gases are tabulated along with the resulting values of the atomic static polarizabilities, the atom-surface interaction constants, and the dispersion (or van der Waals) constants for the homonuclear and the heteronuclear diatomic combinations of the atoms.

  19. Note: Portable rare-earth element analyzer using pyroelectric crystal.

    PubMed

    Imashuku, Susumu; Fuyuno, Naoto; Hanasaki, Kohei; Kawai, Jun

    2013-12-01

    We report a portable rare-earth element analyzer with a palm-top size chamber including the electron source of a pyroelectric crystal and the sample stage utilizing cathodoluminescence (CL) phenomenon. The portable rare-earth element analyzer utilizing CL phenomenon is the smallest reported so far. The portable rare-earth element analyzer detected the rare-earth elements Dy, Tb, Er, and Sm of ppm order in zircon, which were not detected by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. We also performed an elemental mapping of rare-earth elements by capturing a CL image using CCD camera. PMID:24387481

  20. Note: Portable rare-earth element analyzer using pyroelectric crystal

    SciTech Connect

    Imashuku, Susumu Fuyuno, Naoto; Hanasaki, Kohei; Kawai, Jun

    2013-12-15

    We report a portable rare-earth element analyzer with a palm-top size chamber including the electron source of a pyroelectric crystal and the sample stage utilizing cathodoluminescence (CL) phenomenon. The portable rare-earth element analyzer utilizing CL phenomenon is the smallest reported so far. The portable rare-earth element analyzer detected the rare-earth elements Dy, Tb, Er, and Sm of ppm order in zircon, which were not detected by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. We also performed an elemental mapping of rare-earth elements by capturing a CL image using CCD camera.

  1. Anthropogenic Cycles of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from

  2. Siderophile elements and the earth's formation

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Capobianco, C. J.; Drake, M. J.; O'Neill, Hugh

    1992-01-01

    Two comments on a work by Murthy (1991) concerning the abundances of siderophile elements in the earth's mantle are presented. In the first comment it is asserted that the basis of Murthy's extrapolation is the assumption that the Gibbs free energy change for the partitioning reaction is independent of temperature, and as this is generally not a valid assumption thermodynamically, and as this is contradicted by most experimental data, the issue of mantle siderophile elements remains unresolved. In the second comment it is asserted that the extrapolation method used by Murthy does not appear to be valid thermodynamically, and that an extrapolation based on generally accepted thermodynamic assumptions yields different results. In a reply, Murthy takes issue with the comments.

  3. Tipping elements in the Earth's climate system

    SciTech Connect

    Lenton, T.M.; Held, H.; Lucht, W.; Rahmstorf, S.; Kriegler, E. |; Hall, J.W.; Schellnhuber, H.J. |

    2008-02-12

    The term 'tipping point' commonly refers to a critical threshold at which a tiny perturbation can qualitatively alter the state or development of a system. Here the authors introduce the term 'tipping element' to describe large-scale components of the Earth system that may pass a tipping point. They critically evaluate potential policy-relevant tipping elements in the climate system under anthropogenic forcing, drawing on the pertinent literature and a recent international workshop to compile a short list, and they assess where their tipping points lie. An expert elicitation is used to help rank their sensitivity to global warming and the uncertainty about the underlying physical mechanisms. Then the authors explain how, in principle, early warning systems could be established to detect the proximity of some tipping points.

  4. The effects of acid and alkali modification on the adsorption performance of fuller's earth for basic dye.

    PubMed

    Hisarli, G

    2005-01-01

    The objective of this work was to prepare modified adsorbents from fuller's earth (FE) by acid and alkali treatment for enhancement cationic dye adsorption. Toluidine blue (TB) was selected as adsorbate for evaluating the adsorption performance of fuller's earth samples, which was affected significantly by acid and alkali modification. The adsorption of TB was studied by visible spectra. The absorption band of the monomer at low loading of TB in FE suspension with respect to its maximum in aqueous solution is red-shifted, which is related to accessibility of dye interlamellar space in the presence of positively charged surface sites. Since all surfaces are negatively charged under experimental conditions, this effect has not been observed in acid- and alkali-treated FE suspensions. It was seen that the adsorption capacity of alkali-treated surface (FEAl) for TB was higher than these of acid-treated adsorbent (FEAc) and FE. Scanning electron micrographs (SEM) and X-ray diffraction (XRD) and fluorescence (XRF) spectra were applied to analyze the structure of the raw and modified FE samples. Absence of any identifiable amount of a crystalline compound in the solid reaction products after acid treatment was confirmed by XRD and SEM, whereas the crystalline form of FEAl was preserved. Experimental data for high-concentration regions were well described by Freundlich and Langmuir adsorption equations. The thermodynamic parameters were estimated for FE, FEAc, and FEAl by using temperature dependence of adsorption equilibrium constants. PMID:15567375

  5. Development of a Rare Earth Element Paleoproxy

    NASA Astrophysics Data System (ADS)

    Haley, B. A.; Klinkhammer, G. P.; McManus, J.

    2002-12-01

    The rare earth elements (REEs) have demonstrated considerable potential as paleoproxies for changes in seawater chemistry. However, their utilization in paleoceanographic investigations has been mainly limited to neodymium isotopic analyses in metalliferous deposits and fossil apatite. The goal of being able to use the entire group of elements in foraminiferal shells has proven difficult. The problem with analysis of these elements in this matrix stems mainly from: (1) the ability to clean the shells of diagenetic aberrations and (2) the paucity of REE data in the environment where forams obtain their primary signature. We recently measured pore water profiles of REEs using an interfaced Ion Chromatograph (IC) and Inductively Coupled Plasma Mass Spectrometer (ICP-MS) in a depth transect off the Coast of California, and a profile from off the Peru-Chile margin. The pore water results are surprising and will alter our view of REE marine geochemistry. For example, they call into question the traditional method of calculating a "Ce-anomaly." The profiles also show dramatic changes in REE concentrations and patterns with depth, and demonstrate that the REE signature preserved in epifaunal benthic versus infaunal foram species and diagenetically added phases should be easily identifiable. Preliminary REE results from forams cleaned via a recently developed flow-through technique will be shown and compared to matching pore water data. We will conclude by outlining the potential of foraminiferal REE content for paleoceanography that ranges from water mass tracer to proxies for organic carbon flux and oxygen concentration.

  6. Capillary electrophoresis of alkali and alkaline-earth cations with imidazole or benzylamine buffers

    SciTech Connect

    Morin, P.; Francois, C.; Dreux, M. . Lab. de Chimie Bioorganique et Analytique)

    1994-01-01

    The separation of alkali, alkaline earth, and ammonium cations in several samples of water was achieved by capillary electrophoresis with indirect UV detection. A solution of imidazole (10[sup [minus]2] M, pH 4.5) was used as a buffer to resolve a mixture of six cations (K[sup +], Na[sup +], Ca[sup 2+], Ba[sup 2+], Li[sup +] and Mg[sup 2+]) by capillary electrophoresis at 214 nm in less than 10 min. The addition of potassium cation to the running buffer has an influence on the resolution of Ca[sup 2+]/Na[sup +] and Na[sup +]/Mg[sup 2+] peaks. A linear relationship between the corrected peak area and concentration was obtained in the 1--10 ppm range for these cations using a hydrodynamic injector. This electrophoretic system permitted the separation of these inorganic cations at a 50 ppb-level concentration with a hydrodynamic injection, thus making it possible to quantitatively determine their presence in mineral waters by capillary electrophoresis. At pH 4.5, potassium and ammonium unfortunately have identical ionic mobilities causing them to comigrate in an imidazole buffer. Using an alkaline solution of benzylamine as carrier electrolyte, their separation can be successfully achieved with excellent resolution at 204 nm. The analyses of tap water and several mineral waters have been achieved by capillary electrophoresis.

  7. Alkali and alkaline earth metallic (AAEM) species leaching and Cu(II) sorption by biochar.

    PubMed

    Li, Mi; Lou, Zhenjun; Wang, Yang; Liu, Qiang; Zhang, Yaping; Zhou, Jizhi; Qian, Guangren

    2015-01-01

    Alkali and alkaline earth metallic (AAEM) species water leaching and Cu(II) sorption by biochar prepared from two invasive plants, Spartina alterniflora (SA) and water hyacinth (WH), were explored in this work. Significant amounts of Na and K can be released (maximum leaching for Na 59.0 mg g(-1) and K 79.9 mg g(-1)) from SA and WH biochar when they are exposed to contact with water. Cu(II) removal by biochar is highly related with pyrolysis temperature and environmental pH with 600-700 °C and pH of 6 showing best performance (29.4 and 28.2 mg g(-1) for SA and WH biochar). Cu(II) sorption exerts negligible influence on Na/K/Mg leaching but clearly promotes the release of Ca. Biochars from these two plant species provide multiple benefits, including nutrient release (K), heavy metal immobilization as well as promoting the aggregation of soil particles (Ca) for soil amelioration. AAEM and Cu(II) equilibrium concentrations in sorption were analyzed by positive matrix factorization (PMF) to examine the factors underlying the leaching and sorption behavior of biochar. The identified factors can provide insightful understanding on experimental phenomena. PMID:25194478

  8. Superconducting critical fields of alkali and alkaline-earth intercalates of MoS2

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Somoano, R. B.

    1976-01-01

    Results are reported for measurements of the critical-field anisotropy and temperature dependence of group-VIB semiconductor MoS2 intercalated with the alkali and alkaline-earth metals Na, K, Rb, Cs, and Sr. The temperature dependences are compared with present theories on the relation between critical field and transition temperature in the clean and dirty limits over the reduced-temperature range from 1 to 0.1. The critical-field anisotropy data are compared with predictions based on coupled-layers and thin-film ('independent-layers') models. It is found that the critical-field boundaries are steep in all cases, that the fields are greater than theoretical predictions at low temperatures, and that an unusual positive curvature in the temperature dependence appears which may be related to the high anisotropy of the layer structure. The results show that materials with the largest ionic intercalate atom diameters and hexagonal structures (K, Rb, and Cs compounds) have the highest critical temperatures, critical fields, and critical-boundary slopes; the critical fields of these materials are observed to exceed the paramagnetic limiting fields.

  9. Tetrazole-5-carboxylic acid based salts of earth alkali and transition metal cations.

    PubMed

    Hartdegen, Vera; Klapötke, Thomas M; Sproll, Stefan M

    2009-10-01

    The tetrazole-5-carboxylate anion was investigated as ligand for earth alkali metal and transition metal complexes. Therefore, the strontium 4a (*3 H(2)O, *2.75 H(2)O, *2.5 H(2)O), barium 4b (*3 H(2)O), copper 4c (*3.5 H(2)O, *4 H(2)O), manganese 4d (*4 H(2)O, *5 H(2)O), and silver tetrazol-5-carboxylate 4e (*1.56 H(2)O) were synthesized and characterized by vibrational spectroscopy (IR), and the crystal structures of 4a (*2.75 H(2)O, *2.5 H(2)O), 4b*3 H(2)O, 4c*4 H(2)O, and 4d*5 H(2)O were determined using single crystal X-ray diffraction. The thermal stability was investigated by DSC-measurements, and the sensitivity toward impact and friction was determined by BAM-standards. The copper, strontium, and barium tetrazole-5-carboxyate proved to be suitable thermal and physical stable colorants for pyrotechnic compositions. The crystal structure of the tetragonal modification of strontium tetrazole-5-carboxyate possesses channels along the c-axis, leading to a porous material. PMID:19780625

  10. Rare earth elements materials production from apatite ores

    NASA Astrophysics Data System (ADS)

    Anufrieva, A. V.; Andrienko, O. S.; Buynovskiy, A. S.; Makaseev, Y. N.; Mazov, I. N.; Nefedov, R. A.; Sachkov, V. I.; Stepanova, O. B.; Valkov, A. V.

    2016-01-01

    The paper deals with the study of processing apatite ores with nitric acid and extraction of the rare earth elements. The rare earth elements can be successfully separated and recovered by extraction from the nitrate- phosphate solution, being an tributyl phosphate as extraction agent. The developed scheme of the processing apatite concentrate provides obtaining rare earth concentrates with high qualitative characteristics.

  11. The contents of alkali and alkaline earth metals in soils of the southern Cis-Ural region

    NASA Astrophysics Data System (ADS)

    Asylbaev, I. G.; Khabirov, I. K.

    2016-01-01

    The contents and distribution patterns of alkali and alkaline earth metals in soils and rocks of the southern Cis-Ural region were studied. A database on the contents of these metals was developed, the soils were classified with respect to their provision with these metals, and corresponding schematic maps showing their distribution in soils of the region were compiled. It was found that the contents of these metals decrease from east to west (from the Yuryuzan-Aisk Piedmont Plain to the Ufa Plateau and to the Belebeevsk Upland), and their distribution patterns change. Among alkali metals, the highest accumulation in the soils is typical of potassium, sodium, and cesium; among alkaline earth metals, of strontium and barium.

  12. Rare earth elements in river waters

    NASA Technical Reports Server (NTRS)

    Goldstein, Steven J.; Jacobsen, Stein B.

    1988-01-01

    To characterize the input to the oceans of rare earth elements (REE) in the dissolved and the suspended loads of rivers, the REE concentrations were measured in samples of Amazon, Indus, Mississippi, Murray-Darling, and Ohio rivers and in samples of smaller rivers that had more distinct drainage basin lithology and water chemistry. It was found that, in the suspended loads of small rivers, the REE pattern was dependent on drainage basin geology, whereas the suspended loads in major rivers had relatively uniform REE patterns and were heavy-REE depleted relative to the North American Shale composite (NASC). The dissolved loads in the five major rivers had marked relative heavy-REE enrichments, relative to the NASC and the suspended material, with the (La/Yb)N ratio of about 0.4 (as compared with the ratio of about 1.9 in suspended loads).

  13. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    SciTech Connect

    Selle, J E

    1992-06-26

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented.

  14. Basicity of the framework oxygen atom of alkali and alkaline earth-exchanged zeolites: a hard soft acid base approach

    NASA Astrophysics Data System (ADS)

    Deka, Ramesh Ch; Kinkar Roy, Ram; Hirao, Kimihiko

    2000-12-01

    The basicity of framework oxygen atoms of alkali and alkaline earth-exchanged zeolites has been studied using reactivity descriptors based on a local hard-soft acid-base (HSAB) concept. We have calculated the `local softness' and the `relative nucleophilicity' values of the framework oxygen atoms of zeolite clusters as the measure of basicity. The local softness and relative nucleophilicity appear to be more reliable descriptors to predict the experimental basicity trend, compared to the negative charge on the oxygen atom.

  15. The etching process of boron nitride by alkali and alkaline earth fluorides under high pressure and high temperature

    SciTech Connect

    Guo, W.; Ma, H.A.; Jia, X.

    2014-03-01

    Graphical abstract: - Highlights: • Appropriate etch processes of hBN and cBN under HPHT are proposed. • The degree of the crystallization of hBN was decreased. • A special cBN growth mechanism with a triangular unit is proposed. • Plate-shape cBN crystals with large ratio of length to thickness were obtained. • A strategy provides useful guidance for controlling the cBN morphology. - Abstract: Some new etching processes of hexagonal boron nitride (hBN) and cubic boron nitride (cBN) under high pressure and high temperature in the presence of alkali and alkaline earth fluorides have been discussed. It is found that hBN is etched distinctly by alkali and alkaline earth fluorides and the morphology of hBN is significantly changed from plate-shape to spherical-shape. Based on the “graphitization index” values of hBN, the degree of the crystallization of hBN under high pressure and high temperature decreases in the sequence of LiF > CaF{sub 2} > MgF{sub 2}. This facilitates the formation of high-quality cBN single crystals. Different etch steps, pits, and islands are observed on cBN surface, showing the strong etching by alkali and alkaline earth fluorides and the tendency of layer-by-layer growth. A special layer growth mechanism of cBN with a triangular unit has been found. Furthermore, the morphologies of cBN crystals are apparently affected by a preferential surface etching of LiF, CaF{sub 2} and MgF{sub 2}. Respectively, the plate-shape and tetrahedral cBN crystals can be obtained in the presence of different alkali and alkaline earth fluorides.

  16. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Data Explorer

    Andrew Fowler

    2016-02-10

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  17. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    DOEpatents

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  18. Symmetric charge-transfer cross sections of IIIa rare-earth-metal elements

    SciTech Connect

    Hashida, Masaki; Sakabe, Shuji; Izawa, Yasukazu

    2011-03-15

    Symmetric charge-transfer cross sections of IIIa rare-earth-metal elements (Sc, Y, and Gd) in the impact energy range of 30 to 1000 eV were measured for the first time. The experiments were performed with a crossed-beam apparatus that featured primary ion production by photoionization with a tunable dye laser. Comparing the cross sections of IIIa rare-earth-metal elements ({sigma}{sub Sc}, {sigma}{sub Y}, and {sigma}{sub Gd}) with those of alkali metals or helium {sigma}{sub 0}, we found that {sigma}{sub 0{approx_equal}{sigma}Sc}<{sigma}{sub Y}<{sigma}{sub Gd{approx_equal}}2{sigma}{sub 0}at an impact energy of 1000 eV.

  19. Radiative properties of few F- and Cl- like alkali and alkaline-earth metal ions

    NASA Astrophysics Data System (ADS)

    Nandy, D. K.; Singh, Sukhjit; Sahoo, B. K.

    2015-09-01

    We present high-accuracy calculations of radiative properties such as oscillator strengths and transition probabilities, of the allowed ns 2S1/2 → np 2P1/2, 3/2 transitions and of the forbidden np 2P1/2 → np 2P3/2 transitions in the F- and Cl-like alkali and alkaline-earth ions with the ground state principal quantum number n of the respective ion. For this purpose, we have employed the Dirac-Fock, relativistic second-order many-body perturbation theory and an all-order perturbative relativistic method in the coupled-cluster (CC) theory framework. To test the validity of these methods for giving accurate results, we first evaluated the ionization potentials in the creation processes of these ions and compare them with their experimental values listed in the National Institute of Science and Technology data base. Moreover, both the allowed and forbidden transition amplitudes are estimated using the above three methods and a comparative analysis is made to follow-up the electron correlation trends in order to demonstrate the need of using a sophisticated method like the CC theory for their precise determination. For astrophysical use, we provide the most precise values of the transition properties by combining the experimental energies, which suppresses uncertainties from the calculated energies, using the transition amplitudes from the CC method. These data will be useful in the abundance analysis of the considered ions in the astronomical objects and for the diagnostic processes of astrophysical plasmas.

  20. Finite element analysis of three TVA dams with alkali-aggregate reaction

    SciTech Connect

    Grenoble, B.A.; Meisenheimer, J.K.; Wagner, C.D.; Newell, V.A.

    1995-12-31

    Three large Tennessee Valley Authority (TVA) dams are currently experiencing problems caused by alkali-aggregate reaction (AAR). Since the fall of 1990, engineers in Stone & Webster`s Denver, Colorado office have been working with TVA to evaluate how AAR is affecting the dams and to identify measures for controlling the adverse effects of the concrete growth. This paper provides an overview of how finite element analysis is being used to understand the affects of AAR on these structures and to evaluate alternatives for minimizing the adverse effects of the concrete growth. Work on Hiwassee Dam is essentially complete, while that on the Chickamauga and Fontana Projects is still in progress. Consequently, this paper will focus primarily on Hiwassee Dam. The ongoing work on the other two projects will only be discussed briefly.

  1. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect

    Marra, J.; Billings, A.

    2009-06-24

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  2. Rare earth elements in Hamersley BIF minerals

    NASA Astrophysics Data System (ADS)

    Alibert, Chantal

    2016-07-01

    Minerals from the Hamersley banded iron formation, Western Australia, were analyzed for Y and rare earth elements (YREEs) by laser ablation ICP-MS to investigate diagenetic pathways, from precursor phases to BIF minerals. One group of apatites carries the seawater REE signature, giving evidence that P and REEs, thoroughly scavenged from the water column by Si-ferrihydrite particles, were released upon microbial Fe3+ reductive dissolution of Si-ferrihydrite in pore-water and finally sequestered mainly in authigenic apatite. The absence of fractionation between apatite and seawater suggests that REE were first incorporated into an amorphous calcium phosphate as fully hydrated cations, i.e. as outer-sphere complexes. The iron oxides and carbonates carry only a small fraction of the whole-rock REE budget. Their REE patterns are distinctly enriched in Yb and show some M-type tetrad effect consistent with experimental Kd(REE) between solid and saline solution with low carbonate ion concentrations. It is deduced that hematite formed at an incipient stage of Fe2+-catalyzed dissolution of Si-ferrihydrite, via a dissolution-reprecipitation pathway. The REE pattern of greenalite, found as sub-micron particles in quartz in a chert-siderite sample, is consistent with its authigenic origin by precipitation in pore-water after dissolution of a small amount of Si-ferrihydrite. Magnetite carries very low YREEs (ppb-level), has an homogeneous pattern distinctly enriched in the mid-REEs compared to hematite, and includes a late population depleted in light-REEs, Ba and As. Magnetite forming aggregates and massive laminae is tentatively interpreted as reflecting some fluid-aided hematite-magnetite re-equilibration or transformation at low-grade metamorphic temperatures.

  3. Dispersion coefficients for the interactions of the alkali-metal and alkaline-earth-metal ions and inert-gas atoms with a graphene layer

    NASA Astrophysics Data System (ADS)

    Kaur, Kiranpreet; Arora, Bindiya; Sahoo, B. K.

    2015-09-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients C3 of the alkali-metal ions Li+,Na+,K+, and Rb+, the alkaline-earth-metal ions Ca+,Sr+,Ba+, and Ra+, and the inert-gas atoms He, Ne, Ar, and Kr with a graphene layer are determined precisely within the framework of the Dirac model. For these calculations, we evaluate the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at room temperature.

  4. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang, Zhiguo; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien N.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 {per_thousand}nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  5. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang Zhiguo; Gao Fei; Kerisit, Sebastien; Xie Yulong; Campbell, Luke W.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF{sub 2} and BaF{sub 2}. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF{sub 2}, BaF{sub 2}, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs{sup +} relative to Na{sup +}, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  6. Sonoluminescence for the quantitative analysis of alkali and alkaline earth chlorides

    NASA Astrophysics Data System (ADS)

    Robinson, Alex Lockwood

    2001-11-01

    The use of sonoluminescence for quantitative analysis is demonstrated with possible applications for on-line process measurement. When acoustic energy of sufficiently high intensity is applied to a liquid, microscopic bubbles are generated at weak points in the liquid. These bubbles oscillate non-linearly in the acoustic field, collapsing violently during the compressive phase in a process known as cavitation. Under the right conditions, a subset of the cavitating bubbles emits weak, broadband light, known as sonoluminescence. When certain species are present in a sonoluminescing system, such as alkali and alkaline earth metals, they emit spectral lines characteristic of their lowest energy neutral excited states. By measuring the intensity and spectral distribution of this radiation, these species may be identified and quantified over a wide range of concentrations. Data is presented from solutions of sodium, potassium, and calcium salts that have been analyzed and quantified from as low as parts per billion up to saturation concentrations. Over this wide range, spectral output is neither linear nor monotonic. Partial Least Squares analysis is used to quantify over these regions, in particular, near saturation. The presence of a second salt alters the emission of the first salt in a predictable manner, still allowing quantification. An acceptable explanation of the source of sonoluminescence remains to be found. Approximately a dozen theories, some from notable scientists, have been proposed to explain the phenomenon, but the actual mechanism remains elusive and highly debated. Experimental results presented here will argue against some of the more commonly presented explanations. The results suggest that while excitation likely originates from hydrodynamic compression, emission may result from isotropic lasing of the species. While most of the proof-of-concept data was obtained in a batch reactor cell, there are certain advantages to using a flow cell. Besides

  7. Preparation of decarboxylic-functionalized weak cation exchanger and application for simultaneous separation of alkali, alkaline earth and transition metals.

    PubMed

    Peng, Yahui; Gan, Yihui; He, Chengxia; Yang, Bingcheng; Guo, Zhimou; Liang, Xinmiao

    2016-06-01

    A novel weak cation exchanger (WCX) with dicarboxyl groups functionalized has been developed by clicking mercaptosuccinic acid onto silica gel. The simple synthesis starts with modification of silica gel with triethoxyvinylsilane, followed by efficient coupling vinyl-bonded silica with mercaptosuccinic acid via a "thiol-ene" click reaction. The obtained WCX demonstrated good separation and high selectivity towards common metals. Simultaneous separation of 10 alkali, alkaline earth and transition metals was achieved within 12min. Ion exchange and complex mechanism dominates the separation process. Its utility was demonstrated for determination of metals in tap water. PMID:27130093

  8. Rare earth elements in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Gerard, M.; Seyler, P.; Benedetti, M. F.; Alves, V. P.; Boaventura, G. R.; Sondag, F.

    2003-05-01

    The rare earth element (REE) concentrations of the dissolved and particulate fractions and bed sediment between Manaus and Santarém in the Amazon River, and in some major tributaries, were evaluated. A very important zone in the Amazon basin, the encontro das aguas area where the Rio Solimões and the Rio Negro meet, was especially sampled. Different size fractions were isolated by ultrafiltration. Water samples were collected at different stages of the mixing. Three groups of waters are distinguished: group I has a low pH (<5·5) and is represented by the Negro basin rivers; group II has alkalinity less than 0·2 meq l-1 and is represented by the Rios Tapajós and Trombetas; group III has high alkalinity (>0·2 meq l-1) and higher pH (>6·5) and is represented by the Madeira basin rivers, the Solimões and the Amazon. The highest dissolved REE concentration is in the Rio Negro and the lowest in the Rio Tapajós (dissolved REEs vary by more than a factor of ten). The solubility of REEs is pH dependent: in river waters with a pH < 6 the Ce concentration is twice that of La, whereas in rivers with a higher pH the concentrations of Ce and La are similar. Dissolved REE concentrations are positively correlated with the dissolved organic carbon. Correlations between Fe, Al, and La suggest that La is associated with Al (Fe)-rich organic matter and/or related to dissolved Fe-rich inorganic material. Dissolved REEs normalized to North American shale composite show an enrichment in intermediate/heavy REEs (from Eu to Er), except for the shields rivers (such as Rio Negro and Rio Trombetas). Both of them are depleted in heavy REEs and show a relative Ce enrichment. In contrast, for the Andeans rivers (such as Rio Solimões), light REEs are slightly depleted and a negative Ce relative anomaly occurs. The pattern of the Amazon River at Óbidos confirms the major influence of the Rios Negro and Solimões with REE fractionation. For the Rio Negro, 60 to 70% of REEs are

  9. Moon and earth - Compositional differences inferred from siderophiles, volatiles, and alkalis in basalts

    NASA Technical Reports Server (NTRS)

    Wolf, R.; Anders, E.

    1980-01-01

    A comparison of RNAA analyses of 18 trace elements in 25 low-Ti lunar and 10 terrestrial oceanic basalts indicated that the volatiles such as Ag, Bi, and Br are depleted in lunar basalts by nearly constant factors of 0.026 relative to terrestrial basalts. This constancy is not consistent with models that derive the moon's volatiles from partial recondensation of the earth's mantle or from partial degassing of a captured body; it is consistent with models which derive planetary volatiles from a thin veneer of C-chondrite material. Chalcogens (Se and Te) have almost constant and identical abundances in lunar and terrestrial basalts; siderophiles show abundant Ni in lunar basalts, while Ir, Re, Ge, and Au are depleted.

  10. Earth, Air, Fire and Water in Our Elements

    ERIC Educational Resources Information Center

    Lievesley, Tara

    2007-01-01

    The idea that everything is made of the four "elements", earth, air, fire and water, goes back to the ancient Greeks. In this article, the author talks about the origins of ideas about the elements. The author provides an account that attempts to summarise thousands of years of theoretical development of the elements in a thousand words or so.

  11. Element specificity of ortho-positronium annihilation for alkali-metal loaded SiO{sub 2} glasses

    SciTech Connect

    Sato, K.; Hatta, T.

    2015-03-07

    Momentum distributions associated with ortho-positronium (o-Ps) pick-off annihilation photon are often influenced by light elements, as, e.g., carbon, oxygen, and fluorine. This phenomenon, so-called element specificity of o-Ps pick-off annihilation, has been utilized for studying the elemental environment around the open spaces. To gain an insight into the element specificity of o-Ps pick-off annihilation, the chemical shift of oxygen 1s binding energy and the momentum distributions associated with o-Ps pick-off annihilation were systematically investigated for alkali-metal loaded SiO{sub 2} glasses by means of X-ray photoelectron spectroscopy and positron-age-momentum correlation spectroscopy, respectively. Alkali metals introduced into the open spaces surrounded by oxygen atoms cause charge transfer from alkali metals to oxygen atoms, leading to the lower chemical shift for the oxygen 1s binding energy. The momentum distribution of o-Ps localized into the open spaces is found to be closely correlated with the oxygen 1s chemical shift. This correlation with the deepest 1s energy level evidences that the element specificity of o-Ps originates from pick-off annihilation with orbital electrons, i.e., dominantly with oxygen 2p valence electrons and s electrons with lower probability.

  12. Rare earth element association with foraminifera

    NASA Astrophysics Data System (ADS)

    Roberts, Natalie L.; Piotrowski, Alexander M.; Elderfield, Henry; Eglinton, Timothy I.; Lomas, Michael W.

    2012-10-01

    Neodymium isotopes are becoming widely used as a palaeoceanographic tool for reconstructing the source and flow direction of water masses. A new method using planktonic foraminifera which have not been chemically cleaned has proven to be a promising means of avoiding contamination of the deep ocean palaeoceanographic signal by detrital material. However, the exact mechanism by which the Nd isotope signal from bottom waters becomes associated with planktonic foraminifera, the spatial distribution of rare earth element (REE) concentrations within the shell, and the possible mobility of REE ions during changing redox conditions, have not been fully investigated. Here we present REE concentration and Nd isotope data from mixed species of planktonic foraminifera taken from plankton tows, sediment traps and a sediment core from the NW Atlantic. We used multiple geochemical techniques to evaluate how, where and when REEs become associated with planktonic foraminifera as they settle through the water column, reside at the surface and are buried in the sediment. Analyses of foraminifera shells from plankton tows and sediment traps between 200 and 2938 m water depth indicate that only ˜20% of their associated Nd is biogenically incorporated into the calcite structure. The remaining 80% is associated with authigenic metal oxides and organic matter, which form in the water column, and remain extraneous to the carbonate structure. Remineralisation of these organic and authigenic phases releases ions back into solution and creates new binding sites, allowing the Nd isotope ratio to undergo partial equilibration with the ambient seawater, as the foraminifera fall through the water column. Analyses of fossil foraminifera shells from sediment cores show that their REE concentrations increase by up to 10-fold at the sediment-water interface, and acquire an isotopic signature of bottom water. Adsorption and complexation of REE3+ ions between the inner layers of calcite contributes

  13. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides.

    PubMed

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao

    2016-02-01

    The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge. PMID:26650573

  14. Influence of alkaline earth metals on molecular structure of 3-nitrobenzoic acid in comparison with alkali metals effect

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Regulska, E.; Lewandowski, W.

    2011-11-01

    The influence of beryllium, magnesium, calcium, strontium and barium cations on the electronic system of 3-nitrobenzoic acid was studied in comparison with studied earlier alkali metal ions [1]. The vibrational FT-IR (in KBr and ATR techniques) and 1H and 13C NMR spectra were recorded for 3-nitrobenzoic acid and its salts. Characteristic shifts in IR and NMR spectra along 3-nitrobenzoates of divalent metal series Mg → Ba were compared with series of univalent metal Li → Cs salts. Good correlations between the wavenumbers of the vibrational bands in the IR spectra for 3-nitrobenzoates and ionic potential, electronegativity, inverse of atomic mass, atomic radius and ionization energy of metals were found for alkaline earth metals as well as for alkali metals. The density functional (DFT) hybrid method B3LYP with two basis sets: 6-311++G** and LANL2DZ were used to calculate optimized geometrical structures of studied compounds. The theoretical wavenumbers and intensities of IR spectra as well as chemical shifts in NMR spectra were obtained. Geometric aromaticity indices, atomic charges, dipole moments and energies were also calculated. The calculated parameters were compared to experimental characteristic of studied compounds.

  15. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution.

    PubMed

    Liu, Hu; Zhang, Shengen; Pan, Dean; Tian, Jianjun; Yang, Min; Wu, Maolin; Volinsky, Alex A

    2014-05-15

    This paper is a comparative study of recycling rare earth elements from waste phosphor, which focuses on the leaching rate and the technical principle. The traditional and dual dissolution by hydrochloric acid (DHA) methods were compared. The method of dual dissolution by hydrochloric acid has been developed. The Red rare earth phosphor (Y0.95Eu0.05)2O3 in waste phosphor is dissolved during the first step of acid leaching, while the Green phosphor (Ce0.67Tb0.33MgAl11O19) and the Blue phosphor (Ba0.9Eu0.1MgAl10O17) mixed with caustic soda are obtained by alkali sintering. The excess caustic soda and NaAlO2 are removed by washing. The insoluble matter is leached by the hydrochloric acid, followed by solvent extraction and precipitation (the DHA method). In comparison, the total leaching rate of the rare earth elements was 94.6% by DHA, which is much higher than 42.08% achieved by the traditional method. The leaching rate of Y, Eu, Ce and Tb reached 94.6%, 99.05%, 71.45%, and 76.22%, respectively. DHA can decrease the consumption of chemicals and energy. The suggested DHA method is feasible for industrial applications. PMID:24681591

  16. Rare earth elements in synthetic zircon. 1. synthesis, and rare earth element and phosphorus doping.

    SciTech Connect

    Hanchar, J. M.; Finch, R. J.; Hoskin, W. O.; Watson, E. B.; Cherniak, D. J.; Mariano, A. N.; Chemical Engineering; George Washington Univ.; Univ. of Canterbury; Australian National Univ.; Rensselaer Polytechnic Inst.

    2001-05-01

    Sedimentary mineral assemblages commonly contain detrital zircon crystals as part of the heavy-mineral fraction. Age spectra determined by U-Pb isotopic analysis of single zircon crystals within a sample may directly image the age composition--but not the chemical composition--of the source region. Rare earth element (REE) abundances have been measured for zircons from a range of common crustal igneous rock types from different tectonic environments, as well as kimberlite, carbonatite, and high-grade metamorphic rocks, to assess the potential of using zircon REE characteristics to infer the rock types present in sediment source regions. Except for zircon with probable mantle affinities, zircon REE abundances and normalized patterns show little intersample and intrasample variation. To evaluate the actual variation in detrital zircon REE composition in a true sediment of known mixed provenance, zircons from a sandstone sample from the Statfjord Formation (North Sea) were analyzed. Despite a provenance including high-grade metasediment and granitoids and a range in zircon age of 2.82 b.y., the zircon REEs exhibit a narrow abundance range with no systematic differences in pattern shape. These evidences show zircon REE patterns and abundances are generally not useful as indicators of provenance.

  17. Bioleaching of rare earth elements from monazite sand.

    PubMed

    Brisson, Vanessa L; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa

    2016-02-01

    Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance. PMID:26332985

  18. MaRGEE: Move and Rotate Google Earth Elements

    NASA Astrophysics Data System (ADS)

    Dordevic, Mladen M.; Whitmeyer, Steven J.

    2015-12-01

    Google Earth is recognized as a highly effective visualization tool for geospatial information. However, there remain serious limitations that have hindered its acceptance as a tool for research and education in the geosciences. One significant limitation is the inability to translate or rotate geometrical elements on the Google Earth virtual globe. Here we present a new JavaScript web application to "Move and Rotate Google Earth Elements" (MaRGEE). MaRGEE includes tools to simplify, translate, and rotate elements, add intermediate steps to a transposition, and batch process multiple transpositions. The transposition algorithm uses spherical geometry calculations, such as the haversine formula, to accurately reposition groups of points, paths, and polygons on the Google Earth globe without distortion. Due to the imminent deprecation of the Google Earth API and browser plugin, MaRGEE uses a Google Maps interface to facilitate and illustrate the transpositions. However, the inherent spatial distortions that result from the Google Maps Web Mercator projection are not apparent once the transposed elements are saved as a KML file and opened in Google Earth. Potential applications of the MaRGEE toolkit include tectonic reconstructions, the movements of glaciers or thrust sheets, and time-based animations of other large- and small-scale geologic processes.

  19. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  20. Adsorption of alkali and alkaline-earth metal atoms on the reconstructed graphene-like BN single sheet

    NASA Astrophysics Data System (ADS)

    Hao, Jun-Hua; Wang, Zheng-Jia; Wang, Yu-Fang; Yin, Yu-Hua; Jiang, Run; Jin, Qing-Hua

    2015-12-01

    A graphene-like BN single sheet with absorbed alkali and alkaline-earth metal atoms have been investigated by using a first-principles method within the framework of density functional theory (DFT). The electronic structure of BN sheet with adsorbed metal atoms is mainly determined by the metal electronic state which is near to the Fermi level owing to the wide band gap of pure BN sheet. So, we calculated the adsorption energy, charge transfer and work function after the metal adsorbed on BN sheet. We found that the interaction between the metal atoms and BN surface was very strong, and the stable adsorption site for all the adsorbed atoms concluded was high-coordination surface site (H-center) rather than the surface dangling bond sites from the perspective of simple bond-counting arguments. Our results indicate that the interaction of BN sheet with metal atoms could help in the development of metallic nanoscale devices.

  1. Dispersion coefficients for H and He interactions with alkali-metal and alkaline-earth-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2003-12-01

    The van der Waals coefficients C{sub 6}, C{sub 8}, and C{sub 10} for H and He interactions with the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are determined from oscillator strength sum rules. The oscillator strengths were computed using a combination of ab initio and semiempirical methods. The dispersion parameters generally agree with close to exact variational calculations for Li-H and Li-He at the 0.1% level of accuracy. For larger systems, there is agreement with relativistic many-body perturbation theory estimates of C{sub 6} at the 1% level. These validations for selected systems attest to the reliability of the present dispersion parameters. About half the present parameters lie within the recommended bounds of the Standard and Certain compilation [J. Chem. Phys. 83, 3002 (1985)].

  2. Modeling rammed earth wall using discrete element method

    NASA Astrophysics Data System (ADS)

    Bui, T.-T.; Bui, Q.-B.; Limam, A.; Morel, J.-C.

    2016-03-01

    Rammed earth is attracting renewed interest throughout the world thanks to its "green" characteristics in the context of sustainable development. Several research studies have thus recently been carried out to investigate this material. Some of them attempted to simulate the rammed earth's mechanical behavior by using analytical or numerical models. Most of these studies assumed that there was a perfect cohesion at the interface between earthen layers. This hypothesis proved to be acceptable for the case of vertical loading, but it could be questionable for horizontal loading. To address this problem, discrete element modeling seems to be relevant to simulate a rammed earth wall. To our knowledge, no research has been conducted thus far using discrete element modeling to study a rammed earth wall. This paper presents an assessment of the discrete element modeling's robustness for rammed earth walls. Firstly, a brief description of the discrete element modeling is presented. Then the parameters necessary for discrete element modeling of the material law of the earthen layers and their interfaces law following the Mohr-Coulomb model with a tension cut-off and post-peak softening were given. The relevance of the model and the material parameters were assessed by comparing them with experimental results from the literature. The results showed that, in the case of vertical loading, interfaces did not have an important effect. In the case of diagonal loading, model with interfaces produced better results. Interface characteristics can vary from 85 to 100% of the corresponding earthen layer's characteristics.

  3. Systematic variation of rare-earth elements in cerium-earth minerals

    USGS Publications Warehouse

    Murata, K.J.; Rose, H.J., Jr.; Carron, M.K.; Glass, J.J.

    1957-01-01

    In a continuation of a study reported previously, rare-earth elements and thorium have been determined in monazite, allanite, cerite, bastnaesite, and a number of miscellaneous cerium-earth minerals. A quantity called sigma (???), which is the sum of the atomic percentages of La, Ce, and Pr, is proposed as an index of composition of all cerium-earth minerals with respect to the rare-earth elements. The value of ??? for all of the minerals analysed falls between 58 and 92 atomic per cent. Monazites, allanites, and cerites cover the entire observed range, whereas bastnaesites are sharply restricted to the range between 80 and 92 atomic per cent. The minimum value of ??? for a cerium-earth mineral corresponds to the smallest possible unit-cell size of the mineral. In monazite, this structurally controlled minimum value of ??? is estimated to be around 30 atomic per cent. Neodymium, because of its abundance, and yttrium, because of its small size, have dominant roles in contraction of the structure. In the other direction, the limit of variation in composition will be reached when lanthanum becomes the sole rare-earth element in a cerium-earth mineral. Cerium-earth minerals from alkalic rocks are all characterized by values of ??? greater than 80 atomic per cent, indicating that the processes that formed these rocks were unusually efficient in fractionating the rare-earth elements-efficient in the sense that a highly selected assemblage is produced without eliminating the bulk of these elements. Analyses of inner and outer parts of two large crystals of monazite from different deposits show no difference in ??? in one crystal and a slightly smaller value of ??? in the outer part of the other crystal compared to the inner part. The ??? of monazites from pegmatites that intrude genetically related granitic rocks in North Carolina is found to be either higher or lower than the ??? of monazites in the intruded host rock. These results indicate that the fractionation of the

  4. Solid-phase epitaxy of silicon amorphized by implantation of the alkali elements rubidium and cesium

    SciTech Connect

    Maier, R.; Haeublein, V.; Ryssel, H.; Voellm, H.; Feili, D.; Seidel, H.; Frey, L.

    2012-11-06

    The redistribution of implanted Rb and Cs profiles in amorphous silicon during solid-phase epitaxial recrystallization has been investigated by Rutherford backscattering spectroscopy and secondary ion mass spectroscopy. For the implantation dose used in these experiments, the alkali atoms segregate at the a-Si/c-Si interface during annealing resulting in concentration peaks near the interface. In this way, the alkali atoms are moved towards the surface. Rutherford backscattering spectroscopy in ion channeling configuration was performed to measure average recrystallization rates of the amorphous silicon layers. Preliminary studies on the influence of the alkali atoms on the solid-phase epitaxial regrowth rate reveal a strong retardation compared to the intrinsic recrystallization rate.

  5. Magnetic Nanofluid Rare Earth Element Extraction Process Report, Techno Economic Analysis, and Results for Geothermal Fluids

    DOE Data Explorer

    Pete McGrail

    2016-03-14

    This GDR submission is an interim technical report and raw data files from the first year of testing on functionalized nanoparticles for rare earth element extraction from geothermal fluids. The report contains Rare Earth Element uptake results (percent removal, mg Rare Earth Element/gram of sorbent, distribution coefficient) for the elements of Neodymium, Europium, Yttrium, Dysprosium, and Cesium. A detailed techno economic analysis is also presented in the report for a scaled up geothermal rare earth element extraction process. All rare earth element uptake testing was done on simulated geothermal brines with one rare earth element in each brine. The rare earth element uptake testing was conducted at room temperature.

  6. Determination of thorium and of rare earth elements in cerium earth minerals and ores

    USGS Publications Warehouse

    Carron, M.K.; Skinner, D.L.; Stevens, R.E.

    1955-01-01

    The conventional oxalate method for precipitating thorium and the rare earth elements in acid solution exhibits definite solubilities of these elements. The present work was undertaken to establish conditions overcoming these solubilities and to find optimum conditions for precipitating thorium and the rare earth elements as hydroxides and sebacates. The investigations resulted in a reliable procedure applicable to samples in which the cerium group elements predominate. The oxalate precipitations are made from homogeneous solution at pH 2 by adding a prepared solution of anhydrous oxalic acid in methanol instead of the more expensive crystalline methyl oxalate. Calcium is added as a carrier. Quantitative precipitation of thorium and the rare earth elements is ascertained by further small additions of calcium to the supernatant liquid, until the added calcium precipitates as oxalate within 2 minutes. Calcium is removed by precipitating the hydroxides of thorium and rare earths at room temperature by adding ammonium hydroxide to pH > 10. Thorium is separated as the sebacate at pH 2.5, and the rare earths are precipitated with ammonium sebacate at pH 9. Maximum errors for combined weights of thorium and rare earth oxides on synthetic mixtures are ??0.6 mg. Maximum error for separated thoria is ??0.5 mg.

  7. Anthropogenic disturbance of element cycles at the Earth's surface.

    PubMed

    Sen, Indra S; Peucker-Ehrenbrink, Bernhard

    2012-08-21

    The extent to which humans are modifying Earth's surface chemistry can be quantified by comparing total anthropogenic element fluxes with their natural counterparts (Klee and Graedel, 2004). We quantify anthropogenic mass transfer of 77 elements from mining, fossil fuel burning, biomass burning, construction activities, and human apportionment of terrestrial net primary productivity, and compare it to natural mass transfer from terrestrial and marine net primary productivity, riverine dissolved and suspended matter fluxes to the ocean, soil erosion, eolian dust, sea-salt spray, cosmic dust, volcanic emissions, and for helium, hydrodynamic escape from the Earth's atmosphere. We introduce an approach to correct for losses during industrial processing of elements belonging to geochemically coherent groups, and explicitly incorporate uncertainties of element mass fluxes through Monte Carlo simulations. We find that at the Earth's surface anthropogenic fluxes of iridium, osmium, helium, gold, ruthenium, antimony, platinum, palladium, rhenium, rhodium and chromium currently exceed natural fluxes. For these elements mining is the major factor of anthropogenic influence, whereas petroleum burning strongly influences the surficial cycle of rhenium. Our assessment indicates that if anthropogenic contributions to soil erosion and eolian dust are considered, anthropogenic fluxes of up to 62 elements surpass their corresponding natural fluxes. PMID:22803636

  8. Structure, biodegradation behavior and cytotoxicity of alkali-containing alkaline-earth phosphosilicate glasses.

    PubMed

    Kansal, Ishu; Reddy, AlluAmarnath; Muñoz, Francisco; Choi, Seong-Jun; Kim, Hae-Won; Tulyaganov, Dilshat U; Ferreira, José M F

    2014-11-01

    We report on the effect of sodium on the structure, chemical degradation and bioactivity of glasses in the CaO-MgO-SiO2-P2O5-CaF2 system. The (29)Si and (31)P magic angle spinning-nuclear magnetic resonance spectroscopy of melt-quenched glasses with varying Na2O/MgO ratios exhibit a silicate glass network with the dominance of Q(2)(Si) units and phosphorus mainly forming orthophosphate species. Sodium incorporation in the glasses did not induce a significant structural change in the silicate network, while it did influence the phosphate environment due to its lower ionic field strength in comparison with that of magnesium. The apatite forming ability of glasses has been investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1h and 7 days while their chemical degradation has been studied in Tris-HCl in accordance with ISO-10993-14. Increasing Na(+)/Mg(2+) ratio caused a decrease in the chemical durability of glasses and in the apatite forming ability especially during initial steps of interaction between glass and SBF solution. The cellular responses were observed in vitro on bulk glass samples using mouse-derived pre-osteoblastic MC3T3-E1 cell line. The preliminary study suggested that the increasing alkali-concentration in glasses led to cytotoxicity in the cell culture medium. PMID:25280692

  9. Multi-objective optimization of chromatographic rare earth element separation.

    PubMed

    Knutson, Hans-Kristian; Holmqvist, Anders; Nilsson, Bernt

    2015-10-16

    The importance of rare earth elements in modern technological industry grows, and as a result the interest for developing separation processes increases. This work is a part of developing chromatography as a rare earth element processing method. Process optimization is an important step in process development, and there are several competing objectives that need to be considered in a chromatographic separation process. Most studies are limited to evaluating the two competing objectives productivity and yield, and studies of scenarios with tri-objective optimizations are scarce. Tri-objective optimizations are much needed when evaluating the chromatographic separation of rare earth elements due to the importance of product pool concentration along with productivity and yield as process objectives. In this work, a multi-objective optimization strategy considering productivity, yield and pool concentration is proposed. This was carried out in the frame of a model based optimization study on a batch chromatography separation of the rare earth elements samarium, europium and gadolinium. The findings from the multi-objective optimization were used to provide with a general strategy for achieving desirable operation points, resulting in a productivity ranging between 0.61 and 0.75 kgEu/mcolumn(3), h(-1) and a pool concentration between 0.52 and 0.79 kgEu/m(3), while maintaining a purity above 99% and never falling below an 80% yield for the main target component europium. PMID:26375205

  10. Experimental constraints on light elements in the Earth's outer core.

    PubMed

    Zhang, Youjun; Sekine, Toshimori; He, Hongliang; Yu, Yin; Liu, Fusheng; Zhang, Mingjian

    2016-01-01

    Earth's outer core is liquid and dominantly composed of iron and nickel (~5-10 wt%). Its density, however, is ~8% lower than that of liquid iron, and requires the presence of a significant amount of light element(s). A good way to specify the light element(s) is a direct comparison of density and sound velocity measurements between seismological data and those of possible candidate compositions at the core conditions. We report the sound velocity measurements of a model core composition in the Fe-Ni-Si system at the outer core conditions by shock-wave experiments. Combining with the previous studies, we found that the best estimate for the outer core's light elements is ~6 wt% Si, ~2 wt% S, and possible ~1-2.5 wt% O. This composition satisfies the requirements imposed by seismology, geochemistry, and some models of the early core formation. This finding may help us to further constrain the thermal structure of the Earth and the models of Earth's core formation. PMID:26932596

  11. Synthesis and structural determination of alkali and alkaline earth metal containing bismuth vanadates

    NASA Astrophysics Data System (ADS)

    Bliesner, Rebecca Jean

    Exploratory synthesis plays an important role in the quest to discover new materials. There are very few structurally characterized alkali metal containing bismuth vanadates. Hybridization of the 6s and 6p orbitals of Bi 3+ and the resulting lone electron pair yields some very interesting stereochemistry and steric related properties. Some of those properties include ferroelectricity, ferroelasticity, electronic and ionic conduction, superconductivity, nonlinear optical capabilities and selective catalysis. Systematic exploration of the Na-Bi-V ternary system produced a new phase of NaBi3V2O10. This material crystallizes in the P1¯ space group and the reported oxygen ion conductivity is apparently due to the presence of interstitial oxygen rather than oxygen vacancies. Stabilization of the tetragonal scheelite phase of BiVO4 has been achieved by the substitution of a M2+ for Bi3+ . This has not been accomplished previously by a M2+ cation substitution. The compound Ca0.29Bi0.71VO 3.855 crystallizes in the P4¯ space group. An investigation of the K-Bi-V ternary system resulted in the discovery of a new potassium vanadate. K10Bi4V4O 21 crystallizes in the P6¯ space group with a equal to 10.205(2)A and c equal to 7.669(2)A. Other new compounds prepared, for which structures have not been determined are alpha-Na3BiV2O8, beta-Na3BiV 2O8, K8Bi5V5O24, Rb2BiVO5, a rubidium compound with a 3:3:2 stoichiometric ratio of Rb:Bi:V, a rubidium compound with 2:1:1, a sodium compound with 2:1:1 and a lithium compound with a 1:1:1 stoichiometric ratio of Li:Bi:V.

  12. Coal fly ash as a resource for rare earth elements.

    PubMed

    Franus, Wojciech; Wiatros-Motyka, Małgorzata M; Wdowin, Magdalena

    2015-06-01

    Rare earth elements (REE) have been recognised as critical raw materials, crucial for many clean technologies. As the gap between their global demand and supply increases, the search for their alternative resources becomes more and more important, especially for the countries which depend highly on their import. Coal fly ash (CFA), which when not utilised is considered waste, has been regarded as the possible source of many elements, including REE. Due to the increase in the energy demand, CFA production is expected to grow, making research into the use of this material a necessity. As Poland is the second biggest coal consumer in the European Union, the authors have studied different coal fly ashes from ten Polish power plants for their rare earth element content. All the fly ashes have a broadly similar distribution of rear earth elements, with light REE being dominant. Most of the samples have REE content relatively high and according to Seredin and Dai (Int J Coal Geol 94: 67-93, 2012) classification can be considered promising REE raw materials. PMID:25613802

  13. CO2 gasification reactivity of biomass char: catalytic influence of alkali, alkaline earth and transition metal salts.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-09-01

    This study investigates the influence of alkali (Na, K), alkaline earth (Ca, Mg) and transition (Fe) metal nitrates on CO2 gasification reactivity of pistachio nut shell (PNS) char. The preliminary gasification experiments were performed in thermogravimetric analyzer (TGA) and the results showed considerable improvement in carbon conversion; Na-char>Ca-char>Fe-char>K-char>Mg-char>raw char. Based on TGA studies, NaNO3 (with loadings of 3-7 wt%) was selected as the superior catalyst for further gasification studies in bench-scale reactor; the highest reactivity was devoted to 5 wt% Na loaded char. The data acquired for gasification rate of catalyzed char were fitted with several kinetic models, among which, random pore model was adopted as the best model. Based on obtained gasification rate constant and using the Arrhenius plot, activation energy of 5 wt% Na loaded char was calculated as 151.46 kJ/mol which was 53 kJ/mol lower than that of un-catalyzed char. PMID:23880130

  14. Complexation of Donor-Acceptor Substituted Aza-Crowns with Alkali and Alkaline Earth Metal Cations. Charge Transfer and Recoordination in Excited State.

    PubMed

    Volchkov, Valery V; Gostev, Fedor E; Shelaev, Ivan V; Nadtochenko, Viktor A; Dmitrieva, Svetlana N; Gromov, Sergey P; Alfimov, Mikhail V; Melnikov, Mikhail Ya

    2016-03-01

    Complexation between two aza-15-crown-5 ethers bearing electron donor and acceptor fragments and alkali and alkaline earth perchlorates has been studied using absorption, steady-state fluorescence and femtosecond transient absorption spectroscopy. The spectral-luminescent parameters, the stability and dissociation constants of the complexes were calculated. The intramolecular charge transfer reaction takes place both in the excited state of the crowns and their complexes 1:1; the latter is subjected to photorecoordination resulting in a weakening or a complete disruption of coordination bond between nitrogen atom and metal cation, disposed within a cavity of the crown. The compounds investigated can be viewed as novel optical molecular sensors for alkali and alkaline-earth metal cations. The photoejection of a metal cation into the bulk was not observed. PMID:26670689

  15. Removal of Phosphorus in Metallurgical Silicon by Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Løvvik, Ole Martin; Safarian, Jafar; Ma, Xiang; Tangstad, Merete

    2014-09-01

    Removal of phosphorus in metallurgical silicon is one of the crucial steps for the production of solar grade Si feedstock. The possibility of doping rare earth elements for phosphorus removal has in this work been studied both theoretically and experimentally. Thermochemical properties of Ce, Nd, and Pr monophosphides have first been estimated by ab initio thermodynamic simulations based on density functional theory and the direct phonon method. The reliability of the first principles calculations was assessed by coupling with the phase diagram data of the Pr-P system. Equilibrium calculations confirmed the existence of stable rare earth monophosphides in solid silicon. Experimental investigations were then carried out, employing a high temperature resistance furnace. The Ce-doped silicon samples were examined by electron probe micro analyzer and inductively coupled plasma analysis. The efficiency of phosphorus removal by means of rare earth doping was discussed in detail in the paper.

  16. Contamination in the Rare-Earth Element Orthophosphate Reference Samples

    PubMed Central

    Donovan, John J.; Hanchar, John M.; Picolli, Phillip M.; Schrier, Marc D.; Boatner, Lynn A.; Jarosewich, Eugene

    2002-01-01

    Several of the fourteen rare-earth element (plus Sc and Y) orthophosphate standards grown at Oak Ridge National Laboratory in the 1980s and widely distributed by the Smithsonian Institution’s Department of Mineral Sciences, are significantly contaminated by Pb. The origin of this impurity is the Pb2P2O7 flux that is derived from the thermal decomposition of PbHPO4. The lead pyrophosphate flux is used to dissolve the oxide starting materials at elevated temperatures (≈1360 °C) prior to the crystal synthesis. Because these rare-earth element standards are extremely stable under the electron beam and considered homogenous, they have been of enormous value to electron probe micro-analysis (EPMA). The monoclinic, monazite structure, orthophosphates show a higher degree of Pb incorporation than the tetragonal xenotime structure, orthophosphates. This paper will attempt to describe and rationalize the extent of the Pb contamination in these otherwise excellent materials.

  17. The History and Use of Our Earth's Chemical Elements: A Reference Guide (by Robert E. Krebs)

    NASA Astrophysics Data System (ADS)

    Bracken, Reviewed By Jeffrey D.

    1999-04-01

    Greenwood Press: Westport, CT, 1998. 282 pp + 25 pp glossary + 37 pp index. 15.9 x 24.1 cm. ISBN 0-313-30123-9. $39.95. This book is an excellent resource for chemical educators at the high school and college levels. The format of the text is consistent and the writing style is clear and concise, making it ideally suited for student use also. The first three chapters serve to introduce the reader to a brief history of chemistry, early models of the atom, and the development of the periodic table. Names of the contributing scientists are mentioned whenever necessary, but the overall purpose of these introductory chapters is simply to lay a foundation for the subsequent seven chapters. A complete glossary of important scientific terms mentioned in the text should allow beginning students to use this book without feeling overwhelmed. Each entry for the 112 elements contains the following information: elemental symbol, atomic number, period, common valence, atomic weight, natural state, common isotopes, properties, characteristics, abundance, natural sources, history, common uses and compounds, and safety hazards. This information is well organized, with clear headings and separate sections making the book extremely user-friendly. Readers can easily obtain the information they desire without having to skim the full entry for a chosen element. One very nice feature of this book is that the elements entries are arranged by their locations in the periodic table. For example, chapter 4 contains the alkali metals and alkaline earth metals. This organizational scheme allows one to quickly see the patterns and trends within groups of elements. This format is significantly better than arranging the elements in alphabetical order, which places the entry for sodium far removed from the entries for lithium and potassium. I would highly recommend this book to high school teachers and college chemistry professors. It is well written and is an excellent source of information for

  18. Alkali-phosphate common-ion system for synthesis of rare-earth orthophosphates

    NASA Astrophysics Data System (ADS)

    Uhrin, Robert

    Rare-earth orthophosphate crystals are interesting materials for many optical applications, because their physical properties often exceed those of currently used materials. In particular, Ce:LuPO4 is useful for positron emission tomography (PET). The most important reason why this and other rare-earth orthophosphate crystals haven't been commercialized is the absence of large crystals suitable for devices. The greatest impediment is the lack of a suitable crystal growth process. A Pb2P2 O7 solution has been used for many years to produce a complete series of lanthanide orthophosphate crystals, but this solution raises some serious environmental concerns. In addition, large crystals of a reproducible size and quality that are required for device fabrication do not result, and the crystals tend to be platy. It is generally known that a change in solution acidity or basicity affects the habit of grown crystals. Consequently, it was theorized that a potassium-based system (i. e. more basic) would result in equiaxed crystals, and such a system has been investigated in an effort to obtain a partial phase diagram for the KPO3- Lu2O 3 pseudo-binary system. Various techniques were employed to confirm a molten solution composition from which crystals can be grown. LuPO4 crystals were produced from solutions with different K2O/P2O5 ratios and varied Lu2O3 concentrations. This provided information on the preferred composition range for single phase LuPO4, as well as the solid phases expected within the range of compositions that was studied. X-ray diffraction (XRD) analysis provided a useful tool to identify the solid phases. Powder synthesis with subsequent XRD analysis was also utilized in some cases, since numerous single and mixed phosphate compounds are possible and a complete set of diffraction files is not available. Knowledge of the cerium concentration is also required in the case of Ce:LuPO4, so a K2O-CeO2-Lu2O3-P2O 5 glass was developed. Samples containing varied

  19. Uncovering the Global Life Cycles of the Rare Earth Elements

    PubMed Central

    Du, Xiaoyue; Graedel, T. E.

    2011-01-01

    The rare earth elements (REE) are a group of fifteen elements with unique properties that make them indispensable for a wide variety of emerging, critical technologies. Knowledge of the life cycles of REE remains sparse, despite the current heightened interest in their future availability. Mining is heavily concentrated in China, whose monopoly position and potential restriction of exports render primary supplies vulnerable to short and long-term disruption. To provide an improved perspective we derived the first quantitative life cycles (for the year 2007) for ten REE: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), and yttrium (Y). Of these REE, Ce and Nd in-use stocks are highest; the in-use stocks of most REE show significant accumulation in modern society. Industrial scrap recycling occurs only from magnet manufacture. We believe there is no post-customer recycling of any of these elements. PMID:22355662

  20. Binding in alkali and alkaline-earth tetrahydroborates: Special position of magnesium tetrahydroborate

    NASA Astrophysics Data System (ADS)

    Łodziana, Zbigniew; van Setten, Michiel J.

    2010-01-01

    Compounds of light elements and hydrogen are currently extensively studied due to their potential application in the field of hydrogen or energy storage. A number of new interesting tetrahydroborates that are especially promising due to their very high gravimetric hydrogen content were recently reported. However, the determination and understanding of their complex crystalline structures has created considerable debate. Metal tetrahydroborates, in general, form a large variety of structures ranging from simple for NaBH4 to very complex for Mg(BH4)2 . Despite the extensive discussion in the literature no clear explanation has been offered for this variety so far. In this paper we analyze the structural and electronic properties of a broad range of metal tetrahydroborates and reveal the factors that determine their structure: ionic bonding, the orientation of the BH4 groups, and the coordination number of the metal cation. We show, in a simple way, that the charge transfer in the metal tetrahydroborates rationally explains the structural diversity of these compounds. Being ionic systems, the metal tetrahydroborates fall into the classification of Linus Pauling. By using the ionic radius for the BH4 group as determined in this paper, this allows for structural predictions for new and mixed compounds.

  1. Anthropogenic Disturbance of Element Cycles at the Earth's Surface

    NASA Astrophysics Data System (ADS)

    Sen, I. S.; Peucker-Ehrenbrink, B.

