Sample records for alkali-metal scalar magnetometer

  1. Long-term vacuum tests of single-mode vertical cavity surface emitting laser diodes used for a scalar magnetometer

    NASA Astrophysics Data System (ADS)

    Hagen, C.; Ellmeier, M.; Piris, J.; Lammegger, R.; Jernej, I.; Magnes, W.; Murphy, E.; Pollinger, A.; Erd, C.; Baumjohann, W.

    2017-11-01

    Scalar magnetometers measure the magnitude of the magnetic field, while vector magnetometers (mostly fluxgate magnetometers) produce three-component outputs proportional to the magnitude and the direction of the magnetic field. While scalar magnetometers have a high accuracy, vector magnetometers suffer from parameter drifts and need to be calibrated during flight. In some cases, full science return can only be achieved by a combination of vector and scalar magnetometers.

  2. Athermal fiber laser for the SWARM absolute scalar magnetometer

    NASA Astrophysics Data System (ADS)

    Fourcault, W.; Léger, J.-M.; Costes, V.; Fratter, I.; Mondin, L.

    2017-11-01

    The Absolute Scalar Magnetometer (ASM) developed by CEA-LETI/CNES is an optically pumped 4He magnetic field sensor based on the Zeeman effect and an electronic magnetic resonance whose effects are amplified by a laser pumping process [1-2]. Consequently, the role of the laser is to pump the 4He atoms at the D0 transition as well as to allow the magnetic resonance signal detection. The ASM will be the scalar magnetic reference instrument of the three ESA Swarm satellites to be launched in 2012 in order to carry out the best ever survey of the Earth magnetic field and its temporal evolution. The sensitivity and accuracy of this magnetometer based on 4He optical pumping depend directly on the characteristics of its light source, which is the key sub-system of the sensor. We describe in this paper the selected fiber laser architecture and its wavelength stabilization scheme. Its main performance in terms of spectral emission, optical power at 1083 nm and intensity noise characteristics in the frequency bands used for the operation of the magnetometer, are then presented. Environmental testing results (thermal vacuum cycling, vibrations, shocks and ageing) are also reported at the end of this paper.

  3. Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb.

    PubMed

    Korth, Haje; Strohbehn, Kim; Tejada, Francisco; Andreou, Andreas G; Kitching, John; Knappe, Svenja; Lehtonen, S John; London, Shaughn M; Kafel, Matiwos

    2016-08-01

    A miniature atomic scalar magnetometer based on the rubidium isotope 87 Rb was developed for operation in space. The instrument design implements both M x and M z mode operation and leverages a novel microelectromechanical system (MEMS) fabricated vapor cell and a custom silicon-on-sapphire (SOS) complementary metal-oxide-semiconductor (CMOS) integrated circuit. The vapor cell has a volume of only 1 mm 3 so that it can be efficiently heated to its operating temperature by a specially designed, low-magnetic-field-generating resistive heater implemented in multiple metal layers of the transparent sapphire substrate of the SOS-CMOS chips. The SOS-CMOS chip also hosts the Helmholtz coil and associated circuitry to stimulate the magnetically sensitive atomic resonance and temperature sensors. The prototype instrument has a total mass of fewer than 500 g and uses less than 1 W of power, while maintaining a sensitivity of 15 pT/√Hz at 1 Hz, comparable to present state-of-the-art absolute magnetometers.

  4. A 3He-129Xe co-magnetometer probed by a Rb magnetometer with Ramsey-pulse technique

    NASA Astrophysics Data System (ADS)

    Sheng, Dong; Kabcenell, Aaron; Romalis, Michael

    2013-05-01

    We report the recent progress in development of a new kind of co-magnetometer, benifiting from both the long spin coherence time of a noble gas and a highly sensitive alkali metal magnetometer. Due to the Fermi-contact interaction between alkali metal electron spin and noble gas nuclear spin the effective magnetization of the noble gas is enhanced by a factor of 6 to 600, allowing near quantum-limited detection of nuclear spins. Collisions between polarized alkali atoms and noble gas also introduce a large shift to the nuclear spin precession frequency. We reduce this effect by using Ramsey pulse techniques to measure the noble gas spin precession frequency ``in the dark'' by turning off the pumping laser between Ramsey pulses. A furthur reduction of the back-hyperpolarization from the noble gas can be achieved by controlling the cell temperature on short time scale. We showed that a 3He-129Xe Ramsey co-magnetometer is effective in cancelling fluctuations of external magnetic fields and gradients and developed cells with sufficient 129Xe T2 time without surface coatings. The new co-magnetometer has potential applications for many precision measurements, such as searches for spin-gravity couplings, electric dipole moments, and nuclear spin gyroscopes. Supported by DARPA.

  5. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phasemore » may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.« less

  6. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  7. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  8. EXTINGUISHMENT OF ALKALI METAL FIRES

    DTIC Science & Technology

    low O2 partial pressures on alkali metal fires Extinguishment of alkali metal fires using in organic salt mixtures Extinguishment of alkali metal ... fires using inorganic salt foams Alkali metal jet stream ignition at various pressure conditions Bibliography

  9. Miniature Dual-Mode Absolute Scalar Magnetometer Based on the Rubidium Isotope 87Rb

    NASA Astrophysics Data System (ADS)

    Korth, H.; Strohbehn, K.; Kitching, J.

    2016-10-01

    Miniaturized absolute scalar magnetometer based on the rubidium isotope 87Rb takes advantage of recent breakthroughs in micro-fabricated atomic devices, has a total mass of 210 g and uses <1 W of power, and maintains a sensitivity of 0.1 nT rms.

  10. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  11. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  12. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  13. Alkali metal ion battery with bimetallic electrode

    DOEpatents

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  14. EXTINGUISHMENT OF ALKALI METAL FIRES

    DTIC Science & Technology

    Contents: Effect of inert gas nket and ow O2 partial pressures on alkali metal fires Extinguishment of small scale fires Extinguishment of alkali... metal fires using inorganic salt foam Alkali metal jet stream ignition at various pressure conditions

  15. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  16. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  17. Nanosatellite High-Precision Magnetic Missions Enabled by Advances in a Stand-Alone Scalar/Vector Absolute Magnetometer

    NASA Astrophysics Data System (ADS)

    Hulot, G.; Leger, J. M.; Vigneron, P.; Jager, T.; Bertrand, F.; Coisson, P.; Deram, P.; Boness, A.; Tomasini, L.; Faure, B.

    2017-12-01

    Satellites of the ESA Swarm mission currently in operation carry a new generation of Absolute Scalar Magnetometers (ASM), which nominally deliver 1 Hz scalar for calibrating the relative flux gate magnetometers that complete the magnetometry payload (together with star cameras, STR, for attitude restitution) and providing extremely accurate scalar measurements of the magnetic field for science investigations. These ASM instruments, however, can also operate in two additional modes, a high-frequency 250 Hz scalar mode and a 1 Hz absolute dual-purpose scalar/vector mode. The 250 Hz scalar mode already allowed the detection of until now very poorly documented extremely low frequency whistler signals produced by lightning in the atmosphere, while the 1 Hz scalar/vector mode has provided data that, combined with attitude restitution from the STR, could be used to produce scientifically relevant core field and lithospheric field models. Both ASM modes have thus now been fully validated for science applications. Efforts towards developing an improved and miniaturized version of this instrument is now well under way with CNES support in the context of the preparation of a 12U nanosatellite mission (NanoMagSat) proposed to be launched to complement the Swarm satellite constellation. This advanced miniaturized ASM could potentially operate in an even more useful mode, simultaneously providing high frequency (possibly beyond 500 Hz) absolute scalar data and self-calibrated 1 Hz vector data, thus providing scientifically valuable data for multiple science applications. In this presentation, we will illustrate the science such an instrument taken on board a nanosatellite could enable, and report on the current status of the NanoMagSat project that intends to take advantage of it.

  18. EXTINGUISHMENT OF ALKALI METAL FIRES

    DTIC Science & Technology

    was found to be effective on low temperature (1000F) fires and was useful on alkali metal fires on or under insulation. Organic liquids were not...particularly effective on alkali metal fires . A section is presented on a typical alkali metal system which might be used to generate electrical power in space.

  19. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  20. Alkali metal hafnium oxide scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Taylor, Scott Edward

    The present invention provides for a composition comprising an inorganic scintillator comprising an alkali metal hafnate, optionally cerium-doped, having the formula A 2HfO 3:Ce; wherein A is an alkali metal having a valence of 1, such as Li or Na; and the molar percent of cerium is 0% to 100%. The alkali metal hafnate are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  1. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  2. Method for the safe disposal of alkali metal

    DOEpatents

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  3. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  4. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  5. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  6. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  7. Upgrading platform using alkali metals

    DOEpatents

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  8. Controlled in-situ dissolution of an alkali metal

    DOEpatents

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  9. Method of making alkali metal hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecharsky, Vitalij K.; Gupta, Shalabh; Pruski, Marek

    A method is provided for making alkali metal hydrides by mechanochemically reacting alkali metal and hydrogen gas under mild temperature (e.g room temperature) and hydrogen pressure conditions without the need for catalyst, solvent, and intentional heating or cooling.

  10. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  11. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  12. Suppression of the Nonlinear Zeeman Effect and Heading Error in Earth-Field-Range Alkali-Vapor Magnetometers.

    PubMed

    Bao, Guzhi; Wickenbrock, Arne; Rochester, Simon; Zhang, Weiping; Budker, Dmitry

    2018-01-19

    The nonlinear Zeeman effect can induce splitting and asymmetries of magnetic-resonance lines in the geophysical magnetic-field range. This is a major source of "heading error" for scalar atomic magnetometers. We demonstrate a method to suppress the nonlinear Zeeman effect and heading error based on spin locking. In an all-optical synchronously pumped magnetometer with separate pump and probe beams, we apply a radio-frequency field which is in phase with the precessing magnetization. This results in the collapse of the multicomponent asymmetric magnetic-resonance line with ∼100  Hz width in the Earth-field range into a single peak with a width of 22 Hz, whose position is largely independent of the orientation of the sensor within a range of orientation angles. The technique is expected to be broadly applicable in practical magnetometry, potentially boosting the sensitivity and accuracy of Earth-surveying magnetometers by increasing the magnetic-resonance amplitude, decreasing its width, and removing the important and limiting heading-error systematic.

  13. Spill-Resistant Alkali-Metal-Vapor Dispenser

    NASA Technical Reports Server (NTRS)

    Klipstein, William

    2005-01-01

    A spill-resistant vessel has been developed for dispensing an alkali-metal vapor. Vapors of alkali metals (most commonly, cesium or rubidium, both of which melt at temperatures slightly above room temperature) are needed for atomic frequency standards, experiments in spectroscopy, and experiments in laser cooling. Although the present spill-resistant alkali-metal dispenser was originally intended for use in the low-gravity environment of outer space, it can also be used in normal Earth gravitation: indeed, its utility as a vapor source was confirmed by use of cesium in a ground apparatus. The vessel is made of copper. It consists of an assembly of cylinders and flanges, shown in the figure. The uppermost cylinder is a fill tube. Initially, the vessel is evacuated, the alkali metal charge is distilled into the bottom of the vessel, and then the fill tube is pinched closed to form a vacuum seal. The innermost cylinder serves as the outlet for the vapor, yet prevents spilling by protruding above the surface of the alkali metal, no matter which way or how far the vessel is tilted. In the event (unlikely in normal Earth gravitation) that any drops of molten alkali metal have been shaken loose by vibration and are floating freely, a mesh cap on top of the inner cylinder prevents the drops from drifting out with the vapor. Liquid containment of the equivalent of 1.2 grams of cesium was confirmed for all orientations with rubbing alcohol in one of the prototypes later used with cesium.

  14. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  15. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151) is...

  16. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  17. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, Wen Y.

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  18. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    DOEpatents

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  19. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  20. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  1. Advanced helium magnetometer for space applications

    NASA Technical Reports Server (NTRS)

    Slocum, Robert E.

    1987-01-01

    The goal of this effort was demonstration of the concepts for an advanced helium magnetometer which meets the demands of future NASA earth orbiting, interplanetary, solar, and interstellar missions. The technical effort focused on optical pumping of helium with tunable solid state lasers. We were able to demonstrate the concept of a laser pumped helium magnetometer with improved accuracy, low power, and sensitivity of the order of 1 pT. A number of technical approaches were investigated for building a solid state laser tunable to the helium absorption line at 1083 nm. The laser selected was an Nd-doped LNA crystal pumped by a diode laser. Two laboratory versions of the lanthanum neodymium hexa-aluminate (LNA) laser were fabricated and used to conduct optical pumping experiments in helium and demonstrate laser pumped magnetometer concepts for both the low field vector mode and the scalar mode of operation. A digital resonance spectrometer was designed and built in order to evaluate the helium resonance signals and observe scalar magnetometer operation. The results indicate that the laser pumped sensor in the VHM mode is 45 times more sensitive than a lamp pumped sensor for identical system noise levels. A study was made of typical laser pumped resonance signals in the conventional magnetic resonance mode. The laser pumped sensor was operated as a scalar magnetometer, and it is concluded that magnetometers with 1 pT sensitivity can be achieved with the use of laser pumping and stable laser pump sources.

  2. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  3. Man-Portable Simultaneous Magnetometer and EM System (MSEMS)

    DTIC Science & Technology

    2008-12-01

    limited to cesium vapor magnetometers outputting a Larmor signal. It cannot, as presently configured, be used with less expensive fluxgate magnetometers ...pulses to convert the frequency-based Larmor signal into nT. A fluxgate magnetometer does not employ the resonance mechanism of an alkali vapor...Simultaneous Magnetometer and EM System (MSEMS) December 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the

  4. Electrochemical cell utilizing molten alkali metal electrode-reactant

    DOEpatents

    Virkar, Anil V.; Miller, Gerald R.

    1983-11-04

    An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

  5. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  6. Atomic magnetometer

    DOEpatents

    Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  7. Alkali metal intercalates of molybdenum disulfide.

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.

    1973-01-01

    Study of some of the physicochemical properties of compounds obtained by subjecting natural molybdenite and single crystals of molybdenum disulfide grown by chemical vapor transport to intercalation with the alkali group of metals (Li, Na, K, Rb, and Cs) by means of the liquid ammonia technique. Reported data and results include: (1) the intercalation of the entire alkali metal group, (2) stoichiometries and X-ray data on all of the compounds, and (3) superconductivity data for all the intercalation compounds.

  8. Alkali Metal/Salt Thermal-Energy-Storage Systems

    NASA Technical Reports Server (NTRS)

    Phillips, Wayne W.; Stearns, John W.

    1987-01-01

    Proposed thermal-energy-storage system based on mixture of alkali metal and one of its halide salts; metal and salt form slurry of two immiscible melts. Use of slurry expected to prevent incrustations of solidified salts on heat-transfer surfaces that occur where salts alone used. Since incrustations impede heat transfer, system performance improved. In system, charging heat-exchanger surface immersed in lower liquid, rich in halide-salt, phase-charge material. Discharging heat exchanger surface immersed in upper liquid, rich in alkali metal.

  9. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  10. Electronic structure of semiconducting alkali-metal silicides and germanides

    NASA Astrophysics Data System (ADS)

    Tegze, M.; Hafner, J.

    1989-11-01

    We present self-consistent linearized-muffin-tin-orbital calculations of the electronic structure of three alkali-metal germanides and silicides (KGe, NaGe, and NaSi). Like the alkali-metal-lead compounds investigated in our earlier work [M. Tegze and J. Hafner, Phys. Rev. B 39, 8263 (1989)] the Ge and Si compounds of the alkali metals form complex structures based on the packing of tetrahedral Ge4 and Si4 clusters. Our calculations show that all three compounds are narrow-gap semiconductors. The width of the energy gap depends on two main factors: the ratio of the intracluster to the intercluster interactions between the group-IV elements (which increases from Pb to Si) and the strength of the interactions between the alkali-metal atoms (which varies with the size ratio).

  11. Spectroscopic studies of transition-metal ions in molten alkali-metal carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroni, V.A.; Maciejewski, M.L.

    This paper presents the results of electronic absorption and /sup 13/C-NMR measurements on molten alkali metal formates and acetates and on solutions of selected 3d transition metal ions therein. These studies provide a unique opportunity to explore (1) the highly ordered nature of alkali carboxylates, (2) the ligand field properties of acetate and formate ions, and (3) the coordination chemistry of the 3d transition metals in molten carboxylates. 1 figure, 2 tables.

  12. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  13. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  14. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660 Section 721.4660 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4660 Alcohol, alkali metal sal...

  15. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  16. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  17. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this...

  18. Electrochemical cell having an alkali-metal-nitrate electrode

    DOEpatents

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  19. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  20. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P...

  1. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P...

  2. Neuropsychiatric manifestations of alkali metal deficiency and excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yung, C.Y.

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigatedmore » for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study.« less

  3. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to...

  4. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to...

  5. Effects of pH on frog gustatory responses to chloride salts of alkali-metal and alkali-earth-metal.

    PubMed

    Kumai, T; Nomura, H

    1980-01-01

    The pH effects on frog gustatory responses to alkali-metal and alkali-earth-metal chloride salts were examined using single fungi-form papilla preparations. Responses to 0.1-0.5 M NaCl were clearly dependent upon the pH of the stimulating solutions. The responses increased as the pH decreased from 6.5 to 4.5 and were almost completely suppressed at pH's above 6.5. There was no significant difference in the pH dependency of the response among alkali-metal chlorides. HCl solutions elicited only a poor response under conditions in which the water response was suppressed by the simultaneous presence of a low NaCl concentration. Responses to alkali-earth-metal chlorides varied in their pH dependency. Response to CaCl2 was slightly affected by pH changes from 4.5 to 9.0, response to SrCl2 was considerably suppressed in the alkaline region, and responses to BaCl2 and MgCl2 were strongly suppressed at pH's above 6.5. BeCl2 solutions showed less marked stimulating effects over the pH range tested. The differences in pH dependency described above suggest the existence of two kinds of receptor sites, one being pH-insensitive sites responsible for the calcium response and the other pH-sensitive sites responsible for the sodium response. A cross-adaptation test appeared to support this possibility. Assuming that the pH effect mentioned is related to changes in the state of ionization of the receptor molecule, the pKa of the ionizable group responsible for the sodium response was determined to be approximately 5.5.

  6. Method of assembling and sealing an alkali metal battery

    DOEpatents

    Elkins, Perry E.; Bell, Jerry E.; Harlow, Richard A.; Chase, Gordon G.

    1983-01-01

    A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed therebetween. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants therethrough at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed therebetween. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal therebetween. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal.

  7. Solvent- and catalyst-free mechanochemical synthesis of alkali metal monohydrides

    DOE PAGES

    Hlova, Ihor Z.; Castle, Andra; Goldston, Jennifer F.; ...

    2016-07-06

    Alkali metal monohydrides, AH (A = Li–Cs) have been synthesized in quantitative yields at room temperature by reactive milling of alkali metals in the presence of hydrogen gas at 200 bar or less. The mechanochemical approach reported here eliminates problems associated with the malleability of alkali metals — especially Li, Na, and K — and promotes effective solid–gas reactions, ensuring their completion. This is achieved by incorporating a certain volume fraction of the corresponding hydride powder as a process control agent, which allows continuous and efficient milling primarily by coating the surface of metal particles, effectively blocking cold welding. Formationmore » of high-purity crystalline monohydrides has been confirmed by powder X-ray diffraction, solid-state NMR spectroscopy, and volumetric analyses of reactively desorbed H 2 from as-milled samples. The proposed synthesis method is scalable and particularly effective for extremely air-sensitive materials, such as alkali and alkaline earth metal hydrides. Furthermore, the technique may also be favorable for production in continuous reactors operating at room temperature, thereby reducing the total processing time, energy consumption and, hence, the cost of production of these hydrides or their derivatives and composites.« less

  8. Method of assembling and sealing an alkali metal battery

    DOEpatents

    Elkins, P.E.; Bell, J.E.; Harlow, R.A.; Chase, G.G.

    1983-03-01

    A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed there between. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants there through at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed there between. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal there between. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal. 4 figs.

  9. Method and composition for testing for the presence of an alkali metal

    DOEpatents

    Guon, Jerold

    1981-01-01

    A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques.

  10. Eddy current imaging with an atomic radio-frequency magnetometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wickenbrock, Arne, E-mail: wickenbr@uni-mainz.de; Leefer, Nathan; Blanchard, John W.

    2016-05-02

    We use a radio-frequency {sup 85}Rb alkali-vapor cell magnetometer based on a paraffin-coated cell with long spin-coherence time and a small, low-inductance driving coil to create highly resolved conductivity maps of different objects. We resolve sub-mm features in conductive objects, we characterize the frequency response of our technique, and by operating at frequencies up to 250 kHz we are able to discriminate between differently conductive materials based on the induced response. The method is suited to cover a wide range of driving frequencies and can potentially be used for detecting non-metallic objects with low DC conductivity.

  11. Fluorescence quenching and the "ring-mode" to "red-mode" transition in alkali inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Huang, M.; Bazurto, R.; Camparo, J.

    2018-01-01

    The ring-mode to red-mode transition in alkali metal inductively coupled plasmas (ICPs) (i.e., rf-discharge lamps) is perhaps the most important physical phenomenon affecting these devices as optical pumping light sources for atomic clocks and magnetometers. It sets the limit on useful ICP operating temperature, thereby setting a limit on ICP light output for atomic-clock/magnetometer signal generation, and it is a temperature region of ICP operation associated with discharge instability. Previous work has suggested that the mechanism driving the ring-mode to red-mode transition is associated with radiation trapping, but definitive experimental evidence validating that hypothesis has been lacking. Based on that hypothesis, one would predict that the introduction of an alkali-fluorescence quenching gas (i.e., N2) into the ICP would increase the ring-mode to red-mode transition temperature. Here, we test that prediction, finding direct evidence supporting the radiation-trapping hypothesis.

  12. The interactions of sorbates with gallosilicates and alkali-metal exchanged gallosilicates

    NASA Astrophysics Data System (ADS)

    Limtrakul, J.; Kuno, M.; Treesukol, P.

    1999-11-01

    Structures, energetics and vibrational frequencies of the interaction of adsorbates with H-aluminosilicates (H-AlZ), H-gallosilicates (H-GaZ), alkali-metal exchanged aluminosilicates (X-AlZ) and alkali-metal exchanged gallosilicates (X-GaZ), where X being Li, Na, or K, have been carried out at B3LYP and HF levels of theory with 6-31G(d) as the basis set. The charge compensating alkali-metal ions can affect the catalytically active site (Si-O-T where T=Al or Ga) by weakening the Si-O, Al-O, and Ga-O bonds as compared to their anionic frameworks. Comparing the net stabilization energies, Δ ENSE, of the naked alkali-metal/H 2O adducts with those of the alkali-metal exchanged zeolite/H 2O systems, the latter amounts only to about 50% of the former, which is partly due to the destabilizing role of the negative zeolitic oxygen frameworks surrounding the cations. The interaction of sorbates with the alkali-metal exchanged gallosilicates can be employed to probe the field strength inside the catalytic frameworks as indicated by the plot of the binding energy, Δ E, versus 1/ RX-O w2, with R(X-O w) being the distance between the cationic nucleus and the oxygen atom of the adsorbate. The IR spectra of H 2O adsorbed on Na-AlZ are calculated to be 3584, 3651, and 1686 cm -1. The obtained results are in excellent agreement with the very recent experimental IR spectra of water adsorbed on Na-ZSM-5 of Zecchina et al. (J. Phys. Chem., 100 (1996) 16 484). Other important features, i.e. the correlation between Δ νOH and, Δ E, R(X-O w) , and 1/ RX-O w2, cationic size, demonstrate that the interactions of sorbates with alkali-metal exchanged gallosilicates are well approximated by electrostatic contribution.

  13. Role of crystal field in mixed alkali metal effect: electron paramagnetic resonance study of mixed alkali metal oxyfluoro vanadate glasses.

    PubMed

    Honnavar, Gajanan V; Ramesh, K P; Bhat, S V

    2014-01-23

    The mixed alkali metal effect is a long-standing problem in glasses. Electron paramagnetic resonance (EPR) is used by several researchers to study the mixed alkali metal effect, but a detailed analysis of the nearest neighbor environment of the glass former using spin-Hamiltonian parameters was elusive. In this study we have prepared a series of vanadate glasses having general formula (mol %) 40 V2O5-30BaF2-(30 - x)LiF-xRbF with x = 5, 10, 15, 20, 25, and 30. Spin-Hamiltonian parameters of V(4+) ions were extracted by simulating and fitting to the experimental spectra using EasySpin. From the analysis of these parameters it is observed that the replacement of lithium ions by rubidium ions follows a "preferential substitution model". Using this proposed model, we were able to account for the observed variation in the ratio of the g parameter, which goes through a maximum. This reflects an asymmetric to symmetric changeover of the alkali metal ion environment around the vanadium site. Further, this model also accounts for the variation in oxidation state of vanadium ion, which was confirmed from the variation in signal intensity of EPR spectra.

  14. DFT study of the interaction between DOTA chelator and competitive alkali metal ions.

    PubMed

    Frimpong, E; Skelton, A A; Honarparvar, B

    2017-09-01

    1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetracetic acid (DOTA) is an important chelator for radiolabeling of pharmaceuticals. The ability of alkali metals found in the body to complex with DOTA and compete with radio metal ions can alter the radiolabeling process. Non-covalent interactions between DOTA complexed with alkali metals Li + , Na + , K + and Rb + , are investigated with density functional theory using B3LYP and ωB97XD functionals. Conformational possibilities of DOTA were explored with a varying number of carboxylic pendant arms of DOTA in close proximity to the ions. It is found that the case in which four arms of DOTA are interacting with ions is more stable than other conformations. The objective of this study is to explore the electronic structure properties upon complexation of alkali metals Li + Na + , K + and Rb + with a DOTA chelator. Interaction energies, relaxation energies, entropies, Gibbs free energies and enthalpies show that the stability of DOTA, complexed with alkali metals decreases down the group of the periodic table. Implicit water solvation affects the complexation of DOTA-ions leading to decreases in the stability of the complexes. NBO analysis through the natural population charges and the second order perturbation theory, revealed a charge transfer between DOTA and alkali metals. Conceptual DFT-based properties such as HOMO/LUMO energies, ΔE HOMO-LUMO and chemical hardness and softness indicated a decrease in the chemical stability of DOTA-alkali metal complexes down the alkali metal series. This study serves as a guide to researchers in the field of organometallic chelators, particularly, radiopharmaceuticals in finding the efficient optimal match between chelators and various metal ions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Is Electronegativity a Useful Descriptor for the "Pseudo-Alkali-Metal" NH4?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteside, Alexander; Xantheas, Sotiris S.; Gutowski, Maciej S.

    2011-11-18

    Molecular ions in the form of "pseudo-atoms" are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined the electronegativity of the "pseudo-alkali metal" ammonium (NH4) and evaluated its reliability as a descriptor in comparison to the electronegativities of the alkali metals. The computed properties of its binary complexes with astatine and of selected borohydrides confirm the similarity of NH4 to the alkali metal atoms, although the electronegativity of NH4 is relatively large in comparison to its cationic radius. We paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation, andmore » reactivity), which can cause deviations from the behaviour expected of a conceptual "true alkali metal" with this electronegativity. These deviations allow for the discrimination of effects associated with the polyatomic nature of NH4.« less

  16. Alkali metal/sulfur battery

    DOEpatents

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  17. Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation

    NASA Astrophysics Data System (ADS)

    Ahmad, Sohail; Miró, Pere; Audiffred, Martha; Heine, Thomas

    2018-04-01

    The deposition, intercalation and co-intercalation of heavy alkali metals and light halogens atoms in graphene mono- and bilayers have been studied using first principles density-functional calculations. Both the deposition and the intercalation of alkali metals gives rise to n-type doping due to the formation of M+-C- pairs. The co-intercalation of a 1:1 ratio of alkali metals and halogens derives into the formation of ionic pairs among the intercalated species, unaltering the electronic structure of the layered material.

  18. Alkali metal yttrium neo-pentoxide double alkoxide precursors to alkali metal yttrium oxide nanomaterials

    DOE PAGES

    Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah Matthew; ...

    2016-03-15

    In this study, a series of alkali metal yttrium neo-pentoxide ([AY(ONep) 4]) compounds were developed as precursors to alkali yttrium oxide (AYO 2) nanomaterials. The reaction of yttrium amide ([Y(NR 2) 3] where R=Si(CH 3) 3) with four equivalents of H-ONep followed by addition of [A(NR 2)] (A=Li, Na, K) or A o (A o=Rb, Cs) led to the formation of a complex series of A nY(ONep) 3+n species, crystallographically identified as [Y 2Li 3(μ 3-ONep)(μ 3-HONep)(μ-ONep) 5(ONep) 3(HONep) 2] (1), [YNa 2(μ 3-ONep) 4(ONep)] 2 (2), {[Y 2K 3(μ 3-ONep) 3(μ-ONep) 4(ONep) 2(ηξ-tol) 2][Y 4K 2(μ 4-O)(μ 3-ONep) 8(ONep)more » 4]•η x-tol]} (3), [Y 4K 2(μ 4-O)(μ 3-ONep) 8(ONep) 4] (3a), [Y 2Rb 3(μ 4-ONep) 3(μ-ONep) 6] (4), and [Y 2Cs 4(μ 6-O)(μ 3-ONep) 6(μ 3-HONep) 2(ONep) 2(η x-tol) 4]•tol (5). Compounds 1–5 were investigated as single source precursors to AYOx nanomaterials following solvothermal routes (pyridine, 185 °C for 24h). The final products after thermal processing were found by powder X-ray diffraction experiments to be Y 2O 3 with variable sized particles based on transmission electron diffraction. Energy dispersive X-ray spectroscopy studies indicated that the heavier alkali metal species were present in the isolated nanomaterials.« less

  19. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    DOEpatents

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  20. Highly reproducible alkali metal doping system for organic crystals through enhanced diffusion of alkali metal by secondary thermal activation.

    PubMed

    Lee, Jinho; Park, Chibeom; Song, Intek; Koo, Jin Young; Yoon, Taekyung; Kim, Jun Sung; Choi, Hee Cheul

    2018-05-16

    In this paper, we report an efficient alkali metal doping system for organic single crystals. Our system employs an enhanced diffusion method for the introduction of alkali metal into organic single crystals by controlling the sample temperature to induce secondary thermal activation. Using this system, we achieved intercalation of potassium into picene single crystals with closed packed crystal structures. Using optical microscopy and Raman spectroscopy, we confirmed that the resulting samples were uniformly doped and became K 2 picene single crystal, while only parts of the crystal are doped and transformed into K 2 picene without secondary thermal activation. Moreover, using a customized electrical measurement system, the insulator-to-semiconductor transition of picene single crystals upon doping was confirmed by in situ electrical conductivity and ex situ temperature-dependent resistivity measurements. X-ray diffraction studies showed that potassium atoms were intercalated between molecular layers of picene, and doped samples did not show any KH- nor KOH-related peaks, indicating that picene molecules are retained without structural decomposition. During recent decades, tremendous efforts have been exerted to develop high-performance organic semiconductors and superconductors, whereas as little attention has been devoted to doped organic crystals. Our method will enable efficient alkali metal doping of organic crystals and will be a resource for future systematic studies on the electrical property changes of these organic crystals upon doping.

  1. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOEpatents

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  2. Is electronegativity a useful descriptor for the pseudo-alkali metal NH4?

    PubMed

    Whiteside, Alexander; Xantheas, Sotiris S; Gutowski, Maciej

    2011-11-18

    Molecular ions in the form of "pseudo-atoms" are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined one such property--the electronegativity--for the "pseudo-alkali metal" ammonium (NH(4)), and evaluated its reliability as a descriptor versus the electronegativities of the alkali metals. The computed properties of ammonium's binary complexes with astatine and of selected borohydrides confirm the similarity of NH(4) to the alkali metal atoms, although the electronegativity of NH(4) is relatively large in comparison to its cationic radius. We have paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation and reactivity), which can cause deviations from the behaviour expected of a conceptual "true alkali metal" with this electronegativity. These deviations allow for the discrimination of effects associated with the molecular nature of NH(4). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nuclear-Spin Gyroscope Based on an Atomic Co-Magnetometer

    NASA Technical Reports Server (NTRS)

    Romalis, Michael; Komack, Tom; Ghost, Rajat

    2008-01-01

    An experimental nuclear-spin gyroscope is based on an alkali-metal/noblegas co-magnetometer, which automatically cancels the effects of magnetic fields. Whereas the performances of prior nuclear-spin gyroscopes are limited by sensitivity to magnetic fields, this gyroscope is insensitive to magnetic fields and to other external perturbations. In addition, relative to prior nuclear-spin gyroscopes, this one exhibits greater sensitivity to rotation. There is commercial interest in development of small, highly sensitive gyroscopes. The present experimental device could be a prototype for development of nuclear spin gyroscopes suitable for navigation. In comparison with fiber-optic gyroscopes, these gyroscopes would draw less power and would be smaller, lighter, more sensitive, and less costly.

  4. Observation of Raman self-focusing in an alkali-metal vapor cell

    NASA Astrophysics Data System (ADS)

    Proite, N. A.; Unks, B. E.; Green, J. T.; Yavuz, D. D.

    2008-02-01

    We report an experimental demonstration of Raman self-focusing and self-defocusing in a far-off resonant alkali-metal atomic system. The key idea is to drive a hyperfine transition in an alkali-metal atom to a maximally coherent state with two laser beams. In this regime, the two-photon detuning from the Raman resonance controls the nonlinear index of the medium.

  5. Removal of oxides from alkali metal melts by reductive titration to electrical resistance-change end points

    DOEpatents

    Tsang, Floris Y.

    1980-01-01

    Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.

  6. Compression-Driven Enhancement of Electronic Correlations in Simple Alkali Metals

    NASA Astrophysics Data System (ADS)

    Fabbris, Gilberto; Lim, Jinhyuk; Veiga, Larissa; Haskel, Daniel; Schilling, James

    2015-03-01

    Alkali metals are the best realization of the nearly free electron model. This scenario appears to change dramatically as the alkalis are subjected to extreme pressure, leading to unexpected properties such as the departure from metallic behavior in Li and Na, and the occurrence of remarkable low-symmetry crystal structures in all alkalis. Although the mechanism behind these phase transitions is currently under debate, these are believed to be electronically driven. In this study the high-pressure electronic and structural ground state of Rb and Cs was investigated through low temperature XANES and XRD measurements combined with ab initio calculations. The results indicate that the pressure-induced localization of the conduction band triggers a Peierls-like mechanism, inducing the low symmetry phases. This localization process is evident by the pressure-driven increase in the number of d electrons, which takes place through strong spd hybridization. These experimental results indicate that compression turns the heavy alkali metals into strongly correlated electron systems. Work at Argonne was supported by DOE No. DE-AC02-06CH11357. Research at Washington University was supported by NSF DMR-1104742 and CDAC/DOE/NNSA DE-FC52-08NA28554.

  7. Chip-Scale Atomic Magnetometers

    NASA Astrophysics Data System (ADS)

    Knappe, Svenja

    2010-03-01

    Atomic magnetometers have reached sensitivities rivaling those of superconducting quantum interference devices (SQUIDs) in some frequency ranges [1]. A major advancement in atomic magnetometry was made possible by implementing interrogation schemes that suppress spin-exchange collisions between the alkali atoms [2]. Good signal-to-noise can be achieved by operation at very high alkali densities. At the same time, it introduces the challenge to create uniform spin-polarization and monitor the atomic precession about the magnetic field in atomic vapors with large optical densities. Off-resonant detection of the polarization rotation rather than the absorption is essential to operate in this regime. By use of microfabrication methods, we are miniaturizing such atomic magnetometers. They consist of miniature vapor cells with volumes of a few cubic millimeters integrated with micro-optical components. We present the advancement in sensitivities of such devices over nearly four orders of magnitude [3]. This allows for small low-power room-temperature devices with sensitivities that get close to those of SQUIDs in the frequency range around 100 Hz. We outline the current performance of chip-scale atomic magnetometers and the major challenges. Apart from efficient pumping and probing at high optical densities, these include magnetic noise caused by several sensor components and environmental factors, noise on the light fields, as well as magnetic fields from current-carrying parts, such as heaters, lasers, and photodetectors.[4pt] [1] Allred et al., Phys. Rev. Lett. 89, 130801 (2002) [0pt] [2] Happer and Tam, Phys. Rev. A 16, 1877 (1977) [0pt] [3] Griffith et al., Appl. Phys. Lett 94, 023502 (2009)

  8. Advances in high temperature components for AMTEC (alkali metal thermal-to-electric converter)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R.M.; Jeffries-Nakamura, B.; Underwood, M.L.

    1991-12-31

    Long lifetimes are required for AMTEC (or sodium heat engine) components for aerospace and terrestrial applications, and the high heat input temperature as well as the alkali metal liquid and vapor environment places unusual demands on the materials used to construct AMTEC devices. In addition, it is important to maximize device efficiency and power density, while maintaining a long life capability. In addition to the electrode, which must provide both efficient electrode kinetics, transport of the alkali metal, and low electrical resistance, other high temperature components of the cell face equally demanding requirements. The beta{double_prime} alumina solid electrolyte (BASE), themore » seal between the BASE ceramic and its metallic transition to the hot alkali metal (liquid or vapor) source, and metallic components of the device are exposed to hot liquid alkali metal. Modification of AMTEC components may also be useful in optimizing the device for particular operating conditions. In particular, a potassium AMTEC may be expected to operate more efficiently at lower temperatures.« less

  9. Advances in high temperature components for AMTEC (alkali metal thermal-to-electric converter)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R.M.; Jeffries-Nakamura, B.; Underwood, M.L.

    1991-01-01

    Long lifetimes are required for AMTEC (or sodium heat engine) components for aerospace and terrestrial applications, and the high heat input temperature as well as the alkali metal liquid and vapor environment places unusual demands on the materials used to construct AMTEC devices. In addition, it is important to maximize device efficiency and power density, while maintaining a long life capability. In addition to the electrode, which must provide both efficient electrode kinetics, transport of the alkali metal, and low electrical resistance, other high temperature components of the cell face equally demanding requirements. The beta{double prime} alumina solid electrolyte (BASE),more » the seal between the BASE ceramic and its metallic transition to the hot alkali metal (liquid or vapor) source, and metallic components of the device are exposed to hot liquid alkali metal. Modification of AMTEC components may also be useful in optimizing the device for particular operating conditions. In particular, a potassium AMTEC may be expected to operate more efficiently at lower temperatures.« less

  10. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  11. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  12. Alkali metal-refractory metal biphase electrode for AMTEC

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor); Bankston, Clyde P. (Inventor); Cole, Terry (Inventor); Khanna, Satish K. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Wheeler, Bob L. (Inventor)

    1989-01-01

    An electrode having increased output with slower degradation is formed of a film applied to a beta-alumina solid electrolyte (BASE). The film comprises a refractory first metal M.sup.1 such as a platinum group metal, suitably platinum or rhodium, capable of forming a liquid or a strong surface adsorption phase with sodium at the operating temperature of an alkali metal thermoelectric converter (AMTEC) and a second refractory metal insoluble in sodium or the NaM.sup.1 liquid phase such as a Group IVB, VB or VIB metal, suitably tungsten, molybdenum, tantalum or niobium. The liquid phase or surface film provides fast transport through the electrode while the insoluble refractory metal provides a structural matrix for the electrode during operation. A trilayer structure that is stable and not subject to deadhesion comprises a first, thin layer of tungsten, an intermediate co-deposited layer of tungsten-platinum and a thin surface layer of platinum.

  13. Microfabricated optically pumped magnetometer arrays for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Perry, A. R.; Sheng, D.; Krzyzewski, S. P.; Geller, S.; Knappe, S.

    2017-02-01

    Optically-pumped magnetometers have demonstrated magnetic field measurements as precise as the best superconducting quantum interference device magnetometers. Our group develops miniature alkali atom-based magnetic sensors using microfabrication technology. Our sensors do not require cryogenic cooling, and can be positioned very close to the sample, making these sensors an attractive option for development in the medical community. We will present our latest chip-scale optically-pumped gradiometer developed for array applications to image magnetic fields from the brain noninvasively. These developments should lead to improved spatial resolution, and potentially sensitive measurements in unshielded environments.

  14. Hall Determination of Atomic Radii of Alkali Metals

    ERIC Educational Resources Information Center

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  15. Process for preparing higher oxides of the alkali and alkaline earth metals

    NASA Technical Reports Server (NTRS)

    Sadhukhan, P.; Bell, A. (Inventor)

    1978-01-01

    High purity inorganic higher oxides of the alkali and alkaline earth metals are prepared by subjecting the hydroxide of the alkali and alkaline earth metal to a radio frequency discharge sustained in oxygen. The process is particulary adaptable to the production of high purity potassium superoxide by subjecting potassium hydroxide to glow discharge sustained in oxygen under the pressure of about 0.75 to 1.00 torr.

  16. Stabilized Alkali-Metal Ultraviolet-Band-Pass Filters

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick; Fraschetti, George A.; Mccann, Timothy; Mayall, Sherwood D.; Dunn, Donald E.; Trauger, John T.

    1995-01-01

    Layers of bismuth 5 to 10 angstrom thick incorporated into alkali-metal ultraviolet-band-pass optical filters by use of advanced fabrication techniques. In new filters layer of bismuth helps to reduce surface migration of sodium. Sodium layer made more stable and decreased tendency to form pinholes by migration.

  17. Method for inhibiting alkali metal corrosion of nickel-containing alloys

    DOEpatents

    DeVan, Jackson H.; Selle, James E.

    1983-01-01

    Structural components of nickel-containing alloys within molten alkali metal systems are protected against corrosion during the course of service by dissolving therein sufficient aluminum, silicon, or manganese to cause the formation and maintenance of a corrosion-resistant intermetallic reaction layer created by the interaction of the molten metal, selected metal, and alloy.

  18. Alkali Metal Heat Pipe Life Issues

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.

    2004-01-01

    One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.

  19. A low-power, high-sensitivity micromachined optical magnetometer

    NASA Astrophysics Data System (ADS)

    Mhaskar, R.; Knappe, S.; Kitching, J.

    2012-12-01

    We demonstrate an optical magnetometer based on a microfabricated 87Rb vapor cell in a micromachined silicon sensor head. The alkali atom density in the vapor cell is increased by heating the cell with light brought to the sensor through an optical fiber, and absorbed by colored filters attached to the cell windows. A second fiber-optically coupled beam optically pumps and interrogates the atoms. The magnetometer operates on 140 mW of heating power and achieves a sensitivity below 20 fT/√Hz throughout most of the frequency band from 15 Hz to 100 Hz. Such a sensor can measure magnetic fields from the human heart and brain.

  20. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  1. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1995-08-22

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  2. A simple model for metal cation-phosphate interactions in nucleic acids in the gas phase: alkali metal cations and trimethyl phosphate.

    PubMed

    Ruan, Chunhai; Huang, Hai; Rodgers, M T

    2008-02-01

    Threshold collision-induced dissociation techniques are employed to determine the bond dissociation energies (BDEs) of complexes of alkali metal cations to trimethyl phosphate, TMP. Endothermic loss of the intact TMP ligand is the only dissociation pathway observed for all complexes. Theoretical calculations at the B3LYP/6-31G* level of theory are used to determine the structures, vibrational frequencies, and rotational constants of neutral TMP and the M+(TMP) complexes. Theoretical BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) level using the B3LYP/6-31G* optimized geometries. The agreement between theory and experiment is reasonably good for all complexes except Li+(TMP). The absolute M+-(TMP) BDEs are found to decrease monotonically as the size of the alkali metal cation increases. No activated dissociation was observed for alkali metal cation binding to TMP. The binding of alkali metal cations to TMP is compared with that to acetone and methanol.

  3. Influence of the dynamic Stark effect on long-term frequency stability of a self-oscillating magnetometer with laser-pumped alkali atoms

    NASA Astrophysics Data System (ADS)

    Baranov, A. A.; Ermak, S. V.; Kulachenkov, N. K.; Petrenko, M. V.; Sagitov, E. A.; Semenov, V. V.

    2017-11-01

    This paper presents the results of investigation Stark shift effect influence on the long-term stability of a dual scheme of quantum magnetometers. Such scheme allows suppressing Stark shift components when a certain pumping light polarization is applied. As a result, long-term stability of a quantum sensor increases. However, when low-frequency (LF) and microwave fields are attached to a single vapor cell a coherence circulation in hyperfine structure of alkali atoms takes place. Physical origin of this effect is associated with the so called “dressed” atom theory, when atom is “dressed” by LF field. It yields in multiphoton absorption and resonance frequency shift. First estimates for this shift based on density matrix evolution formalism are provided in the paper.

  4. Ion conducting polymers and polymer blends for alkali metal ion batteries

    DOEpatents

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  5. In situ formation of coal gasification catalysts from low cost alkali metal salts

    DOEpatents

    Wood, Bernard J.; Brittain, Robert D.; Sancier, Kenneth M.

    1985-01-01

    A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

  6. Device and method for upgrading petroleum feedstocks and petroleum refinery streams using an alkali metal conductive membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, John Howard; Alvare, Javier

    A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or onemore » or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.« less

  7. IUPAC-NIST Solubility Data Series. 75. Nonmetals in Liquid Alkali Metals

    NASA Astrophysics Data System (ADS)

    Borgstedt, Hans Ulrich; Guminski, Cezary; Borgstedt, Hans Ulrich; Guminski, Cezary

    2001-07-01

    Liquid alkali metals have several physical properties which favor their use in a number of important applications. For example, their large liquidus temperature range and their excellent heat transfer properties are important for use as heat transfer media. They are used in large nuclear reactors in which hundreds of tons of sodium are circulating, and in small parts of engines for cooling of valves. Since these metals are among the most electropositive elements, several of them (Li, Na) can be used in high specific capacity and high energy density batteries at moderately elevated temperatures. The compatibility of metallic constructional materials which are used to contain the liquid metals is strongly influenced by nonmetals present in the liquids. The physical properties of the liquid metals are also influenced by dissolved substances. Several nonmetals dissolved in alkali metals are able to form ternary compounds with components of the constructional materials. Thus, corrosion and compatibility studies have been accompanied by extensive chemical work related to the solutions of non-metallic substances in liquid alkali metals. All available solubility data of nonmetallic elements and some of their compounds in the five liquid alkali metal solvents (Li, Na, K, Rb, and Cs) are collected and compiled. Original publications with reliable data and information on the methods used to generate them are reported in individual Compilations. When numerical data are not given in a publication, the data are often read out from figures and converted into numerical data by the compilers. The precision of this procedure is indicated in the Compilations under Estimated Error. Evaluated solubility data are tabulated at the end of the Critical Evaluations: if there is agreement of at least two independent studies within the experimental error, the solubility values are assigned to the "recommended" category. Values are assigned as "tentative," if only one reliable result was

  8. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells using Surface Science Techniques

    DTIC Science & Technology

    2011-02-01

    worldwide. Lawrence Berkeley National Laboratory Peer Reviewed Title: Investigation of anti-Relaxation coatings for alkali-metal vapor cells using ...2010 Abstract: Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to...preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an

  9. Alkali metal protective garment and composite material

    DOEpatents

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  10. Elliptical polarization of near-resonant linearly polarized probe light in optically pumped alkali metal vapor

    PubMed Central

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui

    2017-01-01

    Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements. PMID:28216649

  11. The Absolute Vector Magnetometers on Board Swarm, Lessons Learned From Two Years in Space.

    NASA Astrophysics Data System (ADS)

    Hulot, G.; Leger, J. M.; Vigneron, P.; Brocco, L.; Olsen, N.; Jager, T.; Bertrand, F.; Fratter, I.; Sirol, O.; Lalanne, X.

    2015-12-01

    ESA's Swarm satellites carry 4He absolute magnetometers (ASM), designed by CEA-Léti and developed in partnership with CNES. These instruments are the first-ever space-born magnetometers to use a common sensor to simultaneously deliver 1Hz independent absolute scalar and vector readings of the magnetic field. They have provided the very high accuracy scalar field data nominally required by the mission (for both science and calibration purposes, since each satellite also carries a low noise high frequency fluxgate magnetometer designed by DTU), but also very useful experimental absolute vector data. In this presentation, we will report on the status of the instruments, as well as on the various tests and investigations carried out using these experimental data since launch in November 2013. In particular, we will illustrate the advantages of flying ASM instruments on space-born magnetic missions for nominal data quality checks, geomagnetic field modeling and science objectives.

