Sample records for alkaline anion exchange

  1. Alkaline Anion-Exchange Membranes Containing Mobile Ion Shuttles.


    Ge, Xiaolin; He, Yubin; Guiver, Michael D; Wu, Liang; Ran, Jin; Yang, Zhengjin; Xu, Tongwen


    A new class of alkaline anion-exchange membranes containing mobile ion shuttles is developed. It is achieved by threading ionic linear guests into poly(crown ether) hosts via host-guest molecular interaction. The thermal- and pH-triggered shuttling of ionic linear guests remarkably increases the solvation-shell fluctuations in inactive hydrated hydroxide ion complexes (OH(-) (H2 O)4 ) and accelerates the OH(-) transport. PMID:26972938

  2. Alkaline direct alcohol fuel cells using an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Matsuoka, Masao; Ogumi, Zempachi

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800 mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323 K, which was about 100-200 mV higher than that for a DMFC using Nafion ®. The maximum power densities were in the order of ethylene glycol > glycerol > methanol > erythritol > xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode.

  3. Reactive oxygen species accelerate degradation of anion exchange membranes based on polyphenylene oxide in alkaline environments.


    Parrondo, Javier; Wang, Zhongyang; Jung, Min-Suk J; Ramani, Vijay


    Anion exchange membranes (AEM) based on polyphenylene oxide (PPO) suffered quaternary-ammonium-cation-site degradation in alkaline environments. Surprisingly, the degradation rate was considerably faster in the presence of molecular oxygen. We postulated that the AEM cation-site catalyzes the reduction of dioxygen by hydroxide ions to yield the superoxide anion radical and the highly reactive hydroxyl free radical. We substantiated our hypothesis by using a phosphorous-containing spin trap (5-diisopropoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide) to detect the adducts for both free radicals in situ using (31)P-NMR spectroscopy. PMID:27381009

  4. Alkaline degradation studies of anion exchange polymers to enable new membrane designs

    NASA Astrophysics Data System (ADS)

    Nunez, Sean Andrew

    Current performance targets for anion-exchange membrane (AEM) fuel cells call for greater than 95% alkaline stability for 5000 hours at temperatures up to 120 °C. Using this target temperature of 120 °C, an incisive 1H NMR-based alkaline degradation method to identify the degradation products of n-alkyl spacer tetraalkylammonium cations in various AEM polymers and small molecule analogs. Herein, the degradation mechanisms and rates of benzyltrimethylammonium-, n-alkyl interstitial spacer- and n-alkyl terminal pendant-cations are studied on several architectures. These findings demonstrate that benzyltrimethylammonium- and n-alkyl terminal pendant cations are more labile than an n-alkyl interstitial spacer cation and conclude that Hofmann elimination is not the predominant mechanism of alkaline degradation. Additionally, the alkaline stability of an n-alkyl interstitial spacer cation is enhanced when combined with an n-alkyl terminal pendant. Interestingly, at 120 °C, an inverse trend was found in the overall alkaline stability of AEM poly(styrene) and AEM poly(phenylene oxide) samples than was previously shown at 80 °C. Successive small molecule studies suggest that at 120 °C, an anion-induced 1,4-elimination degradation mechanism may be activated on styrenic AEM polymers bearing an acidic alpha-hydrogen. In addition, an ATR-FTIR based method was developed to assess the alkaline stability of solid membranes and any added resistance to degradation that may be due to differential solubilities and phase separation. To increase the stability of anion exchange membranes, Oshima magnesate--halogen exchange was demonstrated as a method for the synthesis of new anion exchange membranes that typically fail in the presence of organolithium or Grignard reagents alone. This new chemistry, applied to non-resinous polymers for the first time, proved effective for the n-akyl interstitial spacer functionalization of poly(phenylene oxide) and poly(styrene- co

  5. Solvent Processable Tetraalkylammonium-Functionalized Polyethylene for Use as an Alkaline Anion Exchange Membrane

    SciTech Connect

    Kostalik, IV, Henry A.; Clark, Timothy J.; Robertson, Nicholas J.; Mutolo, Paul F.; Longo, Julie M.; Abruña, Héctor D.; Coates, Geoffrey W.


    We report the synthesis of a solvent processable, tetraalkylammonium-functionalized polyethylene for use as an alkaline anion exchange membrane (AAEM). The membranes are insoluble in both pure water and aqueous methanol (50 vol % water) at 50 °C but exhibit excellent solubility in a variety of other aqueous alcohols (e.g., 5 wt % AAEM in aqueous n-propanol, 50 vol % water). These solubility characteristics extend the potential utility of this system for use as both an AAEM and ionomer electrode material from a single polymer composition. The AAEMs generated are mechanically strong and exhibit high hydroxide and carbonate conductivities.

  6. The direct formate fuel cell with an alkaline anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Bartrom, Amy M.; Haan, John L.


    We demonstrate for the first time an operating Direct Formate Fuel Cell employing formate salts as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, and metal catalysts at the anode and cathode. Operation of the DFFC at 60 °C using 1 M KOOCH and 2 M KOH as the anode fuel and electrolyte and oxygen gas at the cathode produces 144 mW cm-2 of peak power density, 181 mA cm-2 current density at 0.6 V, and an open circuit voltage of 0.931 V. This performance is competitive with alkaline Direct Liquid Fuel Cells (DLFCs) previously reported in the literature and demonstrates that formate fuel is a legitimate contender with alcohol fuels for alkaline DLFCs. A survey of the literature shows that a formate-oxygen fuel cell has a high theoretical potential, and the safe, renewable formate fuel does not poison the anode catalyst.

  7. Anion exchange polymer electrolytes

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik


    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  8. Anion exchange membrane


    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus


    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  9. Guanidinium based blend anion exchange membranes for direct methanol alkaline fuel cells (DMAFCs)

    NASA Astrophysics Data System (ADS)

    Sajjad, Syed D.; Liu, Dong; Wei, Zi; Sakri, Shambhavi; Shen, Yi; Hong, Yi; Liu, Fuqiang


    Guanidinium based blend anion exchange membranes (AEMs) for direct methanol alkaline fuel cells have been fabricated and studied. The guanidinium prepolymer is first synthesized through a simple polycondensation process with the ion exchange moieties incorporated directly into the polymer backbone, and then is used to make guanidinium - chitosan (Gu-Chi) blend membranes. Besides, a lipophilic guanidinium prepolymer, synthesized by means of a precipitation reaction between sodium stearate and guanidinium salt, is adopted to tune solubility and mechanical properties of the blend AEMs. Results show that both ionic conductivity and methanol permeability of the AEMs can be tuned by blend composition and chemistry of the guanidinium based prepolymer. The selectivity (ratio of ionic conductivity to methanol permeability) of the fabricated membranes is superior to that of commercial membranes. Under fuel cell tests using 3 M methanol, the open circuit voltage (OCV) value for the blend AEM with 72 wt% of the guanidinium polymer (0.69 V) is much higher than that of the commercial Tokuyama A201 (0.47 V) at room temperature, while the blend AEMs with 50 wt% guanidinium content still show comparable values. Overall, the developed membranes demonstrate superior performance and therefore pose great promise for direct methanol anion exchange fuel cell (DMAFC) applications.

  10. Development of direct methanol alkaline fuel cells using anion exchange membranes

    NASA Astrophysics Data System (ADS)

    Yu, Eileen Hao; Scott, Keith

    Research into the development of direct methanol alkaline fuel cell (DMAFC) using an anion exchange polymer electrolyte membrane is described. The commercial membrane used had a higher electric resistance, but a lower methanol diffusion coefficient than Nafion ® membranes. Fuel cell tests were performed using carbon supported Pt catalyst, and the effect of temperature, methanol concentration, methanol flow rate, air pressure and Pt loading were investigated. It was found that the cell performance improved drastically with a membrane assembly electrode (MEA) which did not include the gas diffusion layer on the anode, because of lower reactant mass transfer resistance. To give suitable cathode performance, humidification of the air and a subtle balance between the air pressure and water transport is required.

  11. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha


    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  12. Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications.


    Robertson, Nicholas J; Kostalik, Henry A; Clark, Timothy J; Mutolo, Paul F; Abruña, Héctor D; Coates, Geoffrey W


    Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells. PMID:20178312

  13. Tunable High Performance Cross-Linked Alkaline Anion Exchange Membranes for Fuel Cell Applications

    SciTech Connect

    Robertson, Nicholas J.; Kostalik, IV, Henry A.; Clark, Timothy J.; Mutolo, Paul F.; Abruña, Héctor D.; Coates, Geoffrey W.


    Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells.

  14. Influence of Hydration Level on Polymer and Water Dynamics in Alkaline Anion Exchange Fuel Cell Membranes

    NASA Astrophysics Data System (ADS)

    Tarver, Jacob; Kim, Jenny; Tyagi, Madhu; Soles, Christopher; Tsai, Tsung-Han; Coughlin, Bryan


    Triblock copolymers based on poly(chloromethylstyrene)-b-poly(ethylene)-b-poly(chloromethylstyrene) can be quaternized to different extents to yield anion exchange membranes for alkaline fuel cells. In the absence of moisture, these membranes demonstrate bilayer lamellar morphology. Upon high levels of hydration, however, in-situ small angle neutron scattering reveals the emergence of higher-order diffraction peaks. This phenomena has previously been observed in analogous diblock copolymer-based membranes and has been attributed to the induction of a multilayer lamellar morphology in which selective striping of water occurs in the center of the ion-rich domain. By conducting humidity-resolved quasielastic neutron scattering (QENS) measurements using deuterated water, we are able to isolate differences in the pico- to nanosecond timescale dynamics of the hydrogenated membrane upon hydration. QENS measurements in the presence of a hydrogenated water source subsequently permit deconvolution and isolation of the translational and rotational dynamics of water as a function of relative humidity, revealing spatial and temporal changes in polymer and water motion at high levels of hydration.

  15. Quaternized poly (styrene-co-vinylbenzyl chloride) anion exchange membranes for alkaline water electrolysers

    NASA Astrophysics Data System (ADS)

    Vengatesan, S.; Santhi, S.; Jeevanantham, S.; Sozhan, G.


    In this study, poly (ST-co-VBC) based anion exchange membranes with different styrene to VBC ratios (1: 0.16, 1: 0.33 and 1: 1) have been prepared via chloromethylation-free synthetic route using aromatic vinyl monomers. The synthesized co-polymers are identified by FTIR and 1H-NMR analysis. Hydroxide (OH-) ion conductivity of the anion exchange membrane with styrene to VBC ratio of 1: 0.33 is as high as 6.8 × 10-3 S cm-1 in de-ionised water at 25 °C. The membrane also acquires the ion-exchange capacity of 2.14 meq. g-1, and the water uptake of 127%. Membrane-electrode-assembly (MEA) using the anion exchange membrane and Ni - foam catalyst demonstrate the current density of 40 mA cm-2 at 2.3 V in a water electrolyser cell.

  16. Cell performance of Pd-Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Kim, Jandee; Momma, Toshiyuki; Osaka, Tetsuya

    Direct methanol alkaline fuel cell (DMAFC) using anion exchange membrane (AEM) was operated in passive condition. Cell with AEM exhibits a higher open circuit voltage (OCV) and superior cell performance than those in cell using Nafion. From the concentration dependences of methanol, KOH in fuel and ionomer in anode catalyst layer, it is found that the key factors are to improve the ionic conductivity at the anode and to form a favorable ion conductive path in catalyst layer in order to enhance the cell performance. In addition, by using home-made Pd-Sn/C catalyst as a cathode catalyst on DMAFC, the membrane electrode assembly (MEA) using Pd-Sn/C catalyst as cathode exhibits the higher performance than the usual commercially available Pt/C catalyst in high methanol concentration. Therefore, the Pd-Sn/C catalyst with high tolerance for methanol is expected as the promising oxygen reduction reaction (ORR) catalyst in DMAFC.

  17. Cross-linked anion exchange membranes with pendent quaternary pyrrolidonium salts for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lan, Chunhua; Fang, Jun; Guan, Yingjie; Zhou, Huili; Zhao, Jinbao


    Novel anion-exchange membranes based on two kinds of pyrrolidonium type ionic liquids, N-methyl-N-vinyl-pyrrolidonium (NVMP) and N-ethyl-N-vinyl-pyrrolidonium (NVEP), have been synthesized via polymerization and crosslinking treatment, followed by membrane casting. The covalent cross-linked structures of these membranes are confirmed by FT-IR. The obtained membranes are also characterized in terms of water uptake, ion exchange capacity (IEC), ionic conductivity as well as thermal, dimensional and chemical stability. The membranes display hydroxide conductivity of above 10-2 S cm-1 at 25 °C. Excellent thermal stability with onset degradation temperature above 235 °C, good alkaline stability in 6 mol L-1 NaOH at 60 °C for 168 h and remarkable dimensional stability of the resulting membranes have been proved. H2/air single fuel cells employed membrane M3 and N3 show the open-circuit voltage (OCV) of 0.953 V and 0.933 V, and the maximum power density of 88.90 mW cm-2 and 81.90 mW cm-2 at the current density of 175 mA cm-2 and 200 mA cm-2 at 65 °C, respectively.

  18. Assemblies of protective anion exchange membrane on air electrode for its efficient operation in aqueous alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Bertolotti, Bruno; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile


    Aqueous alkaline metal-air batteries represent promising energy storage devices when supplied with atmospheric air. However, under this condition, the air electrode shows a very short life time (i.e. 50 h of operation in 5 M LiOH at -10 mA cm-2), mainly due to the precipitation of carbonates inside the electrode porosity. The air electrode can then be protected by an anion exchange membrane on the electrolyte side. In this paper, we demonstrate that the efficiency of this protective membrane depends on the assembly method on the electrode. When a modified poly(epichlorohydrin) (PECH) network is synthesized directly on the electrode, the polymer seeps inside the electrode porosity, and a suitable interface inducing negligible additional polarization in comparison with classical pressure-assembled membranes is obtained. This protected electrode shows improved stability of up to 160 h of operation in 5 M LiOH. This performance is improved to 350 h by adjusting the conductivity and the ionic exchange capacity. Finally, the interest of interpenetrating polymer network (IPN) architecture compared to a single network is confirmed. Indeed, an electrode protected with a PECH/poly(2-hydroxyethyl methacrylate) (PHEMA) IPN is stable for 650 h in 5 M LiOH. In addition, degradation process becomes reversible since the assembly can be regenerated, which is not possible for the bare electrode.

  19. Oxygen evolution reaction characteristics of synthetic nickel-cobalt-oxide electrodes for alkaline anion-exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Koo, Tae Woo; Park, ChanSu; Kim, Yang Do; Lee, Dooyong; Park, Sungkyun; Lee, Jae Ho; Choi, Sung Mook; Choi, Chul Young


    A polymer electrolyte membrane water electrolysis system can produce high-purity hydrogen gases in a highly efficient manner. However, the level of hydrogen gas production is still small. In addition, noble-metal catalysts for the reaction in acidic environments, as well as an additional drying step to remove water contained in the hydrogen, are required. Therefore, water electrolysis system with high efficiency and lower cost, an alkaline anion-exchange membrane system that can produce high-purity hydrogen without a noble-metal catalyst, is needed. Nano-size NiCo2O4 powders were prepared by using a sol-gel method to achieve an efficient and economical water electrolysis system. When the powder was calcined at 450 °C, the crystallinity and the cyclic voltammogram measurement showed the best values. In addition, the 15-wt.% polytetrafluoroethylene mixed NiCo2O4 powders exhibited the largest cyclic voltammetry active area and the highest oxygen evolution reaction activity with the appropriate stability.

  20. Preparing alkaline anion exchange membrane with enhanced hydroxide conductivity via blending imidazolium-functionalized and sulfonated poly(ether ether ketone)

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Jiang, Zhongyi; Tian, Huimin; Wang, Siwen; Zhang, Bei; Cao, Ying; He, Guangwei; Li, Zongyu; Wu, Hong


    The development of alkaline anion exchange membrane (AEM) with both high ion conductivity and stabilities is of great significance for fuel cell applications. In this study, a facile acid-base blending method is designed to improve AEM performances. Basic imidazolium-functionalized poly (ether ether ketone) with a high functionalization degree is employed as polymer matrix to pursue high ion-exchange capacity (IEC) as well as high hydroxide conductivity, meanwhile acidic sulfonated poly (ether ether ketone) (SPEEK) is employed as the cross-linking agent to enhance the stabilities of the blend membranes. Particularly, an in-situ Menshutkin/crosslinking method is exploited to prevent the flocculation in the preparation process of blend membranes. As a result, dense and defect-free blend membranes are obtained. The blend membranes exhibit high level of IEC up to 3.15 mmol g-1, and consequently possess elevated hydroxide conductivity up to 31.59 mS cm-1 at 30 °C. In addition, benefiting from the strong electrostatic interaction introduced by the acid-base blending, the stabilities and methanol resistance of blend membranes are enhanced.

  1. A gemini quaternary ammonium poly (ether ether ketone) anion-exchange membrane for alkaline fuel cell: design, synthesis, and properties.


    Si, Jiangju; Lu, Shanfu; Xu, Xin; Peng, Sikan; Xiu, Ruijie; Xiang, Yan


    To reconcile the tradeoff between conductivity and dimensional stability in AEMs, a novel Gemini quaternary ammonium poly (ether ether ketone) (GQ-PEEK) membrane was designed and successfully synthesized by a green three-step procedure that included polycondensation, bromination, and quaternization. Gemini quaternary ammonium cation groups attached to the anti-swelling PEEK backbone improved the ionic conductivity of the membranes while undergoing only moderate swelling. The grafting degree (GD) of the GQ-PEEK significantly affected the properties of the membranes, including their ion-exchange capacity, water uptake, swelling, and ionic conductivity. Our GQ-PEEK membranes exhibited less swelling (≤ 40 % at 25-70 °C, GD 67 %) and greater ionic conductivity (44.8 mS cm(-1) at 75 °C, GD 67 %) compared with single quaternary ammonium poly (ether ether ketone). Enhanced fuel cell performance was achieved when the GQ-PEEK membranes were incorporated into H2 /O2 single cells. PMID:25346412

  2. Anion exchange polymer electrolytes


    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo


    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  3. Pu Anion Exchange Process Intensification

    SciTech Connect

    Taylor-Pashow, K.


    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  4. Ion exchange polymers for anion separations


    Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.


    Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  5. Ion exchange polymers for anion separations


    Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.


    Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  6. Use of urchin-like NixCo3-xO4 hierarchical nanostructures based on non-precious metals as bifunctional electrocatalysts for anion-exchange membrane alkaline alcohol fuel cells

    NASA Astrophysics Data System (ADS)

    Manivasakan, Palanisamy; Ramasamy, Parthiban; Kim, Jinkwon


    Bifunctional electrocatalysts based on non-precious metals were developed for the dioxygen reduction and methanol oxidation reactions. These electrocatalysts can be considered as candidate cathode and anode materials for anion-exchange membrane (AEM) alkaline alcohol fuel cells. A series of Ni-doped cobalt oxide (NixCo3-xO4) hierarchical nanostructures composed of one-dimensional nanorods was prepared by an inexpensive hydrothermal method. X-ray diffraction patterns showed that the NixCo3-xO4 crystallized in a cubic spinel phase. The electrochemical performance of the catalysts was investigated using a conventional cyclic voltammetry technique. The electrocatalytic behaviour of the NixCo3-xO4 hierarchical nanostructures was compared with the behaviour of Co3O4 and Co0.33Ni0.67O. The synergistic behaviour of the Ni in the NixCo3-xO4 nanostructures was established with respect to the Ni content. NixCo3-xO4 hierarchical nanostructures show a better catalytic behaviour than Co3O4 and Co0.33Ni0.67O. Although the NixCo3-xO4 compositions all showed good catalytic behaviour, Ni1Co2O4 was identified as a superior bifunctional electrocatalyst for the oxygen reduction and methanol oxidation reactions in alkaline media. The effect of the Ni content on the electrocatalytic properties of the NixCo3-xO4 hierarchical nanostructures was clearly shown. The use of these electrocatalysts based on non-precious metals could have a commercial impact on the development of non-platinum electrocatalysts for application in AEM alkaline alcohol fuel cells.Bifunctional electrocatalysts based on non-precious metals were developed for the dioxygen reduction and methanol oxidation reactions. These electrocatalysts can be considered as candidate cathode and anode materials for anion-exchange membrane (AEM) alkaline alcohol fuel cells. A series of Ni-doped cobalt oxide (NixCo3-xO4) hierarchical nanostructures composed of one-dimensional nanorods was prepared by an inexpensive hydrothermal method. X

  7. Use of urchin-like Ni(x)Co(3-x)O4 hierarchical nanostructures based on non-precious metals as bifunctional electrocatalysts for anion-exchange membrane alkaline alcohol fuel cells.


    Manivasakan, Palanisamy; Ramasamy, Parthiban; Kim, Jinkwon


    Bifunctional electrocatalysts based on non-precious metals were developed for the dioxygen reduction and methanol oxidation reactions. These electrocatalysts can be considered as candidate cathode and anode materials for anion-exchange membrane (AEM) alkaline alcohol fuel cells. A series of Ni-doped cobalt oxide (NixCo3-xO4) hierarchical nanostructures composed of one-dimensional nanorods was prepared by an inexpensive hydrothermal method. X-ray diffraction patterns showed that the NixCo3-xO4 crystallized in a cubic spinel phase. The electrochemical performance of the catalysts was investigated using a conventional cyclic voltammetry technique. The electrocatalytic behaviour of the NixCo3-xO4 hierarchical nanostructures was compared with the behaviour of Co3O4 and Co0.33Ni0.67O. The synergistic behaviour of the Ni in the NixCo3-xO4 nanostructures was established with respect to the Ni content. NixCo3-xO4 hierarchical nanostructures show a better catalytic behaviour than Co3O4 and Co0.33Ni0.67O. Although the NixCo3-xO4 compositions all showed good catalytic behaviour, Ni1Co2O4 was identified as a superior bifunctional electrocatalyst for the oxygen reduction and methanol oxidation reactions in alkaline media. The effect of the Ni content on the electrocatalytic properties of the NixCo3-xO4 hierarchical nanostructures was clearly shown. The use of these electrocatalysts based on non-precious metals could have a commercial impact on the development of non-platinum electrocatalysts for application in AEM alkaline alcohol fuel cells. PMID:24990285

  8. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes

    NASA Astrophysics Data System (ADS)

    He, Yubin; Pan, Jiefeng; Wu, Liang; Zhu, Yuan; Ge, Xiaolin; Ran, Jin; Yang, Zhengjin; Xu, Tongwen


    Alkaline polyelectrolyte fuel cell now receives growing attention as a promising candidate to serve as the next generation energy-generating device by enabling the use of non-precious metal catalysts (silver, cobalt, nickel et al.). However, the development and application of alkaline polyelectrolyte fuel cell is still blocked by the poor hydroxide conductivity of anion exchange membranes. In order to solve this problem, we demonstrate a methodology for the preparation of highly OH- conductive anion exchange polyelectrolytes with good alkaline tolerance and excellent dimensional stability. Polymer backbones were grafted with flexible aliphatic chains containing two or three quaternized ammonium groups. The highly flexible and hydrophilic multi-functionalized side chains prefer to aggregate together to facilitate the formation of well-defined hydrophilic-hydrophobic microphase separation, which is crucial for the superior OH- conductivity of 69 mS/cm at room temperature. Besides, the as-prepared AEMs also exhibit excellent alkaline tolerance as well as improved dimensional stability due to their carefully designed polymer architecture, which provide new directions to pursue high performance AEMs and are promising to serve as a candidate for fuel cell technology.

  9. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes

    PubMed Central

    He, Yubin; Pan, Jiefeng; Wu, Liang; Zhu, Yuan; Ge, Xiaolin; Ran, Jin; Yang, ZhengJin; Xu, Tongwen


    Alkaline polyelectrolyte fuel cell now receives growing attention as a promising candidate to serve as the next generation energy-generating device by enabling the use of non-precious metal catalysts (silver, cobalt, nickel et al.). However, the development and application of alkaline polyelectrolyte fuel cell is still blocked by the poor hydroxide conductivity of anion exchange membranes. In order to solve this problem, we demonstrate a methodology for the preparation of highly OH− conductive anion exchange polyelectrolytes with good alkaline tolerance and excellent dimensional stability. Polymer backbones were grafted with flexible aliphatic chains containing two or three quaternized ammonium groups. The highly flexible and hydrophilic multi-functionalized side chains prefer to aggregate together to facilitate the formation of well-defined hydrophilic-hydrophobic microphase separation, which is crucial for the superior OH− conductivity of 69 mS/cm at room temperature. Besides, the as-prepared AEMs also exhibit excellent alkaline tolerance as well as improved dimensional stability due to their carefully designed polymer architecture, which provide new directions to pursue high performance AEMs and are promising to serve as a candidate for fuel cell technology. PMID:26311616

  10. Hyper-branched anion exchange membranes with high conductivity and chemical stability.


    Ge, Qianqian; Liu, Yazhi; Yang, Zhengjin; Wu, Bin; Hu, Min; Liu, Xiaohe; Hou, Jianqiu; Xu, Tongwen


    In the manuscript, we report the design and preparation of hyper-branched polymer electrolytes intended for alkaline anion exchange membrane fuel cells. The resulting membrane exhibits high conductivity, lower water swelling and shows prolonged chemical stability under alkaline conditions. PMID:27456659

  11. Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange

    NASA Astrophysics Data System (ADS)

    Anderson, Bryan D.; Tracy, Joseph B.


    Conversion chemistry is a rapidly maturing field, where chemical conversion of template nanoparticles (NPs) into new compositions is often accompanied by morphological changes, such as void formation. The principles and examples of three major classes of conversion chemical reactions are reviewed: the Kirkendall effect for metal NPs, galvanic exchange, and anion exchange, each of which can result in void formation in NPs. These reactions can be used to obtain complex structures that may not be attainable by other methods. During each kind of conversion chemical reaction, NPs undergo distinct chemical and morphological changes, and insights into the mechanisms of these reactions will allow for improved fine control and prediction of the structures of intermediates and products. Conversion of metal NPs into oxides, phosphides, sulphides, and selenides often occurs through the Kirkendall effect, where outward diffusion of metal atoms from the core is faster than inward diffusion of reactive species, resulting in void formation. In galvanic exchange reactions, metal NPs react with noble metal salts, where a redox reaction favours reduction and deposition of the noble metal (alloying) and oxidation and dissolution of the template metal (dealloying). In anion exchange reactions, addition of certain kinds of anions to solutions containing metal compound NPs drives anion exchange, which often results in significant morphological changes due to the large size of anions compared to cations. Conversion chemistry thus allows for the formation of NPs with complex compositions and structures, for which numerous applications are anticipated arising from their novel catalytic, electronic, optical, magnetic, and electrochemical properties.

  12. Anion conductive aromatic ionomers containing a 1,2-dibenzoylbenzene moiety for alkaline fuel cell applications

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Awlad; Lim, Young-Don; Jang, Ho-Hyoun; Jeon, Young-Tae; Lim, Jin-Sung; Lee, Soon-Ho; Kim, Whan-Gi; Jeon, Heung-Seok


    Novel anion-exchange membranes with high conductivities have been prepared for application to alkaline fuel cells. A quaternary ammonium poly(dibenzoylbenzene ether sulfone) membrane was synthesized by chloromethylation, followed by substitution with trimethylamine with an ion-exchange reaction. The quaternary ammonium groups were selectively substituted in the para-position of the pendant phenyl groups of the dibenzoylbenzene unit. The di-quaternary ammonium hydroxide polymers showed an elevated molecular weight and exhibited excellent solubility in polar aprotic solvents. Quaternization and the subsequent ion-exchange reactions were quantitative such that the obtained ionomer membranes had a high ion-exchange capacity (IEC) of up to 1.69 mmolg-1. The resultant polymer membranes were studied by 1H NMR, FT-IR, thermogravimetric analysis (TGA), IEC, water uptake analysis, and ion conductivity analysis.

  13. Nanoheterostructure Cation Exchange: Anionic Framework Conservation

    SciTech Connect

    Jain, Prashant K.; Amirav, Lilac; Aloni, Shaul; Alivisatos, A. Paul


    In ionic nanocrystals the cationic sub-lattice can be replaced with a different metal ion via a fast, simple, and reversible place-exchange, allowing post-synthetic modification of the composition of the nanocrystal, while preserving its size and shape. Here, we demonstrate for the first time that during such an exchange, the anionic framework of the crystal is preserved. When applied to nanoheterostructures, this phenomenon ensures that compositional interfaces within the heterostructure are conserved throughout the transformation. For instance, a morphology composed of a CdSe nanocrystal embedded in a CdS rod (CdSe/CdS) was exchanged to a PbSe/PbS nanorod via a Cu2Se/Cu2S structure. During every exchange cycle, the seed size and position within the nanorod were preserved, as evident by excitonic features, Z-contrast imaging, and elemental line-scans. Anionic framework conservation extends the domain of cation exchange to the design of more complex and unique nanostructures.

  14. Anion Exchange Membranes: Current Status and Moving Forward

    SciTech Connect

    Hickner, MA; Herring, AM; Coughlin, EB


    This short review is meant to provide the reader with highlights in anion exchange membrane research, describe current needs in the field, and point out promising directions for future work. Anion exchange membranes (AEMs) provide one possible route to low platinum or platinum-free fuel cells with the potential for facile oxidation of complex fuels beyond hydrogen and methanol. AEMs and related stable cationic polymers also have applications in energy storage and other electrochemical technologies such as water electrolyzers and redox flow batteries. While anion exchange membranes have been known for a long time in water treatment applications, materials for electrochemical technology with robust mechanical properties in thin film format have only recently become more widely available. High hydroxide and bicarbonate anion conductivity have been demonstrated in a range of AEM formats, but intrinsic stability of the polymers and demonstration of long device lifetime remain major roadblocks. Novel approaches to stable materials have focused on new types of cations that employ delocalization and steric shielding of the positive center to mitigate nucleophilic attack by hydroxide. A number of promising polymer backbones and membrane architectures have been identified, but limited device testing and a lack of understanding of the degradation mechanisms in operating devices is slowing progress on engineered systems with alkaline fuel cell technology. Our objective is to spur more research in this area to develop fuel cell systems that approach the costs of inexpensive batteries for large-scale applications. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1727-1735, 2013

  15. Advancements in Anion Exchange Membrane Cations

    SciTech Connect

    Sturgeon, Matthew R.; Long, Hai; Park, Andrew M.; Pivovar, Bryan S.


    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  16. Oxalate transport by anion exchange across rabbit ileal brush border.

    PubMed Central

    Knickelbein, R G; Aronson, P S; Dobbins, J W


    This study demonstrates the presence of oxalate transporters on the brush border membrane of rabbit ileum. We found that an inside alkaline (pH = 8.5 inside, 6.5 outside) pH gradient stimulated [14C]oxalate uptake 10-fold at 1 min with a fourfold accumulation above equilibrated uptake at 5 min. 1 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonate (disodium salt; DIDS) profoundly inhibited the pH-gradient stimulated oxalate uptake. Using an inwardly directed K+ gradient and valinomycin, we found no evidence for potential sensitive oxalate uptake. In contrast to Cl:HCO3 exchange, HCO3 did not stimulate oxalate uptake more than was seen with a pH gradient in the absence of HCO3. An outwardly directed Cl gradient (50 mM inside, 5 mM outside) stimulated oxalate uptake 10-fold at 1 min with a fivefold accumulation above equilibrated uptake. Cl-stimulated oxalate uptake was largely inhibited by DIDS. Addition of K+ and nigericin only slightly decreased the Cl gradient-stimulated oxalate uptake, which indicates that this stimulation was not primarily due to the Cl gradient generating an inside alkaline pH gradient via Cl:OH exchange. Further, an outwardly directed oxalate gradient stimulated 36Cl uptake. These results suggested that both oxalate:OH and oxalate:Cl exchange occur on the brush border membrane. To determine if one or both of these exchanges were on contaminating basolateral membrane, the vesicle preparation was further fractionated into a brush border and basolateral component using sucrose density gradient centrifugation. Both exchangers localized to the brush border component. A number of organic anions were examined (outwardly directed gradient) to determine if they could stimulate oxalate and Cl uptake. Only formate and oxaloacetate were found to stimulate oxalate and Cl uptake. An inwardly directed Na gradient only slightly stimulated oxalate uptake, which was inhibited by DIDS. PMID:3003149

  17. Poly(phenylene)-based anion exchange membrane


    Hibbs, Michael; Cornelius, Christopher J.; Fujimoto, Cy H.


    A poly(phenylene) compound of copolymers that can be prepared with either random or multiblock structures where a first polymer has a repeat unit with a structure of four sequentially connected phenyl rings with a total of 2 pendant phenyl groups and 4 pendant tolyl groups and the second polymer has a repeat unit with a structure of four sequentially connected phenyl rings with a total of 6 pendant phenyl groups. The second polymer has chemical groups attached to some of the pendant phenyl groups selected from CH.sub.3, CH.sub.2Br, and CH.sub.2N(CH.sub.3).sub.3Br groups. When at least one group is CH.sub.2N(CH.sub.3).sub.3Br, the material functions as an anion exchange membrane.