    2012-12-01

    The extent to which humans are modifying Earth's surface chemistry can be quantified by comparing total anthropogenic element fluxes with their natural counterparts [1]. We determine anthropogenic mass transfer of 77 elements from mining, fossil fuel burning, biomass burning, construction activities, and human apportionment of terrestrial net primary productivity, and compared it to natural mass transfer from terrestrial and marine net primary productivity, riverine dissolved and suspended matter fluxes to the ocean, soil erosion, eolian dust, sea-salt spray, cosmic dust, volcanic emissions and - for helium - hydrodynamic escape from the Earth's atmosphere. In addition, we introduce an approach to correct for losses during industrial processing of elements belonging to geochemically coherent groups, and explicitly incorporated uncertainties of element mass fluxes through Monte Carlo simulations [2]. Our assessment indicates that anthropogenic fluxes of iridium, osmium, helium, gold, ruthenium, antimony, platinum, palladium, rhenium, rhodium and chromium are greater than the respective natural fluxes. For these elements mining is the major factor of human dominance, whereas petroleum burning strongly influence the surficial cycle of rhenium. Apart from these 11 elements there are 15 additional elements whose anthropogenic fluxes may surpass their corresponding natural fluxes. Anthropogenic fluxes of the remaining elements are smaller than their corresponding natural fluxes although a significant human influence is observed for all of them. For example, ~20% of the annual fluxes of C, N, and P can be attributed to human activities. Such disturbances, though small compared with natural fluxes, can significantly alter concentrations in near-surface reservoirs and affect ecosystems if they are sustained over time scales similar to or longer than the residence time of elements in the respective reservoir. Examples are the continuing input of CO2 to the atmosphere that

  2. The Earth Based Ground Stations Element of the Lunar Program

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Fatig, Curtis; Schier, James; Lee, Charles

    2007-01-01

    The Lunar Architecture Team (LAT) is responsible for developing a concept for building and supporting a lunar outpost with several exploration capabilities such as rovers, colonization, and observatories. The lunar outpost is planned to be located at the Moon's South Pole. The LAT Communications and Navigation Team (C&N) is responsible for defining the network infrastructure to support the lunar outpost. The following elements are needed to support lunar outpost activities: A Lunar surface network based on industry standard wireless 802.xx protocols, relay satellites positioned 180 degrees apart to provide South Pole coverage for the half of the lunar 28-day orbit that is obscured from Earth view, earth-based ground stations deployed at geographical locations 120 degrees apart. This paper will focus on the Earth ground stations of the lunar architecture. Two types of ground station networks are discussed. One provides Direct to Earth (DTE) support to lunar users using Kaband 23/26Giga-Hertz (GHz) communication frequencies. The second supports the Lunar Relay Satellite (LRS) that will be using Ka-band 40/37GHz (Q-band). This paper will discuss strategies to provide a robust operational network in support of various lunar missions and trades of building new antennas at non-NASA facilities, to improve coverage and provide site diversification for handling rain attenuation.

  3. Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bo, Xu; Huan-Sheng, Lu; Bo, Liu; Gang, Liu; Mu-Sheng, Wu; Chuying, Ouyang

    2016-06-01

    The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory. Silicane is staler against the metal adatoms than silicene. Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene. Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed. However, the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate. Combining the adsorption energy with the diffusion energy barriers, it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage. In order to avoid forming a metal cluster, we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane. Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials. Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20152ACB21014, 20151BAB202006, and 20142BAB212002) and the Fund from the Jiangxi Provincial Educational Committee, China (Grant No. GJJ14254). Bo Xu is also supported by the Oversea Returned Project from the Ministry of Education, China.

  4. Assessing rare earth elements in quartz rich geological samples.

    PubMed

    Santoro, A; Thoss, V; Guevara, S Ribeiro; Urgast, D; Raab, A; Mastrolitti, S; Feldmann, J

    2016-01-01

    Sodium peroxide (Na2O2) fusion coupled to Inductively Coupled Plasma Tandem Mass Spectrometry (ICP-MS/MS) measurements was used to rapidly screen quartz-rich geological samples for rare earth element (REE) content. The method accuracy was checked with a geological reference material and Instrumental Neutron Activation Analysis (INAA) measurements. The used mass-mode combinations presented accurate results (only exception being (157)Gd in He gas mode) with recovery of the geological reference material QLO-1 between 80% and 98% (lower values for Lu, Nd and Sm) and in general comparable to INAA measurements. Low limits of detection for all elements were achieved, generally below 10 pg g(-1), as well as measurement repeatability below 15%. Overall, the Na2O2/ICP-MS/MS method proved to be a suitable lab-based method to quickly and accurately screen rock samples originating from quartz-rich geological areas for rare earth element content; particularly useful if checking commercial viability. PMID:26595776

  5. Germanium and Rare Earth Element accumulation in woody bioenergy crops

    NASA Astrophysics Data System (ADS)

    Hentschel, Werner

    2016-04-01

    Germanium and REEs are strategic elements that are used for high tech devices and engineered systems, however these elements are hardly concentrated into mineable ore deposits. Since these elements occur widely dispersed in the earth crust with concentrations of several mgṡkg‑1 (Ge 1.6 mgṡkg‑1, Nd 25 mgṡkg‑1) a new possibility to gain these elements could be phytomining, a technique that uses plants to extract elements from soils via their roots. Since knowledge about accumulating plant species is quite limited we conducted research on the concentrations of strategic elements in wood and leaves of fast growing tree species (Salix spec., Populus spec., Betula pendula, Alnus glutinosa, Fraxinus excelsior, Acer pseudoplatanus). In total 35 study sites were selected in the mining affected area around Freiberg (Saxony, Germany), differing in their species composition and degree of contamination with toxic trace metals (Pb, As, Cd). On each site plant tissues (wood and leaves, respectively) of different species were sampled. In addition soil samples were taken from a soil depth of 0 - 30 cm and 30 - 60 cm. The aim of our work was to investigate correlations between the concentrations of the target elements in plant tissues and soil characteristics like pH, texture, nutrients and concentrations in six operationally defined soil fractions (mobile, acid soluble, oxidizable, amorphic oxides, crystalline oxides, residual or siliceous). Concentrations of elements in soil extracts and plant tissues were measured with ICP-MS. The element Nd was selected as representative for the group of REEs, since this element showed a high correlation with the concentrations of the other REE We found that the concentration of Nd in the leaves (0.31 mgṡkg‑1Nd) were several times higher than in herbaceous species (0.05 mgṡkg‑1 Nd). The concentration of Ge in leaves were ten times lower than that of Nd whereas in herbaceous species Nd and Ge were in equal magnitude. Within

  6. Natural radioactivity and rare earth elements in feldspar samples, Central Eastern desert, Egypt.

    PubMed

    Walley El-Dine, Nadia; El-Shershaby, Amal; Afifi, Sofia; Sroor, Amany; Samir, Eman

    2011-05-01

    The pegmatite bodies of the Eastern Desert of Egypt are widely distributed especially along the Marsa-Alam-Idfu road. The Abu Dob area covers about 150km(2) of the Arabian Nubian shield at the central part of the Eastern Desert of Egypt. Most of the pegmatite is zoned; the zonation starts with milky quartz at the core followed by alkali feldspar at the margins. The feldspars vary in color from rose to milky and in composition from K-feldspar to Na-feldspar, sometimes interactions of both types are encountered. Thirteen feldspar samples were collected from different locations in the Abu Dob area for measuring the natural radioactivity of (238)U, (232)Th and (40)K using an HPGe detector. The variation in concentration of radionuclides for the area under investigation can be classified into regions of high, medium and low natural radioactivity. The average concentration in BqKg(-1) has been observed to be from 9.5 to 183675.7BqKg(-1) for (238)U, between 6.1 and 94,314.2BqKg(-1) for (232)Th and from 0 to 7894.6BqKg(-1) for (40)K. Radium equivalent activities (Ra(eq)), dose rate (D(R)) and external hazard (H(ex)) have also been determined. In the present work, the concentration of rare earth elements are measured for two feldspar samples using two techniques, Environmental Scanning Electron microscope XIL 30 ESEM, Philips, and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The existence of rare earth elements in this area are very high and can be used in different important industries. PMID:21324705

  7. Compositional and phase relations among rare earth element minerals

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    A review is presented that mainly treats minerals in which the rare-earth elements are essential constituents, e.g., bastnaesite, monazite, xenotime, aeschynite, allanite. The chemical mechanisms and limits of REE substitution in some rock-forming minerals (zircon, apatite, titanite, garnet) are also derived. Vector representation of complex coupled substitutions in selected REE-bearing minerals is examined and some comments on REE-partitioning between minerals as related to acid-based tendencies and mineral stabilities are presented. As the same or analogous coupled substitutions involving the REE occur in a wide variety of mineral structures, they are discussed together.

  8. Rare earth element patterns in biotite, muscovite and tourmaline minerals

    SciTech Connect

    Laul, J.C.; Lepel, E.A.

    1986-04-21

    Rare earth element concentrations in the minerals biotite and muscovite from the mica schist country rocks of the Etta pegmatite and tourmalines from the Bob Ingersoll pegmatite have been measured by INAA and CNAA. The concentrations range from 10/sup -4/ g/g to 10/sup -10g//sub g/. The REE patterns of biotite, muscovite and tourmaline reported herein are highly fractionated from light to heavy REE. The REE concentrations in biotite and muscovite are high and indigenous. The pegmatite tourmalines contain low concentrations of REE. Variations in tourmaline REE patterns reflect the geochemical evolution of pegmatite melt/fluid system during crystallization.

  9. Rare earth element content of cryptocrystalline magnesites of Konya, Turkey

    NASA Astrophysics Data System (ADS)

    Zedef, Veysel; Russell, Michael

    2016-04-01

    We examined the rare earth element content of several cryptocrystalline magnesites as well as hydromagnesite, host rock serpentinites, lake water and hot spring water from Turkey. Southwestern Turkey hosts cryptocrystalline magnesites, sedimentary magnesites with presently forming, biologically mediated hydromagnesites and travertines. Our results show the REE content of the minerals, rocks and waters are well below detection limits. One hydromagnesite sample from Lake Salda has slightly high La (2.38ppb), Ce (3.91 ppb) and Nd (1.68 ppb) when compared to other samples, but these are also still below detection limits of the method we followed.

  10. Separation of alkali, alkaline earth and rare earth cations by liquid membranes containing macrocyclic carriers. Third progress report, September 1, 1980-April 1, 1981

    SciTech Connect

    Christensen, J.J.

    1981-04-15

    The overall objective of this project is to study the use of liquid membrane systems employing macrocyclic ligand carriers in making separations among metal cations. During the third year of the project, work continued in the development of a mathematical model to describe cation transport. The model was originally developed to describe the relationship between cation transport rate (J/sub M/) and the cation-macrocycle stability constant (K). The model was tested by determining the rates of transport of alkali and alkaline earth cations through chloroform membranes containing carrier ligands where the stability constants for their reaction with cations in methanol were known. From the results, it is clear that the model correctly describes the dependence of J/sub M/ on log K. The model also correctly describes the effect of cation concentration and carrier concentration on cation transport rates, as detailed in the previous progress report. During the third year of the project, the transport model was expanded so as to apply to competitive transport of cations from mixtures of two cations in the source aqueous phase. Data were collected under these conditions and the ability of the model to predict the flux of each cation was tested. Representative data of this type are presented along with corresponding data which were obtained when each cation was transported by the same carrier from a source phase containing only that cation. Comparison of transport rates determined under the two experimental conditions indicates that the relationship between the two sets of data is complex. To date, a few of these data involving transport from binary cation mixtures have been tested against the transport model. It was found that the model correctly predicts the cation fluxes from cation mixtures. These preliminary results indicate that the transport model can successfully predict separation factors when cation mixtures are used.

  11. Standard reference water samples for rare earth element determinations

    USGS Publications Warehouse

    Verplanck, P.L.; Antweiler, R.C.; Nordstrom, D.K.; Taylor, H.E.

    2001-01-01

    Standard reference water samples (SRWS) were collected from two mine sites, one near Ophir, CO, USA and the other near Redding, CA, USA. The samples were filtered, preserved, and analyzed for rare earth element (REE) concentrations (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) by inductively coupled plasma-mass spectrometry (ICP-MS). These two samples were acid mine waters with elevated concentrations of REEs (0.45-161 ??g/1). Seventeen international laboratories participated in a 'round-robin' chemical analysis program, which made it possible to evaluate the data by robust statistical procedures that are insensitive to outliers. The resulting most probable values are reported. Ten to 15 of the participants also reported values for Ba, Y, and Sc. Field parameters, major ion, and other trace element concentrations, not subject to statistical evaluation, are provided.

  12. Mineralogical, chemical composition and distribution of rare earth elements in clay-rich sediments from Southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Odoma, A. N.; Obaje, N. G.; Omada, J. I.; Idakwo, S. O.; Erbacher, J.

    2015-02-01

    Cretaceous claystone sediments from Enugu, Southeastern, Nigeria were analyzed for their mineralogy and chemistry. Major minerals are quartz and kaolinite while montmorillonite is in minor quantity. The sediments are silica-rich, but showed low values of Al, Fe, Sc and Cr. The values of the chemical index of alteration (CIA) ranged from 89.9 to 94.5 and the values of chemical index of weathering (CIW) ranged from 95.1 to 98.9. Low contents of the alkali and alkali earth elements (Na, K, Mg, Al, Ca) of the clay-rich sediments suggest a relatively more intense weathering of source area. Depleted Ba, Rb, Ca, and Mg suggest that they were probably flushed out by water during sedimentation. The mineralogical composition, REE contents, and elemental ratios in the sediments suggest a provenance from mainly felsic rocks, with only minor contributions from basic sources. Despite intense weathering the REE, Th, and Sc remained in the clays suggesting that they were immobile.

  13. Mimicking the magnetic properties of rare earth elements using superatoms.

    PubMed

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A W

    2015-04-21

    Rare earth elements (REs) consist of a very important group in the periodic table that is vital to many modern technologies. The mining process, however, is extremely damaging to the environment, making them low yield and very expensive. Therefore, mimicking the properties of REs in a superatom framework is especially valuable but at the same time, technically challenging and requiring advanced concepts about manipulating properties of atom/molecular complexes. Herein, by using photoelectron imaging spectroscopy, we provide original idea and direct experimental evidence that chosen boron-doped clusters could mimic the magnetic characteristics of REs. Specifically, the neutral LaB and NdB clusters are found to have similar unpaired electrons and magnetic moments as their isovalent REs (namely Nd and Eu, respectively), opening up the great possibility in accomplishing rare earth mimicry. Extension of the superatom concept into the rare earth group not only further shows the power and advance of this concept but also, will stimulate more efforts to explore new superatomic clusters to mimic the chemistry of these heavy atoms, which will be of great importance in designing novel building blocks in the application of cluster-assembled nanomaterials. Additionally, based on these experimental findings, a novel "magic boron" counting rule is proposed to estimate the numbers of unpaired electrons in diatomic LnB clusters. PMID:25848014

  14. Mimicking the magnetic properties of rare earth elements using superatoms

    PubMed Central

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A. W.

    2015-01-01

    Rare earth elements (REs) consist of a very important group in the periodic table that is vital to many modern technologies. The mining process, however, is extremely damaging to the environment, making them low yield and very expensive. Therefore, mimicking the properties of REs in a superatom framework is especially valuable but at the same time, technically challenging and requiring advanced concepts about manipulating properties of atom/molecular complexes. Herein, by using photoelectron imaging spectroscopy, we provide original idea and direct experimental evidence that chosen boron-doped clusters could mimic the magnetic characteristics of REs. Specifically, the neutral LaB and NdB clusters are found to have similar unpaired electrons and magnetic moments as their isovalent REs (namely Nd and Eu, respectively), opening up the great possibility in accomplishing rare earth mimicry. Extension of the superatom concept into the rare earth group not only further shows the power and advance of this concept but also, will stimulate more efforts to explore new superatomic clusters to mimic the chemistry of these heavy atoms, which will be of great importance in designing novel building blocks in the application of cluster-assembled nanomaterials. Additionally, based on these experimental findings, a novel “magic boron” counting rule is proposed to estimate the numbers of unpaired electrons in diatomic LnB clusters. PMID:25848014

  15. Bacterial Cell Surface Adsorption of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  16. Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.

    PubMed

    Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B; Cohen, Serge X; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc

    2014-01-01

    The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies. PMID:24489809

  17. Trace Elemental Imaging of Rare Earth Elements Discriminates Tissues at Microscale in Flat Fossils

    PubMed Central

    Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B.; Cohen, Serge X.; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc

    2014-01-01

    The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies. PMID:24489809

  18. Removal of toxic and alkali/alkaline earth metals during co-thermal treatment of two types of MSWI fly ashes in China.

    PubMed

    Yu, Jie; Qiao, Yu; Jin, Limei; Ma, Chuan; Paterson, Nigel; Sun, Lushi

    2015-12-01

    This study aims to vaporize heavy metals and alkali/alkaline earth metals from two different types of fly ashes by thermal treatment method. Fly ash from a fluidized bed incinerator (HK fly ash) was mixed with one from a grate incinerator (HS fly ash) in various proportions and thermally treated under different temperatures. The melting of HS fly ash was avoided when treated with HK fly ash. Alkali/alkaline earth metals in HS fly ash served as Cl-donors to promote the vaporization of heavy metals during thermal treatment. With temperature increasing from 800 to 900°C, significant amounts of Cl, Na and K were vaporized. Up to 1000°C in air, less than 3% of Cl and Na and less than 5% of K were retained in ash. Under all conditions, Cd can be vaporized effectively. The vaporization of Pb was mildly improved when treated with HS fly ash, while the effect became less pronounced above 900°C. Alkali/alkaline earth metals can promote Cu vaporization by forming copper chlorides. Comparatively, Zn vaporization was low and only slightly improved by HS fly ash. The low vaporization of Zn could be caused by the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4. Under all conditions, less than 20% of Cr was vaporized. In a reductive atmosphere, the vaporization of Cd and Pb were as high as that in oxidative atmosphere. However, the vaporization of Zn was accelerated and that of Cu was hindered because the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4 and copper chloride was depressed in reductive atmosphere. PMID:26303652

  19. Effect of SiO2 and Al2O3 addition on the density, Tg and CTE of mixed alkali - alkaline earth borate glass

    NASA Astrophysics Data System (ADS)

    Deshpande, A. M.; Deshpande, V. K.

    2009-07-01

    Mixed alkali — alkaline earth borate glasses, with the addition of silica and alumina, have been studied for their density, Tg and CTE with a view of exploring the applicability of these glasses in glass to metal sealing applications. It has been observed that silica addition results in an increase in density and Tg while the alumina addition decreases the density and Tg. The variation in CTE exhibits minima with the addition of both, silica and alumina. An attempt is made here to explain the observed variations in the properties on the basis of different mass of the additives, number of non bridging oxygens (NBOs) and other changes in the glass network.

  20. Alkali element enrichments on the BABBs at the IODP Expedition 333 Site C0012 in the northern Shikoku Basin

    NASA Astrophysics Data System (ADS)

    Haraguchi, S.; Nakamura, K.; Fujinaga, K.

    2015-12-01

    The Shikoku Basin is a back arc basin located westside of the Izu-Ogasawara (Bonin) arc, spreading was from 25 to 15 Ma. The drilling of the DSDP, ODP and IODP recovered the backarc basin basalt (BABB) of the Shikoku Basin. Site C0012, south of the Kii Peninsula, was operated during the IODP Exp 333, and BABB was recovered 100m thickness under the 520m of sediment. This BABB is divided into upper aphyric pillow (Unit 1) and lower massive flow (Unit 2) divided at the 560 mbsf, and show variable degree of alteration, clay mineral and zeolite depositions. SiO2 and MgO contents of these basalts are 47-55 and 5-8 wt%. These basalts show wide variation of enrichment of alkali elements, 2.3-7.5 and 0.4-4.2 wt% of Na2O and K2O. Na2O+K2O contents show 3.2-8.0 wt%, and 2 wt% higher trends than other BABBs in the Shikoku Basin at the same SiO2 contents. Na2O and K2O show proportional and anti-proportional trends with increasing LOI. Therefore, both alkali element enrichments in these rocks are caused by secondary mineralization, and host phase of Na2O is hydrous and that of K2O is anhydrous minerals. Secondary mineral phases was mainly identified by XRD. The identified host phases of Na are analcime and thomsonite. Analcime is observed in rocks of more than 4 wt% of Na2O. Chlorite and smectite are identified to clay minerals. This mineral assemblage indicates the high-temperature zeolite facies alteration. The host phases of K are mainly identified into K-feldspar. We assume that secondary mineralization of K-fd is associated with low-temperature albitization. Compared to the lithostratigraphy, the Na enrichment is prominent in the Unit 1 and upper 20 m of the Unit 2, and the K enrichment is prominent in lower part of the Unit 2. We consider that the Na enrichment associated with zeolite depositions occurred under high water/rock ratio with active hydrothermal circulation because of high water permeability of pillow lava, and K enrichment associated with albitization occurred

  1. The elements of the Earth's magnetism and their secular changes between 1550 and 1915

    NASA Technical Reports Server (NTRS)

    Fritsche, H.

    1983-01-01

    The results of an investigation about the magnetic agents outside the Earth's surface as well as the Earth's magnetic elements for the epochs 1550, 1900, 1915 are presented. The secular changes of the Earth's magnetic elements during the time interval 1550 - 1900 are also included.

  2. Lunar Volatiles: An Earth-Moon Perspective

    NASA Technical Reports Server (NTRS)

    Jones, John H.

    2011-01-01

    It has generally been accepted that the Moon is depleted in volatile elements. However, the recent discovery of measurable water in lunar glasses and apatites suggests that volatiles are not as depleted as was once thought. And, in fact, some authors have claimed that water contents of the lunar and terrestrial mantles are similar. Moderately volatile alkali elements may have a bearing on this issue. In general, bulk Moon alkalis are depleted relative to the bulk silicate Earth. Although the bulk lunar chemical composition is difficult to reconstruct, good correlations of alkali elements with refractory lithophile incompatible trace elements make this conclusion robust. These observations have been taken to mean that the Moon overall is depleted in volatiles relative to the Earth. Since water is more volatile than any of the alkali elements, presumably this conclusion is true for water, or even more so.

  3. Core-Mantle Partitioning of Volatile Elements and the Origin of Volatile Elements in Earth and Moon

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L.; Nickodem, K.

    2014-01-01

    Depletions of siderophile elements in mantles have placed constraints on the conditions on core segregation and differentiation in bodies such as Earth, Earth's Moon, Mars, and asteroid 4 Vesta. Among the siderophile elements there are a sub-set that are also volatile (volatile siderophile elements or VSE; Ga, Ge, In, As, Sb, Sn, Bi, Zn, Cu, Cd), and thus can help to constrain the origin of volatile elements in these bodies, and in particular the Earth and Moon. One of the fundamental observations of the geochemistry of the Moon is the overall depletion of volatile elements relative to the Earth, but a satisfactory explanation has remained elusive. Hypotheses for Earth include addition during accretion and core formation and mobilized into the metallic core, multiple stage origin, or addition after the core formed. Any explanation for volatile elements in the Earth's mantle must also be linked to an explanation of these elements in the lunar mantle. New metal-silicate partitioning data will be applied to the origin of volatile elements in both the Earth and Moon, and will evaluate theories for exogenous versus endogenous origin of volatile elements.

  4. Elemental processes of transport and energy conversion in Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Angelopoulos, Vassilis

    In the last 5 years observations from several missions and ground based observatories have honed in on the most elemental aspects of flux transport and energy conversion. Dipolarization fronts and their counterpart in the distant magnetotail "anti-dipolarization" fronts, which together are refered to herein as "reconnection fronts", usher the recently reconnected flux tubes from the near-Earth X-points and in the process convert magnetic energy to particle energy and wave radiation. On the tailward side they are responsible for plasmoid formation and acceleration. On the earthward side they result in elemental substorm current wedges or wedglets, which were initially postulated from ground observations alone. Recent observations have revealed how the interaction of wedgelets and the inner magnetosphere takes place. Questions remain with regards to the physics of the energy transfer process from global magnetic energy to local heating and waves, and with regards to the initiation of the X-point activations in space. Observations indicate that the latter may be induced by polar cap or dayside activity, suggesting a direct link between dayside reconnection and nightside phenomena. The likely causal sequence of events and open questions in light of these recent observations, and the field's outlook in anticipation of upcoming coordinated observations from the international Heliophysics System Observatory will be discussed.

  5. Reducing the detection limits of rare earth elements in steels

    SciTech Connect

    Raskevich, V.K.; Maiboroda, I.K.; Frishberg, A.A.; Panfilova, S.Ya.

    1986-12-01

    Chemical and chemicospectral analysis methods make it possible to determine rare-earth elements (REE) reliably in steels, but they are time-consuming and laborious. X-ray fluorescence methods are also characterized by the complicated procedure of preparing standard and production specimens for analysis. In this paper, the authors attempt to develop a spectrographic method of determining the REEs in the steel using standard equipment. The authors prepare synthetic standard specimens for determining Ce, Nd, La, Pr, and Y in steels of various grades by adding titrated solutions of the salts of the determined elements to the powder of the steel without REE with subsequent evaporation, drying, and mixing. The steels were ground by the mechanical method. On the basis of the resulting detection limits and analysis accuracy, the proposed method can be recommended for inspection of the technological process in melting steels and for preparation of standard specimens in the plant. The method is 5-7 times faster than the chemicospectral method.

  6. Alkali metal, alkaline earth metal, and ammonium ion selectivities of dibenzo-16-crown-5 compounds with functional side arms in ion-selective electrodes

    SciTech Connect

    Ohki, Akira; Lu, J.P.; Huang, X.; Bartsch, R.A. )

    1994-12-01

    Potentiometric selectivities of 11 dibenzo-16-crown-5 compounds for alkali metal, alkaline earth metal, and ammonium ions have been determined in solvent polymeric membrane electrodes. The ionophores bear one or two pendent groups on the central carbon of the three-carbon bridge in the polyether ring. Side-arm variation includes OCH[sub 3], OCH[sub 2]CH[sub 2]OCH[sub 3], OCH[sub 2]CO[sub 2]C[sub 2]H[sub 5], OCH[sub 2]C(O)N(C[sub 2]H[sub 5])[sub 2], and OCH[sub 2]C(O)N(C[sub 5]H[sub 11])[sub 2] units. Attachment of a propyl group to the ring carbon that bears an extended, oxygen-containing side arm increases the selectivity for Na[sup +] relative to larger alkali metal and alkaline earth metal cations. For a given side arm, a linear relationship is obtained when the enhancement in Na[sup +] selectivity produced by attachment of a geminal propyl group is plotted against the diameter of the interference ion. Potentiometric responses of the dibenzo-16-crown-5 compounds are rationalized in terms of the crown ether ring size and the oxygen basicity, conformational positioning, and rigidity of the side arm. 22 refs., 3 figs., 2 tabs.

  7. Electrodialytic separation of alkali-element ions with the aid of ion-exchange membranes

    SciTech Connect

    Gurskii, V.S.; Moskvin, L.N.

    1988-03-20

    Electrodialytic separation of ions bearing charges of the same sign with the aid of ion-exchange membranes has been examined in the literature in relation to the so-called ideal membranes, which do not exhibit selectivity with respect to one ion type in ion exchange. It has been shown that separation on such membranes is effective only for counterions differing in size of charge. A matter of greater importance from the practical standpoint is the possibility of using electrodialysis for separating ions bearing like charges and having similar properties, including ionic forms of isotopes of the same element. In this paper they report a comparative study of ion separation, with reference to the Cs-Na pair, by electrodialysis through various types of cation-exchange membranes. Changes of the solution concentration in the cathode compartment were monitored by measurement of /sup 22/Na and /sup 137/Cs activities.

  8. Rare earth element analysis indicates micropollutants in an urban estuary

    NASA Astrophysics Data System (ADS)

    Mohajerin, T. J.; Johannesson, K. H.; Kolker, A.; Burdige, D. J.; Chevis, D.

    2011-12-01

    Rare earth element analysis of Bayou Bienvenue waters shows anomalously high gadolinium, Gd, concentrations relative to its nearest neighbors in the REE series, europium and terbium. The anomalously high Gd concentrations indicate anthropogenic input from waste-water treatment plants in the area as anthropogenic Gd input can be traced back to its use as a contrast agent in magnetic resonance imaging in hospitals. Others have shown that anomalously high levels of Gd in natural waters are likely to be associated with other micropollutants that also occur in hospital effluent and that are not removed in the wastewater treatment process, including pharmaceuticals in the form of steroids, antihistamines, and antibiotics. Estuaries serve as many important ecological roles and have been shown to act as a filter for pollutants. To better understand the transport, biogeochemical cycling, and ultimate fate of trace elements in estuaries, I collected surface water samples from Bayou Bienvenue, a wetland triangle that covers an area of 427 acres directly adjacent to New Orleans, Louisiana. Water samples from Bayou Bienvenue were collected along the salinity gradient and subsequently filtered through progressively smaller pore-size filters. The resulting fractions were analyzed for trace element concentions, including the REEs, by magnetic sector ICP-MS. The attached figure shows the Gd anomaly present in the particulate (>0.45μm) fraction. Upper continental crust (UCC)-normalized plots of colloidal REEs (0.02μm - 0.45μm) fraction is lacking this anomaly indicating anthropogenic Gd is found chiefly in the particulate fraction in Bayou Bienvenue. No clear relationship between Gd concentration and salinity was apparent.

  9. Geochemical characteristics of rare earth elements in soil of the Ditru Massif, Eastern Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Ion, Adriana

    2013-04-01

    The present paper describes the level of rare earth elements in soils developed from Ditrău massif area for evaluating of the background of these elements and accurate assessment of environmental impact. Also this paper contributed to understanding the important role of parent rocks in pedogenic processes. The Ditrău Alkaline Massif represent an intrusion body with a internal zonal structure, which was emplaced into pre-Alpine metamorphic rocks of the Bucovinian nappe complex close the Neogene - Quaternary volcanic arc of the Calimani-Guurghiu- Harghita Mountain chain. The center of massif was formed by nepheline syenite, which is surrounded by syenite and monazonite. North-western and north-eastern marginal sectors are composed of hornblende gabbro/hornblendite, alkali diorite, monzodiorite, monzosyenites and alkali granite. Small discrete ultramafic bodies (kaersutite-bearing peridotite, olivine, pyroxenite and hornblendite) and alkali gabbros occur in the Jolotca area. All this rocks are cut by late-stage dykes with a large variety of composition including tinguaite, phonolite, nepheline syenite, microsyenite, and aplite. The types of soils predominant in this zone are lithosoils. These soils are shallow developed, have low content in organic matter and reflects mineralogical and geochemical composition of the bedrock. The soil samples were collected from 70 location for all type of representative rocks (approximately 10 soil sampling points for each type of rock). The samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The pH values of these samples varied from 3.6 to 7.3, in general, the soils from massif area are acid or weakly acidic. The pH controls the abundance of REE in soil, the concentration of REE increases with decreasing pH values. In soil samples analyzed the contents of REE follow the order: Ce > La > Nd > Pr > Sm > Eu > Gd > Dy > Yb > Er > Tb > Ho >Tm. ∑ REE varied from 52.59 μg g-1 to 579.2 μg g-1 , the average

  10. Optical properties and radiation damages of cerium fluoride crystals doped with alkali-earth and rare-earth elements

    SciTech Connect

    Gusev, Y.I.; Melchakov, E.N.; Mironov, I.A.; Panteleev, L.A.; Reiterov, V.M.; Rodnyi, P.A.; Seliverstov, D.M.; Shchetkowsky, A.I.; Yazikov, D.M.; Zakharov, N.G.

    1994-12-31

    The most essential contribution in the investigation of CeF{sub 3} crystals having the goal to construct high precision electromagnetic calorimeters has been done by Crystal Clear Collaboration. Study of optical properties and radiation damages of Cerium Fluoride crystals doped with Ca, Ba, Sr, La, Nd, Zr and Hf in the wide range of concentrations has been performed with the goal to obtain high optical transparency of crystals at different cumulative doses under {gamma}-irradiation. Time decay curves and relative light yields of scintillators as a function of doping level were measured using X-ray excitation of samples and single photon counting method.

  11. Rare earth elements exploitation, geopolitical implications and raw materials trading

    NASA Astrophysics Data System (ADS)

    Chemin, Marie-Charlotte

    2015-04-01

    Rare earth elements (REE) correspond to seventeen elements of the periodic table. They are used in high technology, cracking, electric cars' magnet, metal alloy for batteries, and also in phone construction or ceramics for electronic card. REEs are an important resource for high technology. This project targets 16 years old students in the subject "personalized aid" and will last six weeks. The purpose of this project is to develop autonomy and research in groups for a transdisciplinary work. This project gathers knowledge in geology, geography and economics. During the first session students analyze the geology applications of the REE. They begin the analysis with learning the composition in different rocks such as basalt and diorite to make the link with crystallization. Then they compare it with adakite to understand the formation of these rocks. In the second session, they study REE exploitation. We can find them as oxides in many deposits. The principal concentrations of rare earth elements are associated with uncommon varieties of igneous rocks, such as carbonatites. They can use Qgis, to localize this high concentration. In the third session, they study the environmental costs of REE exploitation. Indeed, the exploitation produces thorium and carcinogenic toxins: sulphates, ammonia and hydrochloric acid. Processing one ton of rare earths produces 2,000 tons of toxic waste. This session focuses, first, on Baotou's region, and then on an example they are free to choose. In the fourth session, they study the geopolitical issues of REE with a focus on China. In fact this country is the largest producer of REE, and is providing 95% of the overall production. REE in China are at the center of a geopolitical strategy. In fact, China implements a sort of protectionism. Indeed, the export tax on REE is very high so, as a foreign company, it is financially attractive to establish a manufacturing subsidiary in China in order to use REE. As a matter of fact

  12. Isotopic fractionation of rare earth elements in geochemical samples

    NASA Astrophysics Data System (ADS)

    Ishibashi, T.; Ohno, T.

    2015-12-01

    The isotopic composition of Rare Earth Elements(REEs) can be fractionated through various physical and chemical reactions in nature [1]. The isotopic variations of REEs occurring naturally has a potentially significant influence in geochemical research fields. The REEs has key features that their chemical similarities and gradual changes of ionic radius, which may help us to understand the mechanisms of isotopic variations of REEs in nature. Among the REEs, geochemical and physicochemical features of Ce, which could be presence as the tetravalent state, be anomalous, and oxidation state of Ce can change by reflecting the redox conditions of the environment. Therefore, the study of the difference in the degree of isotopic fractionation between Ce and other REEs may provide information on the redox conditions. In this study, we developed a new separation method to determine the mass-dependent isotopic fractionations of REEs in geochemical samples, and examined the optimum concentration of hydrochloric acid for the separation. The samples were decomposed by a mixture of acids, then REEs were separated as a group from major elements using cation exchange resin columns and RE Spec resin. The separations within the REEs group were carried out using Ln2Spec resin. For the recovery of La, Ce, Pr, and Nd, 0.1 M HCl was used, and for isolation of Sm, Eu, and Gd, 0.25 M HCl was used. Then, 0.6 M HCl was used for separation of Tb, and Dy, 1 M HCl was used for separation of Ho, Y, and Er, finally, Tm, Yb, and Lu were collected using 2 M HCl. The yields of all REEs were enough to examine isotopic fractionation in geochemical samples. [1] Ohno and Hirata,Analytical Sciences, 29, 271, 2013

  13. Rare Earth Element Partitioning in Lunar Minerals: An Experimental Study

    NASA Technical Reports Server (NTRS)

    McIntosh, E. C.; Rapp, J. F.; Draper, D. S.

    2016-01-01

    The partitioning behavior of rare earth elements (REE) between minerals and melts is widely used to interpret the petrogenesis and geologic context of terrestrial and extra-terrestrial samples. REE are important tools for modelling the evolution of the lunar interior. The ubiquitous negative Eu anomaly in lunar basalts is one of the main lines of evidence to support the lunar magma ocean (LMO) hypothesis, by which the plagioclase-rich lunar highlands were formed as a flotation crust during differentiation of a global-scale magma ocean. The separation of plagioclase from the mafic cumulates is thought to be the source of the Eu depletion, as Eu is very compatible in plagioclase. Lunar basalts and volcanic glasses are commonly depleted in light REEs (LREE), and more enriched in heavy REEs (HREE). However, there is very little experimental data available on REE partitioning between lunar minerals and melts. In order to interpret the source of these distinctive REE patterns, and to model lunar petrogenetic processes, REE partition coefficients (D) between lunar minerals and melts are needed at conditions relevant to lunar processes. New data on D(sub REE) for plagioclase, and pyroxenes are now available, but there is limited available data for olivine/melt D(sub REE), particularly at pressures higher than 1 bar, and in Fe-rich and reduced compositions - all conditions relevant to the lunar mantle. Based on terrestrial data, REE are highly incompatible in olivine (i.e. D much less than 1), however olivine is the predominant mineral in the lunar interior, so it is important to understand whether it is capable of storing even small amounts of REE, and how the REEs might be fractionatied, in order to understand the trace element budget of the lunar interior. This abstract presents results from high-pressure and temperature experiments investigating REE partitioning between olivine and melt in a composition relevant to lunar magmatism.

  14. Geochemical behavior of rare earth elements and other trace elements in the Amazon River

    NASA Astrophysics Data System (ADS)

    Merschel, Gila; Bau, Michael; Dantas, Elton Luiz

    2014-05-01

    Rivers transport large amounts of dissolved and suspended particulate material from the catchment area to the oceans and are a major source of trace metals to seawater. The Amazon River is the world's largest river and supplies approximately 20% of the oceans' freshwater (Molinier et al., 1997). However, the behavior of trace elements, especially particle-reactive elements such as the rare earth elements (REE), within the river as well as in the estuary is not well constrained and rather little is known about their transport mechanisms. This study aims at understanding the transport properties of particle-reactive elements in the Amazon River and some of its major tributaries, including the Rio Solimões, Rio Negro, Tapajos, Xingu and Jari Rivers. Samples were taken at 12 stations, seven of which were located in the Amazon mainstream, while the other five stations sampled its tributaries. To account for the effects of variable discharge, the samples were collected during periods of high and low discharge. We present data for major and trace elements, including REE, of the dissolved and suspended load of these samples. First results indicate that the shale-normalized REE pattern of the dissolved load (filtered through 0.2 µm membranes) of the Amazon mainstream and the Rio Solimões confirm earlier studies (Elderfield et al., 1990; Gerard et al., 2003) and show an enrichment of the middle REE relative to the light and heavy REE (LaSN/GdSN: 0.25 - 0.32; GdSN/YbSN: 1.54 - 1.78). In contrast to the Amazon mainstream and the Rio Solimões, which are considered to be whitewater rivers, blackwater rivers, such as the Rio Negro, have a flat REE pattern with higher REE concentrations than whitewater rivers. The third water-type found in the Amazon Basin is clearwater, e.g. Rio Tapajos, with REE patterns in between those of the other two types, i.e. LaSN/GdSN: 0.55 - 0.70; GdSN/YbSN: 1.26 - 1.55. A similar behavior can be identified for other major and trace elements. While

  15. Effects of spraying rare earths on contents of rare Earth elements and effective components in tea.

    PubMed

    Wang, Dongfeng; Wang, Changhong; Ye, Sheng; Qi, Hongtao; Zhao, Guiwen

    2003-11-01

    Rare earth (RE) fertilizer is widely applied in China to increase the yield and the quality of crops including tea. However, the effects of spraying RE fertilizer on the contents of rare earth elements (REE) and effective components in tea are unknown. The results from basin and field experiments show that the values of the REE concentrations in new shoots of tea plants and the concentration of REE in the soil (REE/REEs) either from control basins or from treatment basins were smaller than those in other parts of tea plant and similar between control and treatment. The longer the interval between spraying RE fertilizer and picking the shoots of tea plants, the less the effects from spraying. About 80% summation operator REE (the sum of the concentrations of 15 REE) in tea, whether it came from spraying or not, was insoluble in the infusion. About 10% the soluble REE of summation operator REE in tea infusion was bound to polysaccharide, and the amount of REE bound polysaccharide decreased over time. At least a 25 day safety interval is needed between spraying and picking if the microelement fertilizer is used, in order to enhance tea output and to ensure tea safety. PMID:14582968

  16. Rare-earth element based permanent magnets: a theoretical investigation

    NASA Astrophysics Data System (ADS)

    Chouhan, Rajiv K.; Paudyal, Durga

    Permanent magnetic materials with large magnetization and high magnetocrystalline anisotropy are important for technical applications. In this context rare-earth (R) element based materials are good candidates because of their localized 4 f electrons. The 4 f crystal field splitting provides large part of magnetic anisotropy depending upon the crystal environment. The d spin orbit coupling of alloyed transition metal component provides additional anisotropy. RCo5 and its derivative R2Co17 are known compounds for large magnetic anisotropy. Here we have performed electronic structure calculations to predict new materials in this class by employing site substitutions. In these investigations, we have performed density functional theory including on-site electron correlation (DFT +U) and L-S coupling calculations. The results show that the abundant Ce substitution in R sites and Ti/Zr substitutions in some of the Co sites help reduce criticality without substantially affecting the magnetic moment and magnetic anisotropy in these materials. This work is supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.

  17. Size distribution of rare earth elements in coal ash

    USGS Publications Warehouse

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  18. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  19. Evolution of the lithosphere beneath Oahu, Hawaii: rare earth element abundances in mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Sen, Gautam; Frey, Frederick A.; Shimizu, Nobumichi; Leeman, William P.

    1993-08-01

    Rare earth element contents of clinopyroxenes in Hawaiian mantle xenoliths from Oahu were determined with an ion microprobe. The analyzed xenoliths are from four vents of the alkali Honolulu Volcanics (HV). Three (Kaau, Pali and Kalihi—KPK) are located close to the caldera of the extinct Koolau shield volcano, and the fourth, Salt Lake Crater (SLC), is on the periphery of the shield volcano. Systematic differences exist in REE contents between clinopyroxenes of the KPK and SLC xenoliths: (1) KPK pyroxenes are typically zoned in REE contents whereas SLC pyroxenes are homogeneous, (2) the LREE-depleted (chondrite-normalized) patterns that characterize many of the KPK xenoliths are not found in SLC xenoliths, and (3) the convex-upward REE patterns that are characteristic of SLC xenoliths are not found in KPK xenoliths. Relative to abyssal peridotites, the LREE-depleted Hawaiian lherzolite pyroxenes (interpreted to be residual oceanic lithosphere) have higher contents of REE, Na 2O, TiO 2 and FeO, and more modal clinopyroxene. These LREE-depleted Hawaiian xenoliths represent deeper, less-depleted parts of the melting column, whereas the abyssal peridotites represent the uppermost, more strongly depleted part of the mantle. The spoon-shaped, LREE-enriched and convex-upward REE patterns in the xenoliths have resulted from metasomatic enrichment of the lithosphere caused by reaction with magmas that formed the Honolulu Volcanics. A model for the evolution of the oceanic lithosphere is presented in which fractures were the main mode of transport of the Honolulu Volcanics. Metasomatic enrichment resulted from interaction between percolating Honolulu Volcanics magmas and wallrock. The differences between SLC and KPK xenoliths are attributed to chromatographic fractionation effects: SLC xenoliths are postulated to have come from a greater depth where they equilibrated to a larger extent with the percolating magmas than the KPK rocks.

  20. Investigating Rare Earth Element Systematics in the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Yang, J.; Torres, M. E.; Kim, J. H.; Verba, C.

    2014-12-01

    The lanthanide series of elements (the 14 rare earth elements, REEs) have similar chemical properties and respond to different chemical and physical processes in the natural environment by developing unique patterns in their concentration distribution when normalized to an average shale REE content. The interpretation of the REE content in a gas-bearing black shale deposited in a marine environment must therefore take into account the paleoredox conditions of deposition as well as any diagenetic remobilization and authigenic mineral formation. We analyzed 15 samples from a core of the Marcellus Shale (Whipkey ST1, Greene Co., PA) for REEs, TOC, gas-producing potential, trace metal content, and carbon isotopes of organic matter in order to determine the REE systematics of a black shale currently undergoing shale gas development. We also conducted a series of sequential leaching experiments targeting the phosphatic fractions in order to evaluate the dominant host phase of REEs in a black shale. Knowledge of the REE system in the Marcellus black shale will allow us to evaluate potential REE release and behavior during hydraulic fracturing operations. Total REE content of the Whipkey ST1 core ranged from 65-185 μg/g and we observed three distinct REE shale-normalized patterns: middle-REE enrichment (MREE/MREE* ~2) with heavy-REE enrichment (HREE/LREE ~1.8-2), flat patterns, and a linear enrichment towards the heavy-REE (HREE/LREE ~1.5-2.5). The MREE enrichment occurred in the high carbonate samples of the Stafford Member overlying the Marcellus Formation. The HREE enrichment occurred in the Union Springs Member of the Marcellus Formation, corresponding to a high TOC peak (TOC ~4.6-6.2 wt%) and moderate carbonate levels (CaCO3 ~4-53 wt%). Results from the sequential leaching experiments suggest that the dominant host of the REEs is the organic fraction of the black shale and that the detrital and authigenic fractions have characteristic MREE enrichments. We present our

  1. Attenuation of rare earth elements in a boreal estuary

    NASA Astrophysics Data System (ADS)

    Åström, Mats E.; Österholm, Peter; Gustafsson, Jon Petter; Nystrand, Miriam; Peltola, Pasi; Nordmyr, Linda; Boman, Anton

    2012-11-01

    This study focuses on attenuation of rare earth elements (REE) when a boreal creek, acidified and loaded with REE and other metals as a result of wetland drainage, empties into a brackish-water estuary (salinity < 6‰). Surface water was collected in a transect from the creek mouth to the outer estuary, and settling (particulate) material in sediment traps moored at selected locations in the estuary. Ultrafiltration, high-resolution ICP-MS and modeling were applied on the waters, and a variety of chemical reagents were used to extract metals from the settling material. Aluminium, Fe and REE transported by the acidic creek were extensively removed in the inner/central estuary where the acidic water was neutralised, whereas Mn was relatively persistent in solution and thus redistributed to particles and deposited further down the estuary. The REE removal was caused by several contemporary mechanisms: co-precipitation with oxyhydroxides (mainly Al but also Fe), complexation with flocculating humic substances and sorption to suspended particles. Down estuary the dissolved REE pool, remaining after removal, was fractionated: the <1 kDa pool became depleted in the middle REE and the colloidal (0.45 μm-1 kDa) pool depleted in the middle and heavy REE. This fractionation was controlled by the removal process, such that those REE with highest affinity for the settling particles became most depleted in the remaining dissolved pool. Modeling, based on Visual MINTEQ version 3.0 and the Stockholm Humic Model after revision and updating, predicted that the dissolved (<0.45 μm) REE pool in the estuary is bound almost entirely to humic substances. Acid sulphate soils, the source of the REE and other metals in the creek water, are widespread on coastal plains worldwide and therefore the REE attenuation patterns and mechanisms identified in the studied estuary are relevant for recognition of similar geochemical processes and conditions in a variety of coastal locations.

  2. Recovery and Separation of Rare Earth Elements Using Salmon Milt

    PubMed Central

    Takahashi, Yoshio; Kondo, Kazuhiro; Miyaji, Asami; Watanabe, Yusuke; Fan, Qiaohui; Honma, Tetsuo; Tanaka, Kazuya

    2014-01-01

    Recycling rare earth elements (REEs) used in advanced materials such as Nd magnets is important for the efficient use of REE resources when the supply of several REEs is limited. In this work, the feasibility of using salmon milt for REE recovery and separation was examined, along with the identification of the binding site of REEs in salmon milt. Results showed that (i) salmon milt has a sufficiently high affinity to adsorb REEs and (ii) the adsorption capacity of the milt is 1.04 mEq/g, which is comparable with that of commercial cation exchange resin. Heavier REEs have higher affinity for milt. A comparison of stability constants and adsorption patterns of REEs discussed in the literature suggests that the phosphate is responsible for the adsorption of REE in milt. The results were supported by dysprosium (Dy) and lutetium (Lu) LIII-edge extended x-ray absorption fine structure (EXAFS) spectroscopy. The REE-P shell was identified for the second neighboring atom, which shows the importance of the phosphate site as REE binding sites. The comparison of REE adsorption pattern and EXAFS results between the milt system and other adsorbent systems (cellulose phosphate, Ln-resin, bacteria, and DNA-filter hybrid) revealed that the coordination number of phosphate is correlated with the slope of the REE pattern. The separation column loaded with milt was tested to separate REE for the practical use of salmon milt for the recovery and separation of REE. However, water did not flow through the column possibly because of the hydrophobicity of the milt. Thus, sequential adsorption–desorption approach using a batch-type method was applied for the separation of REE. As an example of the practical applications of REE separation, Nd and Fe(III) were successfully separated from a synthetic solution of Nd magnet waste by a batch-type method using salmon milt. PMID:25490035

  3. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS{sub 2}

    SciTech Connect

    Li, X. D.; Fang, Y. M.; Wu, S. Q. E-mail: wsq@xmu.edu.cn; Zhu, Z. Z. E-mail: wsq@xmu.edu.cn

    2015-05-15

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS{sub 2} have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS{sub 2}. Additionally, local or long-range magnetic moments of two-dimensional MoS{sub 2} sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS{sub 2} monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  4. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    USGS Publications Warehouse

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  5. Miocene Coral Skeleton Rare Earth Element Patterns Reflect River Discharge

    NASA Astrophysics Data System (ADS)

    Mertz-Kraus, R.; Brachert, T. C.; Jochum, K. P.

    2010-12-01

    Rare Earth Element (REE) patterns of modern coral skeletons usually reflect the REE composition of ambient seawater which is characterized by heavy REE enriched relative to light REE with NASC (North American Shale Composite) normalized La/Lu ratios of typically <0.4. The REE concentration in coral aragonite is enriched by 3 to 4 orders of magnitude compared to ambient seawater. Here we report trace element data including REE of coral skeletons of Late Miocene age (~9 Ma, Tortonian) from Crete (Eastern Mediterranean). Analyses were done using a 213 nm Nd:YAG laser coupled to an Element2 ICP-MS along the growth axis of the coral skeletons. The profiles show that Ba/Ca ratios have a seasonally induced pattern with high values around the winter months which are identified by δ18O analyses. REE/Ca ratios co-vary with Ba/Ca ratios. Since the Ba/Ca ratio is a proxy used to monitor river discharge, the co-variation suggests the REE/Ca ratio to be a proxy of comparable quality. NASC-normalized REE patterns of the Tortonian corals have negative Ce anomalies like modern corals. However, the Tortonian corals have REE patterns highly enriched in LREE with (La/Lu)N ratios of 4 to 30 which is 1 to 2 orders of magnitude higher compared to modern corals. Al concentrations are low (<10 ppm) and do not correlate with REE concentrations indicating an insignificant fraction of terrigenous material included in the skeleton. Applying distribution coefficients typical for modern corals, the REE composition of the Tortonian ambient water yields (La/Lu)N of about 2 to 16. This range can be explained by binary mixing of modern Eastern Mediterranean sea surface water ((La/Lu)N=0.35, sea surface salinity (SSS) ~38 ‰) with highly LREE-enriched river water ((La/Lu)N >3, salinity ~0.5 ‰) transporting suspended and colloid phases, also highly enriched, especially in LREE, at a ratio of ~9 (seawater):1 (river water). The river water component is considered because paleoenvironmental

  6. PROCESS FOR SEPARATING AMERICIUM AND CURIUM FROM RARE EARTH ELEMENTS

    DOEpatents

    Baybarz, R.D.; Lloyd, M.H.

    1963-02-26

    This invention relates to methods of separating americium and curium values from rare earth values. In accordance with the invention americium, curium, and rare earth values are sorbed on an anion exchange resin. A major portion of the rare earth values are selectively stripped from the resin with a concentrated aqueous solution of lithium chloride, and americium, curium, and a minor portion of rare earth values are then stripped from the resin with a dilute aqueous solution of lithium chloride. The americium and curium values are further purified by increasing the concentration of lithium chloride in the solution to at least 8 molar and selectively extracting rare earth values from the resulting solution with a monoalkylphosphoric acid. (AEC)

  7. Core-Mantle Partitioning of Volatile Siderophile Elements and the Origin of Volatile Elements in the Earth

    NASA Technical Reports Server (NTRS)

    Nickodem, K.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.

    2012-01-01

    There are currently several hypotheses on the origin of volatile siderophile elements in the Earth. One hypothesis is that they were added during Earth s accretion and core formation and mobilized into the metallic core [1], others claim multiple stage origin [2], while some hypothesize that volatiles were added after the core already formed [3]. Several volatile siderophile elements are depleted in Earth s mantle relative to the chondrites, something which continues to puzzle many scientists. This depletion is likely due to a combination of volatility and core formation. The Earth s core is composed of Fe and some lighter constituents, although the abundances of these lighter elements are unknown [4]. Si is one of these potential light elements [5] although few studies have analyzed the effect of Si on metal-silicate partitioning, in particular the volatile elements. As, In, Ge, and Sb are trace volatile siderophile elements which are depleted in the mantle but have yet to be extensively studied. The metal-silicate partition coefficients of these elements will be measured to determine the effect of Si. Partition coefficients depend on temperature, pressure, oxygen fugacity, and metal and silicate composition and can constrain the concentrations of volatile, siderophile elements found in the mantle. Reported here are the results from 13 experiments examining the partitioning of As, In, Ge, and Sb between metallic and silicate liquid. These experiments will examine the effect of temperature, and metal-composition (i.e., Si content) on these elements in or-der to gain a greater understanding of the core-mantle separation which occurred during the Earth s early stages. The data can then be applied to the origin of volatile elements in the Earth.

  8. Rare Earth elements as sediment tracers in Mangrove ecosystems

    NASA Astrophysics Data System (ADS)

    Ramanathan, A. L.; Swathi, S.

    2013-05-01

    Rare earth elements have been widely used as geochemical source fingerprints of rocks and sediments to study processes involving cosmo-chemistry, igneous petrology, tectonic setting and for investigations of water-rock interactions and weathering processes including transport of weathering products to the oceans.Many studies have addressed the use of REEs in investigating the environmental impact of human activity and demonstrated that the REE natural distribution in sediment from densely industrialised and populated regions can be altered by anthropogenic influences.The coastal wetlands like Mangroves are ultimate sinks for all the material derived from the terrestrial and marine environment.The high productivity and low ratio of sediment respiration to net primary production gives mangrove sediments the potential for long-term sequestration of these pollutants/metals before reaching the coastal ocean. Geochemical study of REE in these sedimentary systems is useful for determining the nature of the biogeochemical processes. In particular, REE show a great sensitivity to pH changes, redox conditions and adsorption/ desorption reactions. So, they may be used as markers of discharge provenance, weathering processes, changes in environmental conditions in the water and sediments of Mangrove/wetland systems. Our study aims to establish the abundance, distribution and enrichment of REEs to track the sediment sources and biogeochemical processes occurring in the mangrove environment.Core sediments were collected from the different environmental settings within the Pichavaram mangrove area.Higher REE concentration in Pichavaram sediments indicated greater input from sources like terrestrial weathering and anthropogenic activities which in turn are affected by saline mixing and dynamic physico-chemical processes occurring in the mangrove environment. REE enrichment order was attributed to the alkaline pH (7-8.5) and reducing conditions prevailing in the mangrove

  9. Biogeochemistry of the rare-earth elements with particular reference to hickory trees

    USGS Publications Warehouse

    Robinson, W.O.; Bastron, H.; Murata, K.J.

    1958-01-01

    Hickory trees concentrate the rare-earth elements in their leaves to a phenomenal degree and may contain as much as 2300 p.p.m. of total rare earths based on the dry weight of the leaves. The average proportions of the individual elements (atomic percent of the total rare-earth elements) in the leaves are: Y 36, La 16, Ce 14, Pr 2, Nd 20, Sm 1, Eu 0.7, Gd 3, Tb 0.6, Dy 3, Ho 0.7, Er 2, Tm 0.2, Yb 1, and Lu 0.2. The similarity in the proportions of the rare-earth elements in the leaves and in the exchange complex of the soil on which the hickory trees grow indicates that the trees do not fractionate the rare earths appreciably. The variation of the rare-earth elements in the leaves and soils can be explained generally in terms of the relative abundance of the cerium group and the yttrium group, except for the element cerium. The large fluctuations in the proportion of cerium [Ce/(La + Nd) atomic ratios of 0.16 to 0.86] correlate with oxidation-reduction conditions in the soil profile. The substitution of dilute H2SO3 for dilute HC1 in the determination of available rare-earth elements brings about a large increase in the proportion of cerium that is extracted from an oxygenated subsoil. These relationships strongly suggest that quadrivalent cerium is present in oxygenated subsoil and is less available to plants than the other rare-earth elements that do not undergo such a change in valence. A few parts per billion of rare-earth elements have been detected in two samples of ground water. ?? 1958.

  10. Earth's moderately volatile element composition may not be chondritic: Evidence from In, Cd and Zn

    NASA Astrophysics Data System (ADS)

    Wang, Zaicong; Laurenz, Vera; Petitgirard, Sylvain; Becker, Harry

    2016-02-01

    Current models assume that siderophile volatile elements (SVE) are depleted in bulk Earth to the same extent as lithophile elements of similar volatility. The observed additional depletion of many SVE relative to lithophile elements in the bulk silicate Earth (BSE) is ascribed to partitioning of SVE into Earth's core. However, the assumption of similar volatility of moderately volatile elements during Earth formation processes as in solar gas is quite uncertain. Here, these assumptions will be tested by assessing abundances and ratios of indium and cadmium in the BSE using new data on mantle rocks, and the application of high- and low-pressure-temperature metal-silicate partitioning data. New bulk rock abundance data of In and Cd obtained on bulk rocks of peridotite tectonites and xenoliths by isotope dilution refine previous results inferred from basalts and in-situ analyses of silicate minerals in peridotite xenoliths. The CI chondrite-normalized abundance of In in the BSE is similar to zinc and is 3-4 times higher than Cd. New and published low- and high-P-T metal-silicate partitioning data indicate that, during core formation at a range of conditions, In is always more siderophile than Zn and Cd. Adding the fraction of these elements in Earth's core to the BSE results in bulk Earth compositions that yield higher CI chondrite normalized abundances of In in the bulk Earth compared to Zn and Cd. Because In is more volatile than Zn and Cd in gas of solar composition, suprachondritic In/Zn and In/Cd in the bulk Earth suggest that during formation of Earth or its building materials, the volatilities of these elements and perhaps other volatile elements likely have changed significantly (i.e. In became less volatile). The results also suggest that known carbonaceous chondrites likely did not deliver the main volatile element-rich fraction of the Earth. Various arguments suggest that the loss of moderately volatile elements during planetary accretion should be limited

  11. RARE EARTH ELEMENTS: A REVIEW OF PRODUCTION, PROCESSING, RECYCLING, AND ASSOCIATED ENVIRONMENTAL ISSUES

    EPA Science Inventory

    Rare earth elements (REEs) are a group of 15 chemical elements in the periodic table, specifically the lanthanides. Two other elements, scandium and yttrium, have a similar physiochemistry to the lanthanides, are commonly found in the same mineral assemblages, and are often refe...

  12. Rare Earth Elements: A Tool for Understanding the Behaviour of Trivalent Actinides in the Geosphere

    SciTech Connect

    Buil, Belen; Gomez, Paloma; Garralon, Antonio; Turrero, M. Jesus

    2007-07-01

    Rare earth element (REE) concentrations have been determined in groundwaters, granite and fracture fillings in a restored uranium mine. The granitoids normalized REE patterns of groundwaters show heavy rare earth elements (HREE)-enrichment and positive Eu anomalies. This suggests that the REE are fractionated during leaching from the source rocks by groundwaters. Preferential leaching of HREE would be consistent with the greater stability of their aqueous complexes compared to those of the light rare earth elements (LREE), together with the dissolution of certain fracture filling minerals, dissolution/alteration of phyllosilicates and colloidal transport. (authors)

  13. Rare earth elements and neodymium isotopes in sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Freslon, Nicolas; Bayon, Germain; Toucanne, Samuel; Bermell, Sylvain; Bollinger, Claire; Chéron, Sandrine; Etoubleau, Joel; Germain, Yoan; Khripounoff, Alexis; Ponzevera, Emmanuel; Rouget, Marie-Laure

    2014-09-01

    We report rare earth element (REE) and neodymium (Nd) isotope data for the organic fraction of sediments collected from various depositional environments, i.e. rivers (n = 25), estuaries (n = 18), open-ocean settings (n = 15), and cold seeps (n = 12). Sedimentary organic matter (SOM) was extracted using a mixed hydrogen peroxide/nitric acid solution (20%-H2O2-0.02 M-HNO3), after removal of carbonate and oxy-hydroxide phases with dilute hydrochloric acid (0.25 M-HCl). A series of experimental tests indicate that extraction of sedimentary organic compounds using H2O2 may be complicated occasionally by partial dissolution of sulphide minerals and residual carbonates. However, this contamination is expected to be minor for REE because measured concentrations in H2O2 leachates are about two-orders of magnitude higher than in the above mentioned phases. The mean REE concentrations determined in the H2O2 leachates for samples from rivers, estuaries, coastal seas and open-ocean settings yield relatively similar levels, with ΣREE = 109 ± 86 ppm (mean ± s; n = 58). The organic fractions leached from cold seep sediments display even higher concentration levels (285 ± 150 ppm; mean ± s; n = 12). The H2O2 leachates for most sediments exhibit remarkably similar shale-normalized REE patterns, all characterized by a mid-REE enrichment compared to the other REE. This suggests that the distribution of REE in leached sedimentary organic phases is controlled primarily by biogeochemical processes, rather than by the composition of the source from which they derive (e.g. pore, river or sea-water). The Nd isotopic compositions for organic phases leached from river sediments are very similar to those for the corresponding detrital fractions. In contrast, the SOM extracted from marine sediments display εNd values that typically range between the εNd signatures for terrestrial organic matter (inferred from the analysis of the sedimentary detrital fractions) and marine organic matter

  14. Rare Earth Element Partition Coefficients from Enstatite/Melt Synthesis Experiments

    NASA Technical Reports Server (NTRS)

    Schwandt, Craig S.; McKay, Gordon A.

    1997-01-01

    Enstatite (En(80)Fs(19)Wo(01)) was synthesized from a hypersthene normative basaltic melt doped at the same time with La, Ce, Nd, Sm, Eu, Dy, Er, Yb and Lu. The rare earth element concentrations were measured in both the basaltic glass and the enstatite. Rare earth element concentrations in the glass were determined by electron microprobe analysis with uncertainties less than two percent relative. Rare earth element concentrations in enstatite were determined by secondary ion mass spectrometry with uncertainties less than five percent relative. The resulting rare earth element partition signature for enstatite is similar to previous calculated and composite low-Ca pigeonite signatures, but is better defined and differs in several details. The partition coefficients are consistent with crystal structural constraints.