  12. Alkali-metal induced band structure deformation investigated by angle-resolved photoemission spectroscopy and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Ito, S.; Feng, B.; Arita, M.; Someya, T.; Chen, W.-C.; Takayama, A.; Iimori, T.; Namatame, H.; Taniguchi, M.; Cheng, C.-M.; Tang, S.-J.; Komori, F.; Matsuda, I.

    2018-04-01

    Alkali-metal adsorption on the surface of materials is widely used for in situ surface electron doping, particularly for observing unoccupied band structures by angle-resolved photoemission spectroscopy (ARPES). However, the effects of alkali-metal atoms on the resulting band structures have yet to be fully investigated, owing to difficulties in both experiments and calculations. Here, we combine ARPES measurements on cesium-adsorbed ultrathin bismuth films with first-principles calculations of the electronic charge densities and demonstrate a simple method to evaluate alkali-metal induced band deformation. We reveal that deformation of bismuth surface bands is directly correlated with vertical charge-density profiles at each electronic state of bismuth. In contrast, a change in the quantized bulk bands is well described by a conventional rigid-band-shift picture. We discuss these two aspects of the band deformation holistically, considering spatial distributions of the electronic states and cesium-bismuth hybridization, and provide a prescription for applying alkali-metal adsorption to a wide range of materials.

  13. First-principles study on interlayer state in alkali and alkaline earth metal atoms intercalated bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kaneko, Tomoaki; Saito, Riichiro

    2017-11-01

    Energetics and electronic structures of alkali metal (Li, Na, K, Rb, and Cs) and alkaline earth metal (Be, Mg, Ca, Sr, and Ba) atoms intercalated bilayer graphene are systematically investigated using first-principles calculations based on density functional theory. Formation of alkali and alkaline earth metal atoms intercalated bilayer graphene is exothermic except for Be and Mg. The interlayer state between two graphene layers is occupied for K, Rb, Cs, Ca, Sr, and Ba. We find that the energetic position of the interlayer states between bilayer graphene monotonically shifts downward with increasing of interlayer distance. The interlayer distances of more than 4.5 Å and 4.0 Å, respectively, are necessary for the occupation of the interlayer state in bilayer graphene for alkali and alkaline earth metal atoms, which is almost independent of the intercalant metal species. We discuss the relevance to occurrence of superconductivity for the metal intercalated bilayer graphene in terms of the occupation of the interlayer state and the phonon frequency of metal ions.

  14. Alkali metal intercalated fullerene-like MS(2) (M = W, Mo) nanoparticles and their properties.

    PubMed

    Zak, Alla; Feldman, Yishay; Lyakhovitskaya, Vera; Leitus, Gregory; Popovitz-Biro, Ronit; Wachtel, Ellen; Cohen, Hagai; Reich, Shimon; Tenne, Reshef

    2002-05-01

    Layered metal disulfides-MS(2) (M = Mo, W) in the form of fullerene-like nanoparticles and in the form of platelets (crystallites of the 2H polytype) have been intercalated by exposure to alkali metal (potassium and sodium) vapor using a two-zone transport method. The composition of the intercalated systems was established using X-ray energy dispersive spectrometer and X-ray photoelectron spectroscopy (XPS). The alkali metal concentration in the host lattice was found to depend on the kind of sample and the experimental conditions. Furthermore, an inhomogeneity of the intercalated samples was observed. The product consisted of both nonintercalated and intercalated phases. X-ray diffraction analysis and transmission electron microscopy of the samples, which were not exposed to the ambient atmosphere, showed that they suffered little change in their lattice parameters. On the other hand, after exposure to ambient atmosphere, substantial increase in the interplanar spacing (3-5 A) was observed for the intercalated phases. Insertion of one to two water molecules per intercalated metal atom was suggested as a possible explanation for this large expansion along the c-axis. Deintercalation of the hydrated alkali atoms and restacking of the MS(2) layers was observed in all the samples after prolonged exposure to the atmosphere. Electric field induced deintercalation of the alkali metal atoms from the host lattice was also observed by means of the XPS technique. Magnetic moment measurements for all the samples indicate a diamagnetic to paramagnetic transition after intercalation. Measurements of the transport properties reveal a semiconductor to metal transition for the heavily K intercalated 2H-MoS(2). Other samples show several orders of magnitude decrease in resistivity and two- to five-fold decrease in activation energies upon intercalation. These modifications are believed to occur via charge transfer from the alkali metal to the conduction band of the host lattice

  15. Ion conducting fluoropolymer carbonates for alkali metal ion batteries

    DOEpatents

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Balsara, Nitash P.; Thelen, Jacob; Devaux, Didier

    2017-09-05

    Liquid or solid electrolyte compositions are described that comprise a homogeneous solvent system and an alkali metal salt dissolved in said solvent system. The solvent system may comprise a fluoropolymer, having one or two terminal carbonate groups covalently coupled thereto. Batteries containing such electrolyte compositions are also described.

  16. Aqueous alkali metal hydroxide insoluble cellulose ether membrane

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1969-01-01

    A membrane that is insoluble in an aqueous alkali metal hydroxide medium is described. The membrane is a resin which is a water-soluble C2-C4 hydroxyalkyl cellulose ether polymer and an insolubilizing agent for controlled water sorption, a dialytic and electrodialytic membrane. It is particularly useful as a separator between electrodes or plates in an alkaline storage battery.

  17. Evidence for alkali metal formation at a cathode interface of organic electroluminescent devices by thermal decomposition of alkali metal carboxylates during their vapor deposition

    NASA Astrophysics Data System (ADS)

    Ganzorig, Chimed; Fujihira, Masamichi

    2004-11-01

    This study examines the possibility of thermal decomposition of Na salts of acetate, benzoate, and fluoride during vacuum vapor deposition using a quartz crystal microbalance to measure negative frequency shift (Δf) caused by increasing mass deposited from the same amount of source materials. Cs acetate is also examined. We compare the negative frequency shift-source current (Δf -I) curves of the Na salts with those of organic materials such as tris(8-hydroxyquinoline)aluminum and N ,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine. CH3COONa and C6H5COONa exhibit much lower Δf than the organic materials. CH3COOCs gives much larger Δf than CH3COONa due to the higher atomic weight of Cs. These exhibit clear evidence for alkali metal formation by thermal decomposition during vapor deposition of alkali metal carboxylates.

  18. Thermodynamics of Liquid Alkali Metals and Their Binary Alloys

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Patel, Minal H.; Gajjar, P. N.; Jani, A. R.

    2009-07-01

    The theoretical investigation of thermodynamic properties like internal energy, entropy, Helmholtz free energy, heat of mixing (ΔE) and entropy of mixing (ΔS) of liquid alkali metals and their binary alloys are reported in the present paper. The effect of concentration on the thermodynamic properties of Ac1Bc2 alloy of the alkali-alkali elements is investigated and reported for the first time using our well established local pseudopotential. To investigate influence of exchange and correlation effects, we have used five different local field correction functions viz; Hartree(H), Taylor(T), Ichimaru and Utsumi(IU), Farid et al. (F) and Sarkar et al. (S). The increase of concentration C2, increases the internal energy and Helmholtz free energy of liquid alloy Ac1Bc2. The behavior of present computation is not showing any abnormality in the outcome and hence confirms the applicability of our model potential in explaining the thermodynamics of liquid binary alloys.

  19. High capacity nickel battery material doped with alkali metal cations

    DOEpatents

    Jackovitz, John F.; Pantier, Earl A.

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  20. Effect of thermal annealing on the redistribution of alkali metals in Cu(In,Ga)Se2 solar cells on glass substrate

    NASA Astrophysics Data System (ADS)

    Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo; Tayagaki, Takeshi; Guthrey, Harvey; Shibata, Hajime; Matsubara, Koji; Niki, Shigeru

    2018-03-01

    The precise control of alkali-metal concentrations in Cu(In,Ga)Se2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance from the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.

  1. Effect of thermal annealing on the redistribution of alkali metals in Cu(In,Ga)Se 2 solar cells on glass substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo

    The precise control of alkali-metal concentrations in Cu(In,Ga)Se 2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance frommore » the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.« less

  2. Effect of thermal annealing on the redistribution of alkali metals in Cu(In,Ga)Se 2 solar cells on glass substrate

    DOE PAGES

    Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo; ...

    2018-03-07

    The precise control of alkali-metal concentrations in Cu(In,Ga)Se 2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance frommore » the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.« less

  3. Transversely diode-pumped alkali metal vapour laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkhomenko, A I; Shalagin, A M

    2015-09-30

    We have studied theoretically the operation of a transversely diode-pumped alkali metal vapour laser. For the case of high-intensity laser radiation, we have obtained an analytical solution to a complex system of differential equations describing the laser. This solution allows one to exhaustively determine all the energy characteristics of the laser and to find optimal parameters of the working medium and pump radiation (temperature, buffer gas pressure, and intensity and width of the pump spectrum). (lasers)

  4. Theory of metal atom-water interactions and alkali halide dimers

    NASA Technical Reports Server (NTRS)

    Jordan, K. D.; Kurtz, H. A.

    1982-01-01

    Theoretical studies of the interactions of metal atoms with water and some of its isoelectronic analogs, and of the properties of alkali halides and their aggregates are discussed. Results are presented of ab initio calculations of the heats of reaction of the metal-water adducts and hydroxyhydrides of Li, Be, B, Na, Mg, and Al, and of the bond lengths and angles an; the heats of reaction for the insertion of Al into HF, H2O, NH3, H2S and CH3OH, and Be and Mg into H2O. Calculations of the electron affinities and dipole moments and polarizabilities of selected gas phase alkali halide monomers and dimers are discussed, with particular attention given to results of calculations of the polarizability of LiF taking into account electron correlation effects, and the polarizability of the dimer (LiF)2.

  5. Thermal Coefficient of Redox Potential of Alkali Metals

    NASA Astrophysics Data System (ADS)

    Fukuzumi, Yuya; Hinuma, Yoyo; Moritomo, Yutaka

    2018-05-01

    The thermal coefficient (α) of redox potential (V) is a significant physical quantity that converts the thermal energy into electric energy. In this short note, we carefully determined α of alkali metals (A = Li and Na) against electrolyte solution. The obtained α is much larger than that expected from the specific heat (CpA) of solid A and depends on electrolyte solution. These observations indicate that the solvent has significant effect on α.

  6. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Technical Reports Server (NTRS)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  7. Space-based magnetometers

    NASA Astrophysics Data System (ADS)

    Acuña, Mario H.

    2002-11-01

    The general characteristics and system level concepts for space-based magnetometers are presented to illustrate the instruments, principles, and tools involved in making accurate magnetic field measurements in space. Special consideration is given to the most important practical problems that need to be solved to ensure the accuracy of the measurements and their overall impact on system design and mission costs. Several types of instruments used to measure magnetic fields aboard spacecraft and their capabilities and limitations are described according to whether they measure scalar or vector fields. The very large dynamic range associated with magnetic fields of natural origin generally dictates the use of optimized designs for each particular space mission although some wide-range, multimission magnetometers have been developed and used. Earth-field magnetic mapping missions are the most demanding in terms of absolute accuracy and resolution, approaching <1 part in 100 000 in magnitude and a few arcsec in direction. The difficulties of performing sensitive measurements aboard spacecraft, which may not be magnetically clean, represent a fundamental problem which must be addressed immediately at the planning stages of any space mission that includes these measurements. The use of long, deployable booms to separate the sensors from the sources of magnetic contamination, and their impact on system design are discussed. The dual magnetometer technique, which allows the separation of fields of external and spacecraft origin, represents an important space magnetometry tool which can result in significant savings in complex contemporary spacecraft built with minimum magnetic constraints. Techniques for in-flight estimation of magnetometer biases and sensor alignment are discussed briefly, and highlight some basic considerations within the scope and complexity of magnetic field data processing and reduction. The emerging field of space weather is also discussed, including

  8. Coordination effect-regulated CO2 capture with an alkali metal onium salts/crown ether system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhen-Zhen; Jiang, Deen; Zhu, Xiang

    2014-01-01

    A coordination effect was employed to realize equimolar CO2 absorption, adopting easily synthesized amino group containing absorbents (alkali metal onium salts). The essence of our strategy was to increase the steric hindrance of cations so as to enhance a carbamic acid pathway for CO2 capture. Our easily synthesized alkali metal amino acid salts or phenolates were coordinated with crown ethers, in which highly sterically hindered cations were obtained through a strong coordination effect of crown ethers with alkali metal cations. For example, a CO2 capacity of 0.99 was attained by potassium prolinate/18-crown-6, being characterized by NMR, FT-IR, and quantum chemistrymore » calculations to go through a carbamic acid formation pathway. The captured CO2 can be stripped under very mild conditions (50 degrees C, N-2). Thus, this protocol offers an alternative for the development of technological innovation towards efficient and low energy processes for carbon capture and sequestration.« less

  9. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4663...

  10. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores

    PubMed Central

    Zhang, Huacheng; Hou, Jue; Hu, Yaoxin; Wang, Peiyao; Ou, Ranwen; Jiang, Lei; Liu, Jefferson Zhe; Freeman, Benny D.; Hill, Anita J.; Wang, Huanting

    2018-01-01

    Porous membranes with ultrafast ion permeation and high ion selectivity are highly desirable for efficient mineral separation, water purification, and energy conversion, but it is still a huge challenge to efficiently separate monatomic ions of the same valence and similar sizes using synthetic membranes. We report metal organic framework (MOF) membranes, including ZIF-8 and UiO-66 membranes with uniform subnanometer pores consisting of angstrom-sized windows and nanometer-sized cavities for ultrafast selective transport of alkali metal ions. The angstrom-sized windows acted as ion selectivity filters for selection of alkali metal ions, whereas the nanometer-sized cavities functioned as ion conductive pores for ultrafast ion transport. The ZIF-8 and UiO-66 membranes showed a LiCl/RbCl selectivity of ~4.6 and ~1.8, respectively, which are much greater than the LiCl/RbCl selectivity of 0.6 to 0.8 measured in traditional porous membranes. Molecular dynamics simulations suggested that ultrafast and selective ion transport in ZIF-8 was associated with partial dehydration effects. This study reveals ultrafast and selective transport of monovalent ions in subnanometer MOF pores and opens up a new avenue to develop unique MOF platforms for efficient ion separations in the future. PMID:29487910

  11. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores.

    PubMed

    Zhang, Huacheng; Hou, Jue; Hu, Yaoxin; Wang, Peiyao; Ou, Ranwen; Jiang, Lei; Liu, Jefferson Zhe; Freeman, Benny D; Hill, Anita J; Wang, Huanting

    2018-02-01

    Porous membranes with ultrafast ion permeation and high ion selectivity are highly desirable for efficient mineral separation, water purification, and energy conversion, but it is still a huge challenge to efficiently separate monatomic ions of the same valence and similar sizes using synthetic membranes. We report metal organic framework (MOF) membranes, including ZIF-8 and UiO-66 membranes with uniform subnanometer pores consisting of angstrom-sized windows and nanometer-sized cavities for ultrafast selective transport of alkali metal ions. The angstrom-sized windows acted as ion selectivity filters for selection of alkali metal ions, whereas the nanometer-sized cavities functioned as ion conductive pores for ultrafast ion transport. The ZIF-8 and UiO-66 membranes showed a LiCl/RbCl selectivity of ~4.6 and ~1.8, respectively, which are much greater than the LiCl/RbCl selectivity of 0.6 to 0.8 measured in traditional porous membranes. Molecular dynamics simulations suggested that ultrafast and selective ion transport in ZIF-8 was associated with partial dehydration effects. This study reveals ultrafast and selective transport of monovalent ions in subnanometer MOF pores and opens up a new avenue to develop unique MOF platforms for efficient ion separations in the future.

  12. [On-line analysis and mass concentration characters of the alkali metal ions of PM10 in Beijing].

    PubMed

    Zhang, Kai; Wang, Yue-Si; Wen, Tian-Xue; Liu, Guang-Ren; Hu, Bo; Zhao, Ya-Nan

    2008-01-01

    The mass concentration characters and the sources of water-soluble alkali metal ions in PM10 in 2004 and 2005 in Beijing were analyzed by using the system of rapid collection of particles. The result showed that the average concentration of Na+, K+, Mg2+ and Ca2+ was 0.5-1.4, 0.5-2.5, 0.1-0.5 and 0.6-5.8 microg/m3, respectively. The highest and lowest concentration appeared in different seasons for the alkali metal ions, which was related to the quality and source. The concentration of alkali metal ions was no difference between the heating period and no heating period, which meant the heating was not the main source. Sea salt and soil were the important sources of Na+. The source of K+ came from biomass burning and vegetation. Soil was the large source of Mg2+ and Ca2+. The alkali metal ions appeared different daily variation in different seasons. Precipitation could decrease the concentration of Na+, K+, Mg2+ and Ca2+, which was 10%-70%, 20%-80%, 10%-77%, 5%-80% respectively.

  13. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems.

  14. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.

    PubMed

    Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei

    2018-04-09

    Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

  15. Theoretical evaluation on selective adsorption characteristics of alkali metal-based sorbents for gaseous oxidized mercury.

    PubMed

    Tang, Hongjian; Duan, Yufeng; Zhu, Chun; Cai, Tianyi; Li, Chunfeng; Cai, Liang

    2017-10-01

    Alkali metal-based sorbents are potential for oxidized mercury (Hg 2+ ) selective adsorption but show hardly effect to elemental mercury (Hg 0 ) in flue gas. Density functional theory (DFT) was employed to investigate the Hg 0 and HgCl 2 adsorption mechanism over alkali metal-based sorbents, including calcium oxide (CaO), magnesium oxide (MgO), potassium chloride (KCl) and sodium chloride (NaCl). Hg 0 was found to weakly interact with CaO (001), MgO (001), KCl (001) and NaCl (001) surfaces while HgCl 2 was effectively adsorbed on top-O and top-Cl sites. Charge transfer and bond population were calculated to discuss the covalency and ionicity of HgCl 2 bonding with the adsorption sites. The partial density of states (PDOS) analysis manifests that HgCl 2 strongly interacts with surface sites through the orbital hybridizations between Hg and top O or Cl. Frontier molecular orbital (FMO) energy and Mulliken electronegativity are introduced as the quantitative criteria to evaluate the reactivity of mercury species and alkali metal-based sorbents. HgCl 2 is identified as a Lewis acid and more reactive than Hg 0 . The Lewis basicity of the four alkali metal-based sorbents is predicted as the increasing order: NaCl < MgO < KCl < CaO, in consistence with the trend of HgCl 2 adsorption energies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOEpatents

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  17. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases

    PubMed Central

    Pawar, Vijay; Naik, Prashant; Giridhar, Rajani; Yadav, Mange Ram

    2015-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanolamine, and diethylamine) had lowered melting points while the alkali metal salt (sodium) had a higher melting point than BPA. The in vitro study showed that salt formation improves the physicochemical properties of BPA, leading to improved permeability through the skin. Amongst all the prepared salts, ethanolamine salt (1b) showed 7.2- and 5.4-fold higher skin permeation than the parent drug at pH 7.4 and 5.0, respectively, using rat skin. PMID:26839810

  18. Adsorption of alkali and alkaline earth metal atoms and dimers on monolayer germanium carbide

    NASA Astrophysics Data System (ADS)

    Gökçe, Aytaç Gürhan; Ersan, Fatih

    2017-01-01

    First-principles plane wave calculations have been performed to study the adsorption of alkali and alkaline earth metals on monolayer germanium carbide (GeC). We found that the favourable adsorption sites on GeC sheet for single alkali and alkaline earth adatoms are generally different from graphene or germanene. Among them, Mg, Na and their dimers have weakly bounded to GeC due to their closed valence electron shells, so they may have high mobility on GeC. Two different levels of adatom coverage (? and ?) have been investigated and we concluded that different electronic structures and magnetic moments for both coverages owing to alkali and alkaline earth atoms have long range electrostatic interactions. Lithium atom prefers to adsorbed on hollow site similar to other group-IV monolayers and the adsorption results in metallisation of GeC instead of semiconducting behaviour. Na and K adsorption can induce 1 ? total magnetic moment on GeC structures and they have shown semiconductor property which may have potential use in spintronic devices. We also showed that alkali or alkaline earth metal atoms can form dimer on GeC sheet. Calculated adsorption energies suggest that clustering of alkali and alkaline earth atoms is energetically favourable. All dimer adsorbed GeC systems have nonmagnetic semiconductor property with varying band gaps from 0.391 to 1.311 eV which are very suitable values for various device applications.

  19. Ab Initio Study of Chemical Reactions of Cold SrF and CaF Molecules with Alkali-Metal and Alkaline-Earth-Metal Atoms: The Implications for Sympathetic Cooling.

    PubMed

    Kosicki, Maciej Bartosz; Kędziera, Dariusz; Żuchowski, Piotr Szymon

    2017-06-01

    We investigate the energetics of the atom exchange reaction in the SrF + alkali-metal atom and CaF + alkali-metal atom systems. Such reactions are possible only for collisions of SrF and CaF with the lithium atoms, while they are energetically forbidden for other alkali-metal atoms. Specifically, we focus on SrF interacting with Li, Rb, and Sr atoms and use ab initio methods to demonstrate that the SrF + Li and SrF + Sr reactions are barrierless. We present potential energy surfaces for the interaction of the SrF molecule with the Li, Rb, and Sr atoms in their energetically lowest-lying electronic spin states. The obtained potential energy surfaces are deep and exhibit profound interaction anisotropies. We predict that the collisions of SrF molecules in the rotational or Zeeman excited states most likely have a strong inelastic character. We discuss the prospects for the sympathetic cooling of SrF and CaF molecules using ultracold alkali-metal atoms.

  20. Crown Ether Complexes of Alkali-Metal Chlorides from SO2.

    PubMed

    Reuter, Kirsten; Rudel, Stefan S; Buchner, Magnus R; Kraus, Florian; von Hänisch, Carsten

    2017-07-18

    The structures of alkali-metal chloride SO 2 solvates (Li-Cs) in conjunction with 12-crown-4 or 1,2-disila-12-crown-4 show strong discrepancies, despite the structural similarity of the ligands. Both types of crown ethers form 1:1 complexes with LiCl to give [Li(1,2-disila-12-crown-4)(SO 2 Cl)] (1) and [Li(12-crown-4)Cl]⋅4 SO 2 (2). However, 1,2-disila-12-crown-4 proved unable to coordinate cations too large for the cavity diameter, for example, by the formation of sandwich-type complexes. As a result, 12-crown-4 reacts exclusively with the heavier alkali-metal chlorides NaCl, KCl and RbCl. Compounds [Na(12-crown-4) 2 ]Cl⋅4 SO 2 (3) and [M(12-crown-4) 2 (SO 2 )]Cl⋅4 SO 2 (4: M=K; 5: M=Rb) all showed S-coordination to the chloride ions through four SO 2 molecules. Compounds 4 and 5 additionally exhibit the first crystallographically confirmed non-bridging O,O'-coordination mode of SO 2 . Unexpectedly, the disila-crown ether supports the dissolution of RbCl and CsCl in the solvent and gives the homoleptic SO 2 -solvated alkali-metal chlorides [MCl⋅3 SO 2 ] (6: M=Rb; 7: M=Cs), which incorporate bridging μ-O,O'-coordinating moieties and the unprecedented side-on O,O'-coordination mode. All compounds were characterised by single-crystal X-ray diffraction. The crown ether complexes were additionally studied by using NMR spectroscopy, and the presence of SO 2 at ambient temperature was revealed by IR spectroscopy of the neat compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Atomic magnetometer-based ultra-sensitive magnetic microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Savukov, Igor

    2016-03-01

    An atomic magnetometer (AM) based on lasers and alkali-metal vapor cells is currently the most sensitive non-cryogenic magnetic-field sensor. Many applications in neuroscience and other fields require high resolution, high sensitivity magnetic microscopic measurements. In order to meet this need we combined a cm-size spin-exchange relaxation-free AM with a flux guide (FG) to produce an ultra-sensitive FG-AM magnetic microscope. The FG serves to transmit the target magnetic flux to the AM thus enhancing both the sensitivity and resolution for tiny magnetic objects. In this talk, we will describe a prototype FG-AM device and present experimental and numerical tests of its sensitivity and resolution. We also demonstrate that an optimized FG-AM achieves high resolution and high sensitivity sufficient to detect a magnetic field of a single neuron in a few seconds, which would be an important milestone in neuroscience. We anticipate that this unique device can be applied to the detection of a single neuron, the detection of magnetic nano-particles, which in turn are very important for detection of target molecules in national security and medical diagnostics, and non-destructive testing.

  2. Cathode architectures for alkali metal / oxygen batteries

    DOEpatents

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  3. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.

    PubMed

    Peng, Hong-Jie; Huang, Jia-Qi; Zhang, Qiang

    2017-08-29

    Flexible energy storage systems are imperative for emerging flexible devices that are revolutionizing our life. Lithium-ion batteries, the current main power sources, are gradually approaching their theoretical limitation in terms of energy density. Therefore, alternative battery chemistries are urgently required for next-generation flexible power sources with high energy densities, low cost, and inherent safety. Flexible lithium-sulfur (Li-S) batteries and analogous flexible alkali metal-chalcogen batteries are of paramount interest owing to their high energy densities endowed by multielectron chemistry. In this review, we summarized the recent progress of flexible Li-S and analogous batteries. A brief introduction to flexible energy storage systems and general Li-S batteries has been provided first. Progress in flexible materials for flexible Li-S batteries are reviewed subsequently, with a detailed classification of flexible sulfur cathodes as those based on carbonaceous (e.g., carbon nanotubes, graphene, and carbonized polymers) and composite (polymers and inorganics) materials and an overview of flexible lithium anodes and flexible solid-state electrolytes. Advancements in other flexible alkali metal-chalcogen batteries are then introduced. In the next part, we emphasize the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-type Li-S batteries are highlighted. In the end, existing challenges and future development of flexible Li-S and analogous alkali metal-chalcogen batteries are summarized and prospected.

  4. The Alkali Metal Thermal-To-Electric Converter for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Ryan, M.

    1999-01-01

    AMTEC, the Alkali Metal Thermal to Electric Converter, is a direct thermal to electric energy conversion device; it has been demostrated to perform at high power densities, with open circuit voltages in single electrochemical cells up to 1.6 V and current desities up to 2.0 A/cm(sup 2).

  5. Molybdenum cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures

    NASA Astrophysics Data System (ADS)

    Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori

    2004-03-01

    We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.

  6. A study on optical properties of poly (ethylene oxide) based polymer electrolyte with different alkali metal iodides

    NASA Astrophysics Data System (ADS)

    Rao, B. Narasimha; Suvarna, R. Padma

    2016-05-01

    Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.

  7. Investigating the effects of alkali metal Na addition on catalytic activity of HZSM-5 for methyl mercaptan elimination

    NASA Astrophysics Data System (ADS)

    Yu, Jie; He, Dedong; Chen, Dingkai; Liu, Jiangping; Lu, Jichang; Liu, Feng; Liu, Pan; Zhao, Yutong; Xu, Zhizhi; Luo, Yongming

    2017-10-01

    Na-modified HZSM-5 catalysts with different Na loading amounts were prepared by incipient-wetness impregnation method and their catalytic activities for methyl mercaptan catalytic elimination were analyzed. XRD, N2 adsorption-desorption, NH3-TPD, CO2-TPD and FT-IR measurements were carried out to investigate the effects of modification of alkali metal Na on the physicochemical properties of the HZSM-5 zeolite catalyst. Research results illustrated that the introduction of alkali metal Na can improve catalytic activity for CH3SH catalytic elimination. CH3SH can be almost completely converted over 3%-Na/HZSM-5 at 450 °C compared to pure HZSM-5 at 600 °C based on our experimental results and the results from previous research. The improved catalytic activity could be attributed to the regulated acid-base properties of the HZSM-5 catalysts by doping with alkali metal Na. High alkali concentration treatment, however, may destroy the framework structure of the catalyst sample, thus causing the poor stability performance of the obtained catalyst.

  8. Element specificity of ortho-positronium annihilation for alkali-metal loaded SiO2 glasses.

    PubMed

    Sato, K; Hatta, T

    2015-03-07

    Momentum distributions associated with ortho-positronium (o-Ps) pick-off annihilation photon are often influenced by light elements, as, e.g., carbon, oxygen, and fluorine. This phenomenon, so-called element specificity of o-Ps pick-off annihilation, has been utilized for studying the elemental environment around the open spaces. To gain an insight into the element specificity of o-Ps pick-off annihilation, the chemical shift of oxygen 1s binding energy and the momentum distributions associated with o-Ps pick-off annihilation were systematically investigated for alkali-metal loaded SiO2 glasses by means of X-ray photoelectron spectroscopy and positron-age-momentum correlation spectroscopy, respectively. Alkali metals introduced into the open spaces surrounded by oxygen atoms cause charge transfer from alkali metals to oxygen atoms, leading to the lower chemical shift for the oxygen 1s binding energy. The momentum distribution of o-Ps localized into the open spaces is found to be closely correlated with the oxygen 1s chemical shift. This correlation with the deepest 1s energy level evidences that the element specificity of o-Ps originates from pick-off annihilation with orbital electrons, i.e., dominantly with oxygen 2p valence electrons and s electrons with lower probability.

  9. A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution

    PubMed Central

    2011-01-01

    The hydration of the alkali metal ions in aqueous solution has been studied by large angle X-ray scattering (LAXS) and double difference infrared spectroscopy (DDIR). The structures of the dimethyl sulfoxide solvated alkali metal ions in solution have been determined to support the studies in aqueous solution. The results of the LAXS and DDIR measurements show that the sodium, potassium, rubidium and cesium ions all are weakly hydrated with only a single shell of water molecules. The smaller lithium ion is more strongly hydrated, most probably with a second hydration shell present. The influence of the rubidium and cesium ions on the water structure was found to be very weak, and it was not possible to quantify this effect in a reliable way due to insufficient separation of the O–D stretching bands of partially deuterated water bound to these metal ions and the O–D stretching bands of the bulk water. Aqueous solutions of sodium, potassium and cesium iodide and cesium and lithium hydroxide have been studied by LAXS and M–O bond distances have been determined fairly accurately except for lithium. However, the number of water molecules binding to the alkali metal ions is very difficult to determine from the LAXS measurements as the number of distances and the temperature factor are strongly correlated. A thorough analysis of M–O bond distances in solid alkali metal compounds with ligands binding through oxygen has been made from available structure databases. There is relatively strong correlation between M–O bond distances and coordination numbers also for the alkali metal ions even though the M–O interactions are weak and the number of complexes of potassium, rubidium and cesium with well-defined coordination geometry is very small. The mean M–O bond distance in the hydrated sodium, potassium, rubidium and cesium ions in aqueous solution have been determined to be 2.43(2), 2.81(1), 2.98(1) and 3.07(1) Å, which corresponds to six-, seven-, eight- and

  10. Alkali-metal silicate binders and methods of manufacture

    NASA Technical Reports Server (NTRS)

    Schutt, J. B. (Inventor)

    1979-01-01

    A paint binder is described which uses a potassium or sodium silicate dispersion having a silicon dioxide to alkali-metal oxide mol ratio of from 4.8:1 to 6.0:1. The binder exhibits stability during both manufacture and storage. The process of making the binder is predictable and repeatable and the binder may be made with inexpensive components. The high mol ratio is achieved with the inclusion of a silicon dioxide hydrogel. The binder, which also employs a silicone, is in the final form of a hydrogel sol.

  11. Study of the reaction of tungsten carbide in molten alkali metal nitrates. Syntheses of divalent (s and d blocks) metal tungstates

    NASA Astrophysics Data System (ADS)

    Deloume, Jean-Pierre; Marote, Pedro; Sigala, Catherine; Matei, Cristian

    2003-08-01

    WC is tested as precursor to synthesize metal tungstates by reaction in molten alkali metal nitrates. This constitutes a complex redox system with two reducing agents, W and C, and an oxidizer having several oxidation states. The mass loss due to the evolution of gases reveals the reaction steps. The infrared analyses of the gas phase show what kind of reaction develops according to the temperature. WC produces a water-soluble alkali metal tungstate. The reaction of a mixture of WC and a divalent metal chloride (Mg, Ca, Ba, Ni, Cu, Zn) leads to water-insoluble metal tungstates. As the reactivity of the cations increases in the order Zn, Ni, Cu, the reaction of WC is modified by their presence. The physico-chemical characterizations of the products show that some of them are contaminated either by WC or by metal oxide. Some others are rather pure products. These differences, in relationship with the other analyses, allow to propose first reaction pathways of the tungsten carbide in molten salts.

  12. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  13. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  14. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides.

    PubMed

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao

    2016-02-01

    The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. pH tunability and influence of alkali metal basicity on the plasmonic resonance of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Yadav, Vijay D.; Akhil Krishnan, R.; Borade, Lalit; Shirolikar, Seema; Jain, Ratnesh; Dandekar, Prajakta

    2017-07-01

    Localized surface plasmon resonance has been a unique and intriguing feature of silver nanoparticles (AgNPs) that has attracted immense attention. This has led to an array of applications for AgNPs in optics, sensors, plasmonic imaging etc. Although numerous applications have been reported consistently, the importance of buffer and reaction parameters during the synthesis of AgNPs, is still unclear. In the present study, we have demonstrated the influence of parameters like pH, temperature and buffer conditions (0.1 M citrate buffer) on the plasmonic resonance of AgNPs. We found that neutral and basic pH (from alkali metal) provide optimum interaction conditions for nucleation of plasmon resonant AgNPs. Interestingly, this was not observed in the non-alkali metal base (ammonia). Also, when the nanoparticles synthesized from alkali metal base were incorporated in different buffers, it was observed that the nanoparticles dissolved in the acidic buffer and had reduced plasmonic resonance intensity. This, however, was resolved in the basic buffer, increasing the plasmonic resonance intensity and confirming that nucleation of nanoparticles required basic conditions. The above inference has been supported by characterization of AgNPs using UV-Vis spectrophotometer, Fluorimetry analysis, Infrared spectrometer and TEM analysis. The study concluded that the plasmonic resonance of AgNPs occurs due to the interaction of alkali (Na) and transition metal (Ag) salt in basic/neutral conditions, at a specific temperature range, in presence of a capping agent (citric acid), providing a pH tune to the overall system.

  16. Electronic and structural ground state of heavy alkali metals at high pressure

    DOE PAGES

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; ...

    2015-02-17

    Here, alkali metals display unexpected properties at high pressure, including emergence of low symmetry crystal structures, that appear to occur due to enhanced electronic correlations among the otherwise nearly-free conduction electrons. We investigate the high pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with ab initio theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the oC84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of themore » valence electrons characterized by pseudo-gap formation near the Fermi level and strong spd hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.« less

  17. Electronic and structural ground state of heavy alkali metals at high pressure

    NASA Astrophysics Data System (ADS)

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; Haskel, D.; Schilling, J. S.

    2015-02-01

    Alkali metals display unexpected properties at high pressure, including emergence of low-symmetry crystal structures, which appear to occur due to enhanced electronic correlations among the otherwise nearly free conduction electrons. We investigate the high-pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with a b i n i t i o theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the o C 84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of the valence electrons characterized by pseudogap formation near the Fermi level and strong s p d hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.

  18. Solvation Effect on Complexation of Alkali Metal Cations by a Calix[4]arene Ketone Derivative.

    PubMed

    Požar, Josip; Nikšić-Franjić, Ivana; Cvetnić, Marija; Leko, Katarina; Cindro, Nikola; Pičuljan, Katarina; Borilović, Ivana; Frkanec, Leo; Tomišić, Vladislav

    2017-09-14

    The medium effect on the complexation of alkali metal cations with a calix[4]arene ketone derivative (L) was systematically examined in methanol, ethanol, N-methylformamide, N,N-dimethylformamide, dimethyl sulfoxide, and acetonitrile. In all solvents the binding of Na + cation by L was rather efficient, whereas the complexation of other alkali metal cations was observed only in methanol and acetonitrile. Complexation reactions were enthalpically controlled, while ligand dissolution was endothermic in all cases. A notable influence of the solvent on NaL + complex stability could be mainly attributed to the differences in complexation entropies. The higher NaL + stability in comparison to complexes with other alkali metal cations in acetonitrile was predominantly due to a more favorable complexation enthalpy. The 1 H NMR investigations revealed a relatively low affinity of the calixarene sodium complex for inclusion of the solvent molecule in the calixarene hydrophobic cavity, with the exception of acetonitrile. Differences in complex stabilities in the explored solvents, apart from N,N-dimethylformamide and acetonitrile, could be mostly explained by taking into account solely the cation and complex solvation. A considerable solvent effect on the complexation equilibria was proven to be due to an interesting interplay between the transfer enthalpies and entropies of the reactants and the complexes formed.

  19. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    NASA Astrophysics Data System (ADS)

    Hummelshøj, J. S.; Landis, D. D.; Voss, J.; Jiang, T.; Tekin, A.; Bork, N.; Dułak, M.; Mortensen, J. J.; Adamska, L.; Andersin, J.; Baran, J. D.; Barmparis, G. D.; Bell, F.; Bezanilla, A. L.; Bjork, J.; Björketun, M. E.; Bleken, F.; Buchter, F.; Bürkle, M.; Burton, P. D.; Buus, B. B.; Calborean, A.; Calle-Vallejo, F.; Casolo, S.; Chandler, B. D.; Chi, D. H.; Czekaj, I.; Datta, S.; Datye, A.; DeLaRiva, A.; Despoja, V.; Dobrin, S.; Engelund, M.; Ferrighi, L.; Frondelius, P.; Fu, Q.; Fuentes, A.; Fürst, J.; García-Fuente, A.; Gavnholt, J.; Goeke, R.; Gudmundsdottir, S.; Hammond, K. D.; Hansen, H. A.; Hibbitts, D.; Hobi, E.; Howalt, J. G.; Hruby, S. L.; Huth, A.; Isaeva, L.; Jelic, J.; Jensen, I. J. T.; Kacprzak, K. A.; Kelkkanen, A.; Kelsey, D.; Kesanakurthi, D. S.; Kleis, J.; Klüpfel, P. J.; Konstantinov, I.; Korytar, R.; Koskinen, P.; Krishna, C.; Kunkes, E.; Larsen, A. H.; Lastra, J. M. G.; Lin, H.; Lopez-Acevedo, O.; Mantega, M.; Martínez, J. I.; Mesa, I. N.; Mowbray, D. J.; Mýrdal, J. S. G.; Natanzon, Y.; Nistor, A.; Olsen, T.; Park, H.; Pedroza, L. S.; Petzold, V.; Plaisance, C.; Rasmussen, J. A.; Ren, H.; Rizzi, M.; Ronco, A. S.; Rostgaard, C.; Saadi, S.; Salguero, L. A.; Santos, E. J. G.; Schoenhalz, A. L.; Shen, J.; Smedemand, M.; Stausholm-Møller, O. J.; Stibius, M.; Strange, M.; Su, H. B.; Temel, B.; Toftelund, A.; Tripkovic, V.; Vanin, M.; Viswanathan, V.; Vojvodic, A.; Wang, S.; Wellendorff, J.; Thygesen, K. S.; Rossmeisl, J.; Bligaard, T.; Jacobsen, K. W.; Nørskov, J. K.; Vegge, T.

    2009-07-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition metal atom (M2) plus two to five (BH4)- groups, i.e., M1M2(BH4)2-5, using a number of model structures with trigonal, tetrahedral, octahedral, and free coordination of the metal borohydride complexes. Of the over 700 investigated structures, about 20 were predicted to form potentially stable alloys with promising decomposition energies. The M1(Al/Mn/Fe)(BH4)4, (Li/Na)Zn(BH4)3, and (Na/K)(Ni/Co)(BH4)3 alloys are found to be the most promising, followed by selected M1(Nb/Rh)(BH4)4 alloys.

  20. Yarrowia lipolytica possesses two plasma membrane alkali metal cation/H+ antiporters with different functions in cell physiology.

    PubMed

    Papouskova, Klara; Sychrova, Hana

    2006-04-03

    The family of Nha antiporters mediating the efflux of alkali metal cations in exchange for protons across the plasma membrane is conserved in all yeast species. Yarrowia lipolytica is a dimorphic yeast, phylogenetically very distant from the model yeast Saccharomyces cerevisiae. A search in its sequenced genome revealed two genes (designated as YlNHA1 and YlNHA2) with homology to the S. cerevisiae NHA1 gene, which encodes a plasma membrane alkali metal cation/H+ antiporter. Upon heterologous expression of both YlNHA genes in S. cerevisiae, we showed that Y. lipolytica antiporters differ not only in length and sequence, but also in their affinity for individual substrates. While the YlNha1 protein mainly increased cell tolerance to potassium, YlNha2p displayed a remarkable transport capacity for sodium. Thus, Y. lipolytica is the first example of a yeast species with two plasma membrane alkali metal cation/H+ antiporters differing in their putative functions in cell physiology; cell detoxification vs. the maintenance of stable intracellular pH, potassium content and cell volume.

  1. Automated system for the calibration of magnetometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrucha, Vojtech; Kaspar, Petr; Ripka, Pavel

    2009-04-01

    A completely nonmagnetic calibration platform has been developed and constructed at DTU Space (Technical University of Denmark). It is intended for on-site scalar calibration of high-precise fluxgate magnetometers. An enhanced version of the same platform is being built at the Czech Technical University. There are three axes of rotation in this design (compared to two axes in the previous version). The addition of the third axis allows us to calibrate more complex devices. An electronic compass based on a vector fluxgate magnetometer and micro electro mechanical systems (MEMS) accelerometer is one example. The new platform can also be used tomore » evaluate the parameters of the compass in all possible variations in azimuth, pitch, and roll. The system is based on piezoelectric motors, which are placed on a platform made of aluminum, brass, plastic, and glass. Position sensing is accomplished through custom-made optical incremental sensors. The system is controlled by a microcontroller, which executes commands from a computer. The properties of the system as well as calibration and measurement results will be presented.« less

  2. Alkali activation of recovered fuel-biofuel fly ash from fluidised-bed combustion: Stabilisation/solidification of heavy metals.

    PubMed

    Yliniemi, Juho; Pesonen, Janne; Tiainen, Minna; Illikainen, Mirja

    2015-09-01

    Recovered fuel-biofuel fly ash from a fluidized bed boiler was alkali-activated and granulated with a sodium-silicate solution in order to immobilise the heavy metals it contains. The effect of blast-furnace slag and metakaolin as co-binders were studied. Leaching standard EN 12457-3 was applied to evaluate the immobilisation potential. The results showed that Ba, Pb and Zn were effectively immobilised. However, there was increased leaching after alkali activation for As, Cu, Mo, Sb and V. The co-binders had minimal or even negative effect on the immobilisation. One exception was found for Cr, in which the slag decreased leaching, and one was found for Cu, in which the slag increased leaching. A sequential leaching procedure was utilized to gain a deeper understanding of the immobilisation mechanism. By using a sequential leaching procedure it is possible fractionate elements into watersoluble, acid-soluble, easily-reduced and oxidisable fractions, yielding a total 'bioavailable' amount that is potentially hazardous for the environment. It was found that the total bioavailable amount was lower following alkali activation for all heavy metals, although the water-soluble fraction was higher for some metals. Evidence from leaching tests suggests the immobilisation mechanism was chemical retention, or trapping inside the alkali activation reaction products, rather than physical retention, adsorption or precipitation as hydroxides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2.

    PubMed

    Maitra, Urmimala; House, Robert A; Somerville, James W; Tapia-Ruiz, Nuria; Lozano, Juan G; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A; Massel, Felix; Pickup, David M; Ramos, Silvia; Lu, Xingye; McNally, Daniel E; Chadwick, Alan V; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C; Roberts, Matthew R; Bruce, Peter G

    2018-03-01

    The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li + -O(2p)-Li + interactions). Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg 2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg 2+ remains in Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 , which stabilizes oxygen.

  4. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2

    NASA Astrophysics Data System (ADS)

    Maitra, Urmimala; House, Robert A.; Somerville, James W.; Tapia-Ruiz, Nuria; Lozano, Juan G.; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A.; Massel, Felix; Pickup, David M.; Ramos, Silvia; Lu, Xingye; McNally, Daniel E.; Chadwick, Alan V.; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C.; Roberts, Matthew R.; Bruce, Peter G.

    2018-03-01

    The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li+-O(2p)-Li+ interactions). Na2/3[Mg0.28Mn0.72]O2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na2/3[Mg0.28Mn0.72]O2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg2+ remains in Na2/3[Mg0.28Mn0.72]O2, which stabilizes oxygen.

  5. Theoretical analysis of oxygen diffusion at startup in an alkali metal heat pipe with gettered alloy walls

    NASA Technical Reports Server (NTRS)

    Tower, L. K.

    1973-01-01

    The diffusion of oxygen into, or out of, a gettered alloy exposed to oxygenated alkali liquid metal coolant, a situation arising in some high temperature heat transfer systems, was analyzed. The relation between the diffusion process and the thermochemistry of oxygen in the alloy and in the alkali metal was developed by making several simplifying assumptions. The treatment is therefore theoretical in nature. However, a practical example pertaining to the startup of a heat pipe with walls of T-111, a tantalum alloy, and lithium working fluid illustrates the use of the figures contained in the analysis.

  6. Integrated oil production and upgrading using molten alkali metal

    DOEpatents

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  7. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant tomore » the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.« less

  8. Radioisotope powered alkali metal thermoelectric converter design for space systems

    NASA Technical Reports Server (NTRS)

    Sievers, R. K.; Bankston, C. P.

    1988-01-01

    The design concept of an alkali-metal thermoelectric converter (AMTEC) for 15-30-percent-efficient conversion of heat from the General Purpose (radioisotope) Heat Source (GPHS) on spacecraft is presented. The basic physical principles of the conversion cycle are outlined; a theoretical model is derived; a modular design is described and illustrated with drawings; and the overall AMTEC/GPHS system design is characterized. Predicted performance data are presented in extensive tables and graphs and discussed in detail.

  9. The low cost Proton Precession Magnetometer developed at the Indian Institute of Geomagnetism

    NASA Astrophysics Data System (ADS)

    Mahavarkar, P.; Singh, S.; Labde, S.; Dongre, V.; Patil, A.

    2017-05-01

    Proton magnetometers are the oldest scalar magnetometers. The first commercial units were produced in early 1960s as portable instruments. In continuation airborne instruments appeared with optimized speed of readings and sensitivity, large sensors etc. Later development of Overhauser and optically pumped magnetometers has eliminated Proton magnetometers from airborne surveys. However they remain very popular in various ground surveys and observatories. With this primary purpose of generating the ground based magnetic data, the Indian Institute of Geomagnetism (IIG) for the last 3 decades have been developing low cost Proton Precession Magnetometers (PPM). Beginning with the 1 nT PPM which has undergone several changes in design, the successor PM7 the advanced version has been successfully developed by the institute and is installed at various observatories of the institute. PM7 records the total field `F' with accuracy of 0.1 nT and a sampling rate of 10 seconds/sample. This article briefly discusses the design and development of this IIG make PM7 and compares the data recorded by this instrument with one of the commercially available Overhauser magnetometer in the world market. The quality of data recorded by PM7 is in excellent agreement with the Overhauser. With the available quality of data generated by this instrument, PM7 is an affordable PPM for scientific institutions, schools and colleges intending to carry out geomagnetic studies. The commercial cost of PM7 is ≈ 20% of the cost of Overhauser available in market.

  10. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOEpatents

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  11. Fluconazole affects the alkali-metal-cation homeostasis and susceptibility to cationic toxic compounds of Candida glabrata.

    PubMed

    Elicharova, Hana; Sychrova, Hana

    2014-08-01

    Candida glabrata is a salt-tolerant and fluconazole (FLC)-resistant yeast species. Here, we analyse the contribution of plasma-membrane alkali-metal-cation exporters, a cation/proton antiporter and a cation ATPase to cation homeostasis and the maintenance of membrane potential (ΔΨ). Using a series of single and double mutants lacking CNH1 and/or ENA1 genes we show that the inability to export potassium and toxic alkali-metal cations leads to a slight hyperpolarization of the plasma membrane of C. glabrata cells; this hyperpolarization drives more cations into the cells and affects cation homeostasis. Surprisingly, a much higher hyperpolarization of C. glabrata plasma membrane was produced by incubating cells with subinhibitory concentrations of FLC. FLC treatment resulted in a substantially increased sensitivity of cells to various cationic drugs and toxic cations that are driven into the cell by negative-inside plasma-membrane potential. The effect of the combination of FLC plus cationic drug treatment was enhanced by the malfunction of alkali-metal-cation transporters that contribute to the regulation of membrane potential and cation homeostasis. In summary, we show that the combination of subinhibitory concentrations of FLC and cationic drugs strongly affects the growth of C. glabrata cells. © 2014 The Authors.