  18. Ionic Block Copolymers for Anion Exchange Membranes

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han; Herbst, Dan; Giffin, Guinevere A.; di Noto, Vito; Witten, Tom; Coughlin, E. Bryan


    Anion exchange membrane (AEM) fuel cells have regained interest because it allows the use of non-noble metal catalysts. Until now, most of the studies on AEM were based on random polyelectrolytes. In this work, Poly(vinylbenzyltrimethylammonium bromide)-b- (methylbutylene) ([PVBTMA][Br]-b-PMB) was studied by SAXS, TEM and dielectric spectroscopy to understand the fundamental structure-conductivity relationship of ion transport mechanisms within well-ordered block copolymers. The ionic conductivity and the formation of order structure were dependent on the casting solvent. Higher ion exchange capacity (IEC) of the membranes showed higher conductivity at as IEC values below 1.8mmol/g, as above this, the ionic conductivity decreases due to more water uptake leading to dilution of charge density. The humidity dependence of morphology exhibited the shifting of d-spacing to higher value and the alteration in higher characteristic peak of SAXS plot as the humidity increase from the dry to wet state. This phenomenon can be further explained by a newly developed polymer brush theory. Three ionic conduction pathways with different conduction mechanism within the membranes can be confirmed by broadband electric spectroscopy. US Army MURI (W911NF1010520)


    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey


  20. Removal of bromide and natural organic matter by anion exchange.


    Hsu, Susan; Singer, Philip C


    Bromide removal by anion exchange was explored for various water qualities, process configurations, and resin characteristics. Simulated natural waters containing different amounts of natural organic matter (NOM), bicarbonate, chloride, and bromide were treated with a polyacrylate-based magnetic ion exchange (MIEX) resin on a batch basis to evaluate the effectiveness of the resin for removal of bromide. While bromide removal was achieved to some degree, alkalinity (bicarbonate), dissolved organic carbon (DOC), and chloride were shown to inhibit bromide removal in waters with bromide concentrations of 100 and 300 microg/L. Water was also treated using a two-stage batch MIEX process. Two-stage treatment resulted in only a slight improvement in bromide removal compared to single-stage treatment, presumably due to competition with the high concentration of chloride which is present along with bromide in natural waters. In view of the relatively poor bromide removal results for the MIEX resin, a limited set of experiments was performed using polystyrene resins. DOC and bromide removal were compared by treating model waters with MIEX and two polystyrene resins, Ionac A-641 and Amberlite IRA910. The two polystyrene resins were seen to be more effective for bromide removal, while the MIEX resin was more effective at removing DOC. PMID:20045170

  1. Cation exchange properties of zeolites in hyper alkaline aqueous media.


    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric


    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media. PMID:25569300

  2. Purification Or Organic Acids Using Anion Exchange Chromatography.


    Ponnampalam; Elankovan


    Disclosed is a cost-effective method for purifying and acidifying carboxylic acids, including organic acids and amino acids. The method involves removing impurities by allowing the anionic form of the carboxylic acid to bind to an anion exchange column and washing the column. The carboxylic anion is displaced as carboxylic acid by washing the resin with a strong inorganic anion. This method is effective in removing organic carboxylic acids and amino acids from a variety of industrial sources, including fermentation broths, hydrolysates, and waste streams.

  3. New anion-exchange polymers for improved separations

    SciTech Connect

    Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.


    Objective is to improve the understanding of how the structure of a new class of anion-exchange polymers controls the binding of anionic actinide complexes from solution. This is needed to develop practical separation systems that will reduce the cost of actinide processing operations within the DOE complex. In addition anion exchange is widely used in industry. Several new series of bifunctional anion- exchange polymers have been designed, synthesized, and tested for removing Pu(IV), Am(III), and U(VI) from nitric acid. The polymers contain a pyridinium site derived from the host poly(4-vinylpyridine) and a second cationic site attached through a chain of 2 to 6 methylene groups. The new polymers removed Pu four to ten times more efficiently than the best commercial materials.

  4. Nitrate anion exchange in 238Pu aqueous scrap recovery operations

    NASA Astrophysics Data System (ADS)

    Pansoy-Hjelvik, M. E.; Silver, G. L.; Reimus, M. A. H.; Ramsey, K. B.


    Strong base, nitrate anion exchange (IX) is crucial to the purification of 238Pu solution feedstocks with gross levels of impurities. This paper discusses the work involved in bench scale experiments to optimize the nitrate anion exchange process. In particular, results are presented of experiments conducted to a) demonstrate that high levels of impurities can be separated from 238Pu solutions via nitrate anion exchange and, b) work out chemical pretreatment methodology to adjust and maintain 238Pu in the IV oxidation state to optimize the Pu(IV)-hexanitrato anionic complex sorption to Reillex-HPQ resin. Additional experiments performed to determine the best chemical treatment methodology to enhance recovery of sorbed Pu from the resin and VIS-NIR absorption studies to determine the steady state equilibrium of Pu(IV), Pu(III), and Pu(VI) in nitric acid are discussed.

  5. A lanthanide complex for metal encapsulations and anion exchanges.


    Sun, Yan-Qiong; Wan, Fang; Li, Xin-Xiong; Lin, Jian; Wu, Tao; Zheng, Shou-Tian; Bu, Xianhui


    A cationic lanthanide metalloligand with 3 dangling carboxylate groups on its periphery co-assembles with nitrate into a porous thermochromic solid responsive to both external cations and anions, owing to the presence of exchangeable NO3(-) as well as cation cavities arising from cooperative orientation of free carboxylate groups. An especially interesting feature is the structural memory effect during crystallization exhibited by the metalloligand, even after dissolution and binding to secondary cations (Cu(2+), Cd(2+)…). Moreover, the porous solid can undergo ion-exchange with various anions, leading to tunable thermochromic temperature and color range. PMID:27463609

  6. Synthesis and Characterization of Imidazolium Linear Bisphenol Polycarbonate Hydroxides for Anion Exchange Membrane.


    Jang, Hohyoun; Hossain, Md Awlad; Lee, Soonho; Ha, Jaesung; Yoo, Jihoo; Kim, Kyungchul; Kim, Whangi


    A novel anion exchange membrane of imidazolium functionalized bisphenol polycarbonate was prepared for application in alkaline fuel cell. Di-imidazolium polycarbonate anionic membrane was synthesized by sequential interfacial polymerization, chloromethylation, substitution with 1-methylimidazole and ion exchange with 1.0 M KOH. Chloromethylation reaction was quantitative to achieve a high content of hydroxide ions. Introduction of conjugated imidazole ring in polymer plays an important role to improve both thermal and chemical stability. Bisphenol polycarbonate is a flexible polymer and shows a good solubility in polar organic solvent. The alkaline imidazolium bisphenol polycarbonate rendered an elevated molecular weight with excellent solubility in polar aprotic solvent. Different levels of substitution and ion exchange were investigated; the resulting membranes showed high ion exchange capacities (IECs) of up to 2.15 mmol g(-1). The imidazolium-functionalized copolymer membranes showed lower water affinity (14.2-42.8% at 30 degrees C) that satisfied an essential criterion for fuel cell application. The chemical structure of the imidazolium functionalized polycarbonate membrane was confirmed by 1H NMR spectroscopy, and also the membrane properties were evaluated by thermogravimetric analysis (TGA) and water uptake (WU), IEC and conductivity assessment. They exhibited hydroxide conductivity above 10(-2) S cm(-1) at room temperature and good chemical stability for up to five days without significant losses of ion conductivity. PMID:26726604

  7. Understanding and modeling removal of anionic organic contaminants (AOCs) by anion exchange resins.


    Zhang, Huichun; Shields, Anthony J; Jadbabaei, Nastaran; Nelson, Maurice; Pan, Bingjun; Suri, Rominder P S


    Ionic organic contaminants (OCs) are a growing concern for water treatment and the environment and are removed inefficiently by many existing technologies. This study examined removal of anionic OCs by anion exchange resins (AXRs) as a promising alternative. Results indicate that two polystyrene AXRs (IRA910 and IRA96) have higher sorption capacities and selectivity than a polyacrylate resin (A860). For the polystyrene resins, selectivity follows: phenolates ≥ aromatic dicarboxylates > aromatic monocarboxylates > benzenesulfonate > aliphatic carboxylates. This trend can be explained based on hydration energy, the number of exchange groups, and aromaticity and hydrophobicity of the nonpolar moiety (NPM) of the anions. For A860, selectivity only varies within a narrow range (0.13-1.64). Despite the importance of the NPM of the anions, neutral solutes were sorbed much less, indicating synergistic combinations of electrostatic and nonelectrostatic interactions in the overall sorption. By conducting multiple linear regression between Abraham's descriptors and nature log of selectivity, induced dipole-related interactions and electrostatic interactions were found to be the most important interaction forces for sorption of the anions, while solute H-bond basicity has a negative effect. A predictive model was then developed for carboxylates and phenolates based on the poly parameter linear free energy relationships established for a diverse range of 16 anions and 5 neutral solutes, and was validated by accurate prediction of sorption of five test solutes within a wide range of equilibrium concentrations and that of benzoate at different pH. PMID:24877792

  8. Quantitative H-1 NMR Analysis of Chemical Stabilities in Anion-Exchange Membranes

    SciTech Connect

    Nunez, SA; Hickner, MA


    We compared the alkaline stability of three classes of anion exchange membranes that are leading candidates for applications in platinum-free fuel cells. A methodology is presented for the study of chemical stability of anion-exchange polymers in alkaline media that provides clear and quantitative H-1 NMR spectroscopic data of dissolved polymers containing benzyltrimethylammonium functionalities. Recent studies have investigated the stabilities of benzimidazolium- and alkylimidazolium-bearing polymers using periodic H-1 NMR sampling. These studies included varying alkaline concentrations, external heating sources, and excessive processing and contained no internal standard for absolute measurements. Key aspects of our time-resolved H-1 NMR method include in situ heating and sampling within the spectrometer, fixed Stoichiometric relationships between the benzyltrimethylammonium functionalities of each polymer and potassium deuteroxide (KOD), and the incorporation of an internal standard for the absolute measurement of the polymer degradation. In addition, our method permits the identification of the degradation products to find the underlying cause of chemical lability. Our results demonstrate that a styrene-based polymer containing benzyltrimethylammonium functional groups is remarkably stable when exposed to 20 equivalents per cation of KOD at 80 degrees C with a half-life (t(1/2)) of 231 h. Under these standard conditions, functionalized poly(phenylene oxide) and poly(arylene ether sulfone) copolymers, both bearing benzyltrimethylammonium functionalities were found to degrade with a half-lives of 57.8 and 2.7 h, respectively.

  9. Hydroxy double salt anion exchange kinetics: effects of precursor structure and anion size.


    Kandare, Everson; Hossenlopp, Jeanne M


    (1)H NMR spectroscopy and powder X-ray diffraction have been used to explore the details of anion exchange reactions of two layered hydroxy double salts (HDSs), zinc copper hydroxy acetate (ZCA), nickel zinc hydroxy acetate (NZA), and a related layered material, zinc hydroxy acetate (ZHA), at room temperature (21-22 degrees C). Reactions that followed Avrami-Erofe'ev kinetics with respect to temporal profiles for acetate release, ZCA with butyrate (k = 1.7 x 10(-3) s(-1)), and octanoate (k = 0.79 x 10(-3) s(-1)) anions, as well as ZHA with octanoate (k = 2.6 x 10(-3) s(-1)), demonstrate that rate constants for acetate release are influenced by the exchange anion relative size as well as by the solid precursor structure/composition. The reaction of NZA with octanoate deviated from expected Avrami-Erofe'ev behavior, with evidence for an intermediate species in the solid phase that may influence the rate of acetate release into solution. The reaction of ZCA with formate anions exhibited a unique zeroth-order kinetics release of acetate, providing the possibility of developing tunable nanostructured anion release sources by use of variations in the size of the exchange species. PMID:16851994

  10. Removal of Uranium from Plutonium Solutions by Anion Exchange

    SciTech Connect

    Rudisill, T.S.


    The anion exchange capacity in the HB-Line Phase II Facility will be used to purify plutonium solutions potentially containing significant quantities of depleted uranium. Following purification, the plutonium will be precipitated as an oxalate and calcined to plutonium oxide (PuO2) for storage until final disposition.

  11. Preparation of agricultural residue anion exchangers and its nitrate maximum adsorption capacity.


    Orlando, U S; Baes, A U; Nishijima, W; Okada, M


    Anion exchangers were prepared from different agricultural residues (AR) after reaction with epichlorohydrin and dimethylamine in the presence of pyridine and N,N-dimethylformamide (EDM method). Agricultural residues anion exchangers (AR-AE) produced by the EDM method were inexpensive and showed almost the same NO3- removal capacities as Amberlite IRA-900. AR-AE produced from AR with higher hemicelluloses, lignin, ash and extractive contents resulted in the lower yields. Sugarcane bagasse with the highest alpha-cellulose contents of 51.2% had the highest yield (225%) and lowest preparation cost. The highest maximum adsorption capacity (Qmax) for nitrate was obtained from rice hull (1.21 mmol g(-1)) and pine bark natural exchangers (1.06 mmol g(-1)). No correlation was found between Qmax and alpha-cellulose content in the original AR. AR-AE produced from different AR demonstrated comparable Qmax due to the removal of non-active compounds such as extractives, lignin and hemicelluloses from AR during the preparation process. Similar preparation from pure cellulose and pure alkaline lignin demonstrated that the EDM method could not produce anion exchangers from pure lignin due to its solubilization after the reaction with epichlorohydrin. PMID:12227509

  12. Neptunium Valence Chemistry in Anion Exchange Processing

    SciTech Connect



    The current anion resin in use in HB-Line Phase II, Reillex{trademark} HPQ, was tested in the laboratory under expected plant conditions for Np processing and was found to load between 50 and 70 g Np per liter of resin. Losses varied from 0.2 to 15 percent depending on a number of parameters. Hydrazine in the feed at 0.02 to 0.05 M appeared to keep the Np from oxidizing and increasing the losses within four to seven days after the FS addition. Losses of up to three percent were observed five days after FS addition when hydrazine was not used in the feed, compared with 0.3 percent when the feed was loaded immediately after FS addition. Based on these test results the following processing conditions are recommended: (1) Feed conditions: 8 M HNO{sub 3}, 0.02 M hydrazine, 0.05 M excess FS, less than 5 days storage of solution after FS addition. (2) Wash conditions: 100 liters of 8 M HNO{sub 3}, no FS, no hydrazine. (3) Elution conditions: 0.17 M HNO{sub 3}, 0.05 M hydrazine, no FS. (4) Precipitation feed conditions: 0.03 M excess ascorbic acid, no additional hydrazine, no FS, precipitation within three days.

  13. Kinetics and mechanism of exogenous anion exchange in FeFbpA-NTA: significance of periplasmic anion lability and anion binding activity of ferric binding protein A.


    Heymann, Jared J; Gabricević, Mario; Mietzner, Timothy A; Crumbliss, Alvin L


    The bacterial transferrin ferric binding protein A (FbpA) requires an exogenous anion to facilitate iron sequestration, and subsequently to shuttle the metal across the periplasm to the cytoplasmic membrane. In the diverse conditions of the periplasm, numerous anions are known to be present. Prior in vitro experiments have demonstrated the ability of multiple anions to fulfill the synergistic iron-binding requirement, and the identity of the bound anion has been shown to modulate important physicochemical properties of iron-bound FbpA (FeFbpA). Here we address the kinetics and mechanism of anion exchange for the FeFbpA-nitrilotriacetate (NTA) assembly with several biologically relevant anions (citrate, oxalate, phosphate, and pyrophosphate), with nonphysiologic NTA serving as a representative synergistic anion/chelator. The kinetic data are consistent with an anion-exchange process that occurs in multiple steps, dependent on the identity of both the entering anion and the leaving anion. The exchange mechanism may proceed either as a direct substitution or through an intermediate FeFbpA-X* assembly based on anion (X) identity. Our kinetic results further develop an understanding of exogenous anion lability in the periplasm, as well as address the final step of the iron-free FbpA (apo-FbpA)/Fe(3+) sequestration mechanism. Our results highlight the kinetic significance of the FbpA anion binding site, demonstrating a correlation between apo-FbpA/anion affinity and the FeFbpA rate of anion exchange, further supporting the requirement of an exogenous anion to complete tight sequestration of iron by FbpA, and developing a mechanism for anion exchange within FeFbpA that is dependent on the identity of both the entering anion and the leaving anion. PMID:19813031

  14. Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis.


    Pavel, Claudiu C; Cecconi, Franco; Emiliani, Chiara; Santiccioli, Serena; Scaffidi, Adriana; Catanorchi, Stefano; Comotti, Massimiliano


    Low-temperature electricity-driven water splitting is an established technology for hydrogen production. However, the two main types, namely proton exchange membrane (PEM) and liquid alkaline electrolysis, have limitations. For instance, PEM electrolysis requires a high amount of costly platinum-group-metal (PGM) catalysts, and liquid alkaline electrolysis is not well suited for intermittent operation. Herein we report a highly efficient alkaline polymer electrolysis design, which uses a membrane-electrode assembly (MEA) based on low-cost transition-metal catalysts and an anion exchange membrane (AEM). This system exhibited similar performance to the one achievable with PGM catalysts. Moreover, it is very suitable for intermittent power operation, durable, and able to efficiently operate at differential pressure up to 3 MPa. This system combines the benefits of PEM and liquid alkaline technologies allowing the scalable production of low-cost hydrogen from renewable sources. PMID:24339230

  15. Highly Water Resistant Anion Exchange Membrane for Fuel Cells.


    Yang, Zhengjin; Hou, Jianqiu; Wang, Xinyu; Wu, Liang; Xu, Tongwen


    For anion exchange membranes (AEMs), achieving efficient hydroxide conductivity without excessive hydrophilicity presents a challenge. Hence, new strategies for constructing mechanically strengthened and hydroxide conductive (especially at controlled humidity) membranes are critical for developing better AEMs. Macromolecular modification involving ylide chemistry (Wittig reaction) for the fabrication of novel AEMs with an interpenetrating polymer network structure is reported. The macromolecular modification is cost effective, facile, and based on a one-pot synthesis. AEM water uptake is reduced to 3.6 wt% and a high hydroxide conductivity (69.7 mS cm(-1) , 90 °C) is achieved simultaneously. More importantly, the membrane exhibits similar tensile strength (>35 MPa) and comparable flexibility in both dry and wet states. These AEMs could find further applications within anion exchange membrane fuel cells with low humidity or photoelectric assemblies. PMID:25962480

  16. The sorption of quercetin by high-basicity anion exchangers

    NASA Astrophysics Data System (ADS)

    Udalova, N. A.; Karpov, S. I.; Selemenev, V. F.; Sharmar, I. A.


    The sorption of quercetin on anionites with various porosities in the OH- and Cl- forms was studied under static conditions. The equilibrium (distribution coefficients K p) and kinetic (effective diffusion coefficients D eff) parameters of quercetin sorption on AV-17-2P and AV-17-6M anionites in the Cl- and OH- forms were calculated. The mechanism of quercetin interactions with the anion exchangers was studied by electron microscopy and IR spectroscopy.

  17. [Chromatographic separation of plasmid DNA by anion-exchange cryogel].


    Guo, Yantao; Shen, Shaochuan; Yun, Junxian; Yao, Kejian


    Plasmid DNA (pDNA) is used as an important vector for gene therapy, and its wide application is restricted by the purity and yield. To obtain high-purity pDNA, a chromatographic method based on anion-exchange supermacroporous cryogel was explored. The anion-exchange cryogel was prepared by grafting diethylaminoethyl-dextran to the epoxide groups of polyacrylamide-based matrix and pUC19 plasmid was used as a target to test the method. The plasmid was transferred into Escherichia coli DH5alpha, cultivated, harvested and lysed. The obtained culture was centrifuged and the supernatant was used as the plasmid feedstock, which was loaded into the anion-exchange cryogel bed for chromatographic separation. By optimizing the pH of running buffer and the elution conditions, high-purity pDNA was obtained by elution with 0.5 mol/L sodium chloride solution at pH 6.6. Compared to the traditional methods for purification of pDNA, animal source enzymes and toxic reagents were not involved in the present separation process, ensuring the safety of both the purification operations and the obtained pDNA. PMID:23185899



    Hyde, E.K.; Raby, B.A.


    A method is described for selectively separating radium, bismuth, poloniums and lead values from a metallic mixture of thc same. The mixture is dissolved in aqueous hydrochloric acid and the acidity is adjusted to between 1 to 2M in hydrochloric acid to form the anionic polychloro complexes of polonium and bismuth. The solution is contacted with a first anion exchange resin such as strong base quaternary ammonia type to selectively absorb the polonium and bismuth leaving the radium and lead in the effluent. The effluent, after treatment in hydrochloric acid to increase the hydrochloric acid concentration to 6M is contacted with a second anion exchange iesin of the same type as the above to selectively adsorb the lead leaving the radium in the effluent. Radium is separately recovered from the effluent from the second exchange column. Lead is stripped from the loaded resin of the second column by treatment with 3M hydrochloric acid solution. The loaded resin of the first column is washed with 8M hydrochloric acid solution to recover bismuth and then treated with strong nitric acid solution to recover polonium.

  19. Bifunctional anion-exchange resins with improved selectivity and exchange kinetics


    Alexandratos, Spiro D.; Brown, Gilbert M.; Bonnesen, Peter V.; Moyer, Bruce A.


    Disclosed herein are a class of anion exchange resins containing two different exchange sites with improved selectivity and sorptive capability for chemical species in solution, such as heptavalent technetium (as pertechnetate anion, TcO.sub.4.sup.-). The resins are prepared by first reacting haloalkylated crosslinked copolymer beads with a large tertiary amine in a solvent in which the resin beads can swell, followed by reaction with a second, smaller, tertiary amine to more fully complete the functionalization of the resin. The resins have enhanced selectivity, capacity, and exchange kinetics.

  20. Sorption of tellurium ion from aqueous solutions by anion-exchangers and amphoteric ion-exchangers

    SciTech Connect

    Dreipa, E.F.; Pakholkov, V.S.; Luk'yanov, S.A.


    Sorption of tellurium from solutions of telluric acid under dynamic and static conditions by anion-exchangers and amphoteric ion-exchangers containing various ionic groups was studied and the influence of the ion form, pH of the medium, presence of electrolytes, and the H/sub 6/TeO/sub 6/ concentration in the original solutions was determined. The mechanism of sorption of tellurium (VI) by anion-exchangers was deduced from sorption and IR-spectroscopic data. Differences in the behavior of tellurium and selenium were used for separating these elements in 0.05 N H/sub 2/SeO/sub 4/ + 0.05 N H/sub 6/TeO/sub 6/ solution of pH = 1.0 with the aid of EDE-10P anion-exchange resin.

  1. Anion exchangers with branched functional ion exchange layers of different hydrophilicity for ion chromatography.


    Shchukina, O I; Zatirakha, A V; Smolenkov, A D; Nesterenko, P N; Shpigun, O A


    Novel polystyrene-divinylbenzene (PS-DVB) based anion exchangers differing from each other in the structure of the branched functional ion exchange layer are prepared to investigate the role of linker and functional site on ion exchange selectivity. The proposed method of synthesis includes the obtaining of aminated PS-DVB particles by means of their acylation with following reductive amination with methylamine. Further modification of the obtained secondary aminogroups is provided by the alkylation with either 1,4-butanediol diglycidyl ether (1,4-BDDGE) or resorcinol diglycidyl ether (RDGE), which form the linkers of different hydrophobicity, and amination of terminal epoxide rings with trimethylamine (TMA), dimethylethanolamine (DMEA), methyldiethanolamine (MDEA) or triethanolamine (TEA). The variation of the structure and hydrophobicity of the linker and terminal quaternary ammonium sites in the functional layer allows the alteration of selectivity and separation efficiency of the obtained adsorbents. The ion exchange selectivity and separation efficiency of the anion exchangers are evaluated using the model mixtures of anions (F(-), HCOO(-), Cl(-), NO2(-), Br(-), NO3(-), HPO4(2-) and SO4(2-)) in potassium hydroxide eluents. The adsorbents show the decrease of selectivity with increasing the hydrophilicity of the terminal functional site. The anion exchangers having more flexible and hydrophilic 1,4-BDDGE linker provide smaller separation factors for most of the analytes as compared with RDGE-containing adsorbents with the same terminal ion exchange sites, but are characterized with higher column efficiencies and better peak symmetry for polarizable anions. In case of 1,4-BDDGE-modified anion exchangers of the particle size of 3.3μm functionalized with DMEA and MDEA the calculated values of column efficiencies for polarizable NO3(-) and Br(-) are up to 49,000 and 53,000N/m, respectively, which is almost twice higher than the values obtained for the RDGE

  2. Anion exchange in Zn-Al layered double hydroxides: In situ X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Salak, Andrei N.; Tedim, João; Kuznetsova, Alena I.; Zheludkevich, Mikhail L.; Ferreira, Mário G. S.


    Anion exchange capacity is a key factor for the application of Zn-Al layered double hydroxides (LDHs) as nano-containers in active corrosion protection. In this work, the nitrate-pyrovanadate anion exchange/re-exchange processes in these LDHs were investigated in situ. We demonstrate that the exchange reactions lead to a decrease of the average crystallite size of LDHs as a result of mechanical fragmentation of the crystallites rather than dissolution/recrystallization. The fragmentation occurs due to fast anion exchange in the initial stage, and can be controlled by changing the ratio of the available substituent anions to the replacement anions and application of a mechanical activation.

  3. 1,2,3-Triazolium-Based Poly(2,6-Dimethyl Phenylene Oxide) Copolymers as Anion Exchange Membranes.


    Liu, Lei; He, Shuqing; Zhang, Shufang; Zhang, Min; Guiver, Michael D; Li, Nanwen


    Anion exchange membranes (AEMs) based on 1,2,3-triazolium (TAM) were prepared from commercial poly(2,6-dimethyl phenylene oxide) (PPO) via "click chemistry" and subsequent N-alkylation. Flexible and tough membranes with various ion exchange capacities (IECs) were obtained by casting the polymers from NMP solutions. Although the resulting TAM-functionalized PPOs (PPO-TAM) membranes exhibited incomplete ion exchange in 1 M NaOH or NaHCO3 for 24 h even at elevated temperature, the highest hydroxide conductivities of the membranes were above 20 mS/cm at room temperature, which is comparable to many reported AEMs. Alkaline stability tests indicate that the PPO-TAM membranes showed a better alkaline stability than that of membranes containing imidazolium groups in 1 M NaOH at 80 °C, but still require further improvements in long-term stability for alkaline fuel cell application. An investigation of alkaline stability of model compounds demonstrated the instability of TAM cations under alkaline conditions could contribute to the deprotonation of benzylic methylene, C4 and C5 position on the triazolium ring. These results suggests that the alkaline stability of 1,2,3-triazolium cation could be improved by the introduction of substituents at the C4, C5 positions and benzylic methylene, and also provide insight and directions for organic cation designs for AEM application by the facile synthetic strategy of "click chemistry". PMID:26820176

  4. Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud.


    Zhu, Mao-Xu; Lee, Li; Wang, Hai-Hua; Wang, Zheng


    Alkaline white mud (AWM) has been investigated as a low-cost material for removal of an anionic dye, acid blue 80. The effects of contact time, initial pH of dye solution, AWM dosage, and the presence of inorganic anion sulphate or phosphate ion on removal of the dye were evaluated. The results show that AWM could be used as an effective material for removal of acid blue 80 in a pre or main process, particularly at high dye concentration (>300 mgL(-1)), reaching maximum removal efficiency of 95%. At low dye concentration, surface adsorption is mainly responsible for the dye removal, while chemical precipitation of the dye anions with soluble Ca(2+) and Mg(2+) may play a dominant role for the dye removal at high concentration, producing much less sludge than conventional adsorption method. Solution pH has only a limited effect on the dye removal due to high alkalinity and large pH buffer capacity of AWM suspension and thereby pH is not a limiting factor in pursuing high dye removal. The presence of SO(4)(2-) could reduce the dye removal by AWM only when SO(4)(2-) concentration is beyond 0.7 mmolL(-1). The dye removal may be significantly suppressed by the presence of phosphate with increasing concentration, and the reduction in the dye removal is much larger at high dye concentrations than at low ones. PMID:17532132

  5. Quaternized agricultural by-products as anion exchange resins.


    Wartelle, Lynda H; Marshall, Wayne E


    The objectives of this study were the chemical modification of readily available, low-cost agricultural by-products to anion exchange resins and the selection of the best modified by-product for further use in anion removal. Resins were prepared through the quaternization of a series of 12 agricultural by-products with N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHMAC). Phosphate ion adsorption assays were conducted at pH 7 in order to compare adsorption properties among the by-products. Quaternized corn stover showed the highest phosphorus adsorption at 0.66 mmole/g. Since corn stover exhibited the best uptake of phosphate ion, it was compared to a commercially available, cellulose-based anion exchange resin. Additionally, adsorption capacities of quaternized corn stover for arsenate, chromate, and selenate were evaluated and adsorption efficiencies were determined in simulated wastewater samples. Our results indicate that modified corn stover demonstrates good adsorption uptake for arsenate and selenate and especially for chromate. PMID:16144735

  6. Extracellular Cl(-) regulates human SO4 (2-)/anion exchanger SLC26A1 by altering pH sensitivity of anion transport.


    Wu, Meng; Heneghan, John F; Vandorpe, David H; Escobar, Laura I; Wu, Bai-Lin; Alper, Seth L


    Genetic deficiency of the SLC26A1 anion exchanger in mice is known to be associated with hyposulfatemia and hyperoxaluria with nephrolithiasis, but many aspects of human SLC26A1 function remain to be explored. We report here the functional characterization of human SLC26A1, a 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS)-sensitive, electroneutral sodium-independent anion exchanger transporting sulfate, oxalate, bicarbonate, thiosulfate, and (with divergent properties) chloride. Human SLC26A1-mediated anion exchange differs from that of its rodent orthologs in its stimulation by alkaline pHo and inhibition by acidic pHo but not pHi and in its failure to transport glyoxylate. SLC26A1-mediated transport of sulfate and oxalate is highly dependent on allosteric activation by extracellular chloride or non-substrate anions. Extracellular chloride stimulates apparent V max of human SLC26A1-mediated sulfate uptake by conferring a 2-log decrease in sensitivity to inhibition by extracellular protons, without changing transporter affinity for extracellular sulfate. In contrast to SLC26A1-mediated sulfate transport, SLC26A1-associated chloride transport is activated by acid pHo, shows reduced sensitivity to DIDS, and exhibits cation dependence of its DIDS-insensitive component. Human SLC26A1 resembles SLC26 paralogs in its inhibition by phorbol ester activation of protein kinase C (PKC), which differs in its undiminished polypeptide abundance at or near the oocyte surface. Mutation of SLC26A1 residues corresponding to candidate anion binding site-associated residues in avian SLC26A5/prestin altered anion transport in patterns resembling those of prestin. However, rare SLC26A1 polymorphic variants from a patient with renal Fanconi Syndrome and from a patient with nephrolithiasis/calcinosis exhibited no loss-of-function phenotypes consistent with disease pathogenesis. PMID:27125215

  7. Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes.


    Chen, Dongyang; Hickner, Michael A


    Imidazolium and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone)s were synthesized successfully with the same degree of cationic functionalization and identical polymer backbones for a comparative study of anion exchange membranes (AEMs) for solid-state alkaline membrane fuel cells (AMFCs). Both anion exchange membranes were synthesized using a new methyl-containing monomer that avoided the use of toxic chloromethylation reagents. The polymer chemical structures were confirmed by ¹H NMR and FTIR. The derived AEMs were fully characterized by water uptake, anion conductivity, stability under aqueous basic conditions, and thermal stability. Interestingly, both the cationic groups and the polymer backbone were found to be degraded in 1 M NaOH solution at 60 °C over 48 h as measured by changes of ion exchange capacity and intrinsic viscosity. Imidazolium-functionalized poly(fluorenyl ether ketone sulfone)s had similar aqueous alkaline stability to quaternary ammonium-functionalized materials at 60 °C but much lower stability at 80 °C. This work demonstrates that quaternary ammonium and imidazolium cationic groups are not stable on poly(arylene ether sulfone) backbones under relatively mild conditions. Additionally, the poly(arylene ether sulfone) backbone, which is one of the most common polymers used in ion exchange membrane applications, is not stable in the types of molecular configurations analyzed. PMID:23067022

  8. Degradation of Imidazolium- and Quaternary Ammonium-Functionalized Poly(fluorenyl ether ketone sulfone) Anion Exchange Membranes

    SciTech Connect

    Chen, DY; Hickner, MA


    Imidazolium and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone)s were synthesized successfully with the same degree of cationic functionalization and identical polymer backbones for a comparative study of anion exchange membranes (AEMs) for solid-state alkaline membrane fuel cells (AMFCs). Both anion exchange membranes were synthesized using a new methyl-containing monomer that avoided the use of toxic chloromethylation reagents. The polymer chemical structures were confirmed by H-1 NMR and FTIR. The derived AEMs were fully characterized by water uptake, anion conductivity, stability under aqueous basic conditions, and thermal stability. Interestingly, both the cationic groups and the polymer backbone were found to be degraded in 1 M NaOH solution at 60 degrees C over 48 h as measured by changes of ion exchange capacity and intrinsic viscosity. Imidazolium-functionalized poly(fluorenyl ether ketone sulfone)s had similar aqueous alkaline stability to quaternary ammonium-functionalized materials at 60 degrees C but much lower stability at 80 degrees C. This work demonstrates that quaternary ammonium and imidazolium cationic groups are not stable on poly(arylene ether sulfone) backbones under relatively mild conditions. Additionally, the poly(arylene ether sulfone) backbone, which is one of the most common polymers used in ion exchange membrane applications, is not stable in the types of molecular configurations analyzed.