  15. Core-Mantle Partitioning of Volatile Elements and the Origin of Volatile Elements in Earth and Moon

    NASA Technical Reports Server (NTRS)

    Righter, Kevin; Pando, K.; Danielson, L.; Nickodem, K.

    2014-01-01

    Depletions of volatile siderophile elements (VSE; Ga, Ge, In, As, Sb, Sn, Bi, Zn, Cu, Cd) in mantles of Earth and Moon, constrain the origin of volatile elements in these bodies, and the overall depletion of volatile elements in Moon relative to Earth. A satisfactory explanation has remained elusive [1,2]. We examine the depletions of VSE in Earth and Moon and quantify the amount of depletion due to core formation and volatility of potential building blocks. We calculate the composition of the Earth's PUM during continuous accretion scenarios with constant and variable fO2. Results suggest that the VSE can be explained by a rather simple scenario of continuous accretion leading to a high PT metal-silicate equilibrium scenario that establishes the siderophile element content of Earth's PUM near the end of accretion [3]. Core formation models for the Moon explain most VSE, but calculated contents of In, Sn, and Zn (all with Tc < 750 K) are all still too high after core formation, and must therefore require an additional process to explain the depletions in the lunar mantle. We discuss possible processes including magmatic degassing, evaporation, condensation, and vapor-liquid fractionation in the lunar disk.

  16. Fluorescent lifetime measurements of rare-earth elements in gallium arsenide. Master's thesis

    SciTech Connect

    Topp, D.J.

    1990-12-01

    Lifetime measurements of the excited states of three GaAs semiconductors doped with the rare earth elements Erbium (Er), Praseodymium (Pr), and Thulium (Tm) has been studied using a pulsed nitrogen laser and germanium detector. The measurements were made with an experimental set up with a system response time of 0.34 microseconds. A 330 milliwatt nitrogen laser with a wavelength of 3370 angstroms was used to excite transitions of the rare earth elements.

  17. Experimental Parameters Affecting Stripping of Rare Earth Elements from Loaded Sorptive Media in Simulated Geothermal Brines

    DOE Data Explorer

    Dean Stull

    2016-05-24

    Experimental results from several studies exploring the impact of pH and acid volume on the stripping of rare earth elements (REEs) loaded onto ligand-based media via an active column. The REEs in this experiment were loaded onto the media through exposure to a simulated geothermal brine with known mineral concentrations. The data include the experiment results, rare earth element concentrations, and the experimental parameters varied.

  18. SEPARATION OF TRANSURANIC ELEMENTS FROM RARE EARTH COMPOUNDS

    DOEpatents

    Kohman, T.P.

    1961-11-21

    A process of separating neptunium and plutonium values from rare earths and alkaline earth fission products present on a solid mixed actinide carrier (Th or U(IV) oxalate or fluoride) --fission product carrier (LaF/sub 3/, CeF/sub 3/, SrF/sub 2/, CaF/sub 2/, YF/sub 3/, La oxalate, cerous oxalate, Sr oxalate, Ca oxalate or Y oxalate) by extraction of the actinides at elevated temperature with a solution of ammonium fluoride and/or ammonium oxalate is described. Separation of the fission-product-containing carriers from the actinide solution formed and precipitation of the neptunium and plutonium from the solution with mineral acid are also accomplished. (AEC)

  19. Enhancing electrocatalytic hydrogen evolution by nickel salicylaldimine complexes with alkali metal cations in aqueous media.

    PubMed

    Shao, Haiyan; Muduli, Subas K; Tran, Phong D; Soo, Han Sen

    2016-02-18

    New salicylaldimine nickel complexes, comprising only earth-abundant elements, have been developed for electrocatalytic hydrogen evolution in aqueous media. The second-sphere ether functionalities on the periphery of the complexes enhance the electrocatalytic activity in the presence of alkali metal cations. The electrocatalysts demonstrate improved performances especially in the economical and sustainable seawater reaction medium. PMID:26779580

  20. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.

    PubMed

    Keown, Daniel M; Favas, George; Hayashi, Jun-ichiro; Li, Chun-Zhu

    2005-09-01

    Sugar cane bagasse and cane trash were pyrolysed in a novel quartz fluidised-bed/fixed-bed reactor. Quantification of the Na, K, Mg and Ca in chars revealed that pyrolysis temperature, heating rate, valence and biomass type were important factors influencing the volatilisation of these alkali and alkaline earth metallic (AAEM) species. Pyrolysis at a slow heating rate (approximately 10 K min(-1)) led to minimal (often <20%) volatilisation of AAEM species from these biomass samples. Fast heating rates (>1000 K s(-1)), encouraging volatile-char interactions with the current reactor configuration, resulted in the volatilisation of around 80% of Na, K, Mg and Ca from bagasse during pyrolysis at 900 degrees C. Similar behaviour was observed for monovalent Na and K with cane trash, but the volatilisation of Mg and Ca from cane trash was always restricted. The difference in Cl content between bagasse and cane trash was not sufficient to fully explain the difference in the volatilisation of Mg and Ca. PMID:15978989

  1. Dipole polarizability of alkali-metal (Na, K, Rb)–alkaline-earth-metal (Ca, Sr) polar molecules: Prospects for alignment

    SciTech Connect

    Gopakumar, Geetha Abe, Minori; Hada, Masahiko; Kajita, Masatoshi

    2014-06-14

    Electronic open-shell ground-state properties of selected alkali-metal–alkaline-earth-metal polar molecules are investigated. We determine potential energy curves of the {sup 2}Σ{sup +} ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes ({sup 23}Na, {sup 39}K, {sup 85}Rb)–({sup 40}Ca, {sup 88}Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  2. Rare earth element recycling from waste nickel-metal hydride batteries.

    PubMed

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-08-30

    With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained. PMID:25089667

  3. Rare earth elements content in geological samples from eastern desert, Egypt, determined by instrumental neutron activation analysis.

    PubMed

    El-Taher, A

    2010-09-01

    Twenty representative geological samples (tonalite, granodiorite, adamellite, syenogranite, rapakivi syenogranite, alkali feldspar granite and monzogranite) were collected from G. Kattar area in Eastern Desert, Egypt, for analysis by instrumental neutron activation as a sensitive nondestructive analytical tool for the determination of 14 rare earth elements (REEs) and to find out the following: (1) what information could be obtained about the REEs and distribution patterns of REEs in geological samples under investigation, (2) to estimate the accuracy, reproducibility and detection limit of the INAA method in case of the given samples. The samples were properly prepared together with standard reference material and simultaneously irradiated in a neutron flux of 7x10(11)n/cm(2)s in the TRIGA Mainz research reactor facilities. The gamma spectra were collected by an HPGe detector and the analysis was done by means of a computerized multichannel analyzer. The choice of the nuclear reaction, irradiation and decay times, and of the proper gamma radiation in counting are presented and discussed. The results are found to be in good agreement with certified values. PMID:20236830

  4. Experimental productivity rate optimization of rare earth element separation through preparative solid phase extraction chromatography.

    PubMed

    Knutson, Hans-Kristian; Max-Hansen, Mark; Jönsson, Christian; Borg, Niklas; Nilsson, Bernt

    2014-06-27

    Separating individual rare earth elements from a complex mixture with several elements is difficult and this is emphasized for the middle elements: Samarium, Europium and Gadolinium. In this study we have accomplished an overloaded one-step separation of these rare earth elements through preparative ion-exchange high-performance liquid chromatography with an bis (2-ethylhexyl) phosphoric acid impregnated column and nitric acid as eluent. An inductively coupled plasma mass spectrometry unit was used for post column element detection. The main focus was to optimize the productivity rate, subject to a yield requirement of 80% and a purity requirement of 99% for each element, by varying the flow rate and batch load size. The optimal productivity rate in this study was 1.32kgSamarium/(hmcolumn(3)), 0.38kgEuropium/(hmcolumn(3)) and 0.81kgGadolinium/(hmcolumn(3)). PMID:24835593

  5. Vanadium oxide bronzes containing rare-earth elements

    SciTech Connect

    Volkov, V.L.; Zubkov, V.G.; Fedyukov, A.S.; Zainulin, Yu.G.

    1988-05-01

    We attempted to make phases having the general formula Ln/sub x/V/sub 2/O/sub 5/ (Ln = La, Eu, Yb) without success; the specimens usually consisted of three phases: the rare-earth orthovanadate LnVO/sub 4/, vanadium(V) oxide, and VO/sub 2/. To shift the process to give Ln/sub x/V/sub 2/O/sub 5/, heat treatment was applied to mixtures of the initial high-purity substances. The x-ray patterns were recorded with a DRON-UM1 apparatus with Cr K..cap alpha.. radiation and were processed by the Poroshok program. The IR spectra were recorded with UR-20 spectrometer with oil mulls.

  6. Theoretical study of mixed LiLnX4 (Ln = La, Dy; X = F, Cl, Br, I) rare earth/alkali halide complexes.

    PubMed

    Groen, C P; Oskam, A; Kovács, A

    2000-12-25

    The structure, bonding and vibrational properties of the mixed LiLnX4 (Ln = La, Dy; X = F, Cl, Br, I) rare earth/alkali halide complexes were studied using various quantum chemical methods (HF, MP2 and the Becke3-Lee-Yang-Parr exchange-correlation density functional) in conjunction with polarized triple-zeta valence basis sets and quasi-relativistic effective core potentials for the heavy atoms. Our comparative study indicated the superiority of MP2 theory while the HF and B3-LYP methods as well as less sophisticated basis sets failed for the correct energetic relations. In particular, f polarization functions on Li and X proved to be important for the Li...X interaction in the complexes. From the three characteristic structures of such complexes, possessing 1-(C3v), 2-(C2v), or 3-fold coordination (C3v) between the alkali metal and the bridging halide atoms, the bi- and tridentate forms are located considerably lower on the potential energy surface then the monodentate isomer. Therefore only the bi- and tridentate isomers have chemical relevance. The monodentate isomer is only a high-lying local minimum in the case of X = F. For X = Cl, Br, and I this structure is found to be a second-order saddle point. The bidentate structure was found to be the global minimum for the systems with X = F, Cl, and Br. However, the relative stability with respect to the tridentate structure is very small (1-5 kJ/mol) for the heavier halide derivatives and the relative order is reversed in the case of the iodides. The energy difference between the three structures and the dissociation energy decrease in the row F to I. The ionic bonding in the complexes was characterized by natural charges and a topological analysis of the electron density distribution according to Bader's theorem. Variation of the geometrical and bonding characteristics between the lanthanum and dysprosium complexes reflects the effect of "lanthanide contraction". The calculated vibrational data indicate that

  7. [Application of ICP-MS to Detect Rare Earth Elements in Three Economic Macroalgaes in China].

    PubMed

    Zhao, Yan-fang; Shang, De-rong; Zhai, Yu-xiu; Ning, Jin-song; Ding, Hai-yan; Sheng, Xiao-feng

    2015-11-01

    In order to investigate the content and distribution of rare earth elements (REE) in main economic macroalgaes in our country, fifteen rare earth elements in three economic macroalgaes (including 30 samples of kelp, 30 samples of laver and 15 samples of Enteromorpha) were detected using ICP-MS method. Results showed that the total content of REE in different species of macroalgaes was different. The highest total content of REE was in Enteromorpha (16,012.0 ng · g⁻¹), while in kelp and laver, the total REE was similar for two macroalgaes (3887.4 and 4318.1 ng · g⁻¹ respectively). The content of fifteen rare earth elements in kelp ranged from 7.9 to 1496.4 ng · g⁻¹; in laver, it ranged from 8.2 to 1836.6 ng · g⁻¹. For Enteromorpha, the concentration of 15 rare earth elements were between 19.2 and 6014.5 ng · g⁻¹. In addition, the content and distribution of different rare earth elements in different macroalgaes was also different. For kelp, the highest content of REE was Ce (1 496.4 ng · g⁻¹), and the second was La (689.1 ng · g⁻¹). For laver, the highest was Y (1836.6 ng · g⁻¹), and the second was Ce (682.2 ng · g⁻¹). For Enteromorpha, the highest was Ce (6014.5 ng · g⁻¹), and the second was La (2902.9 ng · g⁻¹). Present results also showed that three macroalgaes accumulated the light rare earth elements much more than the high rare earth elements. The light rare earth elements occupied 90.9%, 87.3% and 91.1% for kelp, laver and Enteromorpha respectively. The result that the Enteromorpha had high content of rare earth elements could provide important support for opening new research directions for the utilization of Enteromorpha. PMID:26978935

  8. First-principles Study on the Vibration Modes and Electronic Structure of Alkali and Alkaline-earth Amides and Alanates

    NASA Astrophysics Data System (ADS)

    Tsumuraya, Takao; Shishidou, Tatsuya; Oguchi, Tamio

    2009-03-01

    Light alkaline and alkaline-earth metal hydrides such as amides M(NH2)n and alanates M(AlH4)n (M=K, Na, Li, Ca, and Mg) have attracted a growing interest as reversible hydrogen storage materials recently because of their innately high hydrogen contents. [1, 2] We study the electronic structure of the amides and alanates with different cations, focusing on the role of cation states from first-principles calculations based on the all-electron FLAPW method. Calculated breathing stretch vibration modes for these compounds are compared with measured infrared and Raman spectra. In the amides, we find a significant tendency such that the breathing stretch vibration frequencies and the structural parameters of NH2 vary in accordance with the ionization energy of cation, which may be explained by the strength in hybridization between cation orbitals and molecular orbitals of (NH2)^-. We elucidate the microscopic mechanism of correlations between the breathing stretch vibration frequencies of N-H and structural parameters by analyzing the calculated electronic structure from a view point of the molecular-orbitals. A similar tendency in the alanates is also discussed. [1] P. Chen, Z. Xiong, J. Luo, J. Lin and K.L. Tan, Nature 420, 302 (2002). [2] B. Bogdanovi and M. Schwickardi, J. Alloys Compd. 253-254, 1 (1997).

  9. Research of the entry of rare earth elements Eu3+ and La3+ into plant cell.

    PubMed

    Gao, Yongsheng; Zeng, Fuli; Yi, An; Ping, Shi; Jing, Lanhua

    2003-03-01

    Whether rare earth elements can enter into plant cells remains controversial. This article discusses the ultracellular structural localization of lanthanum (La(3+)) and europium (Eu(3+)) in the intact plant cells fed by rare earth elements Eu(3+) and La(3+). Eu-TTA fluorescence analysis of the plasmalemma, cytoplast, and mitochondria showed that Eu(3+) fluorescence intensities in such structures significantly increased. Eu(3+) can directly enter or be carried by the artificial ion carrier A23187 into plant cells through the calcium ion (Ca(2+)) channel and then partially resume the synthesis of amaranthin in the Amaranthus caudatus growing in the dark. Locations of rare earth elements La(3+) and Eu(3+) in all kinds of components of cytoplasmatic organelles were determined with transmission electron microscope, scanning electron microscope, and energy-dispersive X-ray microanalysis. The results of energy-dispersive X-ray microanalysis indicated that Eu(3+) and La(3+) can be absorbed into plant cells and bind to the membranes of protoplasm, chloroplast, mitochondrion, cytoplast, and karyon. These results provide experimental evidence that rare earth elements can be absorbed into plant cells, which would be the basis for interpreting physiological and biochemical effects of rare earth elements on plant cells. PMID:12663949

  10. Molecular Polyarsenides of the Rare-Earth Elements.

    PubMed

    Arleth, Nicholas; Gamer, Michael T; Köppe, Ralf; Konchenko, Sergey N; Fleischmann, Martin; Scheer, Manfred; Roesky, Peter W

    2016-01-22

    Reduction of [Cp*Fe(η(5)-As5)] with [Cp''2Sm(thf)] (Cp''=η(5)-1,3-(tBu)2C5H3) under various conditions led to [(Cp''2Sm)(μ,η(4):η(4)-As4)(Cp*Fe)] and [(Cp''2Sm)2As7(Cp*Fe)]. Both compounds are the first polyarsenides of the rare-earth metals. [(Cp''2Sm)(μ,η(4):η(4)-As4)(Cp*Fe)] is also the first d/f-triple decker sandwich complex with a purely inorganic planar middle deck. The central As4(2-) unit is isolobal with the 6π-aromatic cyclobutadiene dianion (CH)4(2-). [(Cp''2Sm)2As7(Cp*Fe)] contains an As7(3-) cage, which has a norbornadiene-like structure with two short As-As bonds in the scaffold. DFT calculations confirm all the structural observations. The As-As bond order inside the cyclo As4 ligand in [(Cp''2Sm)(μ,η(4):η(4)-As4)(Cp*Fe)] was estimated to be in between an As-As single bond and a formally aromatic As4(2-) system. PMID:26676537

  11. Enriched asthenosphere melting beneath the nascent North African margin: trace element and Nd isotope evidence in middle-late Triassic alkali basalts from central Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Cirrincione, Rosolino; Fiannacca, Patrizia; Lustrino, Michele; Romano, Vanessa; Tranchina, Annunziata; Villa, Igor M.

    2016-03-01

    During the dismembering of the Pangea supercontinent, middle-late Triassic sub-volcanic alkaline rocks were emplaced in central Sicily. These rocks have an alkali basaltic composition and show OIB-like incompatible element patterns in primitive mantle-normalized diagrams (e.g., enrichments in HFSE and LREE coupled with high HFSE/LILE ratios), as well as slightly positive \\varepsilon_{Nd} values. Only subtle effects of crustal contamination at shallow depths emerge from geochemical data. These characteristics are very different compared with the Permian calcalkaline magmas from elsewhere in SW Europe still carrying the geochemical signature of modifications related to the Variscan orogeny. The mineralogical, geochemical and isotopic compositions of the investigated samples from central Sicily are also different from the coeval shoshonitic volcano-plutonic formations of Southern Alps (Dolomites). The incompatible element composition and Nd isotopic ratios are consistent with low-degree partial melting of a moderately depleted asthenospheric mantle source, with a negligible involvement of the thinned continental crust. The studied alkaline basalts represent the only known evidence of a segment of the Triassic rift system associated with early Pangea breakup in central Sicily. The close similarity of the central Sicily Triassic alkali basalts with coeval basalts emplaced along former orogenic sutures across the peri-Mediterranean area suggests a common origin related, at least partly, to asthenospheric passive upwelling following the tectonic collapse of the Variscan Belt. These rocks provide new constraints on the spatial-temporal distribution, magma source evolution and geodynamic meaning of the widespread Permo-Triassic basic magmatism developed after the end of the Variscan Orogeny in southwestern Europe.

  12. Alkali Bee

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The alkali bee, Nomia melanderi, is native to deserts and semi-arid desert basins of the western United States. It is a very effective and manageable pollinator for the production of seed in alfalfa (=lucerne) and some other crops, such as onion. It is the world’s only intensively managed ground-n...

  13. U.S. trade dispute with China over rare earth elements

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-03-01

    The U.S. government has brought a new trade case against China over rare earth elements (REE) as well as tungsten and molybdenum, President Barack Obama announced on 13 March. Japan and the European Union also have taken similar actions against China about REEs, which are a group of 17 chemically similar metallic elements that are used in a variety of electronic, optical, magnetic, and catalytic applications. REEs are plentiful in the Earth's crust, although China currently has about 37% of the world's reserves and accounts for more than 95% of the world's production of the elements, according to the British Geological Survey. The United States has requested consultations with China at the World Trade Organization (WTO) concerning "China's unfair export restraints on rare earths, as well as tungsten and molybdenum," the Office of the United States Trade Representative announced in a 13 March statement.

  14. Addressing Rare-Earth Element Criticality: An Example from the Aviation Industry

    NASA Astrophysics Data System (ADS)

    Ku, Anthony Y.; Dosch, Christopher; Grossman, Theodore R.; Herzog, Joseph L.; Maricocchi, Antonio F.; Polli, Drew; Lipkin, Don M.

    2014-09-01

    Rare-earth (RE) elements are enablers for a wide range of technologies, including high-strength permanent magnets, energy-efficient lighting, high-temperature thermal barrier coatings, and catalysts. While direct material substitution is difficult in many of these applications because of the specific electronic, optical, or electrochemical properties imparted by the individual rare-earth elements, we describe an example from the aviation industry where supply chain optimization may be an option. Ceramic matrix composite engine components require environmental barrier coatings (EBCs) to protect them from extreme temperatures and adverse reactions with water vapor in the hot gas path. EBC systems based on rare-earth silicates offer a unique combination of environmental resistance, thermal expansion matching, thermal conductivity, and thermal stability across the service temperature window. Several pure rare-earth silicates and solid solutions have been demonstrated in EBC applications. However, all rely on heavy rare-earth elements (HREEs) for phase stability. This article considers the possibility of using separation tailings containing a mixture of HREEs as a source material in lieu of using the high-purity HREE oxides. This option arises because the desired properties of RE-silicate EBCs derive from the average cation size rather than the electronic properties of the individual rare-earth cations. Because separation tailings have not incurred the costs associated with the final stages of separation, they offer an economical alternative to high-purity oxides for this emerging application.

  15. Addressing Rare-Earth Element Criticality: An Example from the Aviation Industry

    NASA Astrophysics Data System (ADS)

    Ku, Anthony Y.; Dosch, Christopher; Grossman, Theodore R.; Herzog, Joseph L.; Maricocchi, Antonio F.; Polli, Drew; Lipkin, Don M.

    2014-11-01

    Rare-earth (RE) elements are enablers for a wide range of technologies, including high-strength permanent magnets, energy-efficient lighting, high-temperature thermal barrier coatings, and catalysts. While direct material substitution is difficult in many of these applications because of the specific electronic, optical, or electrochemical properties imparted by the individual rare-earth elements, we describe an example from the aviation industry where supply chain optimization may be an option. Ceramic matrix composite engine components require environmental barrier coatings (EBCs) to protect them from extreme temperatures and adverse reactions with water vapor in the hot gas path. EBC systems based on rare-earth silicates offer a unique combination of environmental resistance, thermal expansion matching, thermal conductivity, and thermal stability across the service temperature window. Several pure rare-earth silicates and solid solutions have been demonstrated in EBC applications. However, all rely on heavy rare-earth elements (HREEs) for phase stability. This article considers the possibility of using separation tailings containing a mixture of HREEs as a source material in lieu of using the high-purity HREE oxides. This option arises because the desired properties of RE-silicate EBCs derive from the average cation size rather than the electronic properties of the individual rare-earth cations. Because separation tailings have not incurred the costs associated with the final stages of separation, they offer an economical alternative to high-purity oxides for this emerging application.

  16. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions.

    PubMed

    Sun, Pengzhan; Zheng, Feng; Zhu, Miao; Song, Zhigong; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Little, Reginald B; Xu, Zhiping; Zhu, Hongwei

    2014-01-28

    Graphene and graphene oxide (G-O) have been demonstrated to be excellent filters for various gases and liquids, showing potential applications in areas such as molecular sieving and water desalination. In this paper, the selective trans-membrane transport properties of alkali and alkaline earth cations through a membrane composed of stacked and overlapped G-O sheets ("G-O membrane") are investigated. The thermodynamics of the ion transport process reveal that the competition between the generated thermal motions and the interactions of cations with the G-O sheets results in the different penetration behaviors to temperature variations for the considered cations (K(+), Mg(2+), Ca(2+), and Ba(2+)). The interactions between the studied metal atoms and graphene are quantified by first-principles calculations based on the plane-wave-basis-set density functional theory (DFT) approach. The mechanism of the selective ion trans-membrane transportation is discussed further and found to be consistent with the concept of cation-π interactions involved in biological systems. The balance between cation-π interactions of the cations considered with the sp(2) clusters of G-O membranes and the desolvation effect of the ions is responsible for the selectivity of G-O membranes toward the penetration of different ions. These results help us better understand the ion transport process through G-O membranes, from which the possibility of modeling the ion transport behavior of cellular membrane using G-O can be discussed further. The selectivity toward different ions also makes G-O membrane a promising candidate in areas of membrane separations. PMID:24401025

  17. Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals

    SciTech Connect

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna

    2012-04-01

    In this study, multi-phase silicate-based glass-ceramics were investigated as an alternate waste form for immobilizing non-fissionable products from used nuclear fuel. Currently, borosilicate glass is the waste form selected for immobilization of this waste stream, however, the low thermal stability and solubility of MoO{sub 3} in borosilicate glass translates into a maximum waste loading in the range of 15-20 mass%. Glass-ceramics provide the opportunity to target durable crystalline phases, e.g., powellite, oxyapatite, celsian, and pollucite, that will incorporate MoO{sub 3} as well as other waste components such as lanthanides, alkalis, and alkaline earths at levels 2X the solubility limits of a single-phase glass. In addition a glass-ceramic could provide higher thermal stability, depending upon the properties of the crystalline and amorphous phases. Glass-ceramics were successfully synthesized at waste loadings of 42, 45, and 50 mass% with the following glass additives: B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, CaO and SiO{sub 2} by slow cooling form from a glass melt. Glass-ceramics were characterized in terms of phase assemblage, morphology, and thermal stability. The targeted phases: powellite and oxyapatite were observed in all of the compositions along with a lanthanide borosilicate, and cerianite. Results of this initial investigation of glass-ceramics show promise as a potential waste form to replace single-phase borosilicate glass.

  18. Rare Earth Element Fractionation During Evaporation of Chondritic Material

    NASA Astrophysics Data System (ADS)

    Wang, J.; Davis, A. M.; Clayton, R. N.

    1993-07-01

    Evaporation experiments suggest that enrichments in the heavy isotopes of oxygen, magnesium, and silicon in some CAIs are caused by kinetic effects during evaporation [1]. Volatility-fractionated REE patterns found in some CAIs have been modeled with some success using equilibrium thermodynamics [2,3], but little is known about kinetic effects on REE patterns. We have begun an investigation of REE fractionation under conditions where large isotope effects are produced by the kinetic isotope effect. We synthesized a starting material containing CI chondritic relative proportions of MgO, Al2O3, SiO2, CaO, TiO2, and FeO, and doped it with 100 ppm each of the REE. Samples of this material were evaporated in a vacuum furnace [4] at 10^-6 torr and 1800 or 2000 degrees C for periods of a few seconds to 5 hr. The mass fraction evaporated ranged from 7.6 to 95.4%. Most residues consist of olivine and glass. Chemical compositions of the residues were determined by electron and ion microprobe. Results for selected elements are shown in Fig. 1. There is no significant evaporation of Ca, Al, and Ti up to 95% mass loss; the evaporation behavior of Mg, Si, and Fe is similar to that found by Hashimoto [5]. There is no significant evaporation of most of the REE up to 95% mass loss. Ce is much more volatile than the other REE under these conditions: a tenfold negative Ce anomaly developed between 60 and 70% mass loss and the anomaly reached 5 X 10^-4 at 95% mass loss. A small Pr anomaly (50% Pr loss) also appeared in the highest-mass-loss residue. Thermodynamic calculations show that Ce has approximately the same volatility as other LREE under solar nebular oxygen fugacity, but is much more volatile than the other REE under oxidizing conditions [6]. We suspect that conditions in the residue in our vacuum evaporation experiments became oxidizing because evaporation reactions involving most major element oxides involve release of oxygen. The four known HAL-type hibonite

  19. Statistical Constraints from Siderophile Elements on Earth's Accretion, Differentiation, and Initial Core Stratification

    NASA Astrophysics Data System (ADS)

    O'Rourke, J. G.; Stevenson, D. J.

    2015-12-01

    Abundances of siderophile elements in the primitive mantle constrain the conditions of Earth's core/mantle differentiation. Core growth occurred as Earth accreted from collisions between planetesimals and larger embryos of unknown original provenance, so geochemistry is directly related to the overall dynamics of Solar System formation. Recent studies claim that only certain conditions of equilibration (pressure, temperature, and oxygen fugacity) during core formation can reproduce the available data. Typical analyses, however, only consider the effects of varying a few out of tens of free parameters in continuous core formation models. Here we describe the Markov chain Monte Carlo method, which simultaneously incorporates the large uncertainties on Earth's composition and the parameterizations that describe elemental partitioning between metal and silicate. This Bayesian technique is vastly more computationally efficient than a simple grid search and is well suited to models of planetary accretion that involve a plethora of variables. In contrast to previous work, we find that analyses of siderophile elements alone cannot yield a unique scenario for Earth's accretion. Our models predict a wide range of possible light element contents for the core, encompassing all combinations permitted by seismology and mineral physics. Specifically, we are agnostic between silicon and oxygen as the dominant light element, and the addition of carbon or sulfur is also permissible but not well constrained. Redox conditions may have remained roughly constant during Earth's accretion or relatively oxygen-rich material could have been incorporated before reduced embryos. Pressures and temperatures of equilibration, likewise, may only increase slowly throughout accretion. Therefore, we do not necessarily expect a thick (>500 km), compositionally stratified layer that is stable against convection to develop at the top of the core of Earth (or, by analogy, Venus). A thinner stable layer

  20. Rare earth element content of thermal fluids from Surprise Valley, California

    DOE Data Explorer

    Andrew Fowler

    2015-09-23

    Rare earth element measurements for thermal fluids from Surprise Valley, California. Samples were collected in acid washed HDPE bottles and acidified with concentrated trace element clean (Fisher Scientific) nitric acid. Samples were pre-concentratated by a factor of approximately 10 using chelating resin with and IDA functional group and measured on magnetic sector ICP-MS. Samples include Seyferth Hot Springs, Surprise Valley Resort Mineral Well, Leonard's Hot Spring, and Lake City Mud Volcano Boiling Spring.

  1. Radioluminescence and thermoluminescence of rare earth element and phosphorus-doped zircon

    SciTech Connect

    Karali, T.; Can, N.; Townsend, P.D.; Rowlands, A.P.; Hanchar, J.M.

    2000-06-01

    The radioluminescence and thermoluminescence spectra of synthetic zircon crystals doped with individual trivalent rare earth element (REE) ions (Pr, Sm, Eu, Gd, Dy, Ho, Er, and Yb) and P are reported in the temperature range 25 to 673 K. Although there is some intrinsic UV/blue emission from the host lattice, the dominant signals are from the rare-earth sites, with signals characteristic of the REE{sup 3+} states. The shapes of the glow curves are different for each dopant, and there are distinct differences between glow peak temperatures for different rare-earth lines of the same element. Within the overall set of signals there are indications of linear trends in which some glow peak temperatures vary as a function of the ionic size of the rare earth ions. The temperature shifts of the peaks are considerable, up to 200{degree}, and much larger than those cited in other rare-earth-doped crystals of LaF{sub 3} and Bi{sub 4}Ge{sub 3}O{sub 12}. The data clearly suggest that the rare-earth ions are active both in the trapping and luminescence steps, and hence the TL occurs within localized defect complexes that include REE{sup 3+} ions.

  2. Composition of the earth's upper mantle. I - Siderophile trace elements in ultramafic nodules

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Wandless, G. A.; Petrie, R. K.; Irving, A. J.

    1981-01-01

    The considered investigation is concerned with a reexamination of the question of the distribution of siderophile elements in the earth's upper mantle, taking into account a more unified data base which is now available. A comprehensive suite of ultramafic inclusions was collected as part of the Basaltic Volcanism Study Project and has been analyzed by instrument neutron activation analysis for major, minor, and some lithophile trace elements. In addition, 18 of these rocks and the important sheared garnet lherzolite PHN 1611 have been analyzed by means of radiochemical neutron activation analysis for 7 siderophile elements (Au, Ge, Ir, Ni, Os, Pd, and Re) and 9 volatile elements (Ag, Bi, Cd, In, Sb, Se, Te, Tl, and Zn). The siderophile element data reveal interesting inter-element correlations, which were not apparent from the compiled abundance tables of Ringwood and Kesson (1976) and Chou (1978).

  3. Tracing sediment movement on semi-arid watershed using Rare Earth Elements 1988

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-tracer method employing rare earth elements (REE) was used to determine sediment yield and to track sediment movement in a small semiarid watershed. A 0.33 ha watershed near Tombstone, AZ was divided into five morphological units, each tagged with one of five REE oxides. Relative contributi...

  4. A LOW-COST RARE EARTH ELEMENTS RECOVERY TECHNOLOGY - PHASE I

    EPA Science Inventory

    Physical Sciences, Inc., and the University of Kentucky Center for Applied Energy Research propose to develop a unique enabling technology to significantly reduce U.S. dependency for Rare Earth Elements (REE) on foreign suppliers and our global competitors. Our innovation...

  5. Interactions between exogenous rare earth elements and phosphorus leaching in packed soil columns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rare earth elements (REEs) increasingly used in agriculture as an amendment for crop growth may help to lessen environmental losses of phosphorus (P) from heavily fertilized soils. The vertical transport characteristics of P and REEs, lanthanum (La), neodymium (Nd), samarium (Sm), and cerium (Ce), w...

  6. Preliminary study on using rare earth elements to trace non-point source phosphorous loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental fate of phosphorus (P) is of concern as P is a primary cause of freshwater eutrophication. Rare earth elements (REEs) have been successfully used in the analysis of soil erosion and pollutant sources, as well as in the analysis of mineral genesis. To better understand the potential...

  7. Undecaprenyl Pyrophosphate Involvement in Susceptibility of Bacillus subtilis to Rare Earth Elements

    PubMed Central

    Ochi, Kozo

    2012-01-01

    The rare earth element scandium has weak antibacterial potency. We identified a mutation responsible for a scandium-resistant phenotype in Bacillus subtilis. This mutation was found within the uppS gene, which encodes undecaprenyl pyrophosphate synthase, and designated uppS86 (for the Thr-to-Ile amino acid substitution at residue 86 of undecaprenyl pyrophosphate synthase). The uppS86 mutation also gave rise to increased resistance to bacitracin, which prevents cell wall synthesis by inhibiting the dephosphorylation of undecaprenyl pyrophosphate, in addition to enhanced amylase production. Conversely, overexpression of the wild-type uppS gene resulted in increased susceptibilities to both scandium and bacitracin. Moreover, the mutant lacking undecaprenyl pyrophosphate phosphatase (BcrC) showed increased susceptibility to all rare earth elements tested. These results suggest that the accumulation of undecaprenyl pyrophosphate renders cells more susceptible to rare earth elements. The availability of undecaprenyl pyrophosphate may be an important determinant for susceptibility to rare earth elements, such as scandium. PMID:22904278

  8. Technical Information Resource on Rare Earth Elements Now Available to Public and Private Sector Stakeholders

    EPA Science Inventory

    A new EPA technical information resource, “Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Environmental Issues” has been produced as an introductory resource for those interested in learning more about REE mining and alternatives to meet demand...

  9. Studying the volatility of pyrazolone complexes of rare-earth elements by means of Knudsen effusion

    NASA Astrophysics Data System (ADS)

    Lazarev, N. M.; Petrov, B. I.; Bochkarev, L. N.; Safronova, A. V.; Abakumov, G. A.; Arapova, A. V.; Bessonova, Yu. A.

    2014-08-01

    The temperature dependences of the pressure of saturated vapor of pyrazolone complexes of rare-earth elements Ln(PMIP)3 (where Ln = Y, Ho, Er, Tm, Lu; PMIP = 1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone) are studied via Knudsen effusion, and the enthalpy of their sublimation is determined. Mass spectra and differential scanning calorimetry data are obtained.

  10. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    DOE Data Explorer

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  11. Method to Recover Media Ligand Losses During Sorption of Rare Earth Elements from Simulated Geothermal Brines

    DOE Data Explorer

    Dean Stull

    2016-05-24

    This document describes the method and results of an in-situ experiment used to confirm that ligand bleed from a sorptive media can be contained. The experiment focused on maintaining the media's sorption of rare earth elements (REE) obtained from a simulated geothermal brine doped with known mineral concentrations.

  12. SEDIMENT REWORKING AND TRANSPORT IN EASTERN LAKE SUPERIOR: IN SITU RARE EARTH ELEMENT TRACER STUDIES

    EPA Science Inventory

    A rare earth element (REE) tracer pellet was deployed at the floor of the Ile Parisienne basin of eastern Lake Superior to measure representative sediment reworking and transport processes in the benthic boundary layer of the prnfundal Great Lakes. Samarium oxide, a high neutron-...

  13. Catalytic Graphitization of Coal-Based Carbon Materials with Light Rare Earth Elements.

    PubMed

    Wang, Rongyan; Lu, Guimin; Qiao, Wenming; Yu, Jianguo

    2016-08-30

    The catalytic graphitization mechanism of coal-based carbon materials with light rare earth elements was investigated using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, selected-area electron diffraction, and high-resolution transmission electron microscopy. The interface between light rare earth elements and carbon materials was carefully observed, and two routes of rare earth elements catalyzing the carbon materials were found: dissolution-precipitation and carbide formation-decomposition. These two simultaneous processes certainly accelerate the catalytic graphitization of carbon materials, and light rare earth elements exert significant influence on the microstructure and thermal conductivity of graphite. Moreover, by virtue of praseodymium (Pr), it was found that a highly crystallographic orientation of graphite was induced and formed, which was reasonably attributed to the similar arrangements of the planes perpendicular to (001) in both graphite and Pr crystals. The interface between Pr and carbon was found to be an important factor for the orientation of graphite structure. PMID:27482724

  14. Fluid rare earth element anlayses from wells RN-12 and RN-19, Reykjanes, Iceland

    DOE Data Explorer

    Andrew Fowler

    2015-07-24

    Results for fluid rare earth elment analyses from Reykjanes wells RN-12 and RN-19. The data have not been corrected for flashing. Samples preconcetrated using chelating resin with IDA functional group (InertSep ME-1). Analyzed using and Element magnetic sctor ICP-MS.

  15. Distribution coefficients of major and trace elements; fractional crystallization in the alkali basalt series of Chaîne des Puys (Massif Central, France)

    NASA Astrophysics Data System (ADS)

    Villemant, Benoît; Jaffrezic, Henri; Joron, Jean-Louis; Treuil, Michel

    1981-11-01

    Major and seventeen trace element distribution coefficients between main phenocrysts (olivine, clinopyroxene, amphibole, mica, feldspars and Fe-Ti oxides) and groundmass have been measured in the alkali basalt suite of Chaîne des Puys (Massif Central, France). The suite appears to be a well behaved crystal fractionation series. We pinpoint key elements whose behavior is closely related to the appearance or disappearance of specific crystal phases in the fractionation process. Ta, for instance, clearly indicates the role of hydrous silicates (amphiboles and micas). Distribution coefficients are shown to vary systematically along the differentiation trend. Significantly the hygromagmaphile tendency ( TREUILet al., 1979) of U, Th, Ta and La is variable along the series. The mass balance equations, D i= limit∑;x jD jii where Di and Dji are the bulk and mineral/liquid distribution coefficients respectively, and xj the weight fractions of the fractionating phases, are solved by least square resolution of the overdetermined system, taking into account the analytical errors on data. The solution applied to the Chaîne des Puys suite leads to a coherent and quantitative model of the fractional crystallization process. The suite has apparently evolved in three stages. Each stage is characterized by constant bulk distribution coefficients and a specific mineral assemblage. Amphibole fractionation plays an important role in the early stages. Some intensive parameters ( T, ƒ ƒ O 2, PH2O) as well as f (weight fraction of residual liquid) are also estimated.

  16. Uranium and rare earth elements in CO 2-rich waters from Vals-les-Bains (France)

    NASA Astrophysics Data System (ADS)

    Michard, Annie; Beaucaire, Catherine; Michard, Gil

    1987-04-01

    Waters from springs at Vals-les-Bains result from the mixing of a CO 2-rich, highly mineralized water with dilute, shallow subsurface water. Total content of dissolved species vary from 5 mmol/1 to 100 mmol/1. For many elements, mixing of these waters is non-linear (non-conservative) and further water-rock reactions take place. The pH is controlled by CO 2 outgassing, redox conditions are controlled by both the iron hydroxide-siderite buffer and the introduction of oxygen with shallow subsurface waters. Among the major elements, concentrations of Ca, Mg, Mn, Fe, are related to mixing, CO 2 outgassing and carbonate precipitation. Uranium shows a complex behaviour controlled by carbonate complexing, redox conditions, mixing of waters and leaching from the rocks. The 234U /238U activity ratio is near secular equilibrium. In the more dilute waters, dissolved rare earth element (REE) patterns are almost flat with a slight negative Eu anomaly. In the concentrated waters, heavy rare earth elements (Gd-Yb, HREE) are strongly enriched relative to light rare earth elements (Ce-Eu, LREE). We relate the enrichment in HREE to water chemistry and to complexing with carbonate species.

  17. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    PubMed

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium. PMID:26739864

  18. Study on Orbital Decay of Near Earth Satellites with KS Orthogonal Elements

    NASA Astrophysics Data System (ADS)

    Ps, Sandeep

    STUDY ON ORBITAL DECAY OF NEAR EARTH SATELLITES WITH KS ORTHOGONAL ELEMENTS SANDEEP P S The knowledge of satellite orbit decay and its expected life prior to launch is necessary for mission planning purpose. Several sets of data for various parametric studies is sought quite often, it is necessary to minimize computational time involved for generating decay predictions, keeping the prediction accuracy normally good. A number of factors play dominant role in perturbation modelling for near earth satellites such as oblateness of the Earth, presence of the atmosphere, luni-solar attraction and solar radiation pressure. This paper concerns with the study of orbital decay of near earth satellites with KS orthogonal elements, which provide accurate orbit predictions at low computational time. Perturbations considered are due to oblateness of the Earth and the atmospheric drag. The Earth’s zonal harmonic terms J2 to J6 are included and the drag is modeled with an analytical diurnally oblate atmosphere. Effect of Earth’s geomagnetic and solar activity is included in density and density scale height computations. JACCHIA77 atmospheric model is utilized. The developed software is validated with the orbital data of decayed objects taken from www.space-track.org.

  19. Heavy metals and rare earth elements source-sink in some Egyptian cigarettes as determined by neutron activation analysis.

    PubMed

    Nada, A; Abdel-Wahab, M; Sroor, A; Abdel-Haleem, A S; Abdel-Sabour, M F

    1999-07-01

    Heavy metals and rare earth elements in two types of cigarettes were studied. The contents of trace elements were determined by using delayed neutron activation analysis. In the present study 11 elements have been detected in popular and fine brand cigarettes marketed in Egypt. Evaluation of these elements with their potential hazards for smokers is briefly discussed. The material balance (source and sink) for each element was determined. Also the ratio of element recovery to the total amount was assessed. PMID:10376325

  20. Structural Responses and Finite Element Modeling of Hakka Tulou Rammed Earth Structures

    NASA Astrophysics Data System (ADS)

    Sranislawski, Daniel

    Hakka Tulous are rammed earth structures that have survived the effects of aging and natural elements upwards of even over a thousand years. These structures have housed the Hakka people of the Fujian Province, China in natural yet modern housing that has provided benefits over newer building materials. The key building material, rammed earth, which is used for the walls of the Hakka Tulou structures, has provided structural stability along with thermal comfort to the respective inhabitants of the Hakka Tulous. Through material testing and analysis this study has examined how the Tulou structures have maintained their structural stability while also providing thermal comfort. Reports of self healing cracks in the rammed earth walls were also analyzed for their validity in this study. The study has found that although the story of the self healing crack cannot be validated, there is reason to believe that with the existence of lime, some type of autogenous healing could occur on a small scale. The study has also found, through the use of nondestructive testing, that both the internal wooden systems (flooring, roof, and column support) and the rammed earth walls, are still structurally sound. Also, rammed earth's high thermal mass along with the use of sufficient shading has allowed for a delay release of heat energy from the walls of the Tulous, thus providing thermal comfort that can be felt during both night and day temperatures. The Hakka Tulou structures have been found to resist destruction from natural disasters such as strong earthquakes even when more modern construction has not. Through finite element modeling, this study has shown that the high volume of rammed earth used in the construction of the Hakka Tulous helps dissipate lateral force energy into much lower stresses for the rammed earth wall. This absorption of lateral force energy allows the rammed earth structures to survive even the strongest of earthquakes experienced in the region. The Hakka

  1. Flow injection on-line solid phase extraction coupled with inductively coupled plasma mass spectrometry for determination of (ultra)trace rare earth elements in environmental materials using maleic acid grafted polytetrafluoroethylene fibers as sorbent.

    PubMed

    Wang, Zhao-Hui; Yan, Xiu-Ping; Wang, Zhi-Peng; Zhang, Zheng-Pu; Liu, Li-Wen

    2006-09-01

    A new sorbent, maleic acid grafted polytetrafluoroethylene fiber (MA-PTFE), was prepared and evaluated for on-line solid-phase extraction coupled with inductively coupled plasma mass spectrometry (ICP-MS) for fast, selective, and sensitive determination of (ultra)trace rare earth elements (REEs) in environmental samples. The REEs in aqueous samples at pH = 3.0 were selectively extracted onto a microcolumn packed with the MA-PTFE fiber, and the adsorbed REEs were subsequently eluted on-line with 0.9 mol l(-1) HNO3 for ICP-MS determination. The new sorbent extraction system allows effective preconcentration and separation of the REEs from the major matrix constituents of alkali and alkali earth elements, particularly their separation from barium that produces considerable isobaric interferences of 134Ba16O1H+, 135Ba16O+, 136Ba16O1H+, and 137Ba16O+ on 151Eu+ and 153Eu+. With the use of a sample loading flow rate of 7.4 ml min(-1) for 120 s preconcentration, enhancement factors of 69-97 and detection limits (3s) of 1-20 pg l(-1) were achieved at a sample throughput of 22 samples h(-1). The precision (RSD) for 16 replicate determinations of 50 ng l(-1) of REEs was 0.5-1.1%. The developed method was successfully applied to the determination of (ultra)trace REEs in sediment, soil, and seawater samples. PMID:16814561

  2. Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE=La-Lu)

    NASA Astrophysics Data System (ADS)

    Topsakal, Mehmet; Wentzcovitch, Renata

    2015-03-01

    We provide accurate projected augmented wave (PAW) datasets for rare-earth (RE) elements with some suggested Hubbard U values allowing efficient plane-wave calculations. Solid state tests of generated datasets were performed on rare-earth nitrides. Through density of state (DOS) and equation of state (EoS) comparisons, generated datasets were shown to yield excellent results comparable to highly accurate all-electron full-potential linearized augmented plane-wave plus local orbital (FLAPW+LO) calculations. Hubbard U values for trivalent RE ions are determined according to hybrid functional calculations. We believe that these new and open-source PAW datasets will allow further studies on rare-earth materials. NSF/EAR 1319361

  3. Highly siderophile elements were stripped from Earth's mantle by iron sulfide segregation.

    PubMed

    Rubie, David C; Laurenz, Vera; Jacobson, Seth A; Morbidelli, Alessandro; Palme, Herbert; Vogel, Antje K; Frost, Daniel J

    2016-09-01

    Highly siderophile elements (HSEs) are strongly depleted in the bulk silicate Earth (BSE) but are present in near-chondritic relative abundances. The conventional explanation is that the HSEs were stripped from the mantle by the segregation of metal during core formation but were added back in near-chondritic proportions by late accretion, after core formation had ceased. Here we show that metal-silicate equilibration and segregation during Earth's core formation actually increased HSE mantle concentrations because HSE partition coefficients are relatively low at the high pressures of core formation within Earth. The pervasive exsolution and segregation of iron sulfide liquid from silicate liquid (the "Hadean matte") stripped magma oceans of HSEs during cooling and crystallization, before late accretion, and resulted in slightly suprachondritic palladium/iridium and ruthenium/iridium ratios. PMID:27609889

  4. Thulium anomalies and rare earth element patterns in meteorites and Earth: Nebular fractionation and the nugget effect

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Pourmand, Ali

    2015-08-01

    This study reports the bulk rare earth element (REEs, La-Lu) compositions of 41 chondrites, including 32 falls and 9 finds from carbonaceous (CI, CM, CO and CV), enstatite (EH and EL) and ordinary (H, L and LL) groups, as well as 2 enstatite achondrites (aubrite). The measurements were done in dynamic mode using multi-collector inductively coupled plasma mass spectrometers (MC-ICPMS), allowing precise quantification of mono-isotopic REEs (Pr, Tb, Ho and Tm). The CI-chondrite-normalized REE patterns (LaN/LuN; a proxy for fractionation of light vs. heavy REEs) and Eu anomalies in ordinary and enstatite chondrites show more scatter in more metamorphosed (petrologic types 4-6) than in unequilibrated (types 1-3) chondrites. This is due to parent-body redistribution of the REEs in various carrier phases during metamorphism. A model is presented that predicts the dispersion of elemental and isotopic ratios due to the nugget effect when the analyzed sample mass is limited and elements are concentrated in minor grains. The dispersion in REE patterns of equilibrated ordinary chondrites is reproduced well by this model, considering that REEs are concentrated in 200 μm-size phosphates, which have high LaN/LuN ratios and negative Eu anomalies. Terrestrial rocks and samples from ordinary and enstatite chondrites display negative Tm anomalies of ∼-4.5% relative to CI chondrites. In contrast, CM, CO and CV (except Allende) show no significant Tm anomalies. Allende CV chondrite shows large excess Tm (∼+10%). These anomalies are similar to those found in group II refractory inclusions in meteorites but of much smaller magnitude. The presence of Tm anomalies in meteorites and terrestrial rocks suggests that either (i) the material in the inner part of the solar system was formed from a gas reservoir that had been depleted in refractory dust and carried positive Tm anomalies or (ii) CI chondrites are enriched in refractory dust and are not representative of solar composition for

  5. Extraction of rare-earth elements from nitric solutions by phosphoryl-containing podands

    SciTech Connect

    Turanov, A.N.; Karandashev, V.K.; Baulin, V.E.

    1999-11-01

    The extraction of microquantities of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y from HNO{sub 3} solutions by phosphoryl-containing podands of various structures has been studied.. It has been found that the maximum extraction of rare earth elements is exhibited by reagents containing one ether oxygen atom in the molecule, bound to diphenylphosphoryl or ditolylphosphoryl groups by methylene and o-phenylene fragments. The structure of these reagents is best suited for the polydentate coordination of the ligand and the conditions of a chelate complex formation. The effect of HNO{sub 3} concentration in the aqueous phase and that of the nature of an organic diluent on the extraction of rare earth elements and Y are considered. Stoichiometric of the extracted complexes has been determined and the extraction constants calculated.

  6. Bishop tuff revisited: new rare Earth element data consistent with crystal fractionation.

    PubMed

    Cameron, K L

    1984-06-22

    The Bishop Tuff of eastern California is the type example of a high-silica rhyolite that, according to Hildreth, supposedly evolved by liquid-state differentiation. New analyses establish that the Bishop Tuff "earlyllate" rare earth element trend reported by Hildreth mimics the relations between groundmass glasses and whole rocks for allanite-bearing pumice. Differences in elemental concentrations between whole rock and groundmass are the result of phenocryst precipitation; thus the data of Hildreth are precisely those expected to result from crystal fractionation. PMID:17837193

  7. Transport of rare earth element-tagged soil particles in response to thunderstorm runoff.

    PubMed

    Matisoff, G; Ketterer, M E; Wilson, C G; Layman, R; Whiting, P J

    2001-08-15

    The downslope transport of rare earth element-tagged soil particles remobilized during a spring thunderstorm was studied on both a natural prairie and an agricultural field in southwestern Iowa (U.S.A.). A technique was developed for tagging natural soils with the rare earth elements Eu, Tb, and Ho to approximately 1,000 ppm via coprecipitation with MnO2. Tagged material was replaced in target locations; surficial soil samples were collected following precipitation and runoff; and rare earth element concentrations were determined by inductively coupled plasma mass spectrometry. Diffusion and exponential models were applied to the concentration-distance data to determine particle transport distances. The results indicate that the concentration-distance data are well described by the diffusion model, butthe exponential model does not simulate the rapid drop-off in concentrations near the tagged source. Using the diffusion model, calculated particle transport distances at all hillside locations and at both the cultivated and natural prairie sites were short, ranging from 3 to 73 cm during this single runoff event. This study successfully demonstrates a new tool for studying soil erosion. PMID:11529577

  8. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies.

    PubMed

    Alonso, Elisa; Sherman, Andrew M; Wallington, Timothy J; Everson, Mark P; Field, Frank R; Roth, Richard; Kirchain, Randolph E

    2012-03-20

    The future availability of rare earth elements (REEs) is of concern due to monopolistic supply conditions, environmentally unsustainable mining practices, and rapid demand growth. We present an evaluation of potential future demand scenarios for REEs with a focus on the issue of comining. Many assumptions were made to simplify the analysis, but the scenarios identify some key variables that could affect future rare earth markets and market behavior. Increased use of wind energy and electric vehicles are key elements of a more sustainable future. However, since present technologies for electric vehicles and wind turbines rely heavily on dysprosium (Dy) and neodymium (Nd), in rare-earth magnets, future adoption of these technologies may result in large and disproportionate increases in the demand for these two elements. For this study, upper and lower bound usage projections for REE in these applications were developed to evaluate the state of future REE supply availability. In the absence of efficient reuse and recycling or the development of technologies which use lower amounts of Dy and Nd, following a path consistent with stabilization of atmospheric CO(2) at 450 ppm may lead to an increase of more than 700% and 2600% for Nd and Dy, respectively, over the next 25 years if the present REE needs in automotive and wind applications are representative of future needs. PMID:22304002

  9. Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel-metal-hydride batteries

    NASA Astrophysics Data System (ADS)

    Rodrigues, Luiz Eduardo Oliveira Carmo; Mansur, Marcelo Borges

    The separation of rare earth elements, cobalt and nickel from NiMH battery residues is evaluated in this paper. Analysis of the internal content of the NiMH batteries shows that nickel is the main metal present in the residue (around 50% in weight), as well as potassium (2.2-10.9%), cobalt (5.1-5.5%), rare earth elements (15.3-29.0%) and cadmium (2.8%). The presence of cadmium reveals that some Ni-Cd batteries are possibly labeled as NiMH ones. The leaching of nickel and cobalt from the NiMH battery powder with sulfuric acid is efficient; operating variables temperature and concentration of H 2O 2 has no significant effect for the conditions studied. A mixture of rare earth elements is separated by precipitation with NaOH. Finally, solvent extraction with D2EHPA (di-2-ethylhexyl phosphoric acid) followed by Cyanex 272 (bis-2,4,4-trimethylpentyl phosphinic acid) can separate cadmium, cobalt and nickel from the leach liquor. The effect of the main operating variables of both leaching and solvent extraction steps are discussed aiming to maximize metal separation for recycling purposes.

  10. Cocrystallization of certain 4f and 5f elements in the bivalent state with alkali metal halides

    SciTech Connect

    Mikheev, N.B.; Kamenskaya, A.M.; Veleshko, I.E.; Kulyukhin, S.A.

    1987-01-01

    The cocrystallization of Fm/sup 2 +/, Es/sup 2 +/, Cf/sup 2 +/, Am/sup 2 +/, Yb/sup 2 +/, Eu/sup 2 +/ and Sr/sup 2 +/ with NaCl, KCl and KBr in tetrahydrofuran (THF), hexamethylphosphorotriamide (HMPA), and ethanol has been studied. It is shown that in water-ethanol medium An/sup 2 +/ cocrystallize with KCl by the formation of anomalous mixed crystals and Ln/sup 2 +/ do not cocrystallize. In HMPA neither Ln/sup 2 +/ nor An/sup 2 +/ are observed to transfer into the KBr solid phase, while in THF both Ln/sup 2 +/ and An/sup 2 +/ cocrystallize with NaCl. The change in the behavior on Ln/sup 2 +/ and An/sup 2 +/ cocrystallize with a change from one solvent to another is caused by the difference in the effective ionic radii of these elements, which arises from the large nephelauxetic effect for An/sup 2 +/ as well as by the different solvating power of these solvents.

  11. Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact.

    PubMed

    Jacobson, Seth A; Morbidelli, Alessandro; Raymond, Sean N; O'Brien, David P; Walsh, Kevin J; Rubie, David C

    2014-04-01

    According to the generally accepted scenario, the last giant impact on Earth formed the Moon and initiated the final phase of core formation by melting Earth's mantle. A key goal of geochemistry is to date this event, but different ages have been proposed. Some argue for an early Moon-forming event, approximately 30 million years (Myr) after the condensation of the first solids in the Solar System, whereas others claim a date later than 50 Myr (and possibly as late as around 100 Myr) after condensation. Here we show that a Moon-forming event at 40 Myr after condensation, or earlier, is ruled out at a 99.9 per cent confidence level. We use a large number of N-body simulations to demonstrate a relationship between the time of the last giant impact on an Earth-like planet and the amount of mass subsequently added during the era known as Late Accretion. As the last giant impact is delayed, the late-accreted mass decreases in a predictable fashion. This relationship exists within both the classical scenario and the Grand Tack scenario of terrestrial planet formation, and holds across a wide range of disk conditions. The concentration of highly siderophile elements (HSEs) in Earth's mantle constrains the mass of chondritic material added to Earth during Late Accretion. Using HSE abundance measurements, we determine a Moon-formation age of 95 ± 32 Myr after condensation. The possibility exists that some late projectiles were differentiated and left an incomplete HSE record in Earth's mantle. Even in this case, various isotopic constraints strongly suggest that the late-accreted mass did not exceed 1 per cent of Earth's mass, and so the HSE clock still robustly limits the timing of the Moon-forming event to significantly later than 40 Myr after condensation. PMID:24695310

  12. Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Morbidelli, Alessandro; Raymond, Sean N.; O'Brien, David P.; Walsh, Kevin J.; Rubie, David C.

    2014-04-01

    According to the generally accepted scenario, the last giant impact on Earth formed the Moon and initiated the final phase of core formation by melting Earth's mantle. A key goal of geochemistry is to date this event, but different ages have been proposed. Some argue for an early Moon-forming event, approximately 30 million years (Myr) after the condensation of the first solids in the Solar System, whereas others claim a date later than 50 Myr (and possibly as late as around 100 Myr) after condensation. Here we show that a Moon-forming event at 40 Myr after condensation, or earlier, is ruled out at a 99.9 per cent confidence level. We use a large number of N-body simulations to demonstrate a relationship between the time of the last giant impact on an Earth-like planet and the amount of mass subsequently added during the era known as Late Accretion. As the last giant impact is delayed, the late-accreted mass decreases in a predictable fashion. This relationship exists within both the classical scenario and the Grand Tack scenario of terrestrial planet formation, and holds across a wide range of disk conditions. The concentration of highly siderophile elements (HSEs) in Earth's mantle constrains the mass of chondritic material added to Earth during Late Accretion. Using HSE abundance measurements, we determine a Moon-formation age of 95 +/- 32 Myr after condensation. The possibility exists that some late projectiles were differentiated and left an incomplete HSE record in Earth's mantle. Even in this case, various isotopic constraints strongly suggest that the late-accreted mass did not exceed 1 per cent of Earth's mass, and so the HSE clock still robustly limits the timing of the Moon-forming event to significantly later than 40 Myr after condensation.

  13. A Study on Removal of Rare Earth Elements from U.S. Coal Byproducts by Ion Exchange

    NASA Astrophysics Data System (ADS)

    Rozelle, Peter L.; Khadilkar, Aditi B.; Pulati, Nuerxida; Soundarrajan, Nari; Klima, Mark S.; Mosser, Morgan M.; Miller, Charles E.; Pisupati, Sarma V.

    2016-03-01

    Rare earth elements are known to occur in low concentrations in U.S. coals and coal byproducts. These low concentrations may make rare earth element recovery from these materials unattractive, using only physical separation techniques. However, given the significant production of rare earths through ion exchange extraction in China, two U.S. coal byproducts were examined for ion extraction, using ammonium sulfate, an ionic liquid, and a deep eutectic solvent as lixiviants. Extraction of rare earth elements in each case produced high recoveries of rare earth elements to the solution. This suggests that in at least the cases of the materials examined, U.S. coal byproducts may be technically suitable as REE ores. More work is required to establish economic suitability.

  14. Siku: A Sea Ice Discrete Element Method Model on a Spherical Earth

    NASA Astrophysics Data System (ADS)

    Kulchitsky, A. V.; Hutchings, J. K.; Johnson, J.

    2014-12-01

    Offshore oil and gas exploration and production activities in the Beaufort and Chukchi Seas can be significantly and adversely affected by sea ice. In the event of an oil spill, sea ice complicates the tracking of ice/oil trajectories and can hinder cleanup operations. There is a need for a sea ice dynamics model that can accurately simulate ice pack deformation and failure to improve the ability to track ice/oil trajectories and support oil response operations. A discrete element method (DEM) model, where each ice floe is represented by discrete elements that are initially bonded (frozen) together will be used to address the difficulty continuum modeling approaches have with representing discrete phenomena in sea ice, such as the formation of leads and ridges. Each discrete element in the DEM is a rigid body driven by environmental forcing (wind, current and Coriolis forces) and interaction forces with other discrete elements (compression, shear, tension, bond rupture and regrowth). We introduce a new DEM model ``Siku'', currently under development, to simulate ice drift of an ice floe on a spherical Earth. We will present initial free-drift results. Siku is focused on improving sea ice interaction mechanics and providing an accurate geometrical representation needed for basin scale and regional simulations. Upon completion, Siku will be an open source GNU GPL licensed user friendly program with embedded python capability for setting up simulations "scenarios" and coupling with other models to provide forcing fields. We use a unique quaternion representation for position and orientation of polygon sea-ice elements that use a second order integration scheme of sea-ice element motion on the Earth's sphere that does not depend on the location of the element and, hence, avoids numerical problems near the pole.

  15. Determination of rare earth elements in environmental materials by inductively coupled plasma mass spectrometry

    SciTech Connect

    Panday, V.K.; Hoppstock, K.; Becker, J.S.; Dietze, H.J.

    1996-09-01

    Despite the fact that rare earth elements (REE) have found increasing use in modern technology only few data are available on their concentrations in biological and environmental samples. Inductively coupled plasma mass spectrometry (ICP-MS) has been employed to study the concentration of rare earth elements (REE) in various environmental materials (e.g., pine needles, mussel tissue, apple leaves) available from National Institute of Standards and Technology (NIST), the Bureau of European Communities (BCR), and the German Environmental Specimens Bank. After the decomposition of the environmental samples with HNO{sub 3}, the REE (present mostly in the ng/g-range) were separated from the matrix and simultaneously preconcentrated using liquid-liquid extraction with bis(2-ethyl hexyl)-ortho-phosphoric acid (HDEHP) in toluene as a selective reagent at pH = 2 and subsequent back extraction of the elements into the aqueous by 6M HNO{sub 3}. Recoveries of better 90% were obtained for almost all REE. A Perkin Elmer/Sciex ELAN 5000 ICP-MS and HR-ICP-MS ELEMENT from Finnigan MAT were used for quantitative analysis (by external calibration and ID-ICP-MS) of REE. The results of determination of REE concentrations agree well with the data available on some of these materials. Further supplement information on the contents of various REE in these materials.