  12. Alkali Metal Doping for Improved CH3NH3PbI3 Perovskite Solar Cells.

    PubMed

    Zhao, Wangen; Yao, Zhun; Yu, Fengyang; Yang, Dong; Liu, Shengzhong Frank

    2018-02-01

    Organic-inorganic hybrid halide perovskites are proven to be a promising semiconductor material as the absorber layer of solar cells. However, the perovskite films always suffer from nonuniform coverage or high trap state density due to the polycrystalline characteristics, which degrade the photoelectric properties of thin films. Herein, the alkali metal ions which are stable against oxidation and reduction are used in the perovskite precursor solution to induce the process of crystallization and nucleation, then affect the properties of the perovskite film. It is found that the addition of the alkali metal ions clearly improves the quality of perovskite film: enlarges the grain sizes, reduces the defect state density, passivates the grain boundaries, increases the built-in potential ( V bi ), resulting to the enhancement in the power conversion efficiency of perovskite thin film solar cell.

  13. Raman and nuclear magnetic resonance investigation of alkali metal vapor interaction with alkene-based anti-relaxation coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tretiak, O. Yu., E-mail: otretiak@genphys.ru; Balabas, M. V.; Blanchard, J. W.

    2016-03-07

    The use of anti-relaxation coatings in alkali vapor cells yields substantial performance improvements compared to a bare glass surface by reducing the probability of spin relaxation in wall collisions by several orders of magnitude. Some of the most effective anti-relaxation coating materials are alpha-olefins, which (as in the case of more traditional paraffin coatings) must undergo a curing period after cell manufacturing in order to achieve the desired behavior. Until now, however, it has been unclear what physicochemical processes occur during cell curing, and how they may affect relevant cell properties. We present the results of nondestructive Raman-spectroscopy and magnetic-resonancemore » investigations of the influence of alkali metal vapor (Cs or K) on an alpha-olefin, 1-nonadecene coating the inner surface of a glass cell. It was found that during the curing process, the alkali metal catalyzes migration of the carbon-carbon double bond, yielding a mixture of cis- and trans-2-nonadecene.« less

  14. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOEpatents

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  15. Structural and dynamical trends in alkali-metal silanides characterized by neutron-scattering methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean -Noel

    Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH 3, where M = K, Rb, Cs, K 0.5Rb 0.5, K 0.5Cs 0.5, and Rb 0.5Cs 0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron-scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (α) and ordered (β) phases for temperatures above and below about 200–250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a redmore » shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice. FWS measurements upon heating showed that there is a large increase in reorientational mobility as the systems go through the order–disorder (β–α) phase transition, and measurements upon cooling of the α-phase revealed the known strong hysteresis for reversion back to the β-phase. Interestingly, at a given temperature, among the different alkali silanide compounds, the relative reorientational mobilities of the SiH 3 – anions in the α- and β-phases tended to decrease and increase, respectively, with increasing alkali-metal mass. Lastly, this dynamical result might provide some insights concerning the enthalpy–entropy compensation effect previously observed for these potentially promising hydrogen storage materials.« less

  16. Structural and dynamical trends in alkali-metal silanides characterized by neutron-scattering methods

    DOE PAGES

    Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean -Noel; ...

    2016-09-02

    Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH 3, where M = K, Rb, Cs, K 0.5Rb 0.5, K 0.5Cs 0.5, and Rb 0.5Cs 0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron-scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (α) and ordered (β) phases for temperatures above and below about 200–250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a redmore » shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice. FWS measurements upon heating showed that there is a large increase in reorientational mobility as the systems go through the order–disorder (β–α) phase transition, and measurements upon cooling of the α-phase revealed the known strong hysteresis for reversion back to the β-phase. Interestingly, at a given temperature, among the different alkali silanide compounds, the relative reorientational mobilities of the SiH 3 – anions in the α- and β-phases tended to decrease and increase, respectively, with increasing alkali-metal mass. Lastly, this dynamical result might provide some insights concerning the enthalpy–entropy compensation effect previously observed for these potentially promising hydrogen storage materials.« less

  17. Extraction process for removing metallic impurities from alkalide metals

    DOEpatents

    Royer, L.T.

    1987-03-20

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  18. Field optimization method of a dual-axis atomic magnetometer based on frequency-response and dynamics

    NASA Astrophysics Data System (ADS)

    Xing, Li; Quan, Wei; Fan, Wenfeng; Li, Rujie; Jiang, Liwei; Fang, Jiancheng

    2018-05-01

    The frequency-response and dynamics of a dual-axis spin-exchange-relaxation-free (SERF) atomic magnetometer are investigated by means of transfer function analysis. The frequency-response at different bias magnetic fields is tested to demonstrate the effect of the residual magnetic field. The resonance frequency of alkali atoms and magnetic linewidth can be obtained simultaneously through our theoretical model. The coefficient of determination of the fitting results is superior to 0.995 with 95% confidence bounds. Additionally, step responses are applied to analyze the dynamics of the control system and the effect of imperfections. Finally, a noise-limited magnetic field resolution of 15 fT {{\\sqrt{Hz}}-1} has been achieved for our dual-axis SERF atomic magnetometer through magnetic field optimization.

  19. Preliminary calibration plan for the Advanced Particles and Field Observatory (APAFO) magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Voorhies, C. V.; Langel, R. A.; Slavin, J.; Lancaster, E. R.; Jones, S.

    1991-01-01

    Prelaunch and postlaunch calibration plans for the APAFO magnetometer experiment are presented. A study of tradeoffs between boom length and spacecraft field is described; the results are summarized. The prelaunch plan includes: calibration of the Vector Fluxgate Magnetometer (VFM), Star Sensors, and Scalar Helium Magnetometer (SHM); optical bench integration; and acquisition of basic spacecraft field data. Postlaunch calibration has two phases. In phase one, SHM data are used to calibrate the VFM, total vector magnetic field data are used to calibrate a physical model of the spacecraft field, and both calibrations are refined by iteration. In phase two, corrected vector data are transformed into geocentric coordinates, previously undetected spacecraft fields are isolated, and initial geomagnetic field models are computed. Provided the SHM is accurate to the required 1.0 nT and can be used to calibrate the VFM to the required 3.0- nT accuracy, the tradeoff study indicates that a 12 m boom and a spacecraft field model uncertainty of 5 percent together allow the 1.0 nT spacecraft field error requirement to be met.

  20. Electron core ionization in compressed alkali metal cesium

    NASA Astrophysics Data System (ADS)

    Degtyareva, V. F.

    2018-01-01

    Elements of groups I and II in the periodic table have valence electrons of s-type and are usually considered as simple metals. Crystal structures of these elements at ambient pressure are close-packed and high-symmetry of bcc and fcc-types, defined by electrostatic (Madelung) energy. Diverse structures were found under high pressure with decrease of the coordination number, packing fraction and symmetry. Formation of complex structures can be understood within the model of Fermi sphere-Brillouin zone interactions and supported by Hume-Rothery arguments. With the volume decrease there is a gain of band structure energy accompanied by a formation of many-faced Brillouin zone polyhedra. Under compression to less than a half of the initial volume the interatomic distances become close to or smaller than the ionic radius which should lead to the electron core ionization. At strong compression it is necessary to assume that for alkali metals the valence electron band overlaps with the upper core electrons, which increases the valence electron count under compression.

  1. Ultra-sensitive magnetic microscopy with an optically pumped magnetometer

    DOE PAGES

    Kim, Young Jin; Savukov, Igor Mykhaylovich

    2016-04-22

    Optically pumped magnetometers (OPMs) based on lasers and alkali-metal vapor cells are currently the most sensitive non-cryogenic magnetic field sensors. Many applications in neuroscience and other fields require high-resolution, high-sensitivity magnetic microscopic measurements. In order to meet this demand we combined a cm-size spin-exchange relaxation-free (SERF) OPM and flux guides (FGs) to realize an ultra-sensitive FG-OPM magnetic microscope. The FGs serve to transmit the target magnetic flux to the OPM thus improving both the resolution and sensitivity to small magnetic objects. We investigated the performance of the FG-OPM device using experimental and numerical methods, and demonstrated that an optimized devicemore » can achieve a unique combination of high resolution (80 μm) and high sensitivity (8.1 pT/). Additionally, we also performed numerical calculations of the magnetic field distribution in the FGs to estimate the magnetic noise originating from the domain fluctuations in the material of the FGs. We anticipate many applications of the FG-OPM device such as the detection of micro-biological magnetic fields; the detection of magnetic nano-particles; and non-destructive testing. From our theoretical estimate, an FG-OPM could detect the magnetic field of a single neuron, which would be an important milestone in neuroscience.« less

  2. Ultra-sensitive Magnetic Microscopy with an Optically Pumped Magnetometer

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Savukov, Igor

    2016-04-01

    Optically pumped magnetometers (OPMs) based on lasers and alkali-metal vapor cells are currently the most sensitive non-cryogenic magnetic field sensors. Many applications in neuroscience and other fields require high-resolution, high-sensitivity magnetic microscopic measurements. In order to meet this demand we combined a cm-size spin-exchange relaxation-free (SERF) OPM and flux guides (FGs) to realize an ultra-sensitive FG-OPM magnetic microscope. The FGs serve to transmit the target magnetic flux to the OPM thus improving both the resolution and sensitivity to small magnetic objects. We investigated the performance of the FG-OPM device using experimental and numerical methods, and demonstrated that an optimized device can achieve a unique combination of high resolution (80 μm) and high sensitivity (8.1 pT/). In addition, we also performed numerical calculations of the magnetic field distribution in the FGs to estimate the magnetic noise originating from the domain fluctuations in the material of the FGs. We anticipate many applications of the FG-OPM device such as the detection of micro-biological magnetic fields; the detection of magnetic nano-particles; and non-destructive testing. From our theoretical estimate, an FG-OPM could detect the magnetic field of a single neuron, which would be an important milestone in neuroscience.

  3. Ultra-sensitive magnetic microscopy with an optically pumped magnetometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young Jin; Savukov, Igor Mykhaylovich

    Optically pumped magnetometers (OPMs) based on lasers and alkali-metal vapor cells are currently the most sensitive non-cryogenic magnetic field sensors. Many applications in neuroscience and other fields require high-resolution, high-sensitivity magnetic microscopic measurements. In order to meet this demand we combined a cm-size spin-exchange relaxation-free (SERF) OPM and flux guides (FGs) to realize an ultra-sensitive FG-OPM magnetic microscope. The FGs serve to transmit the target magnetic flux to the OPM thus improving both the resolution and sensitivity to small magnetic objects. We investigated the performance of the FG-OPM device using experimental and numerical methods, and demonstrated that an optimized devicemore » can achieve a unique combination of high resolution (80 μm) and high sensitivity (8.1 pT/). Additionally, we also performed numerical calculations of the magnetic field distribution in the FGs to estimate the magnetic noise originating from the domain fluctuations in the material of the FGs. We anticipate many applications of the FG-OPM device such as the detection of micro-biological magnetic fields; the detection of magnetic nano-particles; and non-destructive testing. From our theoretical estimate, an FG-OPM could detect the magnetic field of a single neuron, which would be an important milestone in neuroscience.« less

  4. Searching for axion stars and Q -balls with a terrestrial magnetometer network

    NASA Astrophysics Data System (ADS)

    Jackson Kimball, D. F.; Budker, D.; Eby, J.; Pospelov, M.; Pustelny, S.; Scholtes, T.; Stadnik, Y. V.; Weis, A.; Wickenbrock, A.

    2018-02-01

    Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q -balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q -balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown that a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q -ball could be detected over a broad range of unexplored parameter space.

  5. Alkali metal/halide thermal energy storage systems performance evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1986-01-01

    A pseudoheat-pipe heat transfer mechanism has been demonstrated effective in terms of both total heat removal efficiency and rate, on the one hand, and system isothermal characteristics, on the other, for solar thermal energy storage systems of the kind being contemplated for spacecraft. The selection of appropriate salt and alkali metal substances for the system renders it applicable to a wide temperature range. The rapid heat transfer rate obtainable makes possible the placing of the thermal energy storage system around the solar receiver canister, and the immersing of heat transfer fluid tubes in the phase change salt to obtain an isothermal heat source.

  6. Analysis of the Alkali Metal Diatomic Spectra; Using molecular beams and ultracold molecules

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Tae

    2014-12-01

    This ebook illustrates the complementarity of molecular beam (MB) spectra and ultracold molecule (UM) spectra in unraveling the complex electronic spectra of diatomic alkali metal molecules, using KRb as a prime example. Researchers interested in molecular spectroscopy, whether physicist, chemist, or engineer, may find this ebook helpful and may be able to apply similar ideas to their molecules of interest.

  7. Post-harvest processing methods for reduction of silica and alkali metals in wheat straw.

    PubMed

    Thompson, David N; Shaw, Peter G; Lacey, Jeffrey A

    2003-01-01

    Silica and alkali metals in wheat straw limit its use for bioenergy and gasification. Slag deposits occur via the eutectic melting of SiO2 with K2O, trapping chlorides at surfaces and causing corrosion. A minimum melting point of 950 degrees C is desirable, corresponding to an SiO2:K2O weight ratio of about 3:1. Mild chemical treatments were used to reduce Si, K, and Cl, while varying temperature, concentration, % solids, and time. Dilute acid was more effective at removing K and Cl, while dilute alkali was more effective for Si. Reduction of minerals in this manner may prove economical for increasing utilization of the straw for combustion or gasification.

  8. Structure factor of liquid alkali metals using a classical-plasma reference system

    NASA Astrophysics Data System (ADS)

    Pastore, G.; Tosi, M. P.

    1984-06-01

    This paper presents calculations of the liquid structure factor of the alkali metals near freezing, starting from the classical plasma of bare ions as reference liquid. The indirect ion-ion interaction arising from electronic screening is treated by an optimized random phase approximation (ORPA), imposing physical requirements as in the original ORPA scheme developed by Weeks, Chandler and Andersen for liquids with strongly repulsive core potentials. A comparison of the results with computer simulation data for a model of liquid rubidium shows that the present approach overcomes the well-known difficulties met in applying to these metals the standard ORPA based on a reference liquid of neutral hard spheres. The optimization scheme is also shown to be equivalent to a reduction of the range of the indirect interaction in momentum space, as proposed empirically in an earlier work. Comparison with experiment for the other alkalis shows that a good overall representation of the data can be obtained for sodium, potassium and cesium, but not for lithium, when one uses a very simple form of the electron-ion potential adjusted to the liquid compressibility. The small-angle scattering region is finally examined more carefully in the light of recent data of Waseda, with a view to possible refinements of the pseudopotential model.

  9. Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates.

    PubMed

    Cao, Hujun; Richter, Theresia M M; Pistidda, Claudio; Chaudhary, Anna-Lisa; Santoru, Antonio; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2015-11-01

    The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Low-temperature fabrication of alkali metal-organic charge transfer complexes on cotton textile for optoelectronics and gas sensing.

    PubMed

    Ramanathan, Rajesh; Walia, Sumeet; Kandjani, Ahmad Esmaielzadeh; Balendran, Sivacarendran; Mohammadtaheri, Mahsa; Bhargava, Suresh Kumar; Kalantar-zadeh, Kourosh; Bansal, Vipul

    2015-02-03

    A generalized low-temperature approach for fabricating high aspect ratio nanorod arrays of alkali metal-TCNQ (7,7,8,8-tetracyanoquinodimethane) charge transfer complexes at 140 °C is demonstrated. This facile approach overcomes the current limitation associated with fabrication of alkali metal-TCNQ complexes that are based on physical vapor deposition processes and typically require an excess of 800 °C. The compatibility of soft substrates with the proposed low-temperature route allows direct fabrication of NaTCNQ and LiTCNQ nanoarrays on individual cotton threads interwoven within the 3D matrix of textiles. The applicability of these textile-supported TCNQ-based organic charge transfer complexes toward optoelectronics and gas sensing applications is established.

  11. Electrolytic systems and methods for making metal halides and refining metals

    DOEpatents

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  12. Heavier alkali-metal monosulfides (KS, RbS, CsS, and FrS) and their cations.

    PubMed

    Lee, Edmond P F; Wright, Timothy G

    2005-10-08

    The heavier alkali-metal monosulfides (KS, RbS, CsS, and FrS) have been studied by high-level ab initio calculations. The RCCSD(T) method has been employed, combined with large flexible valence basis sets. All-electron basis sets are used for potassium and sulfur, with effective core potentials being used for the other metals, describing the core electrons. Potential-energy curves are calculated for the lowest two neutral and cationic states: all neutral monosulfide species have a (2)Pi ground state, in contrast with the alkali-metal monoxide species, which undergo a change in the electronic ground state from (2)Pi to (2)Sigma(+) as the group is descended. In the cases of KS, RbS, and CsS, spin-orbit curves are also calculated. We also calculate potential-energy curves for the lowest (3)Sigma(-) and (3)Pi states of the cations. From the potential-energy curves, spectroscopic constants are derived, and for KS the spectroscopic results are compared to experimental spectroscopic values. Ionization energies, dissociation energies, and heats of formation are also calculated; for KS, we explore the effects of relativity and basis set extrapolation on these values.

  13. Surface Tension of Liquid Alkali, Alkaline, and Main Group Metals: Theoretical Treatment and Relationship Investigations

    NASA Astrophysics Data System (ADS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-09-01

    An improved theoretical method for calculating the surface tension of liquid metals is proposed. A recently derived equation that allows an accurate estimate of surface tension to be made for the large number of elements, based on statistical thermodynamics, is used for a means of calculating reliable values for the surface tension of pure liquid alkali, alkaline earth, and main group metals at the melting point, In order to increase the validity of the model, the surface tension of liquid lithium was calculated in the temperature range 454 K to 1300 K (181 °C to 1027 °C), where the calculated surface tension values follow a straight line behavior given by γ = 441 - 0.15 (T-Tm) (mJ m-2). The calculated surface excess entropy of liquid Li (- dγ/ dT) was found to be 0.15 mJ m-2 K-1, which agrees well with the reported experimental value (0.147 mJ/m2 K). Moreover, the relations of the calculated surface tension of alkali metals to atomic radius, heat of fusion, and specific heat capacity are described. The results are in excellent agreement with the existing experimental data.

  14. Challenges and Prospect of Non-aqueous Non-alkali (NANA) Metal-Air Batteries.

    PubMed

    Gelman, Danny; Shvartsev, Boris; Ein-Eli, Yair

    2016-12-01

    Non-aqueous non-alkali (NANA) metal-air battery technologies promise to provide electrochemical energy storage with the highest specific energy density. Metal-air battery technology is particularly advantageous being implemented in long-range electric vehicles. Up to now, almost all the efforts in the field are focused on Li-air cells, but other NANA metal-air battery technologies emerge. The major concern, which the research community should be dealing with, is the limited and rather poor rechargeability of these systems. The challenges we are covering in this review are related to the initial limited discharge capacities and cell performances. By comprehensively reviewing the studies conducted so far, we show that the implementation of advanced materials is a promising approach to increase metal-air performance and, particularly, metal surface activation as a prime achievement leading to respectful discharge currents. In this review, we address the most critical areas that need careful research attention in order to achieve progress in the understanding of the physical and electrochemical processes in non-aqueous electrolytes applied in beyond lithium and zinc air generation of metal-air battery systems.

  15. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    PubMed

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-05

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  16. Theoretical study of mixed MLaX(4) (M = Na, K, Cs; X = F, Cl, Br, I) rare earth/alkali metal halide complexes.

    PubMed

    Groen, Cornelis Petrus; Oskam, Ad; Kovács, Attila

    2003-02-10

    The structure, bonding, and vibrational properties of the mixed MLaX(4) (M = Na, K, Cs; X = F, Cl, Br, I) rare earth/alkali metal halide complexes have been studied using the MP2 method in conjunction with polarized triple-zeta valence basis sets and quasi-relativistic effective core potentials for the heavy atoms. From the three characteristic structures, possessing 1- (C(3)(v)), 2- (C(2)(v)), or 3-fold coordination (C(3)(v)) between the alkali metal and the bridging halide atoms, the bi- and tridentate forms are stable isomers with close dissociation energies. In general, for the complexes existing of lighter alkali metals and halogens, the bidentate structure corresponds to the global minimum of the potential energy surface, while the heavier analogues favor the tridentate structure. At experimentally relevant temperatures (T > 800 K), however, the isomerization entropy leads to a domination of the bidentate structures over the tridentate forms for all complexes. An important effect of the size of the alkali metal is manifested in the larger stabilities of the K and Cs complexes. The natural atomic charges are in agreement with strong electrostatic interactions in the title complexes. The marginal covalent contributions show a slight increasing trend in the heavier analogues. The calculated vibrational data indicate that infrared spectroscopy may be an effective tool for experimental investigation and characterization of MLaX(4) molecules.

  17. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    PubMed

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  18. Searching for axion stars and Q-balls with a terrestrial magnetometer network

    DOE PAGES

    Jackson Kimball, D. F.; Budker, D.; Eby, J.; ...

    2018-02-08

    Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown thatmore » a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q-ball could be detected over a broad range of unexplored parameter space.« less

  19. Searching for axion stars and Q-balls with a terrestrial magnetometer network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson Kimball, D. F.; Budker, D.; Eby, J.

    Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown thatmore » a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q-ball could be detected over a broad range of unexplored parameter space.« less

  20. Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries.

    PubMed

    Wan, Fang; Li, Yu-Han; Liu, Dai-Huo; Guo, Jin-Zhi; Sun, Hai-Zhu; Zhang, Jing-Ping; Wu, Xing-Long

    2016-06-06

    Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali-metal-ion (Li(+) , Na(+) , K(+) )-functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na-storage capabilities. Electrochemical tests demonstrated that sodium-ion-functionalized GO (GNa) has shown outstanding Na-storage performance in terms of excellent rate capability and long-term cycle life (110 mAh g(-1) after 600 cycles at 1 A g(-1) ) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na-storage capabilities of functionalized GO. These calculations have indicated that the Na-O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na-storage properties among all comparatives functionalized by other alkali metal ions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Lunar surface magnetometers

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Gordon, D. I.

    1973-01-01

    Discussion of the properties of both the stationary and portable magnetometers used in the Apollo program to measure static and dynamic fields on the lunar surface. A stationary magnetometer is described in which the three orthogonal vector components of the magnetic field are measured by three fluxgate sensors which are located at the ends of three orthogonal booms and contain ferromagnetic cores driven to saturation by means of a periodic current. In the Apollo 16 magnetometer special high-stability ring-core sensors were used which provided an output voltage to the analog-to-digital converter which is proportional to the magnetic field. A portable magnetometer is described which consists of a set of three orthogonal fluxgate sensors mounted on top of a tripod connected to an electronics box by a ribbon cable. The above-mentioned stationary magnetometer simultaneously measured the time-varying components of the field which were later subtracted from the portable magnetometer measurements to give the desired resultant steady field values caused by the magnetized crustal material.

  2. Spin relaxation in ultracold collisions of molecular radicals with alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur; Klos, Jacek; Zukowski, Piotr

    2016-05-01

    We present accurate quantum scattering calculations of spin relaxation in ultracold collisions of alkali-metal atoms and polar 2 Σ molecules CaH, SrF, and SrOH. The calculations employ state-of-the-art ab initio interaction potentials and a rigorous quantum theory of atom-molecule collisions in a magnetic field based on the total angular momentum representation. We will further discuss the relevance of the results to atom-molecule sympathetic cooling experiments in a magnetic trap.

  3. Alkali Metal CO2 Sorbents and the Resulting Metal Carbonates: Potential for Process Intensification of Sorption-Enhanced Steam Reforming.

    PubMed

    Memon, Muhammad Zaki; Zhao, Xiao; Sikarwar, Vineet Singh; Vuppaladadiyam, Arun K; Milne, Steven J; Brown, Andy P; Li, Jinhui; Zhao, Ming

    2017-01-03

    Sorption-enhanced steam reforming (SESR) is an energy and cost efficient approach to produce hydrogen with high purity. SESR makes it economically feasible to use a wide range of feedstocks for hydrogen production such as methane, ethanol, and biomass. Selection of catalysts and sorbents plays a vital role in SESR. This article reviews the recent research aimed at process intensification by the integration of catalysis and chemisorption functions into a single material. Alkali metal ceramic powders, including Li 2 ZrO 3 , Li 4 SiO 4 and Na 2 ZrO 3 display characteristics suitable for capturing CO 2 at low concentrations (<15% CO 2 ) and high temperatures (>500 °C), and thus are applicable to precombustion technologies such as SESR, as well as postcombustion capture of CO 2 from flue gases. This paper reviews the progress made in improving the operational performance of alkali metal ceramics under conditions that simulate power plant and SESR operation, by adopting new methods of sorbent synthesis and doping with additional elements. The paper also discusses the role of carbonates formed after in situ CO 2 chemisorption during a steam reforming process in respect of catalysts for tar cracking.

  4. Ultralow-power local laser control of the dimer density in alkali-metal vapors through photodesorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Pankaj K.; Scully, Marlan O.; Princeton University, Princeton, New Jersey 08544

    2012-08-27

    Ultralow-power diode-laser radiation is employed to induce photodesorption of cesium from a partially transparent thin-film cesium adsorbate on a solid surface. Using resonant Raman spectroscopy, we demonstrate that this photodesorption process enables an accurate local optical control of the density of dimer molecules in alkali-metal vapors.

  5. Pseudopotential theoretical study of the alkali metals under arbitrary pressure: Density, bulk modulus, and shear moduli

    NASA Astrophysics Data System (ADS)

    Rasky, Daniel J.; Milstein, Frederick

    1986-02-01

    Milstein and Hill previously derived formulas for computing the bulk and shear moduli, κ, μ, and μ', at arbitrary pressures, for cubic crystals in which interatomic interaction energies are modeled by pairwise functions, and they carried out the moduli computations using the complete family of Morse functions. The present study extends their work to a pseudopotential description of atomic binding. Specifically: (1) General formulas are derived for determining these moduli under hydrostatic loading within the framework of a pseudopotential model. (2) A two-parameter pseudopotential model is used to describe atomic binding of the alkali metals, and the two parameters are determined from experimental data (the model employs the Heine-Abarenkov potential with the Taylor dielectric function). (3) For each alkali metal (Li, Na, K, Rb, and Cs), the model is used to compute the pressure-versus-volume behavior and, at zero pressure, the binding energy, the density, and the elastic moduli and their pressure derivatives; the theoretical behavior is found to be in excellent agreement with experiment. (4) Calculations are made of κ, μ, and μ' of the bcc alkali metals over wide ranges of hydrostatic compression and expansion. (5) The pseudopotential results are compared with those of arbitrary-central-force models (wherein κ-(2/3)μ=μ'+2P) and with the specific Morse-function results. The pressures, bulk moduli, and zero-pressure shear moduli (as determined for the Morse and pseudopotential models) are in excellent agreement, but important differences appear in the shear moduli under high compressions. The computations in the present paper are for the bcc metals; a subsequent paper will extend this work to include both the bcc and fcc structures, at compressions and expansions where elastic stability or lattice cohesion is, in practice, lost.

  6. Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide

    DOE PAGES

    Resasco, Joaquin; Chen, Leanne D.; Clark, Ezra; ...

    2017-07-24

    The electrochemical reduction of CO 2 is known to be influenced by the identity of the alkali metal cation in the electrolyte; however, a satisfactory explanation for this phenomenon has not been developed. Here we present the results of experimental and theoretical studies aimed at elucidating the effects of electrolyte cation size on the intrinsic activity and selectivity of metal catalysts for the reduction of CO 2. Experiments were conducted under conditions where the influence of electrolyte polarization is minimal in order to show that cation size affects the intrinsic rates of formation of certain reaction products, most notably formore » HCOO –, C 2H 4, and C 2H 5OH over Cu(100)- and Cu(111)-oriented thin films, and for CO and HCOO– over polycrystalline Ag and Sn. Interpretation of the findings for CO 2 reduction was informed by studies of the reduction of glyoxal and CO, key intermediates along the reaction pathway to final products. Density functional theory calculations show that the alkali metal cations influence the distribution of products formed as a consequence of electrostatic interactions between solvated cations present at the outer Helmholtz plane and adsorbed species having large dipole moments. As a result, the observed trends in activity with cation size are attributed to an increase in the concentration of cations at the outer Helmholtz plane with increasing cation size.« less

  7. Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resasco, Joaquin; Chen, Leanne D.; Clark, Ezra

    The electrochemical reduction of CO 2 is known to be influenced by the identity of the alkali metal cation in the electrolyte; however, a satisfactory explanation for this phenomenon has not been developed. Here we present the results of experimental and theoretical studies aimed at elucidating the effects of electrolyte cation size on the intrinsic activity and selectivity of metal catalysts for the reduction of CO 2. Experiments were conducted under conditions where the influence of electrolyte polarization is minimal in order to show that cation size affects the intrinsic rates of formation of certain reaction products, most notably formore » HCOO –, C 2H 4, and C 2H 5OH over Cu(100)- and Cu(111)-oriented thin films, and for CO and HCOO– over polycrystalline Ag and Sn. Interpretation of the findings for CO 2 reduction was informed by studies of the reduction of glyoxal and CO, key intermediates along the reaction pathway to final products. Density functional theory calculations show that the alkali metal cations influence the distribution of products formed as a consequence of electrostatic interactions between solvated cations present at the outer Helmholtz plane and adsorbed species having large dipole moments. As a result, the observed trends in activity with cation size are attributed to an increase in the concentration of cations at the outer Helmholtz plane with increasing cation size.« less

  8. The MASCOT Magnetometer

    NASA Astrophysics Data System (ADS)

    Herčík, David; Auster, Hans-Ulrich; Blum, Jürgen; Fornaçon, Karl-Heinz; Fujimoto, Masaki; Gebauer, Kathrin; Güttler, Carsten; Hillenmaier, Olaf; Hördt, Andreas; Liebert, Evelyn; Matsuoka, Ayako; Nomura, Reiko; Richter, Ingo; Stoll, Bernd; Weiss, Benjamin P.; Glassmeier, Karl-Heinz

    2017-07-01

    The Mobile Asteroid Scout (MASCOT) is a small lander on board the Hayabusa2 mission of the Japan Aerospace Exploration Agency to the asteroid 162173 Ryugu. Among the instruments on MASCOT is a fluxgate magnetometer, the MASCOT Magnetometer (MasMag). The magnetometer is a lightweight (˜280 g) and low power (˜0.5 W) triaxial fluxgate magnetometer. Magnetic field measurements during the landing period and during the surface operational phase shall provide information about any intrinsic magnetic field of the asteroid and its remanent magnetization. This could provide important constraints on planet formation and the thermal and aqueous evolution of primitive asteroids.

  9. Silicon halide-alkali metal flames as a source of solar grade silicon

    NASA Technical Reports Server (NTRS)

    Olsen, D. B.; Miller, W. J.

    1979-01-01

    The feasibility of using alkali metal-silicon halide diffusion flames to produce solar-grade silicon in large quantities and at low cost is demonstrated. Prior work shows that these flames are stable and that relatively high purity silicon can be produced using Na + SiCl4 flames. Silicon of similar purity is obtained from Na + SiF4 flames although yields are lower and product separation and collection are less thermochemically favored. Continuous separation of silicon from the byproduct alkali salt was demonstrated in a heated graphite reactor. The process was scaled up to reduce heat losses and to produce larger samples of silicon. Reagent delivery systems, scaled by a factor of 25, were built and operated at a production rate of 0.5 kg Si/h. Very rapid reactor heating rates are observed with wall temperatures reaching greater than 2000 K. Heat release parameters were measured using a cooled stainless steel reactor tube. A new reactor was designed.

  10. Electron-Tunneling Magnetometer

    NASA Technical Reports Server (NTRS)

    Kaiser, William J.; Kenny, Thomas W.; Waltman, Steven B.

    1993-01-01

    Electron-tunneling magnetometer is conceptual solid-state device operating at room temperature, yet offers sensitivity comparable to state-of-art magnetometers such as flux gates, search coils, and optically pumped magnetometers, with greatly reduced volume, power consumption, electronics requirements, and manufacturing cost. Micromachined from silicon wafer, and uses tunneling displacement transducer to detect magnetic forces on cantilever-supported current loop.

  11. A spinner magnetometer for large Apollo lunar samples.

    PubMed

    Uehara, M; Gattacceca, J; Quesnel, Y; Lepaulard, C; Lima, E A; Manfredi, M; Rochette, P

    2017-10-01

    We developed a spinner magnetometer to measure the natural remanent magnetization of large Apollo lunar rocks in the storage vault of the Lunar Sample Laboratory Facility (LSLF) of NASA. The magnetometer mainly consists of a commercially available three-axial fluxgate sensor and a hand-rotating sample table with an optical encoder recording the rotation angles. The distance between the sample and the sensor is adjustable according to the sample size and magnetization intensity. The sensor and the sample are placed in a two-layer mu-metal shield to measure the sample natural remanent magnetization. The magnetic signals are acquired together with the rotation angle to obtain stacking of the measured signals over multiple revolutions. The developed magnetometer has a sensitivity of 5 × 10 -7 Am 2 at the standard sensor-to-sample distance of 15 cm. This sensitivity is sufficient to measure the natural remanent magnetization of almost all the lunar basalt and breccia samples with mass above 10 g in the LSLF vault.

  12. A spinner magnetometer for large Apollo lunar samples

    NASA Astrophysics Data System (ADS)

    Uehara, M.; Gattacceca, J.; Quesnel, Y.; Lepaulard, C.; Lima, E. A.; Manfredi, M.; Rochette, P.

    2017-10-01

    We developed a spinner magnetometer to measure the natural remanent magnetization of large Apollo lunar rocks in the storage vault of the Lunar Sample Laboratory Facility (LSLF) of NASA. The magnetometer mainly consists of a commercially available three-axial fluxgate sensor and a hand-rotating sample table with an optical encoder recording the rotation angles. The distance between the sample and the sensor is adjustable according to the sample size and magnetization intensity. The sensor and the sample are placed in a two-layer mu-metal shield to measure the sample natural remanent magnetization. The magnetic signals are acquired together with the rotation angle to obtain stacking of the measured signals over multiple revolutions. The developed magnetometer has a sensitivity of 5 × 10-7 Am2 at the standard sensor-to-sample distance of 15 cm. This sensitivity is sufficient to measure the natural remanent magnetization of almost all the lunar basalt and breccia samples with mass above 10 g in the LSLF vault.

  13. Method of treating alkali metal sulfide and carbonate mixtures

    DOEpatents

    Kohl, Arthur L.; Rennick, Robert D.; Savinsky, Martin W.

    1978-01-01

    A method of removing and preferably recovering sulfur values from an alkali metal sulfide and carbonate mixture comprising the steps of (1) introducing the mixture in an aqueous medium into a first carbonation zone and reacting the mixture with a gas containing a major amount of CO.sub.2 and a minor amount of H.sub.2 S; (2) introducing the resultant product from step 1 into a stripping zone maintained at subatmospheric pressure, and contacting this product with steam to produce a gaseous mixture, comprising H.sub.2 S and water vapor, and a liquor of reduced sulfide content; (3) introducing the liquor of reduced sulfide content into a second carbonation zone, and reacting the liquor with substantially pure gaseous CO.sub.2 in an amount sufficient to precipitate bicarbonate crystals and produce an offgas containing CO.sub.2 and H.sub.2 S for use in step 1; (4) recovering the bicarbonate crystals from step 3, and thermally decomposing the crystals to produce an alkaline metal carbonate product and a substantially pure CO.sub.2 offgas for use in step 3.

  14. Experimental (FT-IR, FT-Raman, 1H, 13C NMR) and theoretical study of alkali metal 2-aminobenzoates

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Świsłocka, R.; Regulska, E.; Lewandowski, W.

    2008-09-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the 2-aminobenzoic acid was studied by the methods of molecular spectroscopy. The vibrational (FT-IR, FT-Raman) and NMR ( 1H and 13C) spectra for 2-aminobenzoic acid and its alkali metal salts were recorded. The assignment of vibrational spectra was done on the basis of literature data, theoretical calculations and our previous experience. Characteristic shifts of bands and changes in intensities of bands along the metal series were observed. The changes of chemical shifts of protons ( 1H NMR) and carbons ( 13C NMR) in the series of studied alkali metal 2-aminobenzoates were observed too. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G ∗∗ basis set. Geometric aromaticity indices, dipole moments and energies were also calculated. The theoretical wavenumbers and intensities of IR and Raman spectra were obtained. The calculated parameters were compared to experimental characteristic of studied compounds.

  15. Implementation of Hydrodynamic Simulation Code in Shock Experiment Design for Alkali Metals

    NASA Astrophysics Data System (ADS)

    Coleman, A. L.; Briggs, R.; Gorman, M. G.; Ali, S.; Lazicki, A.; Swift, D. C.; Stubley, P. G.; McBride, E. E.; Collins, G.; Wark, J. S.; McMahon, M. I.

    2017-10-01

    Shock compression techniques enable the investigation of extreme P-T states. In order to probe off-Hugoniot regions of P-T space, target makeup and laser pulse parameters must be carefully designed. HYADES is a hydrodynamic simulation code which has been successfully utilised to simulate shock compression events and refine the experimental parameters required in order to explore new P-T states in alkali metals. Here we describe simulations and experiments on potassium, along with the techniques required to access off-Hugoniot states.

  16. Induction magnetometer using a high-Tc superconductor coil

    NASA Astrophysics Data System (ADS)

    Sasada, Ichiro

    2010-05-01

    An induction magnetometer consisting of a search coil and an inverting operational amplifier is simple in structure and in signal transferring mechanism from the magnetic field input to the voltage output. Because this magnetometer is based on Faraday's law of induction, it has a lower cutoff frequency r/(2πL), where r is the resistance of the coil and L is its inductance. An attempt has been made to lower the cutoff frequency of the induction magnetometer by using a high-Tc superconductor coil. With a pancake coil (inner diameter ≈18 cm and outer diameter ≈23 cm, 92 turns, 3.23 mH) made of a Bismuth strontium calcium copper oxide (BSCCO) superconductor tape of 5 mm in width and 0.23 mm in thickness, the cutoff frequency achieved was 1.7 Hz which is much lower than that obtained with a bulky copper search coil which is typically in the range of 10-20 Hz. In the experiment, an inverting amplifier was made with a complementary metal-oxide semiconductor operational amplifier and was immersed in liquid nitrogen together with a BSCCO high-Tc superconducting coil. Discussion is made on the resolution of the induction magnetometer using a high-Tc superconductor search coil.

  17. Absorption Spectroscopy of Rubidium in an Alkali Metal Dispenser Cell and Bleached Wave Analysis

    DTIC Science & Technology

    2015-03-26

    Department of Engineering Physics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and...at atmospheric temperatures and pressures, so none of the safety measures needed with pure solid alkali metal would be required. AMDs can also be...Institute of Technology Graduate School of Engineering and Management (AFIT/ENP) 2950 Hobson Way WPAFB OH 45433-7765 8. PERFORMING ORGANIZATION

  18. Ionic conductivity of β-cyclodextrin-polyethylene-oxide/alkali-metal-salt complex.

    PubMed

    Yang, Ling-Yun; Fu, Xiao-Bin; Chen, Tai-Qiang; Pan, Li-Kun; Ji, Peng; Yao, Ye-Feng; Chen, Qun

    2015-04-20

    Highly conductive, crystalline, polymer electrolytes, β-cyclodextrin (β-CD)-polyethylene oxide (PEO)/LiAsF6 and β-CD-PEO/NaAsF6 , were prepared through supramolecular self-assembly of PEO, β-CD, and LiAsF6 /NaAsF6 . The assembled β-CDs form nanochannels in which the PEO/X(+) (X=Li, Na) complexes are confined. The nanochannels provide a pathway for directional motion of the alkali metal ions and, at the same time, separate the cations and the anions by size exclusion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Thermal behavior of heat-pipe-assisted alkali-metal thermoelectric converters

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Su; Lee, Wook-Hyun; Chi, Ri-Guang; Chung, Won-Sik; Lee, Kye-Bock; Rhi, Seok-Ho; Jeong, Seon-Yong; Park, Jong-Chan

    2017-11-01

    The alkali-metal thermal-to-electric converter (AMTEC) changes thermal energy directly into electrical energy using alkali metals, such as sodium and potassium, as the working fluid. The AMTEC system primarily consists of beta-alumina solid electrolyte (BASE) tubes, low and high-pressure chambers, an evaporator, and a condenser and work through continuous sodium circulation, similar to conventional heat pipes. When the sodium ions pass through the BASE tubes with ion conductivity, this ion transfer generates electricity. The efficiency of the AMTEC directly depends on the temperature difference between the top and bottom of the system. The optimum design of components of the AMTEC, including the condenser, evaporator, BASE tubes, and artery wick, can improve power output and efficiency. Here, a radiation shield was installed in the low-pressure chamber of the AMTEC and was investigated experimentally and numerically to determine an optimum design for preventing radiation heat loss through the condenser and the wall of AMTEC container. A computational fluid dynamics (CFD) simulation was carried out to decide the optimum size of the low-pressure chamber. The most suitable height and diameter of the chamber were 270 mm and 180 mm, respectively, with eight BASE tubes, which were 150 mm high, 25 mm in diameter, and 105 mm in concentric diameter. Increasing the temperature ratio ( T Cond /T B ) led to high power output. The minimum dimensionless value (0.4611) for temperature ( T Cond /T B ) appeared when the radiation shield was made of 500-mesh nickel. Simulation results for the best position and shape for the radiation shield, revealed that maximum power was generated when a stainless steel shield was installed in between the BASE tubes and condenser.

  20. Dual technique magnetometer experiment for the Cassini Orbiter spacecraft

    NASA Technical Reports Server (NTRS)

    Southwood, D. J.; Balogh, A.; Smith, E. J.

    1992-01-01

    The dual technique magnetometer to fly on the Cassini Saturn Orbiter Spacecraft is described. The instrument combines two separate techniques of measuring the magnetic field in space using both fluxgate and vector helium devices. In addition, the instrument can be operated in a special scalar mode which is to be used near the planet for highly accurate determination of the interior field of the planet. As well as the planetary field, the instrument will make large contributions to the scientific measurements of the planetary magnetosphere, the highly electrically conducting region of space surrounding Saturn permeated by the Saturnian field, the interaction of Saturn and the interplanetary medium and the interaction of Titan with its space environment.

  1. Magsat vector magnetometer calibration using Magsat geomagnetic field measurements

    NASA Technical Reports Server (NTRS)

    Lancaster, E. R.; Jennings, T.; Morrissey, M.; Langel, R. A.

    1980-01-01

    From the time of its launch on Oct. 30, 1979 into a nearly polar, Sun synchronous orbit, until it reentered the Earth's atmosphere on June 11, 1980, Magsat measured and transmitted more than three complete sets of global magnetic field data. The data obtained from the mission will be used primarily to compute a currently accurate model of the Earth's main magnetic field, to update and refine world and regional magnetic charts, and to develop a global scalar and vector crustal magnetic anomaly map. The in-flight calibration procecure used for 39 vector magnetometer system parameters is described as well as results obtained from some data sets and the numerical studies designed to evaluate the results.

  2. Chemical effects of alkali atoms on critical temperature in superconducting alkali-doped fullerides

    NASA Astrophysics Data System (ADS)

    Hetfleisch, F.; Gunnarsson, O.; Srama, R.; Han, J. E.; Stepper, M.; Roeser, H.-P.; Bohr, A.; Lopez, J. S.; Mashmool, M.; Roth, S.

    2018-03-01

    Alkali metal doped fullerides (A3C60) are superconductors with critical temperatures, Tc, extending up to 38 K. Tc is known to depend strongly on the lattice parameter a, which can be adjusted by physical or chemical pressure. In the latter case an alkali atom is replaced by a different sized one, which changes a. We have collected an extensive data base of experimental data for Tc from very early up to recent measurements. We disentangle alkali atom chemical effects on Tc, beyond the well-known consequences of changing a. It is found that Tc, for a fixed a, is typically increased as smaller alkali atoms are replaced by larger ones, except for very large a. Possible reasons for these results are discussed. Although smaller in size than the lattice parameter contribution, the chemical effect is not negligible and should be considered in future physical model developments.

  3. Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution.

    PubMed

    Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2016-01-01

    Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K < 2) and depends on the charge of the ligand, owing to the ionic nature of the interactions. At the same time, the size of the cation is an important factor that influences the stability: very often, but not always (e.g., for sulfate), it follows the trend Li(+) > Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand).

  4. Through-barrier electromagnetic imaging with an atomic magnetometer.

    PubMed

    Deans, Cameron; Marmugi, Luca; Renzoni, Ferruccio

    2017-07-24

    We demonstrate the penetration of thick metallic and ferromagnetic barriers for imaging of conductive targets underneath. Our system is based on an 85 Rb radio-frequency atomic magnetometer operating in electromagnetic induction imaging modality in an unshielded environment. Detrimental effects, including unpredictable magnetic signatures from ferromagnetic screens and variations in the magnetic background, are automatically compensated by active compensation coils controlled by servo loops. We exploit the tunability and low-frequency sensitivity of the atomic magnetometer to directly image multiple conductive targets concealed by a 2.5 mm ferromagnetic steel shield and/or a 2.0 mm aluminium shield, in a single scan. The performance of the atomic magnetometer allows imaging without any prior knowledge of the barriers or the targets, and without the need of background subtraction. A dedicated edge detection algorithm allows automatic estimation of the targets' size within 3.3 mm and of their position within 2.4 mm. Our results prove the feasibility of a compact, sensitive and automated sensing platform for imaging of concealed objects in a range of applications, from security screening to search and rescue.

  5. Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.

    PubMed

    Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu

    2015-06-02

    A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general.

  6. Insight from first principles into the stability and magnetism of alkali-metal superoxide nanoclusters

    NASA Astrophysics Data System (ADS)

    Arcelus, Oier; Suaud, Nicolas; Katcho, Nebil A.; Carrasco, Javier

    2017-05-01

    Alkali-metal superoxides are gaining increasing interest as 2p magnetic materials for information and energy storage. Despite significant research efforts on bulk materials, gaps in our knowledge of the electronic and magnetic properties at the nanoscale still remain. Here, we focused on the role that structural details play in determining stability, electronic structure, and magnetic couplings of (MO2)n (M = Li, Na, and K, with n = 2-8) clusters. Using first-principles density functional theory based on the Perdew-Burke-Ernzerhof and Heyd-Scuseria-Ernzerhof functionals, we examined the effect of atomic structure on the relative stability of different polymorphs within each investigated cluster size. We found that small clusters prefer to form planar-ring structures, whereas non-planar geometries become more stable when increasing the cluster size. However, the crossover point depends on the nature of the alkali metal. Our analysis revealed that electrostatic interactions govern the highly ionic M-O2 bonding and ultimately control the relative stability between 2-D and 3-D geometries. In addition, we analyzed the weak magnetic couplings between superoxide molecules in (NaO2)4 clusters comparing model Hamiltonian methods based on Wannier function projections onto πg states with wave function-based multi-reference calculations.

  7. Alkali metal cation complexation by 1,3-alternate, mono-ionisable calix[4]arene-benzocrown-6 compounds

    DOE PAGES

    Surowiec, Malgorzata A.; Custelcean, Radu; Surowiec, Kazimierz; ...

    2014-04-23

    Alkali metal cation extraction behavior for two series of 1,3-alternate, mono-ionizable calix[4]arene-benzocrown-6 compounds is examined. In Series 1, the proton-ionizable group is a substituent on the benzo group of the polyether ring that directs it away from the crown ether cavity. In Series 2, the proton-ionizable group is attached to one para position in the calixarene framework, thus positioning it over the crown ether ring. Competitive solvent extraction of alkali metal cations from aqueous solutions into chloroform shows high Cs+ efficiency and selectivity. Single-species extraction pH profiles of Cs+ for Series 1 and 2 ligands with the same proton-ionizable groupmore » are very similar. Thus, association of Cs+ with the calixcrown ring is more important than the the proton-ionizable group’s position in relation to the crown ether cavity. Solid-state structures are presented for two unionized ligands from Series 2, as is a crystal containing two different ionized ligand–Cs+ complexes.« less

  8. Calculating the thermodynamic properties of aqueous solutions of alkali metal carboxylates

    NASA Astrophysics Data System (ADS)

    Rudakov, A. M.; Sergievskii, V. V.; Zhukova, T. V.