  9. Development of anion-conducting ionomer binder solutions for electrodes of solid alkaline fuel cells.


    Shin, Mun-Sik; Kang, Moon-Sung; Park, Jin-Soo


    For solid alkaline fuel cell applications, membrane-electrode assemblies (MEAs) should be prepared. Thus, in this study, anion-conducting ionomer binder was prepared for electrodes of MEAs. Specifically, we synthesized water soluble anionic binder solutions based on quaternized chitosan derivatives (QCDs) and cross-linked QCDs and prepared a novel electrode. The electrochemical and physicochemical properties of ionomer binder and electrode were investigated by FT-IR, NMR and ionic conductivity. The ionic conductivity of these cross-linked QCDs was 9.7 x 10(-3) S cm(-1) in deionized water at room temperature. The membrane electrode assemblies (MEAs) were prepared by a spray method and were investigated in terms of cyclic voltammetry, impedance and fuel cell performance. The MEA with the 35 wt% QCD ionomer showed the highest performance and confirmed the successful formation of ionomer binder at the electrode of the MEA by the on-site crosslinking reaction. PMID:25942868

  10. Molecular biology of the anion exchanger gene family.


    Kopito, R R


    The gene family of anion exchangers consists of at least four or five members, of which three have been characterized at the cDNA level. AE1-3 encode polypeptides that share significant homology with the erythrocyte anion exchanger, band 3 (AE1). Expression of cDNAs encoding these genes in heterologous systems confirms that this sequence similarity is reflected in the capacity to mediate reversible Cl/HCO3 exchange. While the NH2-terminal domain of band 3 is known to interact with several cytoplasmic proteins in erythrocytes, the function of the analogous domains of AE2 and AE3 remains unknown. The AE1 gene is expressed coordinately with other erythroid genes during erythropoiesis in both avian and mammalian erythroid progenitor cells. In addition, AE1 is expressed at the basolateral plasma membrane of the acid-secreting intercalated cells of the kidney. AE2 is expressed in a number of epithelial and nonepithelial cells; it may be expressed in the Golgi apparatus of some of these cells. AE3 is expressed in excitable tissues, including neurons and muscle. It is likely that these proteins play a role in regulation of intracellular pH and chloride in their respective tissue. Understanding of the physiological roles of these proteins, both for ion transport and for plasma membrane organization, remains a central issue. PMID:2289848

  11. Regeneration of anion exchange resins by catalyzed electrochemical reduction


    Gu, Baohua; Brown, Gilbert M.


    Anion exchange resins sorbed with perchlorate may be regenerated by a combination of chemical reduction of perchlorate to chloride using a reducing agent and an electrochemical reduction of the oxidized reducing agent. Transitional metals including Ti, Re, and V are preferred chemical reagents for the reduction of perchlorate to chloride. Complexing agents such as oxalate are used to prevent the precipitation of the oxidized Ti(IV) species, and ethyl alcohol may be added to accelerate the reduction kinetics of perchlorate. The regeneration may be performed by continuously recycling the regenerating solution through the resin bed and an electrochemical cell so that the secondary waste generation is minimized.

  12. Determining gold in water by anion-exchange batch extraction

    USGS Publications Warehouse

    McHugh, J.B.


    This paper describes a batch procedure for determining gold in natural waters. It is completely adaptable to field operations. The water samples are filtered and acidified before they are equilibrated with an anion-exchange resin by shaking. The gold is then eluted with acetone-nitric acid solution, and the eluate evaporated to dryness. The residue is taken up in hydrobromic acid-bromine solution and the gold is extracted with methyl isobutyl ketone. The extract is electrothermally atomized in an atomic-absorption spectrophotometer. The limit of determination is 1 ng 1. ?? 1986.

  13. The sorption capacity of boron on anionic-exchange resin

    SciTech Connect

    Lou, J.; Foutch, G.L.; Na, J.W.


    Boron sorption capacities on anionic-exchange resins vary with temperature, concentration, and resin crosslinkage. A semiempirical correlation, developed from boron solution chemistry, is presented to account for these variations. The relationship, based on boron chemistry and changes in Gibb's energy, can be stated approximately as Q = a{sub 1}C{sub B}{sup a{sub 2}}Z{sup a{sub 3}} exp[{minus}(a{sub 4}T + a{sub 5}T{sup 2} + a{sub 6}Z{sup 0.5})]. Correlation parameters, which vary with resin type, are evaluated experimentally. Parameter values for macroporous resin Diaion PA 300 and for gel-type resins Diaion SA10 and Amberlite IRN 78LC are presented. The resulting expression is used to determine boron sorption and desorption limitations on ion exchangers at various temperatures and concentrations, and to determine the interfacial boron concentration in equilibrium and rate models.

  14. Anion-exchange resin-based desulfurization process

    SciTech Connect

    Sheth, A.C.; Dharmapurikar, R.


    Under DOE Grant No. DE-FG22-90PC90309, the University of Tennessee Space Institute (UTSI) is contracted to further develop its anion-exchange, resin-based desulfurization concept to desulfurize alkali metal sulfates. From environmental as well as economic viewpoints, it is necessary to remove soluble sulfates from the wastes created by flue gas desulfurization systems. In order to do this economically, a low-cost desulfurization process for spent sorbents is necessary. UTSI's anion-exchange resin-based desulfurization concept is believed to satisfy these requirements. During the reporting period, October 1, 1992--December 31, 1992, UTSI has completed the batch mode experiments to evaluate the performance enhancement effect caused by organic acids on the resin's exhaustion efficiency. At present, batch mode experiments are being conducted to locate the position of the CO[sub 3]= and SO[sub 4]= ions in the affinity chart, and also reviewing/assessing the ASPEN Code's capabilities for use in the development of the Best Process Schematic and related economics.

  15. Enhanced liquid-liquid anion exchange using macrocyclic anion receptors: effect of receptor structure on sulphate-nitrate exchange selectivity

    SciTech Connect

    Moyer, Bruce A; Sloop Jr, Frederick {Fred} V; Fowler, Christopher J; Haverlock, Tamara; Kang, Hyun Ah; Delmau, Laetitia Helene; Bau, Diadra; Hossain, Alamgir; Bowman-James, Kristin; Shriver, James A.; Gross, Mr. Dustin E.; Bill, Nathan; Marquez, Manuel; Lynch, Vincent M.; Sessler, Jonathan L.


    When certain macrocyclic anion receptors are added to a chloroform solution of the nitrate form of a lipophilic quaternary ammonium salt (methyltri-C8,10-ammonium nitrate, Aliquat 336N), the extraction of sulphate from an aqueous sodium nitrate solution via exchange with the organic-phase nitrate is significantly enhanced. Eight macrocycles were surveyed, including two derivatives of a tetraamide macrocycle, five derivatives of calix[4]pyrrole and -decafluorocalix[5]pyrrole. Under the hypothesis that the enhancement originates from sulphate binding by the anion receptors in the chloroform phase, it was possible to obtain reasonable fits to the sulphate distribution survey data based on the formation of 1:1 and 2:1 receptor:sulphate complexes in the chloroform phase. Apparent 1:1 sulphate-binding constants obtained from the model in this system fell in the range . Comparison of the results for the various anion receptors included in this study reveals that sulphate binding is sensitive to the nature of the substituents on the parent macrocycle scaffolds in a way that does not follow straightforwardly from simple chemical expectations, such as electron-withdrawing effects on hydrogen-bond donor strength.

  16. Simultaneous Enhancements of Conductivity and Stability for Anion Exchange Membranes (AEMs) through Precise Structure Design

    PubMed Central

    Ran, Jin; Wu, Liang; Wei, Bing; Chen, Yaoyao; Xu, Tongwen


    Polymeric materials as anion exchange membranes (AEMs) play an essential role in the field of energy and environment. The achievement of high performance AEMs by the precise manipulation of macromolecular architecture remains a daunting challenge. Herein, we firstly report a novel rod-coil graft copolymer AEM, possessing rigid hydrophobic main chains and soft hydrophilic graft chains. The low graft density, which can alleviate the adverse influences of ioinc graft chains on the main chains, was obtained by using the living polymerization technique. Consequently, the grafted ionic groups which result in the degradation of polymer backbone was decreased to a small degree. Moreover, the relatively long graft chains induced the nanophase separation between the hydrophobic polymer chains and hydrophilic graft chains, which creates a convinient pathway for high hydroxide ion mobility. Such an accurate molecular design simultaneously improves the hydroxide ion conductivity and alkaline stability as well as dimensional stability. PMID:25255843

  17. Structure and Properties of a Semi-crystalline Cationic Polymer for Anion Exchange Membranes

    NASA Astrophysics Data System (ADS)

    Beyer, Frederick; Price, Samuel; Savage, Alice; Ren, Xiaoming; Insane Membranes Collaboration

    Nafion has long been studied in order to understand its combination of good mechanical properties, chemical resistance, and excellent charge transport characteristics. In the past decade, uncertainty regarding the morphological behavior of Nafion has largely been resolved, allowing researchers to mimic and improve on the structure of this material. In this presentation, work to incorporate key characteristics of Nafion into a model cation-containing polymer will be described. In these new materials, semi-crystalline atactic poly(norbornene) is used to introduce good mechanical properties to anion-exchange membranes, analogous to the PTFE crystallites in Nafion. The ether linkages between the charged species and backbone are also utilized to place the cationic species (trimethylamine) in our materials into a mechanically soft environment. The resulting polymer shows some characteristics that are similar to those of Nafion. In this presentation, the synthesis, alkaline stability, mechanical properties, morphological behavior and charge transport properties will all be described.

  18. Highly Stable, Anion Conductive, Comb-Shaped Copolymers for Alkaline Fuel Cells

    SciTech Connect

    Li, NW; Leng, YJ; Hickner, MA; Wang, CY


    To produce an anion-conductive and durable polymer electrolyte for alkaline fuel cell applications, a series of quaternized poly(2,6-dimethyl phenylene oxide)s containing long alkyl side chains pendant to the nitrogen-centered cation were synthesized using a Menshutkin reaction to form comb-shaped structures. The pendant alkyl chains were responsible for the development of highly conductive ionic domains, as confirmed by small-angle X-ray scattering (SAXS). The comb-shaped polymers having one alkyl side chain showed higher hydroxide conductivities than those with benzyltrimethyl ammonium moieties or structures with more than one alkyl side chain per cationic site. The highest conductivity was observed for comb-shaped polymers with benzyldimethylhexadecyl ammonium cations. The chemical stabilities of the comb-shaped membranes were evaluated under severe, accelerated-aging conditions, and degradation was observed by measuring IEC and ion conductivity changes during aging. The comb-shaped membranes retained their high ion conductivity in 1 M NaOH at 80 degrees C for 2000 h. These cationic polymers were employed as ionomers in catalyst layers for alkaline fuel cells. The results indicated that the C-16 alkyl side chain ionomer had a slightly better initial performance, despite its low IEC value, but very poor durability in the fuel cell. In contrast, 90% of the initial performance was retained for the alkaline fuel cell with electrodes containing the C-6 side chain after 60 h of fuel cell operation.

  19. Enhanced DOC removal using anion and cation ion exchange resins.


    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L


    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. PMID:26624231

  20. Optimized anion exchange membranes for vanadium redox flow batteries.


    Chen, Dongyang; Hickner, Michael A; Agar, Ertan; Kumbur, E Caglan


    In order to understand the properties of low vanadium permeability anion exchange membranes for vanadium redox flow batteries (VRFBs), quaternary ammonium functionalized Radel (QA-Radel) membranes with three ion exchange capacities (IECs) from 1.7 to 2.4 mequiv g(-1) were synthesized and 55-60 μm thick membrane samples were evaluated for their transport properties and in-cell battery performance. The ionic conductivity and vanadium permeability of the membranes were investigated and correlated to the battery performance through measurements of Coulombic efficiency, voltage efficiency and energy efficiency in single cell tests, and capacity fade during cycling. Increasing the IEC of the QA-Radel membranes increased both the ionic conductivity and VO(2+) permeability. The 1.7 mequiv g(-1) IEC QA-Radel had the highest Coulombic efficiency and best cycling capacity maintenance in the VRFB, while the cell's voltage efficiency was limited by the membrane's low ionic conductivity. Increasing the IEC resulted in higher voltage efficiency for the 2.0 and 2.4 mequiv g(-1) samples, but the cells with these membranes displayed reduced Coulombic efficiency and faster capacity fade. The QA-Radel with an IEC of 2.0 mequiv g(-1) had the best balance of ionic conductivity and VO(2+) permeability, achieving a maximum power density of 218 mW cm(-2) which was higher than the maximum power density of a VRFB assembled with a Nafion N212 membrane in our system. While anion exchange membranes are under study for a variety of VRFB applications, this work demonstrates that the material parameters must be optimized to obtain the maximum cell performance. PMID:23799776

  1. Evaluation of a new, macroporous polyvinylpyridine resin for processing plutonium using nitrate anion exchange

    SciTech Connect

    Marsh, S.F.


    Anion exchange in nitric acid is the major aqueous process used to recover and purify plutonium from impure scrap materials. Most strong-base anion exchange resins incorporate a styrene-divinylbenzene copolymer. A newly available, macroporous anion exchange resin based on a copolymer of 1-methyl-4-vinylpyridine and divinylbenzene has been evaluated. Comparative data for Pu(IV) sorption kinetics and capacity are presented for this new resin and two other commonly used anion exchange resins. The new resin offers high capacity and rapid sorption kinetics for Pu(IV) from nitric acid, as well as greatly stability to chemical and radiolytic degradation. 8 refs., 14 figs.

  2. A new procedure to produce lignocellulosic anion exchangers from agricultural waste materials.


    Orlando, U S; Baes, A U; Nishijima, W; Okada, M


    Two lignocellulosic agricultural waste materials (LCM), sugarcane bagasse (BG) and rice hull (RH), were converted into weak-base anion exchanger and evaluated for their exchanger capacity for nitrate. Pure cellulose (PC) and pure alkaline lignin (PL) were also used as reference materials to elucidate possible reactivity in LCM. Epoxy and amino groups were introduced into BG, RH, PC and PL substrates after the reaction with epichlorohydrin and dimethylamine in the presence of pyridine and an organic solvent N,N-dimethylformamide (DMF). Amino group incorporation into cellulose decreased with the presence of water in the reaction mixture and increased with the reaction time and presence of a catalyst (pyridine). The highest maximum nitrate exchange capacity (Qmax) and yields of the prepared exchangers was obtained from PL (1.8 mmol g(-1) and 412.5%), followed by BG (1.41 mmol g(-1) and 300%), PC (1.34 mmol g(-1) and 166%) and RH (1.32 mmol g(-1) and 180%). The proposed synthetic procedure was effective in modifying PL, PC and LCM chemically resulting in a higher yield and nitrate removal capacity. PMID:12094793

  3. Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism

    SciTech Connect

    Knauf, P.A.; Law, F.Y.; Marchant, P.J.


    The parallel effects of the anion transport inhibitor DIDS (4,4'-diisothiocyanostilbene-2,2'disulfonate) on net chloride flow and on chloride exchange suggest that a major portion of net chloride flow takes place through the anion exchange system. The ''slippage'' model postulates that the rate of net anion flow is determined by the movement of the unloaded anion transport site across the membrane. Both the halide selectivity of net anion flow and the dependence of net chloride flux on chloride concentration over the range of 75 to 300 mM are inconsistent with the slippage model. Models in which the divalent form of the anion exchange carrier or water pores mediate net anion flow are also inconsistent with the data. The observations that net chloride flux increases with chloride concentration and that the DIDS-sensitive component tends to saturate suggest a model in which net anion flow involves ''transit'' of anions through the diffusion barriers in series with the transport site, without any change in transport site conformation such as normally occurs during the anion exchange process. This model is successful in predicting that the anion exchange inhibitor NAP-taurine, which binds to the modifier site and inhibits the conformational change, has less effect on net chloride flow than on chloride exchange.

  4. Using solvent extraction to process nitrate anion exchange column effluents

    SciTech Connect

    Yarbro, S.L.


    Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), a new organophosphorous extractant, and a new centrifugal mixer-settler both recently developed at Argonne were evaluated for their potential use in the recovery of actinides from nitrate anion exchange column effluents. The performance of the extractant was evaluated by measuring the extraction coefficient values as a function of acid and salt concentration. Additional performance parameters include extraction coefficient behavior as a function of the total metal concentration in the organic phase, and comparison of different stripping and organic scrubbing techniques. A simulated effluent stream was used to evaluate the performance of the centrifugal mixer-settlers by comparing experimental and calculated interstage concentration profiles. Both the CMPO extractant and the centrifugal mixer-settlers have potential for processing nitrate column effluents, particularly if the stripping behavior can be improved. Details of the proposed process are presented in the flowsheet and contactor design analyses.

  5. Selectivity Control in Synergistic Liquid-Liquid Anion Exchange of Univalent Anions via Structure-Specific Cooperativity between Quaternary Ammonium Cations and Anion Receptors

    SciTech Connect

    Borman, Christopher J; Bonnesen, Peter V; Moyer, Bruce A


    Two anion receptors enhance liquid-liquid anion exchange when added to quaternary alkylammonium chloride anion exchangers, but with a striking dependence upon the structure of the alkylammonium cation. Two anion receptors were investigated, meso-octamethylcalix[4]pyrrole (C4P) and the bisthiourea tweezer 1,1'-(propane-1,3-diyl)bis(3-(4-sec-butylphenyl)thiourea (BTU). C4P has the unique ability in its cone anion-binding conformation to accept an appropriately sized electropositive species in the resulting cup formed by its four electron-rich pyrrole groups, while BTU is not expected to be predisposed for a specific host-guest interaction with the quaternary ammonium cations. It was therefore hypothesized that synergism between C4P and methyltri(C8,10)alkylammonium chloride (Aliquat 336) would be uniquely pronounced owing to insertion of the methyl group of the Aliquat cation into the C4P cup, and we present herein data supporting this expectation. While synergism is comparatively weak for both exchangers with the BTU receptor, synergism between C4P and Aliquat 336 is indeed so strong that anion exchange prefers chloride over more extractable nitrate and trifluoroacetate, effectively overcoming the ubiquitous Hofmeister bias. A thermochemical analysis of synergistic anion exchange has been provided for the first time, unraveling the observed selectivity behavior and resulting in the estimation of binding constants for C4P with the ion pairs of A336+ with Cl , Br , OAcF3 , NO3 , and I . The uniquely strong positive cooperativity between A336 and C4P underscores the advantage of a supramolecular approach in the design of synergistic anion exchange systems.

  6. A New Attempt at Alkaline Texturization of Monocrystaline Silicon with Anionic Surfactant as the Additive

    NASA Astrophysics Data System (ADS)

    Li, Hailing; Wang, Wenjing; Zhao, Lei; Zhou, Chunlan; Diao, Hongwei


    Owing to the volatilization of isopropanol (IPA), instability in the alkaline texturization of monocrystalline silicon has been a big problem for a long time. Many additives were adapted to replace IPA, such as high boiling point alcohols. In this experiment, as a new attempt, sodium lauryl sulfate (SDS), a type of anionic surfactant, was used as the additive in NaOH solution. The etching properties of silicon in 2 wt % NaOH/15-30 mg/L SDS solution were analyzed. To improve the wettability of silicon, two types of metal salt, NaCl and Na2CO3 with concentration from 2 to 15 wt %, were applied to the 2 wt % NaOH/15 mg/L SDS solution. The results showed that the effect of NaCl was better than that of Na2CO3. Finally, the role of the additive was discussed.

  7. Human anion exchanger1 mutations and distal renal tubular acidosis.


    Yenchitsomanus, Pa-thai


    The human anion exchanger 1 (AE1 or SLC4A1) gene encodes anion exchanger 1 (or band 3) protein in erythrocytes and in alpha-intercalated cells of the kidney. Thus, AE1 mutations show pleiotrophic effects resulting in two distinct and seemingly unrelated defects, an erythrocyte abnormality and distal renal tubular acidosis (dRTA). Southeast Asian ovalocytosis (SAO), a well-known red blood cell (RBC) defect, which is widespread in Southeast Asian regions, is caused by AE1 mutation due to a deletion of 27 base pairs in codons 400-408 (delta400-408) leading to an in-frame 9 amino-acid loss in the protein. Co-existence of SAO and dRTA is usually not seen in the same individual. However, the two conditions can co-exist as the result of compound heterozygosities between delta400-408 and other mutations. The reported genotypes include delta400-408/G701D, delta400-408/R602H, delta400-408/deltaV850, and delta400-408/A858D. The presence of dRTA, with or without RBC abnormalities, may occur from homozygous or compound heterozygous conditions of recessive AE1 mutations (eg G701D/G701D, V488M/V488M, deltaV850/deltaV850, deltaV850/A858D, G701D/S773P) or heterozygous dominant AE1 mutations (eg R598H, R589C, R589S, S613F, R901X). Codon 589 of this gene seems to be a 'mutational hot-spot' since repeated mutations at this codon occurring in different ethnic groups and at least two de novo (R589H and R589C) mutations have been observed. Therefore, AE1 mutations can result in both recessive and dominant dRTA, possibly depending on the position of the amino acid change in the protein. As several mutant AE1 proteins still maintain a significant anion transport function but are defective in targeting to the cell surface, impaired intracellular trafficking of the mutant AE1 is an important molecular mechanism involved in the pathogenesis of dRTA associated with AE1 mutations. PMID:15115146

  8. 3D Printing of Micropatterned Anion Exchange Membranes.


    Seo, Jiho; Kushner, Douglas I; Hickner, Michael A


    Micropatterned anion exchange membranes (AEMs) have been 3D printed via a photoinitiated free radical polymerization and quaternization process. The photocurable formulation, consisting of diurethane dimethacrylate (DUDA), poly(ethylene glycol) diacrylate (PEGDA), dipentaerythritol penta-/hexa- acrylate, and 4-vinylbenzyl chloride (VBC), was directly cured into patterned films using a custom 3D photolithographic printing process similar to stereolithography. Measurements of water uptake, permselectivity, and ionic resistance were conducted on the quaternized poly(DUDA-co-PEGDA-co-VBC) sample series to determine their suitability as ion exchange membranes. The water uptake of the polymers increased as the ion exchange capacity (IEC) increased due to greater quaternized VBC content. Samples with IEC values between 0.98 to 1.63 mequiv/g were synthesized by varying the VBC content from 15 to 25 wt %. The water uptake was sensitive to the PEGDA content in the network resulting in water uptake values ranging from 85 to 410 wt % by varying the PEGDA fractions from 0 to 60 wt %. The permselectivity of the AEM samples decreased from 0.91 (168 wt %, 1.63 mequiv/g) to 0.85 (410 wt %, 1.63 mequiv/g) with increasing water uptake and to 0.88 (162 wt %, 0.98 mequiv/g) with decreasing IEC. Permselectivity results were relatively consistent with the general understanding of the correlation between permselectivity, water uptake, and ion content of the membrane. Lastly, it was revealed that the ionic resistance of patterned membranes was lower than that of flat membranes with the same material volume or equivalent thickness. A parallel resistance model was used to explain the influence of patterning on the overall measured ionic resistance. This model may provide a way to maximize ion exchange membrane performance by optimizing surface patterns without chemical modification to the membrane. PMID:27218137

  9. Transient ion exchange of anion exchange membranes exposed to carbon dioxide

    NASA Astrophysics Data System (ADS)

    Myles, Timothy D.; Grew, Kyle N.; Peracchio, Aldo A.; Chiu, Wilson K. S.


    A common issue with anion exchange membranes (AEMs) is carbon dioxide contamination which causes a conversion from the hydroxide form to a mixed carbonate/bicarbonate form. In the mixed ionic form the membrane suffers from lower conductivity due to the larger and heavier ions having a lower mobility. The purpose of this study is to develop a theoretical model of the transient ion exchange process and elucidate the nature of the conversion of the AEM from a hydroxide form to a carbonate/bicarbonate form. Experimental data available from the literature providing the anion concentrations versus time are used for comparison. The prevalent mechanisms are discussed and the governing equations are cast in a dimensionless form. Extensions are then made to conductivity predictions.

  10. Bifunctional Crosslinking Agents Enhance Anion Exchange Membrane Efficacy for Vanadium Redox Flow Batteries.


    Wang, Wenpin; Xu, Min; Wang, Shubo; Xie, Xiaofeng; Lv, Yafei; Ramani, Vijay K


    A series of cross-linked fluorinated poly (aryl ether oxadiazole) membranes (FPAEOM) derivatized with imidazolium groups were prepared. Poly (N-vinylimidazole) (PVI) was used as the bifunctional cross-linking agent to: a) lower vanadium permeability, b) enhance dimensional stability, and c) concomitantly provide added ion exchange capacity in the resultant anion exchange membranes. At a molar ratio of PVI to FPAEOM of 1.5, the resultant membrane (FPAEOM-1.5 PVI) had an ion exchange capacity of 2.2 meq g-1, a vanadium permeability of 6.8×10-7 cm2 min-1, a water uptake of 68 wt.%, and an ionic conductivity of 22.0 mS cm-1, all at 25°C. Single cells prepared with the FPAEOM-1.5 PVI membrane exhibited a higher coulombic efficiency (> 92%) and energy efficiency (> 86%) after 40 test cycles in vanadium redox flow battery. The imidazolium cation showed high chemical stability in highly acidic and oxidizing vanadium solution as opposed to poor stability in alkaline solutions. Based on our DFT studies, this was attributed to the lower HOMO energy (-7.265 eV) of the HSO4- ion (compared to the OH- ion; -5.496 eV) and the larger HOMO-LUMO energy gap (6.394 eV) of dimethylimidazolium bisulfate ([DMIM] [HSO4]) as compared to [DMIM] [OH] (5.387 eV). PMID:24884171

  11. Hydroxide Solvation and Transport in Anion Exchange Membranes.


    Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E; Knight, Chris; Voth, Gregory A


    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures. PMID:26716727

  12. Gamma radiation effect on gas production in anion exchange resins

    NASA Astrophysics Data System (ADS)

    Traboulsi, A.; Labed, V.; Dauvois, V.; Dupuy, N.; Rebufa, C.


    Radiation-induced decomposition of Amberlite IRA400 anion exchange resin in hydroxide form by gamma radiolysis has been studied at various doses in different atmospheres (anaerobic, anaerobic with liquid water, and aerobic). The effect of these parameters on the degradation of ion exchange resins is rarely investigated in the literature. We focused on the radiolysis gases produced by resin degradation. When the resin was irradiated under anaerobic conditions with liquid water, the liquid phase over the resin was also analyzed to identify any possible water-soluble products released by degradation of the resin. The main products released are trimethylamine (TMA), molecular hydrogen (H2g) and carbon dioxide (CO2g). TMA and H2g are produced in all the irradiation atmospheres. However, TMA was in gaseous form under anaerobic and aerobic conditions and in aqueous form in presence of liquid water. In the latter conditions, TMAaq was associated with aqueous dimethylamine (DMAaq), monomethylamine (MMAaq) and ammonia (NH). CO2g is formed in the presence of oxygen due to oxidation of organic compounds present in the system, in particular the degradation products such as TMAg.

  13. Hetero-Epitaxial Anion Exchange Yields Single-Crystalline Hollow Nanoparticles

    SciTech Connect

    Park, Jungwon; Zheng, Haimei; Jun, Young-wook; Alivisatos, A. Paul


    Anion exchange with S was performed on ZnO colloidal nanoparticles. The resulting hollow ZnS nanoparticles are crystal whose shape is dictated by the initial ZnO. Crystallographic and elemental analyses provide insight into the mechanism of the anion exchange.

  14. Selectivity control in synergistic liquid-liquid anion exchange of univalent anions via structure-specific cooperativity between quaternary ammonium cations and anion receptors.


    Borman, Christopher J; Bonnesen, Peter V; Moyer, Bruce A


    Two anion receptors enhance liquid-liquid anion exchange when added to quaternary alkylammonium chloride anion exchangers, but with a striking dependence on the structure of the alkylammonium cation that suggests a supramolecular cooperative effect. Two anion receptors were investigated, meso-octamethylcalix[4]pyrrole (C4P) and the bisthiourea tweezer 1,1'-(propane-1,3-diyl)bis(3-(4-sec-butylphenyl)thiourea (BTU). Whereas synergism is comparatively weak when either methyltri(C(8,10))alkylammonium chloride (Aliquat 336) or tetraheptylammonium chloride is used with the BTU receptor, synergism between C4P and Aliquat 336 is so pronounced that anion exchange prefers chloride over more extractable nitrate and trifluoroacetate, effectively overcoming the ubiquitous Hofmeister bias. A thermochemical analysis of synergistic anion exchange has been provided for the first time, resulting in the estimation of binding constants for C4P with the ion pairs of A336(+) with Cl(-), Br(-), OAc(F3)(-), NO(3)(-), and I(-). PMID:22931168

  15. Synthesis and Structure-Property Relationships of Poly(sulfone)s for Anion Exchange Membranes

    SciTech Connect

    Yan, JL; Moore, HD; Hibbs, MR; Hickner, MA


    Membranes based on cationic polymers that conduct anions are important for enabling alkaline membrane fuel cells and other solid-state electrochemical devices that operate at high pH. Anion exchange membranes with poly(arylene ether sulfone) backbones are demonstrated by two routes: chloromethylation of commercially available poly(sulfone)s or radical bromination of benzylmethyl moieties in poly(sulfone)s containing tetramethylbisphenol A monomer residues. Polymers with tethered trimethylbenzyl ammonium moieties resulted from conversion of the halomethyl groups by quaternization with trimethyl amine. The water uptake of the chloromethylated polymers was dependent on the type of poly(sulfone) backbone for a given IEC. Bisphenol A-based Udel (R) poly(sulfone) membranes swelled in water to a large extent while membranes from biphenol-based Radel (R) poly(sulfone), a stiffer backbone than Udel, only showed moderate water uptake. The water uptake of cationic poly(sulfone)s was further reduced by synthesizing tetramethylbisphenol A and 4,4-biphenol-containing poly(sulfone) copolymers where the ionic groups were clustered on the tetramethylbisphenol A residues. The conductivity of all samples scaled with the bulk water uptake. The hydration number of the membranes could be increased by casting membranes from the ionic form polymers versus converting the halomethyl form cast polymers to ionic form in the solid state. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1790-1798, 2013

  16. Enhanced performance of anion exchange membranes via crosslinking of ion cluster regions for fuel cells

    NASA Astrophysics Data System (ADS)

    Lai, Ao Nan; Guo, Dong; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Ye, Mei Ling; Liu, Qing Lin


    Development of anion exchange membranes (AEMs) with high hydroxide conductivity, good dimensional and alkaline stabilities is still a challenge for the practical application of AEM fuel cells. In this study, we report a new strategy to prepare high-performance AEMs with crosslinked ionic regions. A series of phenolphthalein-containing poly(arylene ether sulfone)s crosslinked AEMs was synthesized by grafting ion groups selectively and densely on the phenolphthalein units to form ion clusters that are further crosslinked to generate the hydrophilic ionic regions. The crosslinking reaction not only improved the dimensional stability of the AEMs, but also increased the aggregation of the ion clusters leading to the formation of hydrophilic/hydrophobic phase-separated morphology and ion-conducting channels. As a result, enhancements in both ion conductivity and dimensional stability can be achieved. The crosslinked AEMs showed high hydroxide conductivities in the range of 52.2-143.4 mS cm-1 from 30 to 80 °C and a superb ratio of relative conductivity to relative swelling at 80 °C. Furthermore, the crosslinked AEMs also exhibited good mechanical properties, thermal and alkaline stabilities and desirable single cell performance. This work presents a promising strategy for the synthesis of high-performance AEMs for fuel cells.

  17. Removal of Pu238 from Neptunium Solution by Anion Exchange

    SciTech Connect



    A new anion flowsheet for use in HB-Line was tested in the lab with Reillex{trademark} HPQ for removal of Pu{sup 238} contamination from Np. Significant rejection of Pu{sup 238} was observed by washing with 6 to 12 bed volumes (BV) of reductive wash containing reduced nitric acid concentration along with both ferrous sulfamate (FS) and hydrazine. A shortened-height column was utilized in these tests to match changes in the plant equipment. Lab experiments scaled to plant batch sizes of 1500 to 2200 g Np were observed with modest losses for up-flow washing. Down-flow washing was observed to have high losses. The following are recommended conditions for removing Pu{sup 238} from Np solutions by anion exchange in HB-Line: (1) Feed conditions: Up-flow 6.4-8 M HNO{sub 3}, 0.02 M hydrazine, 0.05 M excess FS, less than 5 days storage of solution after FS addition. (2) Reductive Wash conditions: Up-flow 6-12 BV of 6.4 M HNO{sub 3}, 0.05 M FS, 0.05 M hydrazine. 1.8 mL/min/cm{sup 2} flowrate. (3) Decontamination Wash conditions: Up-flow 1-2 BV of 6.4-8 M HNO{sub 3}, no FS, no hydrazine. (4) Elution conditions: Down-flow 0.17 M HNO{sub 3}, 0.05 M hydrazine, no FS.

  18. High-capacity anion exchangers based on poly (glycidylmethacrylate-divinylbenzene) microspheres for ion chromatography.


    Liu, Junwei; Wang, Yong; Cheng, Heli; Wang, Nani; Wu, Shuchao; Zhang, Peimin; Zhu, Yan


    Poly (glycidylmethacrylate-divinylbenzene) microspheres were prepared by the two-staged swelling and polymerization method and applied to prepare anion exchange stationary phases. Methylamine, dimethylamine, trimethylamine, diethylamine and triethylamine were selected to prepare the quaternary ammonium groups of anion exchangers, respectively. The diameters and surface characteristics of microspheres were measured by scanning electron microscope and nitrogen adsorption-desorption measurements. The anion exchangers were characterized by Fourier transform infrared spectrum, elemental analysis and breakthrough curve methods. The chromatographic performances of anion exchangers were illustrated by separating conventional anions, organic weak acids and carbohydrates. The results indicated that the anion exchange capacities were controllable by changing either the content of glycidylmethacrylate in microspheres or the number of bonded quaternary ammonium layer. Meanwhile, the substituents of quaternary ammonium groups greatly influenced the separation properties of anion exchangers. Finally, the three-layer methylamine-quaternized anion exchanger was successfully applied for the determination of fluoride in tea sample. The content of fluoride was detected to be 0.13mgg(-1) without the interference of acetate and formate. PMID:27474308

  19. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes.