  16. Normalized rare earth elements in water, sediments, and wine: identifying sources and environmental redox conditions

    USGS Publications Warehouse

    Piper, David Z.; Bau, Michael

    2013-01-01

    The concentrations of the rare earth elements (REE) in surface waters and sediments, when normalized on an element-by-element basis to one of several rock standards and plotted versus atomic number, yield curves that reveal their partitioning between different sediment fractions and the sources of those fractions, for example, between terrestrial-derived lithogenous debris and seawater-derived biogenous detritus and hydrogenous metal oxides. The REE of ancient sediments support their partitioning into these same fractions and further contribute to the identification of the redox geochemistry of the sea water in which the sediments accumulated. The normalized curves of the REE that have been examined in several South American wine varietals can be interpreted to reflect the lithology of the bedrock on which the vines may have been grown, suggesting limited fractionation during soil development.

  17. Stability constants and thermodynamic data for complexes of 12-crown-4 with alkali metal and alkaline-earth cations in methanol solutions

    SciTech Connect

    Buschmann, H.

    1987-03-01

    The formation of 1:1- and 2:1-complexes of the crown ether 12C4 with mono- and bivalent cations was studied in methanol solutions by calorimetric, potentiometric and conductometric titrations. It is shown that not all donor atoms of the ligand 12C4 take part in complex formation. The accuracy of the three experimental methods are checked by comparing the results for the complexation of alkali ions with crown ether 18C6.

  18. Quantification of rare earth elements using laser-induced breakdown spectroscopy

    SciTech Connect

    Martin, Madhavi; Martin, Rodger C.; Allman, Steve; Brice, Deanne; Wymore, Ann; Andre, Nicolas

    2015-10-21

    In this paper, a study of the optical emission as a function of concentration of laser-ablated yttrium (Y) and of six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), has been evaluated using the laser-induced breakdown spectroscopy (LIBS) technique. Statistical methodology using multivariate analysis has been used to obtain the sampling errors, coefficient of regression, calibration, and cross-validation of measurements as they relate to the LIBS analysis in graphite-matrix pellets that were doped with elements at several concentrations. Each element (in oxide form) was mixed in the graphite matrix in percentages ranging from 1% to 50% by weight and the LIBS spectra obtained for each composition as well as for pure oxide samples. Finally, a single pellet was mixed with all the elements in equal oxide masses to determine if we can identify the elemental peaks in a mixed pellet. This dataset is relevant for future application to studies of fission product content and distribution in irradiated nuclear fuels. These results demonstrate that LIBS technique is inherently well suited for the future challenge of in situ analysis of nuclear materials. Finally, these studies also show that LIBS spectral analysis using statistical methodology can provide quantitative results and suggest an approach in future to the far more challenging multielemental analysis of ~ 20 primary elements in high-burnup nuclear reactor fuel.

  19. Quantification of rare earth elements using laser-induced breakdown spectroscopy

    DOE PAGESBeta

    Martin, Madhavi; Martin, Rodger C.; Allman, Steve; Brice, Deanne; Wymore, Ann; Andre, Nicolas

    2015-10-21

    In this paper, a study of the optical emission as a function of concentration of laser-ablated yttrium (Y) and of six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), has been evaluated using the laser-induced breakdown spectroscopy (LIBS) technique. Statistical methodology using multivariate analysis has been used to obtain the sampling errors, coefficient of regression, calibration, and cross-validation of measurements as they relate to the LIBS analysis in graphite-matrix pellets that were doped with elements at several concentrations. Each element (in oxide form) was mixed in the graphite matrix in percentages rangingmore » from 1% to 50% by weight and the LIBS spectra obtained for each composition as well as for pure oxide samples. Finally, a single pellet was mixed with all the elements in equal oxide masses to determine if we can identify the elemental peaks in a mixed pellet. This dataset is relevant for future application to studies of fission product content and distribution in irradiated nuclear fuels. These results demonstrate that LIBS technique is inherently well suited for the future challenge of in situ analysis of nuclear materials. Finally, these studies also show that LIBS spectral analysis using statistical methodology can provide quantitative results and suggest an approach in future to the far more challenging multielemental analysis of ~ 20 primary elements in high-burnup nuclear reactor fuel.« less

  20. Rare-earth elements in Egyptian granite by instrumental neutron activation analysis.

    PubMed

    El-Taher, A

    2007-04-01

    The mobilization of rare-earth elements (REEs) in the environment requires monitoring of these elements in environmental matrices, in which they are mainly present at trace levels. The similarity in REEs chemical behavior makes the separate determination of each element by chemical methods difficult; instrumental neutron activation analysis (INAA), based on nuclear properties of the elements to be determined, is a method of choice in trace analysis of REEs and related elements. Therefore, INAA was applied as a sensitive nondestructive analytical tool for the determination of REEs to find out what information could be obtained about the REEs of some Egyptian granite collected from four locations in Aswan area in south Egypt as follows wadi El-Allaqi, El-Shelal, Gabel Ibrahim Pasha and from Sehyel Island and to estimate the accuracy, reproducibility and detection limit of NAA method in case of the given samples. The samples were properly prepared together with standards and simultaneously irradiated in a neutron flux of 7 x 10(11)n/cm(2)s in the TRIGA Mainz research reactor facilities. The following elements have been determined: La, Ce, Nd, Sm, Eu, Yb and Lu. The gamma spectra was collected by HPGe detector and the analysis was done by means of computerized multichannel analyzer. The X-ray fluorescence (XRF) was also used. PMID:17208446

  1. Quantification of rare earth elements using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi; Martin, Rodger C.; Allman, Steve; Brice, Deanne; Wymore, Ann; Andre, Nicolas

    2015-12-01

    A study of the optical emission as a function of concentration of laser-ablated yttrium (Y) and of six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), has been evaluated using the laser-induced breakdown spectroscopy (LIBS) technique. Statistical methodology using multivariate analysis has been used to obtain the sampling errors, coefficient of regression, calibration, and cross-validation of measurements as they relate to the LIBS analysis in graphite-matrix pellets that were doped with elements at several concentrations. Each element (in oxide form) was mixed in the graphite matrix in percentages ranging from 1% to 50% by weight and the LIBS spectra obtained for each composition as well as for pure oxide samples. Finally, a single pellet was mixed with all the elements in equal oxide masses to determine if we can identify the elemental peaks in a mixed pellet. This dataset is relevant for future application to studies of fission product content and distribution in irradiated nuclear fuels. These results demonstrate that LIBS technique is inherently well suited for the future challenge of in situ analysis of nuclear materials. These studies also show that LIBS spectral analysis using statistical methodology can provide quantitative results and suggest an approach in future to the far more challenging multielemental analysis of ~ 20 primary elements in high-burnup nuclear reactor fuel.

  2. Spectral analysis of rare earth elements using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Fox, Robert V.; Miziolek, Andrzej W.; DeLucia, Frank C.; André, Nicolas

    2015-06-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  3. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    SciTech Connect

    Madhavi Z. Martin; Robert V. Fox; Andrzej W. Miziolek; Frank C. DeLucia, Jr.; Nicolas Andre

    2001-05-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  4. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    SciTech Connect

    Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W; DeLucia, Frank C; Andre, Nicolas O

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in real-world complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  5. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    SciTech Connect

    Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W; DeLucia, Frank C; Andre, Nicolas O

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  6. Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China

    NASA Astrophysics Data System (ADS)

    Wang, Lingqing; Liang, Tao

    2015-07-01

    Rare earth mine tailing dumps are environmental hazards because tailing easily leaches and erodes by water and wind. To assess the influence of mine tailing on the geochemical behavior of rare earth elements (REEs) in soil, sixty-seven surface soil samples and three soil profile samples were collected from different locations near China’s largest rare earth mine tailing. The total concentration of REEs in surface soils ranged from 156 to 5.65 × 104 mg·kg-1 with an average value of 4.67 × 103 mg·kg-1, which was significantly higher than the average value in China (181 mg·kg-1). We found obvious fractionation of both light and heavy REEs, which was supported by the North American Shale Composite (NASC) and the Post-Archean Average Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (LaN/YbN, LaN/SmN and GdN/YbN). A slightly positive Ce anomaly and a negative Eu anomaly were also found. For all 14 REEs in soils, enrichment was intensified by the mine tailing sources and influenced by the prevailing wind.

  7. Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China

    PubMed Central

    Wang, Lingqing; Liang, Tao

    2015-01-01

    Rare earth mine tailing dumps are environmental hazards because tailing easily leaches and erodes by water and wind. To assess the influence of mine tailing on the geochemical behavior of rare earth elements (REEs) in soil, sixty-seven surface soil samples and three soil profile samples were collected from different locations near China’s largest rare earth mine tailing. The total concentration of REEs in surface soils ranged from 156 to 5.65 × 104 mg·kg−1 with an average value of 4.67 × 103 mg·kg−1, which was significantly higher than the average value in China (181 mg·kg−1). We found obvious fractionation of both light and heavy REEs, which was supported by the North American Shale Composite (NASC) and the Post-Archean Average Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (LaN/YbN, LaN/SmN and GdN/YbN). A slightly positive Ce anomaly and a negative Eu anomaly were also found. For all 14 REEs in soils, enrichment was intensified by the mine tailing sources and influenced by the prevailing wind. PMID:26198417

  8. Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China.

    PubMed

    Wang, Lingqing; Liang, Tao

    2015-01-01

    Rare earth mine tailing dumps are environmental hazards because tailing easily leaches and erodes by water and wind. To assess the influence of mine tailing on the geochemical behavior of rare earth elements (REEs) in soil, sixty-seven surface soil samples and three soil profile samples were collected from different locations near China's largest rare earth mine tailing. The total concentration of REEs in surface soils ranged from 156 to 5.65 × 10(4) mg·kg(-1) with an average value of 4.67 × 10(3) mg·kg(-1), which was significantly higher than the average value in China (181 mg·kg(-1)). We found obvious fractionation of both light and heavy REEs, which was supported by the North American Shale Composite (NASC) and the Post-Archean Average Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (La(N)/Yb(N), La(N)/Sm(N) and Gd(N)/Yb(N)). A slightly positive Ce anomaly and a negative Eu anomaly were also found. For all 14 REEs in soils, enrichment was intensified by the mine tailing sources and influenced by the prevailing wind. PMID:26198417

  9. Enhanced phytoextraction of germanium and rare earth elements - a rhizosphere-based approach

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver

    2016-04-01

    Germanium (Ge) and rare earth elements (REEs) are economically valuable raw materials that have become an integral part of our modern high tech society. While most of these elements are not actually rare in terms of general amounts in the earth's crust, they are rarely found in sufficient abundances in single locations for their mining to be economically viable. The average concentration of Ge in soils is estimated at 1.6 μg g-1. The REEs comprise a group of 16 elements including La, the group of lanthanides and Y that are abundant in the earth crust with concentrations varying from 35 μg g-1 (La), 40 μg g-1 (Nd), 6 μg g-1 (Gd) and 3.5 μg g-1 (Er) to 0.5 μg g-1 in Tm. Thus, a promising chance to improve supply of these elements could be phytomining. Unfortunately, bioavailability of Ge and REEs in soils appears to be low, in particular in neutral or alkaline soils. A sequential dissolution analysis of 120 soil samples taken from the A-horizons of soils in the area of Freiberg (Saxony, Germany) revealed that only 0.2% of total Ge and about 0.5% of La, Nd, Gd and Er of bulk concentrations were easily accessible by leaching with NH4-acetate (pH 7). Most of the investigated elements were bound to Fe-/Mn-oxides and silicates and were therefore only poorly available for plant uptake. Here we report an environmentally friendly approach for enhanced phytoextraction of Ge and REEs from soils using mixed cultures of plant species with efficient mechanisms for the acquisition of nutrients in the rhizosphere. The rhizosphere is characterized as the zone in soil sourrounding a plant root that consists of a gradient in chemical, physical and biological soil properties driven by rhizodeposits like carboxylates and protons. Some species like white lupin (Lupinus albus) are able to excrete large amounts of organic acid anions(predominantly citrate and malate) and show a particularly high potential for the acidification of the rhizosphere. In our experiments, mixed cultures

  10. Biological availability and environmental behaviour of Rare Earth Elements in soils of Hesse, Central Germany

    NASA Astrophysics Data System (ADS)

    Loell, M.; Duering, R.-A.; Felix-Henningsen, P.

    2009-04-01

    Rare earth elements (REEs) comprise a group of 17 transition metals with very similar chemical and physical properties. They include the elements scandium (Sc), yttrium (Y) and lanthanum (La) and the 14 elements (cerium to lutetium) that follow La in the periodic table. Their average abundance in the earth's crust varies from 0,01 to 0,02% so they are as common as Cu and Pb. Beside their widespread use in industry, REEs are applied in Chinese agriculture. Their beneficial effects both on crop yield and on animal production are reported in various investigations. As a result - by using microelement fertilisers and manure - REEs enter the pedosphere while their fate and behaviour in the environment up to now remains unexamined. The first aim of our investigation was to evaluate the concentration of REEs in agricultural used soils in central Germany (Hesse) by ICP-MS. In addition to their total concentration (aqua regia digestion) their bioavailable contents - determined by EDTA (potentially available fraction) and ammonium nitrate extraction (mobile fraction) - were analysed. The occurrence of the three REE fractions in different soils will be discussed and influencing soil properties (e.g. pH-value, content of clay and organic carbon) will be revealed. Additionally the uptake of REEs by grassland plants was determined and resulting transfer factors will be presented.

  11. Investigation of recovery and recycling of rare earth elements from waste fluorescent lamp phosphors

    NASA Astrophysics Data System (ADS)

    Eduafo, Patrick Max

    Characterization techniques and experimental measurements were used to evaluate a process for recycling rare earth elements (REEs) from spent fluorescent lamp phosphors. QEMSCAN analysis revealed that over 60% of the rare earth bearing minerals was less than 10 microm. A representative sample of the as-received feed contained 14.59 wt% total rare earth elements (TREE) and upon sieving to below 75 microm, the grade increased to 19.60 wt% REE with 98.75% recovery. Based on experimental work, a new process for extracting the chief REEs from end of life fluorescent lamps has been developed. The proposed flowsheet employs a three-stage leaching and precipitation process for selective extraction and recovery of the REEs. Hydrochloric acid was used as lixiviant in batch leach experiments on the phosphor powder. The maximum extraction obtained was 100% for both yttrium and europium under the following leaching conditions: 2.5 M HCl, 70°C, 1 hour, 180 g/L and 600 rpm. However, the solubility of cerium, lanthanum and terbium remained low at these conditions. Kinetic data of the leaching of yttrium and europium showed best fit to the logarithmic rate expression of the empirical model of leaching. Activation energy was calculated to be 77.49 kJ/mol for Y and 72.75 kJ/mol for Eu in the temperature range of 298 to 343 K. Precipitation tests demonstrate that at least 50% excess the stoichiometric amount of oxalic acid is needed to recover yttrium and europium efficiently to produce a pure (Y, Eu) mixed oxide. Total recovery of the REEs was achieved even at very low pH or without any base added. Over 99% pure mixed rare earth oxide at 99% recovery has been attained. An economic assessment of the developed process using operating and capital cost have be undertaken and based on the analysis of the three economic scenarios, two are economic and one is non-economic.

  12. Origin of Volatiles in Earth: Indigenous Versus Exogenous Sources Based on Highly Siderophile, Volatile Siderophile, and Light Volatile Elements

    NASA Technical Reports Server (NTRS)

    Righter, K.; Danielson, L.; Pando, K. M.; Marin, N.; Nickodem, K.

    2015-01-01

    Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation.

  13. NEW RARE EARTH ELEMENT ABUNDANCE DISTRIBUTIONS FOR THE SUN AND FIVE r-PROCESS-RICH VERY METAL-POOR STARS

    SciTech Connect

    Sneden, Christopher; Lawler, James E.; Den Hartog, Elizabeth A.; Cowan, John J.; Ivans, Inese I. E-mail: jelawler@wisc.edu E-mail: cowan@nhn.ou.edu

    2009-05-15

    We have derived new abundances of the rare earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement with meteoritic abundances. For the low-metallicity sample, these abundances have been combined with new Ce abundances from a companion paper, and reconsideration of a few other elements in individual stars, to produce internally consistent Ba, rare earth, and Hf (56 {<=} Z {<=} 72) element distributions. These have been used in a critical comparison between stellar and solar r-process abundance mixes.

  14. On the origin of falling-tone chorus elements in Earth's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Breuillard, H.; Agapitov, O.; Artemyev, A.; Krasnoselskikh, V.; Le Contel, O.; Cully, C. M.; Angelopoulos, V.; Zaliznyak, Y.; Rolland, G.

    2014-12-01

    Generation of extremely/very low frequency (ELF/VLF) chorus waves in Earth's inner magnetosphere has received increased attention recently because of their significance for radiation belt dynamics. Though past theoretical and numerical models have demonstrated how rising-tone chorus elements are produced, falling-tone chorus element generation has yet to be explained. Our new model proposes that weak-amplitude falling-tone chorus elements can be generated by magnetospheric reflection of rising-tone elements. Using ray tracing in a realistic plasma model of the inner magnetosphere, we demonstrate that rising-tone elements originating at the magnetic equator propagate to higher latitudes. Upon reflection there, they propagate to lower L-shells and turn into oblique falling tones of reduced power, frequency, and bandwidth relative to their progenitor rising tones. Our results are in good agreement with comprehensive statistical studies of such waves, notably using magnetic field measurements from THEMIS (Time History of Events and Macroscale Interactions during Substorms) spacecraft. Thus, we conclude that the proposed mechanism can be responsible for the generation of weak-amplitude falling-tone chorus emissions.

  15. Study on the activated laser welding of ferritic stainless steel with rare earth elements yttrium

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    The ferritic stainless steel SUS430 was used in this work. Based on a multi-component activating flux, composed of 50% ZrO2, 12.09 % CaCO3, 10.43 % CaO, and 27.49 % MgO, a series of modified activating fluxes with 0.5%, 1%, 2%, 5%, 10%, 15%, and 20% of rare earth (RE) element yttrium (Y) respectively were produced, and their effects on the weld penetration (WP) and corrosion resistant (CR) property were studied. Results showed that RE element Y hardly had any effects on increasing the WP. In the FeCl3 spot corrosion experiment, the corrosion rates of almost all the samples cut from welded joints turned out to be greater than the parent metal (23.51 g/m2 h). However, there was an exception that the corrosion rate of the sample with 5% Y was only 21.96 g/m2 h, which was even better than parent metal. The further Energy Dispersive Spectrometer (EDS) test showed the existence of elements Zr, Ca, O, and Y in the molten slag near the weld seam while none of them were found in the weld metal, indicating the direct transition of element from activating fluxes to the welding seam did not exist. It was known that certain composition of activating fluxes effectively restrain the loss of Cr element in the process of laser welding, and as a result, the CR of welded joints was improved.

  16. Earth

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1984-01-01

    The following aspects of the planet Earth are discussed: plate tectonics, the interior of the planet, the formation of the Earth, and the evolution of the atmosphere and hydrosphere. The Earth's crust, mantle, and core are examined along with the bulk composition of the planet.

  17. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran

    NASA Astrophysics Data System (ADS)

    Shakeri, Ata; Ghoreyshinia, Sayedkazem; Mehrabi, Behzad; Delavari, Morteza

    2015-10-01

    Concentrations of rare earth elements (REEs) were determined in springs and andesitic-dacitic rocks of Taftan geothermal field. Hydrochemical results of major ions indicate that thermal springs are Na-SO4-Cl and Ca-SO4-Cl types. Concentrations of REEs are in ranges of 10- 4 to 1.2 and 49 to ~ 62 times of chondrite for springwater and rock samples, respectively. The thermal (STS and TTS) and the cold (APS) springs with low pH values exhibit a very high REE contents (0.64 to 3.15 mg/l). Saturation index indicates that Fe and Al phases can control dissolved REE concentration in FTS and PF cold springs. The speciation of REE complexes indicates dominant presence of LnSO4+ and free ion in the Taftan thermal springs. In APS cold spring with pH ~ 4, fluoride complexes are dominate over the free ion and sulfate species, while in PF and FTS cold springs with pH 6.4 and 7, respectively, carbonate complexes (LnCO3+) are predominant species. Chondrite-normalized pattern for the low-pH waters show very distinctive gull-wing patterns, characteristic feature of acid-sulfate geothermal systems, and are similar to those of the host rocks. Chemical characteristics of rare earth elements in spring and volcanic rock samples indicate that REEs are originated from the andesitic-dacitic host rocks. Whole-rock-normalized REE patterns and petrographic evidences show that rare earth elements leached mainly from marginal alteration of minerals and matrix decomposition in volcanic rocks. In chondrite-normalized REE patterns, significant negative Eu anomaly in the cold springs compare to the thermal and acidic springs indicates that alteration of plagioclase is more intense in the later, corresponding to increasing in temperature and acidic state of reactant water.

  18. A set of alkali and alkaline-earth coordination polymers based on the ligand 2-(1H-benzotriazol-1-yl) acetic acid: Effects the radius of metal ions on structures and properties

    SciTech Connect

    Wang, Jin-Hua; Tang, Gui-Mei; Qin, Ting-Xiao; Yan, Shi-Chen; Wang, Yong-Tao; Cui, Yue-Zhi; Weng Ng, Seik

    2014-11-15

    Four new metal coordination complexes, namely, [Na(BTA)]{sub n} (1), [K{sub 2}(BTA){sub 2}(μ{sub 2}-H{sub 2}O)]{sub n} (2), and [M(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n} (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1–4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11 nodal net with Schläfli symbol of (3{sup 18}). Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of (3{sup 11}×4{sup 2}). Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1–4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail. - Graphical abstract: A set of alkali and alkaline-earth metal coordination polymers were hydrothermally synthesized by 2-(1H-benzotriazol-1-yl)acetic acid, displaying interesting topologic motifs from two-dimension to one-dimension and specific physical properties. - Highlights: • Alkali and alkaline-earth metal coordination polymers have been obtained. • The ligand 2-(1H-benzotriazol-1-yl)acetic acid has been adopted. • The two-dimensional and one

  19. Equivalent Body Force Finite Elements Method and 3-D Earth Model Applied In 2004 Sumatra Earthquake

    NASA Astrophysics Data System (ADS)

    Qu, W.; Cheng, H.; Shi, Y.

    2015-12-01

    The 26 December 2004 Sumatra-Andaman earthquake with moment magnitude (Mw) of 9.1 to 9.3 is the first great earthquake recorded by digital broadband, high-dynamic-range seismometers and global positioning system (GPS) equipment, which recorded many high-quality geophysical data sets. The spherical curvature is not negligible in far field especially for large event and the real Earth is laterally inhomogeneity and the analytical results still are difficult to explain the geodetic measurements. We use equivalent body force finite elements method Zhang et al. (2015) and mesh the whole earth, to compute global co-seismic displacements using four fault slip models of the 2004 Sumatra earthquake provided by different authors. Comparisons of calculated co-seismic displacements and GPS show that the confidences are well in near field for four models, and the confidences are according to different models. In the whole four models, the Chlieh model (Chlieh et al., 2007) is the best as this slip model not only accord well with near field data but also far field data. And then we use the best slip model, Chlieh model to explore influence of three dimensional lateral earth structure on both layered spherically symmetric (PREM) and real 3-D heterogeneous earth model (Crust 1.0 model and GyPSuM). Results show that the effects of 3-D heterogeneous earth model are not negligible and decrease concomitantly with increasing distance from the epicenter. The relative effects of 3-D crust model are 23% and 40% for horizontal and vertical displacements, respectively. The effects of the 3-D mantle model are much smaller than that of 3-D crust model but with wider impacting area.

  20. Application of solid phase extraction procedures for rare earth elements determination in environmental samples.

    PubMed

    Pyrzynska, Krystyna; Kubiak, Anna; Wysocka, Irena

    2016-07-01

    Determination of rare earth elements in environmental samples requires often pre-concentration and separation step due to a low metal content and high concentration of the interfering matrix components. A solid phase extraction technique with different kind of solid sorbents offers a high enrichment factor, rapid phase separation and the possibility of its combination with various detection techniques used either in on-line or off-line mode. The recent developments in this area published over the last five years are presented and discussed in this paper. PMID:27154643

  1. Extraction of rare earth elements from hydrate-phosphate precipitates of apatite processing

    NASA Astrophysics Data System (ADS)

    Andropov, M. O.; Anufrieva, A. V.; Buynovskiy, A. S.; Makaseev, Y. N.; Mazov, I. N.; Nefedov, R. A.; Sachkov, V. I.; Stepanova, O. B.; Valkov, AV

    2016-01-01

    The features of extraction of rare earth elements (REE) were considered from hydrate-phosphate precipitates of REE of apatite processing by nitric acid technology. The preliminary purification of nitrate solution of REE from impurities of titanium, aluminum, iron, uranium and thorium was suggested to obtain stable solutions not forming precipitates. Washing the extract was recommended with the evaporated reextract that allows to obtain directly on the cascade of REE extraction the concentrated solutions suitable for the separation into groups by the extraction method. Technical decisions were suggested for the separation of REE in groups without the use of salting-out agent.

  2. Rare-Earth Elements in Lighting and Optical Applications and Their Recycling

    NASA Astrophysics Data System (ADS)

    Song, Xin; Chang, Moon-Hwan; Pecht, Michael

    2013-10-01

    Rare-earth elements (REEs) are used in lighting and optical applications to enable color and light adjustment, miniaturization, and energy efficiency. Common applications of REEs include phosphors for light-emitting diodes, lasers, and electronic video displays. This article reviews how REEs are widely used in these applications. However, supply constraints, including rising prices, environmental concerns over mining and refining processes, and China's control over the supply of the vast majority of REEs, are of concern for manufacturers. In view of these supply constraints, this article discusses ways for manufacturers of lighting and optical devices to identify potential substitutes and recycling methods for REEs.

  3. Influence of rare earth elements (Nd, Sm, Gd) on the physicochemical properties of ges crystal

    NASA Astrophysics Data System (ADS)

    Madatov, R. S.; Alekperov, A. S.; Magerramova, Dzh. A.

    2015-11-01

    Layered semiconductors (including GeS), which are widely used in modern electronics, are of great interest for researchers. New GeS-based devices have been developed for holographic recording, optical processing, and storage of information. In the last few years, American scientists have developed a unique GeS-based device that makes it possible to accumulate an immense amount of solar energy. The introduction of rare earth elements (REEs) facilitates the healing of metal and chalcogenide vacancies, removes polytypism, and enhances interlayer interaction.

  4. An EDTA-β-cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater.

    PubMed

    Zhao, Feiping; Repo, Eveliina; Meng, Yong; Wang, Xueting; Yin, Dulin; Sillanpää, Mika

    2016-03-01

    The separation and recovery of Rare earth elements (REEs) from diluted aqueous streams has attracted great attention in recent years because of ever-increasing REEs demand. In this study, a green synthesized EDTA-cross-linked β-cyclodextrin (EDTA-β-CD) biopolymer was prepared and employed in adsorption of aqueous REEs, such as La(III), Ce(III), and Eu(III). EDTA acts not only as cross-linker but also as coordination site for binding of REEs. The adsorption properties for the adsorption of REEs by varying experimental conditions were carried out by batch tests. The kinetics results revealed that the surface chemical sorption and the external film diffusion were the rate-determining steps of the adsorption process. The obtained maximum adsorption capacities of EDTA-β-CD were 0.343, 0.353, and 0.365mmolg(-1) for La(III), Ce(III) and Eu(III), respectively. Importantly, the isotherms fitted better to Langmuir than Freundlich and Sips models, suggesting a homogenous adsorption surface for REEs on the adsorbent. Moreover, the multi-component adsorption, which was modeled by extended Sips isotherms, revealed adsorbent's selectivity to Eu(III). More significantly, the successful recoveries of the studied ions from tap water and seawater samples makes EDTA-β-CD a promising sorbent for the preconcentration of REEs from diluted aqueous streams. PMID:26674238

  5. Partitioning of light lithophile elements during basalt eruptions on Earth and application to Martian shergottites

    NASA Astrophysics Data System (ADS)

    Edmonds, Marie

    2015-02-01

    An enigmatic record of light lithophile element (LLE) zoning in pyroxenes in basaltic shergottite meteorites, whereby LLE concentrations decrease dramatically from the cores to the rims, has been interpreted as being due to partitioning of LLE into a hydrous vapor during magma ascent to the surface on Mars. These trends are used as evidence that Martian basaltic melts are water-rich (McSween et al., 2001). Lithium and boron are light lithophile elements (LLE) that partition into volcanic minerals and into vapor from silicate melts, making them potential tracers of degassing processes during magma ascent to the surface of Earth and of other planets. While LLE degassing behavior is relatively well understood for silica-rich melts, where water and LLE concentrations are relatively high, very little data exists for LLE abundance, heterogeneity and degassing in basaltic melts. The lack of data hampers interpretation of the trends in the shergottite meteorites. Through a geochemical study of LLE, volatile and trace elements in olivine-hosted melt inclusions from Kilauea Volcano, Hawaii, it can be demonstrated that lithium behaves similarly to the light to middle rare Earth elements during melting, magma mixing and fractionation. Considerable heterogeneity in lithium and boron is inherited from mantle-derived primary melts, which is dominant over the fractionation and degassing signal. Lithium and boron are only very weakly volatile in basaltic melt erupted from Kilauea Volcano, with vapor-melt partition coefficients <0.1. Degassing of LLE is further inhibited at high temperatures. Pyroxene and associated melt inclusion LLE concentrations from a range of volcanoes are used to quantify lithium pyroxene-melt partition coefficients, which correlate negatively with melt H2O content, ranging from 0.13 at low water contents to <0.08 at H2O contents >4 wt%. The observed terrestrial LLE partitioning behavior is extrapolated to Martian primitive melts through modeling. The zoning

  6. Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China

    USGS Publications Warehouse

    Zheng, Lingyun; Liu, Gaisheng; Chou, C.-L.; Qi, C.; Zhang, Y.

    2007-01-01

    The rare earth elements (REEs) in coals are important because of: (a) REE patterns can be an indicator of the nature of source rocks of the mineral matter as well as sedimentary environments; (b) REEs abundance in coal may have industrial-significance. In this study, a total of thirty-four samples of Permian coal, partings, roof, and floor were collected from the Huaibei Coalfield, Anhui Province, China. Abundances of rare earth elements (REEs) and other elements in the samples were determined by inductively coupled-plasma mass spectrometry (ICP-MS) and inductively coupled-plasma atomic emission spectrometry (ICP-AES). The results show that the REEs are enriched in coals in the Huaibei Coalfield as compared with Chinese and U.S. coals and the world coal average. Coals in the Lower Shihezi Formation (No. 7, 5, and 4 Coals) and Upper Shihezi Formation (No. 3) have higher REE abundances than the coals in Shanxi Formation (No. 10). Magmatic intrusion resulted in high enrichment of REEs concentrations in No. 5 and 7 Coals. The REE abundances are positively correlated with the ash content. The mineral matter in these coals is mainly made up of clay minerals and carbonates. The REEs are positively correlated with lithophile elements including Si, Al, Ti, Fe, and Na, which are mainly distributed in clay minerals, indicating that REEs are contained mainly in clay minerals. The REE abundances in coals normalized by the ash are higher than that in partings. REEs abundances of coals cannot be accounted for by the REE content in the mineral matter, and some REEs associated with organic matter in coals. ?? 2007 Elsevier Ltd. All rights reserved.

  7. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  8. Nuclear activation method and apparatus for detecting and quantifying earth elements

    SciTech Connect

    Carroll, J.F.

    1993-08-17

    A method is described for characterizing at least one activated element in an earth formation surrounding a borehole, comprising the steps of: (a) displacing in said borehole a sonde comprising a neutron source and at least two gamma ray detectors longitudinally spaced from said source, while irradiating said formation with neutrons of sufficient energy to interact with said element according to the activation reaction; (b) detecting and counting at each detector the gamma rays resulting from the activation of atoms of said element; (c) determining, at each depth, the number of gamma ray counts detected during the time period defined by the time instants when respectively said source and said detectors pass that depth, said determination of gamma ray counts being made for each detector at each depth; (d) establishing a relationship, for each depth, between the counts from the respective detectors for that depth and the corresponding time instants when the corresponding detector passes that depth; and (e) deriving from said relationship at least one characteristic of said element.

  9. Bioinorganic Chemistry of the Alkali Metal Ions.

    PubMed

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced. PMID:26860297

  10. Rare earth element components in atmospheric particulates in the Bayan Obo mine region.

    PubMed

    Wang, Lingqing; Liang, Tao; Zhang, Qian; Li, Kexin

    2014-05-01

    The Bayan Obo mine, located in Inner Mongolia, China, is the largest light rare earth body ever found in the world. The research for rare earth elements (REEs) enrichment in atmospheric particulates caused by mining and ore processing is fairly limited so far. In this paper, atmospheric particulates including total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter less than 10 μm (PM10) were collected around the Bayan Obo mine region, in August 2012 and March 2013, to analyze the levels and distributions of REEs in particles. The total concentrations of REEs for TSP were 149.8 and 239.6 ng/m(3), and those for PM10 were 42.8 and 68.9 ng/m(3), in August 2012 and March 2013, respectively. Enrichment factor was calculated for all 14 REEs in the TSP and PM10 and the results indicated that REEs enrichment in atmosphere particulates was caused by anthropogenic sources and influenced by the strong wind in springtime. The spatial distribution of REEs in TSP showed a strong gradient concentration in the prevailing wind direction. REE chondrite normalized patterns of TSP and PM10 were similar and the normalized curves inclined to the right side, showing the conspicuous fractionation between the light REEs and heavy REE, which supported by the chondrite normalized concentration ratios calculated for selected elements (La(N)/Yb(N), La(N)/Sm(N), Gd(N)/Yb(N)). PMID:24657942

  11. Rare earth elements in sediments of the Vigo Ria, NW Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Prego, Ricardo; Caetano, Miguel; Vale, Carlos; Marmolejo-Rodríguez, Judith

    2009-04-01

    The abundance and distribution of rare earth elements (REE) and their signatures in the Vigo Ria were studied from 50 samples of surface sediments and related to the geological formation in its watershed. The total amount of REE in the Ria is heterogeneous. It ranges from 220 mg kg -1 in the southern middle Ria margin in the vicinity of the Galiñeiro geological shore complex, which contains REE-enriched minerals, to 2 mg kg -1 near the Ria mouth due to dilution with high levels of carbonated biogenic particles (31% of Ca). Rare earth elements of the Ria sediments are considerably enriched in light-REE relative to heavy-REE (a LREE/HREE ratio of 9.7±1.6) and also show a slightly negative Eu-anomaly. Low European shale normalised REE patterns were distinguished in the innermost sediments of Vigo Ria, but were not correlated with Al. This suggests a minor contribution of REE from upstream freshwater inputs to the sediments in the middle Vigo Ria zone. Normalised REE ratios in the middle Ria imply that fine particles enriched in REE may be exported from the Ria to shelf mud patches and REE can be useful as sediment tracers of Ria input on the shelf.

  12. Rare earth elements in soils from selected areas on the Island of Hawaii

    SciTech Connect

    Barnard, W.M.; Halbig, J.B.

    1985-07-01

    Fifty soil samples for the wet, windward (east) side and dry, leeward (west) side of the Island of Hawaii were analyzed for La, Ce, Sm, Eu, Yb, and Lu by neutron activation/gamma-ray spectroscopic analysis. Data on concentrations in each sample are listed and analyzed statistically for soil samples collected from the western slope of Kohala Mountain, the western coastal plain of Mauna Kea, and the Northeastern coastal plain of Maunal Loa. Rare earth element (REE) concentrations are two to six times greater in soils from the western, dry side of the island, and good statistical correlation is exhibited among the samples for pairs of individual REEs. In the organic-rich soils of the east side, correlations are poor but are markedly improved when sample weights are adjusted for weight due to organic matter and water in soil colloids. If the mean compositions of selected rock samples from the Hawaii Reference Suite are representative of the compositions of the parent materials, REEs in the soils are moderately enriched (up to two times, based on oven-dry weights). Rare earth element concentrations in the island's western soils are as much as two times greater than the mean REE values of common sedimentary rocks worldwide; however, they are well within the concentration ranges of soils of continental origin. The eastern soils tend to have less La and Ce, but similar amounts of the middle and heavy REEs.

  13. Seawater rare-earth element patterns preserved in apatite of Pennsylvanian conodonts?

    NASA Astrophysics Data System (ADS)

    Bright, Camomilia A.; Cruse, Anna M.; Lyons, Timothy W.; MacLeod, Kenneth G.; Glascock, Michael D.; Ethington, Raymond L.

    2009-03-01

    Past workers have used rare-earth element patterns recorded in biogenic apatite as proxies for original seawater chemistry. To explore the potency of this approach, we analyzed Pennsylvanian conodonts from limestones, gray shales, and black shales of the Fort Scott and Pawnee formations (Desmoinesian) and Swope and Dennis formations (Missourian) in Kansas, Missouri, and Iowa, U.S.A. Analysis of individual platform conodonts from seven taxa using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) revealed a consistent enrichment in the middle rare-earth elements (MREE). Analogous MREE enrichment has been observed in authigenic apatite and bulk samples of phosphate-rich black shales from the same formations. Importantly, however, phosphate-depleted shales intimately associated with the P-rich intervals are relatively depleted in MREE. These antithetic patterns argue convincingly for secondary migration from the bulk sediment into the phosphate, and the extent of MREE enrichment in the conodonts is correlated positively with the total REE content. MREE enrichment in conodonts does not vary systematically as a function of lithology, stratigraphic level, conodont genus, geographic location, or with independent estimates of paleoredox conditions in the bottom waters. Collectively, these results argue for postmortem (diagenetic) REE uptake resulting in a pronounced (and progressive) MREE enrichment. Any cerium anomalies, if initially present, were masked by diagenetic uptake of REE. Paleoenvironmental interpretations of conodont REE, particularly for samples exhibiting MREE enrichment, should therefore be viewed with caution.

  14. Toward understanding early Earth evolution: Prescription for approach from terrestrial noble gas and light element records in lunar soils

    PubMed Central

    Ozima, Minoru; Yin, Qing-Zhu; Podosek, Frank A.; Miura, Yayoi N.

    2008-01-01

    Because of the almost total lack of geological record on the Earth's surface before 4 billion years ago, the history of the Earth during this period is still enigmatic. Here we describe a practical approach to tackle the formidable problems caused by this lack. We propose that examinations of lunar soils for light elements such as He, N, O, Ne, and Ar would shed a new light on this dark age in the Earth's history and resolve three of the most fundamental questions in earth science: the onset time of the geomagnetic field, the appearance of an oxygen atmosphere, and the secular variation of an Earth–Moon dynamical system. PMID:19001263

  15. Rare earth element distributions in recent and fossil apatite: implications for paleoceanography and stratigraphy

    SciTech Connect

    Wright, J.

    1985-01-01

    Rare earth element (REE) distributions in biogenic apatite were determined in over 200 samples from Cambrian to the Recent. Nondestructive instrumental neutron activation analysis techniques were adapted for analysis of low-mass microfossil samples. Tests for chemical contamination, interspecies, interlaboratory and interexperiment variations show that there is no fractionation of REE, so that ratios of rare earths are consistent throughout the entire group of samples. The REE signature of biogenic apatite is acquired after deposition but only at the sediment-water interface and is characteristic of the redox state of the environment of deposition. This original environmental signature is retained through subsequent burial and diagenesis. Cerium has been shown to be the rare earth element that is sensitive to oxidation-reduction variations in marine waters. This cerium variation is stated mathematically and called Ce/sub anom/. Comparison of Ce/sub anom/ in fish debris from different modern redox environments shows that values > -0.10 occur in fish debris deposited under reducing conditions, whereas Ce/sub anom/ values <-0.10 are obtained under oxidizing conditions. Paleoredox studies of Ce/sub anom/ of fossil apatite of conodonts, fish debris and inarticulate brachiopods indicate that significant shifts in the overall redox balance of seawater occurred in ancient oceans. Cambrian through Silurian seas were dominated by anoxia, followed by a gradual change to oxidizing conditions in the Devonian. Oceans remained generally oxidizing throughout the Carboniferous and Lower Permian. In the Upper Permian and Lower Triassic anoxic conditions were again prevalent. This was followed by a return to an oxidizing oceanic environment in the Upper Triassic.

  16. Composition of the earth's upper mantle-I. Siderophile trace elements in ultramafic nodules

    USGS Publications Warehouse

    Morgan, J.W.; Wandless, G.A.; Petrie, R.K.; Irving, A.J.

    1981-01-01

    Seven siderophile elements (Au, Ge, Ir, Ni, Pd, Os, Re) were determined by radiochemical neutron activation analysis in 19 ultramafic rocks, which are spinel lherzollites-xenoliths from North and Central America, Hawaii and Australia, and garnet Iherzolitexenoliths from Lesotho. Abundances of the platinum metals are very uniform in spinel lherzolites averaging 3.4 ?? 1.2 ppb Os, 3.7 ?? 1.1 ppb Ir, and 4.6 ?? 2.0 ppb Pd. Sheared garnet lherzolite PHN 1611 has similar abundances of these elements, but in 4 granulated garnet lherzolites, abundances are more variable. In all samples, the Pt metals retain cosmic ( Cl-chondrite) ratios. Abundances of Au and Re vary more than those of Pt metals, but the Au/Re ratio remains close to the cosmic value. The fact that higher values of Au and Re approach cosmic proportions with respect to the Pt metals, suggests that Au and Re have been depleted in some ultramafic rocks from an initially chondrite-like pattern equivalent to about 0.01 of Cl chondrite abundances. The relative enrichment of Au and Re in crustal rocks is apparently the result of crust-mantle fractionation and does not require a special circumstance of core-mantle partitioning. Abundances of moderately volatile elements Ni, Co and Ge are very uniform in all rocks, and are much higher than those of the highly siderophile elements Au, Ir, Pd, Os and Re. When normalized to Cl chondrites, abundances of Ni and Co are nearly identical, averaging 0.20 ?? 0.02 and 0.22 ?? 0.02, respectively; but Ge is only 0.027 ?? 0.004. The low abundance of Ge relative to Ni and Co is apparently a reflection of the general depletion of volatile elements in the Earth. The moderately siderophile elements cannot be derived from the same source as the highly siderophile elements because of the marked difference in Cl chondrite-normalized abundances and patterns. We suggest that most of the Ni, Co and Ge were enriched in the silicate by the partial oxidation of pre-existing volatile-poor Fe

  17. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 1: Observatory system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The performance, design, and quality assurance requirements for the Earth Observatory Satellite (EOS) Observatory and Ground System program elements required to perform the Land Resources Management (LRM) A-type mission are presented. The requirements for the Observatory element with the exception of the instruments specifications are contained in the first part.

  18. Milk-alkali syndrome

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  19. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium.

    PubMed

    Willbold, Elmar; Gu, Xuenan; Albert, Devon; Kalla, Katharina; Bobe, Katharina; Brauneis, Maria; Janning, Carla; Nellesen, Jens; Czayka, Wolfgang; Tillmann, Wolfgang; Zheng, Yufeng; Witte, Frank

    2015-01-01

    Rare earth elements are promising alloying element candidates for magnesium alloys used as biodegradable devices in biomedical applications. Rare earth elements have significant effects on the high temperature strength as well as the creep resistance of alloys and they improve magnesium corrosion resistance. We focused on lanthanum, neodymium and cerium to produce magnesium alloys with commonly used rare earth element concentrations. We showed that low concentrations of rare earth elements do not promote bone growth inside a 750 μm broad area around the implant. However, increased bone growth was observed at a greater distance from the degrading alloys. Clinically and histologically, the alloys and their corrosion products caused no systematic or local cytotoxicological effects. Using microtomography and in vitro experiments, we could show that the magnesium-rare earth element alloys showed low corrosion rates, both in in vitro and in vivo. The lanthanum- and cerium-containing alloys degraded at comparable rates, whereas the neodymium-containing alloy showed the lowest corrosion rates. PMID:25278442

  20. Assessing the utility of trace and rare earth elements as biosignatures in microbial iron oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Heim, Christine; Simon, Klaus; Ionescu, Danny; Reimer, Andreas; De Beer, Dirk; Quéric, Nadia-Valérie; Reitner, Joachim; Thiel, Volker

    2015-02-01

    Microbial iron oxyhydroxides are common deposits in natural waters, recent sediments and mine drainage systems and often contain significant accumulations of trace and rare earth elements (TREE). TREE patterns are widely used to characterize minerals and rocks, and to elucidate their evolution and origin. Whether and which characteristic TREE signatures distinguish between a biological and an abiological origin of iron minerals is still not well understood. Long-term flow reactor studies were performed in the Äspö Hard Rock Laboratory to investigate the development of microbial mats dominated by iron-oxidizing bacteria, namely Mariprofundus sp. and Gallionella sp. The experiments investigated the accumulation and fractionation of TREE under controlled conditions and enabled us to assess potential biosignatures evolving within the microbial iron oxyhydroxides. Concentrations of Be, Y, Zn, Zr, Hf, W, Th, Pb, and U in the microbial mats were 1e3- to 1e5-fold higher than in the feeder fluids whereas the rare earth elements and Y (REE+Y) contents were 1e4 and 1e6 fold enriched. Except for a hydrothermally induced Eu anomaly, the normalized REE+Y patterns of the microbial iron oxyhydroxides were very similar to published REE+Y distributions of Archaean Banded Iron Formations. The microbial iron oxyhydroxides from the flow reactors were compared to iron oxyhydroxides that were artificially precipitated from the same feeder fluid. These abiotic and inorganic iron oxyhydroxides show the same REE+Y distribution patterns. Our results indicate that the REE+Y mirror quite exactly the water chemistry, but they do not allow to distinguish microbially mediated from inorganic iron precipitates. All TREE studied showed an overall similar fractionation behavior in biogenic, abiotic and inorganic iron oxyhydroxides. Exceptions are Ni and Tl, which were only accumulated in the microbial iron oxyhydroxides and may point to a potential usage of these elements as microbial biosignatures.

  1. Levels of platinum group elements and rare-earth elements in wild mushroom species growing in Poland.

    PubMed

    Mleczek, Mirosław; Niedzielski, Przemysław; Kalač, Pavel; Siwulski, Marek; Rzymski, Piotr; Gąsecka, Monika

    2016-01-01

    Due to limited data-describing abilities of mushrooms to accumulate platinum group elements (PGEs) and rare-earth elements (REEs), the aim of this study was to determine, by inductively coupled plasma optical emission spectrometry followed by microwave-assisted sample digestion by nitric acid, the content of these elements in 20 mushroom species (10 above ground and 10 growing on wood), mostly edible, collected near a busy trunk road. The highest content of PGEs in above-ground mushroom species was observed in Lepista gilva and Suillus bovinus fruit bodies (0.38 ± 0.05 and 0.37 ± 0.03 mg kg(-1) DW, respectively), while in mushrooms growing on wood, the highest content was observed in Pleurotus ostreatus (0.35 ± 0.04 mg kg(-1) DW). The mean content of PGEs for both these groups was 0.23 ± 0.08 and 0.26 ± 0.07 mg kg(-1) DW, respectively. The highest content of REEs in Suillus luteus and Tricholoma equestra was 5.03 ± 0.50 and 2.18 ± 0.56 mg kg(-1) DW, respectively, but within mushrooms growing on wood in Ganoderma applanatum fruiting bodies it was 4.19 ± 0.78 mg kg(-1) DW. Mean contents of REEs were 1.39 ± 1.21 and 1.61 ± 0.97 mg kg(-1) DW in above-ground species and species growing on wood, respectively. Generally, the group of mushroom species growing on wood was capable of slightly higher accumulation of both REEs and PGEs. No limits have been established for both the groups until now. PMID:26515437

  2. Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the earth's core

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; White, W. M.; Jochum, K. P.; Hofmann, A. W.

    1986-01-01

    The hypothesis that the mantle Pb isotope ratios reflect continued extraction of Pb into the earth's core over geologic time is evaluated by studying the depeletion of chalcophile and siderophile elements in the mantle. Oceanic basalt samples are analyzed in order to determine the Pb, Sr, and Nd isotropic compositions and the abundances of siderophile and chalcophile elements and incompatible lithophile elements. The data reveal that there is no systematic variation of siderophile or chalcophile element abundances relative to abundances of lithophile elements and the Pb/Ce ratio of the mantle is constant. It is suggested that the crust formation involves nonmagmatic and magmatic processes.

  3. Chemical properties of rare earth elements in typical medical waste incinerator ashes in China.

    PubMed

    Zhao, Lijuan; Zhang, Fu-Shen; Zhang, Jingxin

    2008-10-30

    Medical waste (MW) ashes from different types of MW incinerators were examined to detect the characteristics and environmental impact of rare earth elements (REEs). The results showed that total REE contents in the ash samples ranged from 10.2 to 78.9 mg/kg. REEs in bottom ash were apparently higher than those in fly ash. Average REE contents in the ashes followed the sequence of Ce>La>Nd>Y>Gd>Pr>Sm>Dy>Er>Yb>Ho>Eu>Tb>Lu>Tm. Some of the elements, such as Sm, Dy, Ho, Er, Yb in the ash samples were in normal or nearly normal distribution, but Y, La, Ce, Pr, Nd, Eu, Gd, Tb, Tm, Lu were not normally distributed, indicating some of the ash samples were enriched with these elements. Crust-normalized REE patterns indicated that two types of the MW ashes were obviously enriched with Gd and La. Sequential extraction results showed that REEs in the ash mainly presented as residual fraction, while exchangeable and carbonate fractions were relatively low. DTPA- and EDTA-extraction tests indicated that REEs in the MW ashes were generally in low bioavailability. PMID:18329796

  4. 'Nano' Morphology and Element Signatures of Early Life on Earth: A New Tool for Assessing Biogenicity

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Mostefaoui, S.; Meibom, A.; Selo, M.; McKay, D. S.; Robert, F.

    2006-01-01

    The relatively young technology of NanoSIMS is unlocking an exciting new level of information from organic matter in ancient sediments. We are using this technique to characterize Proterozoic organic material that is clearly biogenic as a guide for interpreting controversial organic structures in either terrestrial or extraterrestrial samples. NanoSIMS is secondary ion mass spectrometry for trace element and isotope analysis at sub-micron resolution. In 2005, Robert et al. [1] combined NanoSIMS element maps with optical microscopic imagery in an effort to develop a new method for assessing biogenicity of Precambrian structures. The ability of NanoSIMS to map simultaneously the distribution of organic elements with a 50 nm spatial resolution provides new biologic markers that could help define the timing of life s development on Earth. The current study corroborates the work of Robert et al. and builds on their study by using NanoSIMS to map C, N (as CN), S, Si and O of both excellently preserved microfossils and less well preserved, non-descript organics in Proterozoic chert from the ca. 0.8 Ga Bitter Springs Formation of Australia.

  5. Rare earth element geochemistry and petrogenesis of miles (IIE) silicate inclusions

    NASA Astrophysics Data System (ADS)

    Hsu, Weibiao

    2003-12-01

    An ion probe study of rare earth element (REE) geochemistry of silicate inclusions in the Miles IIE iron meteorite was carried out. Individual mineral phases among inclusions have distinct REE patterns and abundances. Most silicate grains have homogeneous REE abundances but show considerable intergrain variations between inclusions. A few pyroxene grains display normal igneous REE zoning. Phosphates (whitlockite and apatite) are highly enriched in REEs (50 to 2000 × CI) with a relatively light rare earth element (LREE)-enriched REE pattern. They usually occurred near the interfaces between inclusions and Fe host. In Miles, albitic glasses exhibit two distinctive REE patterns: a highly fractionated LREE-enriched (CI normalized La/Sm ˜15) pattern with a large positive Eu anomaly and a relatively heavy rare earth element (HREE)-enriched pattern (CI-normalized Lu/Gd ˜4) with a positive Eu anomaly and a negative Yb anomaly. The glass is generally depleted in REEs relative to CI chondrites. The bulk REE abundances for each inclusion, calculated from modal abundances, vary widely, from relatively depleted in REEs (0.1 to 3 × CI) with a fractionated HREE-enriched pattern to highly enriched in REEs (10 to 100 × CI) with a relatively LREE-enriched pattern. The estimated whole rock REE abundances for Miles are at ˜ 10 × CI with a relatively LREE-enriched pattern. This implies that Miles silicates could represent the product of a low degree (˜10%) partial melting of a chondritic source. Phenocrysts of pyroxene in pyroxene-glassy inclusions were not in equilibrium with coexisting albitic glass and they could have crystallized from a parental melt with REEs of ˜ 10 × CI. Albitic glass appears to have formed by remelting of preexisting feldspar + pyroxene + tridymite assemblage. Yb anomaly played an important role in differentiation processes of Miles silicate inclusions; however, its origin remains unsolved. The REE data from this study suggest that Miles, like

  6. Insights into early Earth from Barberton komatiites: Evidence from lithophile isotope and trace element systematics

    NASA Astrophysics Data System (ADS)

    Puchtel, I. S.; Blichert-Toft, J.; Touboul, M.; Walker, R. J.; Byerly, G. R.; Nisbet, E. G.; Anhaeusser, C. R.

    2013-05-01

    Major, minor, and lithophile trace element abundances and Nd and Hf isotope systematics are reported for two sets of remarkably fresh, by Archean standards, samples of komatiitic lavas from the 3.48 Ga Komati and the 3.27 Ga Weltevreden Formations of the Barberton Greenstone Belt (BGB) in South Africa. These data are used to place new constraints on the thermal history of the early Archean mantle, on the timing of its differentiation, and on the origin and chemical nature of early mantle reservoirs and their evolution through time. Projected moderate to strong depletions of highly incompatible lithophile trace elements and water in the mantle sources of both komatiite systems, combined with the partitioning behavior of V during lava differentiation, are consistent with anhydrous conditions during generation of the komatiite magmas. Komati and Weltevreden lavas are inferred to have erupted with temperatures of ∼1600 °C, and, thus, represent the hottest known lavas on Earth. The calculated mantle potential temperatures of ∼1800 °C for both komatiite systems are 150-200 °C higher than those of contemporary ambient mantle. Combined, these observations are consistent with the origin of these BGB komatiite magmas in mantle plumes in the lower mantle. New Sm-Nd and Lu-Hf isotopic data allow precise determination of initial ε143Nd = +0.46 ± 0.10 and +0.50 ± 0.11 and initial ε176Hf = +1.9 ± 0.3 and +4.7 ± 0.8 for the Komati and the Weltevreden system komatiites, respectively. These positive initial values reflect prior fractionation of Sm/Nd and Lu/Hf in the mantle early in Earth history. Conversely, μ142Nd values are 0.0 ± 2.4 and +2.2 ± 4.1 for the Komati and the Weltevreden systems, respectively. These values overlap, within uncertainties, those of modern terrestrial rocks, thus, limiting the magnitudes of possible Sm/Nd fractionations generated by early Earth processes in the sources of these rocks. Combined 142,143Nd and Hf isotope and lithophile trace

  7. Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa

    SciTech Connect

    Barrat, J.A.; Boulegue, J.; Tiercelin, J.J.; Lesourd, M.

    2000-01-01

    At Cape Banza (North Tanganyika Lake), fluids and aragonite chimneys have been collected many times since the discovery of this sublacustrine field in 1987. This sampling has been investigated here for the Sr isotopic compositions and the rare-earth element features of the carbonates and a few fluid samples. The {sup 87}Sr/{sup 86}Sr ratios of the chimneys indicate that they have precipitated from a mixture of lake water (more than 95%) and hydrothermal fluids. No zoning in the chimneys was detected with the Sr data. For the rare-earth elements, the situation is more complex. The external walls of the chimneys are rare-earth-element-poor (La {approx} 500 ppb, Yb {approx} 200 ppb, La/Yb = 2 to 3.4). Their shale normalized rare-earth element patterns suggest that they are in equilibrium with the inferred carbonate-depositing fluids. The rare-earth element concentrations of the internal walls of the chimneys are significantly light rare earth elements (LREE)-enriched with La contents sometimes up to 5 ppm. The authors suggest that they contain more vent-fluid rare-earth elements than the external wall samples, possibly adsorbed on the surface of growing crystals or simply hosted by impurities. It was not possible to constrain the nature of these phases, but the variations of the compositions of the internal wall materials of the active chimneys with time, as well as data obtained on an inactive chimney indicate that this rare-earth element excess is mobile. Partition coefficients were calculated between the external wall aragonite and carbonate-depositing fluid. The results are strikingly similar to the values obtained by Sholkovitz and Shen (1995) on coral aragonite, and suggest that there is no significant biologic effect on the incorporation of rare-earth elements into coral aragonite and that the various carbonate complexes involved Me(CO{sub 3}{sup +}) complexes are the main LREE carriers in seawater instead of Me(CO{sub 3}){sub 2}{sup {minus}} in Banza fluids

  8. The distribution of Sr and REE between diopside and silicate liquid. [Rare Earth Elements

    NASA Technical Reports Server (NTRS)

    Grutzeck, M.; Kridelbaugh, S.; Weill, D.

    1974-01-01

    Experimental determination of the distribution coefficients in diopside-liquid pairs for strontium and nine rare-earth elements in the system CaMgSi2O6-NaAlSi3O8-CaAl2Si2O8. In experiments in air at 1265 C it is found that most of the Sr(2+), Eu(2+), and RE(3+) ions substitute for Ca(2+) and, in addition, a coupled substitution of Al(3+) for Si(4+) occurs. All of the trace ions considered are found to be excluded from the diopside lattice relative to the liquid. In the case of the trivalent ions the exclusion is much more pronounced for La and Ce, which have ionic radii larger than that of Ca(2+) in 8-fold oxygen coordination. Divalent Sr and Eu with even larger radii are also strongly excluded.

  9. Predictive model for ionic liquid extraction solvents for rare earth elements

    NASA Astrophysics Data System (ADS)

    Grabda, Mariusz; Oleszek, Sylwia; Panigrahi, Mrutyunjay; Kozak, Dmytro; Eckert, Franck; Shibata, Etsuro; Nakamura, Takashi

    2015-12-01

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF3-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids' ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF3 were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.

  10. Spectrophotometric determination of Rare Earth Elements in aqueous nitric acid solutions for process control.

    PubMed

    Rodionova, Oxana Ye; Tikhomirova, Tatyana I; Pomerantsev, Alexey L

    2015-04-15

    Noninvasive analytical control is of special interest for the complicated and hazardous production processes. On-line monitoring provides a unique opportunity to determine critical concentrations rapidly and without serious risks to operating personnel and the environment. Models for quantitative determination of concentrations of Rare Earth Elements in complex mixtures in nitric acid serve for these purposes. Here, the feasibility of simultaneous determination of cerium, praseodymium, and neodymium using the whole UV-vis spectroscopic range, together with chemometric data processing, is studied. The predictability of two chemometric techniques, partial least squares regression and correlation constrained multivariate curve resolution-alternating least squares are compared. Models' performances are analyzed in out-of-control cases. PMID:25818140

  11. Distribution of rare earth elements and uranium in various components of ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Ebihara, M.; Honda, M.

    1984-06-01

    Rare earth elements (REE) and uranium were studied for their distributions in various component phases of four ordinary chondrites. Kesen (H4), Richardton (H5), Bruderheim (L6), and Saint Severin (LL6). A selective dissolution method was applied for the phase fractionation. The REE were analysed by neutron activation analysis, and U was determined by neutron-induced fission tracks. The present study revealed that both REE and U are highly enriched in the Ca-phosphate minerals with different enrichment factors, implying chemical fractionation between them. The phosphates seem to be responsible for more than 80 percent of the light REE in all chondrites. On the other hand, only 20-40 percent of the total U resides in the Ca-phosphates. This difference in enrichments might have been caused through the levels of metamorphic activity on the meteoritic parent bodies.

  12. Predictive model for ionic liquid extraction solvents for rare earth elements

    SciTech Connect

    Grabda, Mariusz; Oleszek, Sylwia; Panigrahi, Mrutyunjay; Kozak, Dmytro; Shibata, Etsuro; Nakamura, Takashi; Eckert, Franck

    2015-12-31

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF{sub 3}-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF{sub 3} were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.

  13. Anthropogenic rare earth element fluxes into floodplains: Coupling between geochemical monitoring and hydrodynamic sediment transport modelling

    NASA Astrophysics Data System (ADS)

    Hissler, Christophe; Hostache, Renaud; Iffly, Jean François; Pfister, Laurent; Stille, Peter

    2015-09-01

    As all rare earth elements (REEs) have an increasingly important role in high tech industries, they are now recognized as emergent pollutants in river systems impacted by anthropogenic activity. Over the past 20 years, significant anthropogenic contributions were reported for Gd, La and Sm, and we may expect that REE contamination in rivers is to further increase in a near future. Despite the work done to assess the environmental impact of REE pollutions in larger river systems, we are still lacking information on the dynamics of these anthropogenic compounds in relation to hydrological changes. Here, we observed for the first time particulate Ce originating from local industrial activities in Luxembourg and we quantified the anthropogenic contribution to the REE fluxes at the river basin scale during a single flood event.

  14. Binary rare earth element-Ni/Co metallic glasses with distinct β-relaxation behaviors

    SciTech Connect

    Zhu, Z. G.; Wang, Z.; Wang, W. H.

    2015-10-21

    We report the formation of a series of rare earth element (RE)-Ni/Co binary metallic glasses (MGs) with unusual distinct β-relaxation peak compared with that of most of the reported MGs which usually exhibit as an excess wing or a shoulder. The β-relaxation behavior of RE-Ni/Co MGs is sensitive to the composition and the atomic radii of the RE and can be tuned through changing the fraction of RE-Ni (or Co) atomic pairs. The novel RE-Ni/Co MGs with distinct β-relaxation can serve as model system to investigate the nature of the β-relaxation as well as its relations with other physical and mechanical properties of MGs.