    2014-06-01

    A modified Robinson-Stokes equation with terms that consider the formation of ionic hydrates and associates is used to describe thermodynamic properties of aqueous solutions of electrolytes. The model is used to describe data on the osmotic coefficients of aqueous solutions of alkali metal carboxylates, and to calculate the mean ionic activity coefficients of salts and excess Gibbs energies. The key contributions from ionic hydration and association to the nonideality of solutions is determined by analyzing the contributions of various factors. Relations that connect the hydration numbers of electrolytes with the parameters of the Pitzer-Mayorga equation and a modified Hückel equation are developed.

  9. Non-Adiabatic Atomic Transitions: Computational Cross Section Calculations of Alkali Metal-Noble Gas Collisions

    DTIC Science & Technology

    2011-09-01

    there a one time transfer of prob- ability between Coriolis coupled states. One possible way to answer this question would be to literally create and... time -dependent numerical algorithm was developed using FORTRAN 90 to predict S-Matrix elements for alkali metal - noble gas (MNg) collisions. The...committee and the physics department for their time and effort to see me through the completion of my doctorate degree. Charlton D. Lewis, II v Table of

  10. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; wastemore » characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.« less

  11. Development of processes for the production of solar grade silicon from halides and alkali metals

    NASA Technical Reports Server (NTRS)

    Dickson, C. R.; Gould, R. K.

    1980-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon in volume at low cost were studied. Experiments were performed to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, determine the effects of reactants and/or products on materials of reactor construction, and make preliminary engineering and economic analyses of a scaled-up process.

  12. Preparation and Use of Alkali Metals (Li and Na) in Alumina and Silica Gel as Reagents in Organic Syntheses

    NASA Astrophysics Data System (ADS)

    Jalloh, Fatmata

    This work describes the development of alkali metals (Li and Na) encapsulated in silica and alumina gel (SG and AG), and their applications in organic syntheses. The methods elucidated involved the thermal incorporation of these metals into the pores of SG and AG, serving as solid-state reagents. The encapsulation method/approach addresses the problems associated with the high reactivity of these metals that limit their synthetic utility in research laboratories, pharmaceutical, and manufacturing industries. These problems include their sensitivity to air and moisture, pyrophoricity, difficulty in handling, non-commercial availability, and instability of some of the organoalkali metals reagents. Herein, we describe the developments to synthesize alkali metal precursor (Li-AG) in solid form that offer safer organolithium reagents. This precursor reduces or eliminates the danger associated with the traditional handling of organolithium reagents stored in flammable organic solvents. The use of Li-AG to prepare and deliver organolithium reagents from organic halides and ethers, as needed especially for those that are commercially not available is put forward. In addition, exploration of additional applications of Na-SG and Na-AG reagents in the demethoxylation of Weinreb amides to secondary amines, and Bouveault-Blanc type reduction of amides to amines are described.

  13. Interaction of Cu(+) with cytosine and formation of i-motif-like C-M(+)-C complexes: alkali versus coinage metals.

    PubMed

    Gao, Juehan; Berden, Giel; Rodgers, M T; Oomens, Jos

    2016-03-14

    The Watson-Crick structure of DNA is among the most well-known molecular structures of our time. However, alternative base-pairing motifs are also known to occur, often depending on base sequence, pH, or the presence of cations. Pairing of cytosine (C) bases induced by the sharing of a single proton (C-H(+)-C) may give rise to the so-called i-motif, which occurs primarily in expanded trinucleotide repeats and the telomeric region of DNA, particularly at low pH. At physiological pH, silver cations were recently found to stabilize C dimers in a C-Ag(+)-C structure analogous to the hemiprotonated C-dimer. Here we use infrared ion spectroscopy in combination with density functional theory calculations at the B3LYP/6-311G+(2df,2p) level to show that copper in the 1+ oxidation state induces an analogous formation of C-Cu(+)-C structures. In contrast to protons and these transition metal ions, alkali metal ions induce a different dimer structure, where each ligand coordinates the alkali metal ion in a bidentate fashion in which the N3 and O2 atoms of both cytosine ligands coordinate to the metal ion, sacrificing hydrogen-bonding interactions between the ligands for improved chelation of the metal cation.

  14. Structures of Hydrated Alkali Metal Cations, M+(H2O)nAr (m = Li, Na, K, rb and Cs, n = 3-5), Using Infrared Photodissociation Spectroscopy and Thermodynamic Analysis

    NASA Astrophysics Data System (ADS)

    Ke, Haochen; van der Linde, Christian; Lisy, James M.

    2014-06-01

    Alkali metal cations play vital roles in chemical and biochemical systems. Lithium is widely used in psychiatric treatment of manic states and bipolar disorder; Sodium and potassium are essential elements, having major biological roles as electrolytes, balancing osmotic pressure on body cells and assisting the electroneurographic signal transmission; Rubidium has seen increasing usage as a supplementation for manic depression and depression treatment; Cesium doped compounds are used as essential catalysts in chemical production and organic synthesis. Since hydrated alkali metal cations are ubiquitous and the basic form of the alkali metal cations in chemical and biochemical systems, their structural and thermodynamic properties serve as the foundation for modeling more complex chemical and biochemical processes, such as ion transport and ion size-selectivity of ionophores and protein channels. By combining mass spectrometry and infrared photodissociation spectroscopy, we have characterized the structures and thermodynamic properties of the hydrated alkali metal cations, i.e. M+(H2O)nAr, (M = Li, Na, K, Rb and Cs, n = 3-5). Ab initio calculations and RRKM-EE (evaporative ensemble) calculations were used to assist in the spectral assignments and thermodynamic analysis. Results showed that the structures of hydrated alkali metal cations were determined predominantly by the competition between non-covalent interactions, i.e. the water---water hydrogen bonding interactions and the water---cation electrostatic interactions. This balance, however, is very delicate and small changes, i.e. different cations, different levels of hydration and different effective temperatures clearly impact the balance.

  15. Alkali-earth metal bridges formed in biofilm matrices regulate the uptake of fluoroquinolone antibiotics and protect against bacterial apoptosis.

    PubMed

    Kang, Fuxing; Wang, Qian; Shou, Weijun; Collins, Chris D; Gao, Yanzheng

    2017-01-01

    Bacterially extracellular biofilms play a critical role in relieving toxicity of fluoroquinolone antibiotic (FQA) pollutants, yet it is unclear whether antibiotic attack may be defused by a bacterial one-two punch strategy associated with metal-reinforced detoxification efficiency. Our findings help to assign functions to specific structural features of biofilms, as they strongly imply a molecularly regulated mechanism by which freely accessed alkali-earth metals in natural waters affect the cellular uptake of FQAs at the water-biofilm interface. Specifically, formation of alkali-earth-metal (Ca 2+ or Mg 2+ ) bridge between modeling ciprofloxacin and biofilms of Escherichia coli regulates the trans-biofilm transport rate of FQAs towards cells (135-nm-thick biofilm). As the addition of Ca 2+ and Mg 2+ (0-3.5 mmol/L, CIP: 1.25 μmol/L), the transport rates were reduced to 52.4% and 63.0%, respectively. Computational chemistry analysis further demonstrated a deprotonated carboxyl in the tryptophan residues of biofilms acted as a major bridge site, of which one side is a metal and the other is a metal girder jointly connected to the carboxyl and carbonyl of a FQA. The bacterial growth rate depends on the bridging energy at anchoring site, which underlines the environmental importance of metal bridge formed in biofilm matrices in bacterially antibiotic resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Metal-mediated aminocatalysis provides mild conditions: Enantioselective Michael addition mediated by primary amino catalysts and alkali-metal ions

    PubMed Central

    Leven, Matthias; Neudörfl, Jörg M

    2013-01-01

    Summary Four catalysts based on new amides of chiral 1,2-diamines and 2-sulfobenzoic acid have been developed. The alkali-metal salts of these betaine-like amides are able to form imines with enones, which are activated by Lewis acid interaction for nucleophilic attack by 4-hydroxycoumarin. The addition of 4-hydroxycoumarin to enones gives ee’s up to 83% and almost quantitative yields in many cases. This novel type of catalysis provides an effective alternative to conventional primary amino catalysis were strong acid additives are essential components. PMID:23400419

  17. The simple procedure for the fluxgate magnetometers calibration

    NASA Astrophysics Data System (ADS)

    Marusenkov, Andriy

    2014-05-01

    The fluxgate magnetometers are widely used in geophysics investigations including the geomagnetic field monitoring at the global network of geomagnetic observatories as well as for electromagnetic sounding of the Earth's crust conductivity. For solving these tasks the magnetometers have to be calibrated with an appropriate level of accuracy. As a particular case, the ways to satisfy the recent requirements to the scaling and orientation errors of 1-second INTERNAGNET magnetometers are considered in the work. The goal of the present study was to choose a simple and reliable calibration method for estimation of scale factors and angular errors of the three-axis magnetometers in the field. There are a large number of the scalar calibration methods, which use a free rotation of the sensor in the calibration field followed by complicated data processing procedures for numerical solution of the high-order equations set. The chosen approach also exploits the Earth's magnetic field as a calibrating signal, but, in contrast to other methods, the sensor has to be oriented in some particular positions in respect to the total field vector, instead of the sensor free rotation. This allows to use very simple and straightforward linear computation formulas and, as a result, to achieve more reliable estimations of the calibrated parameters. The estimation of the scale factors is performed by the sequential aligning of each component of the sensor in two positions: parallel and anti-parallel to the Earth's magnetic field vector. The estimation of non-orthogonality angles between each pair of components is performed after sequential aligning of the components at the angles +/- 45 and +/- 135 degrees of arc in respect to the total field vector. Due to such four positions approach the estimations of the non-orthogonality angles are invariant to the zero offsets and non-linearity of transfer functions of the components. The experimental justifying of the proposed method by means of the

  18. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    NASA Astrophysics Data System (ADS)

    Patki, Gauri Dilip

    mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (<100nm diameter) and ball-milled silicon powder (325 mesh). The increase in rate upon decreasing the particle size to 10 nm was even greater than would be expected based upon the increase in surface area. While specific surface area increased by a factor of 6 in going from <100 nm to ˜10 nm particles, the hydrogen production rate increased by a factor of 150. However, in all cases, silicon requires a base (e.g. NaOH, KOH, hydrazine) to catalyze its reaction with water. Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.

  19. Heating rates in collisionally opaque alkali-metal atom traps: Role of secondary collisions

    NASA Astrophysics Data System (ADS)

    Beijerinck, H. C. W.

    2000-12-01

    Grazing collisions with background gas are the major cause of trap loss and trap heating in atom traps. To first order, these effects do not depend on the trap density. In collisionally opaque trapped atom clouds, however, scattered atoms with an energy E larger than the effective trap depth Eeff, which are destined to escape from the atom cloud, will have a finite probability for a secondary collision. This results in a contribution to the heating rate that depends on the column density of the trapped atoms, i.e., the product of density and characteristic size of the trap. For alkali-metal atom traps, secondary collisions are quite important due to the strong long-range interaction with like atoms. We derive a simple analytical expression for the secondary heating rate, showing a dependency proportional to E1/2eff. When extrapolating to a vanishing column density, only primary collisions with the background gas will contribute to the heating rate. This contribution is rather small, due to the weak long-range interaction of the usual background gas species in an ultrahigh-vacuum system-He, Ne, or Ar-with the trapped alkali-metal atoms. We conclude that the transition between trap-loss collisions and heating collisions is determined by a cutoff energy 200 μK<=Eeff<=400 μK, much smaller than the actual trap depth E in most magnetic traps. Atoms with an energy Eeffalkali-metal atoms Li through Cs as a function of the effective trap depth, the column density of the trap, and the species in the background gas. The predictions of our model are in good agreement with the experimental data of Myatt for heating rates in high-density 87Rb-atom magnetic traps at JILA, including the effect of the rf shield and the composition of the background gas. It is shown that collisions with atoms from the Oort

  20. Intracellular acidification-induced alkali metal cation/H+ exchange in human neutrophils

    PubMed Central

    1987-01-01

    Pretreatment of isolated human neutrophils (resting pHi congruent to 7.25 at pHo 7.40) with 30 mM NH4Cl for 30 min leads to an intracellular acidification (pHi congruen to 6.60) when the NH4Cl prepulse is removed. Thereafter, in 140 mM Na+ medium, pHi recovers exponentially with time (initial rate, approximately 0.12 pH/min) to reach the normal resting pHi by approximately 20 min, a process that is accomplished mainly, if not exclusively, though an exchange of internal H+ for external Na+. This Na+/H+ countertransport is stimulated by external Na+ (Km congruent to 21 mM) and by external Li+ (Km congruent to 14 mM), though the maximal transport rate for Na+ is about twice that for Li+. Both Na+ and Li+ compete as substrates for the same translocation sites on the exchange carrier. Other alkali metal cations, such as K+, Rb+, or Cs+, do not promote pHi recovery, owing to an apparent lack of affinity for the carrier. The exchange system is unaffected by ouabain or furosemide, but can be competitively inhibited by the diuretic amiloride (Ki congruent to 8 microM). The influx of Na+ or Li+ is accompanied by an equivalent counter-reflux of H+, indicating a 1:1 stoichiometry for the exchange reaction, a finding consistent with the lack of voltage sensitivity (i.e., electroneutrality) of pHi recovery. These studies indicate that the predominant mechanism in human neutrophils for pHi regulation after intracellular acidification is an amiloride-sensitive alkali metal cation/H+ exchange that shares a number of important features with similar recovery processes in a variety of other mammalian cell types. PMID:3694176

  1. James C. McGroddy Prize Talk: Superconductivity in alkali-metal doped Carbon-60

    NASA Astrophysics Data System (ADS)

    Hebard, Arthur

    2008-03-01

    Carbon sixty (C60), which was first identified in 1985 in laser desorption experiments, is unquestionably an arrestingly beautiful molecule. The high symmetry of the 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball like structure invites special attention and continues to stimulate animated speculation. The availability in 1990 of macroscopic amounts of purified C60 derived from carbon-arc produced soot allowed the growth and characterization of both bulk and thin-film samples. Crystalline C60 is a molecular solid held together by weak van der Waals forces. The fcc structure has a 74% packing fraction thus allowing ample opportunity (26% available volume) for the intercalation of foreign atoms into the interstitial spaces of the three dimensional host. This opportunity catalyzed much of the collaborative work amongst chemists, physicists and materials scientists at Bell Laboratories, and resulted in the discovery of superconductivity in alkali-metal doped C60 with transition temperatures (Tc) in the mid-30-kelvin range. In this talk I will review how the successes of this initial team effort stimulated a worldwide collaboration between experimentalists and theorists to understand the promise and potential of an entirely new class of superconductors containing only two elements, carbon and an intercalated alkali metal. Although the cuprates still hold the record for the highest Tc, there are still open scientific questions about the mechanism that gives rise to such unexpectedly high Tc's in the non-oxide carbon-based superconductors. The doped fullerenes have unusual attributes (e.g., narrow electronic bands, high disorder, anomalous energy scales, and a tantalizing proximity to a metal-insulator Mott transition), which challenge conventional thinking and at the same time provide useful insights into new directions for finding even higher Tc materials. The final chapter of the `soot to superconductivity' story has yet to be written.

  2. The role of oxygen in porous molybdenum electrodes for the alkali metal thermoelectric converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R.M.; Nagasubramanian, G.; Khanna, S.K.

    1986-08-01

    The alkali metal thermoelectric converter is a direct energy conversion device, utilizing a high alkali metal activity gradient to generate electrical power. Its operation is based on the unique ion conductive properties of beta''-alumina solid electrolyte. The major barrier to application of this device is identification of an electrode which can maintain optimum power densities for operation times of >10,000h. Thin, porous molybdenum electrodes have shown the best performance characteristics, but show a variety of time dependent phenomena, including eventual degradation to power densities 3-5 times lower than initial values. Several Na-Mo-O compounds, including Na/sub 2/MoO/sub 4/ and Na/sub 2/Mo/submore » 3/O/sub 6/, are formed during AMTEC operation. These compounds may be responsible for enhanced Na transport through Mo electrodes via sodium ion conduction, and eventual performance degradation due to their volatilization and decomposition. No decomposition of beta''-alumina has been observed under simulated AMTEC operating conditions up to 1373 K. In this paper, we present a model for chemical reactions occurring in porous molybdenum electrodes. The model is based on thermochemical and kinetic data, known sodium-molybdenum-oxygen chemistry, x-ray diffraction analysis of molybdenum and molybdenum oxide electrodes, and the electrochemical behavior of the cell.« less

  3. Neutral glycoconjugated amide-based calix[4]arenes: complexation of alkali metal cations in water.

    PubMed

    Cindro, Nikola; Požar, Josip; Barišić, Dajana; Bregović, Nikola; Pičuljan, Katarina; Tomaš, Renato; Frkanec, Leo; Tomišić, Vladislav

    2018-02-07

    Cation complexation in water presents a unique challenge in calixarene chemistry, mostly due to the fact that a vast majority of calixarene-based cation receptors is not soluble in water or their solubility has been achieved by introducing functionalities capable of (de)protonation. Such an approach inevitably involves the presence of counterions which compete with target cations for the calixarene binding site, and also rather often requires the use of ion-containing buffer solutions in order to control the pH. Herein we devised a new strategy towards the solution of this problem, based on introducing carbohydrate units at the lower or upper rim of calix[4]arenes which comprise efficient cation binding sites. In this context, we prepared neutral, water-soluble receptors with secondary or tertiary amide coordinating groups, and studied their complexation with alkali metal cations in aqueous and methanol (for the comparison purpose) solutions. Complexation thermodynamics was quantitatively characterized by UV spectrometry and isothermal titration calorimetry, revealing that one of the prepared tertiary amide derivatives is capable of remarkably efficient (log K ≈ 5) and selective binding of sodium cations among alkali metal cations in water. Given the ease of the synthetic procedure used, and thus the variety of accessible analogues, this study can serve as a platform for the development of reagents for diverse purposes in aqueous media.

  4. Rare-gas impurities in alkali metals: Relation to optical absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meltzer, D.E.; Pinski, F.J.; Stocks, G.M.

    1988-04-15

    An investigation of the nature of rare-gas impurity potentials in alkali metals is performed. Results of calculations based on simple models are presented, which suggest the possibility of resonance phenomena. These could lead to widely varying values for the exponents which describe the shape of the optical-absorption spectrum at threshold in the Mahan--Nozieres--de Dominicis theory. Detailed numerical calculations are then performed with the Korringa-Kohn-Rostoker coherent-potential-approximation method. The results of these highly realistic calculations show no evidence for the resonance phenomena, and lead to predictions for the shape of the spectra which are in contradiction to observations. Absorption and emission spectramore » are calculated for two of the systems studied, and their relation to experimental data is discussed.« less

  5. Calibration of Magnetometers with GNSS Receivers and Magnetometer-Aided GNSS Ambiguity Fixing.

    PubMed

    Henkel, Patrick

    2017-06-08

    Magnetometers provide compass information, and are widely used for navigation, orientation and alignment of objects. As magnetometers are affected by sensor biases and eventually by systematic distortions of the Earth magnetic field, a calibration is needed. In this paper, a method for calibration of magnetometers with three Global Navigation Satellite System (GNSS) receivers is presented. We perform a least-squares estimation of the magnetic flux and sensor biases using GNSS-based attitude information. The attitude is obtained from the relative positions between the GNSS receivers in the North-East-Down coordinate frame and prior knowledge of these relative positions in the platform's coordinate frame. The relative positions and integer ambiguities of the periodic carrier phase measurements are determined with an integer least-squares estimation using an integer decorrelation and sequential tree search. Prior knowledge on the relative positions is used to increase the success rate of ambiguity fixing. We have validated the proposed method with low-cost magnetometers and GNSS receivers on a vehicle in a test drive. The calibration enabled a consistent heading determination with an accuracy of five degrees. This precise magnetometer-based attitude information allows an instantaneous GNSS integer ambiguity fixing.

  6. Calibration of Magnetometers with GNSS Receivers and Magnetometer-Aided GNSS Ambiguity Fixing

    PubMed Central

    Henkel, Patrick

    2017-01-01

    Magnetometers provide compass information, and are widely used for navigation, orientation and alignment of objects. As magnetometers are affected by sensor biases and eventually by systematic distortions of the Earth magnetic field, a calibration is needed. In this paper, a method for calibration of magnetometers with three Global Navigation Satellite System (GNSS) receivers is presented. We perform a least-squares estimation of the magnetic flux and sensor biases using GNSS-based attitude information. The attitude is obtained from the relative positions between the GNSS receivers in the North-East-Down coordinate frame and prior knowledge of these relative positions in the platform’s coordinate frame. The relative positions and integer ambiguities of the periodic carrier phase measurements are determined with an integer least-squares estimation using an integer decorrelation and sequential tree search. Prior knowledge on the relative positions is used to increase the success rate of ambiguity fixing. We have validated the proposed method with low-cost magnetometers and GNSS receivers on a vehicle in a test drive. The calibration enabled a consistent heading determination with an accuracy of five degrees. This precise magnetometer-based attitude information allows an instantaneous GNSS integer ambiguity fixing. PMID:28594369

  7. A Quantitative Tunneling/Desorption Model for the Exchange Current at the Porous Electrode/Beta - Alumina/Alkali Metal Gas Three Phase Zone at 700-1300K

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Ryan, M. A.; Saipetch, C.; LeDuc, H. G.

    1996-01-01

    The exchange current observed at porous metal electrodes on sodium or potassium beta -alumina solid electrolytes in alkali metal vapor is quantitatively modeled with a multi-step process with good agreement with experimental results.

  8. Monitoring of photoluminescence decay by alkali and alkaline earth metal cations using a photoluminescent bolaamphiphile self-assembly as an optical probe.

    PubMed

    Kim, Sunhyung; Kwak, Jinyoung; Lee, Sang-Yup

    2014-05-01

    Photoluminescence (PL) decay induced by the displacement of an ionic fluorescence component, Tb(3+), with alkali and alkaline earth metal cations was investigated using photoluminescent spherical self-assemblies as optical probes. The photoluminescent spherical self-assembly was prepared by the self-organization of a tyrosine-containing bolaamphiphile molecule with a photosensitizer and Tb(3+) ion. The lanthanide ion, Tb(3+), electrically bound to the carboxyl group of the bolaamphiphile molecule, was displaced by alkali and alkaline earth metal cations that had stronger electrophilicity. The PL of the self-assembly decayed remarkably due to the substitution of lanthanide ions with alkali and alkaline earth metal cations. The PL decay showed a positive correlation with cation concentration and was sensitive to the cation valency. Generally, the PL decay was enhanced by the electrophilicity of the cations. However, Ca(2+) showed greater PL decay than Mg(2+) because Ca(2+) could create various complexes with the carboxyl groups of the bolaamphiphile molecule. Microscopic and spectroscopic investigations were conducted to study the photon energy transfer and displacement of Tb(3+) by the cation exchange. This study demonstrated that the PL decay by the displacement of the ionic fluorescent compound was applied to the detection of various cations in aqueous media and is applicable to the development of future optical sensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Cation and anion dependence of stable geometries and stabilization energies of alkali metal cation complexes with FSA(-), FTA(-), and TFSA(-) anions: relationship with physicochemical properties of molten salts.

    PubMed

    Tsuzuki, Seiji; Kubota, Keigo; Matsumoto, Hajime

    2013-12-19

    Stable geometries and stabilization energies (Eform) of the alkali metal complexes with bis(fluorosulfonyl)amide, (fluorosulfonyl)(trifluoromethylslufonyl)amide and bis(trifluoromethylsulfonyl)amide (FSA(-), FTA(-) and TFSA(-)) were studied by ab initio molecular orbital calculations. The FSA(-) complexes prefer the bidentate structures in which two oxygen atoms of two SO2 groups have contact with the metal cation. The FTA(-) and TFSA(-) complexes with Li(+) and Na(+) prefer the bidentate structures, while the FTA(-) and TFSA(-) complexes with Cs(+) prefer tridentate structures in which the metal cation has contact with two oxygen atoms of an SO2 group and one oxygen atom of another SO2 group. The two structures are nearly isoenergetic in the FTA(-) and TFSA(-) complexes with K(+) and Rb(+). The magnitude of Eform depends on the alkali metal cation significantly. The Eform calculated for the most stable TFSA(-) complexes with Li(+), Na(+), K(+), Rb(+) and Cs(+) cations at the MP2/6-311G** level are -137.2, -110.5, -101.1, -89.6, and -84.1 kcal/mol, respectively. The viscosity and ionic conductivity of the alkali TFSA molten salts have strong correlation with the magnitude of the attraction. The viscosity increases and the ionic conductivity decreases with the increase of the attraction. The melting points of the alkali TFSA and alkali BETA molten salts also have correlation with the magnitude of the Eform, which strongly suggests that the magnitude of the attraction play important roles in determining the melting points of these molten salts. The anion dependence of the Eform calculated for the complexes is small (less than 2.9 kcal/mol). This shows that the magnitude of the attraction is not the cause of the low melting points of alkali FTA molten salts compared with those of corresponding alkali TFSA molten salts. The electrostatic interactions are the major source of the attraction in the complexes. The electrostatic energies for the most stable TFSA

  10. Rydberg States of Alkali Metal Atoms on Superfluid Helium Droplets - Theoretical Considerations

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Lackner, Florian; Hauser, Andreas W.; Ernst, Wolfgang E.

    2017-06-01

    The bound states of electrons on the surface of superfluid helium have been a research topic for several decades. One of the first systems treated was an electron bound to an ionized helium cluster. Here, a similar system is considered, which consists of a helium droplet with an ionized dopant inside and an orbiting electron on the outside. In our theoretical investigation we select alkali metal atoms (AK) as central ions, stimulated by recent experimental studies of Rydberg states for Na, Rb, and Cs attached to superfluid helium nanodroplets. Experimental spectra , obtained by electronic excitation and subsequent ionization, showed blueshifts for low lying electronic states and redshifts for Rydberg states. In our theoretical treatment the diatomic AK^+-He potential energy curves are first computed with ab initio methods. These potentials are then used to calculate the solvation energy of the ion in a helium droplet as a function of the number of atoms. Additional potential terms, derived from the obtained helium density distribution, are added to the undisturbed atomic pseudopotential in order to simulate a 'modified' potential felt by the outermost electron. This allows us to compute a new set of eigenstates and eigenenergies, which we compare to the experimentally observed energy shifts for highly excited alkali metal atoms on helium nanodroplets. A. Golov and S. Sekatskii, Physica B, 1994, 194, 555-556 E. Loginov, C. Callegari, F. Ancilotto, and M. Drabbels, J. Phys. Chem. A, 2011, 115, 6779-6788 F. Lackner, G. Krois, M. Koch, and W. E. Ernst, J. Phys. Chem. Lett., 2012, 3, 1404-1408 F. Lackner, G. Krois, M. Theisen, M. Koch, and W. E. Ernst, Phys. Chem. Chem. Phys., 2011, 13, 18781-18788

  11. Effect of charging on silicene with alkali metal atom adsorption

    NASA Astrophysics Data System (ADS)

    Li, Manman; Li, Zhongyao; Gong, Shi-Jing

    2018-02-01

    Based on first-principles calculations, we studied the effects of charging on the structure, binding energy and electronic properties of silicene with alkali metal (AM) atom (Li, Na or K) adsorption. In AMSi2, electron doping enlarges the lattice constant of silicene, while the influence of hole doping is non-monotonic. In AMSi8, the lattice constant increases/decreases almost linearly with the increase in electron/hole doping. In addition, the AM-Si vertical distance can be greatly enlarged by excessive hole doping in both AMSi2 and AMSi8 systems. When the hole doping is as large as  +e per unit cell, both AMSi2 and AMSi8 can be transformed from metal to semiconductor. However, the binding energy would be negative in the AM+ Si2 semiconductor. It suggests AM+ Si2 is unstable in this case. In addition, the electron doping and the AM-Si vertical distance would greatly influence the band gap of silicene in LiSi8 and NaSi8, while the band gap in KSi8 is relatively stable. Therefore, KSi8 may be a more practicable material in nanotechnology.

  12. H-1 NMR study of ternary ammonia-alkali metal-graphite intercalation compounds

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Fronko, R. M.; Resing, H. A.; Qian, X. W.; Solin, S. A.

    1987-01-01

    For the first-stage ternary ammonia-alkali metal-graphite intercalation compounds M(NH3)(x)C24(x of about 4, M = K, Rb, Cs), three sets of triplet H-1 NMR spectral lines have been observed at various temperatures and orientations due to the H-1 - H-1 and N-14 - H-1 dipolar interactions. The structures of these compounds have been inferred as mobile (liquid-like) intercalant layers of planar M(NH3)4 ions in between the carbon layers. For the intercalated ammonia molecules, the potential barrier is about 0.2 eV and the molecular geometry is very close to the free NH3 in gas phase.

  13. A phaseonium magnetometer: A new optical magnetometer based on index enhanced media

    NASA Technical Reports Server (NTRS)

    Scully, Marlan O.; Fleischauer, Michael; Graf, Martin

    1993-01-01

    An optical magnetometer based on quantum coherence and interference effects in atoms is proposed. The sensitivity of this device is potentially superior to the present state-of-the-art devices. Optimum operating conditions are derived, and a comparison to standard optical pumping magnetometers is made.

  14. Control of wavepacket dynamics in mixed alkali metal clusters by optimally shaped fs pulses

    NASA Astrophysics Data System (ADS)

    Bartelt, A.; Minemoto, S.; Lupulescu, C.; Vajda, Š.; Wöste, L.

    We have performed adaptive feedback optimization of phase-shaped femtosecond laser pulses to control the wavepacket dynamics of small mixed alkali-metal clusters. An optimization algorithm based on Evolutionary Strategies was used to maximize the ion intensities. The optimized pulses for NaK and Na2K converged to pulse trains consisting of numerous peaks. The timing of the elements of the pulse trains corresponds to integer and half integer numbers of the vibrational periods of the molecules, reflecting the wavepacket dynamics in their excited states.

  15. Alkali metals levels in the human brain tissue: Anatomical region differences and age-related changes.

    PubMed

    Ramos, Patrícia; Santos, Agostinho; Pinto, Edgar; Pinto, Nair Rosas; Mendes, Ricardo; Magalhães, Teresa; Almeida, Agostinho

    2016-12-01

    The link between trace elements imbalances (both "toxic" and "essential") in the human brain and neurodegenerative disease has been subject of extensive research. More recently, some studies have highlighted the potential role of the homeostasis deregulation of alkali metals in specific brain regions as key factor in the pathogenesis of neurodegenerative diseases such as multiple sclerosis and Alzheimer's disease. Using flame atomic emission spectrometry and inductively coupled plasma-mass spectrometry after microwave-assisted acid digestion of the samples, alkali metals (Na, K, Li, Rb and Cs) were determined in 14 different areas of the human brain (frontal cortex, superior and middle temporal gyri, caudate nucleus, putamen, globus pallidus, cingulated gyrus, hippocampus, inferior parietal lobule, visual cortex of the occipital lobe, midbrain, pons, medulla and cerebellum) of adult individuals (n=42; 71±12, range: 50-101 years old) with no known history and evidence of neurodegenerative, neurological or psychiatric disorder. Potassium was found as the most abundant alkali metal, followed by Na, Rb, Cs and Li. Lithium, K and Cs distribution showed to be quite heterogeneous. On the contrary, Rb and Na appeared quite homogeneously distributed within the human brain tissue. The lowest levels of Na, K, Rb and Li were found in the brainstem (midbrain, medulla and pons) and cerebellum, while the lowest levels of Cs were found in the frontal cortex. The highest levels of K (mean±sd; range 15.5±2.5; 8.9-21.8mg/g) Rb (17.2±6.1; 3.9-32.4μg/g and Cs (83.4±48.6; 17.3-220.5ng/g) were found in putamen. The highest levels of Na and Li were found in the frontal cortex (11.6±2.4; 6.6-17.1mg/g) and caudate nucleus (7.6±4.6 2.2-21.3ng/g), respectively. Although K, Cs and Li levels appear to remain largely unchanged with age, some age-related changes were observed for Na and Rb levels in particular brain regions (namely in the hippocampus). Copyright © 2016 Elsevier GmbH. All

  16. Alkali metal thermal to electric conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sievers, R.K.; Ivanenok, J.F. III; Hunt, T.K.

    1995-10-01

    With potential efficiencies of up to 40%, AMTEC technology offers reliability and fuel flexibility for aerospace and ground power applications. Alkali Metal Thermal to Electric Conversion (AMTEC), a direct power-conversion technology, is emerging from the laboratory for use in a number of applications that require lightweight, long-running, efficient power systems. AMTEC is compatible with many heat and fuel sources, and it offers the reliability of direct (that is, no moving parts) thermal to electric conversion. These features make it an attractive technology for small spacecraft used in deep-space missions and for ground power applications, such as self-powered furnaces and themore » generators used in recreational vehicles. Researchers at Ford Scientific Laboratories, in Dearborn, Michigan, first conceived AMTEC technology in 1968 when they identified and patented a converter known as the sodium heat engine. This heat engine was based on the unique properties of {beta}-alumina solid electrolyte (BASE), a ceramic material that is an excellent sodium ion conductor but a poor electronic conductor. BASE was used to form a structural barrier across which a sodium concentration gradient could be produced from thermal energy. The engine provided a way to isothermally expand sodium through the BASE concentration gradient without moving mechanical components. Measured power density and calculated peak efficiencies were impressive, which led to funding from the Department of Energy for important material technology development.« less

  17. Spectroscopic studies of transition metal ions in molten alkali metal carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroni, V.A.; Maciejewski, M.L.

    Electronic absorption and C-13 NMR spectroscopic studies were carried out to investigate the structure of (i) alkali metal formate (Fm) and acetate (Ac) eutectic melts and (ii) solutions of 3d transition metal (TM) cations in these eutectics. Measurements were made over the temperature range 90..-->..190/sup 0/C. The most stable oxidation states of the individual TMs in the Fm and Ac eutectics were: Ti/sup 3 +/, V/sup 3 +/, VO/sup 2 +/, Cr/sup 3 +/, Mn/sup 2 +/, Fe/sup 2 +/, Co/sup 2 +/, Ni/sup 2 +/, and Cu/sup 2 +/. The ligand field absorption spectra obtained in these carboxylate meltsmore » bore a consistent resemblance to the spectra of these same cations in aqueous media, but the absorptivities were generally higher than are observed for the hexaquo complexes. The results were interpreted in terms of the existence of bidentate coordination in some (if not all) cases, leading to noncentrosymmetric complexation geometries. Key results of the NMR measurements included the apparent observation of two different carboxylate anion environments in Ni/sup 2 +/ solutions. C-13 spin-lattice relaxation of the carboxylate anions in the TM-free eutectics was found to be controlled by dipolar coupling to another nucleus. In the TM-containing solutions, the spin-lattice relaxation times were reduced by a factor of 10 to 1000, evidencing the expected shift to electron-nuclear dipolar coupling. Activation energies for viscous flow derived from the spin-lattice relaxation measurements on TM-free melts were in the 10..-->..11 kcal/mol range, reflecting the highly ordered, glassy nature of the eutectics studied.« less

  18. Carbonation of metal silicates for long-term CO2 sequestration

    DOEpatents

    Blencoe, James G; Palmer, Donald A; Anovitz, Lawrence M; Beard, James S

    2014-03-18

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  19. Alkali Metal Cation Affinities of Anionic Main Group-Element Hydrides Across the Periodic Table.

    PubMed

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias

    2017-10-05

    We have carried out an extensive exploration of gas-phase alkali metal cation affinities (AMCA) of archetypal anionic bases across the periodic system using relativistic density functional theory at ZORA-BP86/QZ4P//ZORA-BP86/TZ2P. AMCA values of all bases were computed for the lithium, sodium, potassium, rubidium and cesium cations and compared with the corresponding proton affinities (PA). One purpose of this work is to provide an intrinsically consistent set of values of the 298 K AMCAs of all anionic (XH n-1 - ) constituted by main group-element hydrides of groups 14-17 along the periods 2-6. In particular, we wish to establish the trend in affinity for a cation as the latter varies from proton to, and along, the alkali cations. Our main purpose is to understand these trends in terms of the underlying bonding mechanism using Kohn-Sham molecular orbital theory together with a quantitative bond energy decomposition analyses (EDA). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of Alkali Metal Cations on Slow Inactivation of Cardiac Na+ Channels

    PubMed Central

    Townsend, Claire; Horn, Richard

    1997-01-01

    Human heart Na+ channels were expressed transiently in both mammalian cells and Xenopus oocytes, and Na+ currents measured using 150 mM intracellular Na+. The kinetics of decaying outward Na+ current in response to 1-s depolarizations in the F1485Q mutant depends on the predominant cation in the extracellular solution, suggesting an effect on slow inactivation. The decay rate is lower for the alkali metal cations Li+, Na+, K+, Rb+, and Cs+ than for the organic cations Tris, tetramethylammonium, N-methylglucamine, and choline. In whole cell recordings, raising [Na+]o from 10 to 150 mM increases the rate of recovery from slow inactivation at −140 mV, decreases the rate of slow inactivation at relatively depolarized voltages, and shifts steady-state slow inactivation in a depolarized direction. Single channel recordings of F1485Q show a decrease in the number of blank (i.e., null) records when [Na+]o is increased. Significant clustering of blank records when depolarizing at a frequency of 0.5 Hz suggests that periods of inactivity represent the sojourn of a channel in a slow-inactivated state. Examination of the single channel kinetics at +60 mV during 90-ms depolarizations shows that neither open time, closed time, nor first latency is significantly affected by [Na+]o. However raising [Na+]o decreases the duration of the last closed interval terminated by the end of the depolarization, leading to an increased number of openings at the depolarized voltage. Analysis of single channel data indicates that at a depolarized voltage a single rate constant for entry into a slow-inactivated state is reduced in high [Na+]o, suggesting that the binding of an alkali metal cation, perhaps in the ion-conducting pore, inhibits the closing of the slow inactivation gate. PMID:9234168

  1. Metal Hydride and Alkali Halide Opacities in Extrasolar Giant Planets and Cool Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Weck, Philippe F.; Stancil, Phillip C.; Kirby, Kate; Schweitzer, Andreas; Hauschildt, Peter H.

    2006-01-01

    The lack of accurate and complete molecular line and continuum opacity data has been a serious limitation to developing atmospheric models of cool stars and Extrasolar Giant Planets (EGPs). We report our recent calculations of molecular opacities resulting from the presence of metal hydrides and alkali halides. The resulting data have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state.

  2. A review of the high temperature oxidation of uranium oxides in molten salts and in the solid state to form alkali metal uranates, and their composition and properties

    NASA Astrophysics Data System (ADS)

    Griffiths, Trevor R.; Volkovich, Vladimir A.

    An extensive review of the literature on the high temperature reactions (both in melts and in the solid state) of uranium oxides (UO 2, U 3O 8 and UO 3) resulting in the formation of insoluble alkali metal (Li to Cs) uranates is presented. Their uranate(VI) and uranate(V) compounds are examined, together with mixed and oxygen-deficient uranates. The reactions of uranium oxides with carbonates, oxides, per- and superoxides, chlorides, sulfates, nitrates and nitrites under both oxidising and non-oxidising conditions are critically examined and systematised, and the established compositions of a range of uranate(VI) and (V) compounds formed are discussed. Alkali metal uranates(VI) are examined in detail and their structural, physical, thermodynamic and spectroscopic properties considered. Chemical properties of alkali metal uranates(VI), including various methods for their reduction, are also reported. Errors in the current theoretical treatment of uranate(VI) spectra are identified and the need to develop routes for the preparation of single crystals is stressed.

  3. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blencoe, James G.; Palmer, Donald A.; Anovitz, Lawrence M.

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to producemore » a carbonate of the metal formerly contained in the metal silicate of step (a).« less

  4. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    DOEpatents

    Blencoe, James G [Harriman, TN; Palmer, Donald A [Oliver Springs, TN; Anovitz, Lawrence M [Knoxville, TN; Beard, James S [Martinsville, VA

    2012-02-14

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  5. Analytical balance-based Faraday magnetometer

    NASA Astrophysics Data System (ADS)

    Riminucci, Alberto; Uhlarz, Marc; De Santis, Roberto; Herrmannsdörfer, Thomas

    2017-03-01

    We introduce a Faraday magnetometer based on an analytical balance in which we were able to apply magnetic fields up to 0.14 T. We calibrated it with a 1 mm Ni sphere previously characterized in a superconducting quantum interference device (SQUID) magnetometer. The proposed magnetometer reached a theoretical sensitivity of 3 × 10-8 A m2. We demonstrated its operation on magnetic composite scaffolds made of poly(ɛ-caprolactone)/iron-doped hydroxyapatite. To confirm the validity of the method, we measured the same scaffold properties in a SQUID magnetometer. The agreement between the two measurements was within 5% at 0.127 T and 12% at 24 mT. With the addition, for a small cost, of a permanent magnet and computer controlled linear translators, we were thus able to assemble a Faraday magnetometer based on an analytical balance, which is a virtually ubiquitous instrument. This will make simple but effective magnetometry easily accessible to most laboratories, in particular, to life sciences ones, which are increasingly interested in magnetic materials.

  6. Doppler-free satellites of resonances of electromagnetically induced transparency and absorption on the D 2 lines of alkali metals

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Sarkisyan, D.; Staedter, D.; Akulshin, A. M.

    2006-11-01

    The peculiarities of intra-Doppler structures that are observed in the atomic absorption spectrum of alkali metals with the help of two independent lasers have been studied. These structures accompany ultranarrow coherent resonances of electromagnetically induced transparency and absorption. With the D 2 line of rubidium taken as an example, it is shown that, in the scheme of unidirectional waves, the maximum number of satellite resonances caused by optical pumping selective with respect to the atomic velocity is equal to seven, while only six resonances are observed in the traditional scheme of saturated absorption with counterpropagating waves of the same frequency. The spectral position of the resonances and their polarity depend on the frequency of the saturating radiation, while their number and relative amplitude depend also on the experimental geometry. These features are of general character and should show themselves in the absorption spectrum on the D 2 lines of all alkali metals. An explanation of these features is given. The calculated spectral separations between the resonances are compared to the experimental ones, and their possible application is discussed.

  7. Low Cost, Low Power, High Sensitivity Magnetometer

    DTIC Science & Technology

    2008-12-01

    which are used to measure the small magnetic signals from brain. Other types of vector magnetometers are fluxgate , coil based, and magnetoresistance...concentrator with the magnetometer currently used in Army multimodal sensor systems, the Brown fluxgate . One sees the MEMS fluxgate magnetometer is...Guedes, A.; et al., 2008: Hybrid - LOW COST, LOW POWER, HIGH SENSITIVITY MAGNETOMETER A.S. Edelstein*, James E. Burnette, Greg A. Fischer, M.G

  8. Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2

    PubMed Central

    Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C.; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J.; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J.

    2017-01-01

    Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu2ZnSnS4) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source. PMID:28233864

  9. Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2.

    PubMed

    Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J

    2017-02-24

    Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se 2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu 2 ZnSnS 4 ) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source.

  10. Coverage dependent work function of graphene on a Cu(111) substrate with intercalated alkali metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Brandon G.; Russakoff, Arthur; Varga, Kalman

    2015-05-26

    Using first-principles calculations, it is shown that the work function of graphene on copper can be adjusted by varying the concentration of intercalated alkali metals. Using density functional theory, we calculate the modulation of work function when Li, Na, or K are intercalated between graphene and a Cu(111) surface. Furthermore, the physical origins of the change in work function are explained in terms of phenomenological models accounting for the formation and depolarization of interfacial dipoles and the shift in the Fermi-level induced via charge transfer.

  11. Correction: A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    PubMed

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-12-22

    Correction for 'A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide' by Chee Koon Ng et al., Chem. Commun., 2016, 52, 11842-11845.

  12. Method of coating metal surfaces to form protective metal coating thereon

    DOEpatents

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof.

  13. Method of coating metal surfaces to form protective metal coating thereon

    DOEpatents

    Krikorian, O.H.; Curtis, P.G.

    1992-03-31

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.

  14. High Sensitivity Optically Pumped Quantum Magnetometer

    PubMed Central

    Tiporlini, Valentina; Alameh, Kamal

    2013-01-01

    Quantum magnetometers based on optical pumping can achieve sensitivity as high as what SQUID-based devices can attain. In this paper, we discuss the principle of operation and the optimal design of an optically pumped quantum magnetometer. The ultimate intrinsic sensitivity is calculated showing that optimal performance of the magnetometer is attained with an optical pump power of 20 μW and an operation temperature of 48°C. Results show that the ultimate intrinsic sensitivity of the quantum magnetometer that can be achieved is 327 fT/Hz1/2 over a bandwidth of 26 Hz and that this sensitivity drops to 130 pT/Hz1/2 in the presence of environmental noise. The quantum magnetometer is shown to be capable of detecting a sinusoidal magnetic field of amplitude as low as 15 pT oscillating at 25 Hz. PMID:23766716

  15. Lunar surface magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Sonett, C. P.

    1972-01-01

    The Apollo 15 lunar-surface magnetometer (LSM) is one of a network of magnetometers that have been deployed on the moon to study intrinsic remanent magnetic fields and global magnetic response of the moon to large-scale solar and terrestrial magnetic fields. From these field measurements, properties of the lunar interior such as magnetic permeability, electrical conductivity, and temperature can be calculated. In addition, correlation with solar-wind-spectrometer data allows study of the the solar-wind plasma interaction with the moon and, in turn, investigation of the resulting absorption of gases and accretion of an ionosphere. These physical parameters and processes determined from magnetometer measurements must be accounted for by comprehensive theories of origin and evolution of the moon and solar system.

  16. Cryogenic High-Sensitivity Magnetometer

    NASA Technical Reports Server (NTRS)

    Day, Peter; Chui, Talso; Goodstein, David

    2005-01-01

    A proposed magnetometer for use in a cryogenic environment would be sensitive enough to measure a magnetic-flux density as small as a picogauss (10(exp -16) Tesla). In contrast, a typical conventional flux-gate magnetometer cannot measure a magnetic-flux density smaller that about 1 microgauss (10(exp -10) Tesla). One version of this device, for operation near the low end of the cryogenic temperature range, would include a piece of a paramagnetic material on a platform, the temperature of which would be controlled with a periodic variation. The variation in temperature would be measured by use of a conventional germanium resistance thermometer. A superconducting coil would be wound around the paramagnetic material and coupled to a superconducting quantum interference device (SQUID) magnetometer.