    Arges, Christopher G; Ramani, Vijay


    Anion exchange membranes (AEMs) find widespread applications as an electrolyte and/or electrode binder in fuel cells, electrodialysis stacks, flow and metal-air batteries, and electrolyzers. AEMs exhibit poor stability in alkaline media; their degradation is induced by the hydroxide ion, a potent nucleophile. We have used 2D NMR techniques to investigate polymer backbone stability (as opposed to cation stability) of the AEM in alkaline media. We report the mechanism behind a peculiar, often-observed phenomenon, wherein a demonstrably stable polysulfone backbone degrades rapidly in alkaline solutions upon derivatization with alkaline stable fixed cation groups. Using COSY and heteronuclear multiple quantum correlation spectroscopy (2D NMR), we unequivocally demonstrate that the added cation group triggers degradation of the polymer backbone in alkaline via quaternary carbon hydrolysis and ether hydrolysis, leading to rapid failure. This finding challenges the existing perception that having a stable cation moiety is sufficient to yield a stable AEM and emphasizes the importance of the often ignored issue of backbone stability. PMID:23335629

  20. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes

    PubMed Central

    Arges, Christopher G.; Ramani, Vijay


    Anion exchange membranes (AEMs) find widespread applications as an electrolyte and/or electrode binder in fuel cells, electrodialysis stacks, flow and metal-air batteries, and electrolyzers. AEMs exhibit poor stability in alkaline media; their degradation is induced by the hydroxide ion, a potent nucleophile. We have used 2D NMR techniques to investigate polymer backbone stability (as opposed to cation stability) of the AEM in alkaline media. We report the mechanism behind a peculiar, often-observed phenomenon, wherein a demonstrably stable polysulfone backbone degrades rapidly in alkaline solutions upon derivatization with alkaline stable fixed cation groups. Using COSY and heteronuclear multiple quantum correlation spectroscopy (2D NMR), we unequivocally demonstrate that the added cation group triggers degradation of the polymer backbone in alkaline via quaternary carbon hydrolysis and ether hydrolysis, leading to rapid failure. This finding challenges the existing perception that having a stable cation moiety is sufficient to yield a stable AEM and emphasizes the importance of the often ignored issue of backbone stability. PMID:23335629

  1. Effects of arginine on multimodal anion exchange chromatography.


    Hirano, Atsushi; Arakawa, Tsutomu; Kameda, Tomoshi


    The effects of arginine on binding and elution properties of a multimodal anion exchanger, Capto adhere, were examined using bovine serum albumin (BSA) and a monoclonal antibody against interleukin-8 (mAb-IL8). Negatively charged BSA was bound to the positively charged Capto adhere and was readily eluted from the column with a stepwise or gradient elution using 1M NaCl at pH 7.0. For heat-treated BSA, small oligomers and remaining monomers were also eluted using a NaCl gradient, whereas larger oligomers required arginine for effective elution. The positively charged mAb-IL8 was bound to Capto adhere at pH 7.0. Arginine was also more effective for elution of the bound mAb-IL8 than was NaCl. The results imply that arginine interacts with the positively charged Capto adhere. The mechanism underlying the interactions of arginine with Capto adhere was examined by calculating the binding free energy between an arginine molecule and a Capto adhere ligand in water through molecular dynamics simulations. The overall affinity of arginine for Capto adhere is attributed to the hydrophobic and π-π interactions between an arginine side chain and the aromatic moiety of the ligand as well as hydrogen bonding between arginine and the ligand hydroxyl group, which may account for the characteristics of protein elution using arginine. PMID:26225914

  2. Anion-exchange resin-based desulfurization process

    SciTech Connect

    Sheth, A.C.; Strevel, S.D.


    Under the current grant (FG22-90PC90309), the University of Tennessee Space Institute (UTSI) will carry out the necessary bench scale experiments to further develop it anion-exchange, resin-based desulfurization concept to desulfurize alkali metal sulfates. In particular, it is planned to screen commercially available resins and then carry out process optimization work with three selected resins. Further optimization of the resin regeneration step as well as evaluation of the effect of various performance enhancers will then be carried out with one selected resin. A process schematic, to be developed based on the bench scale results, will be used to estimate the related economics. Some limited scope testing will also be carried out using the spent-seed and sorbent materials obtained from both the coal-fired magnetohydrodynamics (MHD) and the in-duct sorbent injection pilot scale facilities. During this reporting period, 90% of the planned batch mode screening experiments for the eleven samples of candidate resins were completed. Preliminary evaluation of the resulting data is continuing in order to select a smaller number (3--4) of samples for screening in the fixed-bed setup. The installation of the semi-automated fixed-bed setup is about 70% complete and shakedown experiments will be started in 3--4 weeks. Progress made in relation to these activities is presented below. 2 figs., 3 tabs.

  3. Fouling mitigation of anion exchange membrane by zeta potential control.


    Park, Jin-Soo; Lee, Hong-Joo; Choi, Seok-Ju; Geckeler, Kurt E; Cho, Jaeweon; Moon, Seung-Hyeon


    The feasibility of fouling mitigation of anion exchange membranes (AEMs) in the presence of humate was studied by adding three different types of water-soluble polymers, i.e., poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), and poly(ethylene imine) (PEI), during electrodialysis (ED) desalination. Measurement of zeta potential of the humate used in this study showed highly negative potential (about -30 mV), implying that the humate had a strong fouling potential on the AEMs in ED. Of the three water-soluble polymers, PEI showed a positive zeta potential (about +14 mV) and is able to form an interpolymer complex with the humate. PAA and PVA hardly formed interpolymer complexes with humate due to electrostatic repulsion. The PEI-humate mixture with a volume ratio of 1:20 (PEI:humate) showed zero zeta potential, and a complexed humate with zero surface charge was formed, resulting in no fouling effects on the AEMs. Accordingly, the desalting ED experiments with PEI showed improved ED performance. Further, black colloids formed in the mixture did not cause the cell resistance to increase. PMID:16256509

  4. Highly conductive side chain block copolymer anion exchange membranes.


    Wang, Lizhu; Hickner, Michael A


    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days. PMID:27216558

  5. Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger.


    Cai, Jianguo; Zhang, Yanyang; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing


    Water decontamination from fluoride is still a challenging task of global concern. Recently, Al-based layered double hydroxides (LDHs) have been extensively studied for specific fluoride adsorption from water. Unfortunately, they cannot be readily applied in scaled-up application due to their ultrafine particles as well as the regeneration issues caused by their poor stability at alkaline pHs. Here, we developed a novel (LDH)-based hybrid adsorbent, i.e., LALDH-201, by impregnating nanocrystalline Li/Al LDHs (LADLH) inside a commercial polystyrene anion exchanger D201. TEM image and XRD spectra of the resultant nanocomposite confirmed that the LDHs particles were nanosized inside the pores of D201 of highly crystalline nature and well-ordered layer structure. After impregnation, the chemical and mechanical stability of LALDH were significantly improved against pH variation, facilitating its application at a wide pH range (3.5-12). Fluoride adsorption onto LALDH-201 was compared to D201 and activated alumina, evidencing the preferable removal fluoride of LALDH-201. Fluoride adsorption onto LALDH-201 followed pseudo-second-order model, with the maximum capacity (62.5 mg/g from the Sips model) much higher than the other two adsorbents. Fixed-bed adsorption run indicated the qualified treatable volume of the fluoride contaminated groundwater (4.1 mg/L initially) with LALDH-201 was about 11 times as much as with the anion exchanger D201 when the breakthrough point was set as 1.5 mg/L. The capacity of LALDH-201 could be effectively refreshed for continuous column operation without observable loss by using the mixed solution of 0.01 M NaOH + 1 M NaCl. The above results suggested that the hybrid adsorbent LALDH-201 is very promising for water defluoridation in scaled-up application. PMID:27337346

  6. Functional and molecular adaptation of Cl/HCO3- exchanger to chronic alkaline media in renal cells.


    Rivarola, Valeria; Ford, Paula; Chara, Osvaldo; Parisi, Mario; Capurro, Claudia


    The Cl(-)/HCO3- exchanger (AE) is one of the mechanisms that cells have developed to adjust pH Despite its importance, the role of AE isoforms in controlling steady-state pH during alkalosis has not been widely investigated. In the present study, we have evaluated whether conditions simulating acute and chronic metabolic alkalosis affected the transport activity and protein levels of Cl-/HCO3- exchangers in a rat cortical collecting duct cell line (RCCD1). pH(i) was monitored using the fluorescent dye BCECF in monolayers grown on permeable supports. Anion exchanger function was assessed by the response of pH(i) to acute chloride removal. RT-PCR and immunoblot assays were also performed. Our results showed that RCCD1 cells express two members of the anion exchanger gene family: AE2 and AE4. Functional studies demonstrated that while in acute alkalosis pH(i) became alkaline and was not regulated, after 48 h adaptation; steady-state pH(i) reached a value similar to the physiological one. Chronic treated cells also resulted in a 3-fold rise in Cl(-)/HCO3- exchange activity together with a 2.2-fold increase in AE2, but not AE4, protein abundance. We conclude that RCCD1 cells can adapt to chronic extracellular alkalosis reestablishing its steady-state pH(i) and that AE2 would play a key role in cell homeostasis. PMID:16301827

  7. Controlled optical properties of water-soluble CdTe nanocrystals via anion exchange.


    Li, Jing; Jia, Jianguang; Lin, Yuan; Zhou, Xiaowen


    We report a study on anion exchange reaction of CdTe nanocrystals with S(2-) in aqueous solution under ambient condition. We found that the optical properties of CdTe nanocrystals can be well tuned by controlling the reaction conditions, in which the reaction temperature is crucially important. At low reaction temperature, the product nanocrystals showed blue-shifts in both absorption and PL spectra, while the photoluminescence quantum yield (PLQY) was significantly enhanced. When anion exchanges were carried out at higher reaction temperature, on the other hand, obvious red shifts in absorption and PL spectra accompanied by a fast increase followed by gradual decrease in PLQY were observed. On variation of S(2-) concentration, it was found that the overall kinetics of Te(2-) for S(2-) exchanges depends also on [S(2-)] when anion exchanges were performed at higher temperature. A possible mechanism for anion exchanges in CdTe NCs was proposed. PMID:26520812

  8. Ionic resistance and permselectivity tradeoffs in anion exchange membranes.


    Geise, Geoffrey M; Hickner, Michael A; Logan, Bruce E


    Salinity gradient energy technologies, such as reverse electrodialysis (RED) and capacitive mixing based on Donnan potential (Capmix CDP), could help address the global need for noncarbon-based energy. Anion exchange membranes (AEMs) are a key component in these systems, and improved AEMs are needed in order to optimize and extend salinity gradient energy technologies. We measured ionic resistance and permselectivity properties of quaternary ammonium-functionalized AEMs based on poly(sulfone) and poly(phenylene oxide) polymer backbones and developed structure-property relationships between the transport properties and the water content and fixed charge concentration of the membranes. Ion transport and ion exclusion properties depend on the volume fraction of water in the polymer membrane, and the chemical nature of the polymer itself can influence fine-tuning of the transport properties to obtain membranes with other useful properties, such as chemical and dimensional stability. The ionic resistance of the AEMs considered in this study decreased by more than 3 orders of magnitude (i.e., from 3900 to 1.6 Ω m) and the permselectivity decreased by 6% (i.e., from 0.91 to 0.85) as the volume fraction of water in the polymer was varied by a factor of 3.8 (i.e., from 0.1 to 0.38). Water content was used to rationalize a tradeoff relationship between the permselectivity and ionic resistance of these AEMs whereby polymers with higher water content tend to have lower ionic resistance and lower permselectivity. The correlation of ion transport properties with water volume fraction and fixed charge concentration is discussed with emphasis on the importance of considering water volume fraction when interpreting ion transport data. PMID:24040962

  9. Anion exchange purification of plasmid DNA using expanded bed adsorption.


    Ferreira, G N; Cabral, J M; Prazeres, D M


    Recent developments in gene therapy with non-viral vectors and DNA vaccination have increased the demand for large amounts of pharmaceutical-grade plasmid DNA. The high viscosity of process streams is of major concern in the purification of plasmids, since it can cause high back pressures in column operations, thus limiting the throughput. In order to avoid these high back pressures, expanded bed anion exchange chromatography was evaluated as an alternative to fixed bed chromatography. A Streamline 25 column filled with 100 ml of Streamline QXL media, was equilibrated with 0.5 M NaCl in TE (10 mM Tris, 1 mM EDTA, pH = 8.0) buffer at an upward flow of 300 cmh-1, E. coli lysates (obtained from up to 3 liters of fermentation broth) were injected in the column. After washing out the unbound material, the media was allowed to sediment and the plasmid was eluted with 1 M NaCl in TE buffer at a downward flow of 120 cmh-1. Purification factors of 36 +/- 1 fold, 26 +/- 0.4 plasmid purity, and close to 100% yields were obtained when less than one settled column volume of plasmid feed was injected. However, both recovery yield and purity abruptly decreased when larger amounts were processed-values of 35 +/- 2 and 5 +/- 0.7 were obtained for the recovery yield and purity, respectively, when 250 ml of feedstock were processed. In these cases, gel clogging and expansion collapse were observed. The processing of larger volumes, thus larger plasmid quantities, was only possible by performing an isopropanol precipitation step prior to the chromatographic step. This step led to an enhancement of the purification step. PMID:10840595

  10. Analysis of carbohydrates by anion exchange chromatography and mass spectrometry.


    Bruggink, Cees; Maurer, Rolf; Herrmann, Heiko; Cavalli, Silvano; Hoefler, Frank


    A versatile liquid chromatographic platform has been developed for analysing underivatized carbohydrates using high performance anion exchange chromatography (HPAEC) followed by an inert PEEK splitter that splits the effluent to the integrated pulsed amperometric detector (IPAD) and to an on-line single quadrupole mass spectrometer (MS). Common eluents for HPAEC such as sodium hydroxide and sodium acetate are beneficial for the amperometric detection but not compatible with electrospray ionisation (ESI). Therefore a membrane-desalting device was installed after the splitter and prior to the ESI interface converting sodium hydroxide into water and sodium acetate into acetic acid. To enhance the sensitivity for the MS detection, 0.5 mmol/l lithium chloride was added after the membrane desalter to form lithium adducts of the carbohydrates. To compare sensitivity of IPAD and MS detection glucose, fructose, and sucrose were used as analytes. A calibration with external standards from 2.5 to 1000 pmole was performed showing a linear range over three orders of magnitude. Minimum detection limits (MDL) with IPAD were determined at 5 pmole levels for glucose to be 0.12 pmole, fructose 0.22 pmole and sucrose 0.11 pmole. With MS detection in the selected ion mode (SIM) the lithium adducts of the carbohydrates were detected obtaining MDL's for glucose of 1.49 pmole, fructose 1.19 pmole, and sucrose 0.36 pmole showing that under these conditions IPAD is 3-10 times more sensitive for those carbohydrates. The applicability of the method was demonstrated analysing carbohydrates in real world samples such as chicory inulin where polyfructans up to a molecular mass of 7000 g/mol were detected as quadrupoly charged lithium adducts. Furthermore mono-, di-, tri-, and oligosaccharides were detected in chicory coffee, honey and beer samples. PMID:16106855

  11. Separation of bivalent anti-T cell immunotoxin from Pichia pastoris glycoproteins by borate anion exchange.


    Woo, Jung Hee; Neville, David M


    A major problem encountered in the large-scale purification of the bivalent anti-T cell immunotoxin, A-dmDT390-bisFv(G4S), from Pichia pastoris supernatants was the presence of host glycoproteins exhibiting similar charge, size, and hydrophobicity characteristics. We overcame this problem by employing borate anion exchange chromatography. The borate anion has an affinity for carbohydrates and imparts negative charges to these structures. We found that at a concentration of sodium borate between 50 and 100 mM, the nonglycosylated immunotoxin did not bind to Poros 50 HQ anion exchanger resin, but glycoproteins, including aggregates related to the immunotoxin, did. By using this property of the immunotoxin in the presence of sodium borate, we successfully developed a 3-step purification procedure: (i) Butyl-650M hydrophobic interaction chromatography, (ii) Poros 50 HQ anion exchange chromatography in the presence of borate, and (iii) HiTrap Q anion exchange chromatography. The final preparation exhibited a purity of greater than 98% and a yield of greater than 50% from the supernatant. Previously, boronic acid resins have been used to separate glycoproteins from proteins. However, combining borate anion with conventional anion exchange resins accomplishes the separation of the immunotoxin from glycoproteins and eliminates the need to evaluate nonstandard resins with respect to good manufacturing practice guidelines. PMID:12951782

  12. Anion Exchanger 2 Regulates Dectin-1-Dependent Phagocytosis and Killing of Candida albicans.


    Urso, Katia; Charles, Julia F; Shull, Gary E; Aliprantis, Antonios O; Balestrieri, Barbara


    Anion exchanger 2 (Ae2; gene symbol, Slc4a2) is a plasma membrane Cl-/HCO3- exchanger expressed in the gastrointestinal tract, kidney and bone. We have previously shown that Ae2 is required for the function of osteoclasts, bone resorbing cells of the macrophage lineage, to maintain homeostatic cytoplasmic pH and electroneutrality during acid secretion. Macrophages require endosomal acidification for pathogen killing during the process known as phagocytosis. Chloride is thought to be the principal ion responsible for maintaining electroneutrality during organelle acidification, but whether Cl-/HCO3- exchangers such as Ae2 contribute to macrophage function is not known. In this study we investigated the role of Ae2 in primary macrophages during phagocytosis. We find that Ae2 is expressed in macrophages where it regulates intracellular pH and the binding of Zymosan, a fungal cell wall derivative. Surprisingly, the transcription and surface expression of Dectin-1, the major phagocytic receptor for Candida albicans (C. albicans) and Zymosan, is reduced in the absence of Ae2. As a consequence, Zymosan-induced Tnfα expression is also impaired in Ae2-deficient macrophages. Similar to Ae2 deficiency, pharmacological alkalinization of lysosomal pH with bafilomycin A decreases both Dectin-1 mRNA and cell surface expression. Finally, Ae2-deficient macrophages demonstrate defective phagocytosis and killing of the human pathogenic fungus C. albicans. Our results strongly suggest that Ae2 is a critical factor in the innate response to C. albicans. This study represents an important contribution to a better understanding of how Dectin-1 expression and fungal clearance is regulated. PMID:27391897

  13. Anion Exchanger 2 Regulates Dectin-1-Dependent Phagocytosis and Killing of Candida albicans

    PubMed Central

    Urso, Katia; Charles, Julia F.; Shull, Gary E.; Aliprantis, Antonios O.; Balestrieri, Barbara


    Anion exchanger 2 (Ae2; gene symbol, Slc4a2) is a plasma membrane Cl-/HCO3- exchanger expressed in the gastrointestinal tract, kidney and bone. We have previously shown that Ae2 is required for the function of osteoclasts, bone resorbing cells of the macrophage lineage, to maintain homeostatic cytoplasmic pH and electroneutrality during acid secretion. Macrophages require endosomal acidification for pathogen killing during the process known as phagocytosis. Chloride is thought to be the principal ion responsible for maintaining electroneutrality during organelle acidification, but whether Cl-/HCO3- exchangers such as Ae2 contribute to macrophage function is not known. In this study we investigated the role of Ae2 in primary macrophages during phagocytosis. We find that Ae2 is expressed in macrophages where it regulates intracellular pH and the binding of Zymosan, a fungal cell wall derivative. Surprisingly, the transcription and surface expression of Dectin-1, the major phagocytic receptor for Candida albicans (C. albicans) and Zymosan, is reduced in the absence of Ae2. As a consequence, Zymosan-induced Tnfα expression is also impaired in Ae2-deficient macrophages. Similar to Ae2 deficiency, pharmacological alkalinization of lysosomal pH with bafilomycin A decreases both Dectin-1 mRNA and cell surface expression. Finally, Ae2-deficient macrophages demonstrate defective phagocytosis and killing of the human pathogenic fungus C. albicans. Our results strongly suggest that Ae2 is a critical factor in the innate response to C. albicans. This study represents an important contribution to a better understanding of how Dectin-1 expression and fungal clearance is regulated. PMID:27391897



    Bailes, R.H.; Ellis, D.A.


    An improvement in the process for the recovery of vanadium from acidic phosphatic solutions is presented. In this process the vanadium is first oxidized to the pentavaleat state, and is then separated by contacting such solutions with an anion exchange resin whereby adsorption of the complexed pentavalent vanadium is effected. The improvement lies in the fact that adsorp tion of the vanadium complex by the anion exchange resin is promoted and improved by providing fiuoride ions in solution to be contacted.

  15. Click Chemistry Finds Its Way in Constructing an Ionic Highway in Anion-Exchange Membrane.


    Ge, Qianqian; Ran, Jin; Miao, Jibin; Yang, Zhengjin; Xu, Tongwen


    To find the way to construct an ionic highway in anion-exchange membranes (AEMs), a series of side-chain-type alkaline polymer electrolytes (APEs) based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) polymer backbones were synthesized via Cu(I)-catalyzed click chemistry. The resulting triazole groups and quaternary ammonium (QA) groups facilitate the formation of a continuous hydrogen bond network, which will lead to high hydroxide conductivity according to Grotthuss-type mechanism. Microphase separation induced by long alkyl side chains contributes at the same time to further improving the hydroxide conductivity of the resultant AEMs. Hydroxide conductivity as high as 52.8 mS/cm is obtained for membrane TA-14C-1.21 (IEC = 1.21 mmol/g) with the longest pendant chain at 30 °C, and the conductivity can be increased to 140 mS/cm when the temperature was increased to 80 °C. Moreover, the corresponding water uptake is only 8.6 wt % at 30 °C. In the meantime, the membrane properties can be tuned by precisely regulating the hydrophilic/hydrophobic ratio in the cationic head groups. Compared with AEMs containing triazole and quaternized trimethylammonium head groups, enhanced dimensional stability and mechanical properties are obtained by tuning side-chain chemistry. However, the alkaline stability of the membrane is not as stable as anticipated, probably because of the existence of the triazole ring. Further study will be focused on increasing the alkali stability of the membrane. We envisage that the side-chain-type APEs meditated by click chemistry bearing long hydrophobic side chains pendant to the cationic head groups hold promise as a novel AEMs material. PMID:26645427

  16. Ion exhange and molecular sorption of oxalic acid with a highly basic anion exchanger

    NASA Astrophysics Data System (ADS)

    Krisilova, E. V.; Oros, G. Yu.; Krisilov, A. V.; Selemenev, V. F.


    Ab initio modeling of a matrix fragment of resin and geometry optimization of the molecular structure of oxalic acid were performed. The isotherm of oxalic acid sorption with AV-17-8 anion exchange resin was obtained by the variable concentrations technique. The ion-exchange and molecular components of sorbate fixation with the ion exchanger were determined. The hydration of the highly basic anion exchanger that absorbed different quantities of dicarboxylic acid was evaluated by the centrifuging method. The dependence of the amount of water and sorbate concentration in the resin was linear antibatic.

  17. New Anion-Exchange Resins for Improved Separations of Nuclear Material

    SciTech Connect

    Barr, Mary E.; Bartsch, Richard A.; Jarvinen, Gordon D.


    We are developing bifunctional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. Our new ion-exchange resins interface the rapidly developing field of ion-specific chelating ligands with robust, commercial ion-exchange technology. The basic scientific issues addressed are actinide complex speciation along with modeling of the metal complex/functional site interactions in order to determine optimal binding site characteristics. Resin materials that actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. Our implementation of the 'bifunctionality concept' involves N-derivatization of pyridinium units from a base poly(4- vinylpyridine) resin (PVP) with a second cationic site, such that the two anion-exchange sites are linked by 'spacer' arms of varying length and flexibility. The overall objective of our research is to develop a predictive capability that allows the facile design and implementation of multi-functionalized anion-exchange materials to selectively sorb metal complexes of interest from targeted process, waste, and environmental streams. Various Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new materials:Tanks, Plutonium; Subsurface Contaminants; Mixed Waste; and Efficient Separations. Sites within the DOE complex which would benefit from the improved anion exchange technology include Hanford, Idaho, Los Alamos, Oak Ridge, and Savannah River.

  18. Poly(arylene)-based anion exchange polymer electrolytes


    Kim, Yu Seung; Bae, Chulsung


    Poly(arylene) electrolytes including copolymers lacking ether groups in the polymer may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  19. New Gel-Like Polymers as Selective Weak-Base Anion Exchangers

    PubMed Central

    Gierczyk, Błażej; Cegłowski, Michał; Zalas, Maciej


    A group of new anion exchangers, based on polyamine podands and of excellent ion-binding capacity, were synthesized. The materials were obtained in reactions between various poly(ethyleneamines) with glycidyl derivatives of cyclotetrasiloxane. The final polymeric, strongly cross-linked materials form gel-like solids. Their structures and interactions with anions adsorbed were studied by spectroscopic methods (CP-MAS NMR, FR-IR, UV-Vis). The sorption isotherms and kinetic parameters were determined for 29 anions. Materials studied show high ion capacity and selectivity towards some important anions, e.g., selenate(VI) or perrhenate. PMID:25946220

  20. Anion-Exchange Properties of Trifluoroacetate and Triflate Salts of N-Alkylammonium Resorcinarenes.


    Pan, Fangfang; Beyeh, Ngong Kodiah; Bertella, Stefania; Rissanen, Kari


    The synthesis of N-benzyl- and N-cyclohexylammonium resorcinarene trifluoroacetate (TFA) and triflate (OTf) salt receptors was investigated. Solid-state analysis by single-crystal X-ray diffraction revealed that the N-alkylammonium resorcinarene salts (NARSs) with different upper substituents had different cavity sizes and different affinities for anions. Anion-exchange experiments by mixing equimolar amounts of N-benzylammonium resorcinarene trifluoroacetate and N-cyclohexylammonium resorcinarene triflate, as well as N-benzylammonium resorcinarene triflate and N-cyclohexylammonium resorcinarene trifluoroacetate showed that the NARS with flexible benzyl groups preferred the larger OTf anion, whereas the rigid cyclohexyl groups preferred the smaller TFA anions. The anion-exchange processes were confirmed in the solid state by single-crystal and powder X-ray diffraction experiments and in the gas phase by electrospray ionization mass spectrometry. PMID:26749383

  1. Formation of pseudomorphic nanocages from Cu2O nanocrystals through anion exchange reactions.


    Wu, Hsin-Lun; Sato, Ryota; Yamaguchi, Atsushi; Kimura, Masato; Haruta, Mitsutaka; Kurata, Hiroki; Teranishi, Toshiharu


    The crystal structure of ionic nanocrystals (NCs) is usually controlled through reaction temperature, according to their phase diagram. We show that when ionic NCs with different shapes, but identical crystal structures, were subjected to anion exchange reactions under ambient conditions, pseudomorphic products with different crystal systems were obtained. The shape-dependent anionic framework (surface anion sublattice and stacking pattern) of Cu2O NCs determined the crystal system of anion-exchanged products of CuxS nanocages. This method enabled us to convert a body-centered cubic lattice into either a face-centered cubic or a hexagonally close-packed lattice to form crystallographically unusual, multiply twinned structures. Subsequent cation exchange reactions produced CdS nanocages while preserving the multiply-twinned structures. A high-temperature stable phase such as wurtzite ZnS was also obtained with this method at ambient conditions. PMID:26989249

  2. Anion exchange resins: Structure, formulation, and applications. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect

    Not Available


    The bibliography contains citations concerning the formulation and synthesis of anion exchange resins based on such resins as amides, polyethylenes, and styrenes. Osmotic, sorption, and electrical properties; exchange kinetics behavior; structure studies; and temperature related performance effects on anion exchange resins are considered. Anion exchange chromatography of liquids, and applications in water purification, pollution control, and protein and metallic ion separation are included. (Contains a minimum of 222 citations and includes a subject term index and title list.)

  3. Anion selective membrane. [ion exchange resins and ion exchange membrane electrolytes for electrolytic cells

    NASA Technical Reports Server (NTRS)

    Alexander, S. S.; Geoffroy, R. R.; Hodgdon, R. B.


    Experimental anion permselective membranes were prepared and tested for their suitability as cell separators in a chemical redox power storage system being developed at NASA-Lewis Research Center. The goals of long-term (1000 hr) oxidative and thermal stability at 80 C in FeCl3 and CrCl3 electrolytes were met by most of the weak base and strong base amino exchange groups considered in the program. Good stability is exhibited by several of the membrane substrate resins. These are 'styrene' divinylbenzene copolymer and PVC film. At least four membrane systems produce strong flexible films with electrochemical properties (resistivity, cation transfer) superior to those of the 103QZL, the most promising commercial membrane. The physical and chemical properties of the resins are listed.

  4. Mechanism of Polysulfone-Based Anion Exchange Membranes Degradation in Vanadium Flow Battery.


    Yuan, Zhizhang; Li, Xianfeng; Zhao, Yuyue; Zhang, Huamin


    The stability of hydrocarbon ion exchange membranes is one of the critical issues for a flow battery. However, the degradation mechanism of ion exchange membranes has been rarely investigated especially for anion exchange membranes. Here, the degradation mechanism of polysulfone based anion exchange membranes, carrying pyridine ion exchange groups, under vanadium flow battery (VFB) medium was investigated in detail. We find that sp(2) hybrid orbital interactions between pyridinic-nitrogen in 4,4'-bipyridine and benzylic carbon disrupt the charge state balance of pristine chloromethylated polysulfone. This difference in electronegativity inversely induces an electrophilic carbon center in the benzene ring, which can be attacked by the lone pair electron on the vanadium(V) oxygen species, further leading to the degradation of polymer backbone, while leaving the 4,4'-bipyridine ion exchange groups stable. This work represents a step toward design and construction of alternative type of chemically stable hydrocarbon ion exchange membranes for VFB. PMID:26284752

  5. Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties

    USGS Publications Warehouse

    Boyer, T.H.; Singer, P.C.; Aiken, G.R.


    Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.


    EPA Science Inventory

    Anion exchange protein 2 (AE2) is a membrane-bound protein that mediates chloride-bicarbonate exchange. In addition to regulating intracellular pH and cell volume, AE2 exports superoxide (O.) to the extracellular matrix in an HCO-dependent process. Given this ability to export O....


    EPA Science Inventory

    Zeolites are well known for their use in ion exchange and acid catalysis reactions. The use of zeolites in anion or ligand exchange reactions is less studied. The NH4+ form of zeolite Y (NY6, Faujasite) has been tested in this work to evaluate its performance for arsenic removal...

  8. Americium purification by a combined anion exchange and bidentate organophosphorus solvent extraction process. [Patent application

    SciTech Connect

    Navratil, J.D.; Martella, L.L.


    Americium is separated from mixtures containing plutonium, other actinides, and other non-lanthamide impurities, by a combined process of anion exchange resin sorption to remove plutonium, and a bidentate organophosphorus solvent extraction of americium of the anion exchange resin effluent. Dihexyl-N,N-diethylcarbamylmethylenephosphonate is a preferred solvent. The initial mixture may be subjected to a cation exchange operation to remove monovalent impurities. The process is especially effective when aluminum, zinc, lead, and copper are present in significant quantities in the original mixture.

  9. A new anionic exchange stir bar sorptive extraction coating based on monolithic material for the extraction of inorganic anion.


    Huang, Xiaojia; Lin, Jianbing; Yuan, Dongxing


    A novel anionic exchange stir bar sorptive extraction (SBSE) coating based on poly(2-(methacryloyloxy)ethyltrimethylammonium chloride-co-divinylbenzene) monolithic material for the extraction of inorganic anion was prepared. The effect of preparation conditions such as ratio of functional monomer to cross-linker, content of porogenic solvent on the extraction efficiencies were investigated in detailed. The monolithic material was characterized by elemental analysis, scanning electron microscopy and infrared spectroscopy. In order to investigate the extraction capacity of the new coating for inorganic anion, the new SBSE was combined with ionic chromatography with conductivity detection, Br-, NO3-, PO4(3-) and SO4(2-) were selected as detected solutes. Several extractive parameters, including pH value and ionic strength in sample matrix, desorption solvent, extraction and desorption time were optimized. The results showed that strongly ionic strength did not favor the extraction of anlaytes. Under the optimum experimental conditions, low detection limits (S/N=3) and quantification limits (S/N=10) of the proposed method for the target anions were achieved within the range of 0.92-2.62 and 3.03-9.25 microg/L, respectively. The method also showed good linearity, simplicity, practicality and low cost for the extraction inorganic anions. Finally, the proposed method was successfully used to detect the two different trademarks of commercial purified water with satisfactory recovery in the range of 70.0-92.6%. To the best of our knowledge, this is the first to use SBSE to enrich inorganic anions. PMID:20576270

  10. Improved recovery and purification of plutonium at Los Alamos using macroporous anion exchange resin

    SciTech Connect

    Marsh, S.F.; Mann, M.J.


    For almost 30 years, Los Alamos National Laboratory has used anion exchange in nitric acid as the major aqueous process or the recovery and purification of plutonium. One of the few disadvantages of this system is the particularly slow rate at which the anionic nitrato complex of Pu(IV) equilibrates with the resin. The Nuclear Materials Process Technology Group at Los Alamos recently completed an ion exchange development program that focused on improving the slow sorption kinetics that limits this process. A comprehensive investigation of modern anion exchange resins identified porosity and bead size as the properties that most influence plutonium sorption kinetics. Our study found that small beads of macroporous resin produced a dramatic increase in plutonium process efficiency. The Rocky Flats Plant has already adopted this improved ion exchange technology, and it currently is being evaluated for use in other DOE plutonium-processing facilities.

  11. Sequential Anion and Cation Exchange Reactions for Complete Material Transformations of Nanoparticles with Morphological Retention.


    Hodges, James M; Kletetschka, Karel; Fenton, Julie L; Read, Carlos G; Schaak, Raymond E


    Ion exchange reactions of colloidal nanocrystals provide access to complex products that are synthetically challenging using traditional hot-injection methods. However, such reactions typically achieve only partial material transformations by employing either cation or anion exchange processes. It is now shown that anion and cation exchange reactions can be coupled together and applied sequentially in one integrated pathway that leads to complete material transformations of nanocrystal templates. Although the product nanocrystals do not contain any of the original constituent elements, the original morphology is retained, thereby fully decoupling morphology and composition control. The sequential anion/cation exchange process was applied to pseudo-spherical CdO nanocrystals and ZnO tetrapods, producing fully transformed and shape-controlled nanocrystals of copper and silver sulfides and selenides. Furthermore, hollow core-shell tetrapod ZnS@CdS heterostructures were readily accessible. PMID:26110653

  12. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide.