  15. Geochemistry of rare earth elements in a passive treatment system built for acid mine drainage remediation.

    PubMed

    Prudêncio, Maria Isabel; Valente, Teresa; Marques, Rosa; Sequeira Braga, Maria Amália; Pamplona, Jorge

    2015-11-01

    Rare earth elements (REE) were used to assess attenuation processes in a passive system for acid mine drainage treatment (Jales, Portugal). Hydrochemical parameters and REE contents in water, soils and sediments were obtained along the treatment system, after summer and winter. A decrease of REE contents in the water resulting from the interaction with limestone after summer occurs; in the wetlands REE are significantly released by the soil particles to the water. After winter, a higher water dynamics favors the AMD treatment effectiveness and performance since REE contents decrease along the system; La and Ce are preferentially sequestered by ochre sludge but released to the water in the wetlands, influencing the REE pattern of the creek water. Thus, REE fractionation occurs in the passive treatment systems and can be used as tracer to follow up and understand the geochemical processes that promote the remediation of AMD. PMID:26247412

  16. Naturally occurring radionuclides and rare earth elements in weathered Japanese soil samples

    NASA Astrophysics Data System (ADS)

    Sahoo, Sarata; Hosoda, Masahiro; Prasad, Ganesh; Takahashi, Hiroyuki; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Tokonami, Shinji; Uchida, Shigeo

    2013-08-01

    The activity concentrations of 226Ra and 228Ac in weathered Japanese soils from two selected prefectures have been measured using a γ-ray spectroscopy system with high purity germanium detector. The uranium, thorium, and rare earth elements (REEs) concentrations were determined from the same soil samples using inductively coupled plasma mass spectrometry (ICP-MS). For example, granitic rocks contain higher amounts of U, Th, and light REEs compared to other igneous rocks such as basalt and andesites. Therefore, it is necessary to understand the interaction between REEs and nature of soils since soils are complex heterogeneous mixture of organic and inorganic solids, water, and gases. In this paper, we will discuss about distribution pattern of 238U and 232Th along with REEs in soil samples of weathered acid rock (granite) collected from two prefectures of Japan: Hiroshima and Miyagi.

  17. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    SciTech Connect

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

  18. Rare earth and trace element geochemistry of a fragment of Jurassic seafloor, Point Sal, California

    NASA Technical Reports Server (NTRS)

    Menzies, M.; Blanchard, D.; Brannon, J.; Korotev, R.

    1977-01-01

    Rocks from an ophiolite suite once on the seafloor were analyzed for rare earth elements (REE), Sc, Co, Na2O, Cr, Zn and FeO. Strontium isotope exchange noted in some of the lavas is attributed to basalt-seawater interaction; the Ce abundance in smectite- and zeolite-bearing lavas may also be due to prolonged exposure to seawater. The higher grades of metamorphic rock, however, show no variation from the usual flat or slightly light REE depleted profiles. Plutonic igneous rock, all light REE depleted, have total REE abundances varying by a factor of 100 between the dunites and diorites. In order of decreasing REE abundance are hornblende, clinopyroxene, plagioclase, orthopyroxene and olivine. Calculations of REE contents of liquids in equilibrium with early cumulative clinopyroxenes suggest that the parent to the stratiform sequence was more depleted in light REE than the parent to the lava pile.

  19. Study on the electrochemical extraction of rare earth elements from FLINAK

    SciTech Connect

    Long, Dewu; Huang, Wei; Jiang, Feng; Tian, Lifang; Li, Qingnuan

    2013-07-01

    Electrochemical behaviors of rare earth elements, such as NdF{sub 3}, GdF{sub 3}, SmF{sub 3}, YF{sub 3}, and EuF{sub 3}, were investigated in a LiF-NaF-KF (46.5-11.5-42.0 mol %, FLINAK, m. p. 454 Celsius degrees) solvent. The results indicated that it is possible to extract Nd, Gd and Y directly by electrochemical deposition since the reductions of those cations to metal are located in the electrochemical window of the FLINAK eutectic, while the reductions of Sm and Eu metal are out of the range of the medium. Subsequently electro-deposition of Nd was carried out with two kinds of cathodic materials, namely, an inert cathode, Pt, and a reactive electrode, Cu. The collected products were characterized by various techniques revealing that a Nd-rich product was obtained. (authors)

  20. Site-selective Mott transition in rare-earth-element nickelates.

    PubMed

    Park, Hyowon; Millis, Andrew J; Marianetti, Chris A

    2012-10-12

    A combination of density functional and dynamical mean field theory calculations are used to show that the remarkable metal-insulator transition in the rare-earth-element nickelate perovskites arises from a site-selective Mott phase, in which the d electrons on half of the Ni ions are localized to form a fluctuating moment while the d electrons on other Ni ions form a singlet with holes on the surrounding oxygen ions. The calculation reproduces key features observed in the nickelate materials, including an insulating gap in the paramagnetic state, a strong variation of static magnetic moments among Ni sites and an absence of charge order. A connection between structure and insulating behavior is documented. The site-selective Mott transition may be a more broadly applicable concept in the description of correlated materials. PMID:23102343

  1. X-ray fluorescence analysis of rare earth elements in rocks using low dilution glass beads.

    PubMed

    Nakayama, Kenichi; Nakamura, Toshihiro

    2005-07-01

    Major and trace elements (Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe, Rb, Sr, Y, Zr, La, Ce, Pr, Nd, Sm, Gd, Dy, Th and U) in igneous rocks were assayed with fused lithium borate glass beads using X-ray fluorescence spectrometry. Low dilution glass beads, which had a 1:1 sample-to-flux ratio, were prepared for determination of rare earth elements. Complete vitrification of 1:1 mixture required heating twice at 1200 degrees C with agitation. Extra pure reagents containing determinants were used for calibrating standards instead of the rock standard. The calibration curves of the 23 elements showed good linearity. Furthermore, the lower limits of detection corresponding to three times the standard deviation for blank measurements were 26 mass ppm for Na2O, 6.7 for MgO, 4.5 for Al2O3, 4.5 for SiO2, 18 for P2O5, 1.1 for K2O, 4.0 for CaO, 3.9 for TiO2, 1.6 for MnO, 0.8 for Fe2O3, 0.5 for Rb, 0.2 for Sr, 0.4 for Y, 0.5 for Zr, 3.3 for La, 6.5 for Ce, 2.7 for Pr, 2.1 for Nd, 1.7 for Sm, 0.7 for Gd, 2.7 for Dy, 0.5 for Th, and 0.6 for U. Using the present method, we determined the contents of these 23 elements in four rhyolitic and granitic rocks from Japan. PMID:16038502

  2. Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags

    DOE PAGESBeta

    Park, Dan M.; Reed, David W.; Yung, Mimi C.; Eslamimanesh, Ali; Lencka, Malgorzata M.; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E.; Navrotsky, Alexandra; Jiao, Yongqin

    2016-02-02

    In this study, with the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb3+ could be effectively recovered using citrate,more » consistent with thermodynamic speciation calculations that predicted strong complexation of Tb3+ by citrate. No reduction in Tb3+ adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.« less

  3. Galileo Earth approach navigation using connected-element interferometer phase-delay tracking

    NASA Technical Reports Server (NTRS)

    Thurman, S. W.

    1990-01-01

    The application of a Connected-Element Interferometer (CEI) to the navigation of the Galileo spacecraft during its encounter with Earth in December 1990 is investigated. A CEI tracking demonstration is planned for the week of November 11 through 18, 1990, from 27 days to 20 days prior to Earth encounter on December 8. During this period, the spacecraft will be tracked daily with Deep Space Network Stations 13 and 15 at Goldstone. The purpose of this work is twofold: first, to establish and define the navigation performance expected during the tracking demonstration and, second, to study, in a more general sense, the sensitivity of orbit demonstration results obtained with CEI to the data density within CEI tracking passes and to important system parameters, such as baseline orientation errors and the phase-delay measurement accuracy. Computer simulation results indicate that the use of CEI data, coupled with conventional range and Doppler data, may reduce the uncertainty in the declination of the spacecraft's incoming trajectory by 15 to 66 percent compared with the operational solution using range and Doppler data only. The level of improvement depends upon the quantity and quality of the CEI data.

  4. Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags.

    PubMed

    Park, Dan M; Reed, David W; Yung, Mimi C; Eslamimanesh, Ali; Lencka, Malgorzata M; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E; Navrotsky, Alexandra; Jiao, Yongqin

    2016-03-01

    With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb(3+) could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb(3+) by citrate. No reduction in Tb(3+) adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation. PMID:26836847

  5. Planktonic foraminiferal rare earth elements as a potential new aeolian dust proxy

    NASA Astrophysics Data System (ADS)

    Chou, C.; Liu, Y.; Lo, L.; Wei, K.; Shen, C.

    2012-12-01

    Characteristics of rare earth elements (REEs) have widely been used as important tracers in many fields of earth sciences, including lithosphere research, environmental change, ocean circulation and other natural carbonate materials. Foraminiferal test REE signatures have been suggested to reflect ambient seawater conditions and serve as valuable proxies in the fields of paleoceanography and paleoclimate. Here we present a 60-kyr planktonic foraminifera Globigerinoides ruber (white, 250-300 μm) REE record of a sediment core MD05-2925 (9°20.61'S, 151°27.61'E, water depth 1660 m) from the Solomon Sea. The REE diagram shows two dominant sources of local seawater and nearby terrestrial input. The variability of foraminiferal REE/Ca time series is different from Mg/Ca-inferred sea surface temperature and δ18O records during the past 60-kyr. This inconsistency suggests that planktonic foraminiferal REE content cannot result only from changes in ice volume and temperature. Synchroneity between high planktonic foraminiferal REE content and Antarctic ice core dust amount record implies the same dust sources, probably from Australia or mainland China. Our results suggest that foraminiferal REE can potentially be as a new dust proxy and record dry/humid conditions at the source area.

  6. Geology and market-dependent significance of rare earth element resources

    NASA Astrophysics Data System (ADS)

    Simandl, G. J.

    2014-09-01

    China started to produce rare earth elements (REEs) in the 1980s, and since the mid-1990s, it has become the dominant producer. Rare earth element export quotas first introduced by the Chinese government in the early 2000s were severely reduced in 2010 and 2011. This led to strong government-created disparity between prices within China and the rest of the world. Industrialized countries identified several REEs as strategic metals. Because of rapid price increases of REE outside of China, we have witnessed a world-scale REE exploration rush. The REE resources are concentrated in carbonatite-related deposits, peralkaline igneous rocks, pegmatites, monazite ± apatite veins, ion adsorption clays, placers, and some deep ocean sediments. REE could also be derived as a by-product of phosphate fertilizer production, U processing, mining of Ti-Zr-bearing placers, and exploitation of Olympic Dam subtype iron oxide copper gold (IOCG) deposits. Currently, REEs are produced mostly from carbonatite-related deposits, but ion adsorption clay deposits are an important source of heavy REE (HREE). Small quantities of REE are derived from placer deposits and one peralkaline intrusion-related deposit. The ideal REE development targets would be located in a politically stable jurisdiction with a pro-mining disposition such as Canada and Australia. REE grade, HREE/light REE (LREE) ratio of the mineralization, tonnage, mineralogy, and permissive metallurgy are some of the key technical factors that could be used to screen potential development projects. As REEs are considered strategic metals from economic, national security, and environmental points of view, technical and economic parameters alone are unlikely to be used in REE project development decision-making. Recycling of REE is in its infancy and unless legislated, in the short term, it is not expected to contribute significantly to the supply of REE.

  7. A major light rare-earth element (LREE) resource in the Khanneshin carbonatite complex, southern Afghanistan

    USGS Publications Warehouse

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Horton, Forrest; Buttleman, Kim; Scott, Emily R.

    2012-01-01

    The rapid rise in world demand for the rare-earth elements (REEs) has expanded the search for new REE resources. We document two types of light rare-earth element (LREE)-enriched rocks in the Khanneshin carbonatite complex of southern Afghanistan: type 1 concordant seams of khanneshite-(Ce), synchysite-(Ce), and parisite-(Ce) within banded barite-strontianite alvikite, and type 2 igneous dikes of coarse-grained carbonatite, enriched in fluorine or phosphorus, containing idiomorphic crystals of khanneshite-(Ce) or carbocernaite. Type 1 mineralized barite-strontianite alvikite averages 22.25 wt % BaO, 4.27 wt % SrO, and 3.25 wt % ∑ LREE2O3 (sum of La, Ce, Pr, and Nd oxides). Type 2 igneous dikes average 14.51 wt % BaO, 5.96 wt % SrO, and 3.77 wt % ∑ LREE2O3. A magmatic origin is clearly indicated for the type 2 LREE-enriched dikes, and type 1 LREE mineralization probably formed in the presence of LREE-rich hydrothermal fluid. Both types of LREE mineralization may be penecontemporaneous, having formed in a carbonate-rich magma in the marginal zone of the central vent, highly charged with volatile constituents (i.e., CO2, F, P2O5), and strongly enriched in Ba, Sr, and the LREE. Based on several assumptions, and employing simple geometry for the zone of LREE enrichment, we estimate that at least 1.29 Mt (million metric tonnes) of LREE2O3 is present in this part of the Khanneshin carbonatite complex.

  8. Geology and market-dependent significance of rare earth element resources

    NASA Astrophysics Data System (ADS)

    Simandl, G. J.

    2014-12-01

    China started to produce rare earth elements (REEs) in the 1980s, and since the mid-1990s, it has become the dominant producer. Rare earth element export quotas first introduced by the Chinese government in the early 2000s were severely reduced in 2010 and 2011. This led to strong government-created disparity between prices within China and the rest of the world. Industrialized countries identified several REEs as strategic metals. Because of rapid price increases of REE outside of China, we have witnessed a world-scale REE exploration rush. The REE resources are concentrated in carbonatite-related deposits, peralkaline igneous rocks, pegmatites, monazite ± apatite veins, ion adsorption clays, placers, and some deep ocean sediments. REE could also be derived as a by-product of phosphate fertilizer production, U processing, mining of Ti-Zr-bearing placers, and exploitation of Olympic Dam subtype iron oxide copper gold (IOCG) deposits. Currently, REEs are produced mostly from carbonatite-related deposits, but ion adsorption clay deposits are an important source of heavy REE (HREE). Small quantities of REE are derived from placer deposits and one peralkaline intrusion-related deposit. The ideal REE development targets would be located in a politically stable jurisdiction with a pro-mining disposition such as Canada and Australia. REE grade, HREE/light REE (LREE) ratio of the mineralization, tonnage, mineralogy, and permissive metallurgy are some of the key technical factors that could be used to screen potential development projects. As REEs are considered strategic metals from economic, national security, and environmental points of view, technical and economic parameters alone are unlikely to be used in REE project development decision-making. Recycling of REE is in its infancy and unless legislated, in the short term, it is not expected to contribute significantly to the supply of REE.

  9. Rare earth element components in atmospheric particulates in the Bayan Obo mine region

    SciTech Connect

    Wang, Lingqing Liang, Tao Zhang, Qian; Li, Kexin

    2014-05-01

    The Bayan Obo mine, located in Inner Mongolia, China, is the largest light rare earth body ever found in the world. The research for rare earth elements (REEs) enrichment in atmospheric particulates caused by mining and ore processing is fairly limited so far. In this paper, atmospheric particulates including total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter less than 10 μm (PM{sub 10}) were collected around the Bayan Obo mine region, in August 2012 and March 2013, to analyze the levels and distributions of REEs in particles. The total concentrations of REEs for TSP were 149.8 and 239.6 ng/m{sup 3}, and those for PM{sub 10} were 42.8 and 68.9 ng/m{sup 3}, in August 2012 and March 2013, respectively. Enrichment factor was calculated for all 14 REEs in the TSP and PM{sub 10} and the results indicated that REEs enrichment in atmosphere particulates was caused by anthropogenic sources and influenced by the strong wind in springtime. The spatial distribution of REEs in TSP showed a strong gradient concentration in the prevailing wind direction. REE chondrite normalized patterns of TSP and PM{sub 10} were similar and the normalized curves inclined to the right side, showing the conspicuous fractionation between the light REEs and heavy REE, which supported by the chondrite normalized concentration ratios calculated for selected elements (La{sub N}/Yb{sub N}, La{sub N}/Sm{sub N}, Gd{sub N}/Yb{sub N}). - Highlights: • TSP and PM{sub 10} samples were collected to analyze the levels and distributions of REE. • Enrichment factors indicated that REE enrichment was caused by anthropogenic sources. • The distribution of REEs showed a strong gradient in the prevailing wind direction. • Obvious fractionation between LREEs and HREEs is observed in atmospheric particulates.

  10. Performance evaluation of Laser Induced Breakdown Spectroscopy (LIBS) for quantitative analysis of rare earth elements in phosphate glasses

    NASA Astrophysics Data System (ADS)

    Devangad, Praveen; Unnikrishnan, V. K.; Nayak, Rajesh; Tamboli, M. M.; Muhammed Shameem, K. M.; Santhosh, C.; Kumar, G. A.; Sardar, D. K.

    2016-02-01

    In the current study, we have determined the elemental compositions of synthesized rare earth doped phosphate glasses using a laboratory Laser-Induced Breakdown Spectroscopy (LIBS) system. LIBS spectra of this rare earth (samarium (Sm), thulium (Tm) and ytterbium (Yb)) doped glass samples with known composition are recorded using a highly sensitive detector. Major atomic emission lines of Sm, Tm and Yb found in LIBS spectra are reported. By considering the atomic emission line of phosphorous as an internal standard, calibration curves were constructed for all the rare earth concentrations. Very good linear regression coefficient (R2) values were obtained using this technique. Analytical predictive skill of LIBS was studied further using leave-one-out method. Low values of the reported correlation uncertainty between measured LIBS concentration ratio and certified concentration ratio confirms that LIBS technique has great potential for quantitative analysis of rare earth elements in glass matrix.

  11. Structural Elements in a Persistent Identifier Infrastructure and Resulting Benefits for the Earth Science Community

    NASA Astrophysics Data System (ADS)

    Weigel, T.; Toussaiant, F.; Stockhause, M.; Höck, H.; Kindermann, S.; Lautenschlager, M.; Ludwig, T.

    2012-12-01

    We propose a wide adoption of structural elements (typed links, collections, trees) in the Handle System to improve identification and access of scientific data, metadata and software as well as traceability of data provenance. Typed links target the issue of data provenance as a means to assess the quality of scientific data. Data provenance is seen here as a directed acyclic graph with nodes representing data and vertices representing derivative operations (Moreau 2010). Landing pages can allow a human user to explore the provenance graph back to the primary unprocessed data, thereby also giving credit to the original data producer. As in Earth System Modeling no single infrastructure with complete data lifecycle coverage exists, we propose to split the problem domain in two parts. Project-specific infrastructures such as the German project C3-Grid or the Earth System Grid Federation (ESGF) for CMIP5 data are aware of data and data operations (Toussaint et al. 2012) and can thus detect and accumulate single nodes and vertices in the provenance graph, assigning Handles to data, metadata and software. With a common schema for typed links, the provenance graph is established as downstream infrastructures refer incoming Handles. Data in this context is for example hierarchically structured Earth System model output data, which receives DataCite DOIs only for the most coarse-granular elements. Using Handle tree structures, the lower levels of the hierarchy can also receive Handles, allowing authors to more precisely identify the data they used (Lawrence et al. 2011). We can e.g. define a DOI for just the 2m-temperature variable of CMIP5 data across many CMIP5 experiments or a DOI for model and observational data coming from different sources. The structural elements should be implemented through Handle values at the Handle infrastructure level for two reasons. Handle values are more durable than downstream websites or databases, and thus the provenance chain does not

  12. Dissolved Rare Earth Element Concentrations in the Upwelling area off Peru

    NASA Astrophysics Data System (ADS)

    Grasse, P.; Plass, A.; Hathorne, E. C.; Frank, M.

    2012-12-01

    Rare earth elements (REEs) are powerful tracers of continental input, particle exchange and scavenging processes, as well as for water mass transport in the ocean. We present a first data set of dissolved REE distributions in filtered seawater covering the major gradients of bio-productivity and oxygen concentrations in the upwelling area off Peru. A total of 22 stations were analyzed along a shelf, a nearshore and an offshore transect to investigate the influence of local inputs versus water mass mixing. The Peruvian coastal upwelling area is a highly dynamic system characterized by intense upwelling of nutrient-rich subsurface water and therefore high productivity that leads to one of the globally largest Oxygen Minimum Zones (OMZ). The upwelling area off Peru is of particular interest for understanding the biogeochemical cycling of REEs and other redox-sensitive metals because anoxic conditions are expected to release of REEs from the shelf, whereas high particle densities and fluxes efficiently remove the REEs from the water column. Despite their high potential as tracers few systematic investigations of seawater REEs have been carried out so far because the low concentrations of REEs (pM) are difficult to measure. In this study an online preconcentration (OP) system (seaFast, Elemental Scientific Inc.) was used with a technique slightly modified from Hathorne et al. (2012). The OP system efficiently separates seawater matrix elements from the REEs and elutes the preconcentrated sample directly into the spray chamber of the ICP-MS instrument. Repeated measurements of a seawater reference sample (n= 20) during this study gave a reproducibility of between 5% and 15% (2σ), with the worst reproducibility for Sm, Eu, and Gd (12% to 15%). In general, the REEs, except Ce, show a nutrient-like behavior in seawater increasing in concentration with water depth. However, such distributions were not observed for some stations on the shelf where the highest concentrations

  13. Seawater-derived rare earth element addition to abyssal peridotites during serpentinization

    NASA Astrophysics Data System (ADS)

    Frisby, Carl; Bizimis, Michael; Mallick, Soumen

    2016-04-01

    Serpentinized abyssal peridotites are evidence for active communication between the Earth's hydrosphere and the upper mantle, where exchange and retention of both major and trace elements occur. Bulk rock Nd isotopes in serpentinized abyssal peridotites imply interaction of seawater with the peridotite. In contrast, the Nd isotopes of clinopyroxenes from serpentinized abyssal peridotites retain their primary magmatic signature. It is currently unclear if, how and where seawater-derived Nd and other REE are being added or exchanged with the mantle peridotite minerals during serpentinization. To remedy this knowledge gap, we present in situ trace and major element concentrations, bulk rock and sequential leaching experiment trace element concentrations as well as Nd, Sr isotope data on refertilized and depleted serpentinized abyssal peridotites from the Southwest Indian Ridge. The secondary serpentine matrix and magnetite veins in these peridotites have elevated LREE concentrations, with variable negative Ce anomalies and large Rb, Sr, Pb and U enrichments that resemble seawater trace element patterns. The LREE concentrations in the serpentine phase are higher than those expected for the primary mantle mineralogy (olivine, orthopyroxene) based on data from relic clinopyroxenes and equilibrium partition coefficients. These data are consistent with seawater-derived REE addition to the peridotite during serpentinization. The bulk rocks have more radiogenic Sr and more unradiogenic Nd isotopes than their clinopyroxene (up to 8 εNd units lower than clinopyroxene). Sequential leaching experiments designed to mobilize secondary carbonates and Fe-oxides show even more unradiogenic Nd isotope ratios in the leachates than the bulk rock and clinopyroxene, approaching seawater compositions (up to 15 εNd units lower than clinopyroxene). Mass balance calculations using trace elements or Nd isotopes suggest that up to 30% of the bulk peridotite Nd budget is of seawater origin and

  14. Key Factors Controlling Space- and Time-Linked Rare Earth Element Distribution in Shallow Groundwaters

    NASA Astrophysics Data System (ADS)

    Dia, A.; Gruau, G.; Olivie-Lauquet, G.; Henin, O.; Petitjean, P.; Le Coz-Bouhnik, M.

    2001-12-01

    This study investigates the effects of source-rock composition, redox changes and organic matter on the hydrochemistry of Rare Earth Elements (REE). Wetland groundwater samples as well as upland zone water samples were recovered weekly over a six month period (January to June 1999) from a small catchment (Petit Hermitage, France). The samples were filtered on the field using membrane filters of 0.22 μ m pore size, and then analyzed for their Dissolved Organic Carbon (DOC) as well as Fe, Mn, Al, Th, U and REE concentrations. The results are discussed in conjunction with previous published DOC and trace-element concentrations obtained on comparable samples from three other small catchments, namely : the Nsimi-Zoetele, Goyoum (both in Cameroon) and Kervidy/Coet-Dan (France) catchments (Viers et al., 1997; Braun et al., 1998; Dia et al., 2000). Despite marked differences (such as bioclimatic conditions, vegetation cover, basement rock composition or human activity), results are surprisingly similar with always the occurrence of two spatially distinct groundwater types including : (i) a shallow, organic-rich groundwater below wetlands recording high and variable REE contents and displaying slight or no negative Ce anomaly. In the wetland groundwaters, the REE and other trace-element concentrations seem to be controlled by seasonal dynamics, involving both temperature, whose onset at spring leads to higher organic carbon decomposition rates by microbial mass, and redox changes resulting in REE and other-trace element release in water when mineral phases occur to dissolve. (ii) The second groundwater type corresponds to a shallow, organic-poor groundwater type located below the hillslope domains. This second groundwater type displays lower REE (and other trace-element) concentrations, but distinguish from the former by the occurrence of very strong negative Ce anomalies, whose amplitude is variable, but appears to be linked to the sampling location along the catena. The

  15. Substitution of Nd with other rare earth elements in melt spun Nd2Fe14B magnets

    NASA Astrophysics Data System (ADS)

    Brown, D. N.; Lau, D.; Chen, Z.

    2016-05-01

    This is a contemporary study of rapidly quenched Nd1.6X0.4Fe14B magnetic materials (where X= Nd, Y, Ce, La, Pr, Gd and Ho). A 20% substitution of the Nd component from Nd2Fe14B can bring about some commercial advantage. However, there will be some compromise to the magnetic performance. Light rare earth elements are definitely more abundant (Y, Ce, La) than the heavier rare earth elements, but when they are included in RE2Fe14B magnets they tend to lower magnetic performance and thermal stability. Substituting heavy rare earth elements (Gd, Ho) for Nd in Nd2Fe14B improves the thermal stability of magnets but causes a loss in magnet remanence.

  16. Developing alternative resources of rare earth elements in Europe - EURARE and the red mud challenge

    NASA Astrophysics Data System (ADS)

    Deady, Eimear; Mouchos, Evangelos; Goodenough, Kathryn; Wall, Frances; Williamson, Ben

    2015-04-01

    Rare earth elements (REE) are considered to be highly "critical" by the European Commission [1], owing to the concentration of global supply [2] and their use in a wide range of emerging technologies (e.g. smart phones, electric cars and wind turbines). The main source of REE is the mineral bastnäsite, which is primarily extracted from carbonatites. Alternative resources of REE have been identified in a variety of other environments such as alluvial placers, bauxites and ore tailings. The EURARE project (www.eurare.eu), funded by the European Commission, aims to improve understanding of potential REE resources in Europe with the overall objective of establishing the basis for a European REE industry. As a part of this project, alternative sources of rare earth elements in Europe are being considered. REE have been identified as being particularly enriched in karst-bauxites and hence in the red muds generated as a waste product from the processing of these bauxites to alumina through the Bayer process [3]. Karst-bauxites are widely distributed with deposits known across the Mediterranean and with intermittent exploitation occurring over many decades. REE become concentrated in the bauxite deposits by the bauxitisation process and are retained due to the geochemical barrier created by the limestone bedrock below. This can result in several processes, including the crystallisation of authigenic REE-bearing minerals, the accumulation of residual phases and the adsorption of ions onto clays and other mineral surfaces [4]. Red muds produced from alumina processing represent a potentially important concentration of REE as it has been demonstrated that the REE pass through the alumina extraction process into the waste, and the total REE concentrations are typically enriched by a factor of two compared with the original bauxite ore [5]. Bauxites and red muds from the Parnassus Ghiona region of Greece [6] and the Seydişehir-Akseki region of Turkey have been assessed as

  17. Effect of alkali and alkaline-earth chloride addition on electrolytic reduction of UO 2 in LiCl salt bath

    NASA Astrophysics Data System (ADS)

    Sakamura, Yoshiharu

    2011-05-01

    The electrolytic reduction process of actinide oxides in a LiCl salt bath at 923 K has been developed for nuclear fuel reprocessing. Since some salt-soluble fission products, such as Cs, Sr and Ba, accumulate in the LiCl salt bath, their effect on UO 2 reduction was investigated. In the experiments, UO 2 specimens were reduced by potential- or current-controlled electrolysis in various LiCl salt baths containing up to 30 mol% of KCl, CsCl, SrCl 2 or BaCl 2. The rate of UO 2 reduction in a LiCl salt bath was considerably decreased by the addition of alkali metal chlorides (KCl and CsCl) and slightly decreased by BaCl 2 addition. SrCl 2 addition had no appreciable effect. It was suggested that the diffusion of O 2- ions from the inside of UO 2 specimens to the bulk salt determined the reduction rate during the electrolysis and that the effect of salt composition was related to the solubility of O 2- ions in the salt bath.

  18. Distribution of rare earth elements in soil and grape berries of Vitis vinifera cv. "Glera".

    PubMed

    Pepi, Salvatore; Sansone, Luigi; Chicca, Milvia; Marrocchino, Elena; Vaccaro, Carmela

    2016-08-01

    The renowned Vitis vinifera L. cultivar "Glera" (Magnoliopsida Vitaceae) has been grown for hundreds of years in the Italian regions of Veneto and Friuli to produce the sparkling Prosecco wine, with controlled designation of origin (DOC). We evaluated the relationship among the concentrations of rare earth elements (REE) in soil and in "Glera" grape berries in vineyards belonging to five different localities in the Veneto alluvial plain, all included in the DOC area of Prosecco. The concentration of REE in samples of soil and juice or solid residues of grape berries was determined by inductively coupled plasma mass spectrometry (ICP-MS), and the index of bioaccumulation was calculated to define the specific assimilation of these elements from soil to grape berries. The concentration of REE in soil samples allowed an identification of each locality examined, and REE were mostly detected in solid grape berry residues in comparison to juice. These data may be useful to associate REE distribution in soil and grape berries to a specific geographical origin, in order to prevent fraudulent use of wine denomination labels. PMID:27447714

  19. Biosorption of Uranium and Rare Earth Elements Using Biomass of Algae

    PubMed Central

    Sakamoto, Nobuo; Kano, Naoki; Imaizumi, Hiroshi

    2008-01-01

    In order to investigate the behavior of rare earth elements (REEs) and uranium (U) in marine organism, the concentrations of REEs and U in some brown algae samples taken on the coast of Niigata Prefecture were determined. In addition, laboratory model experiment to uptake these elements using living and dried algae (Undaria pinnatifida and Sargassum hemiphyllum) was also carried out to survey the uptake and bioaccumulation mechanism of REEs and U in algae. Consequently, the following matters have been mainly clarified. (1) The order of the concentration of REEs for each organ in Sargassum hemiphyllum is “main branch” > “leaf” > “vesicle,” however for U, the order is “leaf” > “vesicle” > “main branch.” (2) The concentration of REEs in Sargassum hemiphyllum may be strongly affected by suspended solid in seawater. (3) The uptake and/or accumulate mechanism of REEs in brown algae may be different from that of U. PMID:19081786

  20. Uranium, thorium and rare earth elements in macrofungi: what are the genuine concentrations?

    PubMed

    Borovička, Jan; Kubrová, Jaroslava; Rohovec, Jan; Randa, Zdeněk; Dunn, Colin E

    2011-10-01

    Concentrations of uranium, thorium and rare earth elements (REE) in 36 species of ectomycorrhizal (26 samples) and saprobic (25 samples) macrofungi from unpolluted sites with differing bedrock geochemistry were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Analytical results are supported by use of certified reference materials (BCR-670, BCR-667, NIST-1575a) and the reliability of the determination of uranium was verified by epithermal neutron activation analysis (ENAA). It appears that data recently published on these elements are erroneous, in part because of use of an inappropriate analytical method; and in part because of apparent contamination by soil particles resulting in elevated levels of thorium and REE. Macrofungi from unpolluted areas, in general, did not accumulate high levels of the investigated metals. Concentrations of uranium and thorium were generally below 30 and 125 μg kg(-1) (dry weight), respectively. Concentrations of REE in macrofungi did not exceed 360 μg kg(-1) (dry weight) and their distribution more or less followed the trend observed in post-Archean shales and loess. PMID:21390524

  1. A New Fungal Isolate, Penidiella sp. Strain T9, Accumulates the Rare Earth Element Dysprosium

    PubMed Central

    Horiike, Takumi

    2015-01-01

    With an aim to develop a highly efficient method for the recovery of rare earth elements (REEs) by using microorganisms, we attempted to isolate dysprosium (Dy)-accumulating microorganisms that grow under acidic conditions from environmental samples containing high concentrations of heavy metals. One acidophilic strain, T9, which was isolated from an abandoned mine, decreased the concentration of Dy in medium that contained 100 mg/liter Dy to 53 mg/liter Dy after 3 days of cultivation at pH 2.5. The Dy content in the cell pellet of the T9 strain was 910 μg/mg of dry cells. The T9 strain also accumulated other REEs. Based on the results of 28S-D1/D2 rRNA gene sequencing and morphological characterization, we designated this fungal strain Penidiella sp. T9. Bioaccumulation of Dy was observed on the cell surface of the T9 strain by elemental mapping using scanning electron microscopy-energy dispersive X-ray spectroscopy. Our results indicate that Penidiella sp. T9 has the potential to recover REEs such as Dy from mine drainage and industrial liquid waste under acidic conditions. PMID:25710372

  2. Geochemistry of the rare earth elements in ferromanganese nodules from DOMES Site A, northern equatorial Pacific

    USGS Publications Warehouse

    Calvert, S.E.; Piper, D.Z.; Baedecker, P.A.

    1987-01-01

    The distribution of rare earth elements (REE) in ferromanganese nodules from DOMES Site A has been determined by instrumental neutron activation methods. The concentrations of the REE vary markedly. Low concentrations characterize samples from a depression (the valley), in which Quaternary sediments are thin or absent; high concentrations are found in samples from the surrounding abyssal hills (the highlands) where the Quaternary sediment section is relatively thick. Moreover, the valley nodules are strongly depleted in the light trivalent REE (LREE) and Ce compared with nodules from the highlands, some of the former showing negative Ce anomalies. The REE abundances in the nodules are strongly influenced by the REE abundances in coexisting bottom water. Some controls on the REE chemistry of bottom waters include: a) the more effective removal of the LREE relative to the HREE from seawater because of the greater degree of complexation of the latter elements with seawater ligands, b) the very efficient oxidative scavenging of Ce on particle surfaces in seawater, and c) the strong depletion of both Ce and the LREE in, or a larger benthic flux of the HREE into, the Antarctic Bottom Water (AABW) which flows through the valley. The distinctive REE chemistry of valley nodules is a function of their growth from geochemically evolved AABW. In contrast, the REE chemistry of highland nodules indicates growth from a local, less evolved seawater source. ?? 1987.

  3. Study of Kα2 /Kα1 RYIED in closed and open shell Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Chaves, P. C.; Tribolet, A. D.; Reis, M. A.

    2016-01-01

    Relative Yield Ion Energy Dependence (RYIED) was observed, named and reported as phenomenological evidence in 2005 (Reis et al., 2005). Since then, it was observed in transitions to the same subshell, and plausible explanations for the physics behind the phenomena have been proposed. In this work we present experimental evidence of the RYIED effect on the most inner transition possible in two Rare Earth Elements (REE), namely variations in the intensity ratio of Kα2 /Kα1 X-rays from Tm and Yb irradiated under different conditions. These REE are particularly interesting to start with since Yb has an electronic configuration where all the subshells are completely filled, whilst Tm misses one electron in the 4f subshell. Ultrapure oxides of each element were irradiated using proton beams having energies in the range of 0.9-3.6 MeV, in steps of 100 keV. Spectra were collected using the CdTe detector of the HRHE-PIXE set-up of C2TN and analysed using the DT2 code. Finally, the vanishing of the effect upon charging up of the target has been observed and will be discussed.

  4. Using rare earth elements for the identification of the geographic origin of food

    NASA Astrophysics Data System (ADS)

    Meisel, T.; Bandoniene, D.; Joebstl, D.

    2009-04-01

    The European Union defined regimes within the Protected Geographical Status (PGS) framework to protect names of regional food specialities. Thus only food produced in a specific geographical area with a specific way of production or quality can be protected by a protected geographical indication (PGI) label. As such Styrian Pumpkin Seed Oil has been approved with this label, but as with many other high priced regional specialities, fraud cannot be excluded or nor identified. Thus the aim of this work is, to develop an analytical method for the control of the geographic origin of pumpkin seed oil and also to test the method for other protected products. The development of such a method is not only of interest for scientists, but also of importance for the consumer wanting to know the origin of the food products and the assurance of the purity and quality. The group of rare earth elements (REE) in plants also have a characteristic distribution pattern similar to upper crustal REE distributions. Since the REE concentrations are extremely low in pumpkin seed oil (ppt to low ppb), ICP-MS was the only sensitive tool able to produce validated results. The carrier of the REE are most likely small particles distributed within the pumpkin seed oil. Unlike, e.g., olive oil, pumpkin seed oil is bottled and sold unfiltered, which makes this Styrian speciality an interesting sampling target. As pumpkin seed oils from different geographic origin show variable trace element and rare earth distribution patterns, is should possible to trace the origin of these oils. In the current project pumpkin seeds from different regions in Austria and from abroad were sampled. The trace element patterns in the extracted oil of these seeds were determined and a preliminary classification with discriminate analysis was successfully done on a statistical basis. In addition to the study of the geographic origin it was demonstrated that REE distribution patterns can also be used for the

  5. Rare earth and high field strength element partitioning between iron-rich clinopyroxenes and felsic liquids

    NASA Astrophysics Data System (ADS)

    Olin, P. H.; Wolff, J. A.

    2010-11-01

    Rare earth elements are commonly assumed to substitute only for Ca in clinopyroxene because of the similarity of ionic radii for REE3+ and Ca2+ in eightfold coordination. The assumption is valid for Mg-rich clinopyroxenes for which observed mineral/melt partition coefficients are readily predicted by the lattice strain model for substitution onto a single site (e.g., Wood and Blundy 1997). We show that natural Fe-rich pyroxenes in both silica-undersaturated and silica-oversaturated magmatic systems deviate from this behavior. Salites (Mg# 48-59) in phonolites from Tenerife, ferrohedenbergites (Mg# 14.2-16.2) from the rhyolitic Bandelier Tuff, and ferroaugites (Mg# 9.6-32) from the rhyolitic Rattlesnake Tuff have higher heavy REE contents than predicted by single-site substitution. The ionic radius of Fe2+ in sixfold coordination is substantially greater than that of Mg2+; hence, we propose that, in Fe-rich clinopyroxenes, heavy REE are significantly partitioned between eightfold Ca sites and sixfold Fe and Mg sites such that Yb and Lu exist dominantly in sixfold coordination. We also outline a REE-based method of identifying pyroxene/melt pairs in systems with multiple liquid and crystal populations, based upon the assumption that LREE and MREE reside exclusively in eightfold coordination in pyroxene. Contrary to expectations, interpolation of mineral/melt partition coefficient data for heavy REE does not predict the behavior of Y. We speculate that mass fractionation effects play a role in mineral/melt lithophile trace element partitioning that is detectable among pairs of isovalent elements with near-identical radii, such as Y and Ho, Zr and Hf, and Nb and Ta.

  6. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species.

    PubMed

    Thomas, Philippe J; Carpenter, David; Boutin, Céline; Allison, Jane E

    2014-02-01

    The phytotoxicity of rare earth elements (REEs) is still poorly understood. The exposure-response relationships of three native Canadian plant species (common milkweed, Asclepias syriaca L., showy ticktrefoil, Desmodium canadense (L.) DC. and switchgrass, Panicum virgatum L.) and two commonly used crop species (radish, Raphanus sativus L., and tomato, Solanum lycopersicum L.) to the REEs lanthanum (La), yttrium (Y) and cerium (Ce) were tested. In separate experiments, seven to eight doses of each element were added to the soil prior to sowing seeds. Effects of REE dose on germination were established through measures of total percent germination and speed of germination; effects on growth were established through determination of above ground biomass. Ce was also tested at two pH levels and plant tissue analysis was conducted on pooled samples. Effects on germination were mostly observed with Ce at low pH. However, effects on growth were more pronounced, with detectable inhibition concentrations causing 10% and 25% reductions in biomass for the two native forb species (A. syriaca and D. canadense) with all REEs and on all species tested with Ce in both soil pH treatments. Concentration of Ce in aboveground biomass was lower than root Ce content, and followed the dose-response trend. From values measured in natural soils around the world, our results continue to support the notion that REEs are of limited toxicity and not considered extremely hazardous to the environment. However, in areas where REE contamination is likely, the slow accumulation of these elements in the environment could become problematic. PMID:23978671

  7. Trace element partitioning between ionic crystal and liquid

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Philpotts, J. A.; Yin, L.

    1978-01-01

    The partitioning of trace elements between ionic crystals and the melt has been correlated with lattice energy of the host. The solid-liquid partition coefficient has been expressed in terms of the difference in relative ionic radius of the trace element and the homogeneous and heterogeneous strain of the host lattice. Predictions based on this model appear to be in general agreement with data for alkali nitrates and for rare-earth elements in natural garnet phenocrysts.

  8. Substantial enhancement in intrinsic coercivity on M-type strontium hexaferrite through the increase in magneto-crystalline anisotropy by co-doping of group-V and alkali elements

    SciTech Connect

    Ahn, Kyunghan Ryu, Byungki; Korolev, Dmitry; Jae Kang, Young

    2013-12-09

    The effect of d{sup 1} impurity doping in Sr-hexaferrite (SrM) on the magnetic anisotropy is investigated. First-principles calculations revealed that group-V elements (V, Nb) are stabilized with co-doping of alkali elements. Na{sup 1+}/K{sup 1+} doping at Sr{sup 2+}-site is found to be critical to form the d{sup 1} impurities at Fe-site. Experimentally, Na–V doped SrM shows the intrinsic coercivity of ∼5.4 kOe, which is ∼300% enhancement compared to undoped SrM and comparable value to La–Co co-doped SrM. Finally, the spin-orbit coupling from non-vanishing angular momentum of d{sup 1} impurity in SrM should be a main factor for such a substantial improvement of intrinsic coercivity.

  9. Method for thermal cracking of hydrocarbons in an apparatus of an alloy having alkali or alkaline earth metals in the alloy to minimize coke deposition

    SciTech Connect

    Watanabe, Y.; Morimura, T.; Toyoda, Y.

    1984-06-12

    In the thermal cracking of or heating of hydrocarbons, for example naphtha, a carbonization reaction incidentally takes place due to the fact that Ni, Fe and Co contained in, for example, the conduits of the thermal cracking apparatus have a catalytically carbonizing action. The aim of the present invention is to effectively suppress carbon deposition promoted by these elements, to provide for the incorporation of an inhibitor element, e.g. Li, Na, Ba, Be, Ca, Mg or their oxides, into the heat-resistant alloy, and to form on the surface of this alloy a carbon deposition suppressing layer which comprises an inhibitor element.

  10. Rare earth elements minimal harvest year variation facilitates robust geographical origin discrimination: The case of PDO "Fava Santorinis".

    PubMed

    Drivelos, Spiros A; Danezis, Georgios P; Haroutounian, Serkos A; Georgiou, Constantinos A

    2016-12-15

    This study examines the trace and rare earth elemental (REE) fingerprint variations of PDO (Protected Designation of Origin) "Fava Santorinis" over three consecutive harvesting years (2011-2013). Classification of samples in harvesting years was studied by performing discriminant analysis (DA), k nearest neighbours (κ-NN), partial least squares (PLS) analysis and probabilistic neural networks (PNN) using rare earth elements and trace metals determined using ICP-MS. DA performed better than κ-NN, producing 100% discrimination using trace elements and 79% using REEs. PLS was found to be superior to PNN, achieving 99% and 90% classification for trace and REEs, respectively, while PNN achieved 96% and 71% classification for trace and REEs, respectively. The information obtained using REEs did not enhance classification, indicating that REEs vary minimally per harvesting year, providing robust geographical origin discrimination. The results show that seasonal patterns can occur in the elemental composition of "Fava Santorinis", probably reflecting seasonality of climate. PMID:27451177

  11. Carbon and other light element contents in the Earth's core based on first-principles molecular dynamics.

    PubMed

    Zhang, Yigang; Yin, Qing-Zhu

    2012-11-27

    Carbon (C) is one of the candidate light elements proposed to account for the density deficit of the Earth's core. In addition, C significantly affects siderophile and chalcophile element partitioning between metal and silicate and thus the distribution of these elements in the Earth's core and mantle. Derivation of the accretion and core-mantle segregation history of the Earth requires, therefore, an accurate knowledge of the C abundance in the Earth's core. Previous estimates of the C content of the core differ by a factor of ∼20 due to differences in assumptions and methods, and because the metal-silicate partition coefficient of C was previously unknown. Here we use two-phase first-principles molecular dynamics to derive this partition coefficient of C between liquid iron and silicate melt. We calculate a value of 9 ± 3 at 3,200 K and 40 GPa. Using this partition coefficient and the most recent estimates of bulk Earth or mantle C contents, we infer that the Earth's core contains 0.1-0.7 wt% of C. Carbon thus plays a moderate role in the density deficit of the core and in the distribution of siderophile and chalcophile elements during core-mantle segregation processes. The partition coefficients of nitrogen (N), hydrogen, helium, phosphorus, magnesium, oxygen, and silicon are also inferred and found to be in close agreement with experiments and other geochemical constraints. Contents of these elements in the core derived from applying these partition coefficients match those derived by using the cosmochemical volatility curve and geochemical mass balance arguments. N is an exception, indicating its retention in a mantle phase instead of in the core. PMID:23150591

  12. Ligand extraction of rare earth elements from aquifer sediments: Implications for rare earth element complexation with organic matter in natural waters

    NASA Astrophysics Data System (ADS)

    Tang, Jianwu; Johannesson, Karen H.

    2010-12-01

    The ability of organic matter as well as carbonate ions to extract rare earth elements (REEs) from sandy sediments of a Coastal Plain aquifer was investigated for unpurified organic matter from different sources (i.e., Mississippi River natural organic matter, Aldrich humic acid, Nordic aquatic fulvic acid, Suwannee River fulvic acid, and Suwannee River natural organic matter) and for extraction solutions containing weak (i.e., CH 3COO -) or strong (i.e., CO32-) ligands. The experimental results indicate that, in the absence of strong REE complexing ligands in solution, the amount of REEs released from the sand is small and the fractionation pattern of the released REEs appears to be controlled by the surface stability constants for REE sorption with Fe(III) oxides/oxyhydroxides. In the presence of strong solution complexing ligands, however, the amount and the fractionation pattern of the released REEs reflect the strength and variation of the stability constants of the dominant aqueous REE species across the REE series. The varying amount of REEs extracted by the different organic matter employed in the experiments indicates that organic matter from different sources has different complexing capacity for REEs. However, the fractionation pattern of REEs extracted by the various organic matter used in our experiments is remarkable consistent, being independent of the source and the concentration of organic matter used, as well as solution pH. Because natural aquifer sand and unpurified organic matter were used in our experiments, our experimental conditions are more broadly similar to natural systems than many previous laboratory experiments of REE-humic complexation that employed purified humic substances. Our results suggest that the REE loading effect on REE-humic complexation is negligible in natural waters as more abundant metal cations (e.g., Fe, Al) out-compete REEs for strong binding sites on organic matter. More specifically, our results indicate that REE

  13. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities

    SciTech Connect

    Gutiérrez-Gutiérrez, Silvia C.; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart

    2015-08-15

    Highlights: • Samples from multiple core drills were obtained from 4× landfill sites in the UK. • Each sample analysed for rare earth elements, critical metals and valuable metals. • Two stage microwave digestion method ensuring high yield. • High quantities of copper and aluminium were observed in the soil layers of landfill. • Across 4× landfills aluminium and copper present has a value of around $400 million. - Abstract: Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58 ± 6 mg kg{sup −1} for REEs comprising 44 ± 8 mg kg{sup −1} for light REEs, 11 ± 2 mg kg{sup −1} for heavy REEs and 3 ± 1 mg kg{sup −1} for Scandium (Sc) and 3 ± 1.0 mg kg{sup −1} of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are

  14. Efficient mobilization and fractionation of rare-earth elements by aqueous fluids upon slab dehydration

    NASA Astrophysics Data System (ADS)

    Tsay, A.; Zajacz, Z.; Sanchez-Valle, C.

    2014-07-01

    The characteristic REE fractionation pattern in arc magmas compared to MOR-basalts results from the selective mobilization of light rare-earth elements (LREE) by slab-derived mobile components. However, the nature and composition of the slab flux, and the actual mechanisms responsible for the transfer of rare-earth elements (REE) from the slab to the mantle wedge remain unclear. We present experimental data on the solubility of selected REE in ligand-bearing aqueous fluids and a hydrous haplogranitic melt at 2.6 GPa and 600-800 °C, spanning the conditions relevant to slab dehydration and melting. The solubilities of REE in aqueous fluids increase more than an order of magnitude with temperature increasing from 600 to 800 °C. Addition of ligands such as Cl-, F-, CO32-, SO42- in relatively small concentrations (0.3-1.5 m [mol/kg H2O]) has a pronounced effect further enhancing REE solubilities. Each ligand yields a characteristic REE pattern by preferential dissolution of either the light or the heavy REE. For example, the addition of NaCl to the aqueous fluids yields highly elevated LREE/HREE ratios (La/Yb=17.4±4.3), whereas the addition of fluoride and sulfate ligands significantly increases the solubility of all REE with moderate LREE/HREE fractionation (La/Yb∼4). The addition of Na2CO3 results in preferential increase of HREE solubilities, and yields La/Yb ratio of 1.6±0.5 by flattening the moderately fractionated REE pattern seen in pure aqueous fluids. The solubilities in hydrous haplogranite melt are moderate in comparison to those observed in aqueous fluids and do not lead to pronounced REE fractionation. Therefore, REE can be effectively mobilized and fractionated by aqueous fluids, compared to felsic hydrous melts. Furthermore, the aqueous fluid chemistry has a major role in determining REE mobilities and fractionation upon slab dehydration in addition to the significant control exerted by temperature. Our results show that chloride-bearing slab

  15. Rare earth elements and neodymium isotopes in world river sediments revisited

    NASA Astrophysics Data System (ADS)

    Bayon, G.; Toucanne, S.; Skonieczny, C.; André, L.; Bermell, S.; Cheron, S.; Dennielou, B.; Etoubleau, J.; Freslon, N.; Gauchery, T.; Germain, Y.; Jorry, S. J.; Ménot, G.; Monin, L.; Ponzevera, E.; Rouget, M.-L.; Tachikawa, K.; Barrat, J. A.

    2015-12-01

    Over the past decades, rare earth elements (REE) and their radioactive isotopes have received tremendous attention in sedimentary geochemistry, as tracers for the geological history of the continental crust and provenance studies. In this study, we report on elemental concentrations and neodymium (Nd) isotopic compositions for a large number of sediments collected near the mouth of rivers worldwide, including some of the world's major rivers. Sediments were leached for removal of non-detrital components, and both clay and silt fractions were retained for separate geochemical analyses. Our aim was to re-examine, at the scale of a large systematic survey, whether or not REE and Nd isotopes could be fractionated during Earth surface processes. Our results confirmed earlier assumptions that river sediments do not generally exhibit any significant grain-size dependent Nd isotopic variability. Most sediments from rivers draining old cratonic areas, sedimentary systems and volcanic provinces displayed similar Nd isotopic signatures in both clay and silt fractions, with ΔεNd(clay-silt) < |1|. A subtle decoupling of Nd isotopes between clays and silts was identified however in a few major river systems (e.g. Nile, Mississippi, Fraser), with clays being systematically shifted towards more radiogenic values. This observation suggests that preferential weathering of volcanic and/or sedimentary rocks relative to more resistant lithologies may occur in river basins, possibly leading locally to Nd isotopic decoupling between different size fractions. Except for volcanogenic sediments, silt fractions generally displayed homogeneous REE concentrations, exhibiting relatively flat shale-normalized patterns. However, clay fractions were almost systematically characterized by a progressive enrichment from the heavy to the light REE and a positive europium (Eu) anomaly. In agreement with results from previous soil investigations, the observed REE fractionation between clays and silts

  16. Rare-earth elements enrichment of Pacific seafloor sediments: the view from volcanic islands of Polynesia

    NASA Astrophysics Data System (ADS)

    Melleton, Jérémie; Tuduri, Johann; Pourret, Olivier; Bailly, Laurent; Gisbert, Thierry

    2014-05-01

    Rare-earth elements (REEs) are key metals for «green» technologies such as energy saving lamps or permanent magnets used in, e.g., wind turbines, hard disk drives, portable phone or electric or hybrid vehicles. Since several years, world demand for these metals is therefore drastically increasing. The quasi-monopolistic position of China, which produces around 95 % of global REEs production, generates risks for the industries that depend on a secure supply of REEs. In response, countries are developing and diversifying their supply sources, with new mining projects located outside China and efforts in the area of REEs recycling. Most of these projects focus on deposits related to carbonatites and alkaline-peralkaline magmatism, which are generally enriched in light REEs (LREEs) compared to the heavy REEs (HREEs)-enriched deposits of the ion-adsorption types, located in southern China. However, a recent study revealed new valuable resources corresponding to seafloor sediments located in the south-eastern and north-central Pacific. The deep-sea mud described by these authors show a higher HREE/LREE ratio than ion-adsorption deposits, a feature which significantly increases their economic interest. The authors suggest mid-ocean ridge hydrothermal activity as an explanation to this anomalous enrichment. However, several contributions have documented considerable REEs enrichment in basalts and peridotitic xenoliths from French Polynesia. Several arguments have been exposed in favour of a supergene origin, with a short migration, suggesting that REEs were collected from weathered basalts. The Tahaa volcanic island (Sous-le-Vent Island, Society Archipelago, French Polynesia) is the first location where such enrichment has been described. New petrographic and mineralogical investigations confirm a supergene mobilization of this abnormal occurrence. REE-bearing minerals (mainly phosphates of the rhabdophane group) are primarily located within basalt vesicles but also in

  17. Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL)

    SciTech Connect

    Quarrie, L. E-mail: lindsay.o.quarrie@gmail.com

    2014-09-15

    The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

  18. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    SciTech Connect

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at a proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ

  19. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    DOE PAGESBeta

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at amore » proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ reservoir

  20. Drill core major, trace and rare earth element anlayses from wells RN-17B and RN-30, Reykjanes, Iceland

    DOE Data Explorer

    Andrew Fowler

    2015-04-01

    Analytical results for X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill core from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.

  1. Using Rare Earth Element (REE) tracers to identify perferential micro-sites of post-fire aeolian erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant communities in desert environments are spatially anisotropic. We applied Rare Earth Element (REE) tracers to different landscape positions of an anisotropic Northern Chihuahua Desert ecosystem in an effort to study preferential sediment source areas. We delineated three 0.5 m by 6 m plots of...

  2. Using commercial finite element packages for the study of earth deformations, sea levels and the state of stress

    NASA Astrophysics Data System (ADS)

    Wu, Patrick

    2004-08-01

    Modifications to commercial finite element (FE) packages must be applied before they can be used for geophysical studies involving long wavelength deformation or viscoelasticity. This paper provides in detail how and why the commercial codes have to be modified when incompressibility is assumed. Both the non-self-gravitating flat earth and self-gravitating spherical earth will be considered. The latter involves an iterative procedure, which converges within 5 iterations. This is demonstrated both analytically and numerically. In addition, implementation of the gravitationally self-consistent sea level equation on a self-gravitating spherical earth is also described. Good agreement between numerical results obtained with this coupled finite-element method and the conventional spectral method is also demonstrated. In all cases, the interpretation of the outputs of FE models are particularly important in modelling the state of stress.

  3. A chemical-spectrochemical method for the determination of rare earth elements and thorium in cerium minerals

    USGS Publications Warehouse

    Rose, H.J., Jr.; Murata, K.J.; Carron, M.K.

    1954-01-01

    In a combined chemical-spectrochemical procedure for quantitatively determining rare earth elements in cerium minerals, cerium is determined volumetrically, a total rare earths plus thoria precipitate is separated chemically, the ceria content of the precipitate is raised to 80??0 percent by adding pure ceria, and the resulting mixture is analyzed for lanthanum, praseodymium, neodymium, samarium, gadolinium, yttrium, and thorium spectrochemically by means of the d.c. carbon arc. Spectral lines of singly ionized cerium are used as internal standard lines in the spectrochemical determination which is patterned after Fassel's procedure [1]. Results of testing the method with synthetic mixtures of rare earths and with samples of chemically analyzed cerium minerals show that the coefficient of variation for a quadruplicate determination of any element does not exceed 5??0 (excepting yttrium at concentrations less than 1 percent) and that the method is free of serious systematic error. ?? 1954.

  4. Health effects and toxicity mechanisms of rare earth elements-Knowledge gaps and research prospects.

    PubMed

    Pagano, Giovanni; Guida, Marco; Tommasi, Franca; Oral, Rahime

    2015-05-01

    In the recent decades, rare earth elements (REE) have undergone a steady spread in several industrial and medical applications, and in agriculture. Relatively scarce information has been acquired to date on REE-associated biological effects, from studies of bioaccumulation and of bioassays on animal, plant and models; a few case reports have focused on human health effects following occupational REE exposures, in the present lack of epidemiological studies of occupationally exposed groups. The literature is mostly confined to reports on few REE, namely cerium and lanthanum, whereas substantial information gaps persist on the health effects of other REE. An established action mechanism in REE-associated health effects relates to modulating oxidative stress, analogous to the recognized redox mechanisms observed for other transition elements. Adverse outcomes of REE exposures include a number of endpoints, such as growth inhibition, cytogenetic effects, and organ-specific toxicity. An apparent controversy regarding REE-associated health effects relates to opposed data pointing to either favorable or adverse effects of REE exposures. Several studies have demonstrated that REE, like a number of other xenobiotics, follow hormetic concentration-related trends, implying stimulatory or protective effects at low levels, then adverse effects at higher concentrations. Another major role for REE-associated effects should be focused on pH-dependent REE speciation and hence toxicity. Few reports have demonstrated that environmental acidification enhances REE toxicity; these data may assume particular relevance in REE-polluted acidic soils and in REE mining areas characterized by concomitant REE and acid pollution. The likely environmental threats arising from REE exposures deserve a new line of research efforts. PMID:25679485

  5. Rare earth elements in the phosphatic-enriched sediment of the Peru shelf

    USGS Publications Warehouse

    Piper, D.Z.; Baedecker, P.A.; Crock, J.G.; Burnett, W.C.; Loebner, B.J.

    1988-01-01

    Apatite-enriched materials from the Peru shelf have been analyzed for their major oxide and rare earth element (REE) concentrations. The samples consist of (1) the fine fraction of sediment, mostly clay material, (2) phosphatic pellets and fish debris, which are dispersed throughout the fine-grained sediment, (3) tabular-shaped phosphatic crusts, which occur within the uppermost few centimeters of sediment, and (4) phosphatic nodules, which occur on the seafloor. The bulk REE concentrations of the concretions suggest that these elements are partitioned between the enclosed detrital material and the apatite fraction. Analysis of the fine-grained sediment with which the samples are associated suggested that this detrital fraction in the concretions should have shale REE values; the analysis of the fish debris suggested that the apatite fraction might have seawater values. The seawater contribution of REE's is negligible in the nodules and crust, in which the apatite occurs as a fine-grained interstitial cement. That is, the concentration of REE's and the REE patterns are predominantly a function of the amount of enclosed fine-grained sediment. By contrast, the REE pattern of the pelletal apatite suggests a seawater source and the absolute REE concentrations are relatively high. The REE P2O5 ratios of the apatite fraction of these samples thus vary from approximately zero (in the case of the crust and nodules) to as much as approximately 1.2 ?? 10-3 (in the case of the pellets). The range of this ratio suggests that rather subtle variations in the depositional environment might cause a significant variation in the REE content of this authigenic fraction of the sediment. Pelletal glauconite was also recovered from one sediment core. Its REE concentrations closely resemble those of the fish debris. ?? 1988.

  6. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.

    PubMed

    Taggart, Ross K; Hower, James C; Dwyer, Gary S; Hsu-Kim, Heileen

    2016-06-01

    Rare earth elements (REEs) are critical and strategic materials in the defense, energy, electronics, and automotive industries. The reclamation of REEs from coal combustion fly ash has been proposed as a way to supplement REE mining. However, the typical REE contents in coal fly ash, particularly in the United States, have not been comprehensively documented or compared among the major types of coal feedstocks that determine fly ash composition. The objective of this study was to characterize a broad selection of U.S. fly ashes of varied geological origin in order to rank their potential for REE recovery. The total and nitric acid-extractable REE content for more than 100 ash samples were correlated with characteristics such as the major element content and coal basin to elucidate trends in REE enrichment. Average total REE content (defined as the sum of the lanthanides, yttrium, and scandium) for ashes derived from Appalachian sources was 591 mg kg(-1) and significantly greater than in ashes from Illinois and Powder River basin coals (403 and 337 mg kg(-1), respectively). The fraction of critical REEs (Nd, Eu, Tb, Dy, Y, and Er) in the fly ashes was 34-38% of the total and considerably higher than in conventional ores (typically less than 15%). Powder River Basin ashes had the highest extractable REE content, with 70% of the total REE recovered by heated nitric acid digestion. This is likely due to the higher calcium content of Powder River Basin ashes, which enhances their solubility in nitric acid. Sc, Nd, and Dy were the major contributors to the total REE value in fly ash, based on their contents and recent market prices. Overall, this study shows that coal fly ash production could provide a substantial domestic supply of REEs, but the feasibility of recovery depends on the development of extraction technologies that could be tailored to the major mineral content and origins of the feed coal for the ash. PMID:27228215

  7. Developing alternative resources of rare earth elements in Europe - EURARE and the red mud challenge

    NASA Astrophysics Data System (ADS)

    Deady, Eimear; Mouchos, Evangelos; Goodenough, Kathryn; Wall, Frances; Williamson, Ben

    2015-04-01

    Rare earth elements (REE) are considered to be highly "critical" by the European Commission [1], owing to the concentration of global supply [2] and their use in a wide range of emerging technologies (e.g. smart phones, electric cars and wind turbines). The main source of REE is the mineral bastnäsite, which is primarily extracted from carbonatites. Alternative resources of REE have been identified in a variety of other environments such as alluvial placers, bauxites and ore tailings. The EURARE project (www.eurare.eu), funded by the European Commission, aims to improve understanding of potential REE resources in Europe with the overall objective of establishing the basis for a European REE industry. As a part of this project, alternative sources of rare earth elements in Europe are being considered. REE have been identified as being particularly enriched in karst-bauxites and hence in the red muds generated as a waste product from the processing of these bauxites to alumina through the Bayer process [3]. Karst-bauxites are widely distributed with deposits known across the Mediterranean and with intermittent exploitation occurring over many decades. REE become concentrated in the bauxite deposits by the bauxitisation process and are retained due to the geochemical barrier created by the limestone bedrock below. This can result in several processes, including the crystallisation of authigenic REE-bearing minerals, the accumulation of residual phases and the adsorption of ions onto clays and other mineral surfaces [4]. Red muds produced from alumina processing represent a potentially important concentration of REE as it has been demonstrated that the REE pass through the alumina extraction process into the waste, and the total REE concentrations are typically enriched by a factor of two compared with the original bauxite ore [5]. Bauxites and red muds from the Parnassus Ghiona region of Greece [6] and the Seydişehir-Akseki region of Turkey have been assessed as

  8. Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale

    SciTech Connect

    Noack, Clinton W.; Jain, Jinesh C.; Stegmeier, John; Hakala, J. Alexandra; Karamalidis, Athanasios K.