  17. High-temperature, high-pressure hydrothermal synthesis, characterization, and structural relationships of mixed-alkali metals uranyl silicates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi-Hsin; Liu, Hsin-Kuan; Chang, Wen-Jung

    2016-04-15

    Three mixed-alkali metals uranyl silicates, Na{sub 3}K{sub 3}[(UO{sub 2}){sub 3}(Si{sub 2}O{sub 7}){sub 2}]·2H{sub 2}O (1), Na{sub 3}Rb{sub 3}[(UO{sub 2}){sub 3}(Si{sub 2}O{sub 7}){sub 2}] (2), and Na{sub 6}Rb{sub 4}[(UO{sub 2}){sub 4}Si{sub 12}O{sub 33}] (3), have been synthesized by high-temperature, high-pressure hydrothermal reactions at 550 °C and 1440 bar, and characterized by single-crystal X-ray diffraction, photoluminescence, and thermogravimetric analysis. Compound 1 and 2 are isostructural and contain layers of uranyl disilicate. The smaller cation, Na{sup +}, is located in the intralayer channels, whereas the larger cations, K{sup +} and Rb{sup +}, and water molecule are located in the interlayer region. The absencemore » of lattice water in 2 can be understood according to the valence-matching principle. The structure is related to that of a previously reported mixed-valence uranium(V,VI) silicate. Compound 3 adopts a 3D framework structure and contains a unique unbranched dreier fourfold silicate chain with the structural formula {uB,4"1_∞}[{sup 3}Si{sub 12}O{sub 33}] formed of Q{sup 2}, Q{sup 3}, and Q{sup 4} Si. The connectivity of the Si atoms in the Si{sub 12}O{sub 33}{sup 18−} anion can be interpreted on the basis of Zintl–Klemm concept. Crystal data for compound 1: triclinic, P-1, a=5.7981(2) Å, b=7.5875(3) Å, c=12.8068(5) Å, α=103.593(2)°, β=102.879(2)°, γ=90.064(2)°, V=533.00(3) Å{sup 3}, Z=1, R1=0.0278; compound 2: triclinic, P-1, a=5.7993(3) Å, b=7.5745(3) Å, c=12.9369(6) Å, α=78.265(2)°, β=79.137(2)°, γ=89.936(2)°, V=546.02(4) Å{sup 3}, Z=1, R1=0.0287; compound 3: monoclinic, C2/m, a=23.748(1) Å, b=7.3301(3) Å, c=15.2556(7) Å, β=129.116(2)°, V=2060.4(2) Å{sup 3}, Z=2, R1=0.0304. - Graphical abstract: Three mixed-alkali metals uranyl silicates were synthesized under hydrothermal conditions at 550 °C and 1400 bar and structurally characterized by single-crystal X-ray diffraction. Two of them have a layer

  18. The Magnetospheric Multiscale Magnetometers

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Dearborn, D.; Fischer, D.; Le, G.; Leinweber, H. K.; Leneman, D.; Magnes, W.; hide

    2014-01-01

    The success of the Magnetospheric Multiscale mission depends on the accurate measurement of the magnetic field on all four spacecraft. To ensure this success, two independently designed and built fluxgate magnetometers were developed, avoiding single-point failures. The magnetometers were dubbed the digital fluxgate (DFG), which uses an ASIC implementation and was supplied by the Space Research Institute of the Austrian Academy of Sciences and the analogue magnetometer (AFG) with a more traditional circuit board design supplied by the University of California, Los Angeles. A stringent magnetic cleanliness program was executed under the supervision of the Johns Hopkins University,s Applied Physics Laboratory. To achieve mission objectives, the calibration determined on the ground will be refined in space to ensure all eight magnetometers are precisely inter-calibrated. Near real-time data plays a key role in the transmission of high-resolution observations stored onboard so rapid processing of the low-resolution data is required. This article describes these instruments, the magnetic cleanliness program, and the instrument pre-launch calibrations, the planned in-flight calibration program, and the information flow that provides the data on the rapid time scale needed for mission success.

  19. The Study of Anti-/Pro-Oxidant, Lipophilic, Microbial and Spectroscopic Properties of New Alkali Metal Salts of 5-O-Caffeoylquinic Acid

    PubMed Central

    Kalinowska, Monika; Bajko, Ewelina; Matejczyk, Marzena; Kaczyński, Piotr; Łozowicka, Bożena; Lewandowski, Włodzimierz

    2018-01-01

    Lithium, sodium, potassium, rubidium and caesium salts of 5-O-caffeoylquinic acid (chlorogenic acid, 5-CQA) were synthesized and described by FT-IR (infrared spectroscopy), FT-Raman (Raman spectroscopy), UV (UV absorption spectroscopy), 1H (400.15 MHz), 13C (100.63 MHz) NMR (nuclear magnetic resonance spectroscopy). The quantum–chemical calculations at the B3LYP/6-311++G** level were done in order to obtain the optimal structures, IR spectra, NBO (natural bond orbital) atomic charges, HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) orbitals and chemical reactivity parameters for 5-CQA and Li, Na and K 5-CQAs (chlorogenates). The DPPH (α, α-diphenyl-β-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) assays were used for the preliminary estimation of the antioxidant properties of alkali metal chlorogenates and chlorogenic acid. In the DPPH assay the EC50 parameter were equal to 7.39 μM for 5-CQA and was in the range of 4.50–5.89 μM for salts. The FRAP values for two different concentrations (5 and 2.5 μM) of the studied compounds were respectively 114.22 and 72.53 μM Fe2+ for 5-CQA, whereas for salts they were 106.92–141.13 and 78.93–132.00 μM Fe2+. The 5-CQA and its alkali metal salts possess higher antioxidant properties than commonly applied antioxidants (BHA, BHT, l-ascorbic acid). The pro-oxidant action of these compounds on trolox oxidation was studied in the range of their concentration 0.05–0.35 μM. The lipophilicity (logkw) of chlorogenates and chlorogenic acid was determined by RP-HPLC (reverse phase—high performance liquid chromatography) using five different columns (C8, PHE (phenyl), CN (cyano), C18, IAM (immobilized artificial membrane)). The compounds were screened for their in vitro antibacterial activity against E. coli, Bacillus sp., Staphylococcus sp., Streptococcus pyogenes and antifungal activity against Candida sp. The 5-CQA possessed lower antibacterial (minimal

  20. Polymer encapsulated microcavity optomechanical magnetometer

    DOE PAGES

    Zhu, Jiangang; Zhao, Guangming; Savukov, Igor; ...

    2017-08-21

    We demonstrate a magnetometer using polymer encapsulated whispering-gallery-mode microcavity actuated by a micro-magnet. The magnetic field induces force on the micro-magnet causing deformation in the polymer around the microcavity. Subsequently the microcavity detects the change in the refractive index of the polymer resulted from the deformation. This magnetometer works in the frequency range of hertz-to-kilohertz range and achieves a sensitivity of 880 pT/Hz 1/2 at 200 Hz in a micro-scale sensor volume. Polymer encapsulation of the magnetometer and fiber optical connection ensures environmental robustness and practicality of the sensor.

  1. Calorimetric Study of Alkali Metal Ion (K +, Na +, Li +) Exchange in a Clay-Like MXene

    DOE PAGES

    Sharma, Geetu; Muthuswamy, Elayaraja; Naguib, Michael; ...

    2017-06-21

    Intercalation of ions in layered materials has been explored to improve the rate capability in Li-ion batteries and supercapacitors. This work investigates the energetics of alkali ion exchange in a clay-like MXene, Ti 3C 2T x, where T x stands for anionic surface moieties, by immersion calorimetry in aqueous solutions. The measured immersion enthalpies of clay-like Ti 3C 2T x, ΔH imm, at 25 °C in 1 M KCl, 1 M NaCl, 1 M LiCl, and nanopure water are -9.19 (±0.56), -5.90 (±0.31), -1.31 (±0.20), and -1.29 (±0.13) kJ/mol of MXene, respectively. Inductively coupled plasma mass spectrometry is used tomore » obtain the concentrations of alkali ions in the solid and aqueous phases. Using these concentrations, the enthalpies of exchange of alkali metal ions (Li+, Na+, and K+) are calculated; ΔHex in 1 M KCl, 1 M NaCl, 1 M LiCl, and nanopure water are -9.3 (±2.2), 21.0 (±0.9), -1.3 (±0.2), and 302.4 (±0.6) kJ/mol of MXene, respectively. Both immersion and exchange enthalpies are most exothermic for potassium. This suggests that K+ ions interact more strongly with anions present in the interlayers of this MXene than Na + and Li + ions. Water vapor adsorption calorimetry indicates very weak interaction of water with the MXene, while immersion calorimetry suggests a weakly hydrophilic nature of the MXene surface.« less

  2. Calorimetric Study of Alkali Metal Ion (K +, Na +, Li +) Exchange in a Clay-Like MXene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Geetu; Muthuswamy, Elayaraja; Naguib, Michael

    Intercalation of ions in layered materials has been explored to improve the rate capability in Li-ion batteries and supercapacitors. This work investigates the energetics of alkali ion exchange in a clay-like MXene, Ti 3C 2T x, where T x stands for anionic surface moieties, by immersion calorimetry in aqueous solutions. The measured immersion enthalpies of clay-like Ti 3C 2T x, ΔH imm, at 25 °C in 1 M KCl, 1 M NaCl, 1 M LiCl, and nanopure water are -9.19 (±0.56), -5.90 (±0.31), -1.31 (±0.20), and -1.29 (±0.13) kJ/mol of MXene, respectively. Inductively coupled plasma mass spectrometry is used tomore » obtain the concentrations of alkali ions in the solid and aqueous phases. Using these concentrations, the enthalpies of exchange of alkali metal ions (Li+, Na+, and K+) are calculated; ΔHex in 1 M KCl, 1 M NaCl, 1 M LiCl, and nanopure water are -9.3 (±2.2), 21.0 (±0.9), -1.3 (±0.2), and 302.4 (±0.6) kJ/mol of MXene, respectively. Both immersion and exchange enthalpies are most exothermic for potassium. This suggests that K+ ions interact more strongly with anions present in the interlayers of this MXene than Na + and Li + ions. Water vapor adsorption calorimetry indicates very weak interaction of water with the MXene, while immersion calorimetry suggests a weakly hydrophilic nature of the MXene surface.« less

  3. Alkali and alkaline earth metal salts of tetrazolone: structurally interesting and excellently thermostable.

    PubMed

    He, Piao; Wu, Le; Wu, Jin-Ting; Yin, Xin; Gozin, Michael; Zhang, Jian-Guo

    2017-07-04

    Tetrazolone (5-oxotetrazole) was synthesized by a moderate strategy through three steps (addition, cyclization and catalytic hydrogenation) avoiding the unstable intermediate diazonium, as reported during the previous preparation. Alkali and alkaline earth metal salts with lithium (1), sodium (2), potassium (3), rubidium (4) caesium (5), magnesium (6), calcium (7), strontium (8) and barium (9) were prepared and fully characterized using elemental analysis, IR and NMR spectroscopy, DSC and TG analysis. All metal salts were characterized via single-crystal X-ray diffraction. They crystallize in common space groups with high densities ranging from 1.479 (1) to 3.060 g cm -3 (5). Furthermore, the crystal structures of 7, 8 and 9 reveal interesting porous energetic coordination polymers with strong hydrogen bond interactions. All new salts have good thermal stabilities with decomposition temperature between 215.0 °C (4) and 328.2 °C (7), significantly higher than that of the reported nitrogen-rich salt neutral tetrazolone. The sensitivities towards impact and friction were tested using standard methods, and all the tetrazolone-based compounds investigated can be classified into insensitive. The flame test of these metal salts supports their potential use as perchlorate-free pyrotechnics or eco-friendly insensitive energetic materials.

  4. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.

    PubMed

    Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V

    2016-01-14

    In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested.

  5. Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli.

    PubMed

    Eguchi, Yoko; Utsumi, Ryutaro

    2014-09-01

    Two-component signal transduction systems (TCSs) in bacteria perceive environmental stress and transmit the information via phosphorelay to adjust multiple cellular functions for adaptation. The EvgS/EvgA system is a TCS that confers acid resistance to Escherichia coli cells. Activation of the EvgS sensor initiates a cascade of transcription factors, EvgA, YdeO, and GadE, which induce the expression of a large group of acid resistance genes. We searched for signals activating EvgS and found that a high concentration of alkali metals (Na(+), K(+)) in addition to low pH was essential for the activation. EvgS is a histidine kinase, with a large periplasmic sensor region consisting of two tandem PBPb (bacterial periplasmic solute-binding protein) domains at its N terminus. The periplasmic sensor region of EvgS was necessary for EvgS activation, and Leu152, located within the first PBPb domain, was involved in the activation. Furthermore, chimeras of EvgS and PhoQ histidine kinases suggested that alkali metals were perceived at the periplasmic sensor region, whereas the cytoplasmic linker domain, connecting the transmembrane region and the histidine kinase domain, was required for low-pH perception. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. THOR Fluxgate Magnetometer (MAG)

    NASA Astrophysics Data System (ADS)

    Nakamura, Rumi; Eastwood, Jonathan; Magnes, Werner; Valavanoglou, Aris; Carr, Christopher M.; O'Brien, Helen L.; Narita, Yasuhito; Delva, Magda; Chen, Christopher H. K.; Plaschke, Ferdinand; Soucek, Jan

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The goal of the Fluxgate Magnetometer (MAG) is to measure the DC to low frequency ambient magnetic field. The design of the magnetometer consists of two tri-axial sensors and the related magnetometer electronics; the electronics are hosted on printed circuit boards in the common electronics box of the fields and wave processor (FWP). A fully redundant two sensor system mounted on a common boom and the new miniaturized low noise design based on MMS and Solar Orbiter instruments enable accurate measurement throughout the region of interest for THOR science. The usage of the common electronics hosted by FWP guarantees to fulfill the required timing accuracy with other fields measurements. These improvements are important to obtain precise measurements of magnetic field, which is essential to estimate basic plasma parameters and correctly identify the spatial and temporal scales of the turbulence. Furthermore, THOR MAG provides high quality data with sufficient overlap with the Search Coil Magnetometer (SCM) in frequency space to obtain full coverage of the wave forms over all the frequencies necessary to obtain the full solar wind turbulence spectrum from MHD to kinetic range with sufficient accuracy.

  7. The Magsat precision vector magnetometer

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1980-01-01

    This paper examines the Magsat precision vector magnetometer which is designed to measure projections of the ambient field in three orthogonal directions. The system contains a highly stable and linear triaxial fluxgate magnetometer with a dynamic range of + or - 2000 nT (1 nT = 10 to the -9 weber per sq m). The magnetometer electronics, analog-to-digital converter, and digitally controlled current sources are implemented with redundant designs to avoid a loss of data in case of failures. Measurements are carried out with an accuracy of + or - 1 part in 64,000 in magnitude and 5 arcsec in orientation (1 arcsec = 0.00028 deg).

  8. The UOSAT magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1982-01-01

    The magnetometer aboard the University of Surrey satellite (UOSAT) and its associated electronics are described. The basic fluxgate magnetometer employed has a dynamic range of plus or minus 8000 nT with outputs digitized by a 12-bit successive approximation A-D converter having a resolution of plus or minus 2 nT. Noise in the 3-13 Hz bandwidth is less than 1 nT. A bias field generator extends the dynamic range to plus or minus 64,000 nT with quantization steps of 8000 nT. The magnetometer experiment is expected to provide information on the secular variation of the geomagnetic field, and the decay rate of the dipole term. Special emphasis will be placed on the acquisition of real time and memory data over the poles which can be correlated with that from Magsat.

  9. Spaced-based search coil magnetometers

    NASA Astrophysics Data System (ADS)

    Hospodarsky, George B.

    2016-12-01

    Search coil magnetometers are one of the primary tools used to study the magnetic component of low-frequency electromagnetic waves in space. Their relatively small size, mass, and power consumption, coupled with a good frequency range and sensitivity, make them ideal for spaceflight applications. The basic design of a search coil magnetometer consists of many thousands of turns of wire wound on a high permeability core. When a time-varying magnetic field passes through the coil, a time-varying voltage is induced due to Faraday's law of magnetic induction. The output of the coil is usually attached to a preamplifier, which amplifies the induced voltage and conditions the signal for transmission to the main electronics (usually a low-frequency radio receiver). Search coil magnetometers are usually used in conjunction with electric field antenna to measure electromagnetic plasma waves in the frequency range of a few hertz to a few tens of kilohertzs. Search coil magnetometers are used to determine the properties of waves, such as comparing the relative electric and magnetic field amplitudes of the waves, or to investigate wave propagation parameters, such as Poynting flux and wave normal vectors. On a spinning spacecraft, they are also sometimes used to determine the background magnetic field. This paper presents some of the basic design criteria of search coil magnetometers and discusses design characteristics of sensors flown on a number of spacecraft.

  10. Spectroscopic and theoretical investigations of alkali metal linoleates and oleinates

    NASA Astrophysics Data System (ADS)

    Świsłocka, Renata; Regulska, Ewa; Jarońko, Paweł; Lewandowski, Włodzimierz

    2017-11-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the linoleic (cis-9,cis-12-octadecadienoic) and oleic (cis-9-octadecenoic) acids was investigated. The complementary analytical methods: vibrational (IR, Raman) and electronic (UV) molecular absorption spectroscopy as well as DFT quantum mechanical calculations (charge distribution, angles between bonds, bond lengths, theoretical IR and NMR spectra) were carried out. The regular shifts of bands connected with carboxylate anion in the spectra of studied salts were observed. Some bonds and angles reduced or elongated in the series: acid→Li→Na→K linoleates/oleinates. The highest changes were noted for bond lengths and angles concerning COO- ion. The electronic charge distribution in studied molecules was also discussed. Total atomic charges of carboxylate anion decrease as a result of the replacement of hydrogen atom with alkali metal cation. The increasing values of dipole moment and decreasing values of total energy in the order: linoleic/oleic acid→lithium→sodium→potassium linoleates/oleinates indicate an increase in stability of the compounds.

  11. Bonding and Mobility of Alkali Metals in Helicenes.

    PubMed

    Barroso, Jorge; Murillo, Fernando; Martínez-Guajardo, Gerardo; Ortíz-Chi, Filiberto; Pan, Sudip; Fernández-Herrera, María A; Merino, Gabriel

    2018-06-04

    In this work, we analyze the interaction of alkali metal cations with [6]- and [14]helicene and the cation mobility of therein. We found that the distortion of the carbon skeleton is the cause that some of the structures that are local minima for the smallest cations are not energetically stable for K+, Rb+, and Cs+. Also, the most favorable complexes are those where the cation is interacting with two rings forming a metallocene-like structure, except for the largest cation Cs+, where the distortion provoked by the size of the cation desestabilizes the complex. As far as mobility is concerned, the smallest cations, particularly Na+, are the ones that can move most efficiently. In [6]helicene, the mobility is limited by the capture of the cation forming the metallocene-like structure. In larger helicenes, the energy barriers for the cation to move are similar both inside and outside the helix. However, complexes with the cation between two layers are more energetically favored so that the movement will be preferred in that region. The bonding analysis reveals that interactions with no less than 50% of orbitalic contribution are taking place for the series of E+-[6]helicene. Particularly, the complexes of Li+ stand out showing a remarkably orbitalic character bonding (72.5 - 81.6%). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Complete Tri-Axis Magnetometer Calibration with a Gyro Auxiliary

    PubMed Central

    Yang, Deng; You, Zheng; Li, Bin; Duan, Wenrui; Yuan, Binwen

    2017-01-01

    Magnetometers combined with inertial sensors are widely used for orientation estimation, and calibrations are necessary to achieve high accuracy. This paper presents a complete tri-axis magnetometer calibration algorithm with a gyro auxiliary. The magnetic distortions and sensor errors, including the misalignment error between the magnetometer and assembled platform, are compensated after calibration. With the gyro auxiliary, the magnetometer linear interpolation outputs are calculated, and the error parameters are evaluated under linear operations of magnetometer interpolation outputs. The simulation and experiment are performed to illustrate the efficiency of the algorithm. After calibration, the heading errors calculated by magnetometers are reduced to 0.5° (1σ). This calibration algorithm can also be applied to tri-axis accelerometers whose error model is similar to tri-axis magnetometers. PMID:28587115

  13. Magnetogama: an open schematic magnetometer

    NASA Astrophysics Data System (ADS)

    Wahyudi; Khakhim, Nurul; Kuntoro, Tri; Mardiatno, Djati; Rakhman, Afif; Setyo Handaru, Anas; Akhmad Mufaqih, Adien; Marwan Irnaka, Theodosius

    2017-09-01

    Magnetogama is an open schematic hand-assembled fluxgate magnetometer. Compared to another magnetometer, Magnetogama has more benefit concerning its price and its ease of use. Practically Magnetogama can be utilized either in land or attached to an unmanned aerial vehicle (UAV). Magnetogama was designed to give open access to a cheap and accurate alternative to magnetometer sensor. Therefore it can be used as a standard design which is directly applicable to the low-budget company or education purposes. Schematic, code and several verification tests were presented in this article ensuring its reproducibility. Magnetogama has been tested with two kind of tests: a comparison with two nearest observatories at Learmonth (LRM) and Kakadu (KDU) and the response of magnetic substance.

  14. A comprehensive study of the complexation of alkali metal cations by lower rim calix[4]arene amide derivatives.

    PubMed

    Horvat, Gordan; Frkanec, Leo; Cindro, Nikola; Tomišić, Vladislav

    2017-09-13

    The complexation of alkali metal cations by lower rim N,N-dihexylacetamide (L1) and newly synthesized N-hexyl-N-methylacetamide (L2) calix[4]arene tertiary-amide derivatives was thoroughly studied at 25 °C in acetonitrile (MeCN), benzonitrile (PhCN), and methanol (MeOH) by means of direct and competitive microcalorimetric titrations, and UV and 1 H NMR spectroscopies. In addition, by measuring the ligands' solubilities, the solution (transfer) Gibbs energies of the ligands and their alkali metal complexes were obtained. The inclusion of solvent molecules in the free and complexed calixarene hydrophobic cavities was also investigated. Computational (classical molecular dynamics) investigations of the studied systems were also carried out. The obtained results were compared with those previously obtained by studying the complexation ability of an N-hexylacetamidecalix[4]arene secondary-amide derivative (L3). The stability constants of 1 : 1 complexes were determined in all solvents used (the values obtained by different methods being in excellent agreement), as were the corresponding complexation enthalpies and entropies. Almost all of the examined reactions were enthalpically controlled. The most striking exceptions were reactions of Li + with both ligands in methanol, for which the entropic contribution to the reaction Gibbs energy was substantial due the entropically favourable desolvation of the smallest lithium cation. The thermodynamic stabilities of the complexes were quite solvent dependent (the stability decreased in the solvent order: MeCN > PhCN ≫ MeOH), which could be accounted for by considering the differences in the solvation of the ligand and free and complexed alkali metal cations in the solvents used. Comparison of the stability constants of the ligand L1 and L2 complexes clearly revealed that the higher electron-donating ability of the hexyl with respect to the methyl group is of considerable importance in determining the equilibria of the

  15. The Pioneer XI high field fluxgate magnetometer

    NASA Technical Reports Server (NTRS)

    Acuna, M. A.; Ness, N. F.

    1975-01-01

    The high field fluxgate magnetometer experiment flown aboard the Pioneer XI spacecraft is described. This extremely simple instrument was used to extend the spacecraft's upper-limit measurement capability by approximately an order of magnitude (from 0.14 mT to 1.00 mT) with minimum power and volume requirements. This magnetometer was designed to complement the low-field measurements provided by a helium vector magnetometer and utilizes magnetic ring core sensors with biaxial orthogonal sense coils. The instrument is a single-range, triaxial-fluxgate magnetometer capable of measuring fields of up to 1 mT along each orthogonal axis, with a maximum resolution of 1 microT.

  16. Vector Fluxgate Magnetometer (VMAG) Development for DSX

    DTIC Science & Technology

    2008-05-19

    AFRL-RV-HA-TR-2008-1108 Vector Fluxgate Magnetometer (VMAG) Development for DSX Mark B. Moldwin Q. O O O I- UCLA Q Institute of...for Public Release; Distribution Unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT UCLA is building a three-axis fluxgate magnetometer for the Air... fluxgate magnetometer provides the necessary data to support both the Space Weather (SWx) specification and mapping requirements and the WPIx

  17. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    NASA Technical Reports Server (NTRS)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  18. Vector Fluxgate Magnetometer (VMAG) Development for DSX

    DTIC Science & Technology

    2010-06-03

    AFRL-RV-HA-TR-2010-1056 Vector Fluxgate Magnetometer (VMAG) Development for DSX Mark B. Moldwin UCLA Institute of Geophysics... Fluxgate Magnetometer (VMAG) Development for DSX 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) Mark B. Moldwin 5d. PROJECT...axis fluxgate magnetometer for the AFRL-mission. The instrument is designed to measure the medium-Earth orbit geomagnetic field with precision of 0.1

  19. Vector Fluxgate Magnetometer (VMAG) Development for DSX

    DTIC Science & Technology

    2007-07-02

    AFRL-RV-HA-TR-2007-1077 Vector Fluxgate Magnetometer (VMAG) Development for DSX -- Mark B. Moldwin 0 UCLA Institute of Geophysics and Planetary...02-07-2007IScientific Report No. 2 April 2006 - April 2007 4. TITLE AND SUBTITLE S. CONTRACT NUMBER Vector Fluxgate Magnetometer (VMAG) Development...SUPPLEMENTARY NOTES 14. ABSTRACT UCLA is building a three-axis fluxgate magnetometer for the AFRL-mission. The instrument is designed to measure the medium

  20. Universal scaling of potential energy functions describing intermolecular interactions. II. The halide-water and alkali metal-water interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werhahn, Jasper C.; Akase, Dai; Xantheas, Sotiris S.

    2014-08-14

    The scaled versions of the newly introduced [S. S. Xantheas and J. C. Werhahn, J. Chem. Phys.141, 064117 (2014)] generalized forms of some popular potential energy functions (PEFs) describing intermolecular interactions – Mie, Lennard-Jones, Morse, and Buckingham exponential-6 – have been used to fit the ab initio relaxed approach paths and fixed approach paths for the halide-water, X -(H 2O), X = F, Cl, Br, I, and alkali metal-water, M +(H 2O), M = Li, Na, K, Rb, Cs, interactions. The generalized forms of those PEFs have an additional parameter with respect to the original forms and produce fits tomore » the ab initio data that are between one and two orders of magnitude better in the χ 2 than the original PEFs. They were found to describe both the long-range, minimum and repulsive wall of the respective potential energy surfaces quite accurately. Overall the 4-parameter extended Morse (eM) and generalized Buckingham exponential-6 (gBe-6) potentials were found to best fit the ab initio data for these two classes of ion-water interactions. Finally, the fitted values of the parameter of the (eM) and (gBe-6) PEFs that control the repulsive wall of the potential correlate remarkably well with the ionic radii of the halide and alkali metal ions.« less

  1. A Merged Dataset for Solar Probe Plus FIELDS Magnetometers

    NASA Astrophysics Data System (ADS)

    Bowen, T. A.; Dudok de Wit, T.; Bale, S. D.; Revillet, C.; MacDowall, R. J.; Sheppard, D.

    2016-12-01

    The Solar Probe Plus FIELDS experiment will observe turbulent magnetic fluctuations deep in the inner heliosphere. The FIELDS magnetometer suite implements a set of three magnetometers: two vector DC fluxgate magnetometers (MAGs), sensitive from DC- 100Hz, as well as a vector search coil magnetometer (SCM), sensitive from 10Hz-50kHz. Single axis measurements are additionally made up to 1MHz. To study the full range of observations, we propose merging data from the individual magnetometers into a single dataset. A merged dataset will improve the quality of observations in the range of frequencies observed by both magnetometers ( 10-100 Hz). Here we present updates on the individual MAG and SCM calibrations as well as our results on generating a cross-calibrated and merged dataset.

  2. Influence of alkali metal cations/type of activator on the structure of alkali-activated fly ash - ATR-FTIR studies

    NASA Astrophysics Data System (ADS)

    Król, M.; Rożek, P.; Chlebda, D.; Mozgawa, W.

    2018-06-01

    Coal fly ash as a secondary aluminosiliceous raw material that is commonly used in the so-called geopolymerization process has been activated with different alkali hydroxides solutions: LiOH, NaOH and KOH. Changes in the aluminosilicate structure of the material during alkali-activation have been analyzed in detail on the basis of ATR/FT-IR spectra. These changes mainly affect both the integral intensity and FWHM of bands in the range of 1200-950 cm-1, however dehydration and carbonation process can be also analyzed based on obtaining results.

  3. On the origin of alkali metals in Europa exosphere

    NASA Astrophysics Data System (ADS)

    Ozgurel, Ozge; Pauzat, Françoise; Ellinger, Yves; Markovits, Alexis; Mousis, Olivier; LCT, LAM

    2016-10-01

    At a time when Europa is considered as a plausible habitat for the development of an early form of life, of particular concern is the origin of neutral sodium and potassium atoms already detected in its exosphere (together with magnesium though in smaller abundance), since these atoms are known to be crucial for building the necessary bricks of prebiotic species. However their origin and history are still poorly understood. The most likely sources could be exogenous and result from the contamination produced by Io's intense volcanism and/or by meteoritic bombardment. These sources could also be endogenous if these volatile elements originate directly from Europa's icy mantle. Here we explore the possibility that neutral sodium and potassium atoms were delivered to the satellite's surface via the upwelling of ices formed in contact with the hidden ocean. These metallic elements would have been transferred as ions to the ocean at early epochs after Europa's formation, by direct contact of water with the rocky core. During Europa's subsequent cooling, the icy layers formed at the top of the ocean would have kept trapped the sodium and potassium, allowing their future progression to the surface and final identification in the exosphere of the satellite. To support this scenario, we have used chemistry numerical models based on first principle periodic density functional theory (DFT). These models are shown to be well adapted to the description of compact ice and are capable to describe the trapping and neutralization of the initial ions in the ice matrix. The process is found relevant for all the elements considered, alkali metals like Na and K, as well as for Mg and probably for Ca, their respective abundances depending essentially of their solubility and chemical capabilities to blend with water ices.

  4. Structural and electronic engineering of 3DOM WO3 by alkali metal doping for improved NO2 sensing performance

    NASA Astrophysics Data System (ADS)

    Wang, Zhihua; Fan, Xiaoxiao; Han, Dongmei; Gu, Fubo

    2016-05-01

    Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior.Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and

  5. Method of performing MRI with an atomic magnetometer

    DOEpatents

    Savukov, Igor Mykhaylovich; Matlashov, Andrei Nikolaevich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry; Zotev, Vadim Sergeyevich

    2012-11-06

    A method and apparatus are provided for performing an in-situ magnetic resonance imaging of an object. The method includes the steps of providing an atomic magnetometer, coupling a magnetic field generated by magnetically resonating samples of the object through a flux transformer to the atomic magnetometer and measuring a magnetic resonance of the atomic magnetometer.

  6. Method of performing MRI with an atomic magnetometer

    DOEpatents

    Savukov, Igor Mykhaylovich; Matlashov, Andrei Nikolaevich; Espy, Michelle A; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry; Zotev, Vadim Sergeyevich

    2013-08-27

    A method and apparatus are provided for performing an in-situ magnetic resonance imaging of an object. The method includes the steps of providing an atomic magnetometer, coupling a magnetic field generated by magnetically resonating samples of the object through a flux transformer to the atomic magnetometer and measuring a magnetic resonance of the atomic magnetometer.

  7. Effect of alkali metal ions on the pyrrole and pyridine π-electron systems in pyrrole-2-carboxylate and pyridine-2-carboxylate molecules: FT-IR, FT-Raman, NMR and theoretical studies

    NASA Astrophysics Data System (ADS)

    Świderski, G.; Wojtulewski, S.; Kalinowska, M.; Świsłocka, R.; Lewandowski, W.

    2011-05-01

    The FT-IR, FT-Raman and 1H and 13C NMR spectra of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium, rubidium and caesium pyrrole-2-carboxylates were recorded, assigned and compared in the Li → Na → K → Rb → Cs salt series. The effect of alkali metal ions on the electronic system of ligands was discussed. The obtained results were compared with previously reported ones for pyridine-2-carboxylic acid and alkali metal pyridine-2-carboxylates. Calculations for pyrrole-2-carboxylic acid and Li, Na, K pyrrole-2-carboxylates in B3LYP/6-311++G ** level and Møller-Plesset method in MP2/6-311++G ** level were made. Bond lengths, angles and dipole moments as well as aromaticity indices (HOMA, EN, GEO, I 6) for the optimized structures of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium pyrrole-2-carboxylates were also calculated. The degree of perturbation of the aromatic system of ligand under the influence of metals in the Li → Cs series was investigated with the use of statistical methods (linear correlation), calculated aromaticity indices and Mulliken, NBO and ChelpG population analysis method. Additionally, the Bader theory (AIM) was applied to setting the characteristic of the bond critical points what confirmed the influence of alkali metals on the pyrrole ring.

  8. Choice of Magnetometers and Gradiometers after Signal Space Separation.

    PubMed

    Garcés, Pilar; López-Sanz, David; Maestú, Fernando; Pereda, Ernesto

    2017-12-16

    Modern Elekta Neuromag MEG devices include 102 sensor triplets containing one magnetometer and two planar gradiometers. The first processing step is often a signal space separation (SSS), which provides a powerful noise reduction. A question commonly raised by researchers and reviewers relates to which data should be employed in analyses: (1) magnetometers only, (2) gradiometers only, (3) magnetometers and gradiometers together. The MEG community is currently divided with regard to the proper answer. First, we provide theoretical evidence that both gradiometers and magnetometers result from the backprojection of the same SSS components. Then, we compare resting state and task-related sensor and source estimations from magnetometers and gradiometers in real MEG recordings before and after SSS. SSS introduced a strong increase in the similarity between source time series derived from magnetometers and gradiometers (r² = 0.3-0.8 before SSS and r² > 0.80 after SSS). After SSS, resting state power spectrum and functional connectivity, as well as visual evoked responses, derived from both magnetometers and gradiometers were highly similar (Intraclass Correlation Coefficient > 0.8, r² > 0.8). After SSS, magnetometer and gradiometer data are estimated from a single set of SSS components (usually ≤ 80). Equivalent results can be obtained with both sensor types in typical MEG experiments.

  9. A Complete Cubesat Magnetometer System Project

    NASA Technical Reports Server (NTRS)

    Zesta, Eftyhia

    2014-01-01

    The objective of this work is to provide the center with a fully tested, flexible, low cost, miniaturized science magnetometer system applicable to small satellite programs, like Cubesats, and to rides of opportunity that do not lend themselves to the high integration costs a science magnetometer on a boom necessitates.

  10. Long-Range Adiabatic Corrections to the Ground Molecular State of Alkali-Metal Dimers.

    NASA Astrophysics Data System (ADS)

    Marinescu, M.; Dalgarno, A.

    1997-04-01

    The structure of the long-range limit of the diagonal adiabatic corrections to the ground molecular state of diatomic molecules, may be expressed as a series of inverse powers of internuclear distance, R. The coefficients of this expansion are proportional to the inverse of the nuclear mass. Thus, they may be interpreted as a nuclear mass-dependent corrections to the dispersion coefficients. Using perturbation theory we have calculated the long-range coefficients of the diagonal adiabatic corrections up to the order of R-10. The final expressions are in terms of integrals over imaginary frequencies of products of atomic matrix elements involving Green's functions of complex energy. Thus, in our approach the molecular problem is reduced to an atomic one. Numerical evaluations have been done for all alkali-metal dimers. We acknowledge the support of the U.S. Dept. of Energy.

  11. Optical properties from time-dependent current-density-functional theory: the case of the alkali metals Na, K, Rb, and Cs

    NASA Astrophysics Data System (ADS)

    Ferradás, R.; Berger, J. A.; Romaniello, Pina

    2018-06-01

    We present the optical conductivity as well as the electron-energy loss spectra of the alkali metals Na, K, Rb, and Cs calculated within time-dependent current-density functional theory. Our ab initio formulation describes from first principles both the Drude-tail and the interband absorption of these metals as well as the most dominant relativistic effects. We show that by using a recently derived current functional [Berger, Phys. Rev. Lett. 115, 137402 (2015)] we obtain an overall good agreement with experiment at a computational cost that is equivalent to the random-phase approximation. We also highlight the importance of the choice of the exchange-correlation potential of the ground state.

  12. Development of operationally stable inverted organic light-emitting diode prepared without using alkali metals (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Fukagawa, Hirohiko; Morii, Katsuyuki; Hasegawa, Munehiro; Gouda, Shun; Tsuzuki, Toshimitsu; Shimizu, Takahisa; Yamamoto, Toshihiro

    2015-10-01

    The OLED is one of the key devices for realizing future flexible displays and lightings. One of the biggest challenges left for the OLED fabricated on a flexible substrate is the improvement of its resistance to oxygen and moisture. A high barrier layer [a water vapor transmission rate (WVTR) of about 10-6 g/m2/day] is proposed to be necessary for the encapsulation of conventional OLEDs. Some flexible high barrier layers have recently been demonstrated; however, such high barrier layers require a complex process, which makes flexible OLEDs expensive. If an OLED is prepared without using air-sensitive materials such as alkali metals, no stringent encapsulation is necessary for such an OLED. In this presentation, we will discuss our continuing efforts to develop an inverted OLED (iOLED) prepared without using alkali metals. iOLEDs with a bottom cathode are considered to be effective for realizing air-stable OLEDs since the electron injection layer (EIL) can be prepared by fabrication processes that might damage the organic layers, resulting in the enhanced range of materials suitable for EILs. We have demonstrated that a highly efficient and relatively air-stable iOLED can be realized by employing poly(ethyleneimine) as an EIL. Dark spot formation was not observed after 250 days in the poly(ethyleneimine)-based iOLED encapsulated by a barrier film with a WVTR of 10-4 g/m2/day. In addition, we have demonstrated the fabrication of a highly operational stable iOLED utilizing a newly developed EIL. The iOLED exhibits an expected half-lifetime of over 10,000 h from an initial luminance of 1,000 cd/m2.

  13. Intelligent magnetometer with photoelectric sampler

    NASA Astrophysics Data System (ADS)

    Wang, Defang; Xu, Yan; Zhu, Minjun

    1991-08-01

    The magnetometer described in this paper introduces a photoelectric sampler and a single-chip microcomputer, thus eliminating the error that is not eliminated in the analog circuit. The application of the photoelectric segregator and the voltage-to-frequency convertor have suppressed the interference significantly. According to the requirement of measuring the magnetic field, the function of automatic searching the latching is added. The intelligent magnetometer has higher accuracy and good temperature stability.

  14. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water].

    PubMed

    Wang, Lei; Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-08-01

    An alkalis assisted hydrothermal process was induced to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water. The results showed that alkalis assisted hydrothermal process removed the heavy metals effectively from the waste water, and reduced leachability of fly ash after process. The heavy metal leachabilities of fly ash studied in this paper were Mn 17,300 microg/L,Ni 1650 microg/L, Cu 2560 microg/L, Zn 189,000 microg/L, Cd 1970 microg/L, Pb 1560 microg/L for medical waste incinerator fly ash; Mn 17.2 microg/L, Ni 8.32 microg/L, Cu 235.2 microg/L, Zn 668.3 microg/L, Cd 2.81 microg/L, Pb 7200 microg/L for municipal solid waste incinerator fly ash. After hydrothermal process with experimental condition [Na2CO3 dosage (5 g Na2CO3/50 g fly ash), reaction time = 10 h, L/S ratio = 10/1], the heavy metal removal efficiencies of medical waste incinerator fly ash were 86.2%-97.3%, and 94.7%-99.6% for municipal solid waste incinerator fly ash. The leachabilities of both two kinds of fly ash were lower than that of the Chinese national limit. The mechanism of heavy metal stabilization can be concluded to the chemisorption and physically encapsulation effects of aluminosilicates during its formation, crystallization and aging process, the high pH value has some contribution to the heavy metal removal and stabilization.

  15. A theoretical study of the structure and thermochemical properties of alkali metal fluoroplumbates MPbF3.

    PubMed

    Boltalin, A I; Korenev, Yu M; Sipachev, V A

    2007-07-19

    Molecular constants of MPbF3 (M=Li, Na, K, Rb, and Cs) were calculated theoretically at the MP2(full) and B3LYP levels with the SDD (Pb, K, Rb, and Cs) and cc-aug-pVQZ (F, Li, and Na) basis sets to determine the thermochemical characteristics of the substances. Satisfactory agreement with experiment was obtained, including the unexpected nonmonotonic dependence of substance dissociation energies on the alkali metal atomic number. The bond lengths of the theoretical CsPbF3 model were substantially elongated compared with experimental estimates, likely because of errors in both theoretical calculations and electron diffraction data processing.

  16. Development of a Micro-Fabricated Total-Field Magnetometer

    DTIC Science & Technology

    2011-03-01

    are made with fluxgate technologies. Fluxgates have lower sensitivity than Cs magnetometers , yet they continue to be used in small wands simply...extraction process by providing the sensitivity of a Cs magnetometer with the convenience and low cost of a fluxgate wand. Extremely small and low cost...FINAL REPORT Development of a Micro-Fabricated Total-Field Magnetometer SERDP Project MR-1512 MARCH 2011 Mark Prouty Geometrics, Inc

  17. Man-Portable Simultaneous Magnetometer and EM System (MSEMS)

    DTIC Science & Technology

    2008-12-01

    expensive fluxgate magnetometers . This is because the interleaving hardware is expecting a Larmor signal as input; it performs period counting of the...Larmor signal between EM61 pulses to convert the frequency-based Larmor signal into nanotesla. A fluxgate magnetometer does not employ the resonance...FINAL REPORT Man-Portable Simultaneous Magnetometer and EM System (MSEMS) ESTCP Project MM-0414 December 2008 Robert Siegel Science

  18. Feasibility Study for an Autonomous UAV - Magnetometer System

    DTIC Science & Technology

    2007-11-01

    collect data from multiple magnetometers at high sampling rates (~100 Hz), and associated with these acquisition systems are highly accurate...component for an UAV helicopter- magnetometer system is the ability to have precise positioning (both for flightpath execution and for data acquisition...discussed under section 6.3. Figure 6.11 shows the fluxgate data used to compensate a total field magnetometer as previously described. The red

  19. A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    PubMed

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-09-27

    Binary catalyst systems comprising a cationic Ru-CNC pincer complex and an alkali metal salt were developed for selective hydroboration of CO 2 utilizing pinacolborane at r.t. and 1 atm CO 2 , with the combination of [Ru(CNC Bn )(CO) 2 (H)][PF 6 ] and KOCO 2 t Bu producing formoxyborane in 76% yield. A bicyclic catalytic mechanism was proposed and discussed.

  20. Catalysis using hydrous metal oxide ion exchanges

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  1. Catalysis using hydrous metal oxide ion exchangers

    DOEpatents

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  2. Optical Magnetometer Incorporating Photonic Crystals

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; Florescu, Lucia

    2007-01-01

    According to a proposal, photonic crystals would be used to greatly increase the sensitivities of optical magnetometers that are already regarded as ultrasensitive. The proposal applies, more specifically, to a state-of-the-art type of quantum coherent magnetometer that exploits the electromagnetically-induced-transparency (EIT) method for determining a small change in a magnetic field indirectly via measurement of the shift, induced by that change, in the hyperfine levels of resonant atoms exposed to the field.

  3. An alkali-metal ion extracted layered compound as a template for a metastable phase synthesis in a low-temperature solid-state reaction: preparation of brookite from K0.8Ti1.73Li0.27O4.

    PubMed

    Ozawa, Tadashi C; Sasaki, Takayoshi

    2010-03-15

    We have designed a new approach to synthesize brookite, i.e., to extract alkali-metal ions from K(0.8)Ti(1.73)Li(0.27)O(4) (KTLO) and to apply simultaneous heat treatment to the remaining lepidocrocite-type layers of TiO(6) octahedra. For the alkali-metal ion extraction and the simultaneous heat treatment, KTLO was heated at 400 degrees C with polytetrafluoroethylene (PTFE) in flowing Ar. PTFE has been found to be an effective agent to extract strongly electropositive alkali-metal ions from KTLO because of the strong electronegativity of F as its component. The product of this reaction consists of a mixture of brookite, K(2)CO(3), LiF, and PTFE derivatives, indicating the complete extraction of K(+) and Li(+) from KTLO and formation of brookite from the lepidocrocite-type layer of TiO(6) octahedra as a template. This brookite has a partial replacement of O(2-) with F(-) and/or slight oxygen deficiency; thus, its color is light-bluish gray. Fully oxidized brookite formation and complete decomposition of PTFE derivatives have been achieved by further heating in flowing air, and coproduced alkali-metal salts have been removed by washing in water. Powder X-ray diffraction, Raman spectroscopy, and chemical analysis results have confirmed that the final brookite product treated at 600 degrees C is single phase, and it is white. The method to extract alkali-metal ions from a crystalline material using PTFE is drastically different from the common methods such as soft-chemical and electrochemical reactions. It is likely that this new synthetic approach is applicable to other layered systems to prepare a diverse family of compounds, including novel metastable ones.

  4. A Antarctic Magnetometer Chain Along the Cusp Latitude: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Liu, Y.

    2016-12-01

    A magnetometer chain from Zhongshan Station to Dome-A in Antarctica has been established since February 2009, consisting in five fluxgate magnetometers, with one regular magnetometer at Zhongshan Station and four low power magnetometers along the cusp latitude in the southern hemisphere, over a distance of 1260 Km. It is one part of the magnetometer network in Antarctic continent, filling the void area for magnetic observation over east-southern Antarctica, greatly enlarging the coverage of the Zhongshan Station. It is also magnetically conjugated with Svalbard region in the Arctic, with a leg extending to DNB in east coast Greenland. Conjunction observation among these magnetometers could provide excellent tracing of series of the typical space physical phenomena such as FTE, TCV, MIE, ULF waves, etc.

  5. Esr Spectra of Alkali-Metal Atoms on Helium Nanodroplets: a Theoretical Model for the Prediction of Helium Induced Hyperfine Structure Shifts

    NASA Astrophysics Data System (ADS)

    Hauser, Reas W.; Filatov, Michael; Ernst, Wolfgang E.

    2013-06-01

    We predict He-droplet-induced changes of the isotropic HFS constant a_{HFS} of the alkali-metal atoms M = Li, Na, K and Rb on the basis of a model description. Optically detected electron spin resonance spectroscopy has allowed high resolution measurements that show the influence of the helium droplet and its size on the unpaired electron spin density at the alkali nucleus. Our theoretical approach to describe this dependence is based on a combination of two well established techniques: Results of relativistic coupled-cluster calculations on the alkali-He dimers (energy and HFS constant as functions of the binding length) are mapped onto the doped-droplet-situation with the help of helium-density functional theory. We simulate doped droplets He_{N} with N ranging from 50 to 10000, using the diatomic alkali-He-potential energy curves as input. From the obtained density profiles we evaluate average distances between the dopant atom and its direct helium neighborhood. The distances are then set in relation to the variation of the HFS constant with binding length in the simplified alkali-He-dimer model picture. This method yields reliable relative shifts but involves a systematic absolute error. Hence, the absolute values of the shifts are tied to one experimentally determined HFS constant for ^{85}Rb-He_{N = 2000}. With this parameter choice we obtain results in good agreement with the available experimental data for Rb and K^{a,b} confirming the predicted 1/N trend of the functional dependence^{c}. M. Koch, G. Auböck, C. Callegari, and W. E. Ernst, Phys. Rev. Lett. 103, 035302-1-4 (2009) M. Koch, C. Callegari, and W. E. Ernst, Mol. Phys. 108 (7), 1005-1011 (2010) A. W. Hauser, T. Gruber, M. Filatov, and W. E. Ernst, ChemPhysChem (2013) online DOI: 10.1002/cphc.201200697

  6. Monte Carlo simulation of the mixed alkali effect with cooperative jumps

    NASA Astrophysics Data System (ADS)

    Habasaki, Junko; Hiwatari, Yasuaki

    2000-12-01

    In our previous works on molecular dynamics (MD) simulations of lithium metasilicate (Li2SiO3), it has been shown that the long time behavior of the lithium ions in Li2SiO3 has been characterized by the component showing the enhanced diffusion (Lévy flight) due to cooperative jumps. It has also been confirmed that the contribution of such component decreases by interception of the paths in the mixed alkali silicate (LiKSiO3). Namely, cooperative jumps of like ions are much decreased in number owing to the interception of the path for unlike alkali-metal ions. In the present work, we have performed a Monte Carlo simulation using a cubic lattice in order to establish the role of the cooperative jumps in the transport properties in a mixed alkali glass. Fixed particles (blockage) were introduced instead of the interception of the jump paths for unlike alkali-metal ions. Two types of cooperative motions (a pull type and a push type) were taken into account. Low-dimensionality of the jump path caused by blockage resulted in a decrease of a diffusion coefficient of the particles. The effect of blockage is enhanced when the cooperative motions were introduced.

  7. In situ alkali-silica reaction observed by x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques availablemore » for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.« less

  8. Correcting GOES-R Magnetometer Data for Stray Fields

    NASA Technical Reports Server (NTRS)

    Carter, Delano R.; Freesland, Douglas C.; Tadikonda, Sivakumara K.; Kronenwetter, Jeffrey; Todirita, Monica; Dahya, Melissa; Chu, Donald

    2016-01-01

    Time-varying spacecraft magnetic fields or stray fields are a problem for magnetometer systems. While constant fields can be removed with zero offset calibration, stray fields are difficult to distinguish from ambient field variations. Putting two magnetometers on a long boom and solving for both the ambient and stray fields can be a good idea, but this gradiometer solution is even more susceptible to noise than a single magnetometer. Unless the stray fields are larger than the magnetometer noise, simply averaging the two measurements is a more accurate approach. If averaging is used, it may be worthwhile to explicitly estimate and remove stray fields. Models and estimation algorithms are provided for solar array, arcjet and reaction wheel fields.