    Sahoo, Pathik; Ishihara, Shinsuke; Yamada, Kazuhiko; Deguchi, Kenzo; Ohki, Shinobu; Tansho, Masataka; Shimizu, Tadashi; Eisaku, Nii; Sasai, Ryo; Labuta, Jan; Ishikawa, Daisuke; Hill, Jonathan P; Ariga, Katsuhiko; Bastakoti, Bishnu Prasad; Yamauchi, Yusuke; Iyi, Nobuo


    The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040-18043). The use of (13)C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated (13)C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation. PMID:25275963

  13. Short chain aliphatic acid anions in oil field waters and their contribution to the measured alkalinity

    USGS Publications Warehouse

    Willey, L.M.; Kharaka, Y.K.; Presser, T.S.; Rapp, J.B.; Barnes, I.


    High alkalinity values found in some formation waters from Kettleman North Dome oil field are due chiefly to acetate and propionate ions, with some contribution from higher molecular weight organic acid ions. Some of these waters contain no detectable bicarbonate alkalinity. For waters such as these, high supersaturation with respect to calcite will be incorrectly indicated by thermodynamic calculations based upon carbonate concentrations inferred from traditional alkalinity measurements. ?? 1975.

  14. Significance of anion exchange in pentachlorophenol sorption by variable-charge soils.


    Hyun, Seunghun; Lee, Linda S; Rao, P Suresh C


    Sorption data and subsequent predictive models for evaluating acidic pesticide behavior on variable-charge soils are needed to improve pesticide management and environmental stewardship. Previous work demonstrated that sorption of pentachlorophenol (PCP), a model organic acid, was adequately modeled by accounting for pH-and pKa-dependent chemical speciation and using two organic carbon-normalized sorption coefficients; one each for the neutral and anionic species. Such models do not account for organic anion interaction to positively charged surface sites, which can be significant for variable-charge minerals present in weathered soils typical of tropical and subtropical regions. The role of anion exchange in sorption of ionizable chemicals by variable-charge soils was assessed by measuring sorption of PCP by several variable-charge soils from aqueous solutions of CaCl2, CaSO4, Ca(H2PO4)2 as a function of pH. Differences in sorption from phosphate and chloride electrolyte solutions were attributed to pentachlorophenolate interactions with anion exchange sites. Suppression of PCP sorption by phosphate ranged from negligible in a soil with essentially no positively charge sites, as measured by negligible anion exchange capacity, to as much as 69% for variable-charge soils. Pentachlorophenolate exchange correlated well with the ratio of pH-dependent anion exchange capacity to net surface charge. Sorption reversibility of PCP by both CaCl2 and Ca(H2PO4)2 solutions was also demonstrated. Results for PCP clearly demonstrate that sorption to anion exchange sites in variable-charge soils should be considered in assessing pesticide mobility and that phosphate fertilizer application may increase the mobility of acidic pesticides. PMID:12809297

  15. The separation of platinum, palladium and gold from silicate rocks by the anion exchange separation of chloro complexes after a sodium peroxide fusion: an investigation of low recoveries.


    Enzweiler, J; Potts, P J


    A series of experiments was undertaken to measure the recovery efficiency of platinum, palladium and gold from silicate rocks using a sodium peroxide fusion followed by anion exchange separation of the analytes as chloro complexes. Results obtained by graphite furnace atomic absorption spectrometric analysis of standard solutions prepared in dilute HCl or HCl-acidified sodium peroxide solution showed that recoveries were near quantitative. However, when standard solutions were added to an alkaline sodium peroxide solution, which was then acidified, low results were obtained for platinum and gold (46% and 76% respectively). Low and variable results were also obtained when standard solutions were added to a peridotite sample that had been dissolved by the state procedure, and in the analysis of the South African Bureau of Standards certified reference material, SARM 7. Various experiments were undertaken to investigate these low recoveries, but the reason proposed here is the formation of hydroxychloro compounds in alkaline solution which are not, on acidification with HCl, converted quantitatively to the chloro complex necessary for quantitative anion exchange separation. It is concluded that a sodium peroxide fusion followed by an anion-exchange separation does not appear to form the basis of a successful technique for the determination of platinum, palladium and gold in silicate rocks. PMID:18966370

  16. Regeneration of strong-base anion-exchange resins by sequential chemical displacement

    SciTech Connect

    Brown, Gilbert M.; Gu, Baohua; Moyer, Bruce A.; Bonnesen, Peter V.


    A method for regenerating strong-base anion exchange resins utilizing a sequential chemical displacement technique with new regenerant formulation. The new first regenerant solution is composed of a mixture of ferric chloride, a water-miscible organic solvent, hydrochloric acid, and water in which tetrachloroferrate anion is formed and used to displace the target anions on the resin. The second regenerant is composed of a dilute hydrochloric acid and is used to decompose tetrachloroferrate and elute ferric ions, thereby regenerating the resin. Alternative chemical displacement methods include: (1) displacement of target anions with fluoroborate followed by nitrate or salicylate and (2) displacement of target anions with salicylate followed by dilute hydrochloric acid. The methodology offers an improved regeneration efficiency, recovery, and waste minimization over the conventional displacement technique using sodium chloride (or a brine) or alkali metal hydroxide.

  17. Integrated pulsed amperometric detection of glufosinate, bialaphos and glyphosate at gold electrodes in anion-exchange chromatography.


    Sato, K; Jin, J Y; Takeuchi, T; Miwa, T; Suenami, K; Takekoshi, Y; Kanno, S


    A rapid and practical method for direct detection of the herbicides (glufosinate, bialaphos and glyphosate) in anion-exchange chromatography has been developed with integrated pulsed amperometric detection (IPAD). The electrochemical behavior of these herbicides showed catalytic currents based on the oxidation of amines in their structures. Waveform in IPAD was similar to that for amino acids, which exhibited adsorption/desorption catalytic features at gold electrode surface in alkaline solution. Under optimized conditions, detection limits (signal-to-noise ratio of 3) for glufosinate, bialaphos and glyphosate were 20, 65 and 50 ng ml(-1), respectively, with correlation coefficients of 0.995, 0.997 and 0.996 over concentration ranges of 0.1-45, 0.3-32 and 0.1-50 microg ml(-1), respectively. The relative standard deviations (n=5) were 1.7-3.0%. The present method was successfully applied to the determination of glyphosate in urine and serum. PMID:11442037

  18. Nanocomposite membranes based on quaternized polysulfone and functionalized montmorillonite for anion-exchange membranes

    NASA Astrophysics Data System (ADS)

    Liao, Xiaofeng; Ren, Li; Chen, Dongzhi; Liu, Xiaohong; Zhang, Hongwei


    In this paper, functionalized montmorillonite is intercalated with cetyl trimethyl ammonium chloride and (3-aminopropyl)triethoxysilane. Quaternized polysulfone/functionalized montmorillonite nanocomposite membranes are fabricated to evaluate their potential in anion-exchange membrane fuel cells. Fourier transform infrared spectroscopy, thermogravimetric analyzer and X-ray diffractometer are used to confirm the success of intercalation. The performances of the composite membranes for the anion-exchange membrane fuel cells in terms of their water uptake, mechanical property and ionic conductivity are investigated. Compared with other anion-exchange membranes, the nanocomposite membrane containing 5% montmorillonite modified by cetyl trimethyl ammonium chloride exhibits lower water uptake, higher ultimate stress and larger ionic conductivity. It exhibits an ionic conductivity of 4.73 × 10-2 S cm-1 at 95 °C.

  19. Anion-exchange extraction of cephapirin, cefotaxime, and cefoxitin from serum for liquid chromatography.

    PubMed Central

    Fasching, C E; Peterson, L R


    An anion-exchange column technique for extraction of antibiotics from serum proteins has been developed for use in the assay of cephapirin, cefotaxime, and cefoxitin by high-pressure liquid chromatography. Anion-exchange extraction of cephapirin from serum samples by this technique was compared with protein precipitation methods, using 6% trichloroacetic acid or absolute ethanol. Column extraction gave improved quantitative drug recovery and reduced background serum interferences in the resultant chromatograms when evaluated against protein precipitation. Comparisons of this method with microbiological assay gave statistically equivalent results. Twelve patient samples were assayed for cephapirin, and no interferences were encountered from the 22 systemic agents these subjects were receiving. The anion-exchange technique for antibiotic extraction provides a rapid, precise, and quantitative antibiotic assay when used with liquid chromatography. PMID:6282213

  20. Highly Conductive Anion-Exchange Membranes from Microporous Tröger's Base Polymers.


    Yang, Zhengjin; Guo, Rui; Malpass-Evans, Richard; Carta, Mariolino; McKeown, Neil B; Guiver, Michael D; Wu, Liang; Xu, Tongwen


    The development of polymeric anion-exchange membranes (AEMs) combining high ion conductivity and long-term stability is a major challenge for materials chemistry. AEMs with regularly distributed fixed cationic groups, based on the formation of microporous polymers containing the V-shape rigid Tröger's base units, are reported for the first time. Despite their simple preparation, which involves only two synthetic steps using commercially available precursors, the polymers provide AEMs with exceptional hydroxide conductivity at relatively low ion-exchange capacity, as well as a high swelling resistance and chemical stability. An unprecedented hydroxide conductivity of 164.4 mS cm(-1) is obtained at a relatively a low ion-exchange capacity of 0.82 mmol g(-1) under optimal operating conditions. The exceptional anion conductivity appears related to the intrinsic microporosity of the charged polymer matrix, which facilitates rapid anion transport. PMID:27505421

  1. Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography: A review.


    Zatirakha, A V; Smolenkov, A D; Shpigun, O A


    In the last decade the developments in the field of ion chromatography (IC) were aimed at increasing the efficiency, sensitivity and rapidity of analysis, as well as on improving separation selectivity. Since selectivity and efficiency to the large extent depend on the surface chemistry of the stationary phase, the development of novel anion exchangers remains one of the priority tasks in modern IC. The exact chemistry of commercially available resins is not known and not many literature data devoted to the procedures of preparing anion exchangers for IC have become available in the last 10-15 years. However, the knowledge about the surface chemistry of anion exchangers can provide understanding of the trends in selectivity and efficiency changes, as well as help with the choice of the stationary phase type suitable for solving a particular analytical task. The current review is devoted to the methods of preparing anion exchangers based on polystyrene-divinylbenzene (PS-DVB) and ethylvinylbenzene-divinylbenzene (EVB-DVB) for IC of inorganic and small organic anions and is aimed at demonstrating the improvement of their performance over the years, which was brought by the development of the new types of stationary phase architecture. PMID:26724761

  2. Measurement of the distribution of anion exchange function in normal human red cells.

    PubMed Central

    Raftos, J E; Bookchin, R M; Lew, V L


    1. The aim of the present work was to investigate cell-to-cell variation in anion exchange turnover in normal human red cells. Red cells permeabilized to protons and K+ dehydrate extremely rapidly by processes that are rate-limited by the induced K+ permeability or by anion exchange turnover. Conditions were designed to render dehydration rate-limited by anion exchange turnover. Cell-to-cell variation in anion exchange function could then be measured from the distribution of delay times required for dehydrating cells to attain resistance to haemolysis in a selected hypotonic medium. 2. Red cells were suspended at 10% haematocrit in a low-K+ solution and, after a brief preincubation with 20 microM SITS at 4 degrees C, were warmed to 24 degrees C, and the protonophore CCCP was added (20 microM) followed 2 min later by valinomycin (60 microM). Delay times for cells to become resistant to lysis were measured from the instant of valinomycin addition by sampling suspension aliquots into thirty volumes of 35 mM NaCl. After centrifugation the per cent lysis was estimated by measuring the haemoglobin concentration in the supernatant. Typical median delay times with this standardized method were 4-5 min. 3. The statistical parameters of the delay time distributions report the population spread in the transport function that was limiting to dehydration. In the absence of SITS and CCCP, dehydration was limited by the diffusional Cl- permeability (PCl). Delay time distributions for PCl- and anion exchange-limited dehydration were measured in red cells from three normal donors. For both distributions, the coefficients of variation ranged between 13.0 and 15.2%, indicating a high degree of uniformity in PCl and anion exchange function among individual red cells. PMID:9061637

  3. Relationships of anion-exchange sorption of boron from natural thermal-spring water

    SciTech Connect

    Meichik, N.R.; Leikin, Yu.A.; Antipov, M.A.; Goryacheva, N.V.; Klimenko, I.S.; Medvedev, S.A.; Galitskaya, N.B.


    Boric acid is one of the characteristic components of Kamchatka waters. Extraction of boron from thermal waters for production of potable water is closely linked with current problems of multiproduct utilization of resources and protection of the environment. The authors have investigated the possibilities of using ion exchange for extraction of boron from natural waters, and studied the sorption relationships by a dynamic method. They synthesized a macroporous anion-exchanger based on a copolymer of styrene with divinylbenzene, containing N-methylglucamine groups (ANB-11 resin). ANB-11 resin had high sorption capacity for boron anions during sorption from thermal-spring water. The experimental data were described by Elkins equation.

  4. Void exclusion of antibodies by grafted-ligand porous particle anion exchangers.


    Nian, Rui; Chuah, Cindy; Lee, Jeremy; Gan, Hui Theng; Latiff, Sarah Maria Abdul; Lee, Wan Yee; Vagenende, Vincent; Yang, Yuan-Sheng; Gagnon, Pete


    We describe a new variant of anion exchange chromatography in columns packed with porous particles that embody charged low-density polymer zones supported by a higher density polymer skeleton. IgG defies the norms of anion exchange and is excluded to the void volume at pH 3-10 and 0-4M NaCl. Void exclusion also occurs with Fab, F(ab')2, and IgM. Host cell protein contaminants mostly follow the usual norms of anion exchange and bind more strongly with increasing pH and decreasing conductivity. Sample buffer composition has no impact on partitioning so long as applied sample volume does not exceed the interparticle void volume of the column. Void-excluded antibody elutes in equilibration buffer. This seemingly conflicted collection of behaviors is reconciled by a variable size exclusion function mediated through the low-density polymer zones, the charge properties of the antibody species, and the pH and conductivity of the equilibration buffer. Current-generation porous particle anion exchangers that employ grafting techniques to achieve high charge density mediate void exclusion to varying degrees, with the best-suited achieving complete exclusion, and others as little as 65%. Perfusive and non-grafted particle-based exchangers mediate as little as 50% exclusion. Monoliths mediate no exclusion, due to their lack of an interparticle void volume. On qualified exchangers, the technique supports greater than 99% reduction of host proteins, DNA, and endotoxin. Virus is reduced more than 99.9%, and aggregates are reduced to less than 0.05%. The method supports better process control than other anion exchange formats because pH excursions in conjunction with changes in salt concentration do not occur until after the antibody has eluted from the column. PMID:23422893

  5. New selective anion-exchange resins for nitrate removal from contaminated drinking water and studies on analytical anion-exchange chromatography

    SciTech Connect

    Lockridge, J.E.


    Phosphonium resins and ammonium resins of composition resin-R{sub 3}P{sup +}A{sup {minus}} where R is varied from methyl to pentyl were evaluated for nitrate/sulfate selectivity, capacity and nitrate decontamination of drinking water. Phosphonium resins were found to be more nitrate selective and have higher capacities than ammonium resins. A mixed bed process, where nitrate removal and water softening is accomplished in a single column, was also evaluated. A small piece of silver wire, coated with an insoluble silver salt, works well as a selective potentiometric detector for halide ions in ion chromatography. A silver-silver chloride electrode was found to be a selective and reproducible detector for chloride, bromide, iodide, thiocyanate and thiosulfate anions separated by ion chromatography. Calibration curves were non-linear and had slopes ranging from 40 to 60 mV/log concentrations. A working range of 0.05 to 2 mM was used. Two methods for the determination of aluminum by anion chromatography are presented. In the first method, a standard excess of fluoride ion is added to the sample. Evidence is given for the formation of a strong complex of neutral aluminum trifluoride which elutes very quickly from an anion exchange column. The excess fluoride is retained and can be determined. The aluminum concentration can then be related to the difference in fluoride peak height between the sample and standard. In a second method, Al(III) is determined directly by anion chromatography when sodium phthalate is used as an eluent. It was found that Al(III)-phthalate complexes thus formed would show some retention on an anion exchange column. The method is uniquely insensitive to the presence of many foreign cations. Al(III) was successfully determined, by this method, in a 40-fold molar excess of iron(III).

  6. Anion exchange pathways for Cl sup minus transport in rabbit renal microvillus membranes

    SciTech Connect

    Karniski, L.P.; Aronson, P.S. Yale School of Medicine, New Haven, CT )


    The authors evaluated the mechanisms of chloride transport in microvillus membrane vesicles isolated from the rabbit renal cortex. The presence of Cl-formate exchange was confirmed. Outward gradients of oxaloacetate, HCO{sub 3}, acetate, lactate, succinate, sulfate, and p-aminohippurate (PAH) stimulated the rate of Cl uptake minimally or not at all. However, an outward gradient of oxalate stimulated Cl uptake by 70%, and an outward Cl gradient induced uphill oxalate uptake, indicting Cl-oxalate exchange. Moreover, an outward formate gradient induced uphill oxalate uptake, indicating formate-oxalate exchange. Studies of inhibitor and substrate specificity indicated the probably operation of at least two separate anion exchangers in mediating Cl transport. The Cl-formate exchanger accepted Cl and formate as substrates, had little or no affinity for oxalate, was sensitive to inhibition by furosemide, and was less sensitive to inhibition by 4,4{prime}-diisothiocyanostilbene-2,2{prime}-disulfonic acid (DIDS). The Cl (formate)-oxalate exchanger also accepted Cl and formate as substrates but had high affinity for oxalate, was highly sensitive to inhibition by DIDS, and was less sensitive to inhibition by furosemide. The Cl-formate exchanger was electroneutral, whereas the Cl (formate)-oxalate exchanger was electrogenic. They conclude that at least separate anion exchangers mediating Cl transport are present on the luminal membrane of the rabbit proximal tubule cell. These exchangers may play important roles in mediating transtubular Cl and oxalate transport in this nephron segment.

  7. Subtle anion effects on anion exchange and thermolysis: Square supra-channels via array of sinusoidal coordination polymers

    NASA Astrophysics Data System (ADS)

    Moon, So Yun; Park, Min Woo; Noh, Tae Hwan; Jung, Ok-Sang


    Self-assembly of AgX (X=ClO4-,BF4-) with a new diethylbis(4-pyridyl)silane (L) ligand basically gives rise to a one-dimensional (1D) sinusoidal structure. Weak C-H⋯π interactions between ethyl and pyridyl groups result in the formation of infinite square supra-channel structures via a molecular array of four sinusoidal chains. The supra-channel size is 10.1-10.7 Å with a void cross-section of 2.1-3.1 Å for [Ag(L)](ClO4) and 9.9-10.5 Å with a void cross-section of 2.0-3.0 Å for [Ag(L)](BF4). The supra-channels are occupied by each counteranion. Anion exchange of [Ag(L)](BF4) with NaClO4 occurs smoothly, whereas the reverse anion exchange of [Ag(L)](ClO4) with NaBF4 does not. Calcination of [Ag(L)](ClO4) crystals at 400 °C produces a circle morphology with evolving burned organics, and, at 600 °C, forms network circles consisting of a silver(0)/silver chloride (chlorargyrite)/silicon(IV) oxide composite with a micro-sized convexo-concave surface. In contrast, calcination of [Ag(L)](BF4) crystals at 600 °C produces silver(0) materials without silicon(IV) oxide.

  8. New anion-exchange resins for improved separations of nuclear materials. Mid-year progress report

    SciTech Connect

    Barr, M.E.


    'The authors are developing multi-functional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. The new ion-exchange resins interface the rapidly developing field of ion-specific chelating ligands with robust, commercial ion exchange technology. The overall objective of the research is to develop a predictive capability which allows the facile design and implementation of multi-functionalized anion exchange materials which selectively sorb metal complexes of interest from targeted process, waste, and environmental streams. The basic scientific issues addressed are actinide complex speciation along with modeling of the metal complex/functional site interactions in order to determine optimal binding-site characteristics. Their approach uses a thorough determination of the chemical species both in solution and as bound to the resin to determine the characteristics of resin active sites which can actively facilitate specific metal-complex sorption to the resin. The first year milestones were designed to allow us to build off of their extensive expertise with plutonium in nitrate solutions prior to investigating other, less familiar systems. While the principle investigators have successfully developed actinide chelators and ion-exchange materials in the past, the authors were fully aware that integration of this two fields would be challenging, rewarding and, at times, highly frustrating. Relatively small differences in the substrate (cross-linkage, impurities), the active sites (percent substitution, physical accessibility), the actinide solution (oxidation state changes, purity) and the analytical procedures (low detection limits) can produce inconsistent sorption behavior which is difficult to interpret. The potential paybacks for success, however, are enormous. They feel that they have learned a great deal about how to control these numerous variables to produce consistent, reliable analysis of

  9. Test procedure for anion exchange testing with Argonne 10-L solutions

    SciTech Connect

    Compton, J.A.


    Four anion exchange resins will be tested to confirm that they will sorb and release plutonium from/to the appropriate solutions in the presence of other cations. Certain cations need to be removed from the test solutions to minimize adverse behavior in other processing equipment. The ion exchange resins will be tested using old laboratory solutions from Argonne National Laboratory; results will be compared to results from other similar processes for application to all plutonium solutions stored in the Plutonium Finishing Plant.

  10. Enhanced Anion Exchange for Selective Sulfate Extraction: Overcoming the Hofmeister Bias

    SciTech Connect

    Fowler, Christopher J; Haverlock, Tamara; Moyer, Bruce A; Shriver, James A.; Gross, Mr. Dustin E.; Marquez, Manuel; Sessler, Jonathan L.; Hossain, Alamgir; Bowman-James, Kristin


    Synergism in liquid-liquid extraction, typified by the combination of a neutral extractant with a cation-exchanger to enhance selectively cation extraction strength, has been used and understood for over five decades.1 Surprisingly, analogous synergism in anion extraction has not yet been developed. In this Communication we present a simple way to achieve non-Hofmeister selectivity in liquid-liquid anion exchange by combining a synthetic hydrogen-bond-donating (HBD) anion receptor with a standard quaternary ammonium type extractant. Specifically, we show that the fluorinated calixpyrroles 1 and 22 and the tetraamide macrocycles 3 5,3 may be used to enhance the solvent extraction of sulfate from nitrate by Aliquat 336-nitrate (A336-nitrate).

  11. Investigation of an anion exchange resin for cleanup of a coolant used to machine nuclear materials

    SciTech Connect

    Hinton, E.R. Jr.; Tucker, H.L.; Asbury, W.L.


    This article describes the interaction of Dowex SBR-P, which is a strongly basic anion exchange resin, with ions found in a used machining coolant. The coolant is used in machining enriched uranium and contains uranium, chloride, nitrite, borate ions, water, and propylene glycol.

  12. Separation of the rare earths by anion-exchange in the presence of lactic acid

    NASA Technical Reports Server (NTRS)

    Faris, J. P.


    Investigation of adsorption of rare earths and a few other elements to an anion-exchange resin from mixed solvents containing lactic acid shows that the lanthanides are absorbed more strongly than from the alpha-hydroxyisobutryric acid system, but with less separation between adjacent members of the series.


    EPA Science Inventory

    Anion-exchange resins (AER) are used to differentiate As(V) and As(III) by retaining As(V) and allowing As(III) to pass through. AERs allow rapid speciation of As in the field which precludes the effects sample preservation on As speciation. Aqueous environmental samples contai...


    EPA Science Inventory

    The overall objective of this project was to develop a predictive capability that would enable us to design and implement new anion-exchange materials that selectively sorb metal complexes. Our approach was to extend the principles applied to optimization of chelating ligands (i....


    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DEMINERALIZER BUILDING, TRA-608. CATION AND ANION EXCHANGERS LINE UP ALONG NORTH WALL ON CONCRETE PLATFORMS. INL NEGATIVE NO. 2527. Unknown Photographer, 6/12/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. M8L12 cubic cages with all facial Δ or facial Λ configuration: effects of surface anions on the occupancy of the cage and anion exchange.


    Yang, Jing; Chang, Xiao-Yong; Sham, Kiu-Chor; Yiu, Shek-Man; Kwong, Hoi-Lun; Che, Chi-Ming


    M8L12 cubic cages (M = Mn(II), Zn(II) or Cd(II)), with all eight metal ions having all facial Δ or facial Λ configurations and having an encapsulated anion, were prepared by the self-assembly of m-xylene-bridged imidazolyl-imine ligands and MX2 (X = PF6(-), SbF6(-), TfO(-)) salts; the encapsulated anion exchange with different anions (SbF6(-), Tf2N(-), NO3(-), TsO(-)) was studied and the results with NO3(-) and TsO(-) indicate that anions on the cage surfaces affect the encapsulated anion exchange and the occupancy of the cage. PMID:27064122


    SciTech Connect

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J


    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  18. Influence of montmorillonites exchange capacity on the basal spacing of cation–anion organo-montmorillonites

    SciTech Connect

    Sanqin, Wu; Zepeng, Zhang; Yunhua, Wang; Libing, Liao; Jiansheng, Zhang


    Graphical abstract: This picture shows the distribution of organic modifier (CTAB and SDS) in Mt interlayer and the basal spacing changes of Mt modified by CTAB and SDS. Organic modifier molecule in Mt interlayer is more and more orderly. The basal spacing of Mt is from 1.5 nm to 5 nm as modifier added. - Highlights: • The d{sub 001} of Ca-Mt, R-Na-Mt, Na-Mt modified by CTAB and SDS can reach 5 nm. • It is easier to get cation–anion OMt with greater d{sub 001} if CEC is lower. • The organic molecules distribution in cation–anion OMt was analyzed. • The influence mechanism of Ca-Mt CEC on the d{sub 001} was discussed. - Abstract: With cationic and anionic surfactants cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfonate (SDS) as modifiers, Ca-montmorillonites (Ca-Mt), artificial Na-montmorillonites (R-Na-Mt) and natural Na-montmorillonites (Na-Mt) with different cation exchange capacity (CEC) were modified by solution intercalation method, respectively. Then cation–anion organo-montmorillonites (OMt) were prepared. The influence of CEC on the basal spacing of cation–anion OMt and the influence mechanism were discussed by X-ray diffraction (XRD) and zeta potential testing. The results indicate that the basal spacing of cation–anion OMt is related to CEC. For the same type montmorillonites, the basal spacing of cation–anion OMt decreases with the increase of CEC and it is easier to get cation–anion OMt with greater basal spacing when CEC is lower. Moreover, the CEC of Na-Mt has the greatest influence on the basal spacing of cation–anion OMt.

  19. Anion-exchange resin-based desulfurization process. Final report

    SciTech Connect

    Sheth, A C; Dharmapurikar, R; Strevel, S D


    The following investigations were performed: (1) batch mode screening of eleven(11) commercially available resins and selection of three candidate resins for further evaluation in a fixed-bed setup. (2) Process variables study using three candidate resins in the fixed-bed setup and selection of the ``best`` resin for process economics development. (3) Exhaustion efficiency and solution concentration were found to be inversely related necessitating a trade-off between the resin cost versus the cost of evaporation/concentration of ensuing effluents. (4) Higher concentration of the HCO{sub 3}{sup {minus}} form of active sites over less active CO{sub 3}{sup 2{minus}} form of sites in the resin was believed to be the main reason for the observed increase in the equilibrium capacity of the resin at an elevated static CO{sub 2}-pressure. This Increase in capacity was found to level off around 80--120 psig range. The increase in CO{sub 2}-pressure, however, did not appear to affect the overall ion-exchange kinetics. (5) In the fixed-bed mode, the solution concentration was found to affect the equilibrium capacity of candidate resins. Their relationship was well satisfied by the Langmuir type non-linear equilibrium isotherm. Alternatively, the effect of solution concentration on overall ion-exchange kinetics varied from resin to resin. (6) Product inhibition effect on the resin was observed as an initial increase followed by a significant decrease in the resin`s equilibrium capacity for SO{sub 4}{sup 2{minus}} as the HCO{sub 3}{sup {minus}}/SO{sub 4}{sup 2{minus}} molar ratio in the solution was increased from 0 to 1.0. This ratio, however, did not affect the overall ion-exchange kinetics.

  20. Ultrafine Na-4-mica: uptake of alkali and alkaline earth metal cations by ion exchange.


    Kodama, Tatsuya; Ueda, Masahito; Nakamuro, Yumiko; Shimizu, Ken-ichi; Komarneni, Sridhar


    The cation exchange properties of alkali and alkaline earth metal cations at room temperature were investigated on an ultrafine, highly charged Na-4-mica (with the ideal mica composition Na4Mg6Al4Si4O20F4.xH2O). Ultrafine mica crystallites of 200 nm in size led to faster Sr2+ uptake kinetics in comparison to larger mica crystallites. The alkali metal ion (K+, Cs+, and Li+) exchange uptake was rapid, and complete exchange occurred within 30 min. For the alkaline earth metal ions Ba2+, Ca2+, and Mg2+, however, the exchange uptake required lengthy periods from 3 days to 4 weeks to be completed, similar to its Sr uptake, as previously reported. Kinetic models of the modified Freundlich and parabolic diffusion were examined for the experimental data on the Ba2+, Ca2+, and Mg2+ uptakes. The modified Freundlich model described well the Ba2+ ion uptake kinetics as well as that for the Sr2+ ion, while for the Ca2+ and Mg2+ ions the parabolic diffusion model showed better fitting. The alkali and alkaline earth ion exchange isotherms were also determined in comparison to the Sr2+ exchange isotherm. The thermodynamic equilibria for these cations were compared by using Kielland plots evaluated from the isotherms. PMID:15984251

  1. Hydrophilic Strong Anion Exchange (hSAX) Chromatography for Highly Orthogonal Peptide Separation of Complex Proteomes

    PubMed Central


    Due to its compatibility and orthogonality to reversed phase (RP) liquid chromatography (LC) separation, ion exchange chromatography, and mainly strong cation exchange (SCX), has often been the first choice in multidimensional LC experiments in proteomics. Here, we have tested the ability of three strong anion exchanger (SAX) columns differing in their hydrophobicity to fractionate RAW264.7 macrophage cell lysate. IonPac AS24, a strong anion exchange material with ultralow hydrophobicity, demonstrated to be superior to other materials by fractionation and separation of tryptic peptides from both a mixture of 6 proteins as well as mouse cell lysate. The chromatography displayed very high orthogonality and high robustness depending on the hydrophilicity of column chemistry, which we termed hydrophilic strong anion exchange (hSAX). Mass spectrometry analysis of 34 SAX fractions from RAW264.7 macrophage cell lysate digest resulted in an identification of 9469 unique proteins and 126318 distinct peptides in one week of instrument time. Moreover, when compared to an optimized high pH/low pH RP separation approach, the method presented here raised the identification of proteins and peptides by 10 and 28%, respectively. This novel hSAX approach provides robust, reproducible, and highly orthogonal separation of complex protein digest samples for deep coverage proteome analysis. PMID:23294059

  2. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions

    PubMed Central


    We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl– or I– ions and reinsertion of Br– ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles. PMID:26214734

  3. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions.


    Akkerman, Quinten A; D'Innocenzo, Valerio; Accornero, Sara; Scarpellini, Alice; Petrozza, Annamaria; Prato, Mirko; Manna, Liberato


    We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl(-) or I(-) ions and reinsertion of Br(-) ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles. PMID:26214734

  4. Donnan dialysis of transition metal ions using anion exchange membrane modified with Xylenol Orange

    SciTech Connect

    Sawicka, B.; Brajter, K.; Trojanowicz, M.; Kado, B. )


    A chelating ion-exchange membrane was obtained by modification of a PTFE-based anion-exchange membrane with Xylenol Orange. Its utility for dialysis of Cu(II), Ni(II), Mn(II), and Zn(II) was investigated by using receiver solutions without and with iminodiacetate. 1,2-diaminocyclohexanetetraacetic acid, and tetraethylenepentamine. In comparison to commercial PTFE cation-exchange membranes, modified chelating membranes exhibit for the metal ions investigated a larger differentiation of retention in the membrane phase and transport-to-receiver solution depending on the modifier used and the composition of the receiver solution.

  5. Anion-exchangeable layered materials based on rare-earth phosphors: unique combination of rare-earth host and exchangeable anions.


    Geng, Fengxia; Ma, Renzhi; Sasaki, Takayoshi


    Layered materials, three-dimensional crystals built from stacking two-dimensional components, are attracting intense interest because of their structural anisotropy and the fascinating properties that result. However, the range of such layered materials that can exchange anions is quite small. Continuing efforts have been underway to identify a new class of anion-exchangeable materials. One major goal is the incorporation of rare-earth elements within the host because researchers expect that the marriage of rare-earth skeleton host and the exchangeable species within the interlayer will open up new avenues both for the assembly of layered materials and for the understanding of rare-earth element chemistry. Such lanthanide layered solids have industrial potential. These materials are also of academic importance, serving as an ideal model for studying the cationic size effect on structure stability associated with lanthanide contraction. In this Account, we present the work done by ourselves and others on this novel class of materials. We examine the following four subtopics regarding these layered anionic materials: (1) synthesis strategy and composition diversity, (2) structural features, (3) structure stability with relative humidity, and (4) applications. These materials can be synthesized either by hydrothermal reactions or by homogeneous precipitation, and a variety of anions can be intercalated into the gallery. Although only cations with a suitable size can form the layered structure, the possible range is wide, from early to late lanthanides. We illustrate the effect of lanthanide contraction on properties including morphology, lattice dimensions, and coordination numbers. Because each lanthanide metal ion coordinates water molecules, and the water molecules point directly into the gallery space, this feature plays a critical role in stabilizing the layered structure. In the 9-fold monocapped square antiprism structure, the humidity-triggered transition

  6. Preparation, Characterization and Anion Exchange Properties of Polypyrrole/Carbon Nanotube Nanocomposite

    SciTech Connect

    Cui, Xiaoli; Engelhard, Mark H.; Lin, Yuehe


    In this study, polypyrrole (PPy) thin film was electrodeposited on carbon nanotube (CNT) backbones by applying a constant deposition potential in solution with 0.1 M pyrrole with different electrolytes such as NaCl, NaNO3, or NaClO4. The hybrid films were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. SEM images revealed the nanostructrure of PPy film generated on CNTs surface. The electrochemical and anion exchange properties of PPy-CNT composite film have been investigated. Nanostructured composite thin films of polypyrrole/CNTs were studied by cyclic voltammetry between 0.4 and -0.8 V in aqueous solution to evaluate their cycling stability and capacity for electrically switched anion exchange. It is found that the PPy/CNTs nanocomposites can improve the anion exchange capacity and stability of the PPy-CNTs composite film, which may be attributed to the nanostructure of the polypyrrole film, which offer the high aspect ratio of the film and ease of diffusion of anions in the nanostructured film, and the interaction between CNTs and PPy.