    2015-06-26

    In this paper, we studied the geochemistry of the rare earth elements (REE) in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In these samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.

  9. Remediation of Rare Earth Element Pollutants by Sorption Process Using Organic Natural Sorbents

    PubMed Central

    Butnariu, Monica; Negrea, Petru; Lupa, Lavinia; Ciopec, Mihaela; Negrea, Adina; Pentea, Marius; Sarac, Ionut; Samfira, Ionel

    2015-01-01

    The effects of the sorption of environmental applications by various source materials of natural organic matter, i.e., bone powder, was examined. Sorption capacities and subsequent rare earth element retention characteristics of all metals tested were markedly increased by ionic task-specific. In this study, the abilities of three models’ isotherms widely were used for the equilibrium sorption data: Langmuir, Freundlich and Redlich-Peterson. For all studied metal ions the maximum adsorption capacity is close to those experimentally determined. The characteristic parameters for each isotherm and related coefficients of determination have been determined. The experimental data achieved excellent fits within the following isotherms in the order: Langmuir > Redlich-Peterson > Freundlich, based on their coefficient of determination values. The bone powder has developed higher adsorption performance in the removal process of Nd(III), Eu(III), La(III) from aqueous solutions than in the case of the removal process of Cs(I), Sr(II) and Tl(I) from aqueous solutions. The described relationships provide direct experimental evidence that the sorption-desorption properties of bone powder are closely related to their degree of the type of the metal. The results suggest a potential for obtaining efficient and cost-effective engineered natural organic sorbents for environmental applications. PMID:26378553

  10. Rare-earth elements distribution in granulite-facies marbles: a witness of fluid rock interaction

    NASA Astrophysics Data System (ADS)

    Boulvais, Philippe; Fourcade, Serge; Moine, Bernard; Gruau, Gérard; Cuney, Michel

    2000-08-01

    The rare earth element (REE) distribution of marbles from Tranomaro (SE Madagascar) shows that the marbles have interacted with syn-metamorphic fluids during the Panafrican granulite-facies metamorphism. The Tranomaro area is characterized by an extensive development of pyroxenites (skarns) variably mineralized in uranothorianite and enriched in REE, Zr. Across a meter-scale marble-pyroxenite contact, the REE content increases from the most remote marble sample to the contact with the pyroxenite (La from 19.8 to 129 ppm). REE patterns in enriched marbles display a strong negative Eu anomaly similar to those of pyroxenites. This peculiar type of REE distribution results from fluid infiltration. On a regional scale, some marbles have similar REE characteristics (progressive development of Eu anomaly together with REE enrichment) showing that some of them have interacted with fluids. Infiltration was hardly recognizable using C and O isotopic signatures because large isotopic variations were introduced during the pre-granulitic history. Then, REE distribution in high-grade marble may be helpful in monitoring syn-metamorphic fluid flow. In the present case, it is a more reliable tracer of fluid infiltration than stable isotopic compositions.

  11. Elements of a new Global Water Strategy for the Group on Earth Observations

    NASA Astrophysics Data System (ADS)

    Lawford, Richard; Koike, Toshio; Ochiai, Osamu; Cripe, Douglas

    2013-04-01

    In order to address the need to review the scope and direction of GEO activities related to water and to provide guidance for the post-2015 GEO planning, the Integrated Global Water Cycle Observations (IGWCO) Community of Practice and the Committee on Earth Observation Satellites (CEOS) are working together to develop a strategy for GEO water activities over the next decade. This presentation will review the elements of the strategy which include topics as comprehensive as user needs and engagement, water cycle observational systems, assessment of water quality, data issues, interoperability and integration of water information systems and capacity building. Impediments in the flow of information and technological capabilities from the providers of new technologies, innovations and data products to the end users will be explored in terms of the nature of these impediments and how they can be overcome. To be successful in GEO's framework of volunteerism, the water strategy should build on activities that are on-going in related programmes at the international and national levels. In addition, implementation of the strategy will need to be supported through new initiatives and policies that promote greater integration. Suggestions for achieving these goals will be outlined at the end of the talk.

  12. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction

    SciTech Connect

    Kim, Daejin; Powell, Lawrence E.; Delmau, Lætitia H.; Peterson, Eric S.; Herchenroeder, Jim; Bhave, Ramesh R.

    2015-06-24

    In this paper, the rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. Finally, the resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.

  13. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction

    DOE PAGESBeta

    Kim, Daejin; Powell, Lawrence E.; Delmau, Lætitia H.; Peterson, Eric S.; Herchenroeder, Jim; Bhave, Ramesh R.

    2015-06-24

    In this paper, the rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acidmore » solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. Finally, the resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.« less

  14. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    NASA Astrophysics Data System (ADS)

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency.

  15. Recovery of Rare Earth Elements and Yttrium from Passive-Remediation Systems of Acid Mine Drainage.

    PubMed

    Ayora, Carlos; Macías, Francisco; Torres, Ester; Lozano, Alba; Carrero, Sergio; Nieto, José-Miguel; Pérez-López, Rafael; Fernández-Martínez, Alejandro; Castillo-Michel, Hiram

    2016-08-01

    Rare earth elements and yttrium (REY) are raw materials of increasing importance for modern technologies, and finding new sources has become a pressing need. Acid mine drainage (AMD) is commonly considered an environmental pollution issue. However, REY concentrations in AMD can be several orders of magnitude higher than in naturally occurring water bodies. With respect to shale standards, the REY distribution pattern in AMD is enriched in intermediate and valuable REY, such as Tb and Dy. The objective of the present work is to study the behavior of REY in AMD passive-remediation systems. Traditional AMD passive remediation systems are based on the reaction of AMD with calcite-based permeable substrates followed by decantation ponds. Experiments with two columns simulating AMD treatment demonstrate that schwertmannite does not accumulate REY, which, instead, are retained in the basaluminite residue. The same observation is made in two field-scale treatments from the Iberian Pyrite Belt (IPB, southwest Spain). On the basis of the amplitude of this process and on the extent of the IPB, our findings suggest that the proposed AMD remediation process can represent a modest but suitable REY source. In this sense, the IPB could function as a giant heap-leaching process of regional scale in which rain and oxygen act as natural driving forces with no energy investment. In addition to having environmental benefits of its treatment, AMD is expected to last for hundreds of years, and therefore, the total reserves are practically unlimited. PMID:27351211

  16. Cerium redox cycles and rare earth elements in the Sargasso Sea

    SciTech Connect

    Sholkovitz, E.R.; Schneider, D.L. )

    1991-10-01

    Two profiles of the rare earth elements (REEs) are reported for the upper water column of the Sargasso Sea. The trivalent-only REEs have remarkably constant concentrations in the upper 500m of an April 1989 profile and in the upper 200m of a May 1989 profile. In contrast, Ce concentrations decrease smoothly with increasing depth. In April 1989 Ce decreases from 15.7 pmol/kg at 20 m to 5.1 pmol/kg at 750 m. Cerium, which has Redox transformations in seawater, behaves anomalously with respect to its REE(III) neighbors. While both dissolved Ce and Mn have elevated concentrations in the upper 200m, their vertical gradients are distinctly different. In contrast to Mn, which reaches a minimum dissolved concentration near the zone (150-250 m) of a particulate Mn maximum, Ce is being removed both near this zone and to depths of at least 750m. These new profiles indicate that Ce is involved in an upper ocean redox cycle. This interpretation is consistent with the MOFFETT (1990) incubation tracer experiments on the same May 1989 seawater. He showed that Ce(III) oxidation is biologically mediated, probably light inhibited, increases with depth, and 3-4 times slower than Mn(II) oxidation in the 100-200 m zone. CERoclines provide new information into the fine scale zonation of redox process operating in the upper columns of oligotrophic oceans.

  17. A method for predicting bioavailability of rare earth elements in soils to maize.

    PubMed

    Wang, Wei-Sheng; Shan, Xiao-Quan; Wen, Bei; Zhang, Shu-Zhen

    2004-03-01

    A single-extraction procedure using low-molecular-weight organic acids (LMWOAs) as extractant and the first and second steps of a three-step extraction procedure recommended by the European Community Bureau of Reference (BCR; now European Community Standards, Measurement and Testing Programme, Brussels, Belgium) were performed to extract the light rare earth elements (LREEs) La, Ce, Pr, and Nd from wet rhizosphere soil. The extracted soil solutions were successively filtered through membranes with a pore size of less than 0.45 microm and a molecular weight cutoff of less than 1 kDa, which were termed colloidal and truly dissolved fractions, respectively. Apoplastically and symplastically bound LREEs in maize roots were experimentally distinguished by ultrasound-assisted desorption with 1 mM CaCl2 solution at 0 degrees C in ice-cooled water bath. When the LMWOAs extraction method was used, a good correlation was obtained between LREEs in soil colloidal and truly dissolved fractions and LREEs bound to apoplasm and symplasm of maize root. Both apoplastically and symplastically bound LREEs are the result of bioavailability. However, a poor correlation was obtained between LREEs in fractions water soluble, exchangeable and carbonate bound (B1) and Fe-Mn oxide bound (B2) of the BCR method and LREEs in apoplasm and symplasm and in intact roots. Hence, the LMWOAs extraction method is recommended for measuring the bioavailability of LREEs in soils. PMID:15285371

  18. Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale

    DOE PAGESBeta

    Noack, Clinton W.; Jain, Jinesh C.; Stegmeier, John; Hakala, J. Alexandra; Karamalidis, Athanasios K.

    2015-06-26

    In this paper, we studied the geochemistry of the rare earth elements (REE) in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In thesemore » samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.« less

  19. Rare earth element mobility in vesicular lava during low-grade metamorphism

    NASA Astrophysics Data System (ADS)

    Nyström, Jan Olov

    1984-12-01

    A geochemical comparison of basaltic relicts and spilitic domains from two burial metamorphosed flows in central Chile, of similar original composition and rich and poor in amygdules, respectively, demonstrates a relationship between initial vesicularity and rare earth element (REE) mobility. During spilitization the REE were partly leached from permeable parts of the flows and precipitated in voids, now amygdules and veinlets. The REE (excluding Eu) moved coherently in the highly amygdaloidal flow: spilitic domains and amygdules inherited the basaltic REE pattern. Besides being characterized by a positive Eu anomaly, epidotes separated from amygdules have a REE distribution which mimics that of the basalt; the absolute contents range widely, suggesting local and/or temporal REE variations in the metamorphic fluids. Pumpellyite differs by being strongly enriched in heavy REE. Similar ratios of Th, Hf and Ta in samples as contrasting as relict basalt and a geode are consistent with coherent leaching. Coherent mobility, when established for a rock system, can be used to elucidate, for example, whether minerals in cross-cutting veins were formed by local redistribution or from introduced material.

  20. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration.

    PubMed

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency. PMID:26819083

  1. Composition and evolution of the eucrite parent body - Evidence from rare earth elements. [extraterrestrial basaltic melts

    NASA Technical Reports Server (NTRS)

    Consolmagno, G. J.; Drake, M. J.

    1977-01-01

    Quantitative modeling of the evolution of rare earth element (REE) abundances in the eucrites, which are plagioclase-pigeonite basalt achondrites, indicates that the main group of eucrites (e.g., Juvinas) might have been produced by approximately 10% equilibrium partial melting of a single type of source region with initial REE abundances which were chondritic relative and absolute. Since the age of the eucrites is about equal to that of the solar system, extensive chemical differentiation of the eucrite parent body prior to the formation of eucrites seems unlikely. If homogeneous accretion is assumed, the bulk composition of the eucrite parent body can be estimated; two estimates are provided, representing different hypotheses as to the ratio of metal to olivine in the parent body. Since a large number of differentiated olivine meteorites, which would represent material from the interior of the parent body, have not been detected, the eucrite parent body is thought to be intact. It is suggested that the asteroid 4 Vesta is the eucrite parent body.

  2. Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b.

    PubMed

    Gu, Wenyu; Farhan Ul Haque, Muhammad; DiSpirito, Alan A; Semrau, Jeremy D

    2016-07-01

    It is well known that Methylosinus trichosporium OB3b has two forms of methane monooxygenase (MMO) responsible for the initial conversion of methane to methanol, a cytoplasmic (soluble) methane monooxygenase and a membrane-associated (particulate) methane monooxygenase, and that copper strongly regulates expression of these alternative forms of MMO. More recently, it has been discovered that M. trichosporium OB3b has multiple types of the methanol dehydrogenase (MeDH), i.e. the Mxa-type MeDH (Mxa-MeDH) and Xox-type MeDH (Xox-MeDH), and the expression of these two forms is regulated by the availability of the rare earth element (REE), cerium. Here, we extend these studies and show that lanthanum, praseodymium, neodymium and samarium also regulate expression of alternative forms of MeDH. The effect of these REEs on MeDH expression, however, was only observed in the absence of copper. Further, a mutant of M. trichosporium OB3b, where the Mxa-MeDH was knocked out, was able to grow in the presence of lanthanum, praseodymium and neodymium, but was not able to grow in the presence of samarium. Collectively, these data suggest that multiple levels of gene regulation by metals exist in M. trichosporium OB3b, but that copper overrides the effect of other metals by an as yet unknown mechanism. PMID:27190151

  3. Remediation of Rare Earth Element Pollutants by Sorption Process Using Organic Natural Sorbents.

    PubMed

    Butnariu, Monica; Negrea, Petru; Lupa, Lavinia; Ciopec, Mihaela; Negrea, Adina; Pentea, Marius; Sarac, Ionut; Samfira, Ionel

    2015-09-01

    The effects of the sorption of environmental applications by various source materials of natural organic matter, i.e., bone powder, was examined. Sorption capacities and subsequent rare earth element retention characteristics of all metals tested were markedly increased by ionic task-specific. In this study, the abilities of three models' isotherms widely were used for the equilibrium sorption data: Langmuir, Freundlich and Redlich-Peterson. For all studied metal ions the maximum adsorption capacity is close to those experimentally determined. The characteristic parameters for each isotherm and related coefficients of determination have been determined. The experimental data achieved excellent fits within the following isotherms in the order: Langmuir > Redlich-Peterson > Freundlich, based on their coefficient of determination values. The bone powder has developed higher adsorption performance in the removal process of Nd(III), Eu(III), La(III) from aqueous solutions than in the case of the removal process of Cs(I), Sr(II) and Tl(I) from aqueous solutions. The described relationships provide direct experimental evidence that the sorption-desorption properties of bone powder are closely related to their degree of the type of the metal. The results suggest a potential for obtaining efficient and cost-effective engineered natural organic sorbents for environmental applications. PMID:26378553

  4. Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.; Meier, A.L.; Crock, J.G.

    1987-01-01

    A method of analysis of geological materials for the determination of the rare-earth elements using the Inductively coupled plasma mass spectrometric technique (ICP-MS) has been developed. Instrumental parameters and factors affecting analytical results have been first studied and then optimized. Samples are analyzed directly following an acid digestion, without the need for separation or preconcentration with limits of detection of 2-11 ng/g, precision of ?? 2.5% relative standard deviation, and accuracy comparable to inductively coupled plasma emission spectrometry and instrumental neutron activation analysis. A commercially available ICP-MS instrument is used with modifications to the sample introduction system, torch, and sampler orifice to reduce the effects of high salt content of sample solutions prepared from geologic materials. Corrections for isobaric interferences from oxide ions and other diatomic and triatomic ions are made mathematically. Special internal standard procedures are used to compensate for drift in metahmetal oxide ratios and sensitivity. Reference standard values are used to verify the accuracy and utility of the method.

  5. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    PubMed Central

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency. PMID:26819083

  6. Rare-earth element variation in phosphate nodules from midcontinent Pennsylvanian cyclothems

    SciTech Connect

    Kidder, D.L. . Dept. of Geological Sciences); Eddy-Dilek, C.A. . Savannah River Technology Center)

    1994-07-01

    The rare-earth element (REE) geochemistry of phosphate nodules from eastern Kansas and northeastern Oklahoma is dominated by patterns that are generally flat or are enriched in middle REE (MREE). Flat patterns are typical of phosphate nodules preserved in thick shales and in nodules from shales deposited nearest to detrital sources. The flat patterns are probably derived from terrigenous constituents in the host shale. MREE enrichment is evident in phosphate found in relatively thin shales and in distal shales. The authors suggest that the MREE-enriched pattern reflects the contribution of MREE-enriched fecal phosphate. The initial MREE enrichment mechanism may have been analogous to that in which some modern algae preferentially extract MREE from water of marine composition. The MREE-enriched signature may be preserved only in phosphate nodules that formed where terrigenous input was so low that it did not mask the characteristic fecal pattern. Rare Ce depletion patterns reflect a primary seawater REE source that has not been obscured by fecal or detrital components.

  7. The geochemistry of rare earth elements in the Amazon River estuary

    SciTech Connect

    Shokovitz, E.R. )

    1993-05-01

    The estuarine geochemistry of rare earth elements (REEs) was studied using samples collected in the Amazon River estuary from the AmasSeds (Amazon Shelf SEDiment Study) cruise of August 1989. Extensive removal of dissolved (0.22 [mu]m filtered) trivalent REEs from river water occurs in the low (0--6) salinity region. Removal by the salt-induced coagulation of river colloids leads to fractionation among the REE(III) series; the order of removal is light REEs > middle REEs > heavy REEs. There also is the enhanced removal of Ce (relative to trivalent La and Nd) in the low salinity (0--6) zone and in the zone of high biological activity. This is the first field observation of strong Ce removal associated with coagulation of river colloids and biological productivity. The argument is made that the decrease in the Ce anomaly across a biological front is caused by biologically mediated oxidation of Ce(III) to Ce(IV). Coagulation of river colloids and biologically mediated oxidation of Ce(III) lead to fractionation of REE(III) and redox modification of Ce. These processes result in the REE composition becoming fractionated relative to the Amazon River water and crust and more evolved toward the REE composition of the oceans. This study implies that reactions in estuaries play significant, yet poorly understood roles in controlling the REE composition and Ce anomaly of the oceans. 46 refs., 9 figs., 2 tabs.

  8. New Fission Fragment Distributions and r-Process Origin of the Rare-Earth Elements

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Sida, J.-L.; Lemaître, J.-F.; Panebianco, S.; Dubray, N.; Hilaire, S.; Bauswein, A.; Janka, H.-T.

    2013-12-01

    Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A≳140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular, the fission fragment yields determine the creation of 110≲A≲170 nuclei. Here, we apply a new scission-point model, called SPY, to derive the fission fragment distribution (FFD) of all relevant neutron-rich, fissioning nuclei. The model predicts a doubly asymmetric FFD in the abundant A≃278 mass region that is responsible for the final recycling of the fissioning material. Using ejecta conditions based on relativistic NS merger calculations, we show that this specific FFD leads to a production of the A≃165 rare-earth peak that is nicely compatible with the abundance patterns in the Sun and metal-poor stars. This new finding further strengthens the case of NS mergers as possible dominant origin of r nuclei with A≳140.

  9. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  10. Red Phosphorus: An Earth-Abundant Elemental Photocatalyst for "Green" Bacterial Inactivation under Visible Light.

    PubMed

    Xia, Dehua; Shen, Zhurui; Huang, Guocheng; Wang, Wanjun; Yu, Jimmy C; Wong, Po Keung

    2015-05-19

    Earth-abundant red phosphorus was found to exhibit remarkable efficiency to inactivate Escherichia coli K-12 under the full spectrum of visible light and even sunlight. The reactive oxygen species (•OH, •O2(-), H2O2), which were measured and identified to derive mainly from photogenerated electrons in the conduction band using fluorescent probes and scavengers, collectively contributed to the good performance of red phosphorus. Especially, the inactivated-membrane function enzymes were found to be associated with great loss of respiratory and ATP synthesis activity, the kinetics of which paralleled cell death and occurred much earlier than those of cytoplasmic proteins and chromosomal DNA. This indicated that the cell membrane was a vital first target for reactive oxygen species oxidation. The increased permeability of the cell membrane consequently accelerated intracellular protein carboxylation and DNA degradation to cause definite bacterial death. Microscopic analyses further confirmed the cell destruction process starting with the cell envelope and extending to the intracellular components. The red phosphorus still maintained good performance even after recycling through five reaction cycles. This work offers new insight into the exploration and use of an elemental photocatalyst for "green" environmental applications. PMID:25894494

  11. Effect of Rare Earth Elements on Isothermal Transformation Kinetics in Si-Mn-Mo Bainite Steels

    NASA Astrophysics Data System (ADS)

    Liang, Yilong; Yi, Yanliang; Long, Shaolei; Tan, Qibing

    2014-12-01

    Isothermal heat treatments to Si-Mn-Mo steel specimens were performed, and time-temperature-transformation curves (C-curves) were plotted by DIL805A/D differential dilatometer. The effect of rare earth (RE) elements on bainite transformation kinetics was systematically studied by adopting the empirical electron theory of solids and molecules, Johnson-Mehl-Avrami equation calculation, dilatometry, and metallography. Experimental results show that the addition of RE in Si-Mn-Mo bainite steels leads to the C-curves moving to bottom right and prolongs incubation period of bainite transformation. Moreover, RE addition increases the values of phase structure factors ( n A, F {C/D}) and activation energy of bainite transformation, inhibits the formation of granular bainite, and refines microstructures of bainitic ferrite and substructures. During the bainite transformation process, bainite transformation is delayed due to the drag effect, which is induced by the segregation of RE at the ferrite interphase and the retardation of Fe-C-RE (segregation units) on carbon diffusion.

  12. Rare earth element geochemistry of massive sulfides-sulfates and gossans on the Southern Explorer Ridge

    SciTech Connect

    Barrett, T.J. ); Jarvis, I. ); Jarvis, K.E. )

    1990-07-01

    Massive sulfide-sulfate deposits on the Southern Explorer Ridge were analyzed for 14 rare earth elements (REE) by a modified inductively coupled plasma-mass spectrometric technique that included a correction for high Ba content. Bulk samples of finely intermixed sulfides, sulfate, and amorphous silica contain {Sigma}REE concentrations of {le} 6 ppm. REE patterns range from (1) strongly enriched in light REE with positive Eu anomalies, to (2) relatively flat with positive Eu anomalies and slightly negative Ce anomalies, to (3) slightly enriched in light REE with moderately negative Ce anomalies. Pattern 1 is similar to that of 300-350 C solutions discharging at vents on the East Pacific Rise and the Mid-Atlantic Ridge, whereas pattern 3 resembles REE distributions in normal oceanic bottom waters. The sulfide-sulfate patterns are interpreted to result from variable mixtures of hydrothermal and normal seawater. Barite in gossans capping the mounds has an REE pattern almost identical to patterns of high-temperature vent solutions. Hydrothermal barite has lower REE contents and a different REE pattern relative to hydrogenous barite formed slowly on the sea floor.

  13. Determination of Rare Earth Elements in Hypersaline Solutions Using Low-Volume, Liquid-Liquid Extraction.

    PubMed

    Noack, Clinton W; Dzombak, David A; Karamalidis, Athanasios K

    2015-08-18

    Complex, hypersaline brines-including those coproduced with oil and gas, rejected from desalination technologies, or used as working fluids for geothermal electricity generation-could contain critical materials such as the rare earth elements (REE) in valuable concentrations. Accurate quantitation of these analytes in complex, aqueous matrices is necessary for evaluation and implementation of systems aimed at recovering those critical materials. However, most analytical methods for measuring trace metals have not been validated for highly saline and/or chemically complex brines. Here we modified and optimized previously published liquid-liquid extraction (LLE) techniques using bis(2-ethylhexyl) phosphate as the extractant in a heptane diluent, and studied its efficacy for REE recovery as a function of three primary variables: background salinity (as NaCl), concentration of a competing species (here Fe), and concentration of dissolved organic carbon (DOC). Results showed that the modified LLE was robust to a range of salinity, Fe, and DOC concentrations studied as well as constant, elevated Ba concentrations. With proper characterization of the natural samples of interest, this method could be deployed for accurate analysis of REE in small volumes of hyper-saline and chemically complex brines. PMID:25920439

  14. Ionic conductivity of binary fluorides of potassium and rare earth elements

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2016-01-01

    The ionic conductivity s of KYF4 and K2 RF5 single crystals ( R = Gd, Ho, Er) and KNdF4 and K2 RF5 ceramic samples ( R = Dy, Er) has been studied in the temperature range of 340-500°C. A comparative analysis of the σ values for these objects has been performed. Binary fluorides of potassium and rare earth elements were synthesized by the hydrothermal method (temperature 480°C, pressure 100-150 MPa) in the R 2O3-KF-H2O systems. The σ values of tetraf luorides are 3 × 10-5 S/cm (KYF4 single crystal) and 3 × 10-6 S/cm (KNdF4 ceramics) at 435°C. A K2ErF5 single crystal with σ = 1.2 × 10-4 S/cm at 435°C has the maximum value of ionic conductivity among pentafluorides. The anisotropy of ionic transport was found in K2HoF5 single crystals, σ∥ c /σ⊥ c = 2.5, where σ∥ c and σ⊥ c are, respectively, the conductivities along the crystallographic c axis and in the perpendicular direction.

  15. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction.

    PubMed

    Kim, Daejin; Powell, Lawrence E; Delmau, Lætitia H; Peterson, Eric S; Herchenroeder, Jim; Bhave, Ramesh R

    2015-08-18

    The rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. The resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets. PMID:26107531

  16. Microwave absorbing properties of rare-earth elements substituted W-type barium ferrite

    NASA Astrophysics Data System (ADS)

    Jing, Wang; Hong, Zhang; Shuxin, Bai; Ke, Chen; Changrui, Zhang

    2007-05-01

    W-type barium ferrites Ba(MnZn) 0.3Co 1.4R 0.01Fe 15.99O 27 with R=Dy, Nd and Pr were prepared by chemical coprecipitation method. Effects of rare-earth elements (RE) substitution on microstructural and electromagnetic properties were analyzed. The results show that a small amount of RE 3+ ions can replace Fe 3+ ions and adjust hyperfine parameters. An obvious increase in natural resonance frequency and high frequency relaxation, and a sharp decrease for complex permittivity have been observed. Furthermore, the matching thickness and the reflection loss (RL) of one-layer ferrite absorber were calculated. It reveals that thin and broad-band can be obtained by RE-substitution. But only when the magnetic moment of RE 3+ is higher than that of Fe 3+, can substitution be effective for higher RL. Dy-substituted ferrite composite has excellent microwave absorption properties. The frequency (with respect to -10 dB RL) begins from 9.9 GHz, and the bandwidth reaches far more than 8.16 GHz. The peak value is -51.92 dB at a matching thickness of 2.1 mm.

  17. Rare earth element distributions and fractionation in plankton from the northwestern Mediterranean Sea.

    PubMed

    Strady, Emilie; Kim, Intae; Radakovitch, Olivier; Kim, Guebuem

    2015-01-01

    Rare earth element (REE) concentrations were measured for the first time in plankton from the northwestern Mediterranean Sea. The REE concentrations in phytoplankton (60-200 μm) were 5-15 times higher than those in four size fractions of zooplankton: 200-500 μm, 500-1000 μm, 1000-2000 μm and >2000 μm. The concentrations within these zooplankton fractions exhibited the same ranges with some variation attributed to differences in zooplankton taxonomy. The REE concentrations in plankton were poorly related to the reported REE concentrations of seawater, but they correlated well with the calculated REE(3+), concentrations especially with regard to middle REE (MREEs) and heavy REEs (HREEs). Plankton and seawater revealed different PAAS-normalised REE distributions, with the greatest differences observed in the light REEs. Interestingly, a comparison of PAAS-normalized sediment particles from the study of Fowler et al. (1992) showed concentrations of the same order of magnitude and a similar REE distribution without MREE enrichment. Based on this comparison, we propose a conceptual model that emphasizes the importance of biological scavenging of REEs (especially LREEs) in surface waters. PMID:24972173

  18. Responses of plant calmodulin to endocytosis induced by rare earth elements.

    PubMed

    Wang, Lihong; Cheng, Mengzhu; Chu, Yunxia; Li, Xiaodong; Chen, David D Y; Huang, Xiaohua; Zhou, Qing

    2016-07-01

    The wide application of rare earth elements (REEs) have led to their diffusion and accumulation in the environment. The activation of endocytosis is the primary response of plant cells to REEs. Calmodulin (CaM), as an important substance in calcium (Ca) signaling systems, regulating almost all of the physiological activities in plants, such as cellular metabolism, cell growth and division. However, the response of CaM to endocytosis activated by REEs remains unknown. By using immunofluorescence labeling and a confocal laser scanning microscope, we found that trivalent lanthanum [La(III)], an REE ion, affected the expression of CaM in endocytosis. Using circular dichroism, X-ray photoelectron spectroscopy and computer simulations, we demonstrated that a low concentration of La(III) could interact with extracellular CaM by electrostatic attraction and was then bound to two Ca-binding sites of CaM, making the molecular structure more compact and orderly, whereas a high concentration of La(III) could be coordinated with cytoplasmic CaM or bound to other Ca-binding sites, making the molecular structure more loose and disorderly. Our results provide a reference for revealing the action mechanisms of REEs in plant cells. PMID:27081794

  19. New fission fragment distributions and r-process origin of the rare-earth elements.

    PubMed

    Goriely, S; Sida, J-L; Lemaître, J-F; Panebianco, S; Dubray, N; Hilaire, S; Bauswein, A; Janka, H-T

    2013-12-13

    Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A≳140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular, the fission fragment yields determine the creation of 110≲A≲170 nuclei. Here, we apply a new scission-point model, called SPY, to derive the fission fragment distribution (FFD) of all relevant neutron-rich, fissioning nuclei. The model predicts a doubly asymmetric FFD in the abundant A≃278 mass region that is responsible for the final recycling of the fissioning material. Using ejecta conditions based on relativistic NS merger calculations, we show that this specific FFD leads to a production of the A≃165 rare-earth peak that is nicely compatible with the abundance patterns in the Sun and metal-poor stars. This new finding further strengthens the case of NS mergers as possible dominant origin of r nuclei with A≳140. PMID:24483647

  20. Fractionation in the solar nebula - Condensation of yttrium and the rare earth elements

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.

    1975-01-01

    The condensation of Y and the rare earth elements (REE) from the solar nebula may be controlled by thermodynamic equilibrium between gas and condensed solids. Highly fractionated REE patterns may result if condensates are removed from the gas before condensation is complete. It is found that the fractionation is not a smooth function of REE ionic radius but varies in an extremely irregular pattern. Both Yb and Eu are predicted to be extremely depleted in the early condensate without the requirement of condensation in the divalent state. The model is discussed with respect to a highly fractionated pattern observed by Tanaka and Masuda (1973), in a pink Ca-Al-rich inclusion from the Allende meteorite and can account for the abundances of each REE determined. According to the model this inclusion represents a condensate from a previously fractionated gas rather than from a gas of solar composition. Before the condensation of this inclusion, an earlier condensate was formed and was removed from equilibrium with the gas.

  1. Light element partitioning between silicate and metallic melts: Insights into the formation and composition of Earth's core

    NASA Astrophysics Data System (ADS)

    Myhill, R.; Rubie, D. C.; Frost, D. J.

    2015-12-01

    The mass deficit of the Earth's core, and the increasing solubility of light elements into metallic iron with increasing pressure demonstrate that the Earth's core must contain several weight percent of light elements such as Si, O, C and S. These light elements place important constraints on the depth of the primordial magma ocean(s), the chemical potentials of many of these elements in coexisting phases during differentiation, the temperature of the inner core boundary, and the composition of the bulk Earth. The P-wave velocity, Earth's mass deficit, and depth of the inner core boundary place two important constraints on the chemical composition of the core, but there are multiple trade-offs which cannot be resolved using seismology alone. In this study, we use a large experimental partitioning dataset to build activity-composition models for light elements in metallic melts in equilibrium with oxide and silicate phases (both solid and liquid). We avoid the use of epsilon models, which commonly fail at solute concentrations above a few weight percent. Instead we employ a modified subregular solution model, using intermediate species to calculate excess free energies of mixing. Flexible models like these are required to fit the experimental data which spans 0 - 100 GPa and 1500 - 5500 K. Several heuristics are used to reduce the number of free parameters where they are not independently constrained. We use our models to investigate the conditions of core formation and the chemical composition of the Earth's core using the approach of Rubie et al. (2015; Icarus v.248; pp 89-108).

  2. Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    De Carlo, Eric Heinen; Green, William J.

    2002-04-01

    We present data on the composition of water from Lake Vanda, Antarctica. Vanda and other lakes in the McMurdo Dry Valleys of Antarctica are characterized by closed basins, permanent ice covers, and deep saline waters. The meromictic lakes provide model systems for the study of trace metal cycling owing to their pristine nature and the relative simplicity of their biogeochemical systems. Lake Vanda, in the Wright Valley, is supplied by a single input, the Onyx River, and has no output. Water input to the lake is balanced by sublimation of the nearly permanent ice cap that is broken only near the shoreline during the austral summer. The water column is characterized by an inverse thermal stratification of anoxic warm hypersaline water underlying cold oxic freshwater. Water collected under trace-element clean conditions was analyzed for its dissolved and total rare earth element (REE) concentrations by inductively coupled plasma mass spectrometry. Depth profiles are characterized by low dissolved REE concentrations (La, Ce, <15 pM) in surface waters that increase slightly (La, 70 pM; Ce, 20 pM) with increasing depth to ˜55 m, the limit of the fresh oxic waters. Below this depth, a sharp increase in the concentrations of strictly trivalent REE (e.g., La, 5 nM) is observed, and a submaximum in redox sensitive Ce (2.6 nM) is found at 60- to 62-m depth. At a slightly deeper depth, a sharper Ce maximum is observed with concentrations exceeding 11 nM at a 67-m depth, immediately above the anoxic zone. The aquatic concentrations of REE reported here are ˜50-fold higher than previously reported for marine oxic/anoxic boundaries and are, to our knowledge, the highest ever observed at natural oxic/anoxic interfaces. REE maxima occur within stable and warm saline waters. All REE concentrations decrease sharply in the sulfidic bottom waters. The redox-cline in Lake Vanda is dominated by diffusional processes and vertical transport of dissolved species driven by concentration

  3. Chemical Weathering of Black Shales and Rare Earth Element Composition of Surface Waters and Groundwater

    NASA Astrophysics Data System (ADS)

    Hannigan, R. E.; Johannesson, K. H.

    2001-05-01

    Weathering processes dominate the dissolved and suspended loads of most of the world's major rivers. Among sedimentary rocks, black shales are particularly sensitive to chemical weathering. Therefore, shale systems are useful for investigating the partitioning of chemical elements during chemical weathering. Recent studies, such as those by Peucker-Ehrenbrink, Ravizza and others, link chemical weathering of black shales to changes in marine isotopic composition. Rare earth elements (REE) have a unique chemistry and are ideal for such tracer studies. We explored the effect of modern chemical weathering of black shales on the hydrochemistry of surface and groundwaters in the Mohawk Valley of New York State. This region provides an ideal site for the investigation of trace element remobilization during the chemical weathering of black shales. In this region, surface and groundwaters, in intimate contact with black shales and have high dissolved metal concentrations presumably due to water-rock interactions. The extent to which the dissolved REE composition of the surface and ground waters retains the rock signature is, in someway related to the length of time that the water remains in contact with the rock. We compared the REE compositions of surface and groundwaters in areas draining black shale to those of waters draining regions of dolostone-limestone to explore the extent of metal release due to chemical weathering. Shale normalized REE patterns for stream waters exhibit slight heavy REE enrichments and, at some locations, LREE depletion. REE patterns of the waters normalized to their respective sediments show some LREE depletion. However, waters associated with the Little Falls dolomite show fractionation predominantly enriched in the heavy REEs. Differences between the black shale sites, recorded as light REE depletion and/or middle REE enrichment, may be related to the discharge of the streams and the total dissolved solids. The dissolved REE chemistry of

  4. β-decay of neutron-rich Zâ¼60 nuclei and the origin of rare earth elements

    NASA Astrophysics Data System (ADS)

    Wu, J.; Nishimura, S.; Lorusso, G.; Xu, Z. Y.; Baba, H.; Browne, F.; Daido, R.; Doornenbal, P.; Fang, Y. F.; Ideguchi, E.; Isobe, T.; Li, Z.; Patel, Z.; Rice, S.; Simpson, G.; Sinclair, L.; Söderström, P. A.; Sumikama, T.; Watanabe, H.; Yagi, A.; Yokoyama, R.; Aoi, N.; Garrote, F. L. Bello; Benzoni, G.; Gey, G.; Gottardo, A.; Nishibata, H.; Odahara, A.; Sakurai, H.; Tanaka, M.; Taprogge, J.; Yamamoto, T.; Eurica Collaboration

    2014-05-01

    A large fraction of the rare-earth elements observed in the solar system is produced in the astrophysical rapid neutron capture process (r-process). However, current stellar models cannot completely explain the relative abundance of these elements partially because of nuclear physics uncertainties. To address this problem, a β-decay spectroscopy experiment was performed at RI Beam Factory (RIBF) at RIKEN, aimed at studying a wide range of very neutron-rich nuclei with Z˜60 that are progenitors of the rare-earth elements with mass number A˜460. The experiment provides a test of nuclear models as well as experimental inputs for r-process calculations. This contribution presents the experimental setup and some preliminary results of the experiment.

  5. β-decay of neutron-rich Z∼60 nuclei and the origin of rare earth elements

    SciTech Connect

    Wu, J.; Nishimura, S.; Lorusso, G.; Baba, H.; Doornenbal, P.; Isobe, T.; Söderström, P. A.; Sakurai, H.; Xu, Z. Y.; Browne, F.; Daido, R.; Fang, Y. F.; Yagi, A.; Nishibata, H.; Odahara, A.; Yamamoto, T.; Ideguchi, E.; Aoi, N.; Tanaka, M.; Collaboration: EURICA Collaboration; and others

    2014-05-02

    A large fraction of the rare-earth elements observed in the solar system is produced in the astrophysical rapid neutron capture process (r-process). However, current stellar models cannot completely explain the relative abundance of these elements partially because of nuclear physics uncertainties. To address this problem, a β-decay spectroscopy experiment was performed at RI Beam Factory (RIBF) at RIKEN, aimed at studying a wide range of very neutron-rich nuclei with Z∼60 that are progenitors of the rare-earth elements with mass number A∼460. The experiment provides a test of nuclear models as well as experimental inputs for r-process calculations. This contribution presents the experimental setup and some preliminary results of the experiment.

  6. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate

    SciTech Connect

    Owsiak, Z

    2004-01-01

    The paper discusses results of the research into the influence of high-alkali Portland cement on granite aggregate. The deformation of the concrete structure occurred after 18 months. The research was carried out by means of a scanning electron microscope equipped with a high-energy dispersive X-ray analyzer that allowed observation of unpolished sections of concrete bars exhibiting the cracking pattern typical of the alkali-silica reaction. Both the microscopic observation and the X-ray elemental analysis confirm the presence of alkali-silica gel and secondary ettringite in the cracks.

  7. Assessment of Bioavailable Concentrations of Germanium and Rare Earth Elements in the Rhizosphere of White Lupin (Lupinus albus L.)

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Fischer, Ronny; Moschner, Christin; Székely, Balázs

    2015-04-01

    Concentrations of Germanium (Ge) and Rare Earth Elements in soils are estimated at 1.5 mg kg -1 (Ge), 25 mg kg -1 (La) and 20 mg kg -1 (Nd), which are only roughly smaller than concentrations of Pb and Zn. Germanium and rare earth elements are thus not rare but widely dispersed in soils and therefore up to date, only a few minable deposits are available. An environmental friendly and cost-effective way for Ge and rare earth element production could be phytomining. However, the most challenging part of a phytomining of these elements is to increase bioavailable concentrations of the elements in soils. Recent studies show, that mixed cultures with white lupine or other species with a high potential to mobilize trace metals in their rhizosphere due to an acidification of the soil and release of organic acids in the root zone could be a promising tool for phytomining. Complexation of Ge and rare earth elements by organic acids might play a key role in controlling bioavailability to plants as re-adsorption on soil particles and precipitation is prevented and thus, concentrations in the root zone of white lupine increase. This may also allow the complexes to diffuse along a concentration gradient to the roots of mixed culture growing species leading to enhanced plant uptake. However, to optimize mixed cultures it would be interesting to know to which extend mobilization of trace metals is dependent from chemical speciation of elements in soil due to the interspecific interaction of roots. A method for the identification of complexes of germanium and rare earth elements with organic acids, predominantly citric acid in the rhizosphere of white lupine was developed and successfully tested. The method is based on coupling of liquid chromatography with ICP-MS using a zic-philic column (SeQuant). As a preliminary result, we were able to show that complexes of germanium with citric acid exist in the rhizosphere of white lupin, what may contribute to the bioavailability of this

  8. Rare earth element mineralogy, geochemistry, and preliminary resource assessment of the Khanneshin carbonatite complex, Helmand Province, Afghanistan

    USGS Publications Warehouse

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Buttleman, Kim P.

    2011-01-01

    There is increased concern about the future availability of rare earth elements (REE) because of China's dominance as the supplier of more than 95 percent of world REE output, their decision to restrict exports of rare earth products, and the rapid increase in world-wide consumption of rare earth product. As a result, countries such as the United States, Japan, and member nations of the European Union face a future of tight supplies and high prices for rare earth products unless other sources of REE are found and developed (Long and others, 2010; U.S. Geological Survey, 2011, p. 128-129, 184-185). We report and describe a significant new deposit of light rare earth elements (LREE), estimated at 1 Mt, within the Khanneshin carbonatite complex of south Afghanistan. The potential resource is located in a remote and rugged part of the igneous complex in a region previously identified by Soviet geologists in the 1970s. This report reviews the geologic setting of LREE deposit, presents new geochemical data documenting the grade of LREE mineralization, briefly describes the mineralogy and mineralogical associations of the deposit, and presents a preliminary estimate of LREE resources based on our current understanding of the geology.

  9. Progress in Understanding Alkali-Alkali Spin Relaxation

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher J.; Happer, William; Chann, Bien; Kadlecek, Stephen; Anderson, L. W.; Walker, Thad G.

    2000-06-01

    In extensive experiments we have shown that a spin interaction with a relatively long correlation time causes much of the spin relaxation in very dense alkali-metal vapors. The spin relaxation is affected by the pressure of the helium or nitrogen buffer gas, although there is little dependence at pressures above one atmosphere. There are substantial differences in the relaxation rates for different isotopes of the same element, for example ^87Rb and ^85Rb. We have completed extensive modeling of how singlet and triplet dimers and doublet trimers of the alkali-metal atoms could cause spin relaxation in dense alkali-metal vapors. In the case of doublet trimers or triplet dimers, we assume the main coupling to the nuclear spins is through the Fermi Contact interaction with the unpaired electrons. Spin loss to the rotation of the molecule is assumed to occur through the electronic spin-rotation and spin-axis (dipole-dipole) interactions for the triplet dimers. For the singlet dimers, we assume that the nuclear spins couple directly to the rotational angular momentum of the molecule through the electric quadrupole interaction. We account for all of the total nuclear spin states that occur for the dimers and trimers. We have also considered the possibility that the collisional breakup and formation rates of the dimers or trimers could saturate with increasing buffer gas pressure. Such saturation occurs in many other unimolecular reactions and is often ascribed to breakup through activated states.

  10. [Indirect determination of rare earth elements in Chinese herbal medicines by hydride generation-atomic fluorescence spectrometry].

    PubMed

    Zeng, Chao; Lu, Jian-Ping; Xue, Min-Hua; Tan, Fang-Wei; Wu, Xiao-Yan

    2014-07-01

    Based on their similarity in chemical properties, rare earth elements were able to form stable coordinated compounds with arsenazo III which were extractable into butanol in the presence of diphenylguanidine. The butanol was removed under reduced pressure distillation; the residue was dissolved with diluted hydrochloric acid. As was released with the assistance of KMnO4 and determined by hydrogen generation-atomic fluorescence spectrometry in terms of rare earth elements. When cesium sulfate worked as standard solution, extraction conditions, KMnO4 amount, distillation temperature, arsenazo III amount, interfering ions, etc were optimized. The accuracy and precision of the method were validated using national standard certified materials, showing a good agreement. Under optimum condition, the linear relationship located in 0.2-25 microg x mL(-1) and detection limit was 0.44 microg x mL(-1). After the herbal samples were digested with nitric acid and hydrogen peroxide, the rare earth elements were determined by this method, showing satisfactory results with relative standard deviation of 1.3%-2.5%, and recoveries of 94.4%-106.0%. The method showed the merits of convenience and rapidness, simple instrumentation and high accuracy. With the rare earths enriched into organic phase, the separation of analytes from matrix was accomplished, which eliminated the interference. With the residue dissolved by diluted hydrochloric acid after the solvent was removed, aqueous sample introduction eliminated the impact of organic phase on the tubing connected to pneumatic pump. PMID:25269316

  11. Genesis of the central zone of the Nolans Bore rare earth element deposit, Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Schoneveld, Louise; Spandler, Carl; Hussey, Kelvin

    2015-08-01

    The Nolans Bore rare earth element (REE) deposit consists of a network of fluorapatite-bearing veins and breccias hosted within Proterozoic granulites of the Reynolds Range, Central Australia. Mineralisation is divided into three zones (north, central, and south-east), with the north and south-east zones consisting of massive REE-bearing fluorapatite veins, with minor brecciation and carbonate infill. The central zone is distinctively different in mineralogy and structure; it features extensive brecciation, a high allanite content, and a large, epidote-rich enveloping alteration zone. The central zone is a reworking of the original solid apatite veins that formed during the Chewings Orogeny at ca. 1525 Ma. These original apatite veins are thought to derive from phosphate-rich magmatic-hydrothermal fluid exsolved from as-yet unrecognised alkaline magmatic bodies at depth. We define four ore breccia types (BX1-4) in the central zone on the basis of detailed petrological and geochemical analysis of drillcore and thin sections. BX1 ore comprises fluorapatite with minor crackle brecciation with carbonate infill and resembles ore of the north and south-east zones. Breccia types BX2, BX3, and BX4 represent progressive stages of ore brecciation and development of calc-silicate mineral (amphibole, epidote, allanite, calcite) infill. Comparison of bulk ore sample geochemistry between breccia types indicates that REEs were not mobilised more than a few centimetres during hydrothermal alteration and brecciation. Instead, most of the REEs were partitioned from the original REE fluorapatite into newly formed allanite, REE-poor fluorapatite and minor REE carbonate in the breccias. Negative europium (Eu) anomalies in the breccia minerals are accounted for by a large positive Eu anomaly in epidote from the alteration zones surrounding the ore breccias. This observation provides a direct link between ore recrystallisation and brecciation, and the formation of the alteration halo in

  12. Rare-earth elements in the Permian Phosphoria Formation: Paleo proxies of ocean geochemistry

    USGS Publications Warehouse

    Piper, D.Z.; Perkins, R.B.; Rowe, H.D.

    2007-01-01

    The geochemistry of deposition of the Meade Peak Member of the Phosphoria Formation (MPM) in southeast Idaho, USA, a world-class sedimentary phosphate deposit of Permian age that extends over 300,000 km2, is ascertained from its rare earth element (REE) composition. Ratios of REE:Al2O3 suggest two sources-seawater and terrigenous debris. The seawater-derived marine fraction identifies bottom water in the Phosphoria Sea as O2-depleted, denitrifying (suboxic) most of the time, and seldom sulfate-reducing (anoxic). This interpretation is supported by earlier research that showed progressively greater ratios in the marine sediment fraction of Cr:Ni>V:Ni???Mo:Ni, relative to their ratios in seawater; for which marine Cr, V, and Mo can have a dominantly O2-depleted bottom-water source and Ni a photic-zone, largely algal, source. The water chemistry was maintained by a balance between bacterial oxidation of organic matter settling through the water column, determined largely by primary productivity in the photic zone, and the flux of oxidants into the bottom water via advection of seawater from the open ocean. Samples strongly enriched in carbonate fluorapatite, the dominant REE host mineral, have variable Er/Sm, Tm/Sm, and Yb/Sm ratios. Their distribution may represent greater advection of seawater between the Phosphoria Sea and open ocean during deposition of two ore zones than a center waste and greater upwelling of nutrient-enriched water into the photic zone. However, the mean rate of deposition of marine Ni, a trace nutrient of algae, and PO43-, a limiting nutrient, indicate that primary productivity was probably high throughout the depositional history. An alternative interpretation of the variable enrichments of Er, Tm, and Yb, relative to Sm, is that they may reflect temporally variable carbonate alkalinity of open-ocean seawater in Permian time. A more strongly negative Ce anomaly for all phosphatic units than the Ce anomaly of modern pelletal phosphate is

  13. Rare earth and trace elements of fossil vertebrate bioapatite as palaeoenvironmental and sedimentological proxies

    NASA Astrophysics Data System (ADS)

    Žigaitė, Živilė; Fadel, Alexandre; Pérez-Huerta, Alberto; Jeffries, Teresa

    2015-04-01

    Rare earth (REE) and trace element compositions of fossil vertebrate dental microremains have been studied in Silurian and Devonian vertebrate dental scales and spines in-situ, using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Samples were selected from the well-known Silurian bone beds of Vesiku and Ohesaare in Saaremaa island of Estonia, and a number of Lower Devonian localities from Spitsbergen (Svalbard), Andrée Land group. Biomineral preservation was assessed using spot semi-quantitative elemental chemistry (SEM-EDS) and electron back-scatter difractometry (EBSD) for cristallinity imaging. The obtained PAAS shale-normalised REE concentrations were evaluated using basic geochemical calculations and quantifications. The REE patterns from the Lower Devonian vertebrate apatite from Andrée Land, Spitsbergen (Wood Bay and Grey Hœk formations) did not show any recognisable taxon-specific behavior, but had rather well expressed differences of REE compositions related to biomineral structure and sedimentary settings, suggesting REE instead to reflect burial environments and sedimentological history. The Eu anomaly recorded in two of the studied localities but not in the other indicate different taphonomic conditions and palaeoenvironment, while La/Sm, La/Yb ratios sugeest considerable influence of terrestrial freshwater during the early diagenesis. The La/Yb and La/Sm plots also agree with the average REE concentrations, reflecting domination of the adsoption over substitution as principal REE uptake mechanism in the fossils which had significantly lower overall REE concentrations, and vice versa. Vesiku (Homerian, Wenlock) microremains yielded very uniform REE patterns with slightly lower overall REE concentrations in enameloid than in dentine, with strong enrichment in middle REE and depletion in heavy REE. Negative Europium (Eu) anomaly was pronounced in all the profiles, but Cerium (Ce) anomalies were not detected suggesting possible

  14. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater

    SciTech Connect

    Sholkovitz, E.R. ); Landing, W.M.; Lewis, B.L. )

    1994-03-01

    Sargasso Sea suspended particles were sequentially digested with three chemical treatments (acetic acid, mild HCl/HNO[sub 3], and HF/HNO[sub 3]/HCl in a bomb). The latter two treatments dissolve detrital minerals, while the acetic acid removes surface coatings (organic matter and Mn oxides). The rare earth element (REE) composition of the surface coatings, in marked contrast to the crust-like REE composition of the two detrital phases, is extensively fractionated with respect to both filtered seawater and the crust. Surface coatings are responsible for the removal and fractionation of REEs from seawater and, as such, play a key role in the marine geochemical cycles of trace elements. Relative to seawater, the surface coatings are systematically enriched tenfold across the trivalent REEs from Lu to La and develop large positive Ce-anomalies. The Ce-anomalies of the coatings switch from being negative (seawater-like) in the upper 100 m to being strongly positive at greater depths. The ingrowth of Ce and LREEs on particle surfaces reflects the in situ oxidation of dissolved Ce(III) to particulate Ce(IV), and the preferential removal of LREE(III)s over HREE(III)s. REEs(III) fractionation of this type is consistent with particle/solution models. Both processes appear to be related to the in situ formation of Mn oxide particles from the oxidation of dissolved Mn(II) in the upper 200 m of the water column. Preferential removal of LREEs in the upper waters is countered by their preferential release at depth due to remineralization of surface coatings on particles. A new method is explored for estimating the residence time of suspended particles by combining Ce concentration data of dissolved and surface-bound phases with the Ce(III) oxidation rate measurements of MOFFETT (1990). A Ce-based residence time of thirteen days is similar in magnitude to the value calculated from U-[sup 234]Th disequilibria in the Sargasso Sea.

  15. LiF - a spectroscopic method for rare earth elements identification

    NASA Astrophysics Data System (ADS)

    Fuchs, Margret; Gloaguen, Richard; Beyer, Jan; Jacob, Sandra; Heitmann, Johannes

    2016-04-01

    Laser-induced fluorescence (LiF) has a great potential for the exploration and identification of rare earth elements (REE) in natural environments. This spectroscopic technique can provide an efficient way to secure resource availability, while the economic and ecological costs are reduced. No time-consuming sample preparation and analysis is needed prior to decisions along the raw material processing chain. Such non-destructive approaches allow for a fast access to analytical results and hence, are the basis for an immediate adjustment of processing steps. The method uses the material-specific luminescence emissions that are induced by laser-stimulation of a certain wavelength. The distinct emission lines of REE make them well suited for the development of a LiF-based exploration technique. However, typical REE emission peaks known from the free elements may shift or be masked in natural materials due to their position in the crystal lattice, varying compositions of minerals or other natural conditions such as water content. The natural variability therefore, demands for comprehensive investigations of REE and their spectral characteristics in minerals. To identify those spectral information that are robust and unequivocal, we analyse spectra of REE standards measured in different matrix minerals including phosphates and fluorides. We use variable laser wavelengths from UV (325 nm) to green (532 nm) and a detection range from 340 nm to 1080 nm. Results show spectral characteristics that sort REE in three groups due to: no distinct emission lines, absorption features, distinct luminescence emission lines. Measured in different matrix minerals, we determine shifts for some of the spectral features and some disappear or decline in intensity. Changing the wavelength of the laser allows for a more selective stimulation of REE emissions, especially wavelengths longer than UV can reduce the unspecific emission of all luminescent components of a sample and thus enhance

  16. The Use of Lead Isotope and Rare Earth Element Geochemistry for Forensic Geographic Provenancing

    NASA Astrophysics Data System (ADS)

    Carey, A.; Darrah, T.; Harrold, Z.; Prutsman-Pfeiffer, J.; Poreda, R.

    2008-12-01

    Lead isotope and rare earth element composition of modern human bones are analyzed to explore their utility for geographical provenancing. DNA analysis is the standard for identification of individuals. DNA analysis requires a DNA match for comparison. Thus, DNA analysis is of limited use in cases involving unknown remains. Trace elements are incorporated into bones and teeth during biomineralization, recording the characteristics of an individual's geochemical environment. Teeth form during adolescence, recording the geochemical environment of an individual's youth. Bones remodel throughout an individual's lifetime. Bones consist of two types of bone tissue (cortical and trabecular) that remodel at different rates, recording the geochemical environment at the time of biomineralization. Cortical bone tissue, forming the outer surface of bones, is dense, hard tissue that remodels in 25-30 yrs. Conversely, trabecular bone tissue, the inner cavity of bones, is low density, porous and remodels in 2-5 years. Thus, analyzing teeth and both bone tissues allows for the development of a geographical time line capable of tracking immigration patterns through time instead of only an individual's youth. Geochemical isotopic techniques (Sr, O, C, N) have been used for geographical provenancing in physical anthropology. The isotopic values of Sr, C, O, N are predominantly a function of soil compositions in areas where food is grown or water is consumed. Application of these provenancing techniques has become difficult as an individual's diet may reflect the isotopic composition of foods obtained at the local grocer as opposed to local soil compositions. Thus, we explore the use of REEs and Pb isotopes for geographical provenancing. Pb and REEs are likely more reliable indicators of modern geographical location as their composition are high in bio-available sources such as local soils, atmospheric aerosols, and dust as opposed to Sr, C, O, N that are controlled by food and

  17. Rare earth elements in pore waters from Cabo Friós western boundary upwelling system

    NASA Astrophysics Data System (ADS)

    Smoak, J. M.; Silva-Filho, E. V.; Rousseau, T.; Albuquerque, A. L.; Caldeira, P. P.; Moreira, M.

    2015-12-01

    Rare earth elements (REE) are a group of reactive trace elements in aqueous media, they have a coherent chemical behavior with however a subtle and gradual shift in physicochemical properties allowing their use as tracers of sources and processes. Uncertainties on their oceanic inputs and outputs still remains [Arsouze et al., 2009; Siddall et al., 2008; Tachikawa et al., 2003]. The water-sediment interface were early on identified as a relevant REE source due to the high distribution coefficient between sediments and pore waters [Elderfield and Sholkovitz, 1987] and substantially higher concentration then the water column [Abbott et al., 2015; Haley et al., 2004; Sholkovitz et al., 1989; Soyol-Erdene and Huh, 2013]. Here we present a cross shelf transect of 4 short pore waters REE profiles on a 680 km2 mud bank located in the region of Cabo Frio, Brazil. This study reveals similar trends at the four sites: a REE production zone reflected by a maximum in concentration at the top of the sediment evolving with depth toward a REE consumption zone reflected by a minimum in REE concentrations. PAAS normalized patterns shows 1) a progressive depletion in LREE with depth with HREE/LREE ratios comprised between 1.1 and 1.6 in the 2 first centimeters evolving gradually to ratios comprised between 2.8 and 4.7 above 7 cm 2) A sharp gradient in negative Ce anomaly with Ce/Ce* values reaching 0.3. With maximum Nd concentrations comprised between 780 and 1200 pmol.kg and considering that seawater Nd concentrations of Brazilian shelf bottom waters are comprised between 24 and 50 pmol.Kg-1 we apply the Fick´s First Law of diffusion and estimate that 340 +/- 90 nmol. m-2 Y-1 of Nd is released in the Cabo frio´s mudbank. This flux is in the same order of magnitude of recent estimates by [Abbott et al., 2015] in the slope of Oregon´s margin. Unraveling processes responsible for the REE production zone will help to refine the global REE fluxes estimates.

  18. Rare Earth Element Measurements of Melilite and Fassaite in Allende Cai by Nanosims

    NASA Technical Reports Server (NTRS)

    Ito, M.; Messenger, Scott

    2009-01-01

    The rare earth elements (REEs) are concentrated in CAIs by approx. 20 times the chondritic average [e.g., 1]. The REEs in CAIs are important to understand processes of CAI formation including the role of volatilization, condensation, and fractional crystallization [1,2]. REE measurements are a well established application of ion microprobes [e.g., 3]. However the spatial resolution of REE measurements by ion microprobe (approx.20 m) is not adequate to resolve heterogeneous distributions of REEs among/within minerals. We have developed methods for measuring REE with the NanoSIMS 50L at smaller spatial scales. Here we present our initial measurements of REEs in melilite and fassaite in an Allende Type-A CAI with the JSC NanoSIMS 50L. We found that the key parameters for accurate REE abundance measurements differ between the NanoSIMS and conventional SIMS, in particular the oxide-to-element ratios, the relative sensitivity factors, the energy distributions, and requisite energy offset. Our REE abundance measurements of the 100 ppm REE diopside glass standards yielded good reproducibility and accuracy, 0.5-2.5 % and 5-25 %, respectively. We determined abundances and spatial distributions of REEs in core and rim within single crystals of fassaite, and adjacent melilite with 5-10 m spatial resolution. The REE abundances in fassaite core and rim are 20-100 times CI abundance but show a large negative Eu anomaly, exhibiting a well-defined Group III pattern. This is consistent with previous work [4]. On the other hand, adjacent melilite shows modified Group II pattern with no strong depletions of Eu and Yb, and no Tm positive anomaly. REE abundances (2-10 x CI) were lower than that of fassaite. These patterns suggest that fassaite crystallized first followed by a crystallization of melilite from the residual melt. In future work, we will carry out a correlated study of O and Mg isotopes and REEs of the CAI in order to better understand the nature and timescales of its

  19. Factors affecting the rare earth element compositions in massive sulfides from deep-sea hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Zeng, Zhigang; Ma, Yao; Yin, Xuebo; Selby, David; Kong, Fancui; Chen, Shuai

    2015-09-01

    To reconstruct the evolution of ore-forming fluids and determine the physicochemical conditions of deposition associated with seafloor massive sulfides, we must better understand the sources of rare earth elements (REEs), the factors that affect the REE abundance in the sulfides, and the REE flux from hydrothermal fluids to the sulfides. Here we examine the REE profiles of 46 massive sulfide samples collected from seven seafloor hydrothermal systems. These profiles feature variable total REE concentrations (37.2-4092 ppb) and REE distribution patterns (LaCN/LuCN ratios = 2.00-73.8; (Eu/Eu*)CN ratios = 0.34-7.60). The majority of the REE distribution patterns in the sulfides are similar to those of vent fluids, with the sulfides also exhibiting light REE enrichment. We demonstrate that the variable REE concentrations, Eu anomalies, and fractionation between light REEs and heavy REEs in the sulfides exhibit a relationship with the REE properties of the sulfide-forming fluids and the massive sulfide chemistry. Based on the sulfide REE data, we estimate that modern seafloor sulfide deposits contain approximately 280 t of REEs. According to the flux of hydrothermal fluids at mid-ocean ridges (MORs) and an average REE concentration of 3 ng/g in these fluids, hydrothermal vents at MORs alone transport more REEs (>360 t) to the oceans over the course of just 2 years than the total quantity of REEs in seafloor sulfides. The excess REEs (i.e., the quantity not captured by massive sulfides) may be transported away from the systems and become bound in sulfate deposits and metalliferous sediments.