  9. THOR Fluxgate Magnetometer (MAG)

    NASA Astrophysics Data System (ADS)

    Nakamura, Rumi; Eastwood, Jonathan; Magnes, Werner; Carr, Christopher, M.; O'Brien, Helen, L.; Narita, Yasuhito; K, Chen, Christopher H.; Berghofer, Gerhard; Valavanoglou, Aris; Delva, Magda; Plaschke, Ferdinand; Cupido, Emanuele; Soucek, Jan

    2017-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The fluxgate Magnetometer (MAG) measures the background to low frequency magnetic field. The high sensitivity measurements of MAG enable to characterize the nature of turbulent fluctuations as well as the large-scale context. MAG will provide the reference system for determining anisotropy of field fluctuations, pitch-angle and gyro-phase of particles. The design of the magnetometer consists of two tri-axial sensors and the related magnetometer electronics; the electronics are hosted on printed circuit boards in the common electronics box of the fields and wave processor (FWP). A fully redundant two- sensor system mounted on a common boom and the new miniaturized low noise design based on MMS and Solar Orbiter instruments enable accurate measurement throughout the region of interest for THOR science. The usage of the common electronics hosted by FWP guarantees to fulfill the required timing accuracy with other fields measurements. These improvements are important to obtain precise measurements of magnetic field, which is essential to estimate basic plasma parameters and correctly identify the spatial and temporal scales of the turbulence. Furthermore, THOR MAG provides high quality data with sufficient overlap with the Search Coil Magnetometer (SCM) in frequency space to obtain full coverage of the wave forms over all the frequencies necessary to obtain the full solar wind turbulence spectrum from MHD to kinetic range with sufficient accuracy. We discuss the role of MAG in THOR key science questions and present the new developments during Phase A such as the finalised instrument design, MAG relevant requirement, and new calibraion schemes.

  10. SnO2 promoted by alkali metal oxides for soot combustion: The effects of surface oxygen mobility and abundance on the activity

    NASA Astrophysics Data System (ADS)

    Rao, Cheng; Shen, Jiating; Wang, Fumin; Peng, Honggen; Xu, Xianglan; Zhan, Hangping; Fang, Xiuzhong; Liu, Jianjun; Liu, Wenming; Wang, Xiang

    2018-03-01

    In this study, SnO2-based catalysts promoted by different alkali metal oxides with a Sn/M (M = Li, Na, K, Cs) molar ratio of 9/1 have been prepared for soot combustion. In comparison with the un-modified SnO2 support, the activity of the modified catalysts has been evidently enhanced, following the sequence of CsSn1-9 > KSn1-9 > NaSn1-9 > LiSn1-9 > SnO2. As testified by Raman, H2-TPR, soot-TPR-MS, XPS and O2-TPD results, the incorporation of various alkali metal oxides can induce the formation of more abundant and mobile oxygen species on the surface of the catalysts. Moreover, quantified results have proved that the amount of the surface active oxygen species is nearly proportional to the activity of the catalysts. CsSn1-9, the catalyst promoted by cesium oxide, owns the largest amount of surface mobile oxygen species, thus having the highest activity among all the studied catalysts. It is concluded that the amount of surface active and mobile oxygen species is the major factor determining the activity of the catalysts for soot combustion.

  11. International solar polar mission: The vector helium magnetometer

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The functional requirements for the vector helium magnetometer (VHM) on the Solar Polar spacecraft are presented. The VHM is one of the two magnetometers on board that will measure the vector magnetic field along the Earth to Jupiter transfer trajectory, as well as in the vicinity of Jupiter and along the solar polar orbit following the Jupiter encounter. The interconnection between these two magnetometers and their shared data processing unit is illustrated.

  12. Atomic magnetometer for human magnetoencephalograpy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwindt, Peter; Johnson, Cort N.

    2010-12-01

    We have developed a high sensitivity (<5 fTesla/{radical}Hz), fiber-optically coupled magnetometer to detect magnetic fields produced by the human brain. This is the first demonstration of a noncryogenic sensor that could replace cryogenic superconducting quantum interference device (SQUID) magnetometers in magnetoencephalography (MEG) and is an important advance in realizing cost-effective MEG. Within the sensor, a rubidium vapor is optically pumped with 795 laser light while field-induced optical rotations are measured with 780 nm laser light. Both beams share a single optical axis to maximize simplicity and compactness. In collaboration with neuroscientists at The Mind Research Network in Albuquerque, NM, themore » evoked responses resulting from median nerve and auditory stimulation were recorded with the atomic magnetometer and a commercial SQUID-based MEG system with signals comparing favorably. Multi-sensor operation has been demonstrated with two AMs placed on opposite sides of the head. Straightforward miniaturization would enable high-density sensor arrays for whole-head magnetoencephalography.« less

  13. Evaluating Detection and Estimation Capabilities of Magnetometer-Based Vehicle Sensors

    DTIC Science & Technology

    2012-05-01

    fluxgate magnetometers whose operating characteristics are well documented [1, 2]. Such magnetometers measure two perpendicular magnetic components of...of surveillance scenarios. As part of that work, this analysis focuses on UGS utilizing of two-axis fluxgate magnetometers . Two MOPs are 12 -60 -40 -20...Proceedings of the IEEE, 78(6):973–989, June 1990. [2] E. M. Billingsley and S. W. Billingsley. Fluxgate magnetometers . Proceedings of the IEEE, 5090(194

  14. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    DOEpatents

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  15. Autonomous navigation system based on GPS and magnetometer data

    NASA Technical Reports Server (NTRS)

    Julie, Thienel K. (Inventor); Richard, Harman R. (Inventor); Bar-Itzhack, Itzhack Y. (Inventor)

    2004-01-01

    This invention is drawn to an autonomous navigation system using Global Positioning System (GPS) and magnetometers for low Earth orbit satellites. As a magnetometer is reliable and always provides information on spacecraft attitude, rate, and orbit, the magnetometer-GPS configuration solves GPS initialization problem, decreasing the convergence time for navigation estimate and improving the overall accuracy. Eventually the magnetometer-GPS configuration enables the system to avoid costly and inherently less reliable gyro for rate estimation. Being autonomous, this invention would provide for black-box spacecraft navigation, producing attitude, orbit, and rate estimates without any ground input with high accuracy and reliability.

  16. Syntheses and characterization of one-dimensional alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2015-01-15

    Three new isostructural quaternary antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs) have been synthesized by using alkali metal thiosulfate flux and structurally characterized by X-ray diffraction. Their structures contain A{sup +} ions around the [Sb{sub 2}Sn{sub 3}S{sub 10}]{sup 2−} chains, which are built from SbS{sub 3} pyramids, SnS{sub 6} octahedra and SnS{sub 4} tetrahedra. Raman and Mössbauer spectroscopic measurements corroborate the oxidation states and coordination environments of Sb(III) and Sn(IV). All three compounds are wide band gap semiconductors. Potassium compound undergoes partial exchange with strontium, cadmium and lead ions. - Graphical abstract: Syntheses, crystal structure, spectroscopic andmore » partial ion-exchange studies of new one-dimensional alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs) are described. - Highlights: • Syntheses of new alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs). • Wide band gap semiconductors with one-dimensional structure. • Topotactic partial exchange of K{sup +} ions of K{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} with Sr{sup 2+}, Cd{sup 2+} and Pb{sup 2+} ions.« less

  17. The MAGSAT vector magnetometer: A precision fluxgate magnetometer for the measurement of the geomagnetic field

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Scearce, C. S.; Seek, J.; Scheifele, J.

    1978-01-01

    A description of the precision triaxial fluxgate magnetometer to be flown aboard the MAGSAT spacecraft is presented. The instrument covers the range of + or - 64,000 nT with a resolution of + or - 0.5 nT, an intrinsic accuracy of + or - 0.001% of full scale and an angular alignment stability of the order of 2 seconds of arc. It was developed at NASA's Goddard Space Flight Center and represents the state-of-the-art in precision vector magnetometers developed for spaceflight use.

  18. Binding selectivity of dibenzo-18-crown-6 for alkali metal cations in aqueous solution: A density functional theory study using a continuum solvation model.

    PubMed

    Choi, Chang Min; Heo, Jiyoung; Kim, Nam Joon

    2012-08-08

    Dibenzo-18-crown-6 (DB18C6) exhibits the binding selectivity for alkali metal cations in solution phase. In this study, we investigate the main forces that determine the binding selectivity of DB18C6 for the metal cations in aqueous solution using the density functional theory (DFT) and the conductor-like polarizable continuum model (CPCM). The bond dissociation free energies (BDFE) of DB18C6 complexes with alkali metal cations (M+-DB18C6, M = Li, Na, K, Rb, and Cs) in aqueous solution are calculated at the B3LYP/6-311++G(d,p)//B3LYP/6-31 + G(d) level using the CPCM. It is found that the theoretical BDFE is the largest for K+-DB18C6 and decreases as the size of the metal cation gets larger or smaller than that of K+, which agrees well with previous experimental results. The solvation energy of M+-DB18C6 in aqueous solution plays a key role in determining the binding selectivity of DB18C6. In particular, the non-electrostatic dispersion interaction between the solute and solvent, which depends strongly on the complex structure, is largely responsible for the different solvation energies of M+-DB18C6. This study shows that the implicit solvation model like the CPCM works reasonably well in predicting the binding selectivity of DB18C6 in aqueous solution.

  19. Correcting GOES-R Magnetometer Data for Stray Fields

    NASA Technical Reports Server (NTRS)

    Carter, Delano; Freesland, Douglas; Tadikonda, Sivakumar; Kronenwetter, Jeffrey; Todirita, Monica; Dahya, Melissa; Chu, Donald

    2016-01-01

    Time-varying spacecraft magnetic fields, i.e. stray fields, are a problem for magnetometer systems. While constant fields can be removed by calibration, stray fields are difficult to distinguish from ambient field variations. Putting two magnetometers on a long boom and solving for both the ambient and stray fields can help, but this gradiometer solution is more sensitive to noise than a single magnetometer. As shown here for the R-series Geostationary Operational Environmental Satellites (GOES-R), unless the stray fields are larger than the noise, simply averaging the two magnetometer readings gives a more accurate solution. If averaging is used, it may be worthwhile to estimate and remove stray fields explicitly. Models and estimation algorithms to do so are provided for solar array, arcjet and reaction wheel fields.

  20. Alkali-Metal-Mediated Magnesiations of an N-Heterocyclic Carbene: Normal, Abnormal, and "Paranormal" Reactivity in a Single Tritopic Molecule.

    PubMed

    Martínez-Martínez, Antonio J; Fuentes, M Ángeles; Hernán-Gómez, Alberto; Hevia, Eva; Kennedy, Alan R; Mulvey, Robert E; O'Hara, Charles T

    2015-11-16

    Herein the sodium alkylmagnesium amide [Na4Mg2(TMP)6(nBu)2] (TMP=2,2,6,6-tetramethylpiperidide), a template base as its deprotonating action is dictated primarily by its 12 atom ring structure, is studied with the common N-heterocyclic carbene (NHC) IPr [1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]. Remarkably, magnesiation of IPr occurs at the para-position of an aryl substituent, sodiation occurs at the abnormal C4 position, and a dative bond occurs between normal C2 and sodium, all within a 20 atom ring structure accommodating two IPr(2-). Studies with different K/Mg and Na/Mg bimetallic bases led to two other magnesiated NHC structures containing two or three IPr(-) monoanions bound to Mg through abnormal C4 sites. Synergistic in that magnesiation can only work through alkali-metal mediation, these reactions add magnesium to the small cartel of metals capable of directly metalating a NHC. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synchronous optical pumping of quantum revival beats for atomic magnetometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seltzer, S. J.; Meares, P. J.; Romalis, M. V.

    2007-05-15

    We observe quantum beats with periodic revivals due to nonlinear spacing of Zeeman levels in the ground state of potassium atoms, and demonstrate their synchronous optical pumping by double modulation of the pumping light at the Larmor frequency and the revival frequency. We show that synchronous pumping increases the degree of spin polarization by a factor of 4. As a practical example, we explore the application of this double-modulation technique to atomic magnetometers operating in the geomagnetic field range, and find that it can increase the sensitivity and reduce magnetic-field-orientation-dependent measurement errors endemic to alkali-metal magnetometers.

  2. Binary Alkali-Metal Silicon Clathrates by Spark Plasma Sintering: Preparation and Characterization

    PubMed Central

    Veremchuk, Igor; Beekman, Matt; Antonyshyn, Iryna; Schnelle, Walter; Baitinger, Michael; Nolas, George S.; Grin, Yuri

    2016-01-01

    The binary intermetallic clathrates K8-xSi46 (x = 0.4; 1.2), Rb6.2Si46, Rb11.5Si136 and Cs7.8Si136 were prepared from M4Si4 (M = K, Rb, Cs) precursors by spark-plasma route (SPS) and structurally characterized by Rietveld refinement of PXRD data. The clathrate-II phase Rb11.5Si136 was synthesized for the first time. Partial crystallographic site occupancy of the alkali metals, particularly for the smaller Si20 dodecahedra, was found in all compounds. SPS preparation of Na24Si136 with different SPS current polarities and tooling were performed in order to investigate the role of the electric field on clathrate formation. The electrical and thermal transport properties of K7.6Si46 and K6.8Si46 in the temperature range 4–700 K were investigated. Our findings demonstrate that SPS is a novel tool for the synthesis of intermetallic clathrate phases that are not easily accessible by conventional synthesis techniques. PMID:28773710

  3. Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism

    PubMed Central

    Boughlala, Zakaria; Fonseca Guerra, Célia

    2016-01-01

    Abstract We have analyzed the structure and bonding of gas‐phase Cl−X and [HCl−X]+ complexes for X+= H+, CH3 +, Li+, and Na+, using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl− and HCl for the various cations. The Cl−X bond becomes longer and weaker along X+ = H+, CH3 +, Li+, and Na+. Our main purpose is to understand the heterolytic bonding mechanism behind the intrinsic (i.e., in the absence of solvent) alkali metal cation affinities (AMCA) and how this compares with and differs from those of the proton affinity (PA) and methyl cation affinity (MCA). Our analyses are based on Kohn–Sham molecular orbital (KS‐MO) theory in combination with a quantitative energy decomposition analysis (EDA) that pinpoints the importance of the different features in the bonding mechanism. Orbital overlap appears to play an important role in determining the trend in cation affinities. PMID:27551660

  4. Reversible thermodynamic cycle for AMTEC power conversion. [Alkali Metal Thermal-to-Electric Converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vining, C.B.; Williams, R.M.; Underwood, M.L.

    1993-10-01

    An AMTEC cell, may be described as performing two distinct energy conversion processes: (i) conversion of heat to mechanical energy via a sodium-based heat engine and (ii) conversion of mechanical energy to electrical energy by utilizing the special properties of the electrolyte material. The thermodynamic cycle appropriate to an alkali metal thermal-to-electric converter cell is discussed for both liquid- and vapor-fed modes of operation, under the assumption that all processes can be performed reversibly. In the liquid-fed mode, the reversible efficiency is greater than 89.6% of Carnot efficiency for heat input and rejection temperatures (900--1,300 and 400--800 K, respectively) typicalmore » of practical devices. Vapor-fed cells can approach the efficiency of liquid-fed cells. Quantitative estimates confirm that the efficiency is insensitive to either the work required to pressurize the sodium liquid or the details of the state changes associated with cooling the low pressure sodium gas to the heat rejection temperature.« less

  5. Optical characterization of antirelaxation coatings

    NASA Astrophysics Data System (ADS)

    Tsvetkov, S.; Gateva, S.; Cartaleva, S.; Mariotti, E.; Nasyrov, K.

    2018-03-01

    Antirelaxation coatings (ARC) are used in optical cells containing alkali metal vapor to reduce the depolarization of alkali atoms after collisions with the cell walls. The long-lived ground state polarization is a basis for development of atomic clocks, magnetometers, quantum memory, slow light experiments, precision measurements of fundamental symmetries etc. In this work, a simple method for measuring the number of collisions of the alkali atoms with the cell walls without atomic spin randomization (Nasyrov et al., Proc. SPIE (2015)) was applied to characterize the AR properties of two PDMS coatings prepared from different solutions in ether (PDMS 2% and PDMS 5%). We observed influence of the light-induced atomic desorption (LIAD) on the AR properties of coatings.

  6. Local structure of scalar flux in turbulent passive scalar mixing

    NASA Astrophysics Data System (ADS)

    Konduri, Aditya; Donzis, Diego

    2012-11-01

    Understanding the properties of scalar flux is important in the study of turbulent mixing. Classical theories suggest that it mainly depends on the large scale structures in the flow. Recent studies suggest that the mean scalar flux reaches an asymptotic value at high Peclet numbers, independent of molecular transport properties of the fluid. A large DNS database of isotropic turbulence with passive scalars forced with a mean scalar gradient with resolution up to 40963, is used to explore the structure of scalar flux based on the local topology of the flow. It is found that regions of small velocity gradients, where dissipation and enstrophy are small, constitute the main contribution to scalar flux. On the other hand, regions of very small scalar gradient (and scalar dissipation) become less important to the scalar flux at high Reynolds numbers. The scaling of the scalar flux spectra is also investigated. The k - 7 / 3 scaling proposed by Lumley (1964) is observed at high Reynolds numbers, but collapse is not complete. A spectral bump similar to that in the velocity spectrum is observed close to dissipative scales. A number of features, including the height of the bump, appear to reach an asymptotic value at high Schmidt number.

  7. The alkali metal thermoelectric converter /AMTEC/ - A new direct energy conversion technology for aerospace power

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Cole, T.; Jones, R.; Ewell, R.

    1982-01-01

    A thermally regenerative electrochemical device for the direct conversion of heat to electrical energy, the alkali metal thermoelectric converter (AMTEC), is characterized by potential efficiencies on the order of 15-40% and possesses no moving parts, making it a candidate for space power system applications. Device conversion efficiency is projected on the basis of experimental voltage vs current curves exhibiting power densities of 0.7 W/sq cm and measured electrode efficiencies of up to 40%. Preliminary radiative heat transfer measurements presented may be used in an investigation of methods for the reduction of AMTEC parasitic radiation losses. AMTEC assumes heat input and rejection temperatures of 900-1300 K and 400-800 K, respectively. The working fluid is liquid sodium, and the porous electrode employed is of molybdenum.

  8. Experiment and simulation study on alkalis transfer characteristic during direct combustion utilization of bagasse.

    PubMed

    Liao, Yanfen; Cao, Yawen; Chen, Tuo; Ma, Xiaoqian

    2015-10-01

    Bagasse is utilized as fuel in the biggest biomass power plant of China, however, alkalis in the fuel created severe agglomeration and slagging problems. Alkalis transfer characteristic, agglomeration causes in engineering practice, additive improvement effects and mechanism during bagasse combustion were investigated via experiments and simulations. Only slight agglomeration occurs in ash higher than 800°C. Serious agglomeration in practical operation should be attributed to the gaseous alkalis evaporating at high temperature and condensing on the cooler grain surfaces in CFB. It can be speculated that ash caking can be avoided with temperature lower than 750°C and heating surface corrosion caused by alkali metal vapor can be alleviated with temperature lower than 850°C. Kaolin added into the bagasse has an apparent advantage over CaO additive both in enhancing ash fusion point and relieving alkali-chloride corrosion by locking alkalis in dystectic solid compounds over the whole temperature range. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K-Fr) and alkaline earth (Ca-Ra) elements

    NASA Astrophysics Data System (ADS)

    Hill, J. Grant; Peterson, Kirk A.

    2017-12-01

    New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.

  10. Digital fluxgate magnetometer: design notes

    NASA Astrophysics Data System (ADS)

    Belyayev, Serhiy; Ivchenko, Nickolay

    2015-12-01

    We presented an approach to understanding the performance of a fully digital fluxgate magnetometer. All elements of the design are important for the performance of the instrument, and the presence of the digital feed-back loop introduces certain peculiarities affecting the noise and dynamic performance of the instrument. Ultimately, the quantisation noise of the digital to analogue converter is found to dominate the noise of the current design, although noise shaping alleviates its effect to some extent. An example of magnetometer measurements on board a sounding rocket is presented, and ways to further improve the performance of the instrument are discussed.

  11. Alignment of a vector magnetometer to an optical prism

    NASA Astrophysics Data System (ADS)

    Dietrich, M. R.; Bailey, K. G.; O'Connor, T. P.

    2017-05-01

    A method for alignment of a vector magnetometer to a rigidly attached prism is presented. This enables optical comparison of the magnetometer axes to physical surfaces in the apparatus, and thus an absolute determination of the magnetic field direction in space. This is in contrast with more common techniques, which focus on precise determination of the relative angles between magnetometer axes, and so are more suited to measuring differences in the direction of magnetic fields. Here we demonstrate precision better than 500 μrad on a fluxgate magnetometer, which also gives the coil orthogonality errors to a similar precision. The relative sensitivity of the three axes is also determined, with a precision of about 5 ×10 -4 .

  12. Alignment of a vector magnetometer to an optical prism.

    PubMed

    Dietrich, M R; Bailey, K G; O'Connor, T P

    2017-05-01

    A method for alignment of a vector magnetometer to a rigidly attached prism is presented. This enables optical comparison of the magnetometer axes to physical surfaces in the apparatus, and thus an absolute determination of the magnetic field direction in space. This is in contrast with more common techniques, which focus on precise determination of the relative angles between magnetometer axes, and so are more suited to measuring differences in the direction of magnetic fields. Here we demonstrate precision better than 500 μrad on a fluxgate magnetometer, which also gives the coil orthogonality errors to a similar precision. The relative sensitivity of the three axes is also determined, with a precision of about 5 × 10 -4 .

  13. Alkali and alkaline earth metallic (AAEM) species leaching and Cu(II) sorption by biochar.

    PubMed

    Li, Mi; Lou, Zhenjun; Wang, Yang; Liu, Qiang; Zhang, Yaping; Zhou, Jizhi; Qian, Guangren

    2015-01-01

    Alkali and alkaline earth metallic (AAEM) species water leaching and Cu(II) sorption by biochar prepared from two invasive plants, Spartina alterniflora (SA) and water hyacinth (WH), were explored in this work. Significant amounts of Na and K can be released (maximum leaching for Na 59.0 mg g(-1) and K 79.9 mg g(-1)) from SA and WH biochar when they are exposed to contact with water. Cu(II) removal by biochar is highly related with pyrolysis temperature and environmental pH with 600-700 °C and pH of 6 showing best performance (29.4 and 28.2 mg g(-1) for SA and WH biochar). Cu(II) sorption exerts negligible influence on Na/K/Mg leaching but clearly promotes the release of Ca. Biochars from these two plant species provide multiple benefits, including nutrient release (K), heavy metal immobilization as well as promoting the aggregation of soil particles (Ca) for soil amelioration. AAEM and Cu(II) equilibrium concentrations in sorption were analyzed by positive matrix factorization (PMF) to examine the factors underlying the leaching and sorption behavior of biochar. The identified factors can provide insightful understanding on experimental phenomena. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. An Attitude Filtering and Magnetometer Calibration Approach for Nanosatellites

    NASA Astrophysics Data System (ADS)

    Söken, Halil Ersin

    2018-04-01

    We propose an attitude filtering and magnetometer calibration approach for nanosatellites. Measurements from magnetometers, Sun sensor and gyros are used in the filtering algorithm to estimate the attitude of the satellite together with the bias terms for the gyros and magnetometers. In the traditional approach for the attitude filtering, the attitude sensor measurements are used in the filter with a nonlinear vector measurement model. In the proposed algorithm, the TRIAD algorithm is used in conjunction with the unscented Kalman filter (UKF) to form the nontraditional attitude filter. First the vector measurements from the magnetometer and Sun sensor are processed with the TRIAD algorithm to obtain a coarse attitude estimate for the spacecraft. In the second phase the estimated coarse attitude is used as quaternion measurements for the UKF. The UKF estimates the fine attitude, and the gyro and magnetometer biases. We evaluate the algorithm for a hypothetical nanosatellite by numerical simulations. The results show that the attitude of the satellite can be estimated with an accuracy better than 0.5{°} and the computational load decreases more than 25% compared to a traditional UKF algorithm. We discuss the algorithm's performance in case of a time-variance in the magnetometer errors.

  15. Alkali silica reaction (ASR) in cement free alkali activated sustainable concrete.

    DOT National Transportation Integrated Search

    2016-12-19

    This report summarizes the findings of an experimental evaluation into alkali silica : reaction (ASR) in cement free alkali-activated slag and fly ash binder concrete. The : susceptibility of alkali-activated fly ash and slag concrete binders to dele...

  16. Method of bonding metals to ceramics and other materials

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; DeWald, A. Bruce; Ju, Chien-Ping; Rigsbee, James M.

    1993-01-01

    A composite and method of forming same wherein the composite has a non-metallic portion and an alloy portion wherein the alloy comprises an alkali metal and a metal which is an electrical conductor such as Cu, Ag, Al, Sn or Au and forms an alloy with the alkali metal. A cable of superconductors and composite is also disclosed.

  17. Method of bonding metals to ceramics and other materials

    DOEpatents

    Gruen, D.M.; Krauss, A.R.; DeWald, A.P.; Chienping Ju; Rigsbee, J.M.

    1993-01-05

    A composite and method of forming same wherein the composite has a non-metallic portion and an alloy portion wherein the alloy comprises an alkali metal and a metal which is an electrical conductor such as Cu, Ag, Al, Sn or Au and forms an alloy with the alkali metal. A cable of superconductors and composite is also disclosed.

  18. Alignment of a vector magnetometer to an optical prism

    DOE PAGES

    Dietrich, M. R.; Bailey, K. G.; O’Connor, T. P.

    2017-05-12

    A method for alignment of a vector magnetometer to a rigidly attached prism is presented. This enables optical comparison of the magnetometer axes to physical surfaces in the apparatus, and thus an absolute determination of the magnetic field direction in space. This is in contrast with more common techniques, which focus on precise determination of the relative angles between magnetometer axes, and so are more suited to measuring differences in the direction of magnetic fields. Here we demonstrate precision better than 500 μrad on a fluxgate magnetometer, which also gives the coil orthogonality errors to a similar precision. As amore » result, the relative sensitivity of the three axes is also determined, with a precision of about 5 ×10 –4.« less

  19. Spin exchange optical pumping of neon and its applications

    NASA Astrophysics Data System (ADS)

    Ghosh, Rajat K.

    Hyperpolarized noble gases are used in a variety of applications including medical diagnostic lung imaging, tests of fundamental symmetries, spin filters, atomic gyroscopes, and atomic magnetometers. Typically 3He is utilized because large 3He polarizations on the order of 80% can be achieved. This is accomplished by optically pumping an alkali vapour which polarizes a noble gas nucleus via spin exchange optical pumping. One hyperpolarized noble gas application of particular importance is the K-3He co-magnetometer. Here, the alkali atoms optically pump a diamagnetic noble gas. The magnetic holding field for the alkali and noble gas is reduced until both species are brought into hybrid magnetic resonance. The co-magnetometer exhibits many useful attributes which make it ideal for tests of fundamental physics, such as insensitivity to magnetic fields. The co-magnetometer would demonstrate increased sensitivity by replacing 3He with polarized 21Ne gas. Tests of CPT violation using co-magnetometers would be greatly improved if one utilizes polarized 21Ne gas. The sensitivity of the nuclear spin gyroscope is inversely proportional to the gyromagnetic ratio of the noble gas. Switching to neon would instigate an order of magnitude gain in sensitivity over 3He. In order to realize these applications the interaction parameters of 21Ne with alkali metals must be measured. The spin-exchange cross section sigmase, and magnetic field enhancement factor kappa0 are unknown, and have only been theoretically calculated. There are no quantitative predictions of the neon-neon quadrupolar relaxation rate Gammaquad. In this thesis I test the application of a K-3He co-magnetometer as a navigational gyroscope. I discuss the advantages of switching the buffer gas to 21Ne. I discuss the feasibility of utilizing polarized 21Ne for operation in a co-magnetometer, and construct a prototype 21Ne co-magnetometer. I investigate polarizing 21Ne with optical pumping via spin exchange collisions

  20. Gradient magnetometer system balloons

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Tsvetkov, Yury

    2005-08-01

    Earth's magnetic field study still remains one of the leading edges of experimental geophysics. Thus study is executed on the Earth surface, including ocean bottom, and on satellite heights using component, mostly flux-gate magnetometers. But balloon experiments with component magnetometers are very seldom, first of all because of great complexity of data interpretation. This niche still waits for new experimental ideology, which will allow to get the measurements results with high accuracy, especially in gradient mode. The great importance of precise balloon-borne component magnetic field gradient study is obvious. Its technical realization is based both on the available at the marked high-precision non-magnetic tiltmeters and on recent achievements of flux-gate magnetometry. The scientific goals of balloon-borne magnetic gradiometric experiment are discussed and its practical realization is proposed.

  1. Structural basis for regioisomerization in the alkali-metal-mediated zincation (AMMZn) of trifluoromethyl benzene by isolation of kinetic and thermodynamic intermediates.

    PubMed

    Armstrong, David R; Blair, Victoria L; Clegg, William; Dale, Sophie H; Garcia-Alvarez, Joaquin; Honeyman, Gordon W; Hevia, Eva; Mulvey, Robert E; Russo, Luca

    2010-07-14

    Performed with a desire to advance knowledge of the structures and mechanisms governing alkali-metal-mediated zincation, this study monitors the reaction between the TMP-dialkylzincate reagent [(TMEDA)Na(TMP)((t)Bu)Zn((t)Bu)] 1 and trifluoromethyl benzene C(6)H(5)CF(3) 2. A complicated mixture of products is observed at room temperature. X-ray crystallography has identified two of these products as ortho- and meta-regioisomers of heterotrianionic [(TMEDA)Na(TMP)(C(6)H(4)-CF(3))Zn((t)Bu)], 3-ortho and 3-meta, respectively. Multinuclear NMR data of the bulk crystalline product confirm the presence of these two regioisomers as well as a third isomer, 3-para, in a respective ratio of 20:11:1, and an additional product 4, which also exhibits ortho-zincation of the aryl substrate. Repeating the reaction at 0 degrees C gave exclusively 4, which was crystallographically characterized as [{(TMEDA)(2)Na}(+){Zn(C(6)H(4)-CF(3))((t)Bu)(2)}(-)]. Mimicking the original room-temperature reaction, this kinetic product was subsequently reacted with TMP(H) to afford a complicated mixture of products, including significantly the three regioisomers of 3. Surprisingly, 4 adopts a solvent-separated ion pair arrangement in contrast to the contacted ion variants of 3-ortho and 3-meta. Aided by DFT calculations on model systems, discussion focuses on the different basicities, amido or alkyl, and steps, exhibited in these reactions, and how the structures and bonding within these isolated key metallic intermediates (prior to any electrophilic interception step), specifically the interactions involving the alkali metal, influence the regioselectivity of the Zn-H exchange process.

  2. An improved Overhauser magnetometer for Earth's magnetic field observation

    NASA Astrophysics Data System (ADS)

    Fan, Shifang; Chen, Shudong; Zhang, Shuang; Guo, Xin; Cao, Qiong

    2016-09-01

    Overhauser magnetometer is a kind of high-precision devices for magnetostatic field measurement. It is widely used in geological survey, earth field variations, UXO detection etc. However, the original Overhauser magnetometer JOM-2 shows great shortcomings of low signal to noise ratio (SNR) and high power consumption, which directly affect the performance of the device. In order to increase the sensitivity and reduce power consumption, we present an improved Overhauser magnetometer. Firstly, compared with the original power board which suffers from heavy noise for improper EMC design, an improved power broad with 20mV peak to peak noise is presented in this paper. Then, the junction field effect transistor (JFET) is used as pre-amplifier in our new design, to overcome the higher current noise produced by the original instrumentation amplifier. By adjusting the parameters carefully low noise factor down to 0.5 dB can be obtained. Finally, the new architecture of ARM + CPLD is adopted to replace the original one with DSP+CPLD. So lower power consumption and greater flash memory can be realized. With these measures, an improved Overhauser magnetometer with higher sensitivity and lower power consumption is design here. The experimental results indicate that the sensitivity of the improved Overhauser magnetometer is 0.071nT, which confirms that the new magnetometer is sensitive to earth field measurement.

  3. Assessing and Ensuring GOES-R Magnetometer Accuracy

    NASA Technical Reports Server (NTRS)

    Carter, Delano R.; Todirita, Monica; Kronenwetter, Jeffrey; Chu, Donald

    2016-01-01

    The GOES-R magnetometer subsystem accuracy requirement is 1.7 nanoteslas (nT). During quiet times (100 nT), accuracy is defined as absolute mean plus 3 sigma. During storms (300 nT), accuracy is defined as absolute mean plus 2 sigma. Error comes both from outside the magnetometers, e.g. spacecraft fields and misalignments, as well as inside, e.g. zero offset and scale factor errors. Because zero offset and scale factor drift over time, it will be necessary to perform annual calibration maneuvers. To predict performance before launch, we have used Monte Carlo simulations and covariance analysis. Both behave as expected, and their accuracy predictions agree within 30%. With the proposed calibration regimen, both suggest that the GOES-R magnetometer subsystem will meet its accuracy requirements.

  4. Regular scalar collapse

    NASA Astrophysics Data System (ADS)

    Lasukov, V. V.

    2012-06-01

    It is shown that negative Scalars can claim to be the object referred to as black holes, therefore observation of black holes means observation of Scalars. In contrast to blackholes, negative Scalars contain no singularity inside. Negative Scalars can be observed from the effect of generation of ordinary matter by the Lemaître primordial atom.

  5. Detection of J-coupling using atomic magnetometer

    DOEpatents

    Ledbetter, Micah P.; Crawford, Charles W.; Wemmer, David E.; Pines, Alexander; Knappe, Svenja; Kitching, John; Budker, Dmitry

    2015-09-22

    An embodiment of a method of detecting a J-coupling includes providing a polarized analyte adjacent to a vapor cell of an atomic magnetometer; and measuring one or more J-coupling parameters using the atomic magnetometer. According to an embodiment, measuring the one or more J-coupling parameters includes detecting a magnetic field created by the polarized analyte as the magnetic field evolves under a J-coupling interaction.

  6. Structure and thermodynamics of liquid alkali metals in variational modified hypernetted-chain theory

    NASA Astrophysics Data System (ADS)

    Chen, H. C.; Lai, S. K.

    1992-03-01

    The role of the Percus-Yevick hard-sphere bridge function in the modified hypernetted-chain integral equation is examined within the context of Lado's criterion [F. Lado, S. M. Foiles, and N. W. Ashcroft, Phys. Rev. A 28, 2374 (1983)]. It is found that the commonly used Lado's criterion, which takes advantage of the analytical simplicity of the Percus-Yevick hard-sphere bridge function, is inadequate for determining an accurate static pair-correlation function. Following Rosenfeld [Y. Rosenfeld, Phys. Rev. A 29, 2877 (1984)], we reconsider Lado's criterion in the so-called variational modified hypernetted-chain theory. The main idea is to construct a free-energy functional satisfying the virial-energy thermodynamic self-consistency. It turns out that the widely used Gibbs-Bogoliubov inequality is equivalent to this integral approach of Lado's criterion. Detailed comparison between the presently obtained structural and thermodynamic quantities for liquid alkali metals and those calculated also in the modified hypernetted-chain theory but with the one-component-plasma reference system leads us to a better understanding of the universality property of the bridge function.

  7. A high-sensitivity push-pull magnetometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breschi, E.; Grujić, Z. D.; Knowles, P.

    2014-01-13

    We describe our approach to atomic magnetometry based on the push-pull optical pumping technique. Cesium vapor is pumped and probed by a resonant laser beam whose circular polarization is modulated synchronously with the spin evolution dynamics induced by a static magnetic field. The magnetometer is operated in a phase-locked loop, and it has an intrinsic sensitivity below 20fT/√(Hz), using a room temperature paraffin-coated cell. We use the magnetometer to monitor magnetic field fluctuations with a sensitivity of 300fT/√(Hz)

  8. Evaluation of a Three-Channel High-Temperature Superconducting Magnetometer System

    DTIC Science & Technology

    1997-06-01

    achieved by the best commercially available fluxgate magnetometers demonstrated to date and is only surpassed by low temperature superconducting...wire lines carry the analog SQUID magnetometer signal as well as dc power and ground, and the fiberoptic lines carry digital clock and data signals...with the magnetometers mounted on the three-sensor probe used in the sensor evaluated here. This probe is not highly stabilized with respect to the

  9. Synthesis, structures and stabilities of thioanisole-functionalised phosphido-borane complexes of the alkali metals.

    PubMed

    Izod, Keith; Watson, James M; Clegg, William; Harrington, Ross W

    2011-11-28

    Treatment of the secondary phosphine {(Me(3)Si)(2)CH}PH(C(6)H(4)-2-SMe) with BH(3)·SMe(2) gives the corresponding phosphine-borane {(Me(3)Si)(2)CH}PH(BH(3))(C(6)H(4)-2-SMe) (9) as a colourless solid. Deprotonation of 9 with n-BuLi, PhCH(2)Na or PhCH(2)K proceeds cleanly to give the corresponding alkali metal complexes [[{(Me(3)Si)(2)CH}P(BH(3))(C(6)H(4)-2-SMe)]ML](n) [ML = Li(THF), n = 2 (10); ML = Na(tmeda), n = ∞ (11); ML = K(pmdeta), n = 2 (12)] as yellow/orange crystalline solids. X-ray crystallography reveals that the phosphido-borane ligands bind the metal centres through their sulfur and phosphorus atoms and through the hydrogen atoms of the BH(3) group in each case, leading to dimeric or polymeric structures. Compounds 10-12 are stable towards both heat and ambient light; however, on heating in toluene solution in the presence of 10, traces of free phosphine-borane 9 are slowly converted to the free phosphine {(Me(3)Si)(2)CH}PH(C(6)H(4)-2-SMe) (5) with concomitant formation of the corresponding phosphido-bis(borane) complex [{(Me(3)Si)(2)CH}P(BH(3))(2)(C(6)H(4)-2-SMe)]Li (14).

  10. Analysing Harmonic Motions with an iPhone's Magnetometer

    ERIC Educational Resources Information Center

    Yavuz, Ahmet; Temiz, Burak Kagan

    2016-01-01

    In this paper, we propose an experiment for analysing harmonic motion using an iPhone's (or iPad's) magnetometer. This experiment consists of the detection of magnetic field variations obtained from an iPhone's magnetometer sensor. A graph of harmonic motion is directly displayed on the iPhone's screen using the "Sensor Kinetics"…

  11. Metal phthalocyanine catalysts

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  12. Alkali slurry ozonation to produce a high capacity nickel battery material

    DOEpatents

    Jackovitz, John F.; Pantier, Earl A.

    1984-11-06

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  13. Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.

    1991-01-01

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  14. Zirconium and hafnium fractionation in differentiation of alkali carbonatite magmatic systems

    NASA Astrophysics Data System (ADS)

    Kogarko, L. N.

    2016-05-01

    Zirconium and hafnium are valuable strategic metals which are in high demand in industry. The Zr and Hf contents are elevated in the final products of magmatic differentiation of alkali carbonatite rocks in the Polar Siberia region (Guli Complex) and Ukraine (Chernigov Massif). Early pyroxene fractionation led to an increase in the Zr/Hf ratio in the evolution of the ultramafic-alkali magmatic system due to a higher distribution coefficient of Hf in pyroxene with respect to Zr. The Rayleigh equation was used to calculate a quantitative model of variation in the Zr/Hf ratio in the development of the Guli magmatic system. Alkali carbonatite rocks originated from rare element-rich mantle reservoirs, in particular, the metasomatized mantle. Carbonated mantle xenoliths are characterized by a high Zr/Hf ratio due to clinopyroxene development during metasomatic replacement of orthopyroxene by carbonate fluid melt.

  15. The spectroscopic (FT-IR, FT-Raman and 1H, 13C NMR) and theoretical studies of cinnamic acid and alkali metal cinnamates

    NASA Astrophysics Data System (ADS)

    Kalinowska, Monika; Świsłocka, Renata; Lewandowski, Włodzimierz

    2007-05-01

    The effect of alkali metals (Li → Na → K → Rb → Cs) on the electronic structure of cinnamic acid (phenylacrylic acid) was studied. In this research many miscellaneous analytical methods, which complement one another, were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance ( 1H, 13C NMR) and quantum mechanical calculations. The spectroscopic studies lead to conclusions concerning the distribution of the electronic charge in molecule, the delocalization energy of π-electrons and the reactivity of metal complexes. The change of metal along with the series: Li → Na → K → Rb → Cs caused: (1) the change of electronic charge distribution in cinnamate anion what is seen via the occurrence of the systematic shifts of several bands in the experimental and theoretical IR and Raman spectra of cinnamates, (2) systematic chemical shifts for protons 1H and 13C nuclei.

  16. Refractories for high alkali environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rau, A.W.; Cloer, F.

    1996-12-31

    Information on refractories for high alkali environments is outlined. Information is presented on: product gallery; alkali attack; chemical reactions; basic layout of alkali cup test; criteria for rating alkali cup test samples; and basic layout of physical properties test.

  17. Search Coil vs. Fluxgate Magnetometer Measurements at Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, L.B., III

    2012-01-01

    We present magnetic field observations at interplanetary shocks comparing two different sample rates showing significantly different results. Fluxgate magnetometer measurements show relatively laminar supercritical shock transitions at roughly 11 samples/s. Search coil magnetometer measurements at 1875 samples/s, however, show large amplitude (dB/B as large as 2) fluctuations that are not resolved by the fluxgate magnetometer. We show that these fluctuations, identified as whistler mode waves, would produce a significant perturbation to the shock transition region changing the interpretation from laminar to turbulent. Thus, previous observations of supercritical interplanetary shocks classified as laminar may have been under sampled.

  18. Microfabricated alkali vapor cell with anti-relaxation wall coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straessle, R.; Pétremand, Y.; Briand, D.

    2014-07-28

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140 °C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantlymore » lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.« less

  19. Effect of basic alkali-pickling conditions on the production of lysinoalanine in preserved eggs.

    PubMed

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2015-09-01

    During the pickling process, strong alkali causes significant lysinoalanine (LAL) formation in preserved eggs, which may reduce the nutritional value of the proteins and result in a potential hazard to human health. In this study, the impacts of the alkali treatment conditions on the production of LAL in preserved eggs were investigated. Preserved eggs were prepared using different times and temperatures, and alkali-pickling solutions with different types and concentrations of alkali and metal salts, and the corresponding LAL contents were measured. The results showed the following: during the pickling period of the preserved egg, the content of LAL in the egg white first rapidly increased and then slowly increased; the content of LAL in the egg yolk continued to increase significantly. During the aging period, the levels of LAL in both egg white and egg yolk slowly increased. The amounts of LAL in the preserved eggs were not significantly different at temperatures between 20 and 25ºC. At higher pickling temperatures, the LAL content in the preserved eggs increased. With the increase of alkali concentration in the alkali-pickling solution, the LAL content in the egg white and egg yolk showed an overall trend of an initial increase followed by a slight decrease. The content of LAL produced in preserved eggs treated with KOH was lower than in those treated with NaOH. NaCl and KCl produced no significant effects on the production of LAL in the preserved eggs. With increasing amounts of heavy metal salts, the LAL content in the preserved eggs first decreased and then increased. The LAL content generated in the CuSO4 group was lower than that in either the ZnSO4 or PbO groups. © 2015 Poultry Science Association Inc.

  20. Metal phthalocyanine catalysts

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-10-11

    A new composition of matter is described which is an alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  1. Methods for synthesizing metal oxide nanowires

    DOEpatents

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  2. Binding of Alkali Metal Ions with 1,3,5-Tri(phenyl)benzene and 1,3,5-Tri(naphthyl)benzene: The Effect of Phenyl and Naphthyl Ring Substitution on Cation-π Interactions Revealed by DFT Study.

    PubMed

    Mirchi, Ali; Sizochenko, Natalia; Dinadayalane, Tandabany; Leszczynski, Jerzy

    2017-11-22

    The effect of substitution of phenyl and naphthyl rings to benzene was examined to elucidate the cation-π interactions involving alkali metal ions with 1,3,5-tri(phenyl)benzene (TPB) and 1,3,5-tri(naphthyl)benzene (TNB). Benzene, TPB, and four TNB isomers (with ααα, ααβ, αββ, and βββ types of fusion) and their complexes with Li + , Na + , K + , Rb + , and Cs + were optimized using DFT approach with B3LYP and M06-2X functionals in conjunction with the def2-QZVP basis set. Higher relative stability of β,β,β-TNB over α,α,α-TNB can be attributed to peri repulsion, which is defined as the nonbonding repulsive interaction between substituents in the 1- and the 8-positions on the naphthalene core. Binding energies, distances between ring centroid and the metal ions, and the distance to metal ions from the center of other six-membered rings were compared for all complexes. Our computational study reveals that the binding affinity of alkali metal cations increases significantly with the 1,3,5-trisubstitution of phenyl and naphthyl rings to benzene. The detailed computational analyses of geometries, partial charges, binding energies, and ligand organization energies reveal the possibility of favorable C-H···M + interactions when a α-naphthyl group exists in complexes of TNB structures. Like benzene-alkali metal ion complexes, the binding affinity of metal ions follows the order: Li + > Na + > K + > Rb + > Cs + for any considered 1,3,5-trisubstituted benzene systems. In case of TNB, we found that the strength of interactions increases as the fusion point changes from α to β position of naphthalene.

  3. Optical atomic magnetometer

    DOEpatents

    Budker, Dmitry; Higbie, James; Corsini, Eric P.

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  4. SCALAR MULTI-PASS ATOMIC MAGNETOMETER

    DTIC Science & Technology

    2017-08-01

    primarily by atomic shot noise. Furthermore, the spectrum of quantum spin noise provides information on the time correlation between the spins and...the resulting light to be shot -noise-limited both with and without the polarizer in place. Newer Vixar VCSELs with internal gratings on output...described on inside pages STINFO COPY AIR FORCE RESEARCH LABORATORY SENSORS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320

  5. Analysing harmonic motions with an iPhone’s magnetometer

    NASA Astrophysics Data System (ADS)

    Yavuz, Ahmet; Kağan Temiz, Burak

    2016-05-01

    In this paper, we propose an experiment for analysing harmonic motion using an iPhone’s (or iPad’s) magnetometer. This experiment consists of the detection of magnetic field variations obtained from an iPhone’s magnetometer sensor. A graph of harmonic motion is directly displayed on the iPhone’s screen using the Sensor Kinetics application. Data from this application was analysed with Eureqa software to establish the equation of the harmonic motion. Analyses show that the use of an iPhone’s magnetometer to analyse harmonic motion is a practical and effective method for small oscillations and frequencies less than 15-20 Hz.

  6. Unified picture of the doping dependence of superconducting transition temperatures in alkali metal/ammonia intercalated FeSe

    NASA Astrophysics Data System (ADS)

    Guterding, Daniel; Jeschke, Harald; Hirschfeld, Peter; Valenti, Roser

    2015-03-01

    We present a theoretical investigation of alkali metal/ammonia intercalated iron selenide. Using ab-initio density functional theory we unravel how charge doping and dimensionality of the electronic structure can be controlled through the chemical composition of the intercalated molecules. Within random phase approximation spin fluctuation theory we analyze the impact of intercalation on the superconducting pairing strength. We find that high Tc is to be expected away from perfect nesting. While experimental studies have focused on the intercalation of larger molecules in the spacer layer so far, we argue that no higher Tc can be achieved this way. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SPP 1458, the National Science Foundation under Grant No. PHY11-25915 and the Department of Energy under Grant No. DE-FG02-05ER46236.

  7. Particle size dependence of alkali and alkaline earth metal enrichment in marine aerosols from Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, E.J.; Hoffman, G.L.; Duce, R.A.

    1980-10-20

    Three cascade impactor samples were collected from a 20-m-high tower on the southeastern coast of Bermuda. These samples were analyzed for Na, K, Ca, Mg, and Fe by atomic absorption spectrophotometry. When the alkali-alkakine earth metal concentrations are corrected for a soil-derived component, utilizing the atmospheric Fe concentrations, Mg, Ca, and Na are found to be present in the same relative abundances as in seawater for all particle sizes sampled. Potassium also shows no deviation from a bulk seawater composition for particles with radii greater than approx.0.5 ..mu..m. However, excess K above that expected from either a bulk seawater ormore » soil source is observed on particles with radii less than approx.0.5 ..mu..m. While oceanic chemical fractionation processes during bubble bursting may be responsible for this excess small particle K, it is most likely due to long-range transport of K-rich particles of terrestrial vegetative origin.« less

  8. The role of halide ions on the electrochemical behaviour of iron in alkali solutions

    NASA Astrophysics Data System (ADS)

    Begum, S. Nathira; Muralidharan, V. S.; Basha, C. Ahmed

    2008-02-01

    Active dissolution and passivation of transition metals in alkali solutions is of technological importance in batteries. The performance of alkaline batteries is decided by the presence of halides as they influence passivation. Cyclic voltammetric studies were carried out on iron in different sodium hydroxide solutions in presence of halides. In alkali solutions iron formed hydroxo complexes and their polymers in the interfacial diffusion layer. With progress of time they formed a cation selective layer. The diffusion layer turned into bipolar ion selective layer consisted of halides, a selective inner sublayer to the metal side and cation selective outer layer to the solution side. At very high anodic potentials, dehydration and deprotonation led to the conversion of salt layer into an oxide.