  7. Growing season net ecosystem CO2 exchange of two desert ecosystems with alkaline soils in Kazakhstan

    PubMed Central

    Li, Longhui; Chen, Xi; van der Tol, Christiaan; Luo, Geping; Su, Zhongbo


    Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils, we have measured the NEE using eddy covariance (EC) method at two alkaline sites during growing season in Kazakhstan. The diurnal course of mean monthly NEE followed a clear sinusoidal pattern during growing season at both sites. Both sites showed significant net carbon uptake during daytime on sunny days with high photosynthetically active radiation (PAR) but net carbon loss at nighttime and on cloudy and rainy days. NEE has strong dependency on PAR and the response of NEE to precipitation resulted in an initial and significant carbon release to the atmosphere, similar to other ecosystems. These findings indicate that biotic processes dominated the carbon processes, and the contribution of abiotic carbon process to net ecosystem CO2 exchange may be trivial in alkaline soil desert ecosystems over Central Asia. PMID:24455157

  8. Integrating tunable anion exchange with reverse osmosis for enhanced recovery during inland brackish water desalination.


    Smith, Ryan C; SenGupta, Arup K


    For inland brackish water desalination by reverse osmosis or RO, concentrate or reject disposal poses a major challenge. However, enhanced recovery and consequent reduction in the reject volume using RO processes is limited by the solubility of ions present in the feedwater. One of the most common and stubborn precipitate formed during desalination is calcium sulfate. Reducing or eliminating the presence of sulfate would allow the process to operate at higher recoveries without threat to membrane scaling. In this research, this goal is accomplished by using an appropriate mixture of self-regenerating anion exchange resins that selectively remove and replace sulfate by chloride prior to the RO unit. Most importantly, the mixed bed of anion exchange resins is self-regenerated with the reject brine from the RO process, thus requiring no addition of external chemicals. The current work demonstrates the reversibility of the hybrid ion exchange and RO (HIX-RO) process with 80% recovery for a brackish water composition representative of groundwater in San Joaquin Valley in California containing approximately 5200 mg/L of total dissolved solids or TDS. Consequently, the reject volume can be reduced by 50% without the threat of sulfate scaling and use of antiscaling chemicals can be eliminated altogether. By appropriately designing or tuning the mixed bed of anion exchange resins, the process can be extended to nearly any composition of brackish water for enhanced recovery and consequent reduction in the reject volume. PMID:25839209

  9. Alkaline earth metal ions mediated self-assembly in the presence of 1,10-phenanthroline, nitrate and tetrafluoroborate anions

    NASA Astrophysics Data System (ADS)

    Dimitrov, Georgi D.; Neykov, Mihail V.


    1,10-Phenanthroline (phen) was reacted with various combinations of two and in one of the cases with three alkaline earth metal cations taken in equimolar ratio. In all the competitive reactions it was obtained only one product free of any impurities, which is in accordance with the theory of self-assembly processes. The compound [Ca(phen) 2(H 2O) 2(NO 3)]NO 3 was synthesized in all the reactions where Ca 2+ was involved. In contrast, none of the reactions led to the preparation of a strontium complex. Two of the reactions, in which participated Be 2+, resulted in the compound (phen) 3(H +) 2(NO -3) 2. The second group of competitive reactions was carried out with 1,10-phenanthroline and a given alkaline earth metal cation in the presence of the anions NO 3- and BF 4-. These led to the compounds Mg(phen) 4(BF 4) 2(H 2O) 3, [Ca(phen) 2(H 2O) 2(NO 3)]BF 4, Sr(phen) 4(OH)(BF 4)(H 2O) and Ba(phen) 3.5(BF 4) 2(H 2O). All the newly synthesized substances were characterized by elemental analysis, IR- and FAB-mass-spectra.

  10. Understanding ion and solvent transport in anion exchange membranes under humidified conditions

    NASA Astrophysics Data System (ADS)

    Sarode, Himanshu

    Anion exchange membranes (AEM) have been studied for more than a decade for potential applications in low temperature fuel cells and other electrochemical devices. They offer the advantage of faster reaction kinetics under alkaline conditions and ability to perform without costly platinum catalyst. Inherently slow diffusion of hydroxide ions compared to protons is a primary reason for synthesizing and studying the ion transport properties in AEMs. The aim of this thesis is to understand ion transport in novel AEMs using Pulse Gradient stimulated Spin Echo Nuclear Magnetic Resonance technique (PGSE NMR), water uptake, ionic conductivity, Small Angle X-ray Scattering (SAXS) etc. All experiments were performed under humidified conditions (80--95% relative humidity) and fuel cell operating temperatures of 30--90°C. In this work, the NMR tube design was modified for humidifying the entire NMR tube evenly from our previous design. We have developed a new protocol for replacing caustic hydroxide with harmless fluoride or bicarbonate ions for 19F and 13 C NMR diffusion experiments. After performing these NMR experiments, we have obtained in-depth understanding of the morphology linked ion transport in AEMs. We have obtained the highest fluoride self-diffusion coefficient of > 1 x 10-5 cm2/sec ( 55°C) for ETFE-g-PVBTMA membrane which is a result of low tortuosity of 1 obtained for the membrane. This faster fluoride transport combined with low tortuosity of the membrane resulted in > 100mS/cm hydroxide conductivity for the membrane. Polycyclooctene (PCOE) based triblock copolymers are also studied for in-depth understanding of molecular weight, IEC, mechanical and transport properties. Effect of melting temperature of PCOE has favorable effect on increasing ion conductivity and lowering activation energy. Mechanical properties of these types of membranes were studied showing detrimental effect of water plasticization which results in unsuitable mechanical properties

  11. Investigation of platinum(IV) ions sorption on some anion exchangers by using photoacoustic and DRS methods

    NASA Astrophysics Data System (ADS)

    Wójcik, G.; Pasieczna, S.; Hubicki, Z.; Ryczkowski, J.


    The high cost and increasing demand have prompted the recovery of platinum from low-grade ores and spent catalysts. Platinum exist in chloride solutions in the anionic form, therefore anion-exchanging is a better method than cation exchanging for sorption of platinum(IV) ions. Therefore applicability of four anion exchangers Duolite A 30 B, Lewatit MP 62, Lewatit MP 64 and Purolite A 520E were studied. The FT-IR/PAS spectra were recorded by means of a Bio-Rad Excalibur 3000MX spectrometer equipped with photoacoustic detector MTEC300. The DRS (diffuse reflectance spectrometry) spectra of three anion exchangers Lewatit MP 62, Lewatit MP 64 and Purolite A 520E are similar but spectra of anion exchangers Duolite A 30B is different. The differences in spectra can be result from skeletons of anion exchangers. Recorded FT-IR/PAS spectra allow to distinguish the differences between applied anion exchangers before and after sorption of platinum(IV) ions. In all spectra the biggest differences could be noticed in the OH and CH{2} stretching region.

  12. Oxyanion sorption and surface anion exchange by surfactant-modified clay minerals

    SciTech Connect

    Li, Z.


    In this study the sorption of nitrate (NO{sub 2}{sup {minus}}) and chromate (CrO{sub 4}{sup 2{minus}}) from aqueous solution by surfactant-modified clay minerals was investigated. Both the sorption and desorption of oxyanions were found to follow a Langmuir sorption isotherm. In general, the sorption affinity is higher for chromate than for nitrate, reflecting that the interaction between the divalent anions and the surfactant bilayer is stronger than that between the monovalent anions and the surfactant bilayer. Surfactant-modified kaolinite has a higher sorption capacity for chromate. The sorption capacities for chromate and nitrate are equal for surfactant-modified illite while the sorption capacity for nitrate is higher for surfactant-modified smectite. Desorption by water revealed that chromate sorption was irreversible, while nitrate sorption was slightly reversible. In a mixed solution system, nitrate and chromate compete for the same sorption sites, resulting in a decrease in sorption capacity for each anion. Stoichiometric counterion desorption due to chromate and/or nitrate sorption further confirms that sorption of oxyanions by surfactant-modified clay minerals was due to surface anion exchange. The selectivity coefficients were higher for chromate to replace bromide than for nitrate to replace bromide for surfactant-modified kaolinite, but lower when surfactant-modified illite and smectite were the anion exchangers. The results indicate that surfactant-modified clay minerals are effective sorbents to remove anionic contaminants from water. However, the types of clay minerals should be correctly selected to maximize the contaminant removal efficiency.

  13. Determination of Cr(VI) in welding fumes by anion-exchange fast protein liquid chromatography with electrothermal atomic absorption spectrometric detection.


    Milacic, Radmila; Scancar, Janez; Tusek, Janez


    The applicability of an anion-exchange fast protein liquid chromatographic-electrothermal atomic absorption spectrometric procedure (FPLC-ETAAS) was investigated for the determination of Cr(VI) in welding fumes after alkaline extraction of aerosols loaded on filters. Gas tungsten arc welding (GTAW) of stainless steel was applied. Samples of welding fumes were collected during regular welding on polycarbonate membrane filters of 8 microm and 0.4 microm pore size (inhalable and respirable aerosols). Alkaline extraction (2% NaOH-3% Na2CO3) of filters in a heated ultrasonic bath was applied to leach Cr from the airborne particulate matter. 0.5 cm3 of sample extract was then injected onto an anion-exchange FPLC column. Tris-HCl buffer (0.005 mol dm(-3), pH 8.0) and the same buffer with NaCl (0.5 mol dm(-3)) were employed in gradient elution (15 min, flow rate 1 cm3 min(-1)). The separated Cr species were determined "off line" by ETAAS in 0.5 cm3 fractions. Cr(VI) was reproducibly and quantitatively eluted from 12.0 to 13.0 min with a maximum peak at 12.5 min. Good repeatability of measurement (+/-3.0%) of alkaline extracts was obtained for Cr(VI). The LOD (3s) was found to be 0.035 microg m(-3) Cr(VI), when 2 m3 of aerosols were collected on the filter. Validation of the procedure was performed by spiking alkaline extracts and by the analysis of standard reference material CRM 545, Cr(VI) in welding dust loaded on a filter. The technique was successfully applied for the determination of Cr(VI) in welding fumes. PMID:11939630

  14. Chromatographic evaluation of reversed-phase/anion-exchange/cation-exchange trimodal stationary phases prepared by electrostatically driven self-assembly process.


    Liu, Xiaodong; Pohl, Christopher; Woodruff, Andrew; Chen, Jinhua


    This work describes chromatographic properties of reversed-phase/cation-exchange/anion-exchange trimodal stationary phases. These stationary phases were based on high-purity porous spherical silica particles coated with nano-polymer beads using an electrostatically driven self-assembly process. The inner-pore area of the material was modified covalently with an organic layer that provided both reversed-phase and anion-exchange properties while the outer surface was coated with nano-sized polymer beads with strong cation-exchange characteristics. This design ensured spatial separation of the anion-exchange and the cation-exchange regions, and allowed reversed-phase, anion-exchange and cation-exchange retention mechanisms to function simultaneously. Chromatographic evaluation of ions and small molecules suggested that retention of ionic analytes was influenced by the ionic strength, pH, and mobile phase organic solvent content, and governed by both ion-exchange and hydrophobic interactions. Meanwhile, neutral analytes were retained by hydrophobic interaction and was mainly affected by mobile phase organic solvent content. Depending on the specific application, selectivity could be optimized by adjusting the anion-exchange/cation-exchange capacity ratio (selectivity), which was achieved experimentally by using porous silica particles with different surface areas. PMID:21530974

  15. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles.


    Pan, Bingcai; Xu, Jingsheng; Wu, Bing; Li, Zhigang; Liu, Xitong


    Here we fabricated a novel nanocomposite HZO-201, an encapsulated nanosized hydrous zirconium oxide (HZO) within a commercial porous polystyrene anion exchanger D201, for highly efficient defluoridation of water. HZO-201 exhibited much higher preference than activated alumina and D201 toward fluoride removal when competing anions (chloride, sulfate, nitrate, and bicarbonate) coexisted at relatively high levels. Fixed column adsorption indicated that the effective treatable volume of water with HZO-201 was about 7-14 times as much as with D201 irrespective of whether synthetic solution or groundwater was the feeding solution. In addition, HZO-201 could treat >3000 BV of the acidic effluent (around 3.5 mg F(-)/L) per run at pH 3.5, compared to only ∼4 BV with D201. The exhausted HZO-201 could be regenerated by NaOH solution for repeated use without any significant capacity loss. Such attractive performance of HZO-201 resulted from its specific hybrid structure, that is, the host anion exchanger D201 favors the preconcentration of fluoride ions inside the polymer based on the Donnan principle, and the encapsulated nanosized HZO exhibits preferable sequestration of fluoride through specific interaction, as further demonstrated by XPS spectra. The influence of solution pH, competitive anions, and contact time was also examined. The results suggested that HZO-201 has a great potential in efficient defluoridation of groundwater and acidic mine drainage. PMID:23909842

  16. Incorporation of phthalocyanines by cationic and anionic clays via ion exchange and direct synthesis

    SciTech Connect

    Carrado, K.A.; Botto, R.E.; Winans, R.E. ); Forman, J.E. )


    Phthalocyanines (Pc) and metallophthalocyanines were incorporated into the galleries of anionic and cationic clays via ion exchange and in situ crystallization of the synthetic clay layers. Intercalation compounds between the layered magnesium silicate clay hectorite and cationic phthalocyanines were directly prepared by refluxing for 2 days aqueous solutions of silica sol, magnesium hydroxide, lithium flouride, and either alcian blue dyes (Cu(II)Pc) or 15-crown-5 tetra-substituted phthalocyanine (15C5Pc). The CuPc dyes are tetrapositively charged through peripheral quaternary ammonium groups, whereas the 15C5Pc is electrically neutral. Anionic clays prepared by hydrolysis of mixed solutions of aluminum nitrate, magnesium nitrate, and copper(II) phthalocyaninetetrasulfonic acid, tetrasodium salt (CuPcTs) in sodium hydroxide resulted in crystallization of an intercalation compound between a layered double hydroxide (LDH) and this anionic Pc. The material prepared by ion exchange of CuPcTs into a wet, freshly prepared LDH was superior in crystallinity. The phthalocyanines are oriented parallel to cationic hectorite clay layers (gallery heights 4.5-6.5[angstrom]) and perpendicular to anionic layered double hydroxide clay layers (gallery height 18,2[angstrom]) in correlation with their hosts' respective layer charge densities. 32 refs., 4 figs., 2 tabs.

  17. Plutonium(IV) precipitates formed in alkaline media in the presence of various anions

    SciTech Connect

    Krot, N.N.; Shilov, V.P.; Yusov, A.B.; Tananaev, I.G.; Grigoriev, M.S.; Garnov, A.Yu.; Perminov, V.P.; Astafurova, L.N.


    The tendency of Pu(IV) to hydrolyze and form true solutions, colloid solutions, or insoluble precipitates has been known since the Manhattan Project. Since then, specific studies have been performed to examine in detail the equilibria of Pu(IV) hydrolytic reactions in various media. Great attention also has been paid to the preparation, structure, and properties of Pu(IV) polymers or colloids. These compounds found an important application in sol-gel technology for the preparation of nuclear fuel materials. A most important result of these works was the conclusion that Pu(IV) hydroxide, after some aging, consists of very small PuO{sub 2} crystallites and should therefore be considered to be Pu(IV) hydrous oxide. However, studies of the properties and behavior of solid Pu(IV) hydroxide in complex heterogeneous systems are rare. The primary goal of this investigation was to obtain data on the composition and properties of Pu(IV) hydrous oxide or other compounds formed in alkaline media under different conditions. Such information is important to understand Pu(IV) behavior and the forms of its existence in the Hanford Site alkaline tank waste sludge. This knowledge then may be applied in assessing plutonium criticality hazards in the storage, retrieval, and treatment of Hanford Site tank wastes as well as in understanding its contribution to the transuranic waste inventory (threshold at 100 nCi/g or about 5 {times} 10{sup {minus}6} M) of the separate solution and solid phases.

  18. Selective chromatographic fractionation of catechol estrogens on anion exchangers in borate form.


    Fotsis, T; Heikkinen, R


    The borate form of anion exchangers has been investigated for its utility in the field of estrogen analysis. The borate form of a weak (DEAE-Sephadex A-25) and a strong (QAE-Sephadex A-25) anion exchanger was easily prepared by appropriate washing of the gels, without the need of time consuming immobilization techniques. Estrogens with vicinal cis-hydroxyls were strongly retained in both gels through formation of borate complexes and readily separated from estrogens not possessing such groups. Moreover, borate complex formation with the labile o-dihydroxyphenyl moiety of catechol estrogens fully protected them from decomposition during chromatography. Quantitative recovery of catechol estrogens was thereby obtained without use of antioxidants. The borate form of QAE-Sephadex A-25 was capable, in addition, of separating estrogens not possessing vicinal cis-hydroxyls from the corresponding neutral steroids. PMID:6298506

  19. Preparation of anion-exchangeable polymer vesicles through the self-assembly of hyperbranched polymeric ionic liquids.


    Fan, Yujiao; Zhang, Dapeng; Wang, Jie; Jin, Haibao; Zhou, Yongfeng; Yan, Deyue


    This work reports the self-assembly of anion-exchangeable vesicles from an amphiphilic hyperbranched polymeric ionic liquid (HBPIL). By a simple one-step anion exchange with methyl orange, the obtained HBPILs could self-assemble into pH-indicative and colorful vesicles in water with color changes directly visible to the naked eye in response to solution pH. In addition, by another step of anion exchange with bovine serum albumin (BSA), the BSA-coated vesicles could also be readily prepared. PMID:25813408

  20. New anion-exchange resins for improved separations of nuclear materials

    SciTech Connect

    Barr, M.E.; Bartsch, R.A.


    'The overall objective of this research is to develop a predictive capability which allows the facile design and implementation of multi-functionalized anion-exchange materials which selectively sorb metal complexes of interest from targeted process, waste, and environmental streams. The basic scientific issues addressed are actinide complex speciation along with modeling of the metal complex/functional-site interactions in order to determine optimal binding-site characteristics. The new ion-exchange resins interface the rapidly developing field of ion-specific chelating ligands with robust, commercial ion-exchange technology. Various Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new materials: Efficient Separations and Processing; Plutonium; Plumes; Mixed Waste; High-Level Tank Waste. Sites within the DOE complex which would benefit from the improved anion-exchange technology include Hanford, INEL, Los Alamos, Oak Ridge, and Savannah River. As of April 1998, this report summarizes work after 1.6 years of a 3-year project. The authors technical approach combines empirical testing with theoretical modeling (applied in an iterative mode) in order to determine optimal binding-site characteristics. They determine actinide-complex speciation in specific media, then develop models for the metal complex/functional-site interactions Synthesis and evaluation of multi-functionalized extractants and ion-exchange materials that implement key features of the optimized binding site provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The implementation of the bifunctionality concept involves N-derivatization of pyridinium units from a base poly(4-vinylpyridine) resin with a second cationic site such that the two anion-exchange sites are linked by spacer arms of varying

  1. Anion Exchange Capacity As a Mechanism for Deep Soil Carbon Storage in Variable Charge Soils

    NASA Astrophysics Data System (ADS)

    Dietzen, C.; James, J. N.; Ciol, M.; Harrison, R. B.


    Soil is the most important long-term sink for carbon (C) in terrestrial ecosystems, containing more C than plant biomass and the atmosphere combined. However, soil has historically been under-represented in C cycling literature, especially in regards to information about subsurface (>1.0 m) layers and processes. Previous research has indicated that Andisols with large quantities of noncrystalline, variable-charge minerals, including allophane, imogolite, and ferrihydrite, contain more C both in total and at depth than other soil types in the Pacific Northwest. The electrostatic charge of variable-charge soils depends on pH and is sometimes net positive, particularly in acid conditions, such as those commonly developed under the coniferous forests of the Pacific Northwest. However, even soils with a net negative charge may contain a mixture of negative and positive exchange sites and can hold some nutrient anions through the anion exchange capacity. To increase our understanding of the effects of variable-charge on soil organic matter stabilization, deep sampling is under way at the Fall River Long-Term Soil Productivity Site in western Washington. This site has a deep, well-drained soil with few rocks, which developed from weathered basalt and is classified as an Andisol of the Boistfort Series. Samples have been taken to a depth of 3 m at eight depth intervals. In addition to analyzing total soil C, these soils will be analyzed to determine functional groups present, cation exchange capacity, anion exchange capacity, and non-crystalline mineral content. These data will be analyzed to determine any correlations that may exist between these mineralogical characteristics, total soil C, and types of functional groups stored at depth. The most abundant organic functional groups, including carboxylic and phenolic groups, are anionic in nature, and soil positive charge may play an important role in binding and stabilizing soil organic matter and sequestering C.

  2. The dynamics of sorption of sulfuric acid by weakly basic polyacrylic anion exchangers

    NASA Astrophysics Data System (ADS)

    Mamchenko, A. V.; Kushnir, T. V.


    The nonequilibrium dynamics of sorption of sulfuric acid by free base forms of Amberlite IRA-67 and Lewatite VP.OC.1072 weakly basic anion exchangers is studied. It is established that, in hydrodynamic regimes of filtration, which are typical of OH filters of the first stage of water-desalting plants, the limiting stage of sorption kinetics is inside diffusion. It is concluded that the process is correctly described by an asymptotic solution to the inside-diffusion model of sorption dynamics.

  3. Anion exchange selectivity of surfactant modified clinoptilolite-rich tuff for environmental remediation.


    de Gennaro, Bruno; Catalanotti, Lilia; Bowman, Robert S; Mercurio, Mariano


    Lately, the functionalization of industrial minerals with high technological properties, such as natural zeolites, is shaping as a promising approach in environmental sphere. In fact, under the specific conditions, the surface functionalization via adsorption of cationic surfactants reverses the surface charge of the mineral, enabling zeolites to simultaneously interact either with organic contaminants or inorganic anions. This aspect allows zeolites to be used in the remediation of contaminated fluids. The present research shed new light on some still not fully understood aspects concerning exchange kinetics such as anion-exchange mechanisms and selectivity of surface modified minerals. For this purpose the mineralogical characterization and the surface properties evaluation (X Ray Powder Diffraction, chemical analysis, thermal analysis, ECEC and AEC) of a clinoptilolite-rich tuff were performed, and the anion exchange isotherms of the sample, modified with hexadecyltrimethylammonium chloride or bromide (HDTMA-Cl/-Br), were determined. Ion-exchange equilibrium data of uni-uni valent reaction were obtained by solutions containing Br(-), Cl(-), NO3(-) or ClO4(-). Liquid phase was analysed via high performance liquid chromatography. Thermodynamic quantities (Ka and ΔG(0)) were determined and compared with the Hofmeister series. The value of the ECEC, calculated in batch conditions, was about 137 mmol/kg, in good agreement with that evaluated in dynamic conditions, while the AEC data were different for the SMNZ-Br and -Cl samples, amounting to 137 and 106 mmol/kg, respectively, thus indicating a different compactness of the bilayer formed in the two cases. Moreover, the anion isotherm results and the mathematical evaluation of the thermodynamic parameters, demonstrated the good affinity of SMNZ-Br towards chloride, nitrate and perchlorate, and of SMNZ-Cl for nitrate and perchlorate, also endorsing the possibility of using the same thermodynamic approach developed to

  4. Determination of traces of silver in waters by anion exchange and atomic absorption spectrophotometry

    USGS Publications Warehouse

    Chao, T.T.; Fishman, M. J.; Ball, J.W.


    A method has been developed for the accurate determination of 0.1-1 ??g of silver per liter of water. The method permits stabilization of silver in water without loss to container walls. Optimum conditions have been established for the complete recovery of silver from water with an anion-exchange column, for quantitative elution of silver from the resin, and for measurement of silver by atomic absorption spectrophotometry after chelation with ammonium pyrrolidine dithiocarbamate and extraction of the chelate with MIBK. Silver in the 1-10 ??g 1 range can be determined by extraction without pre-concentration on an ion-exchange resin. ?? 1969.

  5. Russian studies of the safety of anion exchange in nitric acid

    SciTech Connect

    Hyder, M.L.; Bartenev, S.A.; Lazarev, L.N.


    Synthetic ion exchange resins came into use in the Soviet Union in the 1950`s, and domestic anion exchange resins based on quaternary amine groups have long been used in the Russian nuclear industry. These resins are similar to resins used in the West, and include pyridine-based resins, as well as the more conventional aryl polymers with substituted methyl amines. (Slide 1) The sensitivity of these amines to reaction with nitric acid and other oxidants has been a concern in Russia as in the West, and numerous laboratory studies have been conducted on the reactions involved. Several incidents involving pressure or temperature excursions have provided incentives for such studies. (Slide 2) This report briefly summarizes this work. A report by the Russian authors of this paper providing greater detail is to be issued as a U.S. Dept. of Energy document. Additionally, a second report by these authors, describing new studies on anion exchange resin safety, will also be issued as a DOE report. The separation of plutonium, neptunium, etc. from other materials by ion exchange requires rather strong nitric acid (6-8 M). In some systems, such as the processing of {sup 238}Pu, intense ionizing radiation may also be present during ion exchange separation. As a result, it is necessary to consider not only thermal hydrolysis and oxidation and their effects on the resin, but also radiolysis. All of these were investigated in the Russian studies.

  6. Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis.


    Guler, Enver; Zhang, Yali; Saakes, Michel; Nijmeijer, Kitty


    Reverse electrodialysis (RED) or blue energy is a non-polluting, sustainable technology for generating power from the mixing of solutions with different salinity, that is, seawater and river water. A concentrated salt solution (e.g., seawater) and a diluted salt solution (e.g., river water) are brought into contact through an alternating series of polymeric anion-exchange membranes (AEMs) and cation-exchange membranes (CEMs), which are either selective for anions or cations. Currently available ion-exchange membranes are not optimized for RED, whereas successful RED operation notably depends on the used ion-exchange membranes. We designed such ion-exchange membranes and for the first time we show the performance of tailor-made membranes in RED. More specifically, we focus on the development of AEMs because these are much more complex to prepare. Herein we propose a safe and more environmentally friendly method and use halogenated polyethers, such as polyepichlorohydrin (PECH) as the starting material. A tertiary diamine (1,4-diazabicyclo[2.2.2]octane, DABCO) was used to introduce the ion-exchange groups by amination and for simultaneous cross-linking of the polymer membrane. Area resistances of the series of membranes ranged from 0.82 to 2.05 Ω cm² and permselectivities from 87 to 90 %. For the first time we showed that tailor-made ion-exchange membranes can be applied in RED. Depending on the properties and especially membrane thickness, application of these membranes in RED resulted in a high power density of 1.27 W m⁻², which exceeds the power output obtained with the commercially available AMX membranes. This shows the potential of the design of ion-exchange membranes for a viable blue energy process. PMID:23109486

  7. Selectivity of ion exchangers in extracting cesium and rubidium from alkaline solutions

    NASA Astrophysics Data System (ADS)

    Shelkovnikova, L. A.; Kargov, S. I.; Gavlina, O. T.; Ivanov, V. A.; Al'tshuler, G. N.


    We compare the ion exchange selectivity of phenol-type sorbents based on phenol formaldehyde resins, products of condensation of diatomic phenols with formaldehyde, and crosslinked polymer based on C-phenyl[4]resorcinarene resin, for cesium and rubidium ions. It is shown that phenol formaldehyde sorbents are the ones most selective. The interaction of alkali metal cations with the anion of calix[4]arene is investigated via quantum-chemical modeling. It is shown that the selectivity toward cesium and rubidium ions in ion exchangers of the phenolic type is not due to specific interactions of ions with phenolic groups.

  8. Retention behavior of C1-C6 aliphatic monoamines on anion-exchange and polymethacrylate resins with heptylamine as eluent.


    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae Jeong; Lee, Kwang-Pill


    Retention behavior of C1-C6, aliphatic monoamines (methylamine, ethylamine, propylamine, butylamine, amylamine and hexylamine) on columns (150 mm x 6 mm i.d.) packed with various anion-exchange resins (styrene-divinylbenzene (PS-DVB) copolymer-based strongly basic anion-exchange resin: TSKgel SAX, polymethacrylate-based strongly basic anion-exchange resin: TSKgel SuperQ-5PW and polymethacrylate-based weakly basic anion-exchange resin: TSKgel DEAE-5PW) and unfunctionized polymethacrylate resins (TSKgel G5000PW and TSKgel G3000PWXL) was investigated with basic solutions (sodium hydroxide and heptylamine) as the eluents. Due to strongly electrostatic repulsion (ion-exclusion effect) between these anion-exchange resins and these amines, peak resolution between these amines on these anion-exchange resin columns was unsatisfactory with both sodium hydroxide and heptylamine as the eluents. In contrast, these polymethacrylate resins were successfully applied as the stationary phases for the separation of these C1-C6 amines with heptylamine as eluent, because of both small hydrophobicity and small cation-exchange ability of these resins. Excellent simultaneous separation, highly sensitive conductimetric detection and symmetrical peaks for these C1-C6 amines were achieved on the TSKgel G3000PWXL column in 35 min with 5 mM heptylamine at pH 11.1 as the eluent. PMID:15250421

  9. New Anion-Exchange Resins for Improved Separations of Nuclear Materials

    SciTech Connect

    Bartsch, Richard A.; Barr, Mary E.


    Improved separations of nuclear materials will have a significant impact upon a broad range of DOE activities. DOE-EM Focus Areas and Crosscutting Programs have identified improved methods for the extraction and recovery of radioactive metal ions from process, waste, and environmental waters as critical needs for the coming years. We propose to develop multifunctional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. Our new ion-exchange resins interface the field of ion-specific chelating ligands with robust, commercial ion-exchange technology to provide materials which exhibit superior selectivity and kinetics of sorption and desorption. The following Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new material: Efficient Separations and Processing - radionuclide removal from aqueous phases; Plutonium - Pu, Am or total alpha removal to meet regulatory requirement s before discharge to the environment; Plumes - U and Tc in groundwater, U, Pu, Am, and Tc in soils; Mixed Waste - radionuclide partitioning; High-Level Tank Waste - actinide and Tc removal from supernatants and/or sludges. The basic scientific issues which need to be addressed are actinide complex speciation along with modeling of metal complex/functional site interactions in order to determine optimal binding-site characteristics. Synthesis of multifunctionalized extractants and ion-exchange materials that implement key features of the optimized binding site, and testing of these materials, will provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The long-range implications of this research, however, go far beyond the nuclear complex. This new methodology of ''facilitated uptake'' could revolutionize ion-exchange technology

  10. Mono- and polyprotic buffer systems in anion exchange chromatography of influenza virus particles.


    Vajda, Judith; Weber, Dennis; Stefaniak, Sabine; Hundt, Boris; Rathfelder, Tanja; Müller, Egbert


    Different ions typically used in downstream processing of biologicals are evaluated for their potential in anion exchange chromatography of an industrially produced, pandemic influenza H1N1 virus. Capacity, selectivity and recovery are investigated based on single step elution parallel chromatography experiments. The inactivated H1N1 feedstream is produced in Madin-Darby Bovine Kidney cells. Interesting effects are found for sodium phosphate and sodium citrate. Both anions are triprotic kosmotropes. Anion exchange chromatography generally offers high scalability to satisfy sudden demands for vaccines, which may occur in case of an emerging influenza outbreak. Appropriate pH conditions for H1N1 adsorption are determined by Zeta potential measurements. The dynamic binding capacity of a salt tolerant polyamine-type resin is up to 6.4 times greater than the capacity of a grafted Q-type resin. Pseudo-affinity interactions of polyamines with the M2 protein of influenza may contribute to the obtained capacity increase. Both resins achieve greater capacity in sodium phosphate buffer compared to Tris/HCl. A recovery of 67% and DNA clearance close to 100% without DNAse treatment are achieved for the Q-type resin. Recovery of the virus from the salt tolerant resin requires the use of polyprotic acids in the elution buffer. 85% of the DNA and 60% of the proteins can be removed by the salt tolerant resin. The presence of sodium phosphate during anion exchange chromatography seems to support stability of the H1N1 particles in presence of hydrophobic cations. PMID:27130581

  11. Hydration and sorption characteristics of a polyfunctional weak-base anion exchanger after the sorption of vanillin and ethylvanillin

    NASA Astrophysics Data System (ADS)

    Rodionova, D. O.; Voronyuk, I. V.; Eliseeva, T. V.


    Features of the sorption of substituted aromatic aldehydes by a weak-base anion exchanger under equilibrium conditions are investigated using vanillin and ethylvanillin as examples. Analysis of the sorption isotherms of carbonyl compounds at different temperatures allows us to calculate the equilibrium characteristics of their sorption and assess the entropy and enthalpy contributions to the energy of the process. Hydration characteristics of the macroporous weak-base anion exchanger before and after the sorption of aromatic aldehydes are compared.

  12. Simulated diabetic ketoacidosis therapy in vitro elicits brain cell swelling via sodium-hydrogen exchange and anion transport.