  20. Rare earth element systematics of fossil bone revealed by LA-ICPMS analysis

    NASA Astrophysics Data System (ADS)

    Herwartz, Daniel; Tütken, Thomas; Jochum, Klaus Peter; Sander, P. Martin

    2013-02-01

    Intra-bone rare earth element (REE) fractionation trends were studied by LA-ICPMS analysis to put constraints on (1) the mechanisms controlling REE fractionation within fossil bones; (2) the relative timing of REE uptake in various parts of fossil bone and (3) the origin of REE in fossil bones. We have evaluated REE bone profiles across 54 fossil bones from a broad range of well-characterised taphonomic settings ranging in age from Triassic to early Medieval. REE patterns and concentration gradients are highly variable and intra-bone fractionation trends in (La/Yb)N vs. (La/Sm)N space of few specimens cover almost the entire range previously observed for bulk samples. Intra-bone variability of Ce anomalies, as well as variable Y/Ho and (La/La∗)N is also observed. Sometimes, diagenetic fluids with fractionated, HREE enriched compositions have entered the bone from the marrow cavity, producing secondary REE uptake profiles. Theoretical intra-bone fractionation trends, modelled using lattice strain theory, concur with most REE data but some trends cannot be modelled using realistic boundary conditions. This fact, as well as the occurence of positive and negative Ce anomalies within the same fossil sample, hint towards changing REE compositions of diagenetic fluids over the timescales of REE uptake. Because apparent Ce anomalies frequently evolve over bone profiles and Ce anomalies can be inherited from previous fractionation events, Ce anomalies are a highly ambiguous tracer for constraining ambient redox conditions. In general, bioapatite REE signatures may not always reliably reflect ambient taphonomic or redox conditions and diagenetic fluid compositions. Therefore REE patterns and Ce anomalies of fossil bones must be interpreted cautiously as they vary spatially within skeletal remains and are affected by intra-bone fractionation processes as well as changing compositions of the diagenetic fluid.

  1. Rare Earth Element Partition Coefficients During High-Grade Metamorphism: Experiments, Realities, And Large Datasets

    NASA Astrophysics Data System (ADS)

    Taylor, R.; Clark, C.; Kylander-Clark, A. R.; Hacker, B. R.

    2015-12-01

    For 15 years rare earth element (REE) partitioning between zircon and garnet has facilitated the coupling of U-Pb ages to metamorphism, particularly in the granulite facies. The combination of in situ analysis and rapid data acquisition, particularly through combined techniques such as laser ablation split stream (LASS), means that complex terranes can be interrogated with increasing detail. However this detail provided by large datasets must also be combined with an understanding of the processes involved, for example the relative mobility of the REE, Ti, U and Pb within zircon grains that have withstood intense P-T conditions to varying degrees. Care must also be taken in identifying open system conditions, for example the presence or passage of partial melts that result in non-equilibrium, or very localised equilibrium, between the phases of interest. Visualisation of REE partition coefficients (DREE) becomes more complex with large datasets particularly when dealing with variably recrystallised zircon grains or multiple generations of garnet. Simple methods of visualising the important partitioning parameters identify temperature trends in experimental datasets [1, 2]. These trends can be used as clear indicators of zircon growing or recrystallizing in the presence of stable garnet and may be used as thermometers for zircon growth and for the identification of thermal peaks. Investigation of zircon-garnet DREE values in both long-lived high grade terranes (e.g. S. India), and complex polymetamorphic terranes (e.g. Enderby Land, E. Antarctica) provides insight into how partitioning information can be carefully interrogated, by looking at systematic or erratic variations from experimental data, even when dealing with issues such as variably recrystallised zircon and melt migration. Rubatto and Hermann, (2007). Chemical Geology. Taylor et al., (2015). Journal Metamorphic Geology.

  2. Rare earth element geochemistry in cold-seep pore waters of Hydrate Ridge, northeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Himmler, Tobias; Haley, Brian A.; Torres, Marta E.; Klinkhammer, Gary P.; Bohrmann, Gerhard; Peckmann, Jörn

    2013-07-01

    The concentrations of rare earth elements (REEs), sulphate, hydrogen sulphide, total alkalinity, calcium, magnesium and phosphate were measured in shallow (<12 cm below seafloor) pore waters from cold-seep sediments on the northern and southern summits of Hydrate Ridge, offshore Oregon. Downward-decreasing sulphate and coevally increasing sulphide concentrations reveal sulphate reduction as dominant early diagenetic process from ~2 cm depth downwards. A strong increase of total dissolved REE (∑REE) concentrations is evident immediately below the sediment-water interface, which can be related to early diagenetic release of REEs into pore water resulting from the re-mineralization of particulate organic matter. The highest pore water ∑REE concentrations were measured close to the sediment-water interface at ~2 cm depth. Distinct shale-normalized REE patterns point to particulate organic matter and iron oxides as main REE sources in the upper ~2-cm depth interval. In general, the pore waters have shale-normalized patterns reflecting heavy REE (HREE) enrichment, which suggests preferential complexation of HREEs with carbonate ions. Below ~2 cm depth, a downward decrease in ∑REE correlates with a decrease in pore water calcium concentrations. At this depth, the anaerobic oxidation of methane (AOM) coupled to sulphate reduction increases carbonate alkalinity through the production of bicarbonate, which results in the precipitation of carbonate minerals. It seems therefore likely that the REEs and calcium are consumed during vast AOM-induced precipitation of carbonate in shallow Hydrate Ridge sediments. The analysis of pore waters from Hydrate Ridge shed new light on early diagenetic processes at cold seeps, corroborating the great potential of REEs to identify geochemical processes and to constrain environmental conditions.

  3. Nernst-Ettingshausen Effect in Elemental Rare-Earth Single Crystals

    NASA Astrophysics Data System (ADS)

    Chamoire, Audrey; Heremans, Joseph

    2012-02-01

    The transverse Nernst-Ettingshausen (N-E) coefficient N measurements of the elemental rare-earth (R-E) single-crystal are for the first time presented from 80 to 420 K. Since they have mainly hexagonal symmetry at room temperature, measurements are given with the heat flux along the [100] and the [001] axes. Due to their complex band structure and Fermi surface, their small thermopower (S) and their multicarrier systems involving electron (e) and hole (h) pockets, their N are expected to be large. Indeed, for such systems, both S and N can be expressed as^1 S=(Seσe+ Shσh)/( σe+σh) while N=[(Neσe+ Nhσh)( σe+σh)+(Sh-Se)(RHhσh- RHeσe)σeσh]/( σe+σh)^a, where σ is the electrical conductivity and RH the Hall coefficient and the subscript correspond to either carriers. Since Sh>0 and Se<0, the resulting S should be low thus leading to a large N . These solids are useful in single-material thermoelectric N-E coolers. They create a large temperature differences using thermomagnetic effects, without having to be cascaded. This would resolve th problem of contact resistances of actual multi-stage Peltier coolers, especially in the cryogenic temperature range. The dimensionless figure of merit of N-E coolers is zTN=B^2N^2σ(B)T/κ(B), with B is the magnetic field, T the absolute temperature and κ the thermal conductivity. a.E.H. Putley, The Hall Effect and Semiconductor Physics , New York: Dover publication, 1968.

  4. Rare earth element concentrations in geological and synthetic samples using synchrotron X-ray fluorescence analysis

    USGS Publications Warehouse

    Chen, J.R.; Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Rivers, M.L.; Sutton, S.R.; Cygan, G.L.; Grossman, J.N.; Reed, M.J.

    1993-01-01

    The concentrations of rare earth elements (REEs) in specific mineral grains from the Bayan Obo ore deposit and synthetic high-silica glass samples have been measured by synchrotron X-ray fluorescence (SXRF) analysis using excitation of the REE K lines between 33 and 63 keV. Because SXRF, a nondestructive analytical technique, has much lower minimum detection limits (MDLs) for REEs, it is an important device that extends the in situ analytical capability of electron probe microanalysis (EPMA). The distribution of trace amounts of REEs in common rock-forming minerals, as well as in REE minerals and minerals having minor quantities of REEs, can be analyzed with SXRF. Synchrotron radiation from a bending magnet and a wiggler source at the National Synchrotron Light Source, Brookhaven National Laboratory, was used to excite the REEs. MDLs of 6 ppm (La) to 26 ppm (Lu) for 3600 s in 60-??m-thick standard samples were obtained with a 25-??m diameter wiggler beam. The MDLs for the light REEs were a factor of 10-20 lower than the MDLs obtained with a bending magnet beam. The SXRF REE concentrations in mineral grains greater than 25 ??m compared favorably with measurements using EPMA. Because EPMA offered REE MDLs as low as several hundred ppm, the comparison was limited to the abundant light REEs (La, Ce, Pr, Nd). For trace values of medium and heavy REEs, the SXRF concentrations were in good agreement with measurements using instrumental neutron activation analysis (INAA), a bulk analysis technique. ?? 1993.

  5. Carbonatite: A Geophysical investigation of a rare earth element terrane, eastern Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Denton, K. M.; Ponce, D. A.; Miller, D. M.; MacPherson-Krutsky, C. C.

    2013-12-01

    Geophysical investigations reveal gravity and magnetic anomalies related to a Proterozoic carbonatite terrane in the eastern Mojave Desert, host to one of the largest rare earth element carbonatite deposits in the world. The deposit is located near Mountain Pass, California and occurs in a north-northwest trending fault-bounded block that extends along the eastern parts of the Clarke Mountain Range, Mescal Range, and Ivanpah Mountains. This Early to Middle Proterozoic block is composed of a 1.7 Ga metamorphic complex of gneiss and schist intruded by a 1.4 Ga suite of ultrapotassic alkaline intrusive rocks that includes carbonatite. The intrusive suite (oldest to youngest) includes shonkinite, mesosyenite, syenite, quartz syenite, potassic granite, carbonatite, and late shonkinite dikes which are spatially and temporally associated with carbonatite intrusions and dikes. Regional geophysical data reveal that the carbonatite deposit occurs along a gravity high and the northeast edge of a prominent magnetic high with an amplitude of about 200 nanoteslas. More than 1400 gravity stations and over 200 physical property samples were collected to augment existing geophysical data and will be used to determine the geophysical and geologic setting that provide an improved structural interpretation of the eastern Mojave Desert carbonatite terrane. Physical properties of representative rock types in the area include carbonatite ore, syenite, shonkinite, gneiss, granite, and dolomite. Carbonatite intrusions typically have distinctive gravity, magnetic, and radiometric signatures because these deposits are relatively dense, contain magnetite, and are enriched in thorium or uranium. However, our results show that the main carbonatite body is essentially nonmagnetic. Thus, it is unlikely that carbonatite rocks are the source of the magnetic high associated with the Clark Mountain and Mescal Ranges. Instead, we suggest that weakly to moderately magnetic intrusive rocks or

  6. The geochemistry of rare earth elements in groundwater from the Carnmenellis area, southwest England

    SciTech Connect

    Smedley, P.L. )

    1991-10-01

    Shallow groundwater samples from the Carnmenellis area of southwest England collected from wells, boreholes, springs, adits and stream baseflow represent recently recharged waters of low salinity. Their major ion concentrations closely reflect the lithology of their host rocks which comprise the Carnmenellis granite and Devonian metasediments (and metabasite) of greenschist grade. Groundwaters from the granite are predominantly Na-Cl or Na-Ca-Cl type while those from the metasediment are Na-Ca-Mg-Cl-HCO{sub 3} waters with a larger range of compositions. The major ion compositions are predominantly a function of water-rock interaction processes and the larger range of metasediment-water compositions probably reflects the greater lithological variation. Rare earth element (REE) concentrations of 0.45 {mu}m-filtered groundwater samples have been determined by inductively coupled plasma mass spectrometry (ICP-MS). A large range of concentrations exists and many are below detection limits but levels reach up to 229 {mu}g/1 (1.6 {mu}m) total REEs. The REEs are strongly controlled by pH with higher levels in groundwaters of pH < 6. In the granite, the REEs are probably derived mainly from the accessory minerals monazite and apatite as well as the high-REE framework minerals biotite and muscovite. The source of REEs in groundwater from the metasediments is more uncertain but probably includes clay minerals, chlorite, and carbonate. The observed REE compositions of granite- and metasediment-derived groundwaters from the Carnmenellis area are so distinctive that the REEs in general and Ce in particular might be useful as future tracers in studies of water-rock interaction and groundwater provenance.

  7. Biogeochemical implications from dissolved rare earth element and Nd isotope distributions in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Haley, Brian A.; Frank, Martin; Hathorne, Ed; Pisias, Nick

    2014-02-01

    Dissolved rare earth element (REE) concentrations and Nd isotope compositions were measured for surface waters and full water column profiles of the Gulf of Alaska (GoA), and compared to water mass properties and circulation in order to better understand the mechanisms controlling the input and transport of REEs in the ocean. The REEs display a typical open-ocean range of concentrations (i.e., La: 12-66 pM; Lu: 0.2-2.5 pM) and depth distributions (i.e., surface ocean depletion and enrichment with water depth). Nd isotope signatures are highly radiogenic, as expected for the North Pacific margin (ranging from -3.8 to +0.2 ɛNd). The most radiogenic values were found in the coastal waters but also in the cores of eddies, indicating efficient export of REEs from the margins and across the mixed layer. This is the first time that distinct Nd isotope distributions in near surface waters can be directly assigned to offshore eddy transport. A distinct mid-depth (˜2200 m) Nd isotope signal was found that most likely reflects advection of a water mass that formed through past down-welling in the Northern Pacific. Subsurface Nd isotope compositions appear to behave conservatively and can be explained through a REE distribution model proposed here. This model is based on multivariate analysis of the REEs and invokes two distinct “pools” of dissolved REEs: a “passive pool” complexed by carbonate ions, and a “bio-reactive pool” that is microbially manipulated. The latter “pool” is only significant in the upper water column and most likely reflects the indirect effects of microbial cycling of iron. Our model of the open ocean REE distribution contributes to explaining the conservative nature of Nd isotopes and provides a mechanism linking surface ocean and pore water REE dynamics.

  8. The Formation of Sulfate and Elemental Sulfur Aerosols Under Varying Laboratory Conditions: Implications for Early Earth

    NASA Technical Reports Server (NTRS)

    DeWitt, H. Langley; Hasenkopf, Christa A.; Trainer, Melissa G.; Farmer, Delphine K.; Jimenez, Jose L.; McKay, Christopher P.; Toon, Owen B.; Tolbert, Margaret A.

    2010-01-01

    The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 x 10(exp 9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO2) by UV light with lambda < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S8) and sulfuric acid (H2S04) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO2 either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H2) or methane (CH4), increased the formation of S8. With UV photolysis, formation of S8 aerosols is highly dependent on the initial SO2 pressure; and S8 is only formed at a 2% SO2 mixing ratio and greater in the absence of a reductant, and at a 0.2% SO2 mixing ratio and greater in the presence of 1000 ppmv CH4. We also found that organosulfur compounds are formed from the photolysis of CH4 and moderate amounts of SO2, The implications for sulfur aerosols on early Earth are discussed.

  9. On the non-uniform distribution of the angular elements of near-Earth objects

    NASA Astrophysics Data System (ADS)

    JeongAhn, Youngmin; Malhotra, Renu

    2014-02-01

    We examine the angular distributions of near-Earth objects (NEOs) which are often regarded as uniform. The apparent distribution of the longitude of ascending node, Ω, is strongly affected by well-known seasonal effects in the discovery rate of NEOs. The deviation from the expected π-periodicity in the apparent distribution of Ω indicates that its intrinsic distribution is slightly enhanced along a mean direction, Ω‾=111°; approximately 53% of NEOs have Ω values within ±90° of Ω‾. We also find that each subgroup of NEOs (Amors, Apollos and Atens) has different observational selection effects which cause different non-uniformities in the apparent distributions of their arguments of perihelion ω, and longitudes of perihelion ϖ. For their intrinsic distributions, our analysis reveals that the Apollo asteroids have non-uniform ω due to secular dynamics associated with inclination-eccentricity-ω coupling, and the Amors’ ϖ distribution is peaked towards the secularly forced eccentricity vector. The Apollos’ ω distribution is axial, favoring values near 0° and 180°; the two quadrants centered at 0° and 180° account for 55% of the Apollos’ ω values. The Amors’ ϖ distribution peaks near ϖ‾=4°; 61% of Amors have ϖ within ±90° of this peak. We show that these modest but statistically significant deviations from uniform random distributions of angular elements are owed to planetary perturbations, primarily Jupiter’s. It is remarkable that this strongly chaotic population of minor planets reveals the presence of Jupiter in its angular distributions.

  10. Rare earth element content in various waste ashes and the potential risk to Japanese soils.

    PubMed

    Zhang, F S; Yamasaki, S; Kimura, K

    2001-11-01

    Selected chemical characteristics of rare earth elements (REEs) in 89 waste ash samples, including food scrap ashes (FSA), animal waste ashes (AWA), horticulture waste ashes (HWA), sewage sludge ashes (SSA) and incinerator bottom ashes (IBA), were examined in this study. The results showed that Y, La, Ce, Pr, Nd, Dy, Yb, Ho, Er, Tm, Lu in the waste ash samples were normally distributed, but Sc, Sm, Eu, Gd, Tb were not. Average REE concentrations followed the sequence of Ce > La = Y> Sc>Nd>Sm>Pr>Gd>Dy>Eu>Tb>Er> Yb>Ho>Lu>Tm. Of the five types of waste ashes, total REE contents (sigmaREE) ranged from 54 to 130 mg/kg, following the sequence of SSA>HWA>IBA>AWA>FSA; individual REE concentrations were within 0.04-20, 0.1-29, 0.2-33, 0.1-44 and 0.01-41 mg/kg for FSA, AWA, HWA, SSA and IBA, respectively. Crust-normalized REE patterns indicated that SSA was enriched with Sc, Sm, Eu, Gd, Tb and slightly enriched with La, Ce; IBA was enriched with Eu, Tb and slightly with La, Y, Ce; FSA was slightly enriched with Sm, Eu, Tb; REEs were not found to be elevated in HWA and AWA. Comparison of REE content in the waste ashes and in six principal Japanese agricultural soils indicated that application of FSA, AWA and HWA to agricultural land will cause no REE problem, but continuous application of SSA or IBA may cause Sc, Sm or Eu accumulation in some of the soils. PMID:11757853

  11. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities.

    PubMed

    Gutiérrez-Gutiérrez, Silvia C; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart

    2015-08-01

    Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58±6mgkg(-1) for REEs comprising 44±8mgkg(-1) for light REEs, 11±2mgkg(-1) for heavy REEs and 3±1mgkg(-1) for Scandium (Sc) and 3±1.0mgkg(-1) of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are also recovered for reprocessing. PMID:25957938

  12. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference.

    PubMed

    Keltjens, Jan T; Pol, Arjan; Reimann, Joachim; Op den Camp, Huub J M

    2014-01-01

    Methanol dehydrogenase (MDH) catalyzes the first step in methanol use by methylotrophic bacteria and the second step in methane conversion by methanotrophs. Gram-negative bacteria possess an MDH with pyrroloquinoline quinone (PQQ) as its catalytic center. This MDH belongs to the broad class of eight-bladed β propeller quinoproteins, which comprise a range of other alcohol and aldehyde dehydrogenases. A well-investigated MDH is the heterotetrameric MxaFI-MDH, which is composed of two large catalytic subunits (MxaF) and two small subunits (MxaI). MxaFI-MDHs bind calcium as a cofactor that assists PQQ in catalysis. Genomic analyses indicated the existence of another MDH distantly related to the MxaFI-MDHs. Recently, several of these so-called XoxF-MDHs have been isolated. XoxF-MDHs described thus far are homodimeric proteins lacking the small subunit and possess a rare-earth element (REE) instead of calcium. The presence of such REE may confer XoxF-MDHs a superior catalytic efficiency. Moreover, XoxF-MDHs are able to oxidize methanol to formate, rather than to formaldehyde as MxaFI-MDHs do. While structures of MxaFI- and XoxF-MDH are conserved, also regarding the binding of PQQ, the accommodation of a REE requires the presence of a specific aspartate residue near the catalytic site. XoxF-MDHs containing such REE-binding motif are abundantly present in genomes of methylotrophic and methanotrophic microorganisms and also in organisms that hitherto are not known for such lifestyle. Moreover, sequence analyses suggest that XoxF-MDHs represent only a small part of putative REE-containing quinoproteins, together covering an unexploited potential of metabolic functions. PMID:24816778

  13. Aluminium competitive effect on rare earth elements binding to humic acid

    NASA Astrophysics Data System (ADS)

    Marsac, Rémi; Davranche, Mélanie; Gruau, Gérard; Dia, Aline; Bouhnik-Le Coz, Martine

    2012-07-01

    Competitive mechanisms between rare earth elements (REE) and aluminium for humic acid (HA) binding were investigated by combining laboratory experiments and modeling to evaluate the effect of Al on REE-HA complexation. Results indicates that Al3+ competes more efficiently with heavy REE (HREE) than with light REE (LREE) in acidic (pH = 3) and low REE/HA concentration ratio conditions providing evidence for the Al high affinity for the few HA multidentate sites. Under higher pH - 5 to 6 - and high REE/HA conditions, Al is more competitive for LREE suggesting that Al is bound to HA carboxylic rather than phenolic sites. PHREEQC/Model VI Al-HA binding parameters were optimized to simulate precisely both Al binding to HA and Al competitive effect on REE binding to HA. REE-HA binding pattern is satisfactorily simulated for the whole experimental conditions by the ΔLK1A optimization (i.e. ΔLK1A controls the distribution width of log K around log KMA). The present study provides fundamental knowledge on Al binding mechanisms to HA. Aluminium competitive effect on other cations binding to HA depends clearly on its affinity for carboxylic, phenolic or chelate ligands, which is pH dependent. Under circumneutral pH such as in natural waters, Al should lead to LREE-depleted patterns since Al is expected to be bound to weak HA carboxylic groups. As deduced from the behavior of Al species, other potential competitor cations are expected to have their own competitive effect on REE-HA binding. Therefore, in order to reliably understand and model REE-HA patterns in natural waters, a precise knowledge of the exact behavior of the different REE competitor cations is required. Finally, this study highlights the ability of the REE to be used as a “speciation probe” to precisely describe cation interactions with HA as here evidenced for Al.

  14. The rare earth element potential of kaolin deposits in the Bohemian Massif (Czech Republic, Austria)

    NASA Astrophysics Data System (ADS)

    Höhn, S.; Frimmel, H. E.; Pašava, J.

    2014-12-01

    Four kaolin deposits in the Bohemian Massif were studied in order to assess the potential for the recovery of rare earth elements (REE) as by-products from the residue after extraction and refining of the raw kaolin. The behaviour of REE + Y during kaolinitization was found to be largely a function of pre-alteration mineralogy. In the examples studied, i.e. granite-derived deposits of Kriechbaum (Austria) and Božičany, and arkose-derived deposits of Kaznějov and Podbořany (all Czech Republic), the REE + Y are predominantly hosted by monazite which has remained unaffected by kaolinitization. The overall REE + Y content of the variably kaolinitized rocks is strongly dependent on their genesis. While ion adsorption plays only a minor role in the concentration of REE + Y in the studied kaolinitized rocks, the processing and refining of the raw kaolin leads to residues that are enriched in REE + Y by a factor of up to 40. The use of a magnetic separator and a hydrocyclone in the processing of the raw material can yield REE + Y contents of as much as 0.77 wt%. Although this value compares well with the REE + Y concentration in some potentially economic REE + Y projects elsewhere, the overall tonnage of the (REE + Y)-enriched residue is by far not sufficient to consider economic extraction of REE + Y as by-product. Our results are most probably applicable also to other kaolin deposits derived from the weathering of Hercynian basement granites elsewhere (e.g. in Saxonia and Bavaria, Germany). Overall, the potential for REE + Y production as by-product from kaolin mining has to be regarded as minimal.

  15. Determination of Rare Earth Elements in Human Sperm and Association with Semen Quality.

    PubMed

    Marzec-Wróblewska, Urszula; Kamiński, Piotr; Łakota, Paweł; Ludwikowski, Grzegorz; Szymański, Marek; Wasilow, Karolina; Stuczyński, Tomasz; Buciński, Adam; Jerzak, Leszek

    2015-08-01

    The aim of the present study was to measure lanthanum (La), cerium (Ce), europium (Eu), and gadolinium (Gd) concentrations in human semen and correlate the results with sperm quality. The median semen content of La was 19.5 µg kg(-1) dry weight (dw) (range 2.27-269), of Ce was 41.9 µg kg(-1) dw (range 4.52 to 167), of Eu was 0.68 µg kg(-1) dw (range 0.06-1.95), of Gd was 3.19 µg kg(-1) dw (range 0.38-12.0), and of calcium (Ca) was 4063 mg kg(-1) dw (range 484-17,191). Concentrations of La, Ce, Eu, Gd, and Ca were significantly lower in nondrinkers' semen than in semen from drinkers. Significant differences were detected between La, Ce, Eu, Gd, and Ca concentrations in semen from nondrinkers and moderate drinkers. Concentrations of La, Ce, and Gd in semen of short-term smokers were significantly lower than those in extremely long-term smokers. Significant differences were also detected between La concentration in semen from a group of short-term smokers and that of a group of long-term smokers. Positive correlations were found between La, Ce, Eu, Gd, and Ca concentrations in semen. La, Ce, Gd, and Ca concentrations in semen were positively associated with progressive motility and percentage of normal spermatozoa. Positive correlations were found between Ca and sperm concentration. Concentrations of La, Ce, and Gd were negatively associated with sperm concentration, whilst Ca concentration was negatively associated with volume of ejaculate. At the examined level, La, Ce, Eu, and Gd did not affect sperm quality, whereas alcohol consumption and smoking might have increased the level of rare earth elements in semen. PMID:25762379

  16. Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, The Netherlands.

    PubMed

    Janssen, René P T; Verweij, Wilko

    2003-03-01

    Groundwater samples were taken from seven bore holes at depths ranging from 2 to 41m nearby drinking water pumping station Vierlingsbeek, The Netherlands and analysed for Y, La, Ce, Pr, Nd, Sm and Eu. Shale-normalized patterns were generally flat and showed that the observed rare earth elements (REE) were probably of natural origin. In the shallow groundwaters the REEs were light REE (LREE) enriched, probably caused by binding of LREEs to colloids. To improve understanding of the behaviour of the REE, two approaches were used: calculations of the speciation and a statistical approach. For the speciation calculations, complexation and precipitation reactions including inorganic and dissolved organic carbon (DOC) compounds, were taken into account. The REE speciation showed REE(3+), REE(SO(4))(+), REE(CO(3))(+) and REE(DOC) being the major species. Dissolution of pure REE precipitates and REE-enriched solid phases did not account for the observed REEs in groundwater. Regulation of REE concentrations by adsorption-desorption processes to Fe(III)(OH)(3) and Al(OH)(3) minerals, which were calculated to be present in nearly all groundwaters, is a probable explanation. The statistical approach (multiple linear regression) showed that pH is by far the most significant groundwater characteristic which contributes to the variation in REE concentrations. Also DOC, SO(4), Fe and Al contributed significantly, although to a much lesser extent, to the variation in REE concentrations. This is in line with the calculated REE-species in solution and REE-adsorption to iron and aluminium (hydr)oxides. Regression equations including only pH, were derived to predict REE concentrations in groundwater. External validation showed that these regression equations were reasonably successful to predict REE concentrations of groundwater of another drinking water pumping station in quite different region of The Netherlands. PMID:12598196

  17. The Future of Using Earth-Abundant Elements in Counter Electrodes for Dye-Sensitized Solar Cells.

    PubMed

    Briscoe, Joe; Dunn, Steve

    2016-05-01

    With limited global resources for many of the elements that are found in some of the most common renewable energy technologies, there is a growing need to use "Earth-abundant" elements as a long-term solution to growing energy demands. The dye-sensitized solar cell has the potential to produce low-cost renewable energy, with inexpensive production and most components using Earth-abundant elements. However, the most commonly used material for the cell counter electrode (CE) is platinum, an extremely expensive and rare element. A selection of the materials investigated as alternative CEs are discussed, including metal sulfides, oxides, carbides, and nitrides and carbon-based materials such as carbon nanotubes, graphene, and conductive polymers. As well as having the potential for lower cost, these materials can also produce more-efficient devices due to their high surface area and catalytic activity. Therefore, once issues such as stability have been studied in more detail and scale-up of production methods are considered, there is a very promising future for the replacement of Pt in DSSCs with lower-cost, Earth-abundant alternatives. PMID:26727984

  18. Fractionation of Volatile Elements by Heating of Solid Allende: Implications for the Source Material of Earth, Moon, and the Eucrite Parent Body

    NASA Astrophysics Data System (ADS)

    Jochum, K. P.; Palme, H.

    1993-07-01

    CI-chondrites have average solar-system abundances of moderately volatile (Na, K, Rb, Sn, etc.) and highly volatile (Cs, Pb, etc.) elements. In most other types of chondrites and in samples from differentiated planetary bodies, these elements are more or less depleted relative to CI chondrites. Volatile-element fractionation occurred either by evaporation or incomplete condensation [1]. Recent data on the isotopic composition of K indicate that depletion of volatiles did not occur by evaporation from a melt of CI-chondritic composition [2]. Evaporative loss from a solid, however, would not necessarily lead to isotopic fractionation of K in the residue [e.g., 3]. In order to study loss of volatile elements from solids, we performed a series of heating experiments under variable oxygen fugacities at temperatures of 1050 degrees C to 1300 degrees C. Residues were analyzed by INAA [4]. We report here additional analyses (K, Rb, Cs, Sn, Pb) of these residues by isotope dilution-SSMS. Results (including Na data from INAA) are shown in Fig. 1. Results at other oxygen fugacities are similar, i.e., there is no strong dependence on fO2, contrary to the results for Au, As, and Zn [4]. Elements are arranged in the order of decreasing condensation temperatures. Depletions increase with increasing temperature and, at least for the 1050 degrees C experiment, with decreasing condensation temperature. The CI- normalized Allende pattern has no strong depletions of Cs and Pb, unlike the experimental results, indicating that evaporation from a solid cannot produce patterns observed in volatile-element-depleted meteorites. Even heating at temperatures as low as 1050 degrees C, affecting alkali elements only slightly, leads to large losses of lead, which are an order of magnitude greater than required for producing CV chondrite patterns. Depletions of these elements apparently occurred in the solar nebula before accretion by incomplete condensation or removal of gas during condensation

  19. Systematics of Alkali and PB Abundances in Meteoritic and Lunar Samples

    NASA Astrophysics Data System (ADS)

    Kita, N. T.

    1996-03-01

    The alkali depletion is not a unique characteristic of the moon, but is common to eucrites, angrites, and the earth. Because the moon and the earth are depleted in more volatile Pb in a similar degree to both chondrites and achondrites, it is hard to assume that alkali depletion was caused by vaporization loss during the giant impact event. Alkali and volatile depletion might have originated from their source material which accreted to the planets.

  20. A DFT study on the correlation between topology and Bader charges: Part III, the development of charge, "size" and coordination in alkali and alkaline earth titanates(IV)

    NASA Astrophysics Data System (ADS)

    Beck, Horst P.

    2015-10-01

    The notion of a "size" of the ions plays an important role in crystal chemistry. In this paper we demonstrate how "size" varies with the combination of elements and also with varying stoichiometric composition of a compound taking the A-Ti-O series (A = Li, Na, K, Mg, Ca, Sr, Ba) as an example. We analyse the correlation between the topology of a structure, i.e. the coordination geometry and the distances observed, and the charges of the atoms as derived from a Bader analysis of the electron distribution which has been calculated in DFT relaxations of the structures. We demonstrate how charge relations of the atoms in specific stoichiometric relations are strictly fixed within small ranges which are constraint by electronegativity differences of the constituting atoms and how atomic charges are "delicately" balanced by minute movements of the atoms and changes in coordination. The balance of charges proves to be a decisive structure determining parameter.

  1. Mineral chemistry of Rare Earth Element (REE) mineralization, Browns Ranges, Western Australia

    NASA Astrophysics Data System (ADS)

    Cook, Nigel J.; Ciobanu, Cristiana L.; O'Rielly, Daniel; Wilson, Robin; Das, Kevin; Wade, Benjamin

    2013-07-01

    ‘Green energy futures’ are driving unprecedented demand for Rare Earth Elements (REE), underpinning significant exploration activity worldwide. Understanding how economic REE concentrations form is critical for development of exploration models. REE mineralisation in the Browns Ranges, Gordon Downs Region, Western Australia, comprises xenotime-dominant mineralisation hosted within Archaean to Palaeoproterozoic metasedimentary units (Browns Range Metamorphics). Mineralogical, petrographic and mineral-chemical investigation, including trace element analysis by Laser-Ablation Inductively-Coupled Plasma Mass Spectroscopy, gives insights into the mineralogical distribution and partitioning of REE, and also provides evidence for the genetic evolution of the Browns Range REE mineralisation via a succession of hydrothermal processes. Two main REE-bearing minerals are identified: xenotime [(Y,REE)PO4], which is HREE selective; and subordinate florencite [(REEAl3(PO4)2(OH)6] which is LREE selective. Two morphological generations of xenotime are recognised; compositions are however consistent. Xenotime contains Dy (up to 6.5 wt.%), Er (up to 4.35 wt.%), Gd (up to 7.56 wt.%), Yb (up to 4.65 wt.%) and Y (up to 43.3 wt.%). Laser Ablation ICP-MS element mapping revealed a subtle compositional zoning in some xenotime grains. LREE appear concentrated in the grain cores or closest to the initial point of growth whereas HREE, particularly Tm, Yb and Lu, are highest at the outer margins of the grains. The HREE enrichment at the outer margins is mimicked by As, Sc, V, Sr, U, Th and radiogenic Pb. Florencite is commonly zoned and contains Ce (up to 11.54 wt.%), Nd (up to 10.05 wt.%) and La (up to 5.40 wt.%) and is also notably enriched in Sr (up to 11.63 wt.%) and Ca. Zircon (which is not a significant contributor of REEs overall due to its low abundance in the rocks) is also enriched in REE (up to 13 wt.% ΣREE) and is the principal host of Sc (up to 0.8 wt.%). Early, coarse

  2. Microstructure and properties of 17-4PH steel plasma nitrocarburized with a carrier gas containing rare earth elements

    SciTech Connect

    Liu, R.L.; Yan, M.F.; Wu, Y.Q.; Zhao, C.Z.

    2010-01-15

    The effect of rare earth addition in the carrier gas on plasma nitrocarburizing of 17-4PH steel was studied. The microstructure and crystallographically of the phases in the surface layer as well as surface morphology of the nitrocarburized specimens were characterized by optical microscope, X-ray diffraction and scanning tunneling microscope, respectively. The hardness of the surface layer was measured by using a Vickers hardness test. The results show that the incorporation of rare earth elements in the carrier gas can increase the nitrocarburized layer thickness up to 55%, change the phase proportion in the nitrocarburized layer, refine the nitrides in surface layer, and increase the layer hardness above 100HV. The higher surface hardening effect after rare earth addition is caused by improvement in microstructure and change in the phase proportion of the nitrocarburized layer.

  3. Distribution and Geochemistry of Rare-Earth Elements in Rivers of Southern and Eastern Primorye (Far East of Russia)

    NASA Astrophysics Data System (ADS)

    Chudaev, O. V.; Bragin, I. V.; A, Kharitonova N.; Chelnokov, G. A.

    2016-03-01

    The distribution and geochemistry of rare earth elements (REE) in anthropogenic, technogenic and natural surface waters of southern and eastern Primorye, Far East of Russia, are presented in this study. The obtained results indicated that most of REE (up to 70%) were transported as suspended matter, ratio between dissolved and suspended forms varing from the source to the mouth of rivers. It is shown that all REE (except Ce) in the source of the rivers are predominantly presented in dissolved form, however, the content of light and heavy REE is different. Short-term enrichment of light rare earth elements (LREE) caused by REE-rich runoff from waste dumps and mining is neutralized by the increase in river flow rate. Rivers in urban areas are characterized by high content of LREE in dissolved form and very low in suspended one.

  4. Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology.

    PubMed

    Allajbeu, Sh; Yushin, N S; Qarri, F; Duliu, O G; Lazo, P; Frontasyeva, M V

    2016-07-01

    Rare earth elements (REEs) are typically conservative elements that are scarcely derived from anthropogenic sources. The mobilization of REEs in the environment requires the monitoring of these elements in environmental matrices, in which they are present at trace level. The determination of 11 REEs in carpet-forming moss species (Hypnum cupressiforme) collected from 44 sampling sites over the whole territory of the country were done by using epithermal neutron activation analysis (ENAA) at IBR-2 fast pulsed reactor in Dubna. This paper is focused on REEs (lanthanides) and Sc. Fe as typical consistent element and Th that appeared good correlations between the elements of lanthanides are included in this paper. Th, Sc, and REEs were never previously determined in the air deposition of Albania. Descriptive statistics were used for data treatment using MINITAB 17 software package. The median values of the elements under investigation were compared with those of the neighboring countries such as Bulgaria, Macedonia, Romania, and Serbia, as well as Norway which is selected as a clean area. Geographical distribution maps of the elements over the sampled territory were constructed using geographic information system (GIS) technology. Geochemical behavior of REEs in moss samples has been studied by using the ternary diagram of Sc-La-Th, Spider diagrams and multivariate analysis. It was revealed that the accumulation of REEs in current mosses is associated with the wind-blowing metal-enriched soils that is pointed out as the main emitting factor of the elements under investigation. PMID:27044293

  5. Ground-state properties of alkali dimers and their cations (including the elements Li, Na, and K) from ab initio calculations with effective core polarization potentials

    NASA Astrophysics Data System (ADS)

    Müller, Wolfgang; Meyer, Wilfried

    1984-04-01

    Extensive all-electron SCF and valence CI calculations are presented for alkali dimer systems with consideration of intershell correlation effects by use of an effective core polarization potential (CPP), which contains only a single adjustable atomic parameter. High accuracy is obtained for the ground-state spectroscopic constants of the studied molecules. The maximum deviations from accurate experimental data are as follows: 1% or 0.03 Å for Re, 2% or 100 cm-1 for De, 0.5% or 1 cm-1 for ωe, and 0.2% or 100 cm-1 for ionization energies. For experimentally uncertain or unknown values reliable predictions can thus be made. The calculated dipole moments for LiK and NaK agree with experiment to within 0.1%, but for LiNa we obtain a deviation of 8% or 0.036 D. An analysis of molecular core polarization contributions reveals the reasons for some systematic defects in previous pseudopotential calculations.

  6. β-Decay of Neutron-Rich Nuclei around 158Nd and the Origin of Rare-Earth Elements

    NASA Astrophysics Data System (ADS)

    Wu, J.; Nishimura, S.; Lorusso, G.; Xu, Z. Y.; Ideguchi, E.; Simpson, G. S.; Baba, H.; Browne, F.; Daido, R.; Doornenbal, P.; Fang, Y. F.; Isobe, T.; Li, Z.; Patel, Z.; Rice, S.; Sinclair, L.; Söderström, P.-A.; Sumikama, T.; Watanabe, H.; Yagi, A.; Yokoyama, R.; Aoi, N.; Bello Garrote, F. L.; Benzoni, G.; Gey, G.; Gottardo, A.; Nishibata, H.; Odahara, A.; Sakurai, H.; Tanaka, M.; Taprogge, J.; Yamamoto, T.

    A large fraction of the rare-earth elements around mass number A = 160 observed in the solar system are produced in the astrophysical rapid (r-) neutron capture process. However, current stellar models cannot completely explain the relative abundance of these elements partially because of nuclear physics uncertainties. To address this problem, a β-decay spectroscopy experiment was performed at the RI Beam Factory (RIBF), aimed at studying a wide region of very neutron-rich nuclei around 158Nd. The data from this experiment provides a test of nuclear models as well as experimental inputs for r-process calculations.

  7. The timing of alkali metasomatism in paleosols

    NASA Technical Reports Server (NTRS)

    MacFarlane, A. W.; Holland, H. D.

    1991-01-01

    We have measured the concentrations of rubidium and strontium and 87Sr/86Sr values of whole-rock samples from three paleosols of different ages. The oldest of the three weathering horizons, the 2,760 Ma Mt. Roe #1 paleosol in the Fortescue Group of Western Australia, experienced addition of Rb, and probably Sr, at 2,168 +/- 10 Ma. The intermediate paleosol, developed on the Hekpoort Basalt in South Africa, is estimated to have formed at 2,200 Ma, and yields a Rb-Sr isochron age of 1,925 +/- 32 Ma. The youngest of the three paleosols, developed on the Ongeluk basalt in Griqualand West, South Africa ca. 1,900 Ma, yielded a Rb-Sr age of 1,257 +/- 11 Ma. The Rb-Sr systematics of all three paleosols were reset during post-weathering metasomatism related to local or regional thermal disturbances. The Rb-Sr systematics of the paleosols were not subsequently disturbed. The near-complete removal of the alkali and alkaline earth elements from these paleosols during weathering made them particularly susceptible to resetting of their Rb-Sr systematics. Paleosols of this type are therefore sensitive indicators of the timing of thermal disturbances.

  8. Surprisingly Different Reaction Behavior of Alkali and Alkaline Earth Metal Bis(trimethylsilyl)amides toward Bulky N-(2-Pyridylethyl)-N'-(2,6-diisopropylphenyl)pivalamidine.

    PubMed

    Kalden, Diana; Oberheide, Ansgar; Loh, Claas; Görls, Helmar; Krieck, Sven; Westerhausen, Matthias

    2016-07-25

    N-(2,6-Diisopropylphenyl)-N'-(2-pyridylethyl)pivalamidine (Dipp-N=C(tBu)-N(H)-C2 H4 -Py) (1), reacts with metalation reagents of lithium, magnesium, calcium, and strontium to give the corresponding pivalamidinates [(tmeda)Li{Dipp-N=C(tBu)-N-C2 H4 -Py}] (6), [Mg{Dipp-N=C(tBu)-N-C2 H4 -Py}2 ] (3), and heteroleptic [{(Me3 Si)2 N}Ae{Dipp-N=C(tBu)-N-C2 H4 -Py}], with Ae being Ca (2 a) and Sr (2 b). In contrast to this straightforward deprotonation of the amidine units, the reaction of 1 with the bis(trimethylsilyl)amides of sodium or potassium unexpectedly leads to a β-metalation and an immediate deamidation reaction yielding [(thf)2 Na{Dipp-N=C(tBu)-N(H)}] (4 a) or [(thf)2 K{Dipp-N=C(tBu)-N(H)}] (4 b), respectively, as well as 2-vinylpyridine in both cases. The lithium derivative shows a similar reaction behavior to the alkaline earth metal congeners, underlining the diagonal relationship in the periodic table. Protonation of 4 a or the metathesis reaction of 4 b with CaI2 in tetrahydrofuran yields N-(2,6-diisopropylphenyl)pivalamidine (Dipp-N=C(tBu)-NH2 ) (5), or [(thf)4 Ca{Dipp-N=C(tBu)-N(H)}2 ] (7), respectively. The reaction of AN(SiMe3 )2 (A=Na, K) with less bulky formamidine Dipp-N=C(H)-N(H)-C2 H4 -Py (8) leads to deprotonation of the amidine functionality, and [(thf)Na{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 a) or [(thf)K{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 b), respectively, are isolated as dinuclear complexes. From these experiments it is obvious, that β-metalation/deamidation of N-(2-pyridylethyl)amidines requires bases with soft metal ions and also steric pressure. The isomeric forms of all compounds are verified by single-crystal X-ray structure analysis and are maintained in solution. PMID:27355970

  9. Estimation of the physico-chemical parameters of materials based on rare earth elements with the application of computational model

    NASA Astrophysics Data System (ADS)

    Mamaev, K.; Obkhodsky, A.; Popov, A.

    2016-01-01

    Computational model, technique and the basic principles of operation program complex for quantum-chemical calculations of material's physico-chemical parameters with rare earth elements are discussed. The calculating system is scalable and includes CPU and GPU computational resources. Control and operation of computational jobs and also Globus Toolkit 5 software provides the possibility to join computer users in a unified system of data processing with peer-to-peer architecture. CUDA software is used to integrate graphic processors into calculation system.

  10. Experimental Investigation of Evaporation Behavior of Polonium and Rare-Earth Elements in Lead-Bismuth Eutectic Pool

    SciTech Connect

    Shuji Ohno; Shinya Miyahara; Yuji Kurata; Ryoei Katsura; Shigeru Yoshida

    2006-07-01

    Equilibrium evaporation behavior was experimentally investigated for polonium ({sup 210}Po) in liquid lead-bismuth eutectic (LBE) and for rare-earth elements gadolinium (Gd) and europium (Eu) in LBE to understand and clarify the transfer behavior of toxic impurities from LBE coolant to a gas phase. The experiments utilized the 'transpiration method' in which saturated vapor in an isothermal evaporation pot was transported by inert carrier gas and collected outside of the pot. While the previous paper ICONE12-49111 has already reported the evaporation behavior of LBE and of tellurium in LBE, this paper summarizes the outlines and the results of experiments for important impurity materials {sup 210}Po and rare-earth elements which are accumulated in liquid LBE as activation products and spallation products. In the experiments for rare-earth elements, non-radioactive isotope was used. The LBE pool is about 330-670 g in weight and has a surface area of 4 cm x 14 cm. {sup 210}Po experiments were carried out with a smaller test apparatus and radioactive {sup 210}Po produced through neutron irradiation of LBE in the Japan Materials Testing Reactor (JMTR). We obtained fundamental and instructive evaporation data such as vapor concentration, partial vapor pressure of {sup 210}Po in the gas phase, and gas-liquid equilibrium partition coefficients of the impurities in LBE under the temperature condition between 450 and 750 deg. C. The {sup 210}Po test revealed that Po had characteristics to be retained in LBE but was still more volatile than LBE solvent. A part of Eu tests implied high volatility of rare-earth elements comparable to that of Po. This tendency is possibly related to the local enrichment of the solute near the pool surface and needs to be investigated more. These results are useful and indispensable for the evaluation of radioactive materials transfer to the gas phase in LBE-cooled nuclear systems. (authors)

  11. Improving Low-Earth Orbit Predictions Using Two-line Element Data with Bias Correction

    NASA Astrophysics Data System (ADS)

    Bennett, J.; Sang, J.; Smith, C.; Zhang, K.

    2012-09-01

    In this paper we present results from our orbit prediction study using the publicly available Two-Line Element (TLE) sets. The method presented here is similar to that introduced by Levit and Marshall; however, we also consider the non-spherical low-Earth orbit satellites Grace A and Grace B. The method uses 10 days of TLE data which is interpolated using SGP4. A state vector is generated every 10 minutes in the orbit determination (OD) period. These generated states are subsequently used as observations in an orbit determination run considering a full set of forces to determine the orbit over the 10-day time span. All information used is from the TLE data sets. Once the orbit has been determined, it is then numerically propagated to obtain a prediction of the object's position. The TLE-determined orbit is compared to highly accurate satellite laser ranging (SLR) Consolidated Prediction Format (CPF) data to assess the accuracy. We tested the technique by performing 200 independent simulations for Stella, Starlette, Grace A and Grace B and found that it resulted in better orbit predictions 98.5%, 93.4%, 97.5% and 95.5% of the time, respectively, when compared to standard SGP4 propagation. For Stella and Starlette after a 7 day prediction period the average absolute maximum along track bias was reduced by approximately 64% and 74%, respectively. For Grace A and Grace B after a 7 day prediction period the average absolute maximum along track bias was reduced by approximately 68% and 64%, respectively. The TLE-determined orbit contains bias in the along, across and radial tracks with the along track error dominating. If these can be estimated we can obtain an improved orbit prediction. We used our TLE-determined orbit as an initial state and determined an orbit 3 days after the 10 day OD period from only two passes of SLR data from a single station (Mount Stromlo, Australia). We then estimated the bias in the along track direction by fitting a quadratic function to the

  12. Trace Element and Pb Isotope Constraints on Dynamic Evolution of Earth Reservoirs

    NASA Astrophysics Data System (ADS)

    Collerson, K.; Kamber, B.

    2001-12-01

    U/Pb fractionation. Recent discovery of LM baddeleyite provides the mineralogical rationale for this scenario. Subducted oceanic crust and continental sediment are unlikely candidates for OIB HIMU source, as trace element fractionation during subduction induced dehydration lowers U/Pb ratio of residual slabs. This has important consequences for genesis of lamproites and minettes. In an speculative model by [5], and supported by seismic tomography, TZ was interpreted as a graveyard for slabs containing high pressure mineralogies such as majorite, NAL phases and hollandite. Partial melts derived from such an environment yield alkaline rocks with Pb isotopic compositions plotting to the left of the Geochron. Significantly, this interpretation is now supported by Pb isotopic data for TZ macrocryst suite xenoliths. An unrelated, now extinct HIMU reservoir, is inferred from Pb isotopes in TTG gneisses in some Archean cratons. Evolution of this source is reflected in Pb isotopic data for galena from Isua that require source separation before 4.3 Ga. The only conceivable long-lived source would have been Hadean crust. Rare examples of pre-plate tectonics TTG gneisses with this isotopic memory occur in the NAC where feldspar Pb isotopes define rotated isochrons that intersect the transient HIMU evolution vector at the time of zircon crystallization of the gneiss protoliths. This transient early Archean HIMU reservoir was subsequently destroyed by subduction. 1Collerson&Kamber (1999) Science 283, 1519. 2Kramers&Tolstikhin (1997) Chem. Geol. 139, 75. 3Reymer&Schubert (1984) Tectonics 3, 63. 4Kamber&Collerson (1999) JGR 105, 25479. 5Ringwood (1994) Phys. Earth Planet. Int. 86, 5.

  13. An improved description of the interactions between rare earth elements and humic acids by modeling: PHREEQC-Model VI coupling

    NASA Astrophysics Data System (ADS)

    Marsac, Rémi; Davranche, Mélanie; Gruau, Gérard; Bouhnik-Le Coz, Martine; Dia, Aline

    2011-10-01

    The Humic Ion Binding Model VI (Model VI) - previously used to model the equilibrium binding of rare earth elements (REE) by humic acid (HA) - was modified to account for differences in the REE constant patterns of the HA carboxylic and phenolic groups, and introduced into PHREEQC to calculate the REE speciation on the HA binding sites. The modifications were shown to greatly improve the modeling. They allow for the first time to both satisfactorily and simultaneously model a large set of multi-REE experimental data with the same set of equations and parameters. The use of PHREEQC shows that the light rare earth elements (LREE) and heavy rare earth elements (HREE) do not bind to HA by the same functional groups. The LREE are preferentially bound to carboxylic groups, whereas the HREE are preferentially bound to carboxy-phenolic and phenolic groups. This binding differentiation might lead to a fractionation of REE-HA patterns when competition between REE and other metals occur during complexation. A survey of the available data shows that competition with Al 3+ could lead to the development of HREE-depleted HA patterns. This new model should improve the hydrochemical modeling of the REE since PHREEQC takes into account chemical reactions such as mineral dissolution/precipitation equilibrium and redox reactions, but also models kinetically controlled reactions and one-dimensional transport.

  14. A set of alkali and alkaline-earth coordination polymers based on the ligand 2-(1H-benzotriazol-1-yl) acetic acid: Effects the radius of metal ions on structures and properties

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Hua; Tang, Gui-Mei; Qin, Ting-Xiao; Yan, Shi-Chen; Wang, Yong-Tao; Cui, Yue-Zhi; Weng Ng, Seik

    2014-11-01

    Four new metal coordination complexes, namely, [Na(BTA)]n (1), [K2(BTA)2(μ2-H2O)]n (2), and [M(BTA)2(H2O)2]n (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1-4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11 nodal net with Schläfli symbol of {318}. Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of {311×42}. Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1-4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail.

  15. Origin of fluorite mineralizations in the Nuba Mountains, Sudan and their rare earth element geochemistry

    NASA Astrophysics Data System (ADS)

    Ismail, Ibrahim; Baioumy, Hassan; Ouyang, Hegen; Mossa, Hesham; Aly, Hisham Fouad

    2015-12-01

    Among other mineralizations in the basement complex of the Nuba Mountains, fluorite occurs as lenses and veins in a number of localities. The rare earth elements (REE) geochemistry in these fluorites along with their petrography and fluid inclusion was investigated in this study to discuss the origin the fluorites and shed the light on the economic importance of the REE. Fluorites in the Nuba Mountains are classified into four categories based on their petrography. Category I (F1) is characterized by pink color and free of inclusions. Category II (F2) is zoned of alternating pink and colorless zones with euhedral outline or anhedral patchy pink and colorless fluorite enclosing category I fluorite and is usually sieved with submicroscopic silicate minerals. Category III (F3) is colorless, euhedral to anhedral fluorite and associated with quartz and/or orthoclase. Category IV (F4) is colorless, either massive or dispersed, corroded grains associated with calcite and pertain to the late introduced carbonatites in Dumbeir area. Gangue minerals in the studied fluorites include quartz, calcite, orthoclase and muscovite. The ΣREE ranges between 541 and 10,430 ppm with an average of 3234 ppm. Chondrite-normalized REE patterns for fluorite from different localities exhibit LREE enrichment relative to HREE as shown by (La/Yb)N ratios that vary from 16 to 194 and significant positive Eu anomalies that are pronounced with Eu/Eu* from 1.1 to 2.5. The Tb/La and Tb/Ca ratios of fluorites in the present study indicate that they plot mainly in the pegmatitic or high-hydrothermal field with the characteristics of primary crystallization and remobilization trend. The clear heterogeneity of fluorite, abundance of growth zones, irregular shapes of grains, presence of fluorite inclusions in other minerals as well as the relatively high concentration of REE in the studied fluorites are supportive for this interpretation. The relatively high Tb/La (0.002-0.013) and low Tb/Ca (0

  16. Alteration of rare earth element distribution as a result of microbial activity and empirical methane injection

    NASA Astrophysics Data System (ADS)

    Castillo, D. J.; Davies, N. W.; Thurber, A. R.; Haley, B. A.; Colwell, F. S.

    2014-12-01

    As a result of warming, methane is being released into the marine environment in areas that have not historically experienced methane input. While methane is a potent greenhouse gas, microbial oxidation of methane within the sediment greatly limits the role of marine methane sources on atmospheric forcing. However, in these areas of new methane release, consumption of methane prior to its release into the atmosphere is a result of the response of the microbial community to this new input of methane. Further, rare earth elements (REEs) are not currently thought to be involved with microbial activity, but this assumption has not been rigorously tested. Here we test that: (1) microbial communities will rapidly respond to the onset of methane emission, and (2) the microbial response to this methane input will impact the distribution of REEs within the sediment. Undisturbed cores sampled from a tidal flat at Yaquina Bay, OR, were brought back to a lab and injected with anoxic seawater (as a control) or anoxic sea water saturated with methane gas for a total of 2 weeks. Aerobic methanotrophs proliferated over this short time period, becoming an abundant member of the microbial community as identified using fatty acid biomarkers. Excitingly, the experimental injection of methane also shifted the distribution of REEs within the sediment, a trend that appeared to follow the microbial response and that was different from the control cores. Further, the lightest REEs appeared to be used more than the heavier ones, supporting that the REEs are being actively used by the microbes. While we focused on identifying the response of those microbes responsible in methane-cycling, we also identified how the entire microbial community shifts as a result of methane input, and correlating with shifts in REE distribution. Here we have empirically demonstrated the rapid response of methanotrophs to the onset of methane emission and that REE distribution within the sediment is likely

  17. Rare earth elements as indicators of hydrothermal processes within the East Scotia subduction zone system

    NASA Astrophysics Data System (ADS)

    Cole, Catherine S.; James, Rachael H.; Connelly, Douglas P.; Hathorne, Ed C.

    2014-09-01

    The East Scotia subduction zone, located in the Atlantic sector of the Southern Ocean, hosts a number of hydrothermal sites in both back-arc and island-arc settings. High temperature (>348 °C) ‘black smoker’ vents have been sampled at three locations along segments E2 and E9 of the East Scotia back-arc spreading ridge, as well as ‘white smoker’ (<212 °C) and diffuse (<28 °C) hydrothermal fluids from within the caldera of the Kemp submarine volcano. The composition of the endmember fluids (Mg = 0 mmol/kg) is markedly different, with pH ranging from <1 to 3.4, [Cl-] from ∼90 to 536 mM, [H2S] from 6.7 to ∼200 mM and [F-] from 35 to ∼1000 μM. All of the vent sites are basalt- to basaltic andesite-hosted, providing an ideal opportunity for investigating the geochemical controls on rare earth element (REE) behaviour. Endmember hydrothermal fluids from E2 and E9 have total REE concentrations ranging from 7.3 to 123 nmol/kg, and chondrite-normalised distribution patterns are either light REE-enriched (LaCN/YbCN = 12.8-30.0) with a positive europium anomaly (EuCN/Eu∗CN = 3.45-59.5), or mid REE-enriched (LaCN/NdCN = 0.61) with a negative Eu anomaly (EuCN/Eu∗CN = 0.59). By contrast, fluids from the Kemp Caldera have almost flat REE patterns (LaCN/YbCN = 2.1-2.2; EuCN/Eu∗CN = 1.2-2.2). We demonstrate that the REE geochemistry of fluids from the East Scotia back-arc spreading ridge is variably influenced by ion exchange with host minerals, phase separation, competitive complexation with ligands, and anhydrite deposition, whereas fluids from the Kemp submarine volcano are also affected by the injection of magmatic volatiles which enhances the solubility of all the REEs. We also show that the REE patterns of anhydrite deposits from Kemp differ from those of the present-day fluids, potentially providing critical information about the nature of hydrothermal activity in the past, where access to hydrothermal fluids is precluded.

  18. Rare earth elements in coastal sediments of the northern Galician shelf: Influence of geological features

    NASA Astrophysics Data System (ADS)

    Prego, Ricardo; Caetano, Miguel; Bernárdez, Patricia; Brito, Pedro; Ospina-Alvarez, Natalia; Vale, Carlos

    2012-03-01

    The Northern coast of Galicia, NW Iberian Peninsula, exhibits a variety of geological features: Ortegal allochthonous complex, Ollo-de-Sapo autochthonous domain and massifs of Bares, Barqueiro and San-Ciprian. In order to examine the influence of terrestrial lithologies on coastal sediments, 103 samples were collected in the Rias of Ortigueira, Barqueiro and Viveiro, their neighbouring shelf and the estuaries of Mera, Sor and Landro rivers. Aluminium, Fe, Sc, particulate inorganic and organic carbon and rare earth elements (REE) were determined in the <2 mm fraction. In addition, calcite, muscovite, quartz and riebeckite minerals were identified and quantified in 33 selected samples. The distributions of riebeckite and Fe reflect the influence of Ortegal complex on the coastal areas around the Cape Ortegal. The highest concentrations of ΣREE were found in fine sediments from confined inner parts of the Rias (up to 233 mg kg-1), while most of the sands contained 11-70 mg kg-1. ΣREE normalised to European Shale (ES) highlights the relative abundance of lanthanides (ΣREEN>6) near Cape Ortegal and the innermost ria zones. The ratio between light and heavy REE (L/H) showed lower values (4-11) around Cape Ortegal and the shelf while higher ratios (15-23) were detected in west of the Cape Estaca-de-Bares and in the inner Viveiro Ria due to elevated contributions of La and Ce. The L/H values normalised to ES reflects the importance of HREE in the adjacent area to Ortegal Complex (LN/HN<0.8) and the LREE (LN/HN>1.4) in the inner estuaries and west Cape Estaca-de-Bares. The highest REE individual ES normalised were measured in fine-grained sediments of the Mera and Sor estuaries. Sediments from the eastern shelf of Cape Ortegal presented enhanced ratios only for HREE. These results indicate that distribution of REE in the northern Galician region is highly depending on the neighbouring lithological pattern, contrasting with the situation found in the western Galician

  19. Sorption of Yttrium and the Rare Earth Elements on Non-Living Macroalgal Tissue

    NASA Astrophysics Data System (ADS)

    Schijf, J.; Straka, A. M.

    2007-12-01

    We have investigated sorption of yttrium and the rare earth elements (YREEs) on tissue of the green macroalga Ulva lactuca, commonly known as sea lettuce. Due to its nearly worldwide distribution in coastal waters, very simple morphology, and prodigious capacity for trace metal uptake from seawater, members of the Ulva genus serve as a basic but representative model of marine organic substrates in this type of study. In order to exclude active biological uptake effects, allowing us to focus on passive chemical mechanisms, we performed our initial experiments with sea lettuce Certified Reference Material consisting of a dehydrated, powdered tissue homogenate. A small quantity of this powder was suspended in NaCl solutions containing all YREEs, except Pm, at pH 3 and T = 25°C. The extent of YREE sorption was determined as a function of pH at constant temperature by titrating the solution with dilute NaOH and measuring the YREE concentrations of 0.2-μm filtered aliquots with an ICP-MS at regular time intervals after each pH adjustment. In NaCl solutions with an ionic strength approaching that of seawater, distribution coefficients, which quantify the proportion of sorbed and dissolved metal concentrations, are a highly linear function of pH in the range 3-8. The slope of the line suggests a sorption mechanism that involves ion exchange with both H+ and Na+ on surface functional groups. The shape of solution YREE patterns indicates that these functional groups are probably carboxylates at low and intermediate pH, but that other groups may contribute at high pH. The identification of carboxylate functional groups appears to be confirmed by preliminary results from EXAFS spectroscopic analyses of individual REE sorbed on the surface of Ulva lactuca tissue under similar conditions, conducted at the ANL Advanced Photon Source. In dilute NaCl solutions the distribution coefficient is largely independent of pH. We believe that prolonged exposure of the tissue to a low

  20. A new statistical analysis of rare earth element diffusion data in garnet

    NASA Astrophysics Data System (ADS)

    Chu, X.; Ague, J. J.