  9. Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories

    NASA Astrophysics Data System (ADS)

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-04-01

    In the context of the Einstein-scalar-Gauss-Bonnet theory, with a general coupling function between the scalar field and the quadratic Gauss-Bonnet term, we investigate the existence of regular black-hole solutions with scalar hair. Based on a previous theoretical analysis, which studied the evasion of the old and novel no-hair theorems, we consider a variety of forms for the coupling function (exponential, even and odd polynomial, inverse polynomial, and logarithmic) that, in conjunction with the profile of the scalar field, satisfy a basic constraint. Our numerical analysis then always leads to families of regular, asymptotically flat black-hole solutions with nontrivial scalar hair. The solution for the scalar field and the profile of the corresponding energy-momentum tensor, depending on the value of the coupling constant, may exhibit a nonmonotonic behavior, an unusual feature that highlights the limitations of the existing no-hair theorems. We also determine and study in detail the scalar charge, horizon area, and entropy of our solutions.

  10. PROCESS FOR TREATING VOLATILE METAL FLUORIDES

    DOEpatents

    Rudge, A.J.; Lowe, A.J.

    1957-10-01

    This patent relates to the purification of uranium hexafluoride, made by reacting the metal or its tetrafluoride with fluorine, from the frequently contained traces of hydrofluoric acid. According to the present process, UF/sub 6/ containing as an impurity a small amount of hydrofluoric acid, is treated to remove such impurity by contact with an anhydrous alkali metal fluoride such as sodium fluoride. In this way a non-volatile complex containing hydrofluoric acid and the alkali metal fluoride is formed, and the volatile UF /sub 6/ may then be removed by distillation.

  11. Thermal effects in Cs DPAL and alkali cell window damage

    NASA Astrophysics Data System (ADS)

    Zhdanov, B. V.; Rotondaro, M. D.; Shaffer, M. K.; Knize, R. J.

    2016-10-01

    Experiments on power scaling of Diode Pumped Alkali Lasers (DPALs) revealed some limiting parasitic effects such as alkali cell windows and gain medium contamination and damage, output power degradation in time and others causing lasing efficiency decrease or even stop lasing1 . These problems can be connected with thermal effects, ionization, chemical interactions between the gain medium components and alkali cells materials. Study of all these and, possibly, other limiting effects and ways to mitigate them is very important for high power DPAL development. In this talk we present results of our experiments on temperature measurements in the gain medium of operating Cs DPAL at different pump power levels in the range from lasing threshold to the levels causing damage of the alkali cell windows. For precise contactless in situ temperature measurements, we used an interferometric technique, developed in our lab2 . In these experiments we demonstrated that damage of the lasing alkali cell starts in the bulk with thermal breakdown of the hydrocarbon buffer gas. The degradation processes start at definite critical temperatures of the gain medium, different for each mixture of buffer gas. At this critical temperature, the hydrocarbon and the excited alkali metal begin to react producing the characteristic black soot and, possibly, some other chemical compounds, which both harm the laser performance and significantly increase the harmful heat deposition within the laser medium. This soot, being highly absorptive, is catastrophically heated to very high temperatures that visually observed as bulk burning. This process quickly spreads to the cell windows and causes their damage. As a result, the whole cell is also contaminated with products of chemical reactions.

  12. Scalarized hairy black holes

    NASA Astrophysics Data System (ADS)

    Kleihaus, Burkhard; Kunz, Jutta; Yazadjiev, Stoytcho

    2015-05-01

    In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  13. Calibration of a fluxgate magnetometer array and its application in magnetic object localization

    NASA Astrophysics Data System (ADS)

    Pang, Hongfeng; Luo, Shitu; Zhang, Qi; Li, Ji; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2013-07-01

    The magnetometer array is effective for magnetic object detection and localization. Calibration is important to improve the accuracy of the magnetometer array. A magnetic sensor array built with four three-axis DM-050 fluxgate magnetometers is designed, which is connected by a cross aluminum frame. In order to improve the accuracy of the magnetometer array, a calibration process is presented. The calibration process includes magnetometer calibration, coordinate transformation and misalignment calibration. The calibration system consists of a magnetic sensor array, a GSM-19T proton magnetometer, a two-dimensional nonmagnetic rotation platform, a 12 V-dc portable power device and two portable computers. After magnetometer calibration, the RMS error has been decreased from an original value of 125.559 nT to a final value of 1.711 nT (a factor of 74). After alignment, the RMS error of misalignment has been decreased from 1322.3 to 6.0 nT (a factor of 220). Then, the calibrated array deployed on the nonmagnetic rotation platform is used for ferromagnetic object localization. Experimental results show that the estimated errors of X, Y and Z axes are -0.049 m, 0.008 m and 0.025 m, respectively. Thus, the magnetometer array is effective for magnetic object detection and localization in three dimensions.

  14. A Reduced SWAP+C DC Magnetometer for Geomagnetic and Space Physics Research

    NASA Astrophysics Data System (ADS)

    Moldwin, M.; Ojeda, L.; Rogacki, S.; Pelloni, M.; Regoli, L.

    2016-12-01

    A new small, low mass, low power consumption, and low cost (reduced SWaP+C or Size, Weight and Power + Cost) magnetometer is being developed for both ground-based and future CubeSat Constellation-class missions. The University of Michigan (UM) magnetometer is based on the PNI Induction magnetometer electronics. PNI 3100 magnetometers have flight heritage on Cubesat Missions (e.g., the UM RAXs mission), but they were used primarily for attitude control. This presentation describes the modifications and performance of the magnetometer and our strategies for continued improvement in performance and its environmental testing. A description of further development of this new magnetometer with regards to its ability to measure geophysical signals up to 10 Hz is also given. Current performance has noise levels of about 1 nT/root Hz at 1 Hz, temperature stability, inherent radiation tolerance, in a 3 x 5 cm package (electronics and sensors), draws 10s of mW and costs a few hundred dollars. We will also present several strategies to reduce the noise by a factor of 5-10 that are currently being pursued.

  15. Experimental and Theoretical Studies of Pressure Broadened Alkali-Metal Atom Resonance Lines

    NASA Technical Reports Server (NTRS)

    Shindo, F.; Zhu, C.; Kirby, K.; Babb, J. F.

    2006-01-01

    We are carrying out a joint theoretical and experimental research program to study the broadening of alkali atom resonance lines due to collisions with helium and molecular hydrogen for applications to spectroscopic studies of brown dwarfs and extrasolar giant planets.

  16. Aircraft attitude measurement using a vector magnetometer

    NASA Technical Reports Server (NTRS)

    Peitila, R.; Dunn, W. R., Jr.

    1977-01-01

    The feasibility of a vector magnetometer system was investigated by developing a technique to determine attitude given magnetic field components. Sample calculations are then made using the earth's magnetic field data acquired during actual flight conditions. Results of these calculations are compared graphically with measured attitude data acquired simultaneously with the magnetic data. The role and possible implementation of various reference angles are discussed along with other pertinent considerations. Finally, it is concluded that the earth's magnetic field as measured by modern vector magnetometers can play a significant role in attitude control systems.

  17. Evaluation Of Demercurization Efficiency Of Chlor-Alkali Production In Pavlodar City, Kazakhstan

    EPA Science Inventory

    Mercury pollution in Pavlodar, a city in northeastern Kazakhstan, is the result of chlor-alkali chemical plant operations in 1975-1993, where chlorine production capacity was approximately 100,000 tons per year. The total quantity of metallic mercury released into the environmen...

  18. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    ERIC Educational Resources Information Center

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  19. Developement of a Fluxgate Magnetometer for the KITSAT-3 Satellite

    NASA Astrophysics Data System (ADS)

    Hwang, S. H.; Lee, D. H.; Min, K. W.; Shin, Y. H.; Choi, C. R.; Nobuhito, O.

    1997-12-01

    The magnetometer is one of the most important payloads of scientific satellites to monitor the near-earth space environment. The electromagnetic variations of the space environment can be observed with the electric and magnetic field measurements. In practice, it is well known that the measurement of magnetic fields needs less technical complexities than that of electric fields in space. Therefore the magnetometer has long been recognized as one of the basic payloads for the scientific satellites. In this paper, we discuss the scientific fluxgate magnetometer which will be on board the KITSAT-3. The main circuit design of the present magnetometer is based on that of KISAT-1 and -2 but its facilities have been re-designed to improve the resolution to about 5nT for scientific purpose. The calibration and noise level test of this circuit have been performed at the laboratory of the Tierra Tecnica company in Japan.

  20. Fiber-optic three axis magnetometer prototype development

    NASA Technical Reports Server (NTRS)

    Wang, Thomas D.; Mccomb, David G.; Kingston, Bradley R.; Dube, C. Michael; Poehls, Kenneth A.; Wanser, Keith

    1989-01-01

    The goal of this research program was to develop a high sensitivity, fiber optic, interferometric, three-axis magnetometer for interplanetary spacecraft applications. Dynamics Technology, Inc. (DTI) has successfully integrated a low noise, high bandwidth interferometer with high sensitivity metallic glass transducers. Also, DTI has developed sophisticated signal processing electronics and complete data acquisition, filtering, and display software. The sensor was packaged in a compact, low power and weight unit which facilitates deployment. The magnetic field sensor had subgamma sensitivity and a dynamic range of 10(exp 5) gamma in a 10 Hz bandwidth. Furthermore, the vector instrument exhibited the lowest noise level when only one axis was in operation. A system noise level of 1 gamma rms was observed in a 1 Hz bandwidth. However, with the other two channels operating, the noise level increased by about one order of magnitude. Higher system noise was attributed to cross-channel interference among the dither fields.

  1. Alkali-lead-iron phosphate glass and associated method

    DOEpatents

    Boatner, Lynn A.; Sales, Brian C.; Franco, Sofia C. S.

    1994-01-01

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications.

  2. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    DOE PAGES

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less

  3. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Dezhi; Kuang, Xiaoyu, E-mail: scu-kuang@163.com; Gao, Yufeng

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the {sup 2}Σ{sup +} ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Åmore » and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.« less

  4. Detection of NMR signals with a radio-frequency atomic magnetometer.

    PubMed

    Savukov, I M; Seltzer, S J; Romalis, M V

    2007-04-01

    We demonstrate detection of proton NMR signals with a radio-frequency (rf) atomic magnetometer tuned to the NMR frequency of 62 kHz. High-frequency operation of the atomic magnetometer makes it relatively insensitive to ambient magnetic field noise. We obtain magnetic field sensitivity of 7 fT/Hz1/2 using only a thin aluminum shield. We also derive an expression for the fundamental sensitivity limit of a surface inductive pick-up coil as a function of frequency and find that an atomic rf magnetometer is intrinsically more sensitive than a coil of comparable size for frequencies below about 50 MHz.

  5. A study on the dynamic interfacial tension of acidic crude oil/alkali (alkali-polymer) systems--

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y.; Yang, P.; Qin, T.

    1989-01-01

    This paper describes the investigation of dynamic interfacial tension (DIFT) between the acidic Liao-He crude oil and two types of brine: a simple alkali system and a combined alkali-polymer system. It was found that interfacial tension (IFT) changed markedly with time and that the history of DIFT depended upon the concentration of alkali in the brine. The experimental results also showed that the IFT dropped dramatically as soon as the fresh oil contacted brine causing spontaneous emulsification to occur. The steady-state value of DIFT {gamma} st can be lower with the combined alkali-polymer system than with the simple alkali system.more » The results indicate that biopolymer is more effective than partially hydrolyzed polyacrylamide (PHPAM) for lowering {gamma} st and that Na{sub 2}Co{sub 1} causes a lower {gamma} st than NaOH in the combined alkali-polymer system. Optimized formulations containing Na{sub 2}CO{sub 3} added biopolymer can reduce {gamma} st by two orders of magnitude, and PHPAM can reduce {gamma} st by one order of magnitude. The interaction between alkali and polymer in the combined alkali-polymer system is discussed.« less

  6. Scaling laws of passive-scalar diffusion in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Colbrook, Matthew J.; Ma, Xiangcheng; Hopkins, Philip F.; Squire, Jonathan

    2017-05-01

    Passive-scalar mixing (metals, molecules, etc.) in the turbulent interstellar medium (ISM) is critical for abundance patterns of stars and clusters, galaxy and star formation, and cooling from the circumgalactic medium. However, the fundamental scaling laws remain poorly understood in the highly supersonic, magnetized, shearing regime relevant for the ISM. We therefore study the full scaling laws governing passive-scalar transport in idealized simulations of supersonic turbulence. Using simple phenomenological arguments for the variation of diffusivity with scale based on Richardson diffusion, we propose a simple fractional diffusion equation to describe the turbulent advection of an initial passive scalar distribution. These predictions agree well with the measurements from simulations, and vary with turbulent Mach number in the expected manner, remaining valid even in the presence of a large-scale shear flow (e.g. rotation in a galactic disc). The evolution of the scalar distribution is not the same as obtained using simple, constant 'effective diffusivity' as in Smagorinsky models, because the scale dependence of turbulent transport means an initially Gaussian distribution quickly develops highly non-Gaussian tails. We also emphasize that these are mean scalings that apply only to ensemble behaviours (assuming many different, random scalar injection sites): individual Lagrangian 'patches' remain coherent (poorly mixed) and simply advect for a large number of turbulent flow-crossing times.

  7. The scalar-scalar-tensor inflationary three-point function in the axion monodromy model

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debika; Sreenath, V.; Sriramkumar, L.

    2016-11-01

    The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.

  8. Design and Analyses of a MEMS Based Resonant Magnetometer

    PubMed Central

    Ren, Dahai; Wu, Lingqi; Yan, Meizhi; Cui, Mingyang; You, Zheng; Hu, Muzhi

    2009-01-01

    A novel design of a MEMS torsional resonant magnetometer based on Lorentz force is presented and fabricated. The magnetometer consists of a silicon resonator, torsional beam, excitation coil, capacitance plates and glass substrate. Working in a resonant condition, the sensor’s vibration amplitude is converted into the sensing capacitance change, which reflects the outside magnetic flux-density. Based on the simulation, the key structure parameters are optimized and the air damping effect is estimated. The test results of the prototype are in accordance with the simulation results of the designed model. The resolution of the magnetometer can reach 30 nT. The test results indicate its sensitivity of more than 400 mV/μT when operating in a 10 Pa vacuum environment. PMID:22399981

  9. Response of a Bell–Bloom Magnetometer to a Magnetic Field of Arbitrary Direction

    PubMed Central

    Ding, Zhichao; Yuan, Jie; Long, Xingwu

    2018-01-01

    The Bell–Bloom magnetometer in response to a magnetic field of arbitrary direction is observed theoretically and experimentally. A theoretical model is built from a macroscopic view to simulate the magnetometer frequency response to an external magnetic field of arbitrary direction. Based on the simulation results, the magnetometer characteristics, including the signal phase and amplitude at resonance, the linewidth, and the magnetometer sensitivity, are analyzed, and the dependencies of these characteristics on the external magnetic field direction are obtained, which are verified by the experiment. PMID:29724059

  10. New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories

    NASA Astrophysics Data System (ADS)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.

    2018-03-01

    In the present Letter, we consider a class of extended scalar-tensor-Gauss-Bonnet (ESTGB) theories for which the scalar degree of freedom is excited only in the extreme curvature regime. We show that in the mentioned class of ESTGB theories there exist new black-hole solutions that are formed by spontaneous scalarization of the Schwarzschild black holes in the extreme curvature regime. In this regime, below certain mass, the Schwarzschild solution becomes unstable and a new branch of solutions with a nontrivial scalar field bifurcates from the Schwarzschild one. As a matter of fact, more than one branch with a nontrivial scalar field can bifurcate at different masses, but only the first one is supposed to be stable. This effect is quite similar to the spontaneous scalarization of neutron stars. In contrast to the standard spontaneous scalarization of neutron stars, which is induced by the presence of matter, in our case, the scalarization is induced by the curvature of the spacetime.

  11. New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories.

    PubMed

    Doneva, Daniela D; Yazadjiev, Stoytcho S

    2018-03-30

    In the present Letter, we consider a class of extended scalar-tensor-Gauss-Bonnet (ESTGB) theories for which the scalar degree of freedom is excited only in the extreme curvature regime. We show that in the mentioned class of ESTGB theories there exist new black-hole solutions that are formed by spontaneous scalarization of the Schwarzschild black holes in the extreme curvature regime. In this regime, below certain mass, the Schwarzschild solution becomes unstable and a new branch of solutions with a nontrivial scalar field bifurcates from the Schwarzschild one. As a matter of fact, more than one branch with a nontrivial scalar field can bifurcate at different masses, but only the first one is supposed to be stable. This effect is quite similar to the spontaneous scalarization of neutron stars. In contrast to the standard spontaneous scalarization of neutron stars, which is induced by the presence of matter, in our case, the scalarization is induced by the curvature of the spacetime.

  12. First-principles study on alkali-metal effect of Li, Na, and K in CuInSe2 and CuGaSe2

    NASA Astrophysics Data System (ADS)

    Maeda, Tsuyoshi; Kawabata, Atsuhito; Wada, Takahiro

    2015-08-01

    The substitution energies and migration energies of the alkali metal atoms of Li, Na, and K in CuInSe2 (CIS) and CuGaSe2 (CGS) were investigated by first-principles calculations. The substitution energies of Li, Na, and K atoms in CIS and CGS were calculated for two different cationic atom positions of Cu and In/Ga in the chalcopyrite unit cell. In CIS and CGS, the substitution energies of NaCu are much lower than those of NaIn and NaGa. The substitution energies of the LiCu atoms in CIS and CGS are lower than those of NaCu, while the substitution energies of KCu atoms in CIS and CGS are much higher than those of NaCu. Therefore, it is difficult to form KCu in CIS and CGS. The migration energies of Li, Na, and K atoms in CIS and CGS are obtained by a combination of the linear and quadratic synchronous transit (LST/QST) methods and the nudged elastic band (NEB) method. The theoretical migration energies of a Na atom at the Cu site to the nearest Cu vacancy (NaCu → VCu) in CIS and CGS are much lower than those of (CuCu → VCu) in CIS and CGS. The mechanism underlying the alkali metal effect of Li, Na, and K in the CIGS film during the post-deposition treatment of LiF, NaF, and KF is discussed on the basis of the calculated substitution and migration energies.

  13. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOEpatents

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  14. Electron Dispersion in Liquid Alkali and Their Alloys

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2010-07-01

    Ashcroft's local empty core (EMC) model pseudopotential in the second-order perturbation theory is used to study the electron dispersion relation, the Fermi energy, and deviation in the Fermi energy from free electron value for the liquid alkali metals and their equiatomic binary alloys for the first time. In the present computation, the use of pseudo-alloy-atom model (PAA) is proposed and found successful. The influence of the six different forms of the local field correction functions proposed by Hartree (H), Vashishta-Singwi (VS), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) on the aforesaid electronic properties is examined explicitly, which reflects the varying effects of screening. The depth of the negative hump in the electron dispersion of liquid alkalis decreases in the order Li → K, except for Rb and Cs, it increases. The results of alloys are in predictive nature.

  15. PRODUCTION OF METALS

    DOEpatents

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1961-09-19

    A process is described producing metallic thorium, titanium, zirconium, or hafnium from the fluoride. In the process, the fluoride is reduced with alkali or alkaline earth metal and a booster compound (e.g. iodine or a decomposable oxysalt) in a sealed bomb at superatmospheric pressure and a temperature above the melting point of the metal to be produced.

  16. Design and analysis of miniature tri-axial fluxgate magnetometer

    NASA Astrophysics Data System (ADS)

    Zhi, Menghui; Tang, Liang; Qiao, Donghai

    2017-02-01

    The detection technology of weak magnetic field is widely used in Earth resource survey and geomagnetic navigation. Useful magnetic field information can be obtained by processing and analyzing the measurement data from magnetic sensors. A miniature tri-axial fluxgate magnetometer is proposed in this paper. This miniature tri-axial fluxgate magnetometer with ring-core structure has a dynamic range of the Earth’s field ±65,000 nT, resolution of several nT. It has three independent parts placed in three perpendicular planes for measuring three orthogonal magnetic field components, respectively. A field-programmable gate array (FPGA) is used to generate stimulation signal, analog-to-digital (A/D) convertor control signal, and feedback digital-to-analog (D/A) control signal. Design and analysis details are given to improve the dynamic range, sensitivity, resolution, and linearity. Our prototype was measured and compared with a commercial standard Magson fluxgate magnetometer as a reference. The results show that our miniature fluxgate magnetometer can follow the Magson’s change trend well. When used as a magnetic compass, our prototype only has ± 0.3∘ deviation compared with standard magnetic compass.

  17. Associating ground magnetometer observations with current or voltage generators

    NASA Astrophysics Data System (ADS)

    Hartinger, M. D.; Xu, Z.; Clauer, C. R.; Yu, Y.; Weimer, D. R.; Kim, H.; Pilipenko, V.; Welling, D. T.; Behlke, R.; Willer, A. N.

    2017-07-01

    A circuit analogy for magnetosphere-ionosphere current systems has two extremes for drivers of ionospheric currents: ionospheric electric fields/voltages constant while current/conductivity vary—the "voltage generator"—and current constant while electric field/conductivity vary—the "current generator." Statistical studies of ground magnetometer observations associated with dayside Transient High Latitude Current Systems (THLCS) driven by similar mechanisms find contradictory results using this paradigm: some studies associate THLCS with voltage generators, others with current generators. We argue that most of this contradiction arises from two assumptions used to interpret ground magnetometer observations: (1) measurements made at fixed position relative to the THLCS field-aligned current and (2) negligible auroral precipitation contributions to ionospheric conductivity. We use observations and simulations to illustrate how these two assumptions substantially alter expectations for magnetic perturbations associated with either a current or a voltage generator. Our results demonstrate that before interpreting ground magnetometer observations of THLCS in the context of current/voltage generators, the location of a ground magnetometer station relative to the THLCS field-aligned current and the location of any auroral zone conductivity enhancements need to be taken into account.

  18. Magnetometer bias determination and attitude determination for near-earth spacecraft

    NASA Technical Reports Server (NTRS)

    Lerner, G. M.; Shuster, M. D.

    1979-01-01

    A simple linear-regression algorithm is used to determine simultaneously magnetometer biases, misalignments, and scale factor corrections, as well as the dependence of the measured magnetic field on magnetic control systems. This algorithm has been applied to data from the Seasat-1 and the Atmosphere Explorer Mission-1/Heat Capacity Mapping Mission (AEM-1/HCMM) spacecraft. Results show that complete inflight calibration as described here can improve significantly the accuracy of attitude solutions obtained from magnetometer measurements. This report discusses the difficulties involved in obtaining attitude information from three-axis magnetometers, briefly derives the calibration algorithm, and presents numerical results for the Seasat-1 and AEM-1/HCMM spacecraft.

  19. Room temperature deintercalation of alkali metal atoms from epitaxial graphene by formation of charge-transfer complexes

    NASA Astrophysics Data System (ADS)

    Shin, H.-C.; Ahn, S. J.; Kim, H. W.; Moon, Y.; Rai, K. B.; Woo, S. H.; Ahn, J. R.

    2016-08-01

    Atom (or molecule) intercalations and deintercalations have been used to control the electronic properties of graphene. In general, finite energies above room temperature (RT) thermal energy are required for the intercalations and deintercalations. Here, we demonstrate that alkali metal atoms can be deintercalated from epitaxial graphene on a SiC substrate at RT, resulting in the reduction in density of states at the Fermi level. The change in density of states at the Fermi level at RT can be applied to a highly sensitive graphene sensor operating at RT. Na atoms, which were intercalated at a temperature of 80 °C, were deintercalated at a high temperature above 1000 °C when only a thermal treatment was used. In contrast to the thermal treatment, the intercalated Na atoms were deintercalated at RT when tetrafluorotetracyanoquinodimethane (F4-TCNQ) molecules were adsorbed on the surface. The RT deintercalation occurred via the formation of charge-transfer complexes between Na atoms and F4-TCNQ molecules.

  20. Structural changes of polyacids initiated by their neutralization with various alkali metal hydroxides. Diffusion studies in poly(acrylic acid)s.

    PubMed

    Masiak, Michal; Hyk, Wojciech; Stojek, Zbigniew; Ciszkowska, Malgorzata

    2007-09-27

    The changes in the three-dimensional structure of the poly(acrylic acid), PAA, induced by incorporation of various alkali-metal counterions have been evaluated by studying diffusion of an uncharged probe (1,1'-ferrocenedimethanol) in the polymeric media. The studies are supported by the measurements of conductivity and viscosity of the polymeric media. Solutions of linear PAA of four different sizes (molecular weights: 450,000, 750,000, 1,250,000, 4,000,000) were neutralized with hydroxides of alkali metals of group 1 of the periodic table (Li, Na, K, Rb, Cs) to the desired neutralization degree. The transport properties of the obtained polyacrylates were monitored by measuring the changes in the probe diffusion coefficient during the titration of the polyacids. The probe diffusivity was determined from the steady-state current of the probe voltammetric oxidation at disk microelectrodes. Diffusivity of the probe increases with the increase in the degree of neutralization and with the increase in viscosity. It reaches the maximum value at about 60-80% of the polyacid neutralization. The way the probe diffusion coefficients change is similar in all polyacid solutions and gels. The increase in the size of a metal cation causes, in general, an enhancement in the transport of probe molecules. The biggest differences in the probe diffusivities are between lithium and cesium polyacrylates. The differences between the results obtained for cesium and rubidium are not statistically significant due to lack of good precision of the voltammetric measurements. The measurements of the electric conductivity of polyacrylates and the theoretical predictions supplemented the picture of electrostatic interactions between the polyanionic chains and the metal cations of increasing size. In all instances of the PAAs, the viscosity of the solutions rapidly increases in the 0-60% range of neutralization and then becomes constant in the 60-100% region. With the exception of the shortest

  1. Sensitivity optimization of Bell-Bloom magnetometers by manipulation of atomic spin synchronization

    NASA Astrophysics Data System (ADS)

    Ranjbaran, M.; Tehranchi, M. M.; Hamidi, S. M.; Khalkhali, S. M. H.

    2018-05-01

    Many efforts have been devoted to the developments of atomic magnetometers for achieving the high sensitivity required in biomagnetic applications. To reach the high sensitivity, many types of atomic magnetometers have been introduced for optimization of the creation and relaxation rates of atomic spin polarization. In this paper, regards to sensitivity optimization techniques in the Mx configuration, we have proposed a novelty approach for synchronization of the spin precession in the Bell-Bloom magnetometers. We have utilized the phenomenological Bloch equations to simulate the spin dynamics when modulation of pumping light and radio frequency magnetic field were both used for atomic spin synchronization. Our results showed that the synchronization process, improved the magnetometer sensitivity respect to the classical configurations.

  2. Doping of AlH3 with alkali metal hydrides for enhanced decomposition kinetics

    NASA Astrophysics Data System (ADS)

    Sandrock, Gary; Reilly, James

    2005-03-01

    Aluminum hydride, AlH3, has inherently high gravimetric and volumetric properties for onboard vehiclular hydrogen storage (10 wt% H2 and 0.148 kg H2/L). Yet it has been widely neglected because of its kinetic limitations for low-temperature H2 desorption and the thermodynamic difficulties associated with recharging. This paper considers a scenario whereby doped AlH3 is decomposed onboard and recharged offboard. In particular, we show that particle size control and doping with small levels of alkali metal hydrides (e.g., LiH) results in accelerated H2 desorption rates nearly high enough to supply fuel-cell and ICE vehicles. The mechanism of enhanced H2 desorption is associated with the formation of alanate windows (e.g., LiAlH4) between the AlH3 particles and the external gas phase. These alanate windows can be doped with Ti to further enhance transparency, even to the point of accomplishing slow decomposition of AlH3 at room temperature. It is highly likely 2010 gravimetric and volumetric vehicular system targets (6 wt% H2 and 0.045 kg/L) can be met with AlH3. But a new, low-cost method of offboard regeneration of spent Al back to AlH3 is yet needed.

  3. An Arduino-Based Magnetometer

    ERIC Educational Resources Information Center

    McCaughey, Mike

    2017-01-01

    An Arduino-based system with a triple axis magnetometer chip may be used to plot both the strength and direction of the magnetic field of a magnet directly on a sheet of paper. Before taking measurements, it is necessary either to correct for or to eliminate soft and hard iron effects. The same sensor may be used to determine the presence of soft…

  4. PROCESS OF PRODUCING ACTINIDE METALS

    DOEpatents

    Magel, T.T.

    1959-07-14

    The preparation of actinide metals in workable, coherent form is described. In general, the objects of the invention are achieved by heating a mixture of an oxide and a halide of an actinide metal such as uranium with an alkali metal on alkaline earth metal reducing agent in the presence of iodine.

  5. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress.

    PubMed

    Guo, Rui; Yang, Zongze; Li, Feng; Yan, Changrong; Zhong, Xiuli; Liu, Qi; Xia, Xu; Li, Haoru; Zhao, Long

    2015-07-07

    It is well known that salinization (high-pH) has been considered as a major environmental threat to agricultural systems. The aim of this study was to investigate the differences between salt stress and alkali stress in metabolic profiles and nutrient accumulation of wheat; these parameters were also evaluated to determine the physiological adaptive mechanisms by which wheat tolerates alkali stress. The harmful effect of alkali stress on the growth and photosynthesis of wheat were stronger than those of salt stress. High-pH of alkali stress induced the most of phosphate and metal ions to precipitate; as a result, the availability of nutrients significantly declined. Under alkali stress, Ca sharply increased in roots, however, it decreased under salt stress. In addition, we detected the 75 metabolites that were different among the treatments according to GC-MS analysis, including organic acids, amino acids, sugars/polyols and others. The metabolic data showed salt stress and alkali stress caused different metabolic shifts; alkali stress has a stronger injurious effect on the distribution and accumulation of metabolites than salt stress. These outcomes correspond to specific detrimental effects of a highly pH environment. Ca had a significant positive correlation with alkali tolerates, and increasing Ca concentration can immediately trigger SOS Na exclusion system and reduce the Na injury. Salt stress caused metabolic shifts toward gluconeogenesis with increased sugars to avoid osmotic stress; energy in roots and active synthesis in leaves were needed by wheat to develop salt tolerance. Alkali stress (at high pH) significantly inhibited photosynthetic rate; thus, sugar production was reduced, N metabolism was limited, amino acid production was reduced, and glycolysis was inhibited.

  6. The Mesospheric Sodium Layer as a Remotely, Optically Pumped Magnetometer for Investigation of Birkeland Currents

    NASA Astrophysics Data System (ADS)

    Matzka, J.; Johnsen, M. G.; Hoppe, U. P.; Serrano, A.

    2016-12-01

    By means of optical pumping, it is possible to use the naturally occurring sodium layer in the mesosphere to measure Earth's scalar magnetic field at 90 km above ground. This is an altitude not accessible by other means than rockets, which only will provide point measurements of very short time scales. We are planning to modify the sodium lidar at ALOMAR in Northern Norway to be able, for the first time, to measure and monitor the magnetic field in situ in the high latitude mesosphere over longer time scales. The planned modifications to the lidar instrument will allow alternating between the new magnetometer mode and its present mode for atmospheric temperatures and winds. The technique, which has been proposed earlier for measurements at low or mid-latitudes for studies of Earth's internal magnetic field, will in our project be applied to high latitudes in the auroral zone. This opens for a completely new domain of measurements of externally generated geomagnetic variations related to currents in the magnetosphere-ionosphere system. In particular, we aim to measure the magnetic field variations in close vicinity to Birkeland currents associated with particle precipitation events penetrating to altitudes below 90 km and small-scale, discrete auroral arcs. It is, furthermore, anticipated that it will be possible to detect horizontal current structures in the E-layer on much smaller length scales than it is presently possible from ground observations alone. During the project we plan take advantage of the rich space science infrastructure located in northern Norway, including ALOMAR, EISCAT and the Tromsø Geophysical Observatory magnetometer network. If possible, we also aim to make measurements in conjunction with overpasses of the SWARM satellites.

  7. Alkali-lead-iron phosphate glass and associated method

    DOEpatents

    Boatner, L.A.; Sales, B.C.; Franco, S.C.S.

    1994-03-29

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications. 6 figures.

  8. Neutron star solutions with curvature induced scalarization in the extended Gauss-Bonnet scalar-tensor theories

    NASA Astrophysics Data System (ADS)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.

    2018-04-01

    In the present paper we study models of neutron stars in a class of extended scalar-tensor Gauss-Bonnet (ESTGB) theories for which the scalar degree of freedom is exited only in the strong curvature regime. We show that in the framework of the ESTGB theories under consideration there exist new neutron star solutions which are formed via spontaneous scalarization of the general relativistic neutron stars. In contrast to the spontaneous scalarization in the standard scalar-tensor theories which is induced by the presence of matter, in our case the scalarization is induced by the spacetime curvature.

  9. Magnetogate: using an iPhone magnetometer for measuring kinematic variables

    NASA Astrophysics Data System (ADS)

    Kağan Temiz, Burak; Yavuz, Ahmet

    2016-01-01

    This paper presents a method to measure the movement of an object from specific locations on a straight line using an iPhone’s magnetometer. In this method, called ‘magnetogate’, an iPhone is placed on a moving object (in this case a toy car) and small neodymium magnets are arranged at equal intervals on one side of a straight line. The magnetometer sensor of the iPhone is switched on and then the car starts moving. The iPhone’s magnetometer is stimulated throughout its movement along a straight line. A ‘sensor Kinetics’ application on the iPhone saves the magnetic stimulations and produces a graph of the changing magnetic field near the iPhone. At the end of motion, data from the magnetometer is interpreted and peaks on the graph are detected. Thus, position-time changes can be analysed and comments about the motion of the object can be made. The position, velocity and acceleration of the object can be easily measured with this method.

  10. A set of alkali and alkaline-earth coordination polymers based on the ligand 2-(1H-benzotriazol-1-yl) acetic acid: Effects the radius of metal ions on structures and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jin-Hua; Tang, Gui-Mei, E-mail: meiguit@163.com; Qin, Ting-Xiao

    2014-11-15

    Four new metal coordination complexes, namely, [Na(BTA)]{sub n} (1), [K{sub 2}(BTA){sub 2}(μ{sub 2}-H{sub 2}O)]{sub n} (2), and [M(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n} (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1–4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11more » nodal net with Schläfli symbol of (3{sup 18}). Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of (3{sup 11}×4{sup 2}). Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1–4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail. - Graphical abstract: A set of alkali and alkaline-earth metal coordination polymers were hydrothermally synthesized by 2-(1H-benzotriazol-1-yl)acetic acid, displaying interesting topologic motifs from two-dimension to one-dimension and specific physical properties. - Highlights: • Alkali and alkaline-earth metal coordination polymers have been obtained. • The ligand 2-(1H-benzotriazol-1-yl)acetic acid has been adopted. • The two-dimensional and one

  11. METAL SURFACE TREATMENT

    DOEpatents

    Eubank, L.D.

    1958-08-12

    Improved flux baths are described for use in conjunction with hot dipped coatings for uranium. The flux bath consists of molten alkali metal, or alkaline earth metal halides. One preferred embodiment comprises a bath containing molten KCl, NaCl, and LiCl in proportions approximating the triple eutectic.

  12. Participation in the Cluster Magnetometer Consortium for the Cluster Mission

    NASA Technical Reports Server (NTRS)

    Kivelson, Margaret

    1997-01-01

    Prof. M. G. Kivelson (UCLA) and Dr. R. C. Elphic (LANL) are Co-investigators on the Cluster Magnetometer Consortium (CMC) that provided the fluxgate magnetometers and associated mission support for the Cluster Mission. The CMC designated UCLA as the site with primary responsibility for the inter-calibration of data from the four spacecraft and the production of fully corrected data critical to achieving the mission objectives. UCLA was also charged with distributing magnetometer data to the U.S. Co-investigators. UCLA also supported the Technical Management Team, which was responsible for the detailed design of the instrument and its interface. In this final progress report we detail the progress made by the UCLA team in achieving the mission objectives.

  13. Alkali-metal-ion catalysis and inhibition in the nucleophilic displacement reaction of y-substituted phenyl diphenylphosphinates and diphenylphosphinothioates with alkali-metal ethoxides: effect of changing the electrophilic center from P=O to P=S.

    PubMed

    Um, Ik-Hwan; Shin, Young-Hee; Park, Jee-Eun; Kang, Ji-Sun; Buncel, Erwin

    2012-01-16

    A kinetic study of the nucleophilic substitution reaction of Y-substituted phenyl diphenylphosphinothioates 2 a-g with alkali-metal ethoxides (MOEt; M = Li, Na, K) in anhydrous ethanol at (25.0±0.1) °C is reported. Plots of pseudo-first-order rate constants (k(obsd)) versus [MOEt], the alkali ethoxide concentration, show distinct upward (KOEt) and downward (LiOEt) curvatures, respectively, pointing to the importance of ion-pairing phenomena and a differential reactivity of dissociated EtO(-) and ion-paired MOEt. Based on ion-pairing treatment of the kinetic data, the k(obsd) values were dissected into k EtO - and k(MOEt), the second-order rate constants for the reaction with the dissociated EtO(-) and ion-paired MOEt, respectively. The reactivity of MOEt toward 2 b (Y = 4-NO(2)) increases in the order LiOEtNaOEt>KOEt>EtO(-). The current study based on Yukawa-Tsuno analysis has revealed that the reactions of 2 a-g (P=S) and Y-substituted phenyl diphenylphosphinates 1 a-g (P=O) with MOEt proceed through the same concerted mechanism, which indicates that the contrasting selectivity patterns are not due to a difference in reaction mechanism. The P=O compounds 1 a-g are approximately 80-fold more reactive than the P=S compounds 2 a-g toward the dissociated EtO(-) (regardless of the electronic nature of substituent Y) but are up to 3.1×10(3)-fold more reactive toward ion-paired LiOEt. The origin of the contrasting selectivity patterns is further discussed on the basis of competing electrostatic effects and solvational requirements as a function of anionic electric field strength and cation size (Eisenman's theory). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    NASA Technical Reports Server (NTRS)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 C temperature increase from the nominal vapor temperature. The 19 C temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  15. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    NASA Technical Reports Server (NTRS)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  16. An Arduino-Based Magnetometer

    NASA Astrophysics Data System (ADS)

    McCaughey, Mike

    2017-05-01

    An Arduino-based system with a triple axis magnetometer chip may be used to plot both the strength and direction of the magnetic field of a magnet directly on a sheet of paper. Before taking measurements, it is necessary either to correct for or to eliminate soft and hard iron effects. The same sensor may be used to determine the presence of soft iron effects.

  17. The Noise Level Optimization for Induction Magnetometer of SEP System

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Fang, G.

    2011-12-01

    The Surface Electromagnetic Penetration (SEP) System, subsidized by the SinoProbe Plan in China, is designed for 3D conductivity imaging in geophysical mineral exploration, underground water distribution exploration, oil and gas reservoir exploration. Both the Controlled Source Audio Magnetotellurics (CSAMT) method and Magnetotellurics (MT) method can be surveyed by SEP system. In this article, an optimization design is introduced, which can minimize the noise level of the induction magnetometer for SEP system magnetic field's acquisition. The induction magnetometer transfers the rate of the magnetic field's change to voltage signal by induction coil, and amplified it by Low Noise Amplifier The noise parts contributed to the magnetometer are: the coil's thermal noise, the equivalent input voltage and current noise of the pre-amplifier. The coil's thermal noise is decided by coil's DC resistance. The equivalent input voltage and current noise of the pre-amplifier depend on the amplifier's type and DC operation condition. The design here optimized the DC operation point of pre-amplifier, adjusted the DC current source, and realized the minimum of total noise level of magnetometer. The calculation and test results show that: the total noise is about 1pT/√Hz, the thermal noise of coils is 1.7nV/√Hz, the preamplifier equivalent input voltage and current noise is 3nV/ √Hz and 0.1pA/√Hz, the weight of the magnetometer is 4.5kg and meet the requirement of SEP system.

  18. Alkali metal complexes of sterically demanding amino-functionalized secondary phosphanide ligands.

    PubMed

    Izod, Keith; Stewart, John C; Clegg, William; Harrington, Ross W

    2007-01-14

    The reaction between {(Me(3)Si)(2)CH}PCl(2) (4) and one equivalent of either [C(6)H(4)-2-NMe(2)]Li or [2-C(5)H(4)N]ZnCl, followed by in situ reduction with LiAlH(4) gives the secondary phosphanes {(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))PH (5) and {(Me(3)Si)(2)CH}(2-C(5)H(4)N)PH (6) in good yields as colourless oils. Metalation of 5 with Bu(n)Li in THF gives the lithium phosphanide [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]Li(THF)(2)] (7), which undergoes metathesis with either NaOBu(t) or KOBu(t) to give the heavier alkali metal derivatives [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]Na(tmeda)] (8) and [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]K(pmdeta)] (9) after recrystallization in the presence of the corresponding amine co-ligand [tmeda = N,N,N',N'-tetramethylethylenediamine, pmdeta = N,N,N',N'',N''-pentamethyldiethylenetriamine]. The pyridyl-functionalized phosphane 6 undergoes deprotonation on treatment with Bu(n)Li to give a red oil corresponding to the lithium compound [{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]Li (10) which could not be crystallized. Treatment of this oil with NaOBu(t) gives the sodium derivative [{[{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]Na}(2) x (Et(2)O)](2) (11), whilst treatment of with KOBu(t), followed by recrystallization in the presence of pmdeta gives the complex [[{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]K(pmdeta)](2) (12). Compounds 5-12 have been characterised by (1)H, (13)C{(1)H} and (31)P{(1)H} NMR spectroscopy and elemental analyses; compounds 7-9, and 12 have additionally been characterised by X-ray crystallography. Compounds 7-9 crystallize as discrete monomers, whereas 11 crystallizes as an unusual dimer of dimers and 12 crystallizes as a dimer with bridging pyridyl-phosphanide ligands.

  19. Magnetometer-only attitude and angular velocity filtering estimation for attitude changing spacecraft

    NASA Astrophysics Data System (ADS)

    Ma, Hongliang; Xu, Shijie

    2014-09-01

    This paper presents an improved real-time sequential filter (IRTSF) for magnetometer-only attitude and angular velocity estimation of spacecraft during its attitude changing (including fast and large angular attitude maneuver, rapidly spinning or uncontrolled tumble). In this new magnetometer-only attitude determination technique, both attitude dynamics equation and first time derivative of measured magnetic field vector are directly leaded into filtering equations based on the traditional single vector attitude determination method of gyroless and real-time sequential filter (RTSF) of magnetometer-only attitude estimation. The process noise model of IRTSF includes attitude kinematics and dynamics equations, and its measurement model consists of magnetic field vector and its first time derivative. The observability of IRTSF for small or large angular velocity changing spacecraft is evaluated by an improved Lie-Differentiation, and the degrees of observability of IRTSF for different initial estimation errors are analyzed by the condition number and a solved covariance matrix. Numerical simulation results indicate that: (1) the attitude and angular velocity of spacecraft can be estimated with sufficient accuracy using IRTSF from magnetometer-only data; (2) compared with that of RTSF, the estimation accuracies and observability degrees of attitude and angular velocity using IRTSF from magnetometer-only data are both improved; and (3) universality: the IRTSF of magnetometer-only attitude and angular velocity estimation is observable for any different initial state estimation error vector.

  20. A dumbbell-shaped hybrid magnetometer operating in DC-10 kHz

    NASA Astrophysics Data System (ADS)

    Shi, Hongyu; Wang, Yanzhang; Chen, Siyu; Lin, Jun

    2017-12-01

    This study is motivated by the need to design a hybrid magnetometer operating in a wide-frequency band from DC to 10 kHz. To achieve this objective, a residence times difference fluxgate magnetometer (RTDFM) and an induction magnetometer (IM) have been integrated into a compact form. The hybrid magnetometer has a dumbbell-shaped structure in which the RTDFM transducer is partially inserted into the tube cores of the IM. Thus, the sensitivity of the RTDFM is significantly improved due to the flux amplification. The optimal structure, which has maximum sensitivity enhancement, was obtained through FEM analysis. To validate the theoretical analysis, the optimal hybrid magnetometer was manufactured, and its performance was evaluated. The device has a sensitivity of 45 mV/nT at 1 kHz in IM mode and 0.38 μs/nT in RTDFM mode, which is approximately 3.45 times as large as that of the single RTDFM structure. Furthermore, to obtain a lower noise performance in the entire frequency band, two operation modes switch at the cross frequency (0.16 Hz) of their noise levels. The noise level is 30 pT/√Hz in RTDFM mode and 0.07 pT/√Hz at 1 kHz in IM mode.

  1. A dumbbell-shaped hybrid magnetometer operating in DC-10 kHz.

    PubMed

    Shi, Hongyu; Wang, Yanzhang; Chen, Siyu; Lin, Jun

    2017-12-01

    This study is motivated by the need to design a hybrid magnetometer operating in a wide-frequency band from DC to 10 kHz. To achieve this objective, a residence times difference fluxgate magnetometer (RTDFM) and an induction magnetometer (IM) have been integrated into a compact form. The hybrid magnetometer has a dumbbell-shaped structure in which the RTDFM transducer is partially inserted into the tube cores of the IM. Thus, the sensitivity of the RTDFM is significantly improved due to the flux amplification. The optimal structure, which has maximum sensitivity enhancement, was obtained through FEM analysis. To validate the theoretical analysis, the optimal hybrid magnetometer was manufactured, and its performance was evaluated. The device has a sensitivity of 45 mV/nT at 1 kHz in IM mode and 0.38 μs/nT in RTDFM mode, which is approximately 3.45 times as large as that of the single RTDFM structure. Furthermore, to obtain a lower noise performance in the entire frequency band, two operation modes switch at the cross frequency (0.16 Hz) of their noise levels. The noise level is 30 pT/√Hz in RTDFM mode and 0.07 pT/√Hz at 1 kHz in IM mode.

  2. MAGNETOMETER

    DOEpatents

    Leavitt, M.A.

    1958-11-18

    A magnetometer ls described, partlcularly to a device which accurately indicates the polarity and intensity of a magnetlc field. The main feature of the invention is a unique probe construction in combinatlon wlth a magnetic fleld detector system. The probe comprises two coils connected in series opposition for energization with an a-c voltage. The voltage lnduced in a third coll on the probe, a pick-up coil, is distorted by the presence of an external field to produce even harmonic voltages. A controlled d-c current is passed through the energized coils to counter the dlstortlon and reduce tbe even harmonic content to a null. When the null point is reached, the d-c current is a measure of the external magnetic field strength, and the phase of the pickup coil voltage indicates tbe field polarlty.

  3. Critical points of metal vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khomkin, A. L., E-mail: alhomkin@mail.ru; Shumikhin, A. S.

    2015-09-15

    A new method is proposed for calculating the parameters of critical points and binodals for the vapor–liquid (insulator–metal) phase transition in vapors of metals with multielectron valence shells. The method is based on a model developed earlier for the vapors of alkali metals, atomic hydrogen, and exciton gas, proceeding from the assumption that the cohesion determining the basic characteristics of metals under normal conditions is also responsible for their properties in the vicinity of the critical point. It is proposed to calculate the cohesion of multielectron atoms using well-known scaling relations for the binding energy, which are constructed for mostmore » metals in the periodic table by processing the results of many numerical calculations. The adopted model allows the parameters of critical points and binodals for the vapor–liquid phase transition in metal vapors to be calculated using published data on the properties of metals under normal conditions. The parameters of critical points have been calculated for a large number of metals and show satisfactory agreement with experimental data for alkali metals and with available estimates for all other metals. Binodals of metals have been calculated for the first time.« less

  4. Orbital disproportionation of electronic density is a universal feature of alkali-doped fullerides

    PubMed Central

    Iwahara, Naoya; Chibotaru, Liviu F.