    Rose, Keeley L; Watson, Andrew J; Drysdale, Thomas A; Cepinskas, Gediminas; Chan, Melissa; Rupar, C Anthony; Fraser, Douglas D


    A common complication of type 1 diabetes mellitus is diabetic ketoacidosis (DKA), a state of severe insulin deficiency. A potentially harmful consequence of DKA therapy in children is cerebral edema (DKA-CE); however, the mechanisms of therapy-induced DKA-CE are unknown. Our aims were to identify the DKA treatment factors and membrane mechanisms that might contribute specifically to brain cell swelling. To this end, DKA was induced in juvenile mice with the administration of the pancreatic toxins streptozocin and alloxan. Brain slices were prepared and exposed to DKA-like conditions in vitro. Cell volume changes were imaged in response to simulated DKA therapy. Our experiments showed that cell swelling was elicited with isolated DKA treatment components, including alkalinization, insulin/alkalinization, and rapid reductions in osmolality. Methyl-isobutyl-amiloride, a nonselective inhibitor of sodium-hydrogen exchangers (NHEs), reduced cell swelling in brain slices elicited with simulated DKA therapy (in vitro) and decreased brain water content in juvenile DKA mice administered insulin and rehydration therapy (in vivo). Specific pharmacological inhibition of the NHE1 isoform with cariporide also inhibited cell swelling, but only in the presence of the anion transport (AT) inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid. DKA did not alter brain NHE1 isoform expression, suggesting that the cell swelling attributed to the NHE1 was activity dependent. In conclusion, our data raise the possibility that brain cell swelling can be elicited by DKA treatment factors and that it is mediated by NHEs and/or coactivation of NHE1 and AT. PMID:26081282

  13. A green approach for preparing anion exchange membrane based on cardo polyetherketone powders

    NASA Astrophysics Data System (ADS)

    Hu, Jue; Zhang, Chengxu; Zhang, Xiaodong; Chen, Longwei; Jiang, Lin; Meng, Yuedong; Wang, Xiangke


    Anion exchange membranes (AEMs) have attracted great attention due to their irreplaceable role in platinum-free fuel cell applications. The majority of AEM preparations have been performed in two steps: the grafting of functional groups and quaternization. Here, we adopted a simpler, more eco-friendly approach for the first time to prepare AEMs by atmospheric-pressure plasma-grafting. This approach enables the direct introduction of anion exchange groups (benzyltrimethylammonium groups) into the polymer matrix, overcoming the need for toxic chloromethyl ether and quaternization reagents. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and 1H NMR spectroscopy results demonstrate that benzyltrimethylammonium groups have been successfully grafted into the cardo polyetherketone (PEK-C) matrix. Thermogravimetric analysis reveals that the plasma-grafting technique is a facile and non-destructive method able to improve the thermal stability of the polymer matrix due to the strong preservation of the PEK-C backbone structure and the cross-linking of the grafted side chains. The plasma-grafted PG-NOH membrane, which shows satisfactory alcohol resistance (ethanol permeability of 6.3 × 10-7 cm2 s-1), selectivity (1.2 × 104 S s cm-3), thermal stability (safely used below 130 °C), chemical stability, anion conductivity (7.7 mS cm-1 at 20 °C in deionized water) and mechanical properties is promising for the construction of high-performance fuel cells.

  14. Removal of fluorescent dissolved organic matter in biologically treated textile effluents by NDMP anion exchange process: efficiency and mechanism.


    Li, Wen-Tao; Xu, Zi-Xiao; Shuang, Chen-Dong; Zhou, Qing; Li, Hai-Bo; Li, Ai-Min


    The efficiency and mechanism of anion exchange resin Nanda Magnetic Polymer (NDMP) for removal of fluorescent dissolved organic matter in biologically treated textile effluents were studied. The bench-scale experiments showed that as well as activated carbon, anion exchange resin could efficiently remove both aniline-like and humic-like fluorescent components, which can be up to 40 % of dissolved organic matter. The humic-like fluorescent component HS-Em460-Ex3 was more hydrophilic than HS-Em430-Ex2 and contained fewer alkyl chains but more acid groups. As a result, HS-Em460-Ex3 was eliminated more preferentially by NDMP anion exchange. However, compared with adsorption resins, the polarity of fluorescent components had a relatively small effect on the performance of anion exchange resin. The long-term pilot-scale experiments showed that the NDMP anion exchange process could remove approximately 30 % of the chemical oxygen demand and about 90 % of color from the biologically treated textile effluents. Once the issue of waste brine from resin desorption is solved, the NDMP anion exchange process could be a promising alternative for the advanced treatment of textile effluents. PMID:26578375

  15. Anion conductive block poly(arylene ether)s: synthesis, properties, and application in alkaline fuel cells.


    Tanaka, Manabu; Fukasawa, Keita; Nishino, Eriko; Yamaguchi, Susumu; Yamada, Koji; Tanaka, Hirohisa; Bae, Byungchan; Miyatake, Kenji; Watanabe, Masahiro


    Anion conductive aromatic multiblock copolymers, poly(arylene ether)s containing quaternized ammonio-substituted fluorene groups, were synthesized via block copolycondensation of fluorene-containing (later hydrophilic) oligomers and linear hydrophobic oligomers, chloromethylation, quaternization, and ion-exchange reactions. The ammonio groups were selectively introduced onto the fluorene-containing units. The quaternized multiblock copolymers (QPEs) produced ductile, transparent membranes. A well-controlled multiblock structure was responsible for the developed hydrophobic/hydrophilic phase separation and interconnected ion transporting pathway, as confirmed by scanning transmission electron microscopic (STEM) observation. The ionomer membranes showed considerably higher hydroxide ion conductivities, up to 144 mS/cm at 80 °C, than those of existing anion conductive ionomer membranes. The durabilities of the QPE membranes were evaluated under severe, accelerated-aging conditions, and minor degradation was recognized by (1)H NMR spectra. The QPE membrane retained high conductivity in hot water at 80 °C for 5000 h. A noble metal-free direct hydrazine fuel cell was operated with the QPE membrane at 80 °C. The maximum power density, 297 mW/cm(2), was achieved at a current density of 826 mA/cm(2). PMID:21657275

  16. A pilot-scale evaluation of magnetic ion exchange treatment for removal of natural organic material and inorganic anions.


    Boyer, Treavor H; Singer, Philip C


    The objective of this research was to evaluate a magnetic ion exchange process (MIEX) for the removal of natural organic material (NOM) and bromide on a continuous-flow pilot-scale basis under different operating conditions and raw water characteristics. The most important operating variable was the effective resin dose (ERD), which is the product of the steady-state resin concentration in the contactor and the regeneration ratio. The raw water employed in this study had a moderate concentration of ultraviolet (UV)-absorbing substances and dissolved organic carbon (DOC), and a low turbidity, alkalinity, and concentration of competing anionic species. Experiments were conducted using the ambient raw water and raw water spiked with bromide, chloride, and sulfate. Substantial removal of UV-absorbing substances and DOC was achieved at ERDs as low as 0.16mL/L. Moderate bromide removal was achieved, depending on the ERD. Increasing the sulfate concentration resulted in decreased removal of UV-absorbing substances, DOC, and bromide. Consistent results were observed between the continuous-flow pilot plant tests and batch equilibrium studies. PMID:16844182

  17. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers

    PubMed Central

    Alper, Seth L.


    Summary Plasmalemmal Cl–/HCO3– exchangers are encoded by the SLC4 and SLC26 gene superfamilies, and function to regulate intracellular pH, [Cl–] and cell volume. The Cl–/HCO3– exchangers of polarized epithelial cells also contribute to transepithelial secretion and reabsorption of acid–base equivalents and Cl–. This review focuses on Na+-independent electroneutral Cl–/HCO3– exchangers of the SLC4 family. Human SLC4A1/AE1 mutations cause the familial erythroid disorders of spherocytic anemia, stomatocytic anemia and ovalocytosis. A largely discrete set of AE1 mutations causes familial distal renal tubular acidosis. The Slc4a2/Ae2–/– mouse dies before weaning with achlorhydria and osteopetrosis. A hypomorphic Ae2–/– mouse survives to exhibit male infertility with defective spermatogenesis and a syndrome resembling primary biliary cirrhosis. A human SLC4A3/AE3 polymorphism is associated with seizure disorder, and the Ae3–/– mouse has increased seizure susceptibility. The transport mechanism of mammalian SLC4/AE polypeptides is that of electroneutral Cl–/anion exchange, but trout erythroid Ae1 also mediates Cl– conductance. Erythroid Ae1 may mediate the DIDS-sensitive Cl– conductance of mammalian erythrocytes, and, with a single missense mutation, can mediate electrogenic SO42–/Cl– exchange. AE1 trafficking in polarized cells is regulated by phosphorylation and by interaction with other proteins. AE2 exhibits isoform-specific patterns of acute inhibition by acidic intracellular pH and independently by acidic extracellular pH. In contrast, AE2 is activated by hypertonicity and, in a pH-independent manner, by ammonium and by hypertonicity. A growing body of structure–function and interaction data, together with emerging information about physiological function and structure, is advancing our understanding of SLC4 anion exchangers. PMID:19448077

  18. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    SciTech Connect

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.


    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  19. Incorporation of multi-walled carbon nanotubes in microspheres used as anion exchange resin via suspension polymerization

    NASA Astrophysics Data System (ADS)

    Fathy, Mahmoud; Abdel Moghny, Th.; Awadallah, Ahmed E.; El-Bellihi, Abdel-Hameed A.-A.


    Amination of vinylbenzyl chloride-divinylbenzene (VBC-DVB) copolymers is an effective method for preparation of anion-exchange resins. Conventionally, the starting polymer is produced by chloromethylation of a styrene-divinylbenzene copolymer that utilizes chloromethyl methyl ether, a known carcinogen. An alterative approach is to copolymerize vinylbenzyl chloride with divinylbenzene to generate the necessary VBC-DVB. This method provides precise control over the density of the ion-exchange groups. The regiochemistry of the vinylbenzyl chloride methods was realized using solvent-ion exchange groups. These resulting anion-exchange polymers were characterized by a variety of techniques such as analytical titrations, transform infrared spectroscopy and thermal gravimetric analysis. Testing of these copolymers for breakthrough was performed. The results indicate that these anion exchangers have a meaningful increase in thermal stability over commercial anionic exchange beads. Resins containing MWCNTs achieved anion exchange capacity value of 323.6 meq/100 g over than that of copolymer resins and that useful in water desalination or treatment.

  20. Performance of selected anion exchange resins for the treatment of a high DOC content surface water.


    Humbert, Hugues; Gallard, Hervé; Suty, Hervé; Croué, Jean-Philippe


    The objective of this study was first to compare the performance of four strong anion exchange resins (AERs) (MIEX from Orica Pty Ltd, DOWEX-11 and DOWEX-MSA from DOW chemical and IRA-938 from Rohm and Haas) for their application in drinking water treatment (natural organic matter (NOM), mineral anions (nitrate, sulfate and bromide) and pesticide removal) using bench-scale experimental procedures on a high DOC content surface water. The efficiency of MIEX for NOM and mineral anions removal was furthermore evaluated using bench-scale dose-response experiments on raw, clarified and post-ozonated waters. NOM removal was assessed using the measurement of dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254) and the use of high-performance size exclusion chromatography with UV (HPSEC/UV) and fluorescence detection (HPSEC/FLUO). The MIEX and IRA938 anionic resins exhibit a faster removal of NOM and mineral anions compared to the DOWEX11 and MSA AERs. All the resins were found to be very effective with similar performances after 30 to 45 min of contact time. As expected, only limited sorption of atrazine and isoproturon (C0=1 microg/L) occurred with MIEX, DOWEX11 and MSA AERs. MIEX resin proved to be very efficient in eliminating NOM of high-molecular weight but also a large part of the smallest UV absorbing organic compounds which were refractory to coagulation/flocculation treatment. Remaining DOC levels after 30 min of contact with MIEX were found similar in raw water, clarified water and even post-ozonated water implying no DOC benefit can be gained by employing conventional treatment prior to MIEX treatment. Removal of bromide (initial concentration 110 microg/L) was also observed and ranged from 30% to 65% for resin dose increasing from 2 to 8 mL/L. T PMID:15899268

  1. Phosphorylation of the vacuolar anion exchanger AtCLCa is required for the stomatal response to abscisic acid.


    Wege, Stefanie; De Angeli, Alexis; Droillard, Marie-Jo; Kroniewicz, Laetitia; Merlot, Sylvain; Cornu, David; Gambale, Franco; Martinoia, Enrico; Barbier-Brygoo, Hélène; Thomine, Sébastien; Leonhardt, Nathalie; Filleur, Sophie


    Eukaryotic anion/proton exchangers of the CLC (chloride channel) family mediate anion fluxes across intracellular membranes. The Arabidopsis thaliana anion/proton exchanger AtCLCa is involved in vacuolar accumulation of nitrate. We investigated the role of AtCLCa in leaf guard cells, a specialized plant epidermal cell that controls gas exchange and water loss through pores called stomata. We showed that AtCLCa not only fulfilled the expected role of accumulating anions in the vacuole during stomatal opening but also mediated anion release during stomatal closure in response to the stress hormone abscisic acid (ABA). We found that this dual role resulted from a phosphorylation-dependent change in the activity of AtCLCa. The protein kinase OST1 (also known as SnRK2.6) is a key signaling player and central regulator in guard cells in response to ABA. Phosphorylation of Thr(38) in the amino-terminal cytoplasmic domain of AtCLCa by OST1 increased the outward anion fluxes across the vacuolar membrane, which are essential for stomatal closure. We provide evidence that bidirectional activities of an intracellular CLC exchanger are physiologically relevant and that phosphorylation regulates the transport mode of this exchanger. PMID:25005229

  2. Comparison of reversed-phase/cation-exchange/anion-exchange trimodal stationary phases and their use in active pharmaceutical ingredient and counterion determinations.


    Liu, Xiaodong; Pohl, Christopher A


    This study involved three commercial reversed-phase (RP)/anion-exchange (AEX)/cation-exchange (CEX) trimodal columns, namely Acclaim Trinity P1 (Thermo Fisher Scientific), Obelisc R (SIELC Technologies) and Scherzo SM-C18 (Imtakt). Their chromatographic properties were compared in details with respect to hydrophobicity, anion-exchange capacity, cation-exchange capacity, and selectivity, by studying retention behavior dependency on organic solvent, buffer concentration and pH. It was found that their remarkably different column chemistries resulted in distinctive chromatography properties. Trinity P1 exhibited strong anion-exchange and cation-exchange interactions but low RP retention while Scherzo SM-C18 showed strong reversed-phase retention with little cation-exchange and anion-exchange capacities. For Obelisc R, its reversed-phase capacity was weaker than Scherzo SM-C18 but slightly higher than Trinity P1, and its ion-exchange retentions were between Trinity P1 and Scherzo SM-C18. In addition, their difference in selectivity was demonstrated by examples of determining the active pharmaceutical ingredient (API) and counterion of drug products. PMID:22209548



    Stevenson, P.C.


    A process is offered for improving quaternary ammonium type strongly basic anion exchange resins so that centain zinc and cadmium residues, which normally stick to and "poison" this type of resin, can be removed by elution. Specifically, the resin as obtained commercially is treated with an aqueous solution of sodium hydroxide of about 1 to 4 M concentration by heating therein and periodically adding small amounts of oxidizing agent selected from hydrogen peroxide, sodium peroxide and hypochlorite. Zinc and cadmium values may then be adsorbed onto the resin from a 0.1 to 3 M HCl and thereafter eluted therefrom with very dilute HCl solutions.

  4. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.


    Popov, L


    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials. PMID:27451111

  5. Abscisic acid influx into human nucleated cells occurs through the anion exchanger AE2.


    Vigliarolo, Tiziana; Zocchi, Elena; Fresia, Chiara; Booz, Valeria; Guida, Lucrezia


    Abscisic acid (ABA) is a hormone conserved from cyanobacteria to higher plants, where it regulates responses to environmental stimuli. ABA also plays a role in mammalian physiology, pointedly in inflammatory responses and in glycemic control. As the animal ABA receptor is on the intracellular side of the plasma membrane, a transporter is required for the hormone's action. Here we demonstrate that ABA transport in human nucleated cells occurs via the anion exchanger AE2. Together with the recent demonstration that ABA influx into human erythrocytes occurs via Band 3, this result identifies the AE family members as the mammalian ABA transporters. PMID:27015766

  6. Simple model can explain self-inhibition of red cell anion exchange.

    PubMed Central

    Tanford, C


    Ion translocation in red cell anion exchange is assumed to occur by means of an alternating access mechanism, in which a critical binding site for the transported ion alternates between two conformational states, each accessible from only one side of the membrane. If this alternating site is located within the transport protein at some distance from one or both surfaces of the membrane, an access channel is required to connect the alternating site to the adjacent bulk solution. This automatically leads to inhibition of transport at high concentrations of the transported ion because release of the ion from the alternating site can occur only via unoccupied channel sites. PMID:2579684

  7. Kyanoxalite, a new cancrinite-group mineral species with extraframework oxalate anion from the Lovozero alkaline pluton, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Pekov, I. V.; Olysych, L. V.; Massa, W.; Yakubovich, O. V.; Zadov, A. E.; Rastsvetaeva, R. K.; Vigasina, M. F.


    Kyanoxalite, a new member of the cancrinite group, has been identified in hydrothermally altered hyperalkaline rocks and pegmatites of the Lovozero alkaline pluton, Kola Peninsula, Russia. It was found at Mount Karnasurt (holotype) in association with nepheline, aegirine, sodalite, nosean, albite, lomonosovite, murmanite, fluorapatite, loparite, and natrolite and at Mt. Alluaiv. Kyanoxalite is transparent, ranging in color from bright light blue, greenish light blue and grayish light blue to colorless. The new mineral is brittle, with a perfect cleavage parallel to (100). Mohs hardness is 5-5.5. The measured and calculated densitiesare 2.30(1) and 2.327 g/cm3, respectively. Kyanoxalite is uniaxial, negative, ω = 1.794(1), ɛ = 1.491(1). It is pleochroic from colorless along E to light blue along O. The IR spectrum indicates the presence of oxalate anions C2O{4/2-} and water molecules in the absence of CO{3/2-} Oxalate ions are confirmed by anion chromatography. The chemical composition (electron microprobe; water was determined by a modified Penfield method and carbon was determined by selective sorption from annealing products) is as follows, wt %: 19.70 Na2O, 1.92 K2O, 0.17 CaO, 27.41 Al2O3, 38.68 SiO2, 0.64 P2O5, 1.05 SO3, 3.23 C2O3, 8.42 H2O; the total is 101.18. The empirical formula (Z = 1) is (Na6.45K0.41Ca0.03)Σ6.89(Si6.53Al5.46O24)[(C2O4)0.455(SO4)0.13(PO4)0.09(OH)0.01]Σ0.68 · 4.74H2O. The idealized formula is Na7(Al5-6Si6-7O24)(C2O4)0.5-1 · 5H2O. Kyanoxalite is hexagonal, the space group is P63, a = 12.744(8), c = 5.213(6) -ray powder diffraction pattern are as follows, [ d, [A] ( I, %)( hkl)]: 6.39(44) (110), 4.73 (92) (101), 3.679 (72) (300), 3.264 (100) (211, 121), 2.760 (29) (400), 2.618 (36) (002), 2.216, (29) (302, 330). According to the X-ray single crystal study ( R = 0.033), two independent C2O4 groups statistically occupy the sites on the axis 63. The new mineral is the first natural silicate with an additional organic anion and is the most

  8. Cross-linked poly(vinyl alcohol)-poly(acrylonitrile-co-2-dimethylamino ethylmethacrylate) based anion-exchange membranes in aqueous media.


    Kumar, Mahendra; Singh, Shalini; Shahi, Vinod K


    Hydroxide anion conducting polymer membranes also termed as anion exchange membranes (AEMs) are recently becoming important materials for electrochemical technology, alkaline fuel cells, and electrolyzers. In this work, the preparation procedure for AEMs based on poly(vinyl alcohol) (PVA) and copolymer of poly(acrylonitrile (PAN)-dimethylamino ethylmethacrylate) (DMAEMA) with strongly basic quaternary ammonium in aqueous media has been reported. This simplified procedure avoids the use of chloromethyl methyl ether (CME), a carcinogen that is harmful to human health, generally used for chloromethylation during AEM preparation. Developed AEMs were extensively characterized by studying physicochemical and electrochemical properties, to assess their suitability for electrodialytic ion separation. These membranes were designed to possess all the required properties of a highly anion conductive membrane such as reasonable water uptake, good ion-exchange capacity (1.18 mequiv g(-1)), high permselectivity (0.90), along with reasonable conductivity (3.45 mS cm(-1)) due to quaternary ammonium group functionality. The membrane conductivity values in conjunction with solution conductivity have been used for the estimation of the isoconductivity point, considering the membrane as a combination of the gel phase and integral phase. Electroosmotic studies revealed quite low mass drag and equivalent pore radius (2.7-4.0 A) of the membrane, which are also desirable properties of an AEM. The excellent electrotransport property of AEM-70 for practical anion separation was concluded from i-v studies. Electrodialytic performance of the AEM-70 membrane revealed its suitability for applications in electromembrane processes. PMID:19938844

  9. Mechanisms of metal ion transfer into room-temperature ionic liquids : the role of anion exchange.

    SciTech Connect

    Jensen, M. P.; Neuefeind, J.; Beitz, J. V.; Skanthakumar, S.; Soderholm, L.; Chemistry


    The structure and stoichiometry of the lanthanide(III) (Ln) complexes with the ligand 2-thenoyltrifluoroacetone (Htta) formed in a biphasic aqueous room-temperature ionic liquid system have been studied by complementary physicochemical methods. Equilibrium thermodynamics, optical absorption and luminescence spectroscopies, high-energy X-ray scattering, EXAFS, and molecular dynamics simulations all support the formation of anionic Nd(tta){sub 4}{sup -} or Eu(tta){sub 4}{sup -} complexes with no water coordinated to the metal center in 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (C{sub 4}mim{sup +}Tf{sub 2}N{sup -}), rather than the hydrated, neutral complexes, M(tta){sub 3}(H{sub 2}O){sub n} (n = 2 or 3), that form in nonpolar molecular solvents, such as xylene or chloroform. The presence of anionic lanthanide complexes in C{sub 4}mim{sup +}Tf{sub 2}N{sup -} is made possible by the exchange of the ionic liquid anions into the aqueous phase for the lanthanide complex. The resulting complexes in the ionic liquid phase should be thought of as weak C{sub 4}mim{sup +}Ln(tta){sub 4}{sup -} ion pairs which exert little influence on the structure of the ionic liquid phase.

  10. Pullulan Production by Aureobasidium pullulans ATCC 201253 Cells Adsorbed onto Cellulose Anion and Cation Exchangers

    PubMed Central

    West, Thomas P.


    The anion exchanger phosphocellulose and the cation exchanger triethylaminoethyl cellulose were used to immobilize cells of the fungus Aureobasidium pullulans ATCC 201253 and the adsorbed cells were subsequently investigated for their ability to produce the polysaccharide pullulan using batch fermentation. The cells adsorbed on the triethylaminoethyl cellulose at pH 7.5 produced higher pullulan levels than those cells immobilized on phosphocellulose at pH 4.0 for 2 cycles of 168 h at 30 °C. Relative to the initial cycle of 168 h, pullulan production by the cells immobilized on the triethylaminoethyl cellulose decreased slightly after 168 h of the second production cycle while pullulan production by the phosphocellulose-immobilized cells remained about the same after 168 h of the second production cycle. PMID:23762749

  11. Radiolysis of the AV-17×8 ČS anion-exchange resin

    NASA Astrophysics Data System (ADS)

    Bartoníček, B.; Habersbergerová, A.; Janovský, I.; Kysela, J.; Pejša, R.

    The mixture of the anion exchange resin AV-17×8 čs in borate form and of a deaerated aqueous solution containing H 3BO 3 and NH 3 ( pH = 7) was irradiated with gamma rays in both static and dynamic conditions. A loss of strong-base exchange capacity and an increase of weak-base capacity was observed. In the solution, (CH 3) 3N, (CH 3) 2NH and CH 3NH 2 were found as the radiolytic products, their relative ratio being 15.7 : 3.7 : 1. Further, NH 3 is formed with the concentration of the same order as that of CH 3NH 2. Beside hydrogen, which is the prevailing gaseous product of the radiolysis of the mixture, methane and ethane arise, their ratio in the dynamic irradiation being 2.8 to 6.0. The main features of the radiolysis are outlined.

  12. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    SciTech Connect

    Tsai, Tsung-Han; Ertem, S. Piril; Maes, Ashley M.; Seifert, Soenke; Herring, Andrew M; Coughlin, E. Bryan


    Random copolymers of isoprene and 4-vinylbenzyl chloride (VBCl) with varying compositions were synthesized via nitroxide-mediated polymerization. Subsequent quaternization afforded solvent processable and cross-linkable ionomers with a wide range of ion exchange capacities (IECs). Solution cast membranes were thermally cross-linked to form anion exchange membranes. Cross-linking was achieved by taking advantage of the unsaturations on the polyisoprene backbone, without added cross-linkers. A strong correlation was found between water uptake and ion conductivity of the membranes: conductivities of the membranes with IECs beyond a critical value were found to be constant related to their high water absorption. Environmentally controlled small-angle X-ray scattering experiments revealed a correlation between the average distance between ionic clusters and the ion conductivity, indicating that a well-connected network of ion clusters is necessary for efficient ion conduction and high ion conductivity.

  13. Crosslinked poly(vinylbenzyl chloride) with a macromolecular crosslinker for anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Wangting; Shao, Zhi-Gang; Zhang, Geng; Zhao, Yun; Yi, Baolian


    A new material based on crosslinked poly(vinylbenzyl chloride) (PVBC) with a macromolecular crosslinker is synthesized and employed as the membrane for anion exchange membrane fuel cells (AEMFCs). PVBC is used as the hydroxide conducting polymers, while poly(vinyl acetal) (PVAc) containing dimethylamino groups plays the role as macromolecular crosslinker and the supporting matrix simultaneously. Fourier transform infrared (FT-IR) absorption spectra and X-ray photoelectron (XPS) spectra prove successful crosslinking between PVBC and PVAc. The crosslinked membrane shows hydroxide conductivity larger than 0.01 S cm-1 at room temperature, and the swelling by water at elevated temperature is suppressed. The H2/O2 AEMFC using the crosslinked membrane shows a peak power density (Pmax) of 124.7 mW cm-2 at 40 °C, and the decrease of the open circuit voltage (OCV) of the fuel cell is negligible under continuous OCV conditions for 120 h. All the results indicate that the crosslinking with a macromolecular crosslinker may be a promising strategy to fabricate anion exchange membrane for the application in the AEMFCs.

  14. First Cationic Uranyl-Organic Framework with Anion-Exchange Capabilities.


    Bai, Zhuanling; Wang, Yanlong; Li, Yuxiang; Liu, Wei; Chen, Lanhua; Sheng, Daopeng; Diwu, Juan; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao


    By controlling the extent of hydrolysis during the self-assembly process of a zwitterionic-based ligand with uranyl cations, we observed a structural evolution from the neutral uranyl-organic framework [(UO2)2(TTTPC)(OH)O(COOH)]·1.5DMF·7H2O (SCU-6) to the first cationic uranyl-organic framework with the formula of [(UO2)(HTTTPC)(OH)]Br·1.5DMF·4H2O (SCU-7). The crystal structures of SCU-6 and SCU-7 are layers built with tetranuclear and dinuclear uranyl clusters, respectively. Exchangeable halide anions are present in the interlaminar spaces balancing the positive charge of layers in SCU-7. Therefore, SCU-7 is able to effectively remove perrhenate anions from aqueous solution. Meanwhile, the H2PO4(-)-exchanged SCU-7 material exhibits a moderate proton conductivity of 8.70 × 10(-5) S cm(-1) at 50 °C and 90% relative humidity, representing nearly 80 times enhancement compared to the original material. PMID:27310580

  15. Phosphorus recovery from microbial biofuel residual using microwave peroxide digestion and anion exchange.


    Gifford, McKay; Liu, Jianyong; Rittmann, Bruce E; Vannela, Raveender; Westerhoff, Paul


    Sustainable production of microalgae for biofuel requires efficient phosphorus (P) utilization, which is a limited resource and vital for global food security. This research tracks the fate of P through biofuel production and investigates P recovery from the biomass using the cyanobacterium Synechocystis sp. PCC 6803. Our results show that Synechocystis contained 1.4% P dry weight. After crude lipids were extracted (e.g., for biofuel processing), 92% of the intracellular P remained in the residual biomass, indicating phospholipids comprised only a small percentage of cellular P. We estimate a majority of the P is primarily associated with nucleic acids. Advanced oxidation using hydrogen peroxide and microwave heating released 92% of the cellular P into orthophosphate. We then recovered the orthophosphate from the digestion matrix using two different types of anion exchange resins. One resin impregnated with iron nanoparticles adsorbed 98% of the influent P through 20 bed volumes, but only released 23% during regeneration. A strong-base anion exchange resin adsorbed 87% of the influent P through 20 bed volumes and released 50% of it upon regeneration. This recovered P subsequently supported growth of Synechocystis. This proof-of-concept recovery process reduced P demand of biofuel microalgae by 54%. PMID:25528543

  16. Enhanced performance of CdTe quantum dot sensitized solar cell via anion exchanges

    NASA Astrophysics Data System (ADS)

    Shen, Xuehua; Jia, Jianguang; Lin, Yuan; Zhou, Xiaowen


    We report on an eco-friendly way to prepare CdTe/CdS quantum dots for quantum dot sensitized solar cell (QDSSC). CdTe/CdS quantum dots are synthesized through an anion exchange between CdTe quantum dots (QDs) and S2- in aqueous solution at low temperature under ambient condition. The resultant QDs are bonded onto TiO2 with the help of thioglycolic acid bifunctional molecule. The uniform distribution of QDs throughout the TiO2 mesoporous film depth is confirmed by the energy dispersive X-ray (EDX) elemental mapping. Absorption, dark current, impedance spectroscopy, and intensity-modulated photocurrent analyses prove that anion exchange can efficiently extend the absorption range, suppress the charge recombination, increase the electron injection as well as accelerate the electron transportation in the cell. In combination with CdS post-treatment, a solar-to-energy conversion efficiency of 2.44% is achieved for CdTe/CdS QDSSC, which is more than 15 times that of the CdTe based cell.

  17. Qualification of Reillex{trademark} HPQ anion exchange resin for use in SRS processes

    SciTech Connect

    Crooks, W.J. III


    The Phase 2 portion of the HB-Line facility was built in the early 1980's to process plutonium and neptunium from nitric acid solutions into oxide suitable for storage in a vault. Although the other portions of HB-Line were started up in the mid 1980's and have operated since that time, the anion exchange and precipitation processes in Phase 2 were never started up. As part of the material stabilization efforts, Phase 2 is currently being started up. A new anion exchange resin is needed because the resins that were proposed for use 10 years ago are limited by performance characteristics, disposal requirements, or are no longer commercially available. SRTC is responsible for qualifying all resins prior to their use in Nuclear Materials Stabilization and Storage (NMSS) processes. Qualification consists of both process suitability and thermal stability with nitric acid. This report describes the thermal stability qualification of Reillex{trademark} HPQ, the new resin proposed for processing plutonium and neptunium in the HB Line facility.

  18. A novel self-adaptive microalgae photobioreactor using anion exchange membranes for continuous supply of nutrients.


    Fu, Qian; Chang, Hai-Xing; Huang, Yun; Liao, Qiang; Zhu, Xun; Xia, Ao; Sun, Ya-Hui


    A novel self-adaptive microalgae photobioreactor using anion exchange membranes (AEM-PBR) for continuous supply of nutrients was proposed to improve microalgae biomass production. The introduction of anion exchange membranes to the PBR can realize continuous supply of nutrients at desired rates, which is beneficial to the growth of microalgae. The results showed that the maximum biomass concentration obtained in the AEM-PBR under continuous supply of nitrogen at an average rate of 19.0mgN/L/d was 2.98g/L, which was 129.2% higher than that (1.30g/L) in a PBR with all the nitrogen supplied in batch at initial. In addition, the feeding rates of nitrogen and phosphorus were optimized in the AEM-PBR to maximize biomass production. The maximum biomass concentration of 4.38g/L was obtained under synergistic regulation of nitrogen and phosphorus feeding rates at 19.0mgN/L/d and 4.2mgP/L/d. The AEM-PBR demonstrates a promising approach for high-density cultivation of microalgae. PMID:27187567

  19. Isotope Fractionation of chlorine in Aqueous System: One Study on Anion-Exchange Chromatography.

    NASA Astrophysics Data System (ADS)

    Musashi, M.; Oi, T.; Eggenkamp, H.; Van Cappellen, P.


    Stable chlorine isotopes such as 37Cl and 35Cl have been paid attention as useful tool identifying the source, and monitoring the transport process and natural fate of chlorinated organic pollutants in air and groundwater. However, it is not established yet whether any isotope effects accompany biodegradation or reductive dehalogenation of the pollutants (Clark and Fritz, 1997). Here we first present an experimental determination of isotope fractionation factor of chlorine in aqueous system by using anion-exchange chromatographic technique. Into the Cl-free anion exchange resin (Muromac, OH- form) packed in a 30 cm long pyrex glass column and controlled temperature at 25 oC, hydrochloric solution was fed with controlling the flow rate constant. Effluent from the column was recovered by an automatic fraction collector and prepared for Cl isotope analysis. The Cl isotope ratio (δ 37Cl vs. SMOC) was measured by IR-MS at the Utrecht University with precision of 0.06 per-mil. Magnitude of the factor obtained was 1.00035 at 25 oC. The result indicates that the lighter isotope (35Cl) was preferably fractionated into the resin phase, while the heavier one (37Cl) was enriched into the aqueous phase. This trend suggests that molecular structure of hydrolysis with Cl in aqueous phase may be more stable than that of Cl ionically bonding with the resin. This result may offer physico-chemical insights into behavior and fate of the pollutants.

  20. Ion distribution in quaternary-ammonium-functionalized aromatic polymers: effects on the ionic clustering and conductivity of anion-exchange membranes.


    Weiber, E Annika; Jannasch, Patric


    A series of copoly(arylene ether sulfone)s that have precisely two, three, or four quaternary ammonium (QA) groups clustered directly on single phenylene rings along the backbone are studied as anion-exchange membranes. The copolymers are synthesized by condensation polymerizations that involve either di-, tri-, or tetramethylhydroquinone followed by virtually complete benzylic bromination using N-bromosuccinimide and quaternization with trimethylamine. This synthetic strategy allows excellent control and systematic variation of the local density and distribution of QA groups along the backbone. Small-angle X-ray scattering of these copolymers shows extensive ionic clustering, promoted by an increasing density of QA on the single phenylene rings. At an ion-exchange capacity (IEC) of 2.1 meq g(-1), the water uptake decreases with the increasing local density of QA groups. Moreover, at moderate IECs at 20 °C, the Br(-) conductivity of the densely functionalized copolymers is higher than a corresponding randomly functionalized polymer, despite the significantly higher water uptake of the latter. Thus, the location of multiple cations on single aromatic rings in the polymers facilitates the formation of a distinct percolating hydrophilic phase domain with a high ionic concentration to promote efficient anion transport, despite probable limitations by reduced ion dissociation. These findings imply a viable strategy to improve the performance of alkaline membrane fuel cells. PMID:25044778

  1. Primary structure of a sperm cell anion exchanger and its messenger ribonucleic acid expression during spermatogenesis.


    Holappa, K; Mustonen, M; Parvinen, M; Vihko, P; Rajaniemi, H; Kellokumpu, S


    Chloride/bicarbonate (Cl-/HCO(3)-) exchangers are a family of proteins (anion exchanger [AE] gene family) that regulate many vital cellular processes such as intracellular pH, cell volume, and Cl- concentration. They may also be involved in the regulation of sperm cell motility and acrosome reaction during fertilization, as these two phenomena are bicarbonate dependent, and we have previously shown that a polypeptide immunologically related to erythrocyte band 3 is expressed in mammalian sperm cells. We have now identified this putative sperm cell anion exchanger as the AE2 isoform of this gene family. First, we determined its complete primary structure from the human testis lambda gt 11 cDNA library. The cloned sequence was found to consist of 3896 base pairs (bp) with an open reading frame of 3726 bp, and to be almost identical to the previously published human genomic AE2 sequence. Only four amino acid disparities were found between these two sequences. Second, our in situ hybridization analyses showed that AE2 mRNA is expressed in developing sperm cells, indicating that the cloned sequence corresponds to the sperm cell AE. Our reverse transcription-polymerase chain reaction analyses suggested further that the expression of AE2 mRNA was variable to some extent during the epithelial cell cycle. Strongest expression was observed at stages VII-XIV except for stage X, i.e., when major structural and morphological changes take place. These results suggest that the full-length AE2 isoform regulates HCO(3)- transport in mature sperm cells and thus their motility in vivo. PMID:10491633

  2. Separation of Oxidized Variants of a Monoclonal Antibody by Anion-Exchange

    PubMed Central

    Teshima, Glen; Li, Ming-Xiang; Danishmand, Rahima; Obi, Chidi; To, Robert; Huang, Carol; Lahidji, Vafa; Freeberg, Joel; Thorner, Lauren; Tomic, Milan


    Monoclonal antibodies are subject to a variety of degradation mechanisms, therefore orthogonal techniques are required to demonstrate product quality. In this study, the three individual antibodies comprising a multi-antibody drug product, XOMA 3AB were evaluated by both cation-exchange (CEX) and anion-exchange chromatography (AEX). In contrast to CEX analysis which showed only a single, broad peak for the force-oxidized antibodies, AEX analysis of Ab-A (pI=7.6) revealed two more basic peaks. Ab-B (pI=6.7) bound but exhibited only a single major peak while Ab-C (pI=8.6) flowed through. Peptide mapping LC/MS analysis of the isolated Ab-A fractions demonstrated that the basic peaks resulted from oxidation in a complementary determining region (CDR). Differential scanning calorimetry (DSC) analysis of the oxidized Ab-A species showed a decrease in the Fab melting point for the oxidized species consistent with unfolding of the molecule. Greater/lesser surface exposure of ionic residues resulting from a conformational change provides a likely explanation for the dramatic shift in retention behavior for the Ab-A oxidized variants. Peptide mapping analysis of the Ab-B antibody showed, in contrast to Ab-A, no detectable CDR oxidation. Hence, the lack of separation of oxidized variants in Ab-B can be explained by the absence of CDR oxidation and the associated changes in secondary/tertiary structure which were observed for oxidized AbA. In summary, anion-exchange HPLC shows potential as an orthogonal analytical technique for assessing product quality of monoclonal antibody therapeutics. In the case of the XOMA 3AB drug product, two of the antibodies bound and one, Ab-A, exhibited separation of CDR oxidized variants. PMID:21145555

  3. Separation of phenolic acids from natural plant extracts using molecularly imprinted anion-exchange polymer confined ionic liquids.


    Bi, Wentao; Tian, Minglei; Row, Kyung Ho


    Polymer-confined ionic liquids were used for the separation of phenolic acids from natural plant extract by utilizing an anion-exchange mechanism. They were synthesized using molecular imprinting technique to reduce non-directional ion-ion interactions during anion-exchange and other interactions with interference substances that could decrease selectivity. A suitable sorbent for phenolic acid separation could be identified based on the adsorption behaviors of phenolic acids on different polymer-confined ionic liquids. Thus, the developed ionic liquid-based molecularly imprinted anion-exchange polymer (IMAP) achieved high recovery rates by solid-phase extraction of phenolic acids from Salicornia herbacea L. extract: 90.1% for protocatechuic acid, 95.5% for ferulic acid and 96.6% for caffeic acid. Moreover, the phenolic acids were separable from each other by repeated solid phase extraction cycles. The proposed method could be used to separate other phenolic acids or organic acids from complex samples. PMID:21903215

  4. Compensatory role of inducible annexin A2 for impaired biliary epithelial anion-exchange activity of inflammatory cholangiopathy.


    Kido, Osamu; Fukushima, Koji; Ueno, Yoshiyuki; Inoue, Jun; Jefferson, Douglas M; Shimosegawa, Tooru


    The peribiliary inflammation of cholangiopathy affects the physiological properties of biliary epithelial cells (cholangiocyte), including bicarbonate-rich ductular secretion. We revealed the upregulation of annexin A2 (ANXA2) in cholangiocytes in primary biliary cirrhosis (PBC) by a proteomics approach and evaluated its physiological significance. Global protein expression profiles of a normal human cholangiocyte line (H69) in response to interferon-gamma (IFNgamma) were obtained by two-dimensional electrophoresis followed by MALDI-TOF-MS. Histological expression patterns of the identified molecules in PBC liver were confirmed by immunostaining. H69 cells stably transfected with doxycyclin-inducible ANXA2 were subjected to physiological evaluation. Recovery of the intracellular pH after acute alkalinization was measured consecutively by a pH indicator with a specific inhibitor of anion exchanger (AE), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). Protein kinase-C (PKC) activation was measured by PepTag Assay and immunoblotting. Twenty spots that included ANXA2 were identified as IFNgamma-responsive molecules. Cholangiocytes of PBC liver were decorated by the unique membranous overexpression of ANXA2. Apical ANXA2 of small ducts of PBC was directly correlated with the clinical cholestatic markers and transaminases. Controlled induction of ANXA2 resulted in significant increase of the DIDS-inhibitory fraction of AE activity of H69, which was accompanied by modulation of PKC activity. We, therefore, identified ANXA2 as an IFNgamma-inducible gene in cholangiocytes that could serve as a potential histological marker of inflammatory cholangiopathy, including PBC. We conclude that inducible ANXA2 expression in cholangiocytes may play a compensatory role for the impaired AE activity of cholangiocytes in PBC in terms of bicarbonate-rich ductular secretion and bile formation through modulation of the PKC activity. PMID:19823170

  5. Transport activity of chimaeric AE2-AE3 chloride/bicarbonate anion exchange proteins.

    PubMed Central

    Fujinaga, Jocelyne; Loiselle, Frederick B; Casey, Joseph R


    Chloride/bicarbonate anion exchangers (AEs), found in the plasma membrane of most mammalian cells, are involved in pH regulation and bicarbonate metabolism. Although AE2 and AE3 are highly similar in sequence, AE2-transport activity was 10-fold higher than AE3 (41 versus 4 mM x min(-1) respectively), when expressed by transient transfection of HEK-293 cells. AE2-AE3 chimaeras were constructed to define the region responsible for differences in transport activity. The level of AE2 expression was approx. 30% higher than that of AE3. Processing to the cell surface, studied by chemical labelling and confocal microscopy, showed that AE2 is processed to the cell surface approx. 8-fold more efficiently than AE3. The efficiency of cell-surface processing was dependent on the cytoplasmic domain, since the AE2 domain conferred efficient processing upon the AE3 membrane domain, with a predominant role for amino acids 322-677 of AE2. AE2 that was expressed in HEK-293 cells was glycosylated, but little of AE3 was. However, AE2 expressed in the presence of the glycosylation inhibitor, tunicamycin, was not glycosylated, yet retained 85 +/- 8% of anion-transport activity. Therefore glycosylation has little, if any, role in the cell-surface processing or activity of AE2 or AE3. We conclude that the low anion-transport activity of AE3 in HEK-293 cells is due to low level processing to the plasma membrane, possibly owing to protein interactions with the AE3 cytoplasmic domain. PMID:12578559

  6. Removal of chlorophenols from aqueous solution by anion-exchange resins

    SciTech Connect

    Kuen-Chyr Lee; Young Ku


    The effects of pH value and chloride ion concentration in the removal of chlorophenols from aqueous solutions by Purolite A-510 resin [macroreticular polystyrene-divinylbenzene resin with R(CH{sub 3}){sub 2}(C{sub 2}H{sub 4}OH)N{sup +} group] are discussed by the species distributions of chlorophenols. Those chlorophenols include phenol, 2-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol. The investigations showed that the chlorophenols could be removed effectively at alkaline conditions where the ion-exchange reaction was dominant. Also, the removal of chlorophenols increased with the number of chlorine atoms on the chlorophenols. The removal of chlorophenols via the ion-exchange reaction was hindered by the presence of chloride ions. The effect of chloride ions, however, was diminished in acidic solutions where the adsorption reaction was dominant. The proposed equilibrium model, which considers both adsorption and ion-exchange reactions, adequately describes the sorption behavior of chlorophenols. The partition constants of the protonated chlorophenols can be estimated from the octanol/water partition coefficients of the phenolic compounds.

  7. Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries

    SciTech Connect

    Small, Leo J.; Pratt, III, Harry D.; Fujimoto, Cy H.; Anderson, Travis M.


    Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3–10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediate ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.

  8. Synthesis of Composition Tunable and Highly Luminescent Cesium Lead Halide Nanowires through Anion-Exchange Reactions.


    Zhang, Dandan; Yang, Yiming; Bekenstein, Yehonadav; Yu, Yi; Gibson, Natalie A; Wong, Andrew B; Eaton, Samuel W; Kornienko, Nikolay; Kong, Qiao; Lai, Minliang; Alivisatos, A Paul; Leone, Stephen R; Yang, Peidong


    Here, we demonstrate the successful synthesis of brightly emitting colloidal cesium lead halide (CsPbX3, X = Cl, Br, I) nanowires (NWs) with uniform diameters and tunable compositions. By using highly monodisperse CsPbBr3 NWs as templates, the NW composition can be independently controlled through anion-exchange reactions. CsPbX3 alloy NWs with a wide range of alloy compositions can be achieved with well-preserved morphology and crystal structure. The NWs are highly luminescent with photoluminescence quantum yields (PLQY) ranging from 20% to 80%. The bright photoluminescence can be tuned over nearly the entire visible spectrum. The high PLQYs together with charge transport measurements exemplify the efficient alloying of the anionic sublattice in a one-dimensional CsPbX3 system. The wires increased functionality in the form of fast photoresponse rates and the low defect density suggest CsPbX3 NWs as prospective materials for optoelectronic applications. PMID:27213511

  9. Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries


    Small, Leo J.; Pratt, III, Harry D.; Fujimoto, Cy H.; Anderson, Travis M.


    Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3–10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediatemore » ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.« less

  10. Multigram group separation of actinide and lanthanide elements by LiCl-based anion exchange

    SciTech Connect

    Collins, E.D.; Benker, D.E.; Chattin, F.R.; Orr, P.B.; Ross, R.G.


    The laboratory-scale LiCl AIX process has been successfully adapted to the multigram scale and has been used effectively in transuranium element production campaigns to separate the lanthanide fission products from the transplutonium actinides and to partition americium and curium from the heavier elements. Corrosion of the tantalum and glass equipment has been negligible. Although radiolytic gas generation has not caused a problem, radiation exposure of the Dowex 1-X10 anion exchange resin does occur significantly. However, the 1.3-L resin bed can be used successfully to process up to 3 batches, each containing 19 g of /sup 244/Cm (54 W of decay heat). The chromatographic elution process is controlled by use of an alpha detector in the column effluent line and by periodic measurement of the neutron profile of the column. The development and use of feed pretreatment and operating methods has enabled effective and dependable operation.

  11. Fouling of anion exchange resin by fluorescence analysis in advanced treatment of municipal wastewaters.


    Li, Haibo; Li, Aimin; Shuang, Chendong; Zhou, Qing; Li, Wentao


    The application of anion exchange resins (AERs) has been limited by the critical problem of resin fouling, which increases the volume of the desorption concentrate and decreases treatment efficiency. To date, resin fouling has not been well studied and is poorly understood compared to membrane fouling. To reflect the resin fouling level, a resin fouling index (RFI) was established in this work according to the decrease of DOC removal after regeneration of the resin for the advanced treatment of municipal wastewater. Comparing the linear fitting results between the RFI and the fluorescence intensity indicated that the resin fouling was related to the protein-like substances with fluorescence peak T in the region of excitation wavelength <250 nm and emission wavelength <380 nm. Using their fluorescent characteristics as a label, the protein-like substances causing the fouling were further identified as hydrophilic components with molecular weights greater than 6500 Da. PMID:25218660

  12. Anion-exchange separation of Pt and Pd using perchloric and hydrochloric acid solutions

    USGS Publications Warehouse

    Petrie, R.K.; Morgan, J.W.


    On Biorad Ag-1X8 anion-exchange resin (200-400 mesh), Pd and Pt may be separated from one another by elution with 0.2M HClO4, and 5M HClO4, respectively. If present, Au may be retained by making the elutriants 0.003M in HCl. Alternatively, reduction by H2SO3 enables elution of Pt2+ with 6M HCl before recovery of Pd2+ with 0.2M HClO4??Ir4+ is reduced to Ir3+ by H2SO3 and may be eluted ahead of Pt2+ by 2M HCl. ?? 1982 Akade??miai Kiado??.

  13. NASA Li/CF(x) cell problem analysis: Anion exchange chromatography analysis

    NASA Technical Reports Server (NTRS)

    Bytella, Joseph


    An analysis was made of wiper samples used to wipe down lithium/chlorine fluorine battery components and production equipment. These components and equipment were potentially exposed to thionyl chloride vapors. In the presence of moisture, thionyl chloride decomposes to sulfur dioxide and hydrogen chloride. The wiper samples were analyzed for soluble chlorides and fluorides by anion exchange chromatography. During the examination of the test chromatographs, fluoride contamination was discovered in wiper samples from the test equipment. An analytical method to determine fluoride was developed. The first 3 extracts from the potentially exposed and clean wiper samples were tested, and the total fluoride from both groups determined. A comparison of the results from both groups was made to determine the extent of fluoride contamination.

  14. Enhancement of anion-exchange chromatography of DNA using compaction agents

    NASA Technical Reports Server (NTRS)

    Murphy, Jason C.; Fox, George E.; Willson, Richard C.


    The use of adsorptive chromatography for preparative nucleic acid separations is often limited by low capacity. The possibility that the adsorbent surface area sterically accessible to nucleic acid molecules could be increased by reducing their radius of gyration with compaction agents has been investigated. The equilibrium adsorption capacity of Q Sepharose anion-exchange matrix for plasmid DNA at 600 mM NaCl was enhanced by up to ca. 40% in the presence of 2.5 mM spermine. In addition, compaction agent selectivity has been demonstrated. Spermine, for example, enhances the adsorption of both plasmid and genomic DNA, spermidine enhances binding only of plasmid, and hexamine cobalt enhances only the binding of genomic DNA. Compaction may be generally useful for enhancing adsorptive separations of nucleic acids.

  15. Separation of 'Uncharged' Oligodeoxynucleotide Analogs by Anion-Exchange Chromatography at High pH

    NASA Technical Reports Server (NTRS)

    Schmidt, Jurgen G.; Orgel, Leslie E.; Nielsen, Peter E.


    Ion-exchange chromatography is a well-established method for the analysis and purification of phosphodiester-linked oligonucleotides. If elution is carried out under alkaline conditions, the secondary structure of G- and C-rich oligomers is disrupted. Furthermore, elution times become more sensitive to the G and T content of the oligomer, because G and T are deprotonated at pH 10. In recent work on peptide-nucleic acids (PNAs) we noted that mixtures of PNA oligomers G(sub 4), G(sub 6), G(sub 8), and G9(sub 10) are readily separated by elution at pH 12 on an RPC-5 column. Here we show that this separation method is more generally applicable.

  16. Separation of Uncharged Oligodeoxynucleotide Analogs by Anion-Exchange Chromatography at High pH

    NASA Technical Reports Server (NTRS)

    Schmidt, Jurgen G.; Nielsen, Peter E.; Orgel, Leslie


    Ion-exchange chromatography is a well-established method for the analysis and purification of phosphodiester-linked oligonucleotides. If elution is carried out under alkaline conditions, the secondary structure of G- and C-rich oligomers is disrupted. Furthermore, elution times become more sensitive to the G and T content of the oligomer, because G and T are deprotonated at pH 10. In recent work on peptide-nucleic acids (PNAs) we noted that mixtures of PNA oligomers G(sub 4), G(Sub 6), G(sub 8), and G(sub 10) are readily separated by elution at pH 12 on an RPC-5 column. Here we show that this separation method is more generally applicable.

  17. Topological and segmental phylogenetic analyses of the anion exchanger (band 3) family of transporters.


    Espanol, M J; Saier, M H


    Eleven sequenced anion exchanger (AE; band 3) proteins, including five AE1, four AE2 and two AE3 proteins, comprise the anion exchanger family (AEF) of homologous proteins. Eliminating the rat and rabbit proteins that are nearly identical to the corresponding mouse proteins, seven dissimilar members of this family were selected for study, divided into N-terminal, central and C-terminal segments (designated segments 0, 1 and 2, respectively) and analysed separately for sequence similarity and phylogenetic relatedness. Segments 0 are variable in length and sequence, are essentially lacking in some of the members of the AEF, and are not demonstrably homologous in other members of the family. All segments 1 and 2 are homologous, but they exhibit widely differing degrees of sequence divergence. Segments 2 are highly conserved in all AEF proteins. Segments 1 of the AE2 and AE3 proteins are as conserved as are segments 2, but segments 1 of the AE1 proteins have diverged from each other and from the AE2 and AE3 segments 1 much more than have segments 2 of these same proteins. The distributions of various types of amino acid residues in the putative transmembrane helical spanners of the seven dissimilar members of the AEF, based on a modification of the 14-spanner model of Wang et al. (1994) was determined, and this distribution was compared with those of other transmembrane transport proteins of known structure (bacterial rhodopsins, outer membrane porins of Gram-negative bacteria and bacterial photosynthetic reaction centres.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7795710

  18. A novel erythroid anion exchange variant (Gly796Arg) of hereditary stomatocytosis associated with dyserythropoiesis

    PubMed Central

    Iolascon, Achille; De Falco, Luigia; Borgese, Franck; Esposito, Maria Rosaria; Avvisati, Rosa Anna; Izzo, Pietro; Piscopo, Carmelo; Guizouarn, Helene; Biondani, Andrea; Pantaleo, Antonella; De Franceschi, Lucia


    Background Stomatocytoses are a group of inherited autosomal dominant hemolytic anemias and include overhydrated hereditary stomatocytosis, dehydrated hereditary stomatocytosis, hereditary cryohydrocytosis and familial pseudohyperkalemia. Design and Methods We report a novel variant of hereditary stomatocytosis due to a de novo band 3 mutation (p. G796R-band3 CEINGE) associated with a dyserythropoietic phenotype. Band 3 genomic analysis, measurement at of hematologic parameters and red cell indices and morphological analysis of bone marrow were carried out. We then evaluated the red cell membrane permeability and ion transport systems by functional studies of the patient’s erythrocytes and Xenopus oocytes transfected with mutated band 3. We analyzed the red cell membrane tyrosine phosphorylation profile and the membrane association of the tyrosine kinases Syk and Lyn from the Src-family-kinase group, since the activity of the membrane cation transport pathways is related to cyclic phosphorylation-dephosphorylation events. Results The patient showed mild hemolytic anemia with circulating stomatocytes together with signs of dyserythropoiesis. Her red cells displayed increased Na+ content with decreased K+content and abnormal membrane cation transport activities. Functional characterization of band 3 CEINGE in Xenopus oocytes showed that the mutated band 3 is converted from being an anion exchanger (Cl−, HCO3−) to being a cation pathway for Na+ and K+. Increased tyrosine phosphorylation of some red cell membrane proteins was observed in diseased erythrocytes. Syk and Lyn membrane association was increased in the patient’s red cells compared to in normal controls, indicating perturbation of phospho-signaling pathways involved in cell volume regulation events. Conclusions Band 3 CEINGE alters function from that of anion exchange to cation transport, affects the membrane tyrosine phosphorylation profile, in particular of band 3 and stomatin, and its presence

  19. Defluoridation of water via electrically controlled anion exchange by polyaniline modified electrode reactor.


    Cui, Hao; Li, Qin; Qian, Yan; Tang, Rong; An, Hao; Zhai, Jianping


    A polyaniline (PANI) modified electrode reactor was designed for fluoride removal from aqueous solutions. The innovative concept behind the reactor design is that the uptake and elute of fluoride could be well controlled by modulating the potential of the PANI film. The maximum fluoride removal capacity of PANI is more than 20 mg/g at a positive voltage based on the electrically controlled anion-exchange mechanism. The results of batch tests showed that terminal potential values had a major impact on fluoride removal by this PANI, with optimal removal occurring at 1.5 V. The fluoride removal capacity (q(e)) increased rapidly within 5 min and reached equilibrium within 10 min, which indicated a rapid removal velocity of fluoride by PANI under this condition. The applicability of defluoridation using the PANI reactor to treat fluoride-contaminated tap water was also tested through flow cell breakthrough studies. At initial fluoride concentrations of 5 mg/L and 10 mg/L, the breakthrough capacities were 20.08 mg/g and 19.24 mg/g, respectively. Moreover, during the first half of the period before the breakthrough point, the fluoride concentration of the treated solution was below the WHO's recommended levels (1.5 mg/L). The results of the five consecutive treatment-regeneration studies also showed that the PANI films could be reused. Taken together, these results implied that the electrically controlled anion exchange by the PANI-modified electrode reactor may be an effective technique for the removal of fluoride from water. PMID:21907382

  20. Ionic polymer-metal composite actuators obtained from radiation-grafted cation- and anion-exchange membranes.


    Park, Jong Hyuk; Han, Man Jae; Song, Dae Seock; Jho, Jae Young


    Two series of ionic polymer-metal composites (IPMCs), one cationic and one anionic, are designed and prepared from radiation-grafted ion-exchange membranes. Through examination of the properties of the membranes synthesized from the two grafting monomers and the two base polymers, acrylic acid-grafted poly(vinylidene fluoride-co-hexafluoropropylene) and quarternized 4-vinylpyridine-grafted poly(ethylene-co-tetrafluoroethylene) with the appropriate amount of ionic groups are employed for the fabrication of cation and anion IPMCs, respectively. The bending displacement of the cation IPMC is comparable to Nafion-based IPMC under direct- and alternating-current voltage, but back-relaxation is not observed. The actuation performance of the anion IPMC is highly improved over those reported earlier in the literature for the other anion IPMCs. PMID:25420910

  1. A dication cross-linked composite anion-exchange membrane for all-vanadium flow battery applications.


    Zhang, Fengxiang; Zhang, Huamin; Qu, Chao


    We report the fabrication and properties of a high-performance, inexpensive, composite, anion-exchange membrane (AEM) for an all-vanadium flow battery (VFB) application. The AEM was fabricated by dication cross-linking without the involvement of trimethylamine, and shows well-balanced anion conductivity and robustness due to imidazolium and imidazolium-ammonium functionalities, as well as a concomitantly achieved semi-interpenetrating network structure. The VFB single cell yielded a Coulombic efficiency of 99 % and an energy efficiency of 84 % at 80 mA cm(-2) , and operated for over 900 charge/discharge cycles. This work demonstrates the combined use of several favorable AEM design rationales, such as incorporating abundant and efficient anion-exchange groups, constructing a swelling- and oxidation-resistant structure, and facile fabrication; it provides an effective way of developing high-performance, low-cost AEMs for VFB applications. PMID:24124071

  2. The effects of anion exchange functional-group variations on the sorption of Pu(IV) from nitric acid

    SciTech Connect

    Marsh, S.F.


    A macroporous, polyvinylpyridine anion exchange resin has been used for more than five years at the Los Alamos Plutonium Facility to recover plutonium from nitrate media. This strong-base anion exchanger, Reillex{trademark} HPQ, offers higher capacity, faster kinetics, and significantly higher resistance to chemical and radiation damage than conventional polystyrene-based resins. In this study, we measured the sorption of Pu(IV) on Reillex{trademark} HPQ and on three macroporous, strong-base anion exchange resins that differ from Reillex{trademark} HPQ only in the alkyl group used to quaternize the pyridinium. nitrogen. These four resins, prepared by Reilly Industries, Inc., are copolymers of 1-alkyl-4-vinylpyridine, where the alkyl groups are methyl, butyl, hexyl, and octyl. We compare the trends in Pu(IV) sorption on these four resins to those obtained in our previous study of four polystyrene anion exchange resins having trimethyl, triethyl, tripropyl, and tributyl ammonium functionality. The Pu(IV) sorption was measured from 1 M to 9 M nitric acid in both studies.


    EPA Science Inventory

    This report gives the results of a single-laboratory evaluation and an interlaboratory collaborative study of a method for determining plutonium in water. The method was written for the analysis of 1-liter samples and involved coprecipitation, acid dissolution, anion exchange, el...

  4. Performance testing of grout-based waste forms for the solidification of anion exchange resins

    SciTech Connect

    Morgan, I.L.; Bostick, W.D.


    The solidification of spent ion exchanges resins in a grout matrix as a means of disposing of spent organic resins produced in the nuclear fuel cycle has many advantages in terms of process simplicity and economy, but associated with the process is the potential for water/cement/resins to interact and degrade the integrity of the waste form solidified. Described in this paper is one possible solution to preserving the integrity of these solidified waste forms: the encapsulation of beaded anion exchange resins in grout formulations containing ground granulated blast furnace slag, Type I-II (mixed) portland cement, and additives (clays, amorphous silica, silica fume, and fly ash). The results of the study reported herein show the cured waste form tested has a low leach rate for nitrate ion from the resin (and a low leach rate is inferred for Tc-99) and acceptable durability as assessed by the water immersion and freezing/thawing test protocols. The results also suggest a tested surrogate waste form prepared in vinyl ester styrene binder performs satisfactorily against the wetting/drying criterion, and it should offer additional insight into future work on the solidification of spent organic resins. 26 refs., 4 figs., 5 tabs.

  5. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B).


    Duangtum, Natapol; Junking, Mutita; Sawasdee, Nunghathai; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai


    Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of α-intercalated cells of the kidney collecting duct leads to the defect of the Cl(-)/HCO(3)(-) exchange and the failure of proton (H(+)) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney α-intercalated cells. PMID:21871436

  6. Mechanism of sorption sulpho-derivative organic chelating agents on strong base anion exchanger Amberlite IRA-402 by FT-IR/PAS and DRS methods

    NASA Astrophysics Data System (ADS)

    Wronski, G.; Pasieczna-Patkowska, S.; Hubicki, Z.


    In the paper, strong base anion exchanger Amberlite IRA-402 was modified by using sulpho-derivative organic chelating agents as: Brilliant Yellow, Xylenol Orange, Bromophenyl Blue. The investigations exhibited, that anion exchanger Amberlite IRA-402 is modified very simply by organic chelating agents (working capacity 0.25 0.5 g/cm3).



    Bailes, R.H.; Ellis, D.A.; Long, R.S.


    Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.

  8. Grafting glycidyl methacrylate to Sepharose gel for fabricating high-capacity protein anion exchangers.


    Wang, Qianqian; Yu, Linling; Sun, Yan


    To develop ion exchangers of high protein adsorption capacity, we have herein introduced atom transfer radical polymerization (ATRP) method to graft glycidyl methacrylate (GMA) onto Sepharose FF gel. GMA-grafted Sepharose FF resins of four grafting densities and different grafting chain lengths were obtained by adjusting reaction conditions. The epoxy groups on the grafted chains were functionalized by modification with diethylamine (DEA), leading to the fabrication of Sepharose-based anion exchangers of 14 different grafting densities and/or grafting chain lengths. The resins were first characterized for the effects of grafting density, chain length and ionic strength on pore sizes by inverse size exclusion chromatography. Then, the resins were evaluated by adsorption equilibria of bovine serum albumin (BSA) as a function of ionic capacity (IC) (chain length) at individual grafting densities. It was observed that at each grafting density there was a specific IC value (chain length) that offered the maximum equilibrium capacity. Of the resins with maximum values at individual grafting densities, the resin of the second grafting density with an IC value of 330 mmol/L (denoted as FF-Br2-pG-D330) showed the highest capacity, 264 mg/mL, about two times higher than that of the traditional ungrafted resin Q Sepharose FF (137 mg/mL). This resin also showed the most favorable uptake kinetics among the resins of similar IC values but different grafting densities, or of the same grafting density but different IC values. Effects of ionic strength showed that the capacities of FF-Br2-pG-D330 were much higher than Q Sepharose FF at a wide range of NaCl concentrations (0-200 mmol/L), and the uptake rates of the two resins were similar in the ionic strength range. Therefore, the dynamic binding capacity values of BSA on FF-Br2-pG-D330 were much higher than Q Sepharose FF as demonstrated at different residence times and ionic strengths. Taken together, the research has proved the

  9. Short-column anion-exchange chromatography for soil and peat humic substances profiling by step-wise gradient of high pH aqueous sodium ethylenediaminetetraacetate.


    Hutta, Milan; Ráczová, Janka; Góra, Róbert; Pessl, Juraj


    Novel anion-exchange liquid chromatographic method with step gradient of aqueous EDTA(4-) based mobile phase elution has been developed to profile available Slovak soil humic substances and alkaline extracts of various soils. The method utilize short glass column (30mm×3mm) filled in with hydrolytically stable particles (60μm diameter) Separon HEMA-BIO 1000 having (diethylamino)ethyl functional groups. Step gradient was programmed by mixing mobile phase composed of aqueous solution of sodium EDTA (pH 12.0; 5mmolL(-1)) and mobile phase constituted of aqueous solution of sodium EDTA (pH 12.0, 500mmolL(-1)). The FLD of HSs was set to excitation wavelength 480nm and emission wavelength 530nm (λem). Separation mechanism was studied by use of selected aromatic acids related to humic acids with the aid of UV spectrophotometric detection at 280nm. The proposed method benefits from high ionic strength (I=5molL(-1)) of the end mobile phase buffer and provides high recovery of humic acids (98%). Accurate and reproducible profiling of studied humic substances, alkaline extracts of various types of soils enables straightforward characterization and differentiation of HSs in arable and forest soils. Selected model aromatic acids were used for separation mechanism elucidation. PMID:26143606

  10. High-Capacity and Rapid Removal of Refractory NOM Using Nanoscale Anion Exchange Resin.


    Johnson, Billy R; Eldred, Tim B; Nguyen, Andy T; Payne, William M; Schmidt, Emily E; Alansari, Amir Y; Amburgey, James E; Poler, Jordan C


    As human health concerns over disinfection byproducts (DBP) in drinking water increase, so does the need to develop new materials that remove them rapidly and at high capacity. Ion exchange (IEX) is an effective method for the removal of natural organic matter (NOM), especially anion exchange resins (AERs) with quaternary ammonium functional groups. However, capacity is limited in existing commercial resin materials because adsorbates can only interact with the outermost surface area, which makes these products inefficient on a mass basis. We have synthesized a novel "NanoResin" exploiting the enhanced NOM removal of the quaternary ammonium resin while utilizing the vast surface area of SWCNTs, which act as scaffolding for the resin. Our nanomaterials show increased adsorption capacity compared to commercially available adsorbents, in a fraction of the time. This NanoResin requires only about 10 s to reach ion-exchange equilibrium. Comparatively, commercial AERs only achieved partial removal after more than 30 min. High capacity adsorption of a low molecular weight (MW) surrogate has been measured. NOM removal was demonstrated in solutions of both low and high specific UV absorbance (SUVA) composition with these nanomaterials. Additionally, the NanoResin showed enhanced removal of a NOM concentrate sample taken from Myrtle Beach, SC, demonstrating NanoResin is an effective method of removal for refractory NOM in a natural aqueous environment. Synthesis and characterization of the polymers and nanomaterials are presented below. Adsorption capacity, adsorption kinetics, and the regeneration and reusability of these new materials for NOM removal are described. The open matrix microstructure precludes any intraparticle diffusion of adsorbates; thus, these nanomaterials act as a "contact resin". PMID:27348616