    2015-12-01

    The incorporation of rare earth elements (REE) in garnet, Sm and Lu in particular, links garnet chemical zoning to absolute age determinations. The application of REE-based geochronology depends critically on the diffusion behaviors of the parent and daughter isotopes. Previous experimental studies on REE diffusion in garnet, however, exhibit significant discrepancies that impact interpretations of garnet Sm/Nd and Lu/Hf ages.We present a new statistical framework to analyze diffusion data for REE using an Arrhenius relationship that accounts for oxygen fugacity, cation radius and garnet unit-cell dimensions [1]. Our approach is based on Bayesian statistics and is implemented by the Markov chain Monte Carlo method. A similar approach has been recently applied to model diffusion of divalent cations in garnet [2]. The analysis incorporates recent data [3] in addition to the data compilation in ref. [1]. We also include the inter-run bias that helps reconcile the discrepancies among data sets. This additional term estimates the reproducibility and other experimental variabilities not explicitly incorporated in the Arrhenius relationship [2] (e.g., compositional dependence [3] and water content).The fitted Arrhenius relationships are consistent with the models in ref. [3], as well as refs. [1]&[4] at high temperatures. Down-temperature extrapolation leads to >0.5 order of magnitude faster diffusion coefficients than in refs. [1]&[4] at <750 °C. The predicted diffusion coefficients are significantly slower than ref. [5]. The fast diffusion [5] was supported by a field test of the Pikwitonei Granulite—the garnet Sm/Nd age postdates the metamorphic peak (750 °C) by ~30 Myr [6], suggesting considerable resetting of the Sm/Nd system during cooling. However, the Pikwitonei Granulite is a recently recognized UHT terrane with peak temperature exceeding 900 °C [7]. The revised closure temperature (~730 °C) is consistent with our new diffusion model.[1] Carlson (2012) Am

  1. The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River, Thailand

    NASA Astrophysics Data System (ADS)

    Nozaki, Yoshiyuki; Lerche, Dorte; Alibo, Dia Sotto; Snidvongs, Anond

    2000-12-01

    A new filtration method using a 0.04 μm hollow fiber filter was applied to the river, estuarine, and coastal waters in the Chao Phraya estuary for geochemical investigation. The filtered waters were analyzed for all the lanthanides, Y and In by using inductively coupled plasma mass spectrometry (ICPMS). The dissolved concentrations of rare earth elements (REEs) are significantly lower than those reported previously for other rivers, presumably because of effective removal of river colloids by the ultra-filtration. The variation of dissolved REEs in the estuary is dependent on the season. The light REEs vary considerably in the low salinity ( S < 3) zone presumably due to adsorption-desorption interaction with suspended particles. In January when the river discharge is low, the REEs show maxima in the mid salinity ( S = 5-12) zone suggesting that dissolved REEs are supplied to the waters by either desorption from suspended loads or remineralization of underlying sediments. The rapid removal of the REEs is also taking place in the turbid-clear water transition zone ( S = 12-15), presumably due to biological uptake associated with blooming of Noctilca occurred at the time of January sampling. In the medium to high discharge season (July and November), the dissolved REE(III)s at S > 3 show almost conservative trends being consistent with some of the previous works. Europium is strongly enriched in the river and estuarine waters compared to the South China Sea waters. Thus, the REE source of the Chao Phraya River must be fractionated and modified in entering to the South China Sea. Dissolved In and Ce in the high salinity ( S = 20-25) zone of the estuary are lower than those of the offshore waters, and therefore, the dissolved flux of the Chao Phraya River cannot account for the higher concentrations of dissolved In and Ce in the surface waters of the South China Sea. The negative Ce anomaly is progressively developed with increasing salinity, being consistent with

  2. Dissolved rare earth elements in the South China Sea: Geochemical characterization of the water masses

    NASA Astrophysics Data System (ADS)

    Alibo, Dia Sotto; Nozaki, Yoshiyuki

    2000-12-01

    We have measured the vertical profiles of dissolved rare earth elements (REEs) and yttrium in the South China Sea together with conductivity-temperature-depth and hydrographic measurements to compare with those in the western North Pacific and the SuIu Sea. Although the South China Sea is rapidly flushed by the Pacific through the Luzon Strait with a sill depth of ˜2500 m [Broecker et al., 1986], a unique REE pattern is developed within the sea. The most striking difference exists in the dissolved Ce profiles. Dissolved Ce generally decreases from high values (6-9 pmol/kg) at the surface to a minimum of ˜3 pmol/kg at around 300-500 m where the North Pacific Intermediate Water penetrates. In deepwaters of the North Pacific and the Sulu Sea it remains at a relatively low and nearly constant concentration level of ˜5 pmol/kg throughout the water column, whereas in the South China Sea, it gradually increases with depth to a maximum of 12.9 pmol/kg at ˜2500 m, resembling the "nutrient-like" profiles of other strictly trivalent REEs, and then sharply drops to a constant value of ˜6 pmol/kg in the bottom water below 2900 m. Some lighter REEs like Pr, Nd, and Gd, though to a much lesser extent, also show similar concentration breaks at the sill depth, but the other hydrographic properties like dissolved oxygen, nutrients, pH, and alkalinity do not. Therefore dissolved REEs may best be utilized to characterize the water masses. Two major sources for dissolved REEs in the South China Sea are fluvial and coastal input to the surface ocean and a bottom release into the deep water during the passage over the Luzon Strait. Redox chemistry including reduction of Ce(IV) to Ce(III) in the pore water of hemipelagic sediments and subsequent release of dissolved Ce(III) to the overlying deep water may be involved in the latter. The middle REE-enriched patterns with a significant Gd depression relative to that of the North Pacific Deep Water are characteristic of the South China

  3. Study of Suspended Solid in Constructed Wetland Using Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Xiao, Z. X. Z.

    2015-12-01

    Constructed wetland (CW) is one of the commonly used technologies in wastewater treatment. By means of the biochemical interactions among water, microscopic organism, aquatic plant and sediments in natural environment CW can remove biochemical oxygen demand (BOD), ammoniacal nitrogen, suspended solid (SS) and heavy metals. In this study, rare earth elements (REEs) were used as a natural tracer for the study of SS in the CW. The studied CW, Hebao Island free water surface CW, is located in Chiayi County, south Taiwan. The CW is designed for removing SS and BOD due to the pollution from livestock farms in the upstream area. However, the removal of SS was not effective. In some cases, the SS concentration of inflow is even higher than that of outflow. That the sediments on the slope were flushed into the CW was considered as the main problem. After all the refinement, the issue has not improved yet. In the study, the water samples were filtered with 1.0μm filter paper. Then, part of water samples were digested by ultrapure nitric acid to obtain the water representing the total of dissolved and suspended matters. The others were filtered by 0.1μm filter, which represent the matters in dissolved form. REEs and most of metals were subsequently measured with ICP-MS. REEs generally have a unique source and would fractionate in certain regular patterns during biochemical reactions due to lanthanide contraction. They can be an excellent natural tracer in the environmental researches. After normalized by North American Shale Composite, the REEs pattern for the samples with the total of dissolved and suspended matters is characterized by a middle REE (MREE) enrichment and light REE (LREE) depletion. According to the previous theoretical studies, the MREE enrichment could be achieved by a selected adsorption of MREEs by organic matters, which is generally humic substance in natural surface water. It is suggested that the refinement of removal efficiency of SS should focus on

  4. Metal loading effect on rare earth element binding to humic acid: Experimental and modelling evidence

    NASA Astrophysics Data System (ADS)

    Marsac, Rémi; Davranche, Mélanie; Gruau, Gérard; Dia, Aline

    2010-03-01

    The effect of metal loading on the binding of rare earth elements (REE) to humic acid (HA) was studied by combining ultrafiltration and Inductively Coupled Plasma Mass Spectrometry techniques. REE-HA complexation experiments were performed at pH 3 for REE/C molar ratios ranging from ca 4 × 10 -4 to 2.7 × 10 -2. Results show that the relative amount of REE bound to HA strongly increases with decreasing REE/C. A middle-REE (MREE) downward concavity is shown by patterns at high metal loading, whereas patterns at low metal loading display a regular increase from La to Lu. Humic Ion Model VI modelling are close to the experimental data variations, provided that (i) the ΔLK 2 parameter (i.e. the Model VI parameter taken into account the presence of strong but low density binding sites) is allowed to increase regularly from La to Lu (from 1.1 to 2.1) and (ii) the published log KMA values (i.e. the REE-HA binding constants specific to Model VI) are slightly modified, in particular with respect to heavy REE. Modelling approach provided evidence that logKdREE patterns with varying REE/C likely arises because REE binding to HA occurs through two types of binding sites in different density: (i) a few strong sites that preferentially complex the heavy REE and thus control the logKdREE atterns at low REE/C; (ii) a larger amount of weaker binding sites that preferentially complex the middle-REE and thus control the logKdREE pattern at high REE/C. Hence, metal loading exerts a major effect on HA-mediated REE binding, which could explain the diversity of published conditional constants for REE binding with HA. A literature survey suggests that the few strong sites activated at low REE/C could be multidentate carboxylic sites, or perhaps N-, or P-functional groups. Finally, an examination of the literature field data proposed that the described loading effect could account for much of the variation in REE patterns observed in natural organic-rich waters (DOC > 5 mg L -1 and 4

  5. Aquifer-specific Rare Earth Element patterns in groundwater of the Thuringian basin, Germany

    NASA Astrophysics Data System (ADS)

    Lonschinski, M.; Merten, D.; Büchel, G.

    2012-04-01

    The Thuringian basin is the major geological structural unit in the federal state of Thuringia, Germany. It consists of sandstones, limestones, clays, gypsum and salts, that were deposited from the Upper Permian until the Lower Jurassic (approximately 250 to 180 million years ago). The largest deposits are Buntsandstein, Muschelkalk and Keuper, all of Triassic age. Important aquifers are located in the Buntsandstein formations, which are cropping out widespread in the southeastern part and the northeastern part of the basin. These aquifers contain large resources of drinking water for the region. The hydrochemical properties of the groundwater with special emphasis on Rare Earth Elements (REE) are the main focus of this study. To investigate possible interactions between aquifers in the Buntsandstein with aquifers in adjoining formations, waters from Zechstein and Muschelkalk are considered, additionally. Since the REE in water in many case are originated from the minerals of the host rocks, REE fractionation pattern could provide information regarding the lithology of the solid aquifer material (Möller, 2002). Furthermore, interaction processes between solid and liquid phases or complexation in the water phase could be identified by REE fractionations (Ingri et al., 2000). Nevertheless, waters in circumneutral pH conditions could feature many different fractionation patterns (Johannesson & Zhou, 1997) making the interpretation difficult. Due to very low concentrations of REE in water at neutral pH condition, an enrichment procedure is necessary prior to REE determination by inductively coupled plasma mass spectroscopy (ICP-MS). The used method is based on the procedure of Shabani et al. (1990) and yields enrichment factors of about 500. REE fractionation patterns were determined for different water types such as Na-Cl type originating from Zechstein, Ca-Mg-HCO3-SO4 and Ca-SO4 from Buntsandstein or Ca-HCO3 from Muschelkalk aquifers. The patterns are specific for

  6. Rare earth element and uranium-thorium variations in tufa deposits from the Mono Basin, CA

    NASA Astrophysics Data System (ADS)

    Wilcox, E. S.; Tomascak, P. B.; Hemming, N.; Hemming, S. R.; Rasbury, T.; Stine, S.; Zimmerman, S. R.

    2009-12-01

    Samples of fossil tufa deposits from several localities in the Mono Basin, eastern California, were analyzed for trace element concentrations in order to better understand changes in lake composition in the past. These deposits were formed during the last glacial cycle, mostly during deglaciation (Benson et al., 1990, PPP). Three elevations are represented by the analyses. Samples from near Highway 167 were sampled between 2063 and 2069 m asl. Samples from near Thompson Road were sampled between 2015 and 2021 m. One layered mound was sampled at 1955 m. Concentrations of the lanthanide rare earth elements (REE), in particular the heavy/light (HREE/LREE) distributions, have been shown to be sensitive to alkalinity in modern saline lakes (e.g., Johannesson et al., 1994, GRL, 21, 773-776), and the same has been suggested for U/Th (Anderson et al., 1982, Science, 216, 514-516). Holocene to near-modern tufa towers exist in shallow water and around the current shoreline (1945 m). Tufa towers above 2000 m include a characteristic morphology termed thinolite, interpreted to represent pseudomorphs after the very cold water mineral ikaite. Most lower elevation towers do not have the thinolite morphology, but some layered tufa mounds at low elevations include several layers of thinolite, such as the one sampled for this project. Analyses were made on millimeter-scale bulk samples from tufa towers. Measurements were made on sample solutions with a Varian 820MS quadrupole ICP-MS. Mono Basin tufa samples have total REE concentrations ranging from 0.029 to 0.77 times average shales. Samples have flat to moderately HREE-enriched shale-normalized patterns with limited overall variability ([La/Lu]SN of 1.8 to 9.6) but with some variability in the slope of the HREE portion of the patterns. Tufa towers sampled from three elevations have (Gd/Lu)SN of 0.40 to 1.5. The REE patterns of most samples have small positive Ce anomalies, but a minority of samples, all from the layered tufa mound

  7. Natural and anthropogenic rare earth elements in Lago de Paranoá, Brasilia, Brazil

    NASA Astrophysics Data System (ADS)

    Merschel, Gila; Baldewein, Linda; Bau, Michael; Dantas, Elton Luiz; Walde, Detlef; Bühn, Bernhard

    2014-05-01

    Rare earth elements (REE) belong to the group of particle reactive elements and occur at ultratrace levels in natural waters. They are exclusively trivalent, but Ce and Eu can also be tetravalent and divalent, respectively, depending on the redox-level, the pH and the temperature of the fluid. Due to these redox changes, normalized REE patterns may show Ce and/or Eu anomalies. Recently, these high-tech metals raised significant public attention, as they are of great economic importance and consumption and hence release into the environment increased sharply. The most prominent example of a REE contamination is anthropogenic Gd, which is derived from Gd-based contrast agents used in magnetic resonance imaging. Due to their high stabilities, these compounds are not readily removed by commonly applied waste water treatment technologies and, therefore, are released from treatment plants into surface and ground waters. Hence, this anthropogenic Gd can be used as a tracer for the presence of waste water-derived substances such as pharmaceuticals and personal care products in river, lake, ground and tap waters. Lago de Paranoá is an artificial reservoir lake in the city of Brasilia, Brazil, and is currently considered a potential freshwater resource. The city's two waste water treatment plants are located on its shore and their effluents are discharged into the lake. To investigate the level of contamination, we took water samples at 11 stations in the lake and compared the REE concentrations in unfiltered and filtered (<200 nm) lake water. The unfiltered water samples show light REE enrichment (LaSN/YbSN: 1.37-1.98) and high REE concentrations (Sum REE: 192 - 476 ng/L), while the unfiltered water samples are heavy REE enriched (LaSN/YbSN: 0.15-0.61) at lower concentrations (Sum REE: 50 - 85 ng/L). This is due to the fact that light REE are preferentially bound to particle surfaces, while the heavy REE are preferentially complexed with ligands in solution. In marked

  8. An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium.

    PubMed

    Bogart, Justin A; Lippincott, Connor A; Carroll, Patrick J; Schelter, Eric J

    2015-07-01

    Rare-earth metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare earths. To incentivize recycling there is a clear need for simple methods for targeted separations of mixtures of rare-earth metal salts. Metal complexes of a tripodal nitroxide ligand [{(2-(t) BuNO)C6 H4 CH2 }3 N](3-) (TriNOx(3-) ), feature a size-sensitive aperture formed of its three η(2) -(N,O) ligand arms. Exposure of metal cations in the aperture induces a self-associative equilibrium comprising [M(TriNOx)thf]/ [M(TriNOx)]2 (M=rare-earth metal). Differences in the equilibrium constants (Keq ) for early and late metals enables simple Nd/Dy separations through leaching with a separation ratio SNd/Dy =359. PMID:26014901

  9. Element Partitioning Constraints on Formation and Composition of the Earth's Core

    NASA Technical Reports Server (NTRS)

    Li, J.; Agee, C. B.; Fei, Y.

    1998-01-01

    Element partitioning study provides a number of constraints on the formation and composition of the core. First, partitioning of siderophile elements between the core and mantle should explain the "excess" siderophile elements in the mantle. Second, partitioning of light element(s) between the core and mantle should supply the core with the right amount of light element(s) to account for the density deficit in the core. Third, partitioning of light element(s) between the inner and outer core should be consistent with the observed difference in density deficits (relative to pure Fe) between these two reservoirs. In this study, high-pressure and high-temperature experiments have been conducted to investigate the pressure, temperature, and composition effects on partitioning of siderophile elements Ni and Co between core-forming Fe alloy and mantle silicate melt and minerals, partitioning of light elements S, O, and Si between core-forming Fe alloy and mantle silicate melt and minerals, and partitioning of light elements S and C between solid and liquid Fe. The implications of these results for mechanism of core formation and the composition of the core are discussed.

  10. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  11. Mapping of rare earth elements in nuclear waste glass-ceramic using micro laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, X.; Motto-Ros, V.; Panczer, G.; De Ligny, D.; Yu, J.; Benoit, J. M.; Dussossoy, J. L.; Peuget, S.

    2013-09-01

    A micro-LIBS system was set up based on a quadruple Nd:YAG laser at 266 nm coupled with a microscope. Elemental mapping was performed on a Mo-rich glass-ceramic sample containing CaMoO4 crystallites hundreds of microns in length and about 25 μm in section diameter. The topography of single-shot laser-induced craters was characterized using an atomic force microscope (AFM), which revealed a crater size less than 7 μm. Mappings of Mo, Ca, Sr, Al, Fe, Zr and rare earth elements such as Eu, Nd, Pr and La were undertaken. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was conducted to validate the micro-LIBS analysis. Principal components analysis calculation was used to investigate the correlation of elements in the two phases of glass-ceramic. Correlation between Ca, Sr, rare earth elements and Mo indicates their preferential incorporation into the calcium molybdate crystalline phase. Anti-correlation between Fe, Zr, Al and Mo revealed their affinity to the glass phase.

  12. Highly Sideophile Element Abundance Constraints on the Nature of the Late Accretionary Histories of Earth, Moon and Mars

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; Puchtel, I. S.; Brandon, A. D.; Horan, M. F.; James, O. B.

    2007-01-01

    The highly siderophile elements (HSE) include Re, Os, Ir, Ru, Pt and Pd. These elements are initially nearly-quantitatively stripped from planetary silicate mantles during core segregation. They then may be re-enriched in mantles via continued accretion sans continued core segregation. This suite of elements and its included long-lived radiogenic isotopes systems (Re-187 (right arrow) Os-187; Pt-190 (right arrow) Os-186) can potentially be used to fingerprint the characteristics of late accreted materials. The fingerprints may ultimately be useful to constrain the prior nebular history of the dominant late accreted materials, and to compare the proportion and genesis of late accretionary materials added to the inner planets. The past ten years have seen considerable accumulation of isotopic and compositional data for HSE present in the Earth's mantle, lunar mantle and impact melt breccias, and Martian meteorites. Here we review some of these data and consider the broader implications of the compiled data.

  13. Determination of rare-earth elements in geological and environmental samples using an automated batch preconcentration/matrix elimination system

    SciTech Connect

    Smith, F.G.; Wiederin, D.R.; Mortlock, R.

    1994-12-31

    Determination of the rare earth elements is important in the study of sedimentary processes. Geological and environmental samples often contain very low levels of these elements, and detection by plasma spectroscopy (ICP-AES, ICP-MS) is difficult unless a preconcentration and/or matrix elimination procedure is performed prior to analysis.; An automated batch preconcentration/matrix elimination system offers rapid, off-line sample preparation for a variety of sample types. A chelating form of a solid suspended reagent is added to a pH-adjusted sample. The suspended reagent with any bound elements are trapped in a hollow fiber membrane filter while unbound matrix components are washed to waste. The reagent with bound analytes are then released in a small volume. The system works in concert with an autosampler for unattended operation. Application to a variety of geological and environmental samples will be described.

  14. Characterizing the elements of Earth s radiative budget: Applying uncertainty quantification to the CESM

    SciTech Connect

    Archibald, Richard K; Chakoumakos, Madison; Zhuang, Zibo

    2012-01-01

    Understanding and characterizing sources of uncertainty in climate modeling is an important task. Because of the ever increasing sophistication and resolution of climate modeling it is increasing important to develop uncertainty quantification methods that minimize the computational cost that occurs when these methods are added to climate modeling. This research explores the application of sparse stochastic collocation with polynomial edge detection to characterize portions of the probability space associated with the Earth s radiative budget in the Community Earth System Model (CESM). Specifically, we develop surrogate models with error estimates for a range of acceptable input parameters that predict statistical values of the Earth s radiative budget as derived from the CESM simulation. We extend these results in resolution from T31 to T42 and in parameter space increasing the degrees of freedom from two to three.

  15. Rare Earth Element - Humic Acid Interaction: Experimental Evidence for Kinetic and Equilibrium Fractionation in Aqueous Systems.

    NASA Astrophysics Data System (ADS)

    Sonke, J. E.; Salters, V. J.; Benedetti, M. F.

    2003-12-01

    Dissolved organic matter (DOM) is well known for it's strong binding capacity for trace metals. In order to better predict the role of DOM in the speciation and transport of trace metals in the environment we coupled capillary electrophoresis (CE), a molecular separation technique, to a Sector Field Inductively Coupled Plasma Mass Spectrometer (SF-ICP-MS). The combination of these two techniques allows for the study of non-labile metal speciation in aquatic samples. By separating Rare Earth Element (REE) complexes with EDTA and Humic Acid's (i.e. ligand competition) we have been able to determine conditional equilibrium binding constants (Kc) and kinetic rate constants for all 14 REE's with Humic (HA) and Fulvic Acids (FA) as a function of pH (6-9) and ionic strength (IS, 0.01-0.1 mol/L). Assuming a 1:1 binding mechanism, logKc values for REE-FA varied from 9.0 (La) to 10.5 (Lu) at pH 6, 0.1 mol/L IS, and 11.7 (La) to 14.6 (Lu) at pH 9, 0.1 mol/L IS. LogKc values for REE-HA were 10.6 (La) to 12.2 (Lu) at pH 6, 0.1 mol/L IS and 13.2 (La) to 16.5 (Lu) at pH 9, 0.1 mol/L IS. Slightly higher values for Kc were obtained at 0.01 mol/L IS. The general observations of stronger REE-HA binding compared to REE-FA, and stronger binding with increasing pH and decreasing IS correlate with our current understanding of metal-DOM interactions (1). Both Kc's as well as kinetic rate constants increase with increasing REE mass number (decreasing ionic radius); a reflection of the well-known lanthanide contraction. This is the first comprehensive metal binding dataset between REE and DOM, and the first experimental evidence for differential equilibrium and kinetic binding behavior between REE's and DOM. The 30-1000 fold increase in binding strength of heavy REE's with DOM provides for a an equilibrium fractionation mechanism that may explain features of the global geochemical REE cycle such as fractionation related to weathering, estuarine mixing, and REE scavenging in the deep ocean

  16. Rare earth element variations resulting from inversion of pigeonite and subsolidus reequilibration in lunar ferroan anorthosites

    USGS Publications Warehouse

    James, O.B.; Floss, C.; McGee, J.J.

    2002-01-01

    We present results of a secondary ion mass spectrometry study of the rare earth elements (REEs) in the minerals of two samples of lunar ferroan anorthosite, and the results are applicable to studies of REEs in all igneous rocks, no matter what their planet of origin. Our pyroxene analyses are used to determine solid-solid REE distribution coefficients (D = CREE in low-Ca pyroxene/CREE in augite) in orthopyroxene-augite pairs derived by inversion of pigeonite. Our data and predictions from crystal-chemical considerations indicate that as primary pigeonite inverts to orthopyroxene plus augite and subsolidus reequilibration proceeds, the solid-solid Ds for orthopyroxene-augite pairs progressively decrease for all REEs; the decrease is greatest for the LREEs. The REE pattern of solid-solid Ds for inversion-derived pyroxene pairs is close to a straight line for Sm-Lu and turns upward for REEs lighter than Sm; the shape of this pattern is predicted by the shapes of the REE patterns for the individual minerals. Equilibrium liquids calculated for one sample from the compositions of primary phases, using measured or experimentally determined solid-liquid Ds, have chondrite-normalized REE patterns that are very slightly enriched in LREEs. The plagioclase equilibrium liquid is overall less rich in REEs than pyroxene equilibrium liquids, and the discrepancy probably arises because the calculated plagioclase equilibrium liquid represents a liquid earlier in the fractionation sequence than the pyroxene equilibrium liquids. "Equilibrium" liquids calculated from the compositions of inversion-derived pyroxenes or orthopyroxene derived by reaction of olivine are LREE depleted (in some cases substantially) in comparison with equilibrium liquids calculated from the compositions of primary phases. These discrepancies arise because the inversion-derived and reaction-derived pyroxenes did not crystallize directly from liquid, and the use of solid-liquid Ds is inappropriate. The LREE

  17. 2nd International Symposium on Fundamental Aspects of Rare-earth Elements Mining and Separation and Modern Materials Engineering (REES-2015)

    NASA Astrophysics Data System (ADS)

    Tavadyan, Levon, Prof; Sachkov, Viktor, Prof; Godymchuk, Anna, Dr.; Bogdan, Anna

    2016-01-01

    The 2nd International Symposium «Fundamental Aspects of Rare-earth Elements Mining and Separation and Modern Materials Engineering» (REES2015) was jointly organized by Tomsk State University (Russia), National Academy of Science (Armenia), Shenyang Polytechnic University (China), Moscow Institute of Physics and Engineering (Russia), Siberian Physical-technical Institute (Russia), and Tomsk Polytechnic University (Russia) in September, 7-15, 2015, Belokuriha, Russia. The Symposium provided a high quality of presentations and gathered engineers, scientists, academicians, and young researchers working in the field of rare and rare earth elements mining, modification, separation, elaboration and application, in order to facilitate aggregation and sharing interests and results for a better collaboration and activity visibility. The goal of the REES2015 was to bring researchers and practitioners together to share the latest knowledge on rare and rare earth elements technologies. The Symposium was aimed at presenting new trends in rare and rare earth elements mining, research and separation and recent achievements in advanced materials elaboration and developments for different purposes, as well as strengthening the already existing contacts between manufactures, highly-qualified specialists and young scientists. The topics of the REES2015 were: (1) Problems of extraction and separation of rare and rare earth elements; (2) Methods and approaches to the separation and isolation of rare and rare earth elements with ultra-high purity; (3) Industrial technologies of production and separation of rare and rare earth elements; (4) Economic aspects in technology of rare and rare earth elements; and (5) Rare and rare earth based materials (application in metallurgy, catalysis, medicine, optoelectronics, etc.). We want to thank the Organizing Committee, the Universities and Sponsors supporting the Symposium, and everyone who contributed to the organization of the event and to

  18. Incorporation of rare earth elements in titanite: Stabilization of the A2/a dimorph by creation of antiphase boundaries

    USGS Publications Warehouse

    Hughes, J.M.; Bloodaxe, E.S.; Hanchar, J.M.; Foord, E.E.

    1997-01-01

    The atomic arrangement of a natural rare-earth-rich titanite and two synthetic rare-earth-doped titanites have been refined in space group A2/a, and the atomic arrangement of an undoped P21/a synthetic titanite was also refined for comparison. Previous work has shown that titanite possesses a domain structure, with domains formed of like-displaced Ti atoms in the [100] octahedral chains. P21/a titanite results when the crystal is formed of a single domain, but as Ti-reversal sites occur in the octahedral chain the apparent A2/a structure results from the average of antiphase domains. Antiphase boundaries occur at O1, which is alternately overbonded or underbonded at the boundaries, depending on the displacement of the neighboring Ti atoms. Type 2 antiphase boundaries exist where two Ti atoms are displaced away from the intervening O1 atom and are energetically unfavorable because of underbonding of that O1 atom. However, substitution of a trivalent rare earth element in the adjacent Ca2+ site relieves that underbonding, favoring the creation of type 2 antiphase boundaries and stabilization of the A2/a dimorph. The results of high-precision crystal structure analyses demonstrate that rare earth substituents for Ca stabilize the A2/a dimorph at lower substitution levels than required for octahedral substitutions.

  19. Optimization of a Molten Salt Electrolytic Bath Geometry for Rare Earth Metal Recovery using a Finite Element Method

    NASA Astrophysics Data System (ADS)

    Numata, Hiroo; Akatsuka, Hiroshi; Matsuura, Haruaki

    2013-02-01

    For a recycling procedure for rare earths from spent hydrogen absorbing alloys by rare earths electrodeposition in a molten salt, the electrolytic bath and the cathode accessories have been optimized by evaluating the appropriate secondary current distribution using finite element method (FEM) computer simulation. The desirable cathode dish as an accessory was designed to prevent drops of less adherent electrodeposits, which improved the current density distribution compared with an a priori determined one. In the bath optimization, a reciprocal proportionality of the difference between the maximum and minimum current densities vs. the ratio of volume to surface area (or electrolyte volume) was found. It was found by FEM that if a resistive floating mass is assumed on the electrolyte surface, the observed necking in the electrodeposit near the electrolyte surface can be analyzed.

  20. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    DOEpatents

    Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  1. Mixing rare earth elements with manures to control phosphorus loss in runoff and track manure fate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concern over the enrichment of agricultural runoff with phosphorus (P) from land applied livestock manures has prompted the development of manure amendments that minimize P solubility. We evaluated the effect of mixing two rare earth chlorides, lanthanum chloride and ytterbium chloride, with poultr...

  2. Distribution of rare earth elements in an alluvial aquifer affected by acid mine drainage: the Guadiamar aquifer (SW Spain).

    PubMed

    Olías, M; Cerón, J C; Fernández, I; De la Rosa, J

    2005-05-01

    This work analyses the spatial distribution, the origin, and the shale-normalised fractionation patterns of the rare earth elements (REE) in the alluvial aquifer of the Guadiamar River (south-western Spain). This river received notoriety in April 1998 for a spill that spread a great amount of slurry (mainly pyrites) and acid waters in a narrow strip along the river course. Groundwaters and surface waters were sampled to analyse, among other elements, the REEs. Their spatial distribution shows a peak close to the mining region, in an area with low values of pH and high concentrations of sulphates and other metals such as Zn, Cu, Co, Ni, Pb, and Cd. The patterns of shale-normalised fractionation at the most-contaminated points show an enrichment in the middle rare earth elements (MREE) with respect to the light (LREE) and heavy (HREE) ones, typical of acid waters. The Ce-anomaly becomes more negative as pH increases, due to the preferential fractionation of Ce in oxyhydroxides of Fe. PMID:15701392

  3. Origin and Dynamics of Rare Earth Elements during Flood Events in Contaminated River Basins: Sr-Nd-Pb Isotopic Evidence.

    PubMed

    Hissler, Christophe; Stille, Peter; Iffly, Jean François; Guignard, Cédric; Chabaux, François; Pfister, Laurent

    2016-05-01

    In order to precisely quantify the contribution of anthropogenic activities and geogenic sources to the dissolved and suspended loads of rivers we have combined for the first time Rare Earth Element (REE) concentrations with Sr-Nd-Pb isotope ratios. We observed enrichments in Anthropogenic Rare Earth Elements (AREE) for dissolved (Gd) and suspended (Ce and Nd) loads of river water. During flood events, AREE anomalies progressively disappeared and gave way to the geogenic chemical signature of the basin in both dissolved and suspended loads. The isotopic data confirm these observations and shed new light on the trace elements sources. On the one hand, dissolved loads have peculiar isotopic characteristics and carry mainly limestone-derived and anthropogenic Sr and Nd as well as significant amounts of anthropogenic Pb. On the other hand, the results clearly indicate that anthropogenic contributions impact the suspended loads in all hydrological conditions. This study demonstrates that anthropogenic contributions to the river may change not only Pb but also Sr and Nd isotopic compositions in both dissolved and suspended loads. This is of importance for future provenance studies. PMID:27045616

  4. [Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi province and evaluation of its ecological risk].

    PubMed

    Jin, Shu-Lan; Huang, Yi-Zong; Wang, Fei; Xu, Feng; Wang, Xiao-Ling; Gao, Zhu; Hu, Ying; Qiao Min; Li, Jin; Xiang, Meng

    2015-03-01

    Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi province was studied. The results showed that copper mining and smelting could increase the content of rare earth elements in soils and crops. Rare earth elements content in farmland soils of the surrounding Yinshan Lead Zinc Copper Mine and Guixi Smelting Plant varied from 112.42 to 397.02 mg x kg(-1) and 48.81 to 250.06 mg x kg(-1), and the average content was 254.84 mg x kg(-1) and 144.21 mg x kg(-1), respectively. The average contents of rare earth elements in soils in these two areas were 1.21 times and 0.68 times of the background value in Jiangxi province, 1.36 times and 0.77 times of the domestic background value, 3.59 times and 2.03 times of the control samples, respectively. Rare earth elements content in 10 crops of the surrounding Guixi Smelting Plant varied from 0.35 to 2.87 mg x kg(-1). The contents of rare earth elements in the leaves of crops were higher than those in stem and root. The contents of rare earth elements in Tomato, lettuce leaves and radish leaves were respectively 2.87 mg x kg(-1), 1.58 mg x kg(-1) and 0.80 mg x kg(-1), which were well above the hygienic standard limit of rare earth elements in vegetables and fruits (0.70 mg x kg(-1)). According to the health risk assessment method recommended by America Environmental Protection Bureau (USEPA), we found that the residents' lifelong average daily intake of rare earth elements was 17.72 mg x (kg x d)(-1), lower than the critical value of rare earth elements damage to human health. The results suggested that people must pay attention to the impact of rare earth elements on the surrounding environment when they mine and smelt copper ore in Jiangxi. PMID:25929077

  5. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  6. An Experimental Study on Using Rare Earth Elements to Trace Non-point source Phosphorous LossA

    NASA Astrophysics Data System (ADS)

    Liang, T.

    2011-12-01

    Controlling phosphorous (P) inputs through management of its sources and transport is critical for limiting freshwater eutrophication. Rare earth elements (REEs) have been successfully used in the analysis of soil erosion and pollutant sources, as well as in the analysis of mineral genesis. To better understand the potential for REE use in tracing non-point sources of P, we examined the combined fate of REEs and P in Chinese soils amended with REEs and documented the formation of REE-P compounds. Laboratory leaching experiments and artificial simulated rainfall experiments were conducted. Vertical leaching transfers of REEs and P were relatively small, with transport depths less than 6 cm for most REEs and P. Export of applied REEs in leachate accounted for less that 5% of inputs. The vertical mobility order of REEs and P in Chinese soils was greatest for purple soil, followed by terra nera soil, then red soil, followed by cinnamon soil, and finally loess soil. Losses of rare earth elements and P in surface runoff exhibited a parabolic relationship to simulated rainfall intensity. With greater exogenous La application, the amount of water soluble P, bicarbonate-extractable P and hydroxide-extractable P decreased significantly, while acid-extractable and residual forms of P increased significantly. In addition, characteristics of exogenous rare earth elements (REEs) and P and their losses with surface runoff (both in the water and sediments) during simulated rainfall experiments (83 mm h-1) were investigated. The results revealed that most REEs (La, 94%; Nd, 93%; Sm, 96%) and P (96%) transported with sediments in the runoff. The total amounts of losses of REEs and P in the runoff were significantly correlated, suggesting the possibility of using REEs to trace the fate of agricultural nonpoint P losses.

  7. Rare earth elements in bottom sediments of major rivers around the Yellow Sea: implications for sediment provenance

    NASA Astrophysics Data System (ADS)

    Xu, Zhaokai; Lim, Dhongil; Choi, Jinyong; Yang, Shouye; Jung, Hoisoo

    2009-10-01

    Rare earth elements (REEs) of 91 fine-grained bottom sediment samples from five major rivers in Korea (the Han, Keum, and Yeongsan) and China (the Changjiang and Huanghe) were studied to investigate their potential as source indicator for Yellow Sea shelf sediments, this being the first synthetic report on REE trends for bottom sediments of these rivers. The results show distinct differences in REE contents and their upper continental crust (UCC)-normalized patterns: compared to heavy rare earth elements (HREEs), light rare earth elements (LREEs) are highly enriched in Korean river sediments, in contrast to Chinese river sediments that have a characteristic positive Eu anomaly. This phenomenon is observed also in primary source rocks within the river catchments. This suggests that source rock composition is the primary control on the REE signatures of these river sediments, due largely to variations in the levels of chlorite and monazite, which are more abundant in Korean bottom river sediments. Systematic variations in ΣLREE/ΣHREE ratios, and in (La/Yb)-(Gd/Yb)UCC but also (La/Lu)-(La/Y)UCC and (La/Y)-(Gd/Lu)UCC relations have the greatest discriminatory power. These findings are consistent with, but considerably expand on the limited datasets available to date for suspended sediments. Evidently, the REE fingerprints of these river sediments can serve as a useful diagnostic tool for tracing the provenance of sediments in the Yellow Sea, and for reconstructing their dispersal patterns and the circulation system of the modern shelf, as well as the paleoenvironmental record of this and adjoining marginal seas.

  8. COST-EFFECTIVE RARE EARTH ELEMENT RECYCLING PROCESS FROM INDUSTRIAL SCRAP AND DISCARDED ELECTRONIC PRODUCTS TO VALUABLE MAGNETIC ALLOYS AND PERMANENT MAGNETS - PHASE II

    EPA Science Inventory

    Rare earth element (REE) based Nd-Fe-B and Sm-Co permanent magnets have been widely used because of their excellent magnetic properties. The applications of Nd-Fe-B and Sm-Co rare earth permanent magnets include hybrid electric vehicles (HEVs), power generators for wind tur...

  9. Halogen and phosphorus storage in the earth. [elemental spatial distribution from geochemical, geophysical, and cosmochemical factors

    NASA Technical Reports Server (NTRS)

    Smith, J. V.

    1981-01-01

    Chemical analyses of surface reservoirs, coupled with compositions for interior zones inferred from geophysical and geochemical data have been used to obtain a range of estimates of the bulk composition of the earth. It is suggested that (1) apatite with 3 wt% Fe, up to 1 wt% Cl, and 0.003 wt% Br is the principal mineral reservoir for halogens, and mica is a subsidiary reservoir; (2) apatite with 18 wt% P is the principal store of P in the upper mantle and perhaps lower mantle, but accounts for only one-twentieth of P in the earth; and (3) the remaining P is in a reservoir inaccessible to magmatism, and may amount to a maximum of 0.7 wt% in the core.

  10. Global in-use stocks of the rare Earth elements: a first estimate.

    PubMed

    Du, Xiaoyue; Graedel, T E

    2011-05-01

    Even though rare earth metals are indispensible in modern technology, very little quantitative information other than combined rare earth oxide extraction is available on their life cycles. We have drawn upon published and unpublished information from China, Japan, the United States, and elsewhere to estimate flows into use and in-use stocks for 15 of the metals: La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y. Here, we show that the combined flows into use comprised about 90 Gg in 2007; the highest for individual metals were ∼28 Gg Ce and ∼22 Gg La, the lowest were ∼0.16 Gg Tm and ∼0.15 Gg Lu. In-use stocks ranged from 144 Gg Ce to 0.2 Gg Tm; these stocks, if efficiently recycled, could provide a valuable supplement to geological stocks. PMID:21438595

  11. Aluminoborosilicate glasses codoped with rare-earth elements as radiation-protective covers for solar cells

    SciTech Connect

    Malchukova, E. V. Abramov, A. S.; Nepomnyashchikh, A. I.; Terukov, E. I.

    2015-06-15

    The radiation hardness of aluminoborosilicate glasses codoped with rare-earth ions of Sm, Gd or Sm, Eu in various ratios is studied. The effect of codoping and β irradiation at a dose of 10{sup 9} Gr on the optical transmission and electron paramagnetic resonance spectra is examined. It is found that the introduction of Sm and Gd codopants in a 1 : 1 ratio reduces the number of radiation defects and raises the transmission of irradiated glasses in the visible spectral range.

  12. On The Distribution Of Angular Orbital Elements Of Near-earth Objects

    NASA Astrophysics Data System (ADS)

    JeongAhn, Youngmin; Malhotra, R.

    2012-05-01

    The longitude of ascending node Ω and the argument of periapsis ω are expected to be randomly distributed for near-Earth objects (NEOs). However, the distribution of these angles for the Apollo, Amor and Aten subclasses, considered separately, shows some striking non-random features. We explain how these features arise due to observational biases. The distribution of Ω has maxima near 0 and 180° and is affected by observational difficulty due to the galactic plane at the opposition and other seasonal effects. The ω distributions of Aten and Amor subclasses have minima at 90° and 270° while Apollos have minima at 0 and 180°. This is explained by the greater detectability of NEOs at close approach to Earth. The longitude of perihelion Ω+ω also has a strongly non-random distribution that may be owed to actual dynamical effects. Understanding the distribution of unobserved NEOs will help to improve planning for the next generation of NEO surveys. A better understanding of the intrinsic distribution of NEOs is important for estimating the impact hazard at Earth; it is also important for understanding the impact history of the Moon and the terrestrial planets.

  13. Alkalis and Skin.

    PubMed

    Greenwood, John E; Tan, Jin Lin; Ming, Justin Choong Tzen; Abell, Andrew D

    2016-01-01

    The aim of this editorial is to provide an overview of the chemical interactions occurring in the skin of our patients on contact with alkaline agents. Strongly basic alkali is highly aggressive and will readily hydrolyze (or cleave) key biological molecules such as lipids and proteins. This phenomenon is known as saponification in the case of lipids and liquefactive denaturation for peptides and proteins. A short section on current first-aid concepts is included. A better understanding of the basic science behind alkali burns will make us better teachers and provide an insight into the urgency needed in treating these common and dangerous chemical injuries. PMID:26182072

  14. Determination of rare earth elements in geological materials by inductively coupled argon plasma/atomic emission spectrometry

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    Inductively coupled argon plasma/optical emission spectrometery (ICAP/OES) is useful as a simultaneous, multielement analytical technique for the determination of trace elements in geological materials. A method for the determination of trace-level rare earth elements (REE) in geological materials using an ICAP 63-channel emission spectrometer is described. Separation and preconcentration of the REE and yttrium from a sample digest are achieved by a nitric acid gradient cation exchange and hydrochloric acid anion exchange. Precision of 1-4% relative standard deviation and comparable accuracy are demonstrated by the triplicate analysis of three splits of BCR-1 and BHVO-1. Analyses of other geological materials including coals, soils, and rocks show comparable precision and accuracy.

  15. Development of an earth resource pushbroom scanner utilizing a 90-element 8-14 micrometer /Hg,Cd/Te array

    NASA Technical Reports Server (NTRS)

    Brown, T. J.

    1980-01-01

    A detailed description is presented of thermal infrared 'pushbroom' scanners being developed for NASA's earth resources survey experiments in the middle to late 1980's. The devices offer high spectral, temporal and spatial resolution, and great reliability as well, due to simplicity of design. Their mode of operation does not require moving optics, since chopping and calibration are integral. The specific device described, a 90-element IR/CCD instrument, was developed to demonstrate scan imagery in the 8-14 micron spectral region in simulated aircraft tests. The scanning operation covers a straight-line path with a linear array of solid-state IR detectors, whose elements are activated sequentially in the cross-track direction while being swept forward along a flight path that, at an aircraft altitude of 10 km, is 7 km wide.

  16. Determination of Rare Earth Elements in Green River Shale By Inductively Coupled Plasma Mass Spectrometry Using a Desolvating Nebulizer System

    NASA Astrophysics Data System (ADS)

    Smith, F.; Clarke, D.; Moody, S.

    2014-12-01

    In this work, inductively coupled plasma mass spectrometry (ICP-MS) is applied to a geological sample for the determination of rare earth elements (REEs) using a specialized nebulizer system. The low flow desolvating nebulizer has been shown to decrease metal oxide formation which leads to a reduction in mass spectral interferences. Traditional nebulizers and spray chambers may be suitable for similar sample types, but reduction of water vapor loading to the plasma can improve REE detection limits for quadrupole-based ICP-MS. The Green River formation holds the largest oil shale deposits in the world and understanding the elemental composition of these samples is important in its study. A certified reference material, USGS Green River Shale (SGR-1), was microwave digested prior to analysis, and recoveries of REEs compared to historical values are discussed.

  17. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  18. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  19. Accumulation and fractionation of rare earth elements in atmospheric particulates around a mine tailing in Baotou, China

    NASA Astrophysics Data System (ADS)

    Wang, Lingqing; Liang, Tao

    2014-05-01

    Rare earth elements (REEs) have been increasingly emitted into the atmosphere with a worldwide increase in use of these metals. However, the research on REEs in atmospheric particulates is fairly limited. In this paper, atmospheric particulates including total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter less than 10 μm (PM10) were collected around a rare earth mine tailing in Baotou, the largest rare earth industrial base in China, in August 2012 and March 2013, for the analyses of REE levels and distributions. The total concentrations of REEs for TSP were 172.91 and 297.49 ng/m3, and those for PM10 were 63.23 and 105.52 ng/m3, in August 2012 and March 2013, respectively. Enrichment factors for all 14 analyzed REEs in the TSP and PM10 indicated that the REE enrichment in atmosphere particulates was caused by anthropogenic sources and influenced by the strong wind in spring season. The spatial distribution of REEs in TSP showed a strong gradient in the prevailing wind direction. The chondrite-normalized patterns of REEs in TSP and PM10 were similar with the conspicuous fractionation between light REEs and heavy REEs.

  20. Tracking the spatiotemporal variations of statistically independent components involving enrichment of rare-earth elements in deep-sea sediments.

    PubMed

    Yasukawa, Kazutaka; Nakamura, Kentaro; Fujinaga, Koichiro; Iwamori, Hikaru; Kato, Yasuhiro

    2016-01-01

    Deep-sea sediments have attracted much attention as a promising resource for rare-earth elements and yttrium (REY). In this study, we show statistically independent components characterising REY-enrichment in the abyssal ocean that are decoded by Independent Component Analysis of a multi-elemental dataset of 3,968 bulk sediment samples from 101 sites in the Pacific and Indian oceans. This study for the first time reconstructs the spatiotemporal variations of the geochemical signatures, including hydrothermal, hydrogenous, and biogenic calcium phosphate components that were closely involved in the formation of REY-rich mud over the past 65 million years. An underlying key factor of significant REY-enrichment is a sufficiently low sedimentation rate that enables the mud to accumulate REY from seawater. In the early Cenozoic, a remarkably small supply of aeolian dust, compared with any other time and region, facilitated the deposition of very high-grade REY-rich mud in the South Pacific. This indicates an important link between the genesis of the seafloor mineral resources and Earth's dynamic phenomena such as climate change and plate tectonics. PMID:27444949

  1. Effect of Light Elements on the Sound Velocities in Solid Iron: Implications for the Composition of Earth's Core

    NASA Astrophysics Data System (ADS)

    Badro, J.; Fiquet, G.; Guyot, F.

    2006-12-01

    We measured compressional sound velocities in light-element alloys of iron (FeO, FeSi, FeS, and FeS2) at high pressure by inelastic x-ray scattering. This data set provides a mineralogical constraint on the composition of Earth's core, and completes the previous set formed by the pressure-density systematics for these compounds. Based on the combination of these data sets and their comparison with radial seismic models, we propose an average composition model of Earth's core. We show that sulphur cannot be the only light alloying element in the core, because it cannot satisfy both the compressibility, sound velocity and while retaining a reasonable abundance based on cosmochemical models. On the other hand, the incorporation of small amounts of silicon or oxygen is compatible with geophysical observations and geochemical abundances. From our data, the inner core contains 2.3 wt% silicon or 1.6 wt% oxygen. Using recent O and Si partitioning data, we build a new composite model of the core and discuss the effects of Nickel.

  2. Geochemical studies of rare earth elements in the Portuguese pyrite belt, and geologic and geochemical controls on gold distribution

    USGS Publications Warehouse

    Grimes, David J.; Earhart, Robert L.; de Carvalho, Delfim; Oliveira, Vitor; Oliveira, Jose T.; Castro, Paulo

    1998-01-01

    This report describes geochemical and geological studies which were conducted by the U.S. Geological Survey (USGS) and the Servicos Geologicos de Portugal (SPG) in the Portuguese pyrite belt (PPB) in southern Portugal. The studies included rare earth element (REE) distributions and geological and geochemical controls on the distribution of gold. Rare earth element distributions were determined in representative samples of the volcanic rocks from five west-trending sub-belts of the PPB in order to test the usefulness of REE as a tool for the correlation of volcanic events, and to determine their mobility and application as hydrothermal tracers. REE distributions in felsic volcanic rocks show increases in the relative abundances of heavy REE and a decrease in La/Yb ratios from north to south in the Portuguese pyrite belt. Anomalous amounts of gold are distributed in and near massive and disseminated sulfide deposits in the PPB. Gold is closely associated with copper in the middle and lower parts of the deposits. Weakly anomalous concentrations of gold were noted in exhalative sedimentary rocks that are stratigraphically above massive sulfide deposits in a distal manganiferous facies, whereas anomalously low concentrations were detected in the barite-rich, proximal-facies exhalites. Altered and pyritic felsic volcanic rocks locally contain highly anomalous concentrations of gold, suggesting that disseminated sulfide deposits and the non-ore parts of massive sulfide deposits should be evaluated for their gold potential.

  3. Effect of earthworms (Eisenia fetida) on the fractionation and bioavailability of rare earth elements in nine Chinese soils.

    PubMed

    Wen, Bei; Liu, Ying; Hu, Xiao-yu; Shan, Xiao-quan

    2006-05-01

    The effect of earthworm (Eisenia fetida) activity on soil pH, dissolved organic carbon (DOC), fraction distribution pattern and bioavailability of rare earth elements (REEs) Y, La, Ce, Pr and Nd in nine Chinese soils were investigated using pot experiments. A three-step extraction procedure recommended by the European Community (Standards, Measurements and Testing Programme) was used to fractionate REEs in soils into water soluble, exchangeable and carbonate bound (B1), Fe- and Mn-oxides bound (B2) and organic matter and sulfide bound (B3). Inoculated with earthworms, the soil pH, DOC and water-soluble rare earth elements fraction increased. A significant correlation was obtained between the increased DOC and the increased water-soluble REEs. REEs in fraction B1 increased after earthworm inoculation, while those in fraction B3 decreased. No significant differences were observed for REEs in fraction B2. The biomass and the concentrations of REEs in wheat shoots and roots increased after the treatment with earthworms. The results demonstrated that earthworm activity increased the mobility and bioavailability of REEs in soils. PMID:16289225

  4. Modeling and separation of rare earth elements by countercurrent electromigration: A new separation column

    SciTech Connect

    Correa, S.M. |; Arbilla, G.; Carvalho, M.S.

    1998-07-01

    The separation of a samarium (90%) and europium (10%) mixture in {alpha}-hydroxy isobutyric acid was performed in a new countercurrent electromigration system. The mobilities of these elements were estimated, and samarium of better than 99.9% purity was obtained. The equilibrium of multicoordinate complexes of these elements with {alpha}-hydroxy isobutyric acid ({alpha}-HIBA) plays an important role in the separation process. The equilibrium concentrations of the involved species were calculated by a computational procedure, and a kinetic study of the complexation reaction was also performed.

  5. On the determination of the long period tidal perturbations in the elements of artificial earth satellites

    NASA Technical Reports Server (NTRS)

    Musen, P.; Felsentreger, T.

    1972-01-01

    The magnitude of the tidal effects depends upon the elastic properties of the earth as described by Love numbers. The Love numbers appear as the coefficients in the expansion of the exterior tidal potential in terms of spherical harmonics (in Maxwellian form). A single averaging process was performed only along the parallels of latitude. This process preserves additional long period tidal effects (with periods of a few days or more). It also eliminates the short period effects with periods of one day or less.

  6. Photoelectron emission analysis of surface elements of the International Sun Earth Explorer

    NASA Technical Reports Server (NTRS)

    Spencer, W. T.

    1975-01-01

    The photoemission was measured of engineering materials (aluminum; copper, plain; copper, abraded; copper-beryllium; magnesium; silver; In2O3 on silica; reflective coating on silica; teflon; kapton; and Pyre ML) associated with the International Sun Earth Explorer (ISEE) Satellite. The procedures used are described, including the experimental equipment; results of the program, the conclusions reached, and areas for further work are presented. Data regarding the measured yield of the 11 materials whose surface emission was determined is included in the form of plots of photoelectric yield versus incident light wavelength.

  7. The group separation of the rare-earth elements and yttrium from geologic materials by cation-exchange chromatography

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.; Wildeman, T.R.

    1984-01-01

    Demand is increasing for the determination of the rare-earth elements (REE) and yttrium in geologic materials. Due to their low natural abundance in many materials and the interferences that occur in many methods of determination, a separation procedure utilizing gradient strong-acid cation-exchange chromatography is often used to preconcentrate and isolate these elements from the host-rock matrix. Two separate gradient strong-acid cation-exchange procedures were characterized and the major elements as well as those elements thought to provide the greatest interference for the determination of the REE in geologic materials were tested for separation from the REE. Simultaneous inductively coupled argon plasma-atomic emission spectroscopy (ICAP-AES) measurements were used to construct the chromatograms for the elution studies, allowing the elution patterns of all the elements of interest to be determined in a single fraction of eluent. As a rock matrix, U.S. Geological Survey standard reference BCR-1 basalt was digested using both an acid decomposition procedure and a lithium metaborate fusion. Hydrochloric and nitric acids were tested as eluents and chromatograms were plotted using the ICAP-AES data; and we observed substantial differences in the elution patterns of the REE and as well as in the solution patterns of Ba, Ca, Fe and Sr. The nitric acid elution required substantially less eluent to elute the REE and Y as a group when compared to the hydrochloric acid elution, and provided a clearer separation of the REE from interfering and matrix elements. ?? 1984.

  8. Precious metals and rare earth elements in municipal solid waste--sources and fate in a Swiss incineration plant.

    PubMed

    Morf, Leo S; Gloor, Rolf; Haag, Olaf; Haupt, Melanie; Skutan, Stefan; Di Lorenzo, Fabian; Böni, Daniel

    2013-03-01

    In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are essential for the improvement of resource recovery in the Thermo-Re® process. PMID:23085306

  9. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  10. Determination of boron isotope ratios and rare earth elements by ETC-ICP-MS

    SciTech Connect

    Richner, P.; Wanner, B.

    1994-12-31

    Matrix modifiers play an important role in ETV-ICP-MS as they do in GF-AAS. In ETV-ICP-MS matrix modifiers, which are used as carriers for the analyte from the furnace to the ICP, enhance both sensitivity and reproducibility. Furthermore, matrix modifiers can be used to bring the element investigated into a specific compound with certain properties. The graphite furnace plays the role of a chemical reactor. In GF-AAS volatile elements are transformed into refractory compounds in order to prevent loss during the ashing stage of the temperature program. In ETV-ICP-MS, refractory elements can be transformed into volatile compounds with the help of matrix modifiers. Both B and the REE`s are known to form refractory compounds such as carbides and oxides which make them difficult to analyze by GF-AAS. However, halides of both B and the REE`s have boiling points below 2000{degrees}C. If these compounds are formed within the furnace the analyte elements can then be effectively transported into the ICP where they will be consequentially atomized and ionized. The technique will be applied to the determination of boron isotope ratios in a tracer study of the boron metabolism in vegetables, using NH4F as a matrix modifier, and the determination of REE`s in geological samples, with CHF{sub 3} as matrix modifier.

  11. Determination of rare earth and concomitant elements in magnesium alloys by inductively coupled plasma optical emission spectrometry.

    PubMed

    Fariñas, Juan C; Rucandio, Isabel; Pomares-Alfonso, Mario S; Villanueva-Tagle, Margarita E; Larrea, María T

    2016-07-01

    An Inductively Coupled Plasma Optical Emission Spectrometry method for simultaneous determination of Al, Ca, Cu, Fe, In, Mn, Ni, Si, Sr, Y, Zn, Zr and rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in magnesium alloys, including the new rare earth elements-alloyed magnesium, has been developed. Robust conditions have been established as nebulizer argon flow rate of 0.5mLmin(-1) and RF incident power of 1500W, in which matrix effects were significantly reduced around 10%. Three acid digestion procedures were performed at 110°C in closed PFA vessels heated in an oven, in closed TFM vessels heated in a microwave furnace, and in open polypropylene tubes with reflux caps heated in a graphite block. The three digestion procedures are suitable to put into solution the magnesium alloys samples. From the most sensitive lines, one analytical line with lack or low spectral interferences has been selected for each element. Mg, Rh and Sc have been studied as internal standards. Among them, Rh was selected as the best one by using Rh I 343.488nm and Rh II 249.078nm lines as a function of the analytical lines. The trueness and precision have been established by using the Certified Reference Material BCS 316, as well as by means of recovery studies. Quantification limits were between 0.1 and 9mgkg(-1) for Lu and Pr, respectively, in a 2gL(-1) magnesium matrix solution. The method developed has been applied to the commercial alloys AM60, AZ80, ZK30, AJ62, WE54 and AE44. PMID:27154648

  12. The surface sediment types and their rare earth element characteristics from the continental shelf of the northern south China sea

    NASA Astrophysics Data System (ADS)

    Wang, Shuhong; Zhang, Nan; Chen, Han; Li, Liang; Yan, Wen

    2014-10-01

    The grain size as well as some major and trace elements, including rare earth element (REE), for 273 surface sediment samples collected from the continental shelf of the northern South China Sea were analyzed in this study. The sediment types are mainly sandy silt and silt, making up 60% of the whole samples, and secondly are mud, sandy mud, muddy sand and silty sand, making up 28% of the whole samples, based on grain-size in which the Folk's classification was used. The total REE content (ΣREE) show a wide variation from 21 ppm to 244 ppm with an average value of 155 ppm, which similar to the average ΣREE of the China loess, but much different from that in deep-sea clay, showing a significant terrigenous succession. The REE contents in different sediment types vary greatly, mainly enriching in silt, sandy silt, mud and sandy mud. The REE distribution contours parallel to the coastal, presenting like strips and their contents gradually reduce with increasing distance from the coast. The high content of the western Pearl River Mouth, Shang/Xiachuan Islands and Hailing Bay might be regarded to the coastal current developed from the east to the west along to the Pearl River Mouth in the northern South China Sea. But the chondrite-normalized REE patterns in various sediment types have no difference, basically same as those of coastal rivers and upper crust. They all show relative enrichments in light rare earth element (LREE), noticeable negative Eu anomaly and no Ce anomaly, indicating that those sediments are terrigenous sediments and from the same source region. Further analysis suggest that the sedimentary environment in the study area is relatively stable and granite widely distributed in the South China mainland is the main source of REE, which are transported mainly by the Pearl River. The late diagenesis has little effect on the REE.

  13. Anomalous abundance and redistribution patterns of rare earth elements in soils of a mining area in Inner Mongolia, China.

    PubMed

    Wang, Lingqing; Liang, Tao

    2016-06-01

    The Bayan Obo Mine, the largest rare earth element (REE) deposit ever found in the world, has been mined for nearly 60 years for iron and rare earth elements. To assess the influences of mining activities on geochemical behavior of REEs in soils, 27 surface soil samples and three soil profile samples were collected from different directions in the vicinity of the mine area. The total concentrations of REEs in surface soils varied from 149.75 to 18,891.81 mg kg(-1) with an average value of 1906.12 mg kg(-1), which was apparently higher than the average values in China (181 mg kg(-1)). The order of the average concentrations of individual REEs in surface soils was similar to that in Bayan Obo ores, which confirmed that the concentration and distribution of REEs in the soils was influenced by the mining activities. The concentrations of single REE in the soil profiles showed a similar trend with depth with an increase at 0-25 cm section, then decreased and remained relatively stable in the deep part. The normalized curves inclined to the right side, showing the conspicuous fractionation between the light and heavy REEs, which supported by the North American Shale Composite (NASC) and Post-Archean Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (La N /Yb N , La N /Sm N , Gd N /Yb N ). Slight positive Ce anomaly and negative Eu anomaly were also observed. PMID:26931660

  14. Control of interface fracture in silicon nitride ceramics: influence of different rare earth elements

    SciTech Connect

    Sun, E.Y.; Becher, P.F.; Waters, S.B.; Hsueh, Chun-Hway; Plucknett, K.P.; Hoffmann, M.J.

    1996-10-01

    The toughness of self-reinforced silicon nitride ceramics is improved by enhancing crack deflection and crack bridging mechanisms. Both mechanisms rely on the interfacial debonding process between the elongated {Beta}-Si{sub 3}N{sub 4} grains and the intergranular amorphous phases. The various sintering additives used for densification may influence the interfacial debonding process by modifying the thermal and mechanical properties of the intergranular glasses, which will result in different residual thermal expansion mismatch stresses; and the atomic bonding structure across the {Beta}-Si{sub 3}N{sub 4} glass interface. Earlier studies indicated that self-reinforced silicon nitrides sintered with different rare earth additives and/or different Y{sub 2}O{sub 3}:AI{sub 2}0{sub 3} ratios could exhibit different fracture behavior that varied from intergranular to transgranular fracture. No studies have been conducted to investigate the influence of sintering additives on the interfacial fracture in silicon nitride ceramics. Because of the complexity of the material system and the extremely small scale, it is difficult to conduct quantitative analyses on the chemistry and stress states of the intergranular glass phases and to relate the results to the bulk properties. The influence of different sintering additives on the interfacial fracture behavior is assessed using model systems in which {Beta}-Si{sub 3}N{sub 4}whiskers are embedded in SIAIRE (RE: rare-earth) oxynitride glasses. By systematically varying the glass composition, the role of various rare-earth additives on interfacial fracture has been examined. Specifically, four different additives were investigated: Al{sub 2}0{sub 3}, Y{sub 2}0{sub 3}, La{sub 2}O{sub 3}, and Yb{sub 2}O{sub 3}. In addition, applying the results from the model systems, the R- curve behavior of self-reinforced silicon nitride ceramics sintered with different Y{sub 2}0{sub 3}:AI{sub 2}0{sub 3} ratios was characterized.

  15. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during t