    2016-01-01

    Alkali-doped fullerides show a wide range of electronic phases in function of alkali atoms and the degree of doping. Although the presence of strong electron correlations is well established, recent investigations also give evidence for dynamical Jahn–Teller instability in the insulating and the metallic trivalent fullerides. In this work, to reveal the interplay of these interactions in fullerides with even electrons, we address the electronic phase of tetravalent fulleride with accurate many-body calculations within a realistic electronic model including all basic interactions extracted from first principles. We find that the Jahn–Teller instability is always realized in these materials too. In sharp contrast to the correlated metals, tetravalent system displays uncorrelated band-insulating state despite similar interactions present in both fullerides. Our results show that the Jahn–Teller instability and the accompanying orbital disproportionation of electronic density in the degenerate lowest unoccupied molecular orbital band is a universal feature of fullerides. PMID:27713426

  5. Design and analysis of control system for VCSEL of atomic interference magnetometer

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-nan; Sun, Xiao-jie; Kou, Jun; Yang, Feng; Li, Jie; Ren, Zhang; Wei, Zong-kang

    2016-11-01

    Magnetic field detection is an important means of deep space environment exploration. Benefit from simple structure and low power consumption, atomic interference magnetometer become one of the most potential detector payloads. Vertical Cavity Surface Emitting Laser (VCSEL) is usually used as a light source in atomic interference magnetometer and its frequency stability directly affects the stability and sensitivity of magnetometer. In this paper, closed-loop control strategy of VCSEL was designed and analysis, the controller parameters were selected and the feedback error algorithm was optimized as well. According to the results of experiments that were performed on the hardware-in-the-loop simulation platform, the designed closed-loop control system is reasonable and it is able to effectively improve the laser frequency stability during the actual work of the magnetometer.

  6. STUDIES ON THE FORMATION AND IONIZATION OF THE COMPOUNDS OF CASEIN WITH ALKALI

    PubMed Central

    Greenberg, David M.; Schmidt, Carl L. A.

    1924-01-01

    1. The deposition of casein on a platinum anode which takes place on the passage of a direct current through solutions of alkali caseinates was quantitatively studied, and it was found that: (a) the amount of casein which is deposited is directly proportional to the current, i.e. it obeys Faraday's law; (b) the amount of casein deposited is inversely proportional (within the limits studied) to the amount of alkali which is combined with the casein. 2. A method of determining the transport numbers of proteins insoluble at their isoelectric point has been developed. 3. A titration method for determining the amount of alkali in a casein solution is given. 4. Data from the results of transference experiments on sodium caseinate, potassium caseinate, cesium caseinate, and rubidium caseinate solutions are given. It is shown that the data are best explained on the assumption that in these solutions the carriers of the current are alkali metal cations and casein anions. 5. On the basis of our transference results an explanation is given of the results which were obtained by Robertson and by Haas in their migration experiments. PMID:19872135

  7. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    PubMed

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Assessing and Ensuring GOES-R Magnetometer Accuracy

    NASA Technical Reports Server (NTRS)

    Kronenwetter, Jeffrey; Carter, Delano R.; Todirita, Monica; Chu, Donald

    2016-01-01

    The GOES-R magnetometer accuracy requirement is 1.7 nanoteslas (nT). During quiet times (100 nT), accuracy is defined as absolute mean plus 3 sigma. During storms (300 nT), accuracy is defined as absolute mean plus 2 sigma. To achieve this, the sensor itself has better than 1 nT accuracy. Because zero offset and scale factor drift over time, it is also necessary to perform annual calibration maneuvers. To predict performance, we used covariance analysis and attempted to corroborate it with simulations. Although not perfect, the two generally agree and show the expected behaviors. With the annual calibration regimen, these predictions suggest that the magnetometers will meet their accuracy requirements.

  9. Voltammetric studies of porous molybdenum electrodes for the alkali metal thermoelectric converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R.M.; Bankston, C.P.; Khanna, S.K.

    1986-11-01

    Voltammetry of partially oxidized porous molybdenum alkali metal thermoelectric converter (AMTEC) electrodes from --600 to --1000 K revealed a series of redox processes within the operational voltage range of the AMTEC device. The most important of these processes involve reactions that add sodium to MoO/sub 2/, Na/sub 2/Mo/sub 3/O/sub 6/, and Na/sub 2/MoO/sub 4/. The redox processes can be used as an in situ analytical probe of oxide species in porous molybdenum electrodes. These constituents are important in establishing the electronic and ionic conductivities of AMTEC electrodes. The estimated equilibrium potentials of these reactions provide improved estimates of the freemore » energies of formation of Na/sub 2/Mo/sub 3/O/sub 6/, NaMoO/sub 2/, and Na/sub 3/MoO/sub 4/. In the AMTEC operating regime, there is evidence for the comparatively slow corrosive attack by Na/sub 2/MoO/sub 4/ on molybdenum. The ionic conductivity of Na/sub 2/MoO/sub 4/ measured from 600 to over 1000 K shows sharp increases in conductivity at --750, 865, and 960 K. The conductivity is sufficiently large at T > 700 K to explain the observed electrochemical phenomena, as well as enhanced sodium transport in AMTEC electrodes below the freezing point (960 K) of Na/sub 2/MoO/sub 4/.« less

  10. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles.

    PubMed

    Araujo, J F D F; Bruno, A C; Louro, S R W

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10(-8) Am(2) was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  11. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    NASA Astrophysics Data System (ADS)

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10-8 Am2 was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  12. Iterative Magnetometer Calibration

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph

    2006-01-01

    This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.

  13. Process for direct conversion of reactive metals to glass

    DOEpatents

    Rajan, John B.; Kumar, Romesh; Vissers, Donald R.

    1990-01-01

    Radioactive alkali metal is introduced into a cyclone reactor in droplet form by an aspirating gas. In the cyclone metal reactor the aspirated alkali metal is contacted with silica powder introduced in an air stream to form in one step a glass. The sides of the cyclone reactor are preheated to ensure that the initial glass formed coats the side of the reactor forming a protective coating against the reactants which are maintained in excess of 1000.degree. C. to ensure the formation of glass in a single step.

  14. Design and development of a magnetometer calibration device

    NASA Astrophysics Data System (ADS)

    Angelopoulos, S.

    2017-12-01

    This paper describes the development of a new magnetometer calibration device, which is able to provide accuracy of 1fT/√Hz. The mentioned device is able to eliminate the ambient magnetic field, using an active shielding technique. This can be achieved by the use of a solenoid or a pair of Helmholtz coils. In order to measure the existing magnetic field, it is necessary to develop and use accurate magnetometers with amorphous ribbons as core magnetic materials. The whole system works as a closed-loop system, which is able to control and adjust the produced counter magnetic field.

  15. Alkali metal complexes of a phosphine-borane-stabilised carbanion: influence of co-ligands on structure.

    PubMed

    Izod, Keith; Wills, Corinne; Clegg, William; Harrington, Ross W

    2007-09-07

    The adducts [[(Me(3)Si)(2){Me(2)P(BH(3))}C]K(L)(n)](m) [L = THF, n = 0.5, m = infinity (2a); L = tmeda (2b), pmdeta (2c), n = 1, m = 2] may be synthesised by treatment of solvent-free [[(Me(3)Si)(2){Me(2)P(BH(3))}C]K](infinity) (2) with the corresponding Lewis base (tmeda = N,N,N',N'-tetramethylethylenediamine; pmdeta = N,N,N',N'',N''-pentamethyldiethylenetriamine). X-Ray crystallography reveals that, whereas 2 crystallises with a complex 2-dimensional sheet structure, 2a crystallises as a ribbon-type one-dimensional polymer and both 2b and 2c crystallise as dimers. The corresponding complex with 12-crown-4, [K(12-crown-4)(2)][(Me(3)Si)(2){Me(2)P(BH(3))}C] (2d) crystallises as a separated ion pair. The complexes [[(Me(3)Si)(2){Me(2)P(BH(3))}C]M(pmdeta)](n) [M = Na, n = 1 (6); M = Rb, n = 2 (7)] may be synthesised by treatment of [(Me(3)Si)(2){Me(2)P(BH(3))}C]M with pmdeta. Whereas crystallises as a discrete monomer, compound 7 crystallises as a dimer. Compounds 2, 2a-2d, 6, 7 and the corresponding caesium derivative [[(Me(3)Si)(2){Me(2)P(BH(3))}C]Cs(pmdeta)](2) () provide an opportunity to consider the influence of the ionic radius of the metal and the nature of the co-ligands on the structures of alkali metal complexes of a phosphine-borane-stabilised carbanion.

  16. Design and implementation of JOM-3 Overhauser magnetometer analog circuit

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Jiang, Xue; Zhao, Jianchang; Zhang, Shuang; Guo, Xin; Zhou, Tingting

    2017-09-01

    Overhauser magnetometer, a kind of static-magnetic measurement system based on the Overhauser effect, has been widely used in archaeological exploration, mineral resources exploration, oil and gas basin structure detection, prediction of engineering exploration environment, earthquakes and volcanic eruotions, object magnetic measurement and underground buried booty exploration. Overhauser magnetometer plays an important role in the application of magnetic field measurement for its characteristics of small size, low power consumption and high sensitivity. This paper researches the design and the application of the analog circuit of JOM-3 Overhauser magnetometer. First, the Larmor signal output by the probe is very weak. In order to obtain the signal with high signal to noise rstio(SNR), the design of pre-amplifier circuit is the key to improve the quality of the system signal. Second, in this paper, the effectual step which could improve the frequency characters of bandpass filter amplifier circuit were put forward, and theoretical analysis was made for it. Third, the shaping circuit shapes the amplified sine signal into a square wave signal which is suitable for detecting the rising edge. Fourth, this design elaborated the optimized choice of tuning circuit, so the measurement range of the magnetic field can be covered. Last, integrated analog circuit testing system was formed to detect waveform of each module. By calculating the standard deviation, the sensitivity of the improved Overhauser magnetometer is 0.047nT for Earth's magnetic field observation. Experimental results show that the new magnetometer is sensitive to earth field measurement.

  17. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  18. Field-Programmable Gate Array-based fluxgate magnetometer with digital integration

    NASA Astrophysics Data System (ADS)

    Butta, Mattia; Janosek, Michal; Ripka, Pavel

    2010-05-01

    In this paper, a digital magnetometer based on printed circuit board fluxgate is presented. The fluxgate is pulse excited and the signal is extracted by gate integration. We investigate the possibility to perform integration on very narrow gates (typically 500 ns) by using digital techniques. The magnetometer is based on field-programmable gate array (FPGA) card: we will show all the advantages and disadvantages, given by digitalization of fluxgate output voltage by means of analog-to-digital converter on FPGA card, as well as digitalization performed by external digitizer. Due to very narrow gate, it is shown that a magnetometer entirely based on a FPGA card is preferable, because it avoids noise due to trigger instability. Both open loop and feedback operative mode are described and achieved results are presented.

  19. A method of determining attitude from magnetometer data only

    NASA Technical Reports Server (NTRS)

    Natanson, G. A.; Mclaughlin, S. F.; Nicklas, R. C.

    1990-01-01

    Presented here is a new algorithm to determine attitude using only magnetometer data under the following conditions: (1) internal torques are known and (2) external torques are negligible. Torque-free rotation of a spacecraft in thruster firing acquisition phase and its magnetic despin in the B-dot mode give typical examples of such situations. A simple analytical formula has been derived in the limiting case of a spacecraft rotating with constant angular velocity. The formula has been tested using low-frequency telemetry data for the Earth Radiation Budget Satellite (ERBS) under normal conditions. Observed small oscillation of body-fixed components of the angular velocity vector near their mean values result in relatively minor errors of approximately 5 degrees. More significant errors come from processing digital magnetometer data. Higher resolution of digitized magnetometer measurements would significantly improve the accuracy of this deterministic scheme. Tests of the general version of the developed algorithm for a free-rotating spacecraft and for the B-dot mode are in progress.

  20. NQR detection of explosive simulants using RF atomic magnetometers

    NASA Astrophysics Data System (ADS)

    Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) is a highly selective spectroscopic method that can be used to detect and identify a number of chemicals of interest to the defense, national security, and law enforcement community. In the past, there have been several documented attempts to utilize NQR to detect nitrogen bearing explosives using induction sensors to detect the NQR RF signatures. We present here our work on the NQR detection of explosive simulants using optically pumped RF atomic magnetometers. RF atomic magnetometers can provide an order of magnitude (or more) improvement in sensitivity versus induction sensors and can enable mitigation of RF interference, which has classically has been a problem for conventional NQR using induction sensors. We present the theory of operation of optically pumped RF atomic magnetometers along with the result of laboratory work on the detection of explosive simulant material. An outline of ongoing work will also be presented along with a path for a fieldable detection system.

  1. Tune-out wavelengths and landscape-modulated polarizabilities of alkali-metal Rydberg atoms in infrared optical lattices

    NASA Astrophysics Data System (ADS)

    Topcu, Turker; Derevianko, Andrei

    2013-11-01

    Intensity-modulated optical lattice potentials can change sign for an alkali-metal Rydberg atom, and the atoms are not always attracted to intensity minima in optical lattices with wavelengths near the CO2 laser band. Here we demonstrate that such IR lattices can be tuned so that the trapping potential experienced by the Rydberg atom can be made to vanish for atoms in “targeted” Rydberg states. Such state-selective trapping of Rydberg atoms can be useful in controlled cold Rydberg collisions, cooling Rydberg states, and species-selective trapping and transport of Rydberg atoms in optical lattices. We tabulate wavelengths at which the trapping potential vanishes for the ns, np, and nd Rydberg states of Na and Rb atoms and discuss advantages of using such optical lattices for state-selective trapping of Rydberg atoms. We also develop exact analytical expressions for the lattice-induced polarizability for the mz=0 Rydberg states and derive an accurate formula predicting tune-out wavelengths at which the optical trapping potential becomes invisible to Rydberg atoms in targeted l=0 states.

  2. Room temperature deintercalation of alkali metal atoms from epitaxial graphene by formation of charge-transfer complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, H.-C.; Ahn, S. J.; Kim, H. W.

    2016-08-22

    Atom (or molecule) intercalations and deintercalations have been used to control the electronic properties of graphene. In general, finite energies above room temperature (RT) thermal energy are required for the intercalations and deintercalations. Here, we demonstrate that alkali metal atoms can be deintercalated from epitaxial graphene on a SiC substrate at RT, resulting in the reduction in density of states at the Fermi level. The change in density of states at the Fermi level at RT can be applied to a highly sensitive graphene sensor operating at RT. Na atoms, which were intercalated at a temperature of 80 °C, were deintercalatedmore » at a high temperature above 1000 °C when only a thermal treatment was used. In contrast to the thermal treatment, the intercalated Na atoms were deintercalated at RT when tetrafluorotetracyanoquinodimethane (F4-TCNQ) molecules were adsorbed on the surface. The RT deintercalation occurred via the formation of charge-transfer complexes between Na atoms and F4-TCNQ molecules.« less

  3. A Web Server for MACCS Magnetometer Data

    NASA Technical Reports Server (NTRS)

    Engebretson, Mark J.

    1998-01-01

    NASA Grant NAG5-3719 was provided to Augsburg College to support the development of a web server for the Magnetometer Array for Cusp and Cleft Studies (MACCS), a two-dimensional array of fluxgate magnetometers located at cusp latitudes in Arctic Canada. MACCS was developed as part of the National Science Foundation's GEM (Geospace Environment Modeling) Program, which was designed in part to complement NASA's Global Geospace Science programs during the decade of the 1990s. This report describes the successful use of these grant funds to support a working web page that provides both daily plots and file access to any user accessing the worldwide web. The MACCS home page can be accessed at http://space.augsburg.edu/space/MaccsHome.html.

  4. Prototyping a new, high-temperature SQUID magnetometer system

    NASA Astrophysics Data System (ADS)

    Grappone, J. Michael; Shaw, John; Biggin, Andrew J.

    2017-04-01

    High-sensitivity Superconducting Quantum Inference Devices (SQUIDs) and μ-metal shielding have largely solved paleomagnetic noise problems. Combing the two allows successful measurements of previously unusable samples, generally sediments with very weak (<10 pAm2) magnetizations. The improved sensitivity increases the fidelity of magnetic field variation surveys, but surveys continue to be somewhat slow. SQUIDs have historically been expensive to buy and operate, but technological advances now allow them to operate at liquid nitrogen temperatures (77 K), drastically reducing their costs. Step-wise thermal paleomagnetics studies cause large lag times during later steps as a result of heating from and cooling to room temperature for measurements. If the cooling step is removed entirely, however, the lag time drops by at least half. Available magnetometers currently provide either SQUID-level (0.1 - 1 pAm2) sensitivity or continuous heating. Combining a SQUID magnetometer with a high temperature oven is the logical next step to uncover the mysteries of the paleofield. However, the few that currently offer high temperature capabilities with noise levels approaching 10 pAm2 require either spinning or vibrating the sample, necessitating additional handling and potentially causing damage to the sample. Two primary factors have plagued previous developments: noise levels and temperature gradients. Our entire system is shielded from the environment using 4 layers of μ-metal. Our sample oven (designed for 7 mm diameter samples) sits inside a copper pipe and operates at high-frequency AC voltages. High frequency (10 kHz) AC current reduces the skin depth of radio frequency (RF) electromagnetic noise, which allows the 2 mm-thick copper shielding to reduce RF noise by ˜94%, leaving a residual field of ˜1.5 nT at the SQUID's location, 14.9 mm from the oven. A computer-controlled Eurotherm 3216 thermal controller regulates the temperature within ± 0.5 ˚ C. To reach 700 ˚ C

  5. High-speed optical three-axis vector magnetometry based on nonlinear Hanle effect in rubidium vapor

    NASA Astrophysics Data System (ADS)

    Azizbekyan, Hrayr; Shmavonyan, Svetlana; Khanbekyan, Aleksandr; Movsisyan, Marina; Papoyan, Aram

    2017-07-01

    The magnetic-field-compensation optical vector magnetometer based on the nonlinear Hanle effect in alkali metal vapor allowing two-axis measurement operation has been further elaborated for three-axis performance, along with significant reduction of measurement time. The upgrade was achieved by implementing a two-beam resonant excitation configuration and a fast maximum searching algorithm. Results of the proof-of-concept experiments, demonstrating 1 μT B-field resolution, are presented. The applied interest and capability of the proposed technique is analyzed.

  6. Historical and Experimental Studies of Alkali and Trinitrotoluene Reaction

    DTIC Science & Technology

    1975-04-01

    tripotassium V • nitronate salts of toluene. LIST OF FIGURES Page Figure 1. Infrared snectrum of red TNT contsaninated with 32 sodium carbonate Figure II...to get an addition compound of TNT and methyl alcohol which is the nitronic acid from which the alkali metal salts are derived. Hantzsch 4 originally...Nielson3 1 discusses the infrared spectra of nitronic acids, esters and silts, The C = N absorption for nitronic acids occurs near 1620 - 1680 cm𔃻

  7. Covariant scalar representation of ? and quantization of the scalar relativistic particle

    NASA Astrophysics Data System (ADS)

    Jarvis, P. D.; Tsohantjis, I.

    1996-03-01

    A covariant scalar representation of iosp(d,2/2) is constructed and analysed in comparison with existing BFV-BRST methods for the quantization of the scalar relativistic particle. It is found that, with appropriately defined wavefunctions, this iosp(d,2/2) produced representation can be identified with the state space arising from the canonical BFV-BRST quantization of the modular-invariant, unoriented scalar particle (or antiparticle) with admissible gauge-fixing conditions. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the iosp(d,2/2) algebra.

  8. Fermion-scalar conformal blocks

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-04-13

    In this study, we compute the conformal blocks associated with scalar-scalar-fermionfermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called ‘seed blocks’ in three dimensions. In addition, conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.

  9. Nonlinear temperature compensation of fluxgate magnetometers with a least-squares support vector machine

    NASA Astrophysics Data System (ADS)

    Pang, Hongfeng; Chen, Dixiang; Pan, Mengchun; Luo, Shitu; Zhang, Qi; Luo, Feilu

    2012-02-01

    Fluxgate magnetometers are widely used for magnetic field measurement. However, their accuracy is influenced by temperature. In this paper, a new method was proposed to compensate the temperature drift of fluxgate magnetometers, in which a least-squares support vector machine (LSSVM) is utilized. The compensation performance was analyzed by simulation, which shows that the LSSVM has better performance and less training time than backpropagation and radical basis function neural networks. The temperature characteristics of a DM fluxgate magnetometer were measured with a temperature experiment box. Forty-five measured data under different magnetic fields and temperatures were obtained and divided into 36 training data and nine test data. The training data were used to obtain the parameters of the LSSVM model, and the compensation performance of the LSSVM model was verified by the test data. Experimental results show that the temperature drift of magnetometer is reduced from 109.3 to 3.3 nT after compensation, which suggests that this compensation method is effective for the accuracy improvement of fluxgate magnetometers.

  10. Using Redundancy To Reduce Errors in Magnetometer Readings

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; Zak, Michail

    2004-01-01

    A method of reducing errors in noisy magnetic-field measurements involves exploitation of redundancy in the readings of multiple magnetometers in a cluster. By "redundancy"is meant that the readings are not entirely independent of each other because the relationships among the magnetic-field components that one seeks to measure are governed by the fundamental laws of electromagnetism as expressed by Maxwell's equations. Assuming that the magnetometers are located outside a magnetic material, that the magnetic field is steady or quasi-steady, and that there are no electric currents flowing in or near the magnetometers, the applicable Maxwell 's equations are delta x B = 0 and delta(raised dot) B = 0, where B is the magnetic-flux-density vector. By suitable algebraic manipulation, these equations can be shown to impose three independent constraints on the values of the components of B at the various magnetometer positions. In general, the problem of reducing the errors in noisy measurements is one of finding a set of corrected values that minimize an error function. In the present method, the error function is formulated as (1) the sum of squares of the differences between the corrected and noisy measurement values plus (2) a sum of three terms, each comprising the product of a Lagrange multiplier and one of the three constraints. The partial derivatives of the error function with respect to the corrected magnetic-field component values and the Lagrange multipliers are set equal to zero, leading to a set of equations that can be put into matrix.vector form. The matrix can be inverted to solve for a vector that comprises the corrected magnetic-field component values and the Lagrange multipliers.

  11. Electron- and Photon-stimulated Desorption of Alkali Atoms from Lunar Sample and a Model Mineral Surface

    NASA Technical Reports Server (NTRS)

    Yakshinskiy, B. V.; Madey, T. E.

    2003-01-01

    We report recent results on an investigation of source mechanisms for the origin of alkali atoms in the tenuous planetary atmospheres, with focus on non-thermal processes (photon stimulated desorption (PSD), electron stimulated desorption (ESD), and ion sputtering). Whereas alkaline earth oxides (MgO, CaO) are far more abundant in lunar samples than alkali oxides (Na2O, K2O), the atmosphere of the Moon contains easily measurable concentrations of Na and K, while Ca and Mg are undetected there; traces of Ca have recently been seen in the Moon's atmosphere (10-3 of Na). The experiments have included ESD, PSD and ion sputtering of alkali atoms from model mineral surface (amorphous SiO2) and from a lunar basalt sample obtained from NASA. The comparison is made between ESD and PSD efficiency of monovalent alkalis (Na, K) and divalent alkaline earths (Ba, Ca).The ultrahigh vacuum measurement scheme for ESD and PSD of Na atoms includes a highly sensitive alkali metal detector based on surface ionization, and a time-of-flight technique. For PSD measurements, a mercury arc light source (filtered and chopped) is used. We find that bombardment of the alkali covered surfaces by ultraviolet photons or by low energy electrons (E>4 eV) causes desorption of hot alkali atoms. This results are consistent with the model developed to explain our previous measurements of sodium desorption from a silica surface and from water ice: electron- or photon-induced charge transfer from the substrate to the ionic adsorbate causes formation of a neutral alkali atom in a repulsive configuration, from which desorption occurs. The two-electron charge transfer to cause desorption of divalent alkaline eath ions is a less likely process.The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.

  12. Feasibility of Using the Space Shuttle to Conduct Global Geomagnetic Surveys (Phase I - Retrievable Probes)

    DTIC Science & Technology

    1985-07-01

    Datatape Division 4-1 5.0 REFERENCES Acuna, M.H. et. al., The MAGSAT Vector Magnetometer - A Precision Fluxgate Magnetometer for the Measurement of the...charting would consist of a triaxial, mutually orthogonal fluxgate magnetometer and an absolute scalar magnetometer to check the flux- gates drift...While space-ready, triaxial fluxgate magnetometers are not an off-the-shelf item, their design concepts are well understood. Their resolution of less

  13. Real-Time Hand-Held Magnetometer Array

    DTIC Science & Technology

    2016-04-01

    54 7.2.4 Detection : Probe Laser...oscillations in the F=4 hyperfine ground state and the probe beam is used to detect the oscillations. ............ 50 Figure 52. Sensor Larmor signal...level detectable by the magnetometer with a signal to noise ratio of 1:1

  14. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  15. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  16. Gas magnetometer

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2016-05-03

    Measurement of a precessional rate of a gas, such as an alkali gas, in a magnetic field is made by promoting a non-uniform precession of the gas in which substantially no net magnetic field affects the gas during a majority of the precession cycle. This allows sensitive gases that would be subject to spin-exchange collision de-phasing to be effectively used for extremely sensitive measurements in the presence of an environmental magnetic field such as the Earth's magnetic field.

  17. Spontaneous Scalarization: Dead or Alive?

    NASA Astrophysics Data System (ADS)

    Berti, Emanuele; Crispino, Luis; Gerosa, Davide; Gualtieri, Leonardo; Horbatsch, Michael; Macedo, Caio; Okada da Silva, Hector; Pani, Paolo; Sotani, Hajime; Sperhake, Ulrich

    2015-04-01

    In 1993, Damour and Esposito-Farese showed that a wide class of scalar-tensor theories can pass weak-field gravitational tests and exhibit nonperturbative strong-field deviations away from General Relativity in systems involving neutron stars. These deviations are possible in the presence of ``spontaneous scalarization,'' a phase transition similar in nature to spontaneous magnetization in ferromagnets. More than twenty years after the original proposal, binary pulsar experiments have severely constrained the possibility of spontaneous scalarization occurring in nature. I will show that these experimental constraints have important implications for the torsional oscillation frequencies of neutron stars and for the so-called ``I-Love-Q'' relations in scalar-tensor theories. I will also argue that there is still hope to observe strong scalarization effects, despite the strong experimental bounds on the original mechanism. In particular, I will discuss two mechanisms that could produce strong scalarization in neutron stars: anisotropy and multiscalarization. This work was supported by NSF CAREER Award PHY-1055103.

  18. Miniature scientific-grade induction magnetometer for cubesats

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira

    2017-04-01

    One of the main areas of space research is the study and forecasting of space weather. The society is more and more depending nowadays on satellite technology and communications, so it is vital to understand the physical process in the solar-terrestrial system which may disturb them. Besides the solar radiation and Space Weather effects, the Earth's ionosphere is also modified by the ever increasing industrial activity. There have been also multiple reports relating VLF and ELF wave activity to atmospheric storms and geological processes, such as earthquakes and volcanic activity. For advancing in these fields, the AC magnetic field permanent monitoring is crucial. Using the cubesat technology would allow increasing the number of measuring points dramatically. It is necessary to mention that the cubesats use for scientific research requires the miniaturization of scientific sensors what is a serious problem because the reduction of their dimensions leads, as a rule, to the parameters degradation, especially of sensitivity threshold. Today, there is no basic model of a sensitive miniature induction magnetometer. Even the smallest one of the known - for the Bepi-Colombo mission to Mercury - is too big for cubesats. The goal of the present report is to introduce the new design of miniature three-component sensor for measurement of alternative vector magnetic fields - induction magnetometer (IM). The study directions were concentrated on the ways and possibilities to create the miniature magnetometer with best combination of parameters. For this a set of scientific and technological problems, mostly aimed at the sensor construction improvement, was solved. The most important parameter characterizing magnetometer quality is its own magnetic noise level (NL). The analysis of the NL influencing factors is made and the ways to decrease it are discussed in the report. Finally, the LEMI-151 IM was developed for the SEAM cubesat mission with optimal performances within the

  19. Heading error in an alignment-based magnetometer

    NASA Astrophysics Data System (ADS)

    Hovde, Chris; Patton, Brian; Versolato, Oscar; Corsini, Eric; Rochester, Simon; Budker, Dmitry

    2011-06-01

    A prototype magnetometer for anti-submarine warfare applications is being developed based on nonlinear magneto-optical rotation (NMOR) in atomic vapors. NMOR is an atomic spectroscopy technique that exploits coherences among magnetic sublevels of atoms such as cesium or rubidium to measure magnetic fields with high precision. NMOR uses stroboscopic optical pumping via frequency or amplitude modulation of a linearly polarized laser beam to create the alignment. An anti-relaxation coating on the walls of the atomic vapor cell can result in a long lifetime of 1 s or more for the coherence and enables precise measurement of the precession frequency. With proper feedback, the magnetometer can self-oscillate, resulting in accurate tracking and fast time response. The NMOR magnetic resonance spectrum of 87Rb has been measured as a function of heading in Earth's field. Optical pumping of alignment within the F=2 hyperfine manifold generates three resonances separated by the nonlinear Zeeman splitting. The spectra show a high degree of symmetry, consisting of a central peak and two side peaks of nearly equal intensity. As the heading changes, the ratio of the central peak to the average of the two side peaks changes. The amplitudes of the side peaks remain nearly equal. An analysis of the forced oscillation spectra indicates that, away from dead zones, heading error in self-oscillating mode should be less than 1 nT. A broader background is also observed in the spectra. While this background can be removed when fitting resonance spectra, understanding it will be important to achieving the small heading error in self-oscillating mode that is implied by the spectral measurements. Progress in miniaturizing the magnetometer is also reported. The new design is less than 10 cm across and includes fiber coupling of light to and from the magnetometer head. Initial tests show that the prototype has achieved a narrow spectral width and a strong polarization rotation signal.

  20. Calcium-Alkali Syndrome in the Modern Era

    PubMed Central

    Patel, Ami M.; Adeseun, Gbemisola A.; Goldfarb, Stanley

    2013-01-01

    The ingestion of calcium, along with alkali, results in a well-described triad of hypercalcemia, metabolic alkalosis, and renal insufficiency. Over time, the epidemiology and root cause of the syndrome have shifted, such that the disorder, originally called the milk-alkali syndrome, is now better described as the calcium-alkali syndrome. The calcium-alkali syndrome is an important cause of morbidity that may be on the rise, an unintended consequence of shifts in calcium and vitamin D intake in segments of the population. We review the pathophysiology of the calcium-alkali syndrome. PMID:24288027

  1. Metal Transport across Biomembranes: Emerging Models for a Distinct Chemistry*

    PubMed Central

    Argüello, José M.; Raimunda, Daniel; González-Guerrero, Manuel

    2012-01-01

    Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive features of metal transport. Among these are the relevance of multifaceted events involving metal transfer among participating proteins, the importance of coordination geometry at transmembrane transport sites, and the presence of the largely irreversible steps associated with vectorial transport. Here, we discuss how these characteristics shape novel transition metal ion transport models. PMID:22389499

  2. Metal transport across biomembranes: emerging models for a distinct chemistry.

    PubMed

    Argüello, José M; Raimunda, Daniel; González-Guerrero, Manuel

    2012-04-20

    Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive features of metal transport. Among these are the relevance of multifaceted events involving metal transfer among participating proteins, the importance of coordination geometry at transmembrane transport sites, and the presence of the largely irreversible steps associated with vectorial transport. Here, we discuss how these characteristics shape novel transition metal ion transport models.

  3. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Alkali metal and alkali halide mixtures are identified which may be suitable for thermal energy storage at temperatures above 600 C. The use of metal-halides is appropriate because of their tendency to form two immiscible melts with a density difference, which reduces scale formation and solidification on heat transfer surfaces. Also, the accumulation of phase change material along the melt interface is avoided by the self-dispersing characteristic of some metal-halides, in particular Sr-SrCl2, Ba-BaCl2, and Ba-BaBr2 mixtures. Further advantages lie in their high thermal conductivities, ability to cope with thermal shock, corrosion inhibition, and possibly higher energy densities.

  4. Three-dimensional analysis of magnetometer array data

    NASA Technical Reports Server (NTRS)

    Richmond, A. D.; Baumjohann, W.

    1984-01-01

    A technique is developed for mapping magnetic variation fields in three dimensions using data from an array of magnetometers, based on the theory of optimal linear estimation. The technique is applied to data from the Scandinavian Magnetometer Array. Estimates of the spatial power spectra for the internal and external magnetic variations are derived, which in turn provide estimates of the spatial autocorrelation functions of the three magnetic variation components. Statistical errors involved in mapping the external and internal fields are quantified and displayed over the mapping region. Examples of field mapping and of separation into external and internal components are presented. A comparison between the three-dimensional field separation and a two-dimensional separation from a single chain of stations shows that significant differences can arise in the inferred internal component.

  5. Theoretical study of the diatomic alkali and alkaline-earth oxides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1986-01-01

    Theoretical dissociation energies for the ground states of the alkali and alkaline earth oxides are presented that are believed to be accurate to 0.1 eV. The 2 Pi - 2 Sigma + separations for the alkali oxides are found to be more sensitive to basis set than to electron correlation. Predicted 2 Pi ground states for LiO and NaO and 2 Sigma + ground states for RbO and CsO are found to be in agreement with previous theoretical and experimental work. For KO, a 2 Sigma + state is found at both the numerical Hartree-Fock (NHF) level and at the singles plus doubles configuration interaction level using a Slater basis set that is within 0.02 eV of the NHF limit. It is found that an accurate balanced treatment of the two states requires correlating the electrons on both the metal and oxide ion.

  6. THREE-COMPONENT BOREHOLE MAGNETOMETER PROBE FOR MINERAL INVESTIGATIONS AND GEOLOGIC RESEARCH.

    USGS Publications Warehouse

    Scott, James H.; Olson, Gary G.

    1985-01-01

    A small-diameter three-component fluxgate magnetometer probe with gyroscopic and inclinometer orientation has been developed to meet U. S. Geological Survey design and performance specifications for measurement of the direction and intensity of the Earth's magnetic field in vertical and inclined boreholes. The orthogonal fluxgate magnetometer elements have a measurement resolution of 10 nanoteslas (nT) and a range of plus or minus 80,000 nT. The gyroscope has an effective resolution of one degree, and the orthogonal inclinometers, 0. 1 degree. The magnetometer probe has been field tested in several holes drilled through volcanic rocks in Nevada. Results indicate that reversals of polarization can be detected, and some rock units in this area appear to be characterized by unique magnetic signatures.

  7. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    NASA Technical Reports Server (NTRS)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  8. Factors affecting alkali jarosite precipitation

    NASA Astrophysics Data System (ADS)

    Dutrizac, J. E.

    1983-12-01

    Several factors affecting the precipitation of the alkali jarosites (sodium jarosite, potassium jarosite, rubidium jarosite, and ammonium jarosite) have been studied systematically using sodium jarosite as the model. The pH of the reacting solution exercises a major influence on the amount of jarosite formed, but has little effect on the composition of the washed product. Higher temperatures significantly increase the yield and slightly raise the alkali content of the jarosites. The yield and alkali content both increase greatly with the alkali concentration to about twice the stoichiometric requirement but, thereafter, remain nearly constant. At 97 °C, the amount of product increases with longer retention times to about 15 hours, but more prolonged reaction times are without significant effect on the amount or composition of the jarosite. Factors such as the presence of seed or ionic strength have little effect on the yield or jarosite composition. The amount of precipitate augments directly as the iron concentration of the solution increases, but the product composition is nearly independent of this variable. A significant degree of agitation is necessary to suspend the product and to prevent the jarosite from coating the apparatus with correspondingly small yields. Once the product is adequately suspended, however, further agitation is without significant effect. The partitioning of alkali ions during jarosite precipitation was ascertained for K:Na, Na:NH4, K:NH4, and K:Rb. Potassium jarosite is the most stable of the alkali jarosites and the stability falls systematically for lighter or heavier congeners; ammonium jarosite is slightly more stable than the sodium analogue. Complete solid solubility among the various alkali jarosite-type compounds was established.

  9. Swarm Optimization-Based Magnetometer Calibration for Personal Handheld Devices

    PubMed Central

    Ali, Abdelrahman; Siddharth, Siddharth; Syed, Zainab; El-Sheimy, Naser

    2012-01-01

    Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a processor that generates position and orientation solutions by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are usually corrupted by several errors, including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO)-based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometers. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. Furthermore, the proposed algorithm can help in the development of Pedestrian Navigation Devices (PNDs) when combined with inertial sensors and GPS/Wi-Fi for indoor navigation and Location Based Services (LBS) applications.

  10. The IRM fluxgate magnetometer

    NASA Technical Reports Server (NTRS)

    Luehr, H.; Kloecker, N.; Oelschlaegel, W.; Haeusler, B.; Acuna, M.

    1985-01-01

    This report describes the three-axis fluxgate magnetometer instrument on board the AMPTE IRM spacecraft. Important features of the instrument are its wide dynamic range (0.1-60,000 nT), a high resolution (16-bit analog to digital conversion) and the capability to operate automatically or via telecommand in two gain states. In addition, the wave activity is monitored in all three components up to 50 Hz. Inflight checkout proved the nominal functioning of the instrument in all modes.

  11. N-alkyl pyrrolidone ether podands as versatile alkali metal ion chelants.

    PubMed

    Perrin, Andrea; Myers, Dominic; Fucke, Katharina; Musa, Osama M; Steed, Jonathan W

    2014-02-28

    This work explores the coordination chemistry of a bis(pyrrolidone) ether ligand. Pyrrolidones are commercially important functional groups because of the high polarity and hence high hydrophilicity and surface affinity. An array of alkali metal ion complexes of a podand bearing two pendant pyrrolidone functionalities, namely 1-{2-[2-(2-oxo-pyrrolid-1-yl)-ethoxy]-ethyl}-pyrrolid-2-one (1) are reported. Reaction of this ligand with sodium hexafluorophosphate gives two discrete species of formulae [Na(1)2]PF6 (3) and [Na3(H2O)2(μ-1)2](PF6)3 (4), and a coordination polymer {[Na3(μ3-1)3(μ2-1)](PF6)3}n (5). The same reaction in methanol gives a 1 : 1 complex, namely [Na2(μ-1)2(MeOH)2](PF6)2 (6). Use of tetraphenyl borate as a less coordinating counter ion gives [Na2(1)2(H2O)4](BPh4)2 (7) and [Na2(1)4](BPh4)2 (8). Two potassium complexes have also been isolated, a monomer [K(1)2]PF6 (9) and a cyclic tetramer [K4(μ4-H2O)2(μ-1)4](PF6)4 (10). The structures illustrate the highly polar nature of the amide carbonyl moiety within bis(pyrrolidone) ethers with longer interactions to the ether oxygen atom. The zinc complex is also reported and {[ZnCl2(μ-1)]}n (11) exhibits bonding only to the carbonyl moieties. The ether oxygen atom is not necessary for Na(+) complexation as exemplified by the structure of the sodium complex of the analogue 1,3-bis(pyrrolid-2-on-1-yl)butane (2). Reaction of compound 1 with lithium salts results in isolation of the protonated ligand.

  12. Lunar physical properties from analysis of magnetometer data

    NASA Technical Reports Server (NTRS)

    Daily, W. D.

    1979-01-01

    The electromagnetic properties of the lunar interior are discussed with emphasis on (1) bulk, crustal, and local anomalous conductivity; (2) bulk magnetic permeability measurements, iron abundance estimates, and core size limits; (3) lunar ionosphere and atmosphere; and (4) crustal magnetic remanence: scale size measurements and constraints on remanence origin. Appendices treat the phase relationship between the energetic particle flux modulation and current disc penetrations in the Jovian magnetosphere (Pioneer 10 inbound) theories for the origin of lunar magnetism; electrical conductivity anomalies associated with circular lunar maria; electromagnetic properties of the Moon; Mare Serenitatis conductivity anomaly detected by Apollo 16 and Lunokhod 2 magnetometers; and lunar properties from magnetometer data: effects of data errors.

  13. A Novel A Posteriori Investigation of Scalar Flux Models for Passive Scalar Dispersion in Compressible Boundary Layer Flows

    NASA Astrophysics Data System (ADS)

    Braman, Kalen; Raman, Venkat

    2011-11-01

    A novel direct numerical simulation (DNS) based a posteriori technique has been developed to investigate scalar transport modeling error. The methodology is used to test Reynolds-averaged Navier-Stokes turbulent scalar flux models for compressible boundary layer flows. Time-averaged DNS velocity and turbulence fields provide the information necessary to evolve the time-averaged scalar transport equation without requiring the use of turbulence modeling. With this technique, passive dispersion of a scalar from a boundary layer surface in a supersonic flow is studied with scalar flux modeling error isolated from any flowfield modeling errors. Several different scalar flux models are used. It is seen that the simple gradient diffusion model overpredicts scalar dispersion, while anisotropic scalar flux models underpredict dispersion. Further, the use of more complex models does not necessarily guarantee an increase in predictive accuracy, indicating that key physics is missing from existing models. Using comparisons of both a priori and a posteriori scalar flux evaluations with DNS data, the main modeling shortcomings are identified. Results will be presented for different boundary layer conditions.

  14. Magnetometer Based on Optoelectronic Microwave Oscillator

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Strekalov, Dmitry; Matsko, Andrey

    2005-01-01

    proposed instrument, intended mainly for use as a magnetometer, would include an optoelectronic oscillator (OEO) stabilized by an atomic cell that could play the role of a magnetically tunable microwave filter. The microwave frequency would vary with the magnetic field in the cell, thereby providing an indication of the magnetic field. The proposed magnetometer would offer a combination of high accuracy and high sensitivity, characterized by flux densities of less than a picotesla. In comparison with prior magnetometers, the proposed magnetometer could, in principle, be constructed as a compact, lightweight instrument: It could fit into a package of about 10 by 10 by 10 cm and would have a mass <0.5 kg. As described in several prior NASA Tech Briefs articles, an OEO is a hybrid of photonic and electronic components that generates highly spectrally pure microwave radiation, and optical radiation modulated by the microwave radiation, through direct conversion between laser light and microwave radiation in an optoelectronic feedback loop. As used here, "atomic cell" signifies a cell containing a vapor, the constituent atoms of which can be made to undergo transitions between quantum states, denoted hyperfine levels, when excited by light in a suitable wavelength range. The laser light must be in this range. The energy difference between the hyperfine levels defines the microwave frequency. In the proposed instrument (see figure), light from a laser would be introduced into an electro-optical modulator (EOM). Amplitude-modulated light from the exit port of the EOM would pass through a fiber-optic splitter having two output branches. The light in one branch would be sent through an atomic cell to a photodiode. The light in the other branch would constitute the microwave-modulated optical output. Part of the light leaving the atomic cell could also be used to stabilize the laser at a frequency in the vicinity of the desired hyperfine or other quantum transition. The

  15. Reactive Precipitation of Anhydrous Alkali Sulfide Nanocrystals with Concomitant Abatement of Hydrogen Sulfide and Cogeneration of Hydrogen.

    PubMed

    Li, Xuemin; Zhao, Yangzhi; Brennan, Alice; McCeig, Miranda; Wolden, Colin A; Yang, Yongan

    2017-07-21

    Anhydrous alkali sulfide (M 2 S, M=Li or Na) nanocrystals (NCs) are important materials central to the development of next generation cathodes and solid-state electrolytes for advanced batteries, but not commercially available at present. This work reports an innovative method to directly synthesize M 2 S NCs through alcohol-mediated reactions between alkali metals and hydrogen sulfide (H 2 S). In the first step, the alkali metal is complexed with alcohol in solution, forming metal alkoxide (ROM) and releasing hydrogen (H 2 ). Next, H 2 S is bubbled through the ROM solution, where both chemicals are completely consumed to produce phase-pure M 2 S NC precipitates and regenerate alcohol that can be recycled. The M 2 S NCs morphology may be tuned through the choice of the alcohol and solvent. Both synthetic steps are thermodynamically favorable (ΔG m o <-100 kJ mol -1 ), proceeding rapidly to completion at ambient temperature with almost 100 % atom efficiency. The net result, H 2 S+2 m→M 2 S+H 2 , makes good use of a hazardous chemical (H 2 S) and delivers two value-added products that naturally phase separate for easy recovery. This scalable approach provides an energy-efficient and environmentally benign solution to the production of nanostructured materials required in emerging battery technologies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electromagnetic induction imaging with a radio-frequency atomic magnetometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deans, Cameron; Marmugi, Luca, E-mail: l.marmugi@ucl.ac.uk; Hussain, Sarah

    2016-03-07

    We report on a compact, tunable, and scalable to large arrays imaging device, based on a radio-frequency optically pumped atomic magnetometer operating in magnetic induction tomography modality. Imaging of conductive objects is performed at room temperature, in an unshielded environment and without background subtraction. Conductivity maps of target objects exhibit not only excellent performance in terms of shape reconstruction but also demonstrate detection of sub-millimetric cracks and penetration of conductive barriers. The results presented here demonstrate the potential of a future generation of imaging instruments, which combine magnetic induction tomography and the unmatched performance of atomic magnetometers.

  17. Development of New Research-Quality Low-Resource Magnetometers for Small Satellites

    NASA Technical Reports Server (NTRS)

    Moldwin, Mark; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    Researchers from the University of Michigan (UM) and NASA Goddard Spaceflight Center (GSFC) are partnering to develop new types of magnetometers for use on future small satellites. These new instruments not only fulfill stringent requirements for low-amplitude and high-precision measurements, they are also enabling the team to develop a new approach to achieve high-quality magnetic measurements from space, without the need for a boom. Typically, space-based magnetometers are deployed on a boom that extends from the space vehicle to reduce exposure of magnetic noise emanating from the spacecraft, which could potentially contaminate measurements. The UMNASA team has developed algorithms to identify and eliminate spacecraft magnetic noise, which will allow placement of these economical, science-grade instrument magnetometers on and inside the satellite bus, instead of on a boom.

  18. Regarding the scalar mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yunhu; Shao Jianxin; Wang Xiaogang

    Based on the main assumption that the D{sub sJ}(2860) belongs to the 2{sup 3}P{sub 0} qq multiplet, the masses of the scalar meson nonet are estimated in the framework of the relativistic independent quark model, Regge phenomenology, and meson-meson mixing. We suggest that the a{sub 0}(1005), K{sub 0}*(1062), f{sub 0}(1103), and f{sub 0}(564) constitute the ground scalar meson nonet; it is supposed that these states would likely correspond to the observed states a{sub 0}(980), {kappa}(900), f{sub 0}(980), and f{sub 0}(600)/{sigma}, respectively. Also a{sub 0}(1516), K{sub 0}*(1669), f{sub 0}(1788), and f{sub 0}(1284) constitute the first radial scalar meson nonet, it ismore » supposed that these states would likely correspond to the observed states a{sub 0}(1450), K{sub 0}*(1430), f{sub 0}(1710), and f{sub 0}(1370), respectively. The scalar state f{sub 0}(1500) may be a good candidate for the ground scalar glueball. The agreement between the present findings and those given by other different approaches is satisfactory.« less

  19. In situ triaxial magnetic field compensation for the spin-exchange-relaxation-free atomic magnetometer.

    PubMed

    Fang, Jiancheng; Qin, Jie

    2012-10-01

    The spin-exchange-relaxation-free (SERF) atomic magnetometer is an ultra-high sensitivity magnetometer, but it must be operated in a magnetic field with strength less than about 10 nT. Magnetic field compensation is an effective way to shield the magnetic field, and this paper demonstrates an in situ triaxial magnetic field compensation system for operating the SERF atomic magnetometer. The proposed hardware is based on optical pumping, which uses some part of the SERF atomic magnetometer itself, and the compensation method is implemented by analyzing the dynamics of the atomic spin. The experimental setup for this compensation system is described, and with this configuration, a residual magnetic field of strength less than 2 nT (±0.38 nT in the x axis, ±0.43 nT in the y axis, and ±1.62 nT in the z axis) has been achieved after compensation. The SERF atomic magnetometer was then used to verify that the residual triaxial magnetic fields were coincident with what were achieved by the compensation system.

  20. Scalar excursions in large-eddy simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matheou, Georgios; Dimotakis, Paul E.

    Here, the range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods formore » diